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Abstract. Optimal control of hyperelastic contact problems in the regime of
finite strains combines various severe theoretical and algorithmic difficulties.
Apart from being large scale, the main source of difficulties is the high non-
linearity and non-convexity of the elastic energy functional which precludes
uniqueness of solutions and simple local sensitivity results. In addition, the
contact conditions add non-smoothness to the overall problem.

In this paper, we discuss algorithmic approaches to address these issues.
In particular, the non-smoothness is tackled by a path-following approach,
whose theoretical properties are reviewed. The subproblems are highly non-
linear optimal control problems, which can be solved by an affine invariant
composite step method. For increased robustness and efficiency this method
has to be adapted to the particular problem, taking into account its large
scale nature, its function space structure and its non-convexity.
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1. Introduction

The analysis and simulation of elastic contact problems, in particular for small
deformations are a classical subject of applied mathematics. Already in their sim-
plest form, the Signorini problem [23, 5, 12], they are intrinsically non-smooth and
lead to a variational inequality on an appropriate Sobolev space. Nevertheless,
even in this simple, convex setting, the simulation of linearly elastic contact may
be challenging [12], depending on the geometric configuration.

Nonlinearly elastic contact contact problems combine these difficulties with
those that arise in nonlinear hyperelasticity. Solutions of hyperelastic problems
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can be modeled as energy minimizers [4]. Due to non-convexity of the energy,
minimizers do not have to be unique. Also, owing to the high nonlinearity of the
problem, local minimizers do not have to satisfy the weak form of the equilibrium
equation in general.

Here we consider optimization problems in the context of nonlinear elasticity
and contact. This connects to the works [13, 14], where first steps into the topic
were taken. In particular, existence of optimal solutions to such kinds of prob-
lems was shown. A composite step method [15] was developed for the numerical
solution of these problems. A similar topic was considered in [9], where optimal
control problems in the context of biological models were investigated and solved
by a quasi-Newton approach. Optimal control of linear contact problems has been
considered in [2, 17, 25].

In the last few years, additional progress has been made for this class of
problems, and the aim of this paper is to report on this progress, both concerning
theoretical results and algorithmic concepts. We build upon and extend the results
from [15], [22] and [21], where additional details can be found.

This work consists of two main parts: The first part is a concise recapitula-
tion of of the available theoretical results for optimal control of finite strain contact
problems. It is mainly based on [22], and, after fixing the framework, describes an-
alytic results on a path-following approach for the solution of these problems. The
second part deals with the algorithmic development, that has taken place recently.
Here a number of inherent numerical and practical challenges are described, and
algorithmic ways to deal with them are presented. First, elastic problems in three
spatial dimensions yield large scale systems after discretization. Hence, efficient
iterative solvers for the computation of steps have to be used. To this end, in
[21] an algorithmic framework for inexact step computations was developed, but
our class of problems demands further advance in this direction. Second, an ap-
propriate choice of functional analytic framework is discussed. It turns out that
the choice of norms has a decisive impact on the performance of the algorithms.
Finally, we consider the treatment of the inherent non-convexity in the problem,
both in the objective and in the energy functional. Our discussions are illustrated
by numerical examples.

2. Contact Problems in Hyperelasticity

Generally speaking, we study the deformation of a nonlinear elastic body made
of a hyperelastic material. The body is considered to be under stress from an
external boundary force which causes the deformation. Additionally, deformations
are constrained by an obstacle which the body cannot penetrate. In the context
of hyperelasticity, computing such deformations corresponds to solving an energy
minimization problem.

In this section, we introduce the setting and review the central results for non-
linear elastic contact problems. In particular, we give an overview of the existence
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theory in nonlinear elasticity and we address a suitable regularization approach
for the contact constraints.
Nonlinear elasticity. In our setting, the nonlinear elastic body is represented by
a domain Ω ⊂ R3 which is required to be Lipschitz continuous. In addition, its
boundary is divided into three subsets as follows:

Γ = ΓD ∪ ΓN ∪ ΓC ,

where each subset has non-zero boundary measure. Here, ΓD and ΓN denote the
parts where Dirichlet and Neumann boundary conditions hold, respectively. Fur-
ther, ΓU ⊂ ΓN and ΓC denote the parts where the boundary force acts and where
the contact constraints are enforced, respectively.

Next, we denote by

y : Ω→ R3, and u : ΓU → R3

the deformation of the body and the boundary force, respectively.
For simplicity, we consider the following contact constraint:

y3 ≥ 0 a.e. on ΓC .

This describes a setting where the body has to stay above the plane that is spanned
by the first two canonical basis vectors.

As deformation space, we choose the Sobolev space W 1,p(Ω;R3) with p ≥ 2.
Correspondingly, as space for the boundary force we choose L2(ΓU ,R3). If there
is no risk of ambiguity, we will skip the notation for the image space in all vector-
valued spaces. In the setting of optimal control, deformations will act as the state
and boundary forces will act as the control. Accordingly, we introduce the notation
Y = W 1,p(Ω) and U = L2(ΓU ). Further, let id : Ω → Ω be the identity mapping,
and let M3

+ denote the space of invertible 3×3 matrices with positive determinant.

Lastly, if not stated otherwise, we define the matrix norm ‖M‖ :=
√

trMTM and
we denote by Cof M := det(M)M−T the cofactor matrix for M ∈M3

+.
For hyperelastic materials, computing the deformation of a body subjected

to an external load is equivalent to finding a respective energy minimizer. The
corresponding total energy functional I : Y × U → R can be defined by

I(y, u) :=

∫
Ω

Ŵ (ω,∇y(ω)) dω −
∫

ΓU

yu ds,

with the common splitting

Istrain(y) =

∫
Ω

Ŵ (ω,∇y(ω)) dω and Iout(y, u) =

∫
ΓU

yu ds.

Here, Ŵ : Ω ×M3
+ → R denotes the stored energy function which depends

on the material. For detailed discussion of the specific choice of Ŵ we refer to [3].
For the further analysis, we require the following assumptions, which are standard
in hyperelasticity:



4 A. Schiela and M. Stöcklein

Assumption 2.1. Let Ŵ : Ω×M3
+ → R be the stored energy function. We assume

that the following properties hold:

1. Polyconvexity: For almost all ω ∈ Ω, there is a convex function W(ω, ·, ·, ·) :
M3 ×M3×]0,+∞[→ R such that

Ŵ (ω,M) = W(ω,M,Cof M, detM), for all M ∈M3
+.

The function W(·,M,Cof M,detM) : Ω→ R is measurable for all M ∈M3
+.

2. For almost all ω ∈ Ω, the implication detM → 0+ ⇒ Ŵ (ω,M)→∞ holds.
3. The sets of admissible deformations defined by

A := {y ∈W 1,p(Ω), Cof ∇y ∈ Ls(Ω), det∇y ∈ Lr(Ω),

y = id a.e. on ΓD, det∇y > 0 a.e. in Ω},
Ac := {y ∈ A : y3 ≥ 0 a.e. on Γc},

for p ≥ 2, s ≥ p
p−1 , r > 1 are non-empty.

4. Coercivity: There exist a ∈ R, and b > 0, such that

Ŵ (ω,M) ≥ a+ b(‖M‖p + ‖Cof M ‖s + |detM |r).

5. The identity id : Ω→ Ω satisfies Istrain(id) = 0, id3 ≥ 0 a.e. on ΓC .

With this at hand, computing the deformation of a body constrained by an
obstacle can be described by the optimization problem

y ∈ argmin
v∈Ac

I(v, u). (1)

Existence of energy minimizers has been established in [4, Theorem 4.2], extending
techniques from [1].
Regularization of contact constraints. Contact constraints add non-smoothness to
an already highly nonlinear and non-convex problem. Therefore, we will introduce
a suitable regularization approach.

Here, we apply the normal compliance regularization used in [18, 16]. In this
context, we introduce the penalty functional P : Y → R+

0 defined by

P (v) :=
1

k

∫
ΓC

[−v3]
k
+ ds, k ∈ N, k > 1, v ∈ Y,

which measures the violation of the constraints. We add the scaled penalty function
P to the total energy functional I

Iγ(y, u) := I(y, u) + γP (y) γ > 0.

This approach allows us to drop the contact constraints. As a result, we obtain
the regularized minimization problem:

y ∈ argmin
v∈A

Iγ(v, u). (2)

The well-posedness of the regularized problem (2) and a convergence result that
links (1) to (2) have been proven in [22, Theorem 2.3, Proposition 2.1].
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Theorem 2.1. Let γ > 0 be a fixed penalty parameter and u ∈ U be some fixed
boundary force. Then, under Assumption 2.1, the regularized total energy func-
tional Iγ(·, u) has at least one minimizer in A.

3. Optimal Control of Nonlinear Elastic Contact Problems

In the optimal control setting, we aim at minimizing an objective functional

J : Y × U → R,

subject to the constraint that an optimal state y∗ is a minimizer of the total energy
functional i.e.

y∗ ∈ argmin
v∈Ac

I(v, u∗),

where u∗ is the corresponding optimal control. We restrict ourselves here to a
tracking type functional of the form

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(ΓU ),

for yd ∈ L2(Ω), α > 0 and U = L2(ΓU ). Accordingly, the optimal control problem
reads as follows:

min
(y,u)∈Y×U

J(y, u) s.t. y ∈ argmin
v∈Ac

I(v, u). (3)

Based on the analysis in [14], the following existence result was derived in [22,
Theorem 4.1]:

Theorem 3.1. Problem (3) has at least one optimal solution.

Solving those kinds of optimal control problems numerically is already a chal-
lenging task, even without contact constraints. Therefore, we are going to apply
the previously introduced normal compliance regularization in order to avoid deal-
ing with the contact constraints numerically. As a result, we obtain the regularized
optimal control problem:

min
(y,u)∈Y×U

J(y, u) s.t. y ∈ argmin
v∈A

Iγ(v, u), (4)

for some fixed parameter γ > 0.

Analogously to above, we can show the existence of optimal solutions.

Theorem 3.2. For each γ > 0 problem (4) has at least one optimal solution.

Proof. See [22, Proof of Theorem 4.2]. �
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Convergence of Solutions of the Regularized Problem. With the regularized opti-
mal control problem at hand, we now have to verify that solutions of the regularized
problem (4) approach solutions of the original control problem (3).

However, concerning the regularization (4), one corner case precludes the
desired result: it may happen that the energy minimization problems in (3) admit
a larger set of energy minimizers than can be approximated by solutions of (4). So
the desired convergence theory for (4) can only be established under an assumption
that rules this case out, as discussed in [22]. However, a modified regularization
can solve this problem.

We introduce the following alternative regularized problem:

Eγ(y, u) := Iγ(y, u) + ϕ(γ)
1

2
‖y − yd‖2L2(Ω), (5)

where ϕ : [0,∞[→]0,∞[ is a positive function in γ, that is monotonically decreas-
ing, such that

lim
γ→∞

ϕ(γ) = 0.

Again, the well-posedness and a convergence result for this new regularization were
established in [22].

For the convergence analysis, it has to be ensured that the regularization
function ϕ does not approach zero too quickly. This is necessary to guarantee that
the minimization of a fraction of the objective functional J is sufficiently weighted
at all times. This property is specified in the following assumption.

Assumption 3.1. Let u ∈ U be fixed. Assume that

lim
γ→∞

minv∈Ac
I(v, u)−minv∈A Iγ(v, u)

ϕ(γ)
= 0.

With this in mind, we can show convergence for this approach.

Theorem 3.3. Let γn →∞ be a positive and monotonically increasing sequence of
penalty parameters. Furthermore, let (y∗, u∗) denote an optimal solution to problem
(3). In addition, let (yn, un) ⊂ A × U be a sequence of optimal solutions to the
corresponding regularized problems, where the regularization function ϕ satisfies
Assumption 3.1 w.r.t. u∗. Then,

lim
n→∞

J(yn, un) = min
S
J.

Furthermore, there exists a subsequence (ynk
, unk

) and a pair (y, u) ∈ Ac×U such
that we obtain the weak convergence ynk

⇀ y in Y and the strong convergence
unk
→ u in L2(ΓU ). Additionally, (y, u) solves the original problem (3).

Proof. See [22, Proof Theorem 5.4]. �

In [22] additional results are established that allow an a-priori choice of ϕ,
depending on the regularity of the geometric configuration.



Algorithms for Optimal Control of Finite Strain Contact 7

Formal KKT Conditions. Let us define

cγ(y, u)v = ∂yEγ(y, u)v ∀v ∈ P
where P is a reflexive space of test functions. This mapping corresponds to equilib-
rium conditions of our hyperelastic problem. We thus have a nonlinear mapping:

cγ : Y × U → P ∗

that can be split additively as follows:

cγ(y, u) = Aγ(y)−Bu
into a nonlinear operator Aγ : Y → P ∗ and a linear operator B : U → P ∗. Then,
formally, the KKT-conditions at a minimizer x∗ state the existence of an adjoint
state p such that:

J ′(y∗, u∗) + c′γ(y∗, u∗)
∗p = 0

cγ(y∗, u∗) = 0.

We stress that a rigorous derivation of these conditions seems to be out of reach
at the moment. The main reason is the lack of local sensitivity results of solutions
of hyperelasticity with respect to perturbations of u.

4. Numerical Optimization Algorithms

In order to algorithmically approach this problem, we formally replace the energy
minimizing constraint by its first order optimality condition. Then, the reformu-
lated problem reads as follows:

min
(y,u)∈Y×U

J(y, u) s.t. cγ(y, u) = 0. (6)

As result, we obtain an equality constrained optimization problem for each pa-
rameter γ > 0. This formulation allows the application of solution algorithms for
equality constraints. Nevertheless a couple of intrinsic difficulties have to be con-
sidered. To overcome them, measures have to be taken that go beyond standard
equality constrained optimization:

• The problem is posed in function space, and even after discretization (which
is done here by a displacement formulation), this inherent structure should
be taken into account by the algorithm.
• In three dimensional elasticity, the use of direct solvers limits severely the res-

olution of discretizations. Thus, all arising linear systems have to be solved by
iterative methods, preferably of conjugate gradient type. In this context, the
issue of finding appropriate preconditioners and termination criteria arises.
• Although the elastic energy minimization problem has been replaced by its

equilibrium conditions, the goal remains to compute stable solutions, i.e.,
energy minimizers. Hence, our algorithm should have built-in preference to-
wards energy decreasing search directions. This issue arises due to non-
convexity, in particular, if the problem of linearized elasticity yields a Hessian
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matrix that is not positive definite. This case also precludes the direct appli-
cation of a conjugate gradient method.
• The high nonlinearity of the energy functional also includes a singularity near

det∇y = 0, while local self-penetration, i.e., det∇y < 0 is infeasible.

While we concentrated [22] on the construction of a path-following method for
the regularization of the contact constraints, the aim of this section is to propose
algorithmic measures to tackle the above problems, which are sometimes specific
to nonlinear elasticity, and to illustrate their numerical performance.

For the following numerical computations we always employ the tracking type
functional, described above and a nonlinear material that is used for modelling soft
biological tissue. They differ in terms of geometric configuration and in terms of
the desired deformed state yd.

4.1. An affine covariant composite step method

For brevity of notation we set x := (y, u) and X = Y × U , which yields the
formulation

min
x∈X

J(x) s.t. cγ(x) = 0. (7)

The space of iterates is equipped with an appropriately chosen scalar-product 〈·, ·〉
that gives rise to a Riesz-isomorphism M : X → X∗, i.e., 〈v, w〉 = (Mv)(w).
As usual, we define the Lagrangian function L : X × P → R via L(x, p) :=
J(x) + pcγ(x) = J(x) + p ◦ cγ(x).

For the solution of the minimization problem (7), we apply a composite step
algorithm based on the preceding work [15], from which we recapitulate the main
ideas.

The idea of composite step methods is to split the Newton update δx into a
normal step δn and a tangential step δt for a precise treatment of optimality and
feasibility. A normal step δn satisfies δn ∈ ker c′(x)⊥ and aims for feasibility. It
can be computed via the augmented system:(

M c′γ(x)∗

c′γ(x) 0

)(
δn
q

)
+

(
0

cγ(x)

)
= 0, (8)

which corresponds to the minimization problem:

min
v

1

2
〈v, v〉M s.t. c′γ(x)v + cγ(x) = 0.

If necessary, a damping factor ν ∈]0, 1] is applied. The tangential step δt satisfies
δt ∈ ker c′(x) and aims for a decrease of the functional value. It can be computed
by solving the problem:(

Lxx(x, p) c′γ(x)∗

c′γ(x) 0

)(
δt
q

)
+

(
Lx(x, p) + Lxx(x, p)νδn

0

)
= 0. (9)

This problem corresponds to the following minimization problem for δx = νδn+δt
with fixed νδn:

min
δt

f ′(x)δx+
1

2
Lxx(x, p)(δx, δx) s.t. c′(x)δt = 0.
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The Lagrange multiplier p, which is needed for this step, is computed before as
follows: (

M c′(x)∗

c′(x) 0

)(
g
p

)
+

(
f ′(x)

0

)
= 0. (10)

In contrast to (8), the upper left block in (9) need not be positive definite. The
best, we can hope for is that Lxx(x, p) is positive definite on kerc′γ(x) if x is close
to a strict minimizer of the problem.

Adding δn and δt directly results in a full Lagrange-Newton step, while damp-
ing can be used to construct a globalization procedure, e.g., or the form:

δx := νδn+ τδt,

where ν ∈]0, 1] and τ > 0 are damping and step size parameters. This class of
methods is popular in equality constrained optimization and optimal control and
there are various realizations of this principal idea available [24, 19, 20, 10, 27].

The motivation of the approach in [15] is due to functional analytic consid-
erations. Most methods for equality constraint optimization use residual norms of
the form ‖cγ(x)‖P∗ , e.g., within a merit function or a filter. If cγ(x) models a par-
tial differential equation, appropriate norms are dual norms and thus not easy to
evaluate. The use of a simple norm at this position may degrade the performance
of the globalization procedure considerably.

The concept of affine covariance [7] allows to dispense with the evaluation of
residuum norms. Instead, a simplified Newton step δs is used, which is defined as
a minimum norm solution of a simplified Newton equation:(

M c′γ(x)∗

c′γ(x) 0

)(
δs
q

)
+

(
0

cγ(x+ δx)− cγ(x)− c′γ(x)δx

)
= 0 (11)

By computing the ratio Θ := ‖δs‖X/‖δx‖X , it is possible to estimate the Newton
contraction towards the feasible manifold. If Θ � 1, we are in the region of fast
local convergence of Newton’s method for the solution of the underdetermined
problem cγ(x) = 0. This globalization idea is combined with an appropriate de-
crease criterion. Details are elaborated in [15]. There it is also shown that δs helps
to overcome the Maratos effect, since J(x+δx+δs) is approximated better by the
quadratic model of the Lagrange Newton step than J(x + δx) is. Thus, δs plays
the role of a second order correction and thus is beneficial in two ways.

To enforce the non-self-penetration condition det∇y > 0, additional damping
is applied if the trial iterate violates this condition.

4.2. Computation of steps by iterative solvers

We observe that the systems (8)-(11) all have a common structure, which, after
splitting of X = Y × U can be written as follows:(

H C∗

C 0

)(
v
q

)
+

(
c1,2
c3

)
= 0 ⇔

Hy 0 A∗

0 Hu −B∗
A −B 0

vyvu
q

+

c1c2
c3

 = 0 (12)
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Here we used the observation that J(y, u) = J1(y) + J2(u), so that H is block
diagonal and set Cx = Ay − Bu. Since J2(u) = α/2‖u‖2, we know that Hu is
positive definite. However, H may not always be positive definite on kerC in
case of the tangential step (9). This can only be expected close to a minimizer.
Moreover, in our context of hyperelasticity the block A = A′γ(y) = ∂yyEγ(y, u)
is symmetric, but not always positive definite (and may be singular) due to non-
convexity of the elastic energy. However, as we will discuss below, it is possible to
modify A and H, such that the modified operators are positive definite, so that,
in particular, A is invertible. Finally, we observe that c3 = 0 in (10) and (9), while
by solving the system Avy,0 + c3 = 0 we can reduce (8) and (11) to a problem,
where c3 = 0 holds as well.

In this setting a conjugate gradient method on kerC can be applied to (12).
For its implementation a constraint preconditioner is needed that guarantees that
iterates remain in kerC, as long as c3 = 0. We obtain a projected conjugate
gradient method, cf. e.g. [8]. Taking into account the block structure of (12), we
use the following block lower triangular preconditioner P :

P :=

0 0 A∗

0 H̃u −B∗
A −B 0

 ,

dropping Hy and replacing Hu by a preconditioner H̃u, e.g., if Hu is a mass
matrix, its diagonal. This decouples (12) into three equations, which can be solved
sequentially:

A∗q = −c1 → q (13)

H̃uvu = B∗q − c2 → vu (14)

Avy = Bvu → vy. (15)

The main computational effort is spent solving (13) and (15), which are problems
of linearized elasticity in 3d. For coarse discretizations a sparse direct solver can be
used to factorize A = A∗ and solve (13) and (15). In that case, the preconditioned
cg-method can be applied directly to (12) despite its saddle point structure.

Inexact constraint preconditioning. For fine discretizations,A cannot be factorized
directly, and we have to resort to preconditioned conjugate gradients. Here, we use
a multigrid preconditioner of BPX-type, equipped with a block Jacobi smoother
that uses the diagonal of 3× 3 blocks of A, respecting the vector valued nature of
the problem.

Some care has to be taken, when this method is implemented. If (13) and
(15) are solved only inexactly, the iterates are not contained in kerC any longer.
Instead of (13) and (15), one actually solves near-by problems

Ã∗q = −c1 (16)

Ãvy = Bvu (17)
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with Ã ≈ Ã∗ ≈ A = A∗, changing slightly from step to step. If the cg method
applies the operator in (12) as the forward operator, this may lead to spurious
occurrence of directions of negative curvature, unless the accuracy of solution of
(13) and (15) is very high.

Hence, we have to avoid application of the A and A∗ blocks in (12). This
can be done by a simple auxiliary recursion within the projected cg-method. Al-
though it is known that the convergence theory of conjugate gradients requires
that preconditioners are linear mappings that do not change during the iteration,
the cg-method then tolerates small errors in the application of the preconditioners.
It can be observed, however, that loose tolerances in the solution of (16) and (17)
are detrimental for the speed of convergence of the outer cg-iteration.

Remark 4.1. It is desirable to reduce the accuracy requirement for (16) and (17)
even further. Then a linear iteration scheme, such as a preconditioned Chebychev
semi-iteration with a fixed number of steps, has to be employed and we end up with
a solution of the perturbed problem:Hy 0 Ã∗

0 Hu −B∗
Ã −B 0

ṽyṽu
q

+

c1c2
0

 = 0, (18)

where in contrast to before, Ã is a linear operator, so that the outer cg-iteration
really solves a well defined linear problem.

Solving (15) with ṽu on the right hand side (by conjugate gradients) yields
solutions in kerC again. A linear solver, based on this idea has been tested with
promising results for optimal control of linear elliptic problems. Application to
optimal control of nonlinear elasticity is under current investigation.

Remark 4.2. Within the approach of Byrd-Omojokun composite step methods, in-
exact system solvers were considered in [11, 10, 20]. Here an alternative route is
taken. A GMRES method is used to solve normal steps inexactly, allowing for
loose tolerances in the evaluation of A and A∗. The solver for this problem also
serves as a preconditioner for the tangential step, for which a projected cg with
re-orthogonalization is used.

Accuracy matching. For the efficiency of the overall method it is important that
the steps are computed with neither too tight tolerances, which renders each step
too expensive, nor with too loose tolerances, which may lead to loss of robustness
and increase of the number of outer iterations. Setting fixed tolerances is usually
not the best way to cope with this problem, since each step of the outer iteration
has a different characteristic. For example, if the tangential step is dominant (which
often happens close to the optimal solution), then normal and simplified normal
step can be computed with low relative accuracy. A strategy for accuracy matching
has been proposed and tested in [21], where in particular the impact of inexact
normal and simplified normal steps on the outer iteration was considered and
adaptive termination criteria were derived.
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4.3. Choice of functional analytic framework

A very important issue for our problem is a good choice of a Hilbert space norm
on X = Y × U that measures the step-lengths and also defines what normal
means, when normal steps are computed. Our numerical results show that this
has considerable impact on the performance of our algorithm. Recall that the
Riesz-operator M : X → X∗ enters the definition of normal and simplified normal
step, as well as the computation of the Lagrange multiplier in (8), (11), and (10).

For certain classes of optimal control problems with mildly nonlinear PDEs
(e.g. semilinear equations) it is possible to find a Hilbert space norm on X that
allows a rigorous (local) convergence theory in function space, based in the cor-
responding functional analytic setting. To obtain analogous results for nonlinear
elasticity is illusory. Even the solution of the forward problem is prone to a two-
norm discrepancy: differentiability of the energy functional cannot be expected in
a space less regular than W 1,∞(Ω), while the energy space is only W 1,2(Ω). We
thus have a norm-gap that is hard to bridge.

Figure 1. Problem of pushing down a plate. Left: Undeformed
domain. Middle: Desired deformation. Right: Optimal deforma-
tion. Upper horizontal boundary: ΓU , colour codes intensity of
force. Lower horizontal boundary: ΓN \ ΓU . Vertical boundaries:
ΓD.

As a consequence mesh-dependent behaviour of solvers has to be expected,
at least, if difficult problems with large strains are solved. If the problem is not too
hard, however, additional regularity of the steps can usually be observed, which
alleviates the difficulty in practice. This favourable effect depends on the concrete
configuration and is hard to grasp a-priori in a mathematical theory.

Our numerical observations confirm our considerations. In the following con-
sider two alternative norms:

‖(y, u)‖2M0
:=

1

2
‖y‖2L2(Ω) +

α

2
‖u‖2L2(Γ),

‖(y, u)‖2M1
:=

1

2
‖y‖2H1(Ω) +

α

2
‖u‖2L2(Γ).

Clearly, ‖ · ‖M0
is in close correspondence with the objective functional to be

minimized, but does not take into account the regularity requirements of the non-
linearity, at all. In contrast ‖ · ‖M1

promotes smoother states, so, although not
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guaranteeing W 1,∞(Ω) regularity, is certainly considerably closer to the ideal sit-
uation.
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Figure 2. Iteration history for problem from Figure 1, using
M0: Top: norms of steps, taken by the algorithm, Bottom: total
number of outer cg-Iterations in each step
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Figure 3. Iteration history for problem from Figure 1, using
M1: Top: norms of steps, taken by the algorithm, Bottom: total
number of outer cg-Iterations in each step
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We test these two alternatives at a problem, described in Figure 1. The results
of a numerical comparison are depicted in Figure 2 and Figure 3. We observe a
marked difference, although the computed final solutions, as inspection showed, are
the same. Equipped with ‖ · ‖M0

our algorithm takes about 200 steps and shows
quite irregular behaviour. If ‖ · ‖M1

is used, we observe from Figure 3 that the
behaviour of our algorithm is much faster and also much more regular, concerning
choice of damping factors.

4.4. Non-convexity of Objective and Energy

A major difficulty in the considered class of problems is the occurrence of non-
convexity, not only in the objective functional, but also in the energy functional.
The difficulties, introduced by non-convexity are well known: we usually obtain
non-unique local minimizers, additional stationary points, and quadratic mod-
els used in SQP methods are not positive definite anymore. As a consequence,
Lagrange-Newton methods, even if equipped with some damping are usually not
appropriate for finding minimizers of non-convex problems. Various algorithmic
techniques for non-convex optimization have been developed in the last few decades
(cf. e.g. [6]).

Two popular techniques for large scale problems are truncated conjugate
gradients, where the cg method is performed, until a direction of negative curvature
is detected and hessian modification, where a positive definite term is added to the
hessian, such that the sum is positive definite. In our context, the latter strategy
yields markedly more robust behaviour, if applied appropriately. For this it is
important that the regularization term is chosen adequately, taking into account
the underlying functional analytic structure.

While truncated cg methods typically yield cheaper steps, the computed
search directions are often very irregular (an effect that is not present in Rn) and
thus yield very small damping parameters and many outer iterations. The reason
is that steps result from an algebraic computation that is just terminated at a
point where things became particularly difficult with often irregular cg-iterates.

On the contrary, an appropriate hessian modification yields a well defined
problem in function space. For example, a regularized elastic problem is still an
elastic problem, however with a different, stiffer material. Hence, solutions of reg-
ularized problems typically have better regularity properties than an arbitrary
element of the energy space. This is in agreement with the above observation that
additional regularity of solutions helps to bridge the problem inherent norm-gap.

Non-convexity of the Objective. If Lxx(x, p) is not positive definite on ker c′γ(x),
then (9) does not correspond to a quadratic minimization problem and descent
of tangential steps is not guaranteed, unless appropriate modifications are made.
Just as described above, we use a hessian modification approach. Instead of solving
(9) we solve the modified problem:(

Lxx(x, p) + λM c′γ(x)∗

c′γ(x) 0

)(
δt
q

)
+

(
Lx(x, p) + Lxx(x, p)δn

0

)
= 0, (19)
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where M is the Riesz-isomorphism that is used to define normal steps and λ ≥ 0
is an algorithmic parameter that is chosen large enough to render Lxx(x, p) + λM
positive definite on ker c′γ(x).

This system corresponds to the following minimization problem

min
δt

f ′(x)δx+
1

2
(Lxx(x, p) + λM̃)(δx, δx) s.t. c′(x)δt = 0,

where M̃ = M on ker c′γ(x), but M̃ = 0 on (ker c′γ(x))⊥. Our quadratic model is
thus mainly modified on ker c′γ(x) but not on its orthogonal complement.

In our current implementation each step is started with λ = 0. If non-
convexity is encountered, λ > 0 is chosen and a new attempt to compute a step is
made. Subsequently, λ is increased, until directions of negative curvature are no
longer encountered.
Non-convexity of the Energy. If models for elastic materials are intended to be
realistic for large deformations, they have to be non-convex. A classical and prac-
tically relevant example, caused by non-convexity is buckling. It can be observed,
if compressive forces act on the opposite ends of a slim body. For small forces
the body is compressed in the direction of force, but as forces increase, this state
becomes unstable and energy is decreased if the body is bent in some direction.
Depending on the symmetries of the body the new energy minimizers may be non-
unique, and they may differ dramatically from the previous solution. Seemingly
stable structures collapse suddenly, if a certain critical force is exceeded.

If such a behaviour is encountered during the course of solution of an optimal
control problem, which is the case for the problem, described in Figure 4, a couple
of numerical difficulties arise. First of all, the operator A in (15) is likely to be
indefinite, so (15) does not correspond to a quadratic energy minimization problem
and also cannot be solved by a cg-method. Furthermore, solutions of the nonlinear

Figure 4. Problem of bending down a horizontal cantilever. Left:
Undeformed domain. Middle: Desired deformation yd. Right: Op-
timal deformation. Upper/front horizontal boundary: ΓU , colour
codes intensity of applied forces. Rear vertical boundary: ΓD. All
other boundaries: ΓN \ ΓU .
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equation cγ(y, u) = 0 cease to be energy minimizers or change rapidly, if u is
perturbed.

In analogy to the regularization of the objective function we apply a regular-
ization term to the energy functional. This has to be done in such a way that δn,
δt and δs can be computed in a consistent way.

Assume that at the iterate (yk, uk) the operator A = A′γ(yk) is not posi-
tive definite. This can be detected during the attempt to solve (13) or (15) by a
cg-method. In that case, we choose a regularization factor λ > 0, and define a
regularized energy functional as follows:

Êγ(y, u) := Eγ(y, u) +
λ

2
q(y − yk),

where q is a quadratic, positive definite energy. For our computations we have
choosen q(v) = 〈∇v,∇v〉L2

. For this modification we compute:

∂yÊγ(y, u) = ∂yEγ(y, u) + λq′(y − yk) ⇒ ∂yÊγ(yk, uk) = ∂yEγ(yk, uk),

Â := ∂2
yyÊγ(yk, uk) = ∂2

yyEγ(yk, uk) + λq′′(0).

The effect of this regularization is threefold: first of all, if λ is sufficiently large to
render Â is positive definite, then the solution of (13) or (15) with A replaced by

Â is a minimization problem. Thus conjugate gradients can be applied. Second,
due to ellipticity of Â, normal steps are shifted towards descent for Eγ(y, u) at
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Figure 5. Iteration history for problem from Figure 4: Top:
norms of steps, taken by the algorithm. Green circles: convex en-
ergy, red dots: non-convex energy. Bottom: total number of outer
cg-Iterations in each step
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(yk, uk), because the linearized constraint imposed on δn reads:

Âδny −Bδnu + ∂yEγ(yk, uk) = 0.

Since Eγ(yk, uk) is linear in u, we conclude:

∂yEγ(yk, uk + δnu)δny = (∂yEγ(yk, uk)−Bδnu)δny = −(Âδny)δny < 0.

So δny is a descent direction for the total energy at the point (yk, uk+δnu). Thus,
finding energy minimizers is promoted. Third, long steps are penalized, which
results in a more stable behaviour of the optimization algorithm in the presence
of an instability of the elastic problem.

As a numerial example we consider the problem, described in Figure 4. In
Figure 6 we see some of the iterates taken by our optimization algorithm for a
problem, where non-convex behaviour of the energy functional is encountered.
In the beginning of the iteration, a buckling type non-convexity is encountered.
We observe that the applied forces in the early phase of the algorithm are rather
intense, since the material resists the applied compressive forces. Also the necessary
regularization of the energy adds some artificial stiffness to the material. After

Figure 6. Iterates taken by the composite step method for prob-
lem from Figure 4 without contact. The colour codes the inten-
sity of the forces. Top row: iterates 1,2,3,4. Bottom row: iterate
7,10,13,16,19.
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some bending has taken place, the algorithm finds the optimal solution using
comparably small forces.

An interesting effect is the S-shape shown by some intermediate deformations.
This is a consequence of the nonlinearity of the problem, which occurs in particular
for boundary forces. A tangential traction force tries to push the body towards the
desired deformation. Due to the nonlinearity of the problem, however, the body is
bent in upward direction, due to the moment introduced by this force.

Remark 4.3. An alternative to the presented idea was also tested. If during the
algorithm non-convexity of the energy was encountered at (yk, uk), the control uk
was kept fixed and an energy minimization algorithm, based on the ideas of [26],
was applied to compute a minimizer of Eγ(·, uk) was computed. So we temporarily
switched to a black-box method. At least for our test case, the performance of this
variant was not satisfactory. It showed a rather unstable and erratic behaviour.
The reason for this seems to be that buckling can occur during such an algorithm.

4.5. Path-following

With a robust solver for (6) at hand, we can now use a path-following method to
approximate solutions of the original optimal control problem with contact. We use
a simple approach, where after (6) has been solved for some γk, the regularization
parameter is multiplied by some fixed factor s > 1. A choice of s = 10 has proven
quite appropriate.

We added contact constraints to the problem, described in Figure 4. An
illustration of the path-following procedure is given in Figure 7. Obviously, the
regularization procedure works as intended. For moderate γ, the contact constraint
is clearly violated, but γ becomes larger this violation gradually vanishes. We also
observe that our method is well capable to deal with large deformations and strains.

(a) γ = 100 (b) γ = 103 (c) γ = 109

Figure 7. Optimal deformations with penalty parameter γ for
problem from Figure 4 with contact. Colour codes intensity of the
forces.
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A detailed discussion of the problem from Figure 1 with added contact con-
straints, including convergence plots, can be found in [22].

5. Conclusion and Outlook

We conclude that optimal optimal control problems with finite strain hyperelastic
materials and contact offer a broad range of challenges, concerning both theoretical
and algorithmic aspects.

The main theoretical challenge is that not much analytic structure is available
to build a theory upon. The main result of polyconvexity, a weak lower semi-
continuity property of the energy functional could be exploited to conclude results
about the path of regularized solutions. However, satisfactory, stronger results
were only possible by employing refined techniques. Still there are many questions
that remain open, most importantly a local sensitivity result that could permit a
rigorous derivation of optimality conditions for the optimal control problem.

From a numerical view point this class of problems combines high nonlin-
earity and non-convexity with large scale. To obtain efficient and robust solution
algorithms, significant advances had to be made, compared to generic optimization
methods. Decisive ingredients are a good choice of functional analytic framework,
a sound concept for inexact computation of steps by iterative solvers, and a proper
treatment of non-convexities, both in the objective and in the energy. In this pa-
per we concentrated on these computations aspects. An observed key ingredient
to efficient algorithmic behaviour is to produce regular steps where possible.

A couple of algorithmic concepts are subject to current work. First, as pointed
out in Remark 4.1 new ideas the use of iterative solvers for the A-block in (12)
are currently under investigation. Second, the nonlinearity of finite deformation
problems exhibits some very interesting geometrical structure. The analysis hints
on using nonlinear updates, instead of the usual linear ones. Currently, promising
numerical results that go into this direction are available for solving the energy
minimization problem. The application of this concept to optimal control problems
is still subject to current research and is planned to be published in a forthcoming
paper.

As a future perspective, the algorithmic solution of our class of problems
has to be extended to real world applications. A particular example are inverse
problems in the context of biomechanics, where elastic contact problems occur in
joints. In addition to the described difficulties, an envisioned solution algorithm
will have to deal with complicated contact geometries.
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with inexact step computations for PDE constrained optimization. Preprint
SPP1962-098, 10 2018.
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