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Abstract

This thesis consists of two parts dealing with different so far unsolved problems in

the field of pattern formation theory. The first part studies the effects of restricting

pattern formation to a finite domain – a scenario that is omnipresent in nature. In

the second part we identify and investigate a new phase separation phenomenon in

active systems with a conservation law – the so-called active phase separation.

In a first publication we show that physical boundaries generically lead to a

reflection effect for nonlinear traveling waves. This reflection forces systems that

show traveling waves in large extended systems into a standing wave pattern if the

system becomes sufficiently short. We also identify bands of stable standing waves

with different numbers of nodes, allowing for transitions between different standing

wave patterns. This generic result is especially relevant for the Min protein system

that plays a crucial role in the cell division process of the bacterium E. coli. Thereby

the Min proteins show a traveling wave pattern on large extended membranes in in

vitro experiments, while inside a cell a standing wave-like pattern is observed.

Finite domains for patterns can also be generated without hard physical bound-

aries. Instead the control parameter that switches the system between a patterned

state and a homogeneous state can be varied spatially in a way that it suppresses

the pattern in one region and allows it in another. A possible experimental re-

alization for this scenario are light-sensitive chemical reactions where the pattern

formation process can be enhanced or inhibited using an illumination mask. We

figure out that the steepness of the variation from a sub- to a supercritical control

parameter influences the orientation of stripe patterns in two spatial dimensions.

For steep step-like control parameter drops, the stripes favor a orientation parallel

to the control parameter variation. For smooth ramp-like drops on the other hand,

they favor a perpendicular orientation. This also implies that the orientation of

stripes will switch from parallel to perpendicular when decreasing the steepness of

the drop. This transition can be understood with the decreasing importance of

local resonance effects induced by the control parameter drop.

In another way, a control parameter drop also influences traveling wave pattern

in one dimension. While again local resonance effects are important, the control

parameter drop there leads to four different wave patterns depending on the group

velocity. For small group velocities, the traveling wave pattern thereby fills the

whole supercritical domain forming a filled state. Increasing the group velocity
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will confine the pattern to one side of the supercritical domain. Even higher group

velocities induce a state with a time-dependent amplitude of the wave pattern – a

so-called blinking state. Thereby both left- and right-traveling waves occur whose

amplitudes change periodically in time. Increasing the group velocity further leads

to a return of a wave state with a stationary amplitude. In the counter-propagating

wave state we find a left-moving wave in the left half of the supercritical domain

and a right-moving wave in the right half.

The second part of this thesis attends to a phenomenon resembling phase sep-

aration or demixing in several systems with a conserved quantity. Among them

are the assembly of proteins in different halves of a polarized cell, the aggregation

of cell colonies that communicate chemotactically or clustering behavior of active

Brownian particles. Even if these different systems constantly consume energy lo-

cally – rendering them non-equilibrium systems– all of them show a transition from

a homogenous to a state with a dense and a dilute phase similar to classical phase

separation. We are able to show that this similarity is indeed not coincidental.

Instead, models of systems from very different fields can be mapped onto one uni-

versal equation close to the onset of the phase separation process. This equation

turns out to be the Cahn-Hilliard equation – an equation that is usually used to

describe phase separation in thermal equilibrium. We demonstrate that this equa-

tion is also the universal description of what we call active phase separation. In

our publications we introduce a new kind of weakly nonlinear analysis that allows

to directly link the parameters of the original system to those of the Cahn-Hilliard

equation. This allows to confirm the validity of our approach by comparing numer-

ical simulations of the different original systems to the corresponding Cahn-Hilliard

model. We thereby find a convincing agreement in both stationary profiles, as well

as the dynamical evolution of the two. We furthermore extend the weakly nonlinear

analysis to the next higher order, which is especially interesting for active Brownian

systems showing so-called motility-induced phase separation. In those systems the

significance of higher order contributions is highly discussed. We are again able to

directly map the original system to an extended Cahn-Hilliard model, which allows

to identify straightforward the relevant contributions for a given model.
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Kurzdarstellung

Die vorliegende Dissertation besteht aus zwei Teilen, die bisher ungelöste Frage-

stellungen aus dem Gebiet der Strukturbildung behandeln. Der erste Teil widmet

sich dem Einfluss von Beschränkungen der Muster auf ein endliches Gebiet – ein

Szenario das in der Natur allgegenwärtig ist. Im zweiten Teil identifizieren und un-

tersuchen wir eine neue Art der Phasentrennung in aktiven Systemen mit Erhaltung

– sogenannte aktive Phasentrennung.

In einer ersten Publikation gelang es uns zu zeigen, dass physikalische Ränder ge-

nerisch zu einer Reflexion nichtlinearer Wanderwellen führen. Die Reflexion zwingt

Systeme, die in räumlich ausgedehnten Systemen Wanderwellen bilden, zu ste-

henden Wellen, wenn die Systemlänge kurz genug wird. Wir identifizieren außer-

dem Bänder stabiler Wanderwellen mit unterschiedlich vielen Knoten, was auch

Übergänge zwischen verschiedenen Arten stehender Wellen ermöglicht. Dieses all-

gemeine Ergebnis ist insbesondere für das sogenannte Min-Protein System rele-

vant, welches eine entscheidende Rolle im Zellteilungsprozess des Bakteriums E.

Coli spielt. Die Min-Proteine formen dabei in in vitro Experimenten Wanderwel-

len auf ausgedehnten Membranen, während ihre Muster innerhalb der Zelle einer

stehenden Welle ähneln.

Eine Begrenzung der Muster auf einen endlichen Bereich kann auch ohne harte

physikalische Ränder erreicht werden. Stattdessen kann der Kontrollparameter, wel-

cher zwischen einem musterbildenden und einem homogenen Zustand umschaltet,

räumlich so variiert werden, dass er in einem Gebiet Musterbildung unterdrückt und

in einem anderen ermöglicht. Experimentell lässt sich dieses Szenario zum Beispiel

in lichtsensitiven chemischen Reaktionen realisieren, bei der die Musterbildung mit

Hilfe einer Beleuchtungsmaske gesteuert werden kann. Wir zeigen, dass die Steil-

heit der Kontrollparameteränderung vom sub- in den superkritischen Bereich ent-

scheidenden Einfluss auf die Orientierung von Streifen in zwei Raumdimensionen

hat. Im Falle eines steilen stufenartigen Übergangs werden parallel zur Kontroll-

parameteränderung orientierte Streifen bevorzugt. Flache rampenartige Kontroll-

parametervariationen andererseits führen zu einer senkrechten Orientierung. Dieser

Übergang zwischen verschiedenen Streifenorientierungen hat seinen Ursprung in

der abnehmenden Bedeutung lokaler Resonanzeffekte, die der Kontrollparameter-

variation entspringen.
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Auf andere Weise beeinflusst eine solche Kontrollparametervariation auch Wan-

derwellen in einer Raumdimension. Während wiederum lokale Resonanzeffekte wich-

tig sind, führt die Kontrollparametervariation dort zu vier verschiedene Arten von

Wellenmustern, abhängig von der Gruppengeschwindigkeit. Im Fall kleiner Grup-

pengeschwindigkeiten füllen die Wanderwellen den gesamten superkritischen Be-

reich (filled state). Eine höhere Gruppengeschwindigkeit verschiebt den Bereich mit

einem Wellenmuster zu einer Seite des superkritischen Bereichs. Noch höhere Grup-

pengeschwindigkeiten führen zu einem Wellenmuster, dessen Amplitude zeitabhän-

gig wird – einem sogenannten blinking state. Dabei bilden sich rechts- und links-

laufende Wellen, deren Amplitude sich zeitlich periodisch ändert. Eine weitere

Erhöhung der Gruppengeschwindigkeit führt zu einer Rückkehr von Wellen mit

stationärer Amplitude. In diesem
”
counterpropagating wave state“ findet man ei-

ne links laufende Welle in der linken Hälfte des superkritischen Bereichs und eine

rechts laufende Welle in der rechten Hälfte.

Der zweite Teil dieser Arbeit widmet sich einem Phasentrennungsphänomen,

das in verschiedenen Systemen mit einer erhaltenen Größe auftritt. Zu diesen zählen

unter anderem Zellpolarisation, bei der sich Proteine in verschiedenen Hälften der

Zelle sammeln, die Agglomeration chemotaktisch kommunizierender Zellen oder das

Clustern aktiver brownscher Teilchen. Selbst wenn diese unterschiedlichen Syste-

me fortwährend lokal Energie verbrauchen – was sie klar zu Nichtgleichgewichts-

systemen macht – zeigen alle einen Übergang von einem homogenen Zustand zu

einem Zustand mit einer dichteren und einer weniger dichten Phase ähnlich zu

klassischer Entmischung. Wir zeigen, dass diese Ähnlichkeit in der Tat kein Zufall

ist. Stattdessen können unterschiedlichste Modellsysteme nahe des Einsatzpunkts

der Phasenseparation auf eine universelle Gleichung reduziert werden. Diese ist

überraschenderweise die Cahn-Hilliard Gleichung – eine Gleichung die üblicherweise

zur Beschreibung von Entmischung im thermischen Gleichgewicht verwendet wird.

Wir zeigen nun, dass diese Gleichung ebenso die universelle Beschreibung aktiver

Phasentrennung darstellt.

In unseren Publikationen führen wir eine neue Art der schwach nichtlinearen Ana-

lyse ein, die eine direkte Verbindung zwischen Parametern des ursprünglichen Sys-

tems zu denen der Cahn-Hilliard Gleichung ermöglicht. Dies erlaubt die Gültigkeit

und den Geltungsbereich unseres Ansatzes durch einen direkten Vergleich nume-

rischer Simulationen des Originalsystems und der zugehörigen Cahn-Hilliard Glei-

chung zu bestimmen. Wir beobachten dabei eine überzeugende Übereinstimmung

sowohl bei stationären Profilen, als auch in der zeitlichen Entwicklung.

Außerdem erweitern wir die schwach nichtlineare Analyse zur nächsthöheren

Ordnung, was besonders für aktive brownsche Teilchen relevant ist, die sogenann-

te beweglichkeitsinduzierte Phasentrennung zeigen. In diesen Systemen wird die
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Bedeutung solcher Beiträge höherer Ordnung in der Literatur intensiv diskutiert.

Wir sind nun erstmals in der Lage, das Ausgangssystem auf eine erweiterte Cahn-

Hilliard Gleichung abzubilden. Dies ermöglicht es, direkt zu erkennen, welche dieser

Beiträge für eine gegebenes System relevant sind.

V





Contents

Abstract I

Kurzdarstellung III

1 Extended Abstract 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Part I: Patterns in finite systems . . . . . . . . . . . . . . . . . . . 2

1.3 Part II: Active phase separation . . . . . . . . . . . . . . . . . . . . 20

1.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Publications 47

2.1 List of included publications . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Individual contributions of the authors . . . . . . . . . . . . . . . . 48

2.3 List of talks and posters . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Attached publications: . . . . . . . . . . . . . . . . . . . . . . . . . 51

Size matters for nonlinear (protein) wave patterns . . . . . . . . . . 51

Pattern orientation in finite domains without boundaries . . . . . . 63

Reflection of nonlinear wave patterns in finite domains without bound-

aries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Active phase separation: A universal approach . . . . . . . . . . . . 81

On system-spanning demixing properties of cell polarization . . . . 89

Systematic extension of the Cahn-Hilliard model for motility-induced

phase separation . . . . . . . . . . . . . . . . . . . . . . . . 123





1 Extended Abstract

1.1 Introduction

Patterns and self-organization in nature have captivated mankind since ancient

times. In the Roman Empire priests called augurs tried to interpret the will of

the gods by observing bird flocks [1]. Even longer ago people used beautifully

patterned shells of mussels and snails as pieces of jewelery. While the esthetic

appeal of skin patterns and the fascination for swarming behavior of animals, for

instance, are obvious, the universal principles of patterns and self-organization also

attract scientists from many different disciplines [2,3]. Many of them come with the

goal to explore and understand the origin and functions pattern fulfill in nature:

How does a flock of birds determine its flight direction [4], how does self-driven

morphogenesis influence and enable multicellular organisms [5, 6] or how do self-

organized patterns help a bacterial cell to divide at the center [7–9]?

Approaching such systems from the point of a pattern formation physicist means

not trying to understand all the different mechanisms leading to the phenomena in

the systems named above. Instead, pattern formation as a scientific discipline tries

to identify generic properties and unifying principles of the pattern itself rather

than its realizations in specific systems [10,11]. Stripe patterns, for instance, occur

as convection rolls in the sky [12, 13], as skin pattern of fish [14–17] or as a vege-

tation pattern in water-limited systems [18–21]. Obviously the length scales of the

patterns in these examples as well as the driving mechanisms are completely differ-

ent. Nevertheless, the stripe patterns themselves inherently have specific features,

e.g., considering their stability towards small perturbations [22–24] or response to

external forcing [10,25–27]. These features then apply to all systems forming stripe

patterns be it in the skies, on fish or in drylands.

In this thesis we focus especially on questions motivated by open biological and

chemical questions. However, along the lines of pattern formation theory the results

are more adhered to the pattern than to the specific systems and in that sense

transferable to other systems. In the first part of this work, we will thereby explore

pattern formation in finite domains, i.e. the response of a pattern restricted to a

certain space. Furthermore, we will identify and examine a new class of patterns

named active phase separation. This demixing phenomenon with active compounds

will be explained in more details in the second part of the work.
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1.2 Part I: Patterns in finite systems

In nature patterns always emerge in the presence of boundaries. Experiments on

Rayleigh-Bénard convection, for instance, take place in a finite convection cell [28].

Chemical reactions are restricted to a finite reactor like a petri dish or the inside of a

vesicle [29] or living cell [7]. Considering spatially periodic patterns such as stripes,

this means the pattern consists of a finite number of wavelengths. Constraining

patterns to a ’short’ domain is known to influence the pattern formation process:

Convection rolls in Rayleigh-Bénard systems, for instance, orient perpendicular

to side walls [10, 30–32]. Apart from orientation, boundaries can also influence

the wavelength of stripe patterns, i.e. the boundaries can induce a wavelength

selection [10,33–37]. While the interplay of stripe patterns and boundaries is quite

well understood, this is less the case for traveling wave patterns, especially under

very strong confinement.

Such strong confinement where the system size consists of just a few wavelengths

is of particular interest for reactions that take place on membranes of cells. A

prominent example of such a scenario is the cell biological Min protein system

[7, 38–40]. The coordinated attachment and detachment of Min proteins from the

cytosol to the cell membrane is crucial for the cell division process in the rod-

shaped bacterium E. coli. In a living bacterium, the Min proteins shuttle from one

cell pole to the other. This dynamic resembles a standing wave pattern where the

node of this wave ensures that the division site is located exactly at the cell center.

However, the group of P. Schwille managed to extract the principal components of

this intracellular reaction and was able to perform experiments on large artificial

membranes. They thereby observed that the Min system forms traveling wave

pattern on these membranes [41].

In [pub1 ] we raise the question whether these different kinds of patterns – stand-

ing wave-like patterns in in vivo and traveling waves in in vitro experiments –

may be a result of restricting the reaction to a small cell. Since we are interested

in generic features of patterns in the first place, we analyze this question using

a generic model that forms traveling waves. We therefore use the complex Swift-

Hohenberg (CSH) for the complex scalar order parameter field u(x, t) in one spatial

dimension [42–45]:

∂tu(x, t) = (ε+ ia)u− ξ2
0(1 + ib)(q0 + ∂2

x)
2u+ if∂2

xu− γ(1 + ic)|u|2u. (1)

The CSH model shows traveling wave solutions in extended systems if the control

parameter ε is positive. For a biological system, for instance, the total concentra-

tion of one of the proteins or a tunable binding rate may take the role of a control

parameter. These waves are stable in a wide parameter range and have a preferred

wavelength of λ0 = 2π/q0. The preferred wavelength also provides an intrinsic

2



length scale that allows us to meaningfully define ’strong confinement’ as system

sizes that are just a few times the intrinsic wavelength. Simulating the CSH equa-

tion with no-flux boundary conditions leads to significantly different wave solutions

depending on the system length L. Figure 1 shows a traveling wave pattern in the

time

sp
ac

e

SW
SW

SW
TW

L= 0/2

L= 0

L=3 0

Figure 1: Confinement of traveling wave patterns leads to a significant change of

the pattern. Depending on the system length, modulated waves (L = 3λ0), two-

node (L = λ0) or one-node standing waves (L = λ0/2) occur in simulations of the

CSH equation (see Eq. (1)). The colored sidebar show the regions where to find

standing waves (SW) and traveling waves (TW), indicating that the boundary

always induces a (local) SW pattern.

Figure adapted from [pub1 ], published under CC-BY 3.0.

center of the system for a moderately short system size (L = 3λ0). This pattern

is very similar to the one the CSH equation would exhibit in large systems where

boundaries are irrelevant. In large systems the two possible wave directions – left

and right-moving – are equally likely. However, unlike linear waves like electromag-
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netic waves nonlinear waves in general do not superpose. Instead the two opposing

wave directions compete, i.e. one direction is spontaneously selected suppressing

the other [10, 46]. In the case shown here, we find a right traveling wave in the

bulk region. However, confining nonlinear traveling waves additionally leads to a

reflection at the boundaries of the system. Considering the field u(x, t) as a sum of

left and right traveling waves uL and uR, the no-flux boundaries couple both wave

directions at the system boundary:

0 = ∂xu(x = 0, L) = ∂xuR(x = 0, L, t) + ∂xuL(x = 0, L). (2)

The coupling via the boundaries forces the right- and left-moving wave into coex-

istence close to the boundaries. This leads to a forced superposition of both wave

directions despite the generic competition between the two in the bulk. Figure 1

also shows the interplay between bulk competition and reflection in case of the

system length L = 3λ0. Close to the boundaries at the top and bottom the reflec-

tion effects dominate, forcing the incoming and reflected wave into a local standing

wave. As mentioned before the bulk still shows just one traveling wave direction

since the other is suppressed due to nonlinear interactions. Decreasing the sys-

tem length brings the top and bottom boundary closer together. This means the

fraction of the system with boundary-imposed superposition of the wave directions

increases. Therefore a decreasing system length inevitable results in a reflection-

induced standing wave. Simulations for system lengths L = λ0 and L = λ0/2 shown

in Fig. 1 confirm these considerations: For L = λ0 we find a standing wave with

two nodes, while for L = λ0/2 a one-node standing wave is observed. Accordingly,

the system length influences the number of nodes in the standing wave regime. The

discovery and exploration of this novel boundary-induced transition from traveling

to standing waves by decreasing the system length is the main statement of this

work.

We further analyze the transition between the standing wave states with a differ-

ent number of nodes as well as the transition to traveling waves using linear stability

analysis. We therefore calculate the analytical solution for a standing wave solution

of Eq. (1), finding

u(x, t) = 2Fe−iΩt cos(qx), (3)

with

F 2 =
1

3γ
[ε− ξ2

0(q2
0 − q2)2],

Ω = [−a+ ξ2
0b(q

2
0 − q2)2 + fq2 + 3γcF 2].

The no-flux boundary condition for systems of length L thereby only allows a

wavenumber q with q = nπ/L, where n ∈ N is the number of nodes of the standing
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wave solution. This standing wave solution with n nodes exists if F 2 > 0, this

means if the control parameter exceeds a certain value depending especially on

the wavenumber q. The existence border for the standing wave with the lowest

control parameter value is depicted as a black line in Fig. 2. Below this curve, the

homogenous state u = 0 is stable. To determine the stability of a standing waves

solution we add a small perturbation and analyze their dynamical behavior. Note

that the perturbation also has to match the boundary condition, which allows us

to write the perturbation up as

up = eσt
N∑

k=0

ak cos
kπx

L
. (4)

If the real part of the growth rate σ is larger than zero, the perturbation will grow

in time, rendering the standing wave solution unstable. The results are presented

in Fig. 2 as colored regions in the ε− L plane.
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Figure 2: Regions of linear stability for standing waves with a different number of

nodes indicated by color-shaded areas. Below the black solid line, the homoge-

neous state is stable while above the black dashed line traveling waves occur.

Figure adapted from [pub1 ], published under CC-BY 3.0.

Thereby each colored region depicts the stability region or so-called Eckhaus

stability band for a standing wave with a certain number of nodes. The Eckhaus

stability band was originally discussed in systems forming a stripe pattern, where
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it measures the width of the q-range for fixed ε where stripe patterns are stable.

Comparing the ratio between the bandwidth where stripes exist (existence band)

and the bandwidth where they are stable (Eckhaus band) there reveals a well

known value of 1/
√

3 in large extended systems [22, 23, 47]. Spatially extended

systems forming traveling waves also show an Eckhaus stability band in a certain

parameter regime [48–50]. However, in contrast to spatially unconstrained systems,

the Eckhaus band widens in confined systems and fills the whole existence band.

This means for small values of ε and in confined systems standing waves are stable

if they exist. Moreover, Fig. 2 shows that the stability regions with n and n + 1

nodes may overlap. This means there is a region of bistability between different

standing wave patterns. Fig. 3b shows the bistable behavior: For L = 0.79λ0 both

one or two node standing waves are stable and the observed solution depends on the

initial condition. Additionally, the linear stability indicates a number of different

transitions between patterns. Increasing, for example, the system length can either

lead to a direct transition between standing wave patterns with a different number

of nodes (like in Fig. 1) or to a transition between standing waves that is intersected

by a region with modulated standing waves (see Fig. 3a). Increasing the control

parameter for a fixed system length causes the standing wave pattern to loose its

stability and we find again modulated traveling waves.

These results are indeed not exclusive to the CSH model but can also be re-

produced in for instance a chemical reaction-diffusion system [51] or a model for

the Min system [52]. Especially for the latter one these results may be of great

importance. The one-node standing waves of our generic CSH model (e.g. Fig. 1,

bottom) show a striking resemblance to pole-to-pole oscillations in E. coli dur-

ing cell division [7, 53]. Our analysis shows that these standing waves generically

originate from nonlinear traveling waves via boundary reflection – provided they

are confined to a sufficiently short system. In the absence of spatial confinement,

the Min protein reaction forms traveling waves on extended functionalized mem-

branes [41]. This suggests that the pole-to-pole oscillations in E. coli are a direct

consequence of confining traveling waves to the cell interior. They are thus not a

specific feature of the Min system but instead based on generic principles of pattern

formation theory for nonlinear waves. In this context, experiments with elongated

or filamentous E. coli are particularly interesting, since the further patterns we find

in the CSH model also appear in these bacteria: Depending on the bacteria length,

the Min proteins also form standing waves with multiple nodes [7, 53–55] or even

traveling waves [55]. More importantly though, not only do living bacteria slightly

differ in length, they also actively grow. To maintain accurate cell division at the

cell center, the pole-to-pole oscillations need to be robust over a range of cell sizes.

Indeed, we find that stability of standing waves in a range of system lengths is

another generic feature of nonlinear waves. This wavelength variability enables the
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Figure 3: Scenarios for transitions between different wave pattern.

a) Scenarios upon changing system parameters: For fixed control parameter

(ABC) changing the system length along the horizontal arrow leads to a transi-

tion from a one-node standing wave to a modulated traveling wave to a two-node

standing wave. Varying the control parameter along the vertical arrow for a fixed

length (DE) we find a transition from a 3-node standing wave to a modulated

traveling wave

b) Bistability of a one- and two-node standing wave due to an overlap of the

stability regions.

Figure reproduced from [pub1 ], published under CC-BY 3.0.

pole-to-pole oscillations to adapt to the cell size within this stability or Eckhaus

range. In fact, E. coli maintain robust pole-to-pole oscillations even as they almost

double in length before cell division. Continued cell growth to filamentous bacteria

also allows for the observation of transitions between standing waves with different

numbers of nodes or to traveling waves [8, 54, 55]. Pattern formation theory there-

fore captures the essence of the mentioned cell biological phenomena observed in

experiments.

A possible extension of our work would be the analysis of strongly confined

traveling waves in two spatial dimensions. In this case, in addition to the transition

7
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between traveling and standing waves, one can also observe different directions of

the traveling wave. First experiments in the Min system in confined fluidic chambers

or experiments where E. coli bacteria were confined to a rectangular domain already

reveal that the orientation of the Min waves strongly depends on the ratio of the

two-dimensional confinement [53,56–58]. From our results it is a natural assumption

that the protein wave aligns in the direction that results in a wavelength closest

to its intrinsic wavelength. However, as this assumption still needs confirmation,

confinement to two dimensional domains will almost surely lead to interesting and

unexpected spatiotemporal behavior.

Considering experiments in the Min system on extended membranes, a different

way of confining a system also becomes relevant. In reference [52], the membranes

the Min proteins attach to and detach from were microstructured, preventing mem-

brane formation via a gold coating (see also [59] for experimental details). In this

way the membrane area and therefore the possibility to attach and detach is con-

fined. In this case there are no ’hard’ boundary conditions, since the proteins

still diffuse in the cytosol above the gold-coated areas. This resembles a situation

that prevents pattern formation in the parts of the gold coating and allows them

above the membrane parts. Mimicking such a situation from a modeling perspec-

tive would require, for instance, a control parameter that enables pattern formation

in a subdomain of the system and suppresses it in the rest. Therefore, the con-

trol parameter has to be above the threshold of pattern formation in one region

while dropping below this threshold outside. In this way a pattern can be spatially

constrained without specific boundary conditions acting on the field at the control

parameter drops.

However, considering a spatially dependent control parameter is not only relevant

for the Min system but can also be realized in chemical systems where the reaction

can be suppressed by illumination [60, 61]. Applying the illumination only to sub-

domains of the system again restricts the reaction and possible pattern formation to

a subdomain of the system without defining a boundary condition along the edge of

the illumination mask. Studies of such control parameter drops to confine systems

are related to those of parameter ramps. Smooth temperature ramps in convec-

tion experiments, for instance, lead to wavenumber selection in one-dimensional or

quasi-one-dimensional systems [62–65]. Rapid parameter changes or heterogeneities

on the other hand can pin a stripe or traveling wave pattern to the edge that is

created by the parameter change [66, 67]. The new results we add to this field in

[pub2 ] is the study of two-dimensional systems. We thereby show how the pattern

orientation can be controlled by varying the width of the control parameter drop.

For this study we use the Brusselator model [68–70], a reaction-diffusion system

that shows a supercritical bifurcation to spatially periodic Turing patterns [5]. The

Brusselator describes the dynamics of the two concentration fields u(x, y, t) and
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v(x, y, t) that can diffuse and react with each other:

∂tu = ∇2u+ a− (b+ 1)u+ u2v, (5)

∂tv = D∇2v + bu− u2v. (6)

Thereby b is used as a control parameter to switch between a homogenous and a

patterned state, while a and D are constants. In contrast to the Swift Hohenberg

model [71] –another paradigmatic model for stripe pattern – the Brusselator has a

non-zero uniform basic state solution whose exact value also depends on the value

of the control parameter, a fact that will become important later on. In principle,

the Brusselator allows for two kinds of spatially periodic patterns – stripes and

hexagons. For our work we choose the parameters in a way that stripes are preferred

if the control parameter is above the threshold value β = 0, with

b = bc(1 + β). (7)

Since we do not want to restrict our analysis to the Brusselator model as a singular

example, we additionally analyze the problem using the amplitude equation for

stripe pattern. Close to the onset of the pattern, the two concentration fields u and

v can be described simultaneously with just one equation for the order parameter

(or amplitude) A [10, 70,72] that is defined via

(u, v)T = w(r, t) = wh + Aw̃eiqcr + A?w̃e−iqcr, (8)

with the homogenous basic state wh. Thereby A(r, t) represents the envelope of the

stripe pattern that varies slowly in time and on a length scale much larger than the

intrinsic wavelength of the stripes. The equations describing the dynamical behav-

ior of A(r, t) in two spatial dimensions require information about the orientation

of the stripe pattern. However, since the Brusselator model is isotropic, only the

magnitude of qc is fixed in extended systems but not its orientation. In principle

therefore all stripes are equally likely to occur above the pattern formation thresh-

old, typically leading to a labyrinth-like pattern. In our analysis of the amplitude

equation, we focus on the two extreme cases, stripes parallel and perpendicular

to the x-axis, i.e. qc = (qc, 0) and qc = (0, qc). The equations for the dynamical

evolution of the amplitude of these stripes write

∂tA = βA+ LA− g|A|2A, (9)

with

L =




L2
‖ := ξ2

0

(
∂x − i

2qc
∂2
y

)2

for qc = (qc, 0),

L2
⊥ := ξ2

0

(
∂y − i

2qc
∂2
x

)2

for qc = (0, qc).
(10)
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supercritical
subcritical

x

(x)

Figure 4: Sketch of the control param-

eter drop. The control parameter

(black line) is supercritical above the

dashed line and subcritical below.

The system-specific properties are reflected in the coherence length ξ0, the critical

wavenumber qc and the nonlinear saturation coefficient g. The great advantage

of the amplitude equation is its universality [10, 11, 42]. No matter which stripe-

forming system we observe, as long as these stripes evolve from a supercritical

bifurcation (which is the case for the Brusselator), they obey this generic amplitude

equation [10, 11, 72]. This universality of course comes at the cost of a validity

range that is restricted to bifurcation point, i.e. the point where the homogenous

state becomes unstable towards the stripe pattern. In many systems, however, the

general principles that can be deduced from the amplitude equation and that are

strictly valid only close to the threshold of the pattern still prevail in the nonlinear

regime. This allows us to transfer the insights from the amplitude equation directly

to not only one but many systems.

To model a smooth transition from a domain suppressing patterns to a domain

enabling pattern formation, we introduce a spatially dependent control parameter

β = β0 +
M

2

[
tanh

(
x− xl
δx

)
− tanh

(
x− xr
δx

)]
(11)

that is varied along the x-direction. Thereby we assume L := xr − xl � λc, where

λc = 2π/qc is the intrinsic wavelength of the stripe pattern. We then choose β0

and M in such a way that the control parameter is above the threshold of pattern

formation (supercritical) approximately along L and below (subcritical) outside of

that domain (see also Fig. 4). The steepness of the control parameter drop around

xl and xr is controlled with the drop width δx. If δx is small, the drop almost

resembles a step-like control parameter change, while large values of δx correspond

to a smooth ramp-like transition from sub- to supercritical control parameter val-

ues. The control parameter drop breaks the rotational symmetry leading to an

anisotropic system. While this control parameter drop can be directly put into

the Brusselator model, that is not the case for the amplitude equation. The am-

plitude equation describes long-scale variations which only allows slow (adiabatic)

variations of the control parameter. The rapid variations near xl and xr would be

10



smoothed out on the length scale on which the envelope of the pattern changes

and therefore have to be treated separately. Consequently, we separate β(x, δx)

into an adiabatic and a non-adiabatic part, introducing the long-wave length scale

δA = 2ξ0/
√
M + β0. We define the adiabatic part B0(x) as

B0(x) = β(x, δA). (12)

Considering the non-adiabatic part of the control parameter drop especially con-

tributions in resonance with the intrinsic wavelength are crucial for the derivation

of the amplitude equation. The general interplay of stripe pattern and spatially

resonant forcing has been extensively investigated in the context of thermal con-

vection [25, 26, 73–76]. There, resonance may lead for instance to a locking of the

pattern into the wavelength of the external forcing or to changes in the stability

regions of the pattern. However, resonant forcing also has similar effects on chem-

ical [77–79] or environmental patterns [27]. In our work the non-adiabatic part of

the control parameter takes the role of a forcing term that is in a m:1 resonance

with the original pattern with wavenumber qc. To extract the resonant contribu-

tions arising from the non-adiabatic part βnon(x) = β(x, δx) − B0(x), we expand

βnon(x) in a series of sine functions:

βnon(x) =
M

2

∑

m

{
Bl
m(x) sin[mqc(x− xl)] +Br

m(x) sin[mqc(x− xr)]
}
. (13)

Thereby the functions Bl,r
m can be represented via a Gaussian and are localized

around xl and xr respectively. Due to the localization of the prefactors Bl,r
m , the

resonant forcing does not apply to the whole system but only to the area around the

control parameter drop. Perpendicular stripes are not affected by the non-adiabatic

contributions since the control parameter drop varies in x-direction which can not

resonantly couple to stripes with a wavevector in y-direction. Therefore, only the

adiabatic contribution plays a role for perpendicular stripes. On the other hand

the non-adiabatic contributions to the control parameter constitute a local resonant

forcing for parallel stripes. Therefore, the amplitude equation for parallel stripes

changes to

∂tA = B0(x)A+ L2
‖A− g|A|2A+

∑

m

αmBm(x)(A?)m−1. (14)

The function Bm(x) merges the non-adiabatic contributions of both edges of the

control parameter drop Bl
m(x) and Br

m(x). The parameters αm are constants that

depend on the specific system. The different non-adiabatic coefficients Bm(x) in-

fluence the stripe pattern in a different way. Thereby the term B1 that describes a

local 1:1-resonance effect has the biggest impact. This coefficient changes the bifur-

cation from a perfect supercritical in the case B1 = 0 to an imperfect one [26, 80].
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We therefore expect a finite amplitude stripe pattern already for negative values of

βm = β0 +M , i.e. for maximum values of the control parameter that are below the

threshold for stripe pattern in an extended system.

This is confirmed via simulations of the Brusselator model and shown in Fig. 5.

Because B1 is finite only close to the edges of the control parameter drop, we find

a localized stripe pattern in the vicinity. In the center of the system the non-

adiabatic contributions vanish, i.e. the pattern is suppressed because the control

parameter is subcritical. Observing the maximum value of the stripe amplitude

reveals that it has indeed the form of an imperfect bifurcation (see Fig. 5d). Note

that the coefficient B1 is only present in systems where the control parameter drop

influences the basic state of the pattern. While this is the case for the Brusselator

model, this is not the case for other prototypic models forming stripes like the Swift-

Hohenberg (SH) model where the basic state is and stays u = uhomogeneous = 0. The

coefficient B2 describes a local 2:1 resonance, i.e. the wavenumber of the forcing

or resonance is twice the intrinsic one. A 2:1 resonance reduces the threshold of

the pattern but leaves the form of the bifurcation unchanged [26]. The coefficient

B2 therefore promotes the pattern formation in the subcritical regime close to xl
and xr. In contrast to the coefficient B1 that only occurs in systems where the

basic state is influenced by the control parameter drop, the coefficient B2 appears

in every system forming stripe patterns, independent of the value of the basic state.

The higher contributions Bm(x) with m > 2 have a much smaller amplitude and

also do not qualitatively change the scenario.

To understand the preferred orientation of the stripe pattern with respect to the

control parameter drop we exploit that the amplitude equations in Eq. (14) and

Eq. (9) can be derived from a functional via ∂tA = −δF‖,⊥/δA?. For the respective

stripes the functionals are

F‖ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 + |L‖A|2

−
2∑

m=1

αm
m

(Bm(x)A?m +B?
m(x)Am)

]
(15)

for stripes parallel to the control parameter drop and

F⊥ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 + |L⊥A|2

]
(16)

for stripes perpendicular to the drop.

In case of a steep control parameter drop, i.e. small δx, the non-adiabatic con-

tributions B1,2 have a significant magnitude. Nevertheless, they only appear in the

functional F‖ for parallel stripes. Because these stripes appear via an imperfect bi-

furcation, they have a finite amplitude below the bulk threshold βm = β0 +M = 0.

12



3.9

4

4.1

u
(x
)

βm=-0.025

3.9

4

4.1

u
(x
)

βm=-0.01

3.9

4

4.1

xl xr

u
(x
)

βm=0

a)

0

0.4

0.8

1.2

-0.04 -0.02 0 0.02

A
m
p
li
tu
d
e

βm

d)

e)

b)

c)

Figure 5: Simulation results for the Brusselator model with a steep control param-

eter drop. a)-c) show cross-sections along the x-axis for different values of the

upper plateau of the control parameter. The onset of pattern formation already

occurs for negative βm close to the control parameter drop.

d) Maximum value of the amplitude of the field reveals that the bifurcation is

imperfect. e) Snapshot of the 2D pattern confirming the stripe orientation par-

allel to the control parameter drop.

Figure adapted from [pub2 ].

For βm smaller than the bulk threshold, parallel stripes get induced around xl and

xr where B1,2 is finite while perpendicular stripes remain zero. The finite amplitude

for parallel stripes decreases the respective functional F‖ compared to F⊥, which

remains zero because of the vanishing amplitude of perpendicular stripes. There-

fore, steep control parameter drops favor stripes that align parallel to the parameter

drop.

However, for a large drop width δx, the non-adiabatic contributions become negli-

gible. In this case, the difference between both functionals F‖ and F⊥ is the operator

L. For the analysis we assume an envelope A that is homogenous in y-direction

and only varies along x. This means both functionals only differ in the order of

the spatial derivatives ∂x, i.e. the functional F‖ includes the term |∂xA|2 while

F⊥ depends on |∂2
xA|2. Therefore, spatial modulations of the amplitude along the

x-axis influence the respective functional in a different way. These different orders

of derivatives are known to decrease the functional F⊥ in comparison to F‖ [10,81].
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Altogether the considerations regarding the limits of small and large drop widths

reveal a different preferred orientation in both cases. This implies a transition be-

tween parallel and perpendicular orientation for intermediate δx. Simulations of

the Brusselator confirm these expectations, visualized in Fig. 6 where stripes orient

parallel to the drop for small and perpendicular for large δx.

Figure 6: Simulation results for the Brusselator model with control parameter drop:

Stripes orient perpendicular to shallow ramp-like drops like in a) and parallel the

steep step-like drops in b).

Figure adapted from [pub2 ].

A control parameter drop can not only restrict a pattern along one axis, but also

define real two-dimensional domains with a supercritical control parameter. One

example are rectangles, that can be realized via

β = β0 +
M

4

[
tanh

(
x− xl
δx

)
− tanh

(
x− xr
δx

)]

·
[
tanh

(
y − yb
δy

)
− tanh

(
y − yt
δy

)]
. (17)

This control parameter drop roughly constrains the pattern forming domain to

[xl, xr]x[yb, yt]. A two-dimensional domain allows for two drop widths δx in x-

direction and δy in y-direction that can be used to influence the orientation of the

pattern. If we choose for instance δx small and δy large, these drop widths prefer

stripes that are parallel to the x-axis (via δx) and perpendicular to the y-axis (via

δy) – double-preferring a parallel or vertical stripe pattern. In the same way a

perpendicular or horizontal stripe pattern can be created by the exactly opposite

drop widths: large δx and small δy. These combinations lead to a very regular and

almost defect-free pattern orientation in two spatial dimensions (see Fig. 7). The

observation and understanding of this orientational transition of stripe patterns in

confined systems without a hard physical boundary condition is the main point of

[pub2 ].

Experimentally, these findings could be confirmed in any light-sensitive reaction-

diffusion system that forms stripe patterns. A prominent example is the chlorine
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a) b)

c) d)

Figure 7: Stripe pattern inside a 2D domain with a supercritical control parameter

with different combinations of drop widths. (a) Large drop width along the x-

and y- direction favors stipes perpendicular to the domain borders. (b) Small

drop widths along both directions lead to stripes parallel to the control parameter

drops. (c) Steep drop along the x- and large drop along the y-direction enhances

vertical stripes. Switching the drop width compared to (c) reverses the scenario

and favors horizontal stripes (d).

Figure adapted from [pub2 ].

dioxide-iodine-malonic acid (CDIMA) reaction. In this reaction different aspects of

photosensitive manipulation of patterns such as spatially homogenous forcing or the

influence of light with two very different wavelengths are already well-established

[82–84]. Applying the illumination via a mask with smooth boundaries in a way

that it works like a control parameter drop should be an easy task in this system.

The concept of a control parameter drop to restrict patterns to a finite domain

can be applied not only to stripe but also to wave patterns. In contrast to stripe pat-

terns where 1:1-resonance effects play the defining role (see [pub2 ]), traveling waves

can only couple to 2:1-resonant contributions of the control parameter drop. This

property is explained in the following considering the complex Swift-Hohenberg
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(CSH) model in Eq. (1) as an example. If we introduce a control parameter drop

like in Eq. (11) instead of a constant control parameter ε, the product of, for in-

stance, a left-moving wave uL and the 2:1-resonant, i.e. non-adiabatic, contribution

to the control parameter drop lead to

B2(x)uL = B2(x)︸ ︷︷ ︸
∝e2iqcx

ALe
i(−qcx−ωt) ∝ e(iqcx−ωt), (18)

i.e. a right-moving wave. Other resonant contributions do not lead to a wave with

opposite direction but only to the excitation of higher harmonics. This means a

left-moving wave ’hitting’ the control parameter drop induces a right-moving wave

– the left-moving wave is ’reflected’ in a special way at the drop. However, note

that the reflection effect is based on the excitation of a counter-propagating wave

due to a local 2:1-resonance. The reflection of nonlinear waves at real physical

boundaries is known to induce interesting spatiotemporal behavior in convecting

binary fluid mixtures [46, 85–89]. Note that these systems are finite but not as

strongly confined as the example we studied in [pub1 ]. A similar behavior can

also be expected in reaction-diffusion models that show a bifurcation to traveling

waves [90]. In [pub3 ] we illuminate whether control parameter drops have a similar

effect on nonlinear traveling wave patterns as physical boundary conditions such as

the wall of a convection cell.

We analyze this question using again the CSH model in Eq. (1) as a generic model

for traveling wave patterns. As we will see the group velocity of traveling waves

is an important parameter that defines four different scenarios. In the following

examples we always use a right-moving wave as initial condition and a rather steep

control parameter drop, i.e. a small value of δx, ensuring that the local reflection

coefficient B2(x) is sufficiently large. Keep in mind that in extended systems, a

dominant initial right-moving wave will suppress any left-moving wave that is also

a solution of Eq. (1).

For a system with a control parameter drop and small group velocities, we find

the scenario shown in Fig. 8a: The traveling wave pattern fills the whole area with

a supercritical control parameter [xl, xr] (filled state). Increasing the group velocity

leads to a so-called confined state – the domain of the traveling wave pattern shrinks

and vanishes in a range around xl (see Fig. 8b). The confined state arises because

the local wave pattern around xl is transported to the right with the group velocity.

Since the wave pattern does not grow homogeneously but is transported away from

xl, no pattern is observed around the left border. Accordingly, this effect becomes

more and more relevant with increasing group velocity. However, for both filled

and confined states, the reflection effect at the boundary only plays a minor role.

Even if the right-moving wave induces a left-moving wave at x = xr, the reflected

wave is almost immediately suppressed by the dominant right-moving wave in the
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Figure 8: Space-time plots of simulation results of the complex Swift-Hohenberg

with a control parameter drop in 1D. Depending on the group velocity the wave

pattern spans the whole supercritical domain (a) or is shifted to the right with

increasing group velocity (b).

Figure adapted from [pub3 ].

bulk.

Raising the group velocity further will lead to a point where the pattern is theo-

retically transported beyond x = xr. In extended systems this is called convective

instability [42, 91] and means that the pattern is transported faster than a pertur-

bation can grow. Therefore the pattern only grows in the comoving frame. At a

stationary point the perturbations will be transported away, seemingly leading to

a stable homogeneous state. In confined systems, however, one could expect the

wave pattern to vanish completely because the perturbations are transported into

the domain with a subcritical control parameter that suppresses pattern forma-

tion. This is indeed the case for ramp-like control parameter drops, i.e. large drop

widths.

For steeper control parameter drops, crossing the border to convective instability

does surprisingly not lead to a disappearance of the pattern. Instead, we observe

an interesting spatiotemporal behavior where the envelope of the wave pattern

becomes time-dependent. Fig. 9 shows this so-called blinking state. Even if the

right-moving wave is still dominant close to x = xr, the left-moving wave now also

has a considerable amplitude near the left control parameter drop. Moreover, the

envelopes of both wave directions also vary in time: While the envelope or ampli-

tude of the left-moving wave decays completely before it grows again in a periodic

fashion, the tail of the right-moving wave wiggles back and forth periodically. Even

higher values of the group velocity lead to a return of waves with stationary am-

plitude shown in Fig. 10. Here we find a dominant right-moving wave close to the
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Figure 9: Time evolution of the envelopes of a left moving wave (|Al|) and a right

moving wave (|Ar|) forming a blinking state.

Figure adapted from [pub3 ].

right control parameter drop and a left-moving wave near the left one forming a

counter-propagating wave state. Thereby the exact ratio of the amplitude of both

wave directions depends on the group velocity. The appearance of especially the

left-moving wave near the left ’boundary’ can be understood as follows: Due to

the high group velocity the initial right-moving wave pattern is shifted to the right

half of the supercritical region [xl, xr]. If this wave comes close to the right control

parameter drop, it induces a left-moving wave due to the non-adiabatic resonant

contribution B2(x). The left-moving wave itself is advected with the group velocity.

Since the group velocity is so large, the pattern reaches the left half of the super-

critical domain without being eliminated by the competition with the right-moving

wave. In this left half, the amplitude of the right-moving wave is zero so that the

left-moving wave pattern can evolve without an antagonist.

The exact values of the transitions between the different scenarios for the wave

patterns not only depend on the group velocity vg but also on the strength of the

resonance-induced reflection, i.e. the value of the drop width δx. In [pub3 ] we there-
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Figure 10: Space-time plot (a) and envelope (b) of a counter-propagating wave

state. Close to the left control parameter drop the left moving wave is dominant

while the right moving is on the opposite end of the supercritical domain.

Figure adapted from [pub3 ].

fore also quantify the interplay between reflection strength and group velocity via a

phase diagram in the δx-vg-plane. This reveals the regions along the vg-axis where

blinking and counter-propagating waves exist shrink with increasing drop width.

This renders the blinking and counter-propagating wave states a clear product of

the interplay between effects of the convective instability and the resonance-induced

reflection.

Moreover we complement our findings with the analysis of the amplitude equation

for traveling waves. Our results are thus not restricted to any specific model but

rather generic properties of nonlinear traveling waves confined to a finite domain via

a control parameter drop. Therefore these findings might particularly apply to the

beforementioned Min system on extended membranes, where membrane formation

is controlled via gold coating [52]. In such biological systems binding rates that can

be tuned with light are an imaginable way to implement a control parameter drop.

A more direct application would be chemical systems that show wave patterns as

in [92, 93] and are light-sensitive. For such chemical systems, applying spatially

dependent illumination masks would be a great way to test our generic results.

A possible next step to [pub2 ] and [pub3 ] would be an analysis of traveling

wave patterns with a control parameter drop in two spatial dimensions. In the

Min system there are already experiments on narrow membrane channels created

by gold coating where traveling waves orient perpendicular to the channel ’walls’.

Note that the walls are not a rigid physical boundary but resemble more the concept

of a control parameter drop as described before. This orientation effect could be

an extension or the results for stationary patterns in [pub2 ] to traveling waves.

Confining these waves not only into a channel but into an elongated rectangle might

– with the results of [pub3 ] in mind – lead to interesting and complex spatiotemporal

behavior.

19



In summary, the first part of this thesis shows that restricting patterns to a finite

domain crucially influences the pattern formation process. Thereby both ’hard’

physical boundaries like walls and ’soft’ boundaries like a control parameter drop

lead to effects that differ essentially from the behavior of the bulk pattern. Our work

shows some universal aspects of this scenario that are rather independent of the

system details. Regarding the Min system especially, this suggests that nature may

use these universal principles of pattern formation as a building block to perform

important functions in living matter.

1.3 Part II: Active phase separation

Apart from the formation of spatiotemporal patterns, demixing of multicomponent

systems is another important example for self-organization in everyday life. For

instance, food like ice cream [94] or also ointments [95] are emulsions of basically

water and oil droplets. In this case, demixing into a water- and oil-rich phase is

undesired and has to be prevented. Another example are technical applications

such as solar cells [96–99] or piezoelectrics [100] that make use of demixing in their

manufacturing process. This requires deep understanding and control of the spatial

arrangement of the components. Another example are metallic alloys, that are often

prepared at high temperature in a fluid phase and then cooled down in a specific

way to ensure desired properties in the crystalline state such as hardness [101,102].

From a physics point of view, two competing basic principles govern the behavior

of phase separating systems. On the one hand, the system tries to maximize its en-

tropy, which would lead to a perfectly mixed system. On the other hand, there may

be repulsive forces between different substances for example due to the minimiza-

tion of the surface energy that tends to keep substances separated. The strength

of both these effects depends, for example, on the temperature. This means that,

for instance, a binary mixture possesses a critical point of miscibility – a tempera-

ture below which the system tends to separate into two phases [103] (there are also

exceptions where the temperature dependence is the other way around).

Spinodal decomposition is a special kind of phase separation [104–106]. During

spinodal decomposition the initially homogeneous state becomes unstable towards

long-wave perturbations. However, these perturbations themselves are also unsta-

ble leading to a coarsening process. The theoretical framework of spinodal de-

composition is the so-called Cahn-Hilliard (CH) equation that describes the phase

separation process of a binary mixture [107,108].

While all of the previous examples of phase separation take place in or close to

thermal equilibrium, similar phenomena were observed in active, non-equilibrium

systems. One of those is cell polarization that plays a big role in both cell loco-
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motion [109–113], where e.g. actin filaments accumulate in protrusions of the cell

to enable forward motion, as well as in cell division [9, 110, 114, 115]. In the latter

case, proteins assemble in distinct halves of the cell, resembling two phases in a

liquid-liquid mixture. Other similar examples can be found in active matter [116],

the formation of biomembranes [117, 118] as well as in chemotactically communi-

cating cells or colloids [119–121] that may form clusters depending on the particle

or cell density. Self-propelled particles with different motility [122–124] or density

dependent velocity [125–127] show a similar effect. Even mussel beds [128] or ion-

channel densities [129] form patterns similar to classical phase separation. All of

these examples have in common that they locally consume energy to actively move

or propel, clearly rendering them non-equilibrium systems. Nevertheless, the phase

separation seems on first glance similar to spinodal decomposition. The second

part of this thesis will reveal and explore the connection between the examples of

what we call active phase separation to phase separation in or close to thermal

equilibrium.

In [pub4 ] we address this question exemplarily analyzing a minimal reaction-

diffusion model for cell polarization. We thereby consider a molecule or protein

that exists in two conformations – representing a fast diffusing cytosolic and a

slowly diffusing membrane-bound state. Even if more realistic models often involve

a plethora of different molecules, minimal models can serve as a starting point to

gain fundamental insights into the process of cell polarization [130–132]. On the

time scale of the cell polarization, the involved proteins only switch their confor-

mation but are not created or destroyed. Therefore the total number of proteins

is conserved. This conservation constraint is another connection between differ-

ent systems showing active phase separation. Mathematically a minimal model for

membrane-cytosol exchange can be written as

∂tũ = Duũ+ f(ũ, ṽ), (19a)

∂tṽ = Dvṽ − f(ũ, ṽ). (19b)

The field ũ thereby represents the concentration of the membrane-bound confor-

mation of the protein and ṽ the concentration of the cytosolic conformation. The

conversion between these two states is described via the symmetric reaction term

f(ũ, ṽ) = −bũ+ (ũ+ ṽ)2 − (ũ+ ṽ)3. (20)

The scalar parameter b defines different polarization states that will be explained

later. Equation (19) has a homogeneous state uh, vh that may become unstable with

respect to small perturbations if a chosen control parameter – we use the diffusion

constant Dv here – exceeds a certain value. The dispersion relation σ(q) of the small

perturbations thereby approximately depends on the perturbation wavenumber q
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like

σ(q) = G2q
2 −G4q

4, (21)

where G2 and G4 are parameters that can be calculated from the original system

parameters. SinceG4 > 0, the sign ofG2 determines the stability of the homogenous

state: If G2 is negative, the homogenous state is stable and becomes unstable if G2

becomes positive. Importantly, in contrast to classical Turing patterns, the band

of unstable wavenumbers ranges down to q = 0 for conserved reaction-diffusion

systems. If we consider the model in Eq. (19) close to the threshold where the

homogenous state becomes unstable, we can perform a weakly nonlinear analysis.

To measure the distance from the onset of the instability, we introduce a small

parameter ε. We then express the fields (u, v) in terms of this small parameter.

Furthermore we also introduce ’slow’ or long wavelength scalings for the time- and

spatial scale. Inserting the scalings and the expansion of the fields into the full

model in Eq. (19) allows to sort all the terms with respect to their order in ε,

leading to a separation into several equations in the different orders of ε. Thereby

the lowest order in ε provides an equation linear in the fields that is solved via

w1 = (u1, v1)T = A

(
∂vf |u=uh,v=vh

−∂uf |u=uh,v=vh

)
. (22)

The free parameter A however is not a constant but depends on the new time-

and spatial scale. The dependency of A on space and time can be determined by

successively solving the equations in the higher orders of ε. The detailed calculation

is described in [pub4 ], [pub5 ] and [pub6 ] especially in the supporting information

to [pub5 ]. The procedure is a conceptual parallel to the derivation of the amplitude

equation for systems forming stripe patterns (Ginzburg-Landau equation) [10, 72,

133, 134]. While the Ginzburg-Landau equation delivers an envelope equation for

systems where this order parameter is not conserved, our result can be seen as

the amplitude equation for systems with conserved order parameter. However,

in contrast to the Ginzburg-Landau equation, the equations that determine the

amplitude A in the conserved case appear in higher orders of ε (O(ε5/2) instead

O(ε3/2)). After returning to the original time and spatial scale, we identify the

resulting amplitude equation for the cell polarization as the Cahn-Hilliard equation

[107]:

∂tA = −∂2
x[α1εA+ α2∂

2
xA− α3A

2 − α4A
3]. (23)

The coefficients αi are completely determined by the original system parameters,

allowing for a direct mapping of Eq. (19) to the CH equation in a certain parameter

range. Note that the quadratic term that usually does not appear in the CH
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Figure 11: a): Steady state profiles of the basic cell polarization model in

Eqs. (19),(20) (blue solid line) and the corresponding CH equation (see Eq. (23))

(red dashed line) in the symmetric case for different values of the control param-

eter.

b): Comparison of the upper plateau values (maximum of A(x)) of the station-

ary polarized states as a function of the control parameter in the symmetric case.

The polarization model is again shown as solid blue line while the CH model is

shown in dashed red. The polarized state occurs via a supercritical bifurcation.

Figure adapted from [pub4 ], c©2018 American Physical Society

equation can be removed via a transformation A→ Ã−α3/(3α4) and an appropriate

redefinition of the prefactors αi. The CH equation was originally introduced to

describe phase separation in equilibrium systems [107, 108]. Our new reduction

method shows that it also captures the essence of active phase separation in a

simple cell polarization model. The existence of this common underlying order

parameter equation therefore proofs the fundamental connection between phase

separation in and outside of thermal equilibrium.

To determine the validity range of our approach, we compare numerical simula-

tions of the conserved reaction-diffusion model in Eq. (19) to the CH equation (see

Eq. (23)) with the corresponding coefficients αi. Focusing on stationary solutions,

we find the following behavior: For a parameter choice where the coefficient α3 = 0

(b = 2), the phase-separated or polarized state is perfectly ±-symmetric (at least

close to ε = 0), i.e. the plateau values of the profiles have the same absolute value

(see Fig. 11a). Due to the conservation condition the areas with increased and

decreased concentration also have to be of equal size and each occupies half the

system. The CH equation reflects this behavior perfectly for small values of the

control parameter. Increasing the control parameter leads to increasing deviations

between the universal CH equation and the full polarization model. This means

with increasing distance from the onset of cell polarization, the system-specific
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Figure 12: a): Steady state profiles of the basic cell polarization model in

Eqs. (19),(20) (solid blue line) and the corresponding CH equation (see Eq. (23))

(dashed red line) in the asymmetric case for different values of the control pa-

rameter.

b): Comparison of the upper (maximum of A(x) and lower plateau values (min-

imum of A(x)) of the stationary polarized states in the asymmetric case as a

function of the control parameter. The polarized state occurs via a subcritical

bifurcation.

Figure adapted from [pub4 ], c©2018 American Physical Society

properties become more and more influential. Figure 11b illustrates this behavior

and additionally shows that in the case α3 = 0 the bifurcation to the polarized state

is supercritical. In case of a finite value of α3 (b 6= 0) the scenario slightly changes.

The profiles in Fig. 12a show that the broken ±-symmetry in the CH equation

leads to an asymmetrically polarized state. The area of decreased concentration is

now larger than the area of increased concentration compared to the mean value.

Nevertheless, the CH model is again a good representation of the full model close

to the onset of polarization. Comparing the plateau values as a function of ε in

Fig. 12b also reveals that the bifurcation is no longer smooth. Instead, we find a

jump from Amax = 0 to finite plateau values, rendering the bifurcation subcritical.

Moreover, the polarized state now already may occur for ε < 0 which leads to a

region where the polarized and the homogenous state (that is stable for ε < 0)

coexist. We therefore observe a hysteretic behavior when increasing the control

parameter: If we start in the homogeneous state with ε < 0 and slowly increase

the control parameter, the system stays in the homogeneous state until this state

becomes unstable at ε = 0. However, starting in the polarized state with ε > 0 and

decreasing the control parameter, the polarized state will prevail even in a range

where ε < 0.

These findings are not restricted to the minimal toy model for cell polarization
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in Eq. (19). In [pub5 ] we confirmed this for a more realistic polarization model by

Otsuji et al. [113,135] using,

f(ũ, ṽ) = a1

(
ṽ − ũ+ ṽ

(a2(ũ+ ṽ + 1)2

)
. (24)

This conceptual model is designed to capture the behaviour of the Rho-GTPases, a

regulator molecule for cell polarity. During cell migration Rho-GTPases stimulate

molecular motors like actin or myosin to spatially control the contractility, allowing

the cell to move [136,137]. In the same publication we also showed that in principle

any mass-conserved reaction diffusion system that has the form of Eq. (19) falls

into the class of active phase separation.

In the context of cell polarization the dynamical evolution of the polarization is

important as well. The CH model is well-known to show coarsening behavior in

large systems [108]. During the coarsening the average length scale L of the pattern

or phase separated areas grows with a power-law L ∝ t1/3 in two spatial dimensions

[138]. In Fig. 13 we confirm that the polarization model in Eq. (19) and Eq. (24)

exhibits the same dynamics: At the beginning, the homogenous basic state becomes

unstable to perturbations with a certain wavenumber qmax that corresponds to

the maximum of the dispersion relation in Eq. (21). Since the system length is

much larger than the length scale of this perturbation, a labyrinth-like state with

areas of high and low concentration evolves. However, these small-scale phase

separated areas are themselves unstable towards long-wave perturbations. This

leads to coarsening, i.e. to larger and larger areas with the same concentration,

finally reaching a completely polar state.

But undergoing a coarsening process to reach a polar state might be too slow for

the biological purposes of a polarizing cells. For instance, if a cell wants to move

into a certain direction to escape a predator, it has to polarize quickly and can

not afford to undergo a coarsening process. Instead cells ’need’ a direct transition

from a homogenous to a polar state. This is not only important for the mentioned

predator-prey scenario but also for tasks like cell division (in exactly two daughter

cells). Our analysis and the knowledge about the coarsening process allows to

identify suitable parameter regions where one can expect such a direct transition:

A direct transition takes place if the wavenumber of the maximum of the dispersion

relation or rather the corresponding wavelength is in the order of the system length.

In this case the most unstable wavelength already is the largest possible wavelength

that fits into the system. Therefore in such systems no coarsening occurs.

On the other hand, the principle of coarsening also has an important upside. As

mentioned, a cell usually wants to reach a polar state. If for some reason the system

would evolve towards a state with two polar zones, it tends to coarsen to a state

with just one polar zone – the system has a built-in safety net, which is crucial
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Figure 13: a): 2D snapshots of the dynamics of the polarization model in

Eqs. (19),(24) (violet) and the corresponding CH equation (see Eq. (23)) (or-

ange) for different times. As time progresses the patterns coarsen to larger and

larger pattern.

b): Average cluster size or dominant length scale of the pattern on the left side as

a function of time. The violet circles show the dynamics of the full polarization

model, while the orange crosses depict the temporal evolution of the length scale

in the CH model. The solid line corresponds to the analytical value of L ∝ t1/3.

Figure adapted from [pub5 ]. Published under CC-BY 4.0

regarding the importance of the polarization process. Additionally, the fact that

the system tends to settle into the largest possible wavelength allows for length

adaptability of the polar zones, allowing cells of slightly different size to polarize

correctly as well. Length adaptability is not the only feature that appears in many

models and systems showing cell polarization. The ability to spontaneously polar-

ize or to maintain a polar state even if the external stimulus is no longer present are

features that can be observed in various systems (see [130] and references therein).

Since the CH equation also shows these features, multiple similarities between cell

polarization models can be explained as follows: Presumably, many polarization

models can be mapped onto the CH equation close to the bifurcation to the po-

larized state. They therefore all share the features such as length adaptability or

spontaneous polarization the CH equation shows as an underlying order parameter

equation.

Apart from cell polarization, the reduction scheme is also applicable to systems

describing the clustering of cells that communicate chemotactically. The social

amoeba Dictyostelium discoideum is one prominent example for such a system.

This slime mold spends most of its life as unicellular organism in the forest soil.

However, if the living conditions become dire, the mold emits a chemical signal

leading to an aggregation of many amoeba to form a so-called fruiting body – a
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multicellular slug that allows some of them to survive harsh conditions [139–141].

Mathematically, such chemotactically communicating cells can be described by

two mean-fields – one representing the cell density ρ and one representing the

concentration of the signal molecule for the chemotaxis c – the ability to detect

and move along a chemical gradient [142]. An extended Keller-Segel model is one

possibility to describe the interactions between those two fields [119,143–145]:

∂tρ = ∂2
xρ− s∂x

(
ρ

1 + βρ
∂xc

)
, (25)

∂tc = Dc∂
2
xc+ ρ− c. (26)

Thereby the parameter s describes the chemotactic sensitivity of the cells that serves

as a control parameter to trigger the clustering. Note that in this model only the

number of cells is conserved while the signaling molecule concentration is not. This

molecule is produced by the cells and degraded in time. Nevertheless, as we show

in [pub4 ], this model can again be reduced to a CH equation (see Eq. (23)), despite

the fact that it has completely different transport mechanisms than the conserved

reaction-diffusion model discussed before. A more detailed analysis of Keller-Segel

models as an example for active phase separation can be found in the thesis of Lisa

Rapp [146].

A further example that falls into the class of active phase separation is the so

called motility-induced phase separation (MIPS) [147–150] (see [pub6 ]). MIPS

unites systems of self-propelled particles whose swimming speed depends on the

particle density of their surrounding. If the swimming speed decreases sufficiently

with the local particle density, these systems undergo a phase transition from a

homogenous state to a state with two phases of different densities. This two-phase

state thereby consists of a dilute gas-like state that spatially coexists with a dense

liquid-like state. Experimental examples are bacteria that perform quorum sens-

ing, i.e. ’measure’ the density of their surroundings and reduce their motility if

the local cell density is high [151, 152]. The phenomenon also appears in artificial

swimmers like Janus particles [153]. Examples are gold colloids where one hemi-

sphere is coated with platinum or polymer spheres with an embedded hematite

cube. Putting these particles in a solution containing hydrogen peroxide leads to

a self-propulsion of the particles consuming H2O2 [125, 126]. Another propulsion

mechanism involves, e.g., carbon-coated Janus particles in a near-critical solution

of water and lutidine. Heating these particles with a widened laser beam leads to

heat absorption especially by the carbon hemisphere, pushing the temperature of

the surrounding binary fluid above the critical point. The local demixing of the

surrounding fluid then leads to phoretic forces allowing the particles to propel [127].

These particle-based approaches can be coarse-grained into a mean-field model that
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we analyze in [pub6 ] [154–156]. This model describes the particle motion using a

density field ρ and a polarization or orientation field p. The density field thereby

evolves via

∂tρ = −∂x [v(ρ)p−De∂xρ] . (27)

De describes the effective diffusion coefficient of the active particles while v(ρ) is

the density dependent propulsion speed of the particles:

v(ρ) = v0 − ζρ+ λ2∂2
xρ, (28)

where v0 is the speed of a singular particle. The contribution ζρ reflects the decrease

in the particle speed with increasing density. The last term includes that particles

possibly sample their neighborhood on a length λ that is larger than the extend of

the particle, i.e. including non-local effects of the swimming speed [156, 157]. The

density ρ is coupled to the polarization field p via

∂tp = −∂xP (ρ) +De∂
2
xp− p. (29)

involving a ’pressure’ term

P (ρ) =
1

2
v(ρ)ρ (30)

due to the directed motion of the particles, diffusion and the loss of orientation

due to rotational diffusion. Since our analysis shows that the polarization field p

follows the density field ρ adiabatically, we focus our further analysis on ρ instead of

the coupled field w = (ρ, p). As for cell polarization and chemotaxis, we managed

to show that despite completely different microscopic mechanisms the continuum

model for MIPS in Eqs. (27),(29) can again be mapped onto the CH equation. The

CH equation is therefore also a leading order description for MIPS. However, in

the context of MIPS, the importance of higher order nonlinearities has recently

been excessively discussed [158, 159]. These may be able to explain a discrepancy

between the behavior of the CH equation and observations in colloidal systems

showing MIPS: While the CH equation, as mentioned before, coarsens and forms

larger and larger areas of the same density, the growth of clusters in colloidal

systems often stops from a certain point on and the cluster size remains finite.

Our approach now poses the possibility to quantitatively derive these higher order

contributions directly from the original model without relying on phenomenological

arguments. [pub6 ] shows that extending the weakly nonlinear analysis to the next

higher order leads to

∂tρ = ∂2
x

[
(α1 + β1)ρ+ (α2 + β2)∂2

xρ+ (α3 + β3)ρ2

−α4ρ
3 + β5(∂xρ)2 + β6∂

2
x(ρ

2)
]
. (31)
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Figure 14: (a) Comparison of steady state profiles of the particle density for the

continuum model for MIPS in Eqs. (27),(29) (shaded grey) and the correspond-

ing first and second order approximations by the CH (dashed blue) i.e. extended

CH model (red dotted).

(b) Plateau values in the phase separated state for MIPS (black solid), CH

(dashed blue) and the extended CH model (red dotted). The extended CH model

is able to reproduce the broken ±ρ-symmetry of the full model.

Figure adapted from [pub6 ]. Reprinted with kind permission of The European

Physical Society (EPJ) c©EDP Sciences

Thereby the coefficients αi represent the leading order description, i.e. the CH

equation. Close to the onset of MIPS, only these contributions play a role since

the coefficients βi vanish near the threshold. Further away from the threshold the

coefficients βi can be separated into two groups. β1, β2 and β3 are higher order

corrections to terms that already exist at the leading order (with prefactors α1,

α2 and α3). Thereby the term β3 captures the fact that the phase separation

becomes asymmetric with increasing distance from the onset even in the case α3 =

0. Remember that in the case α3 = 0 the phase separation is symmetric at the

onset. The β5- and β6-term, however, constitute new nonlinearities that may also

qualitatively change the behavior of the system. Note that theoretically also a

nonlinearity ∝ ∂2
xρ

4 would be of the same order as the contributions β5∂
2
x(∂xA)2

and β6∂
4
xA

2. For the specific continuum model for MIPS we use (see Eqs. (27),(29))

the prefactor of such a contribution vanishes. Yet since the extension to higher

order nonlinearities is not restricted to MIPS but universal for systems showing

active phase separation, the contribution ∝ ∂2
xρ

4 should also be taken into account

in a generic analysis. Perhaps the most instructive way to show the relevance

of the higher order contributions for MIPS is to compare stationary solutions of

the basic model in Eqs. (27),(29) to both the first order CH equation (βi = 0)

and the extended CH equation (see Eq. (31)). Comparing the profiles in Fig. 14a

clearly shows that including the higher order contributions to the CH equation
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leads to a much better and in fact almost perfect representation of the full model.

Comparing the plateau values in Fig. 14b as a function of ε confirms this impression.

Additionally this figure clearly shows that the effect of an increasing asymmetry of

the phase separated profile with increasing distance from the threshold is captured

by the extended CH model. In [pub6 ] we also compare to which extent the CH and

the extended CH model represent the dispersion relation and the critical values of

the original model for MIPS.

Furthermore, we compare our results to different phenomenological models for

MIPS that are based on symmetry considerations [158–160]. Since our analysis

delivers the values of the parameters βi as a function of the original system param-

eters, we are able to determine the relevance of different nonlinearities compared to

others. For instance in the case of MIPS, the coefficient β5 is always much larger

than β6 for small values of λ – a condition that is necessary to find MIPS at all.

Altogether our work sheds light on the existence of a universal phase separation

phenomenon in active systems. We showed the wide range of systems that fall into

the category of active phase separation. Our generic approach allows to directly

map the original models onto one universal equation. This equation turns out to

be the CH equation that was introduced as a model for phase separation in equi-

librium systems. Being described by the same universal order parameter equation

reveals that the similarities between phase separation in equilibrium and active

phase separation are not coincidental.

Exploring the effects of higher order contributions to the extended CH equation,

especially regarding their influence on the dynamics, might be a route for future

work. Also regarding these higher order contributions explicitely in 2D is still

rather unexplored territory: While in one dimension, for instance, a term ∂xA∂
2
xA

is equal to 1/2∂x(∂xA)2, that is not the case for ∇(∇A)2 and 1/2(∇2A)(∇A) in two

dimensions . This incentivizes discovering presumably complex and rich scenarios

in two dimensions. In one dimension extending our approach to even higher orders

will prove interesting. In the order ε7/2, a new linear term ∝ ∂6
xA will appear in

the CH equation. This term has the possibility to drastically change the dispersion

relation from describing a long-wave instability to a dispersion relation that allows

for a finite wavelength instability. This would open a whole new field that in

principle also allows a finite wavelength pattern instead of a coarsening process

further above the threshold. Such finite wavelength patterns in phase-separating

systems are known from block copolymers where the phase separation is arrested in

so-called microphase separation [161,162]. However, this example again takes place

in or close to thermal equilibrium. Our approach would open the route to observing

a non-equilibrium counterpart of microphase separation. This might be especially

relevant to understand phenomena like bubbly phase separation or the reversal of
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Ostwald ripening that is observed in simulations of MIPS [159, 163]. Additionally

transitions from active phase separation to active microphase separation may occur,

that can be described and understood on the basis of our work.
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[128] Q.-X. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P. M. Herman, M. Ri-

etkerk, and J. van de Koppel. Phase separation explains a new class of

self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci.

USA, 110:11905, 2013.

[129] P. Fromherz and B. Kaiser. Stationary patterns in membranes by nonlinear

diffusion of ion channels. EPL, 15:313, 1991.

[130] A. Jilkine and L. Edelstein-Keshet. A comparison of mathematical models

for polarization of single eukaryotic cells in response to guided cues. PLoS

Comput. Biol., 7:e1001121, 2011.

[131] A. Mogilner, J. Allard, and R. Wollman. Cell polarity: Quantitative modeling

as a tool in cell biology. Science, 336:175, 2012.

[132] P. K. Trong, E. M. Nicola, N. W. Goehring, K. V. Kumar, and S. W. Grill.

Parameter-space topology of models for cell polarity. New J. Phys., 16:065009,

2014.

42



[133] V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. JETP,

20:1064, 1950.

[134] L. A. Segel. Distant side-walls cause slow amplitude modulation of cellular

convection. J. Fluid Mech., 38:203, 1969.

[135] B. Rubinstein, B. D. Slaughter, and R. Li. Weakly nonlinear analysis of

symmetry breaking in cell polarity models. Phys. Biol., 9:045006, 2012.

[136] S. Etienne-Manneville and A. Hall. Rho GTPases in cell biology. Nature,

420:629, 2002.

[137] R. Meili and R. A. Firtel. Two poles and a compass. Cell, 114:153, 2003.

[138] E. D. Siggia. Late stages of spinodal decomposition in binary mixtures. Phys.

Rev. A, 20:595, 1979.

[139] J. D. Gross. Developmental decisions in Dictyostelium discoideum. Microbiol.

Rev., 58:330, 1994.

[140] L. Wolpert. Principles of Development. Oxford Univ. Press, Oxford, 2002.

[141] P. Schaap. Evolutionary crossroads in developmental biology: Dictyostelium

discoideum. Development, 138:387, 2011.

[142] M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.

[143] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as

an instability. J. Theor. Biol., 26:399, 1970.

[144] E. F. Keller and L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30:225,

1971.

[145] T. Hillen and K. J. Painter. A user’s guide to PDE models for chemotaxis.

J. Math. Biol., 58:183, 2009.

[146] L. Rapp. Effects of confinement and conservation in nature’s toolbox of pat-

tern formation. PhD thesis, Universität Bayreuth, 2019.

[147] Y. Fily and M. C. Marchetti. Athermal phase separation of self-propelled

particles with no alignment. Phys. Rev. Lett., 108:235702, 2012.

[148] F. D. C. Farrell, M. C. Marchetti, D. Marenduzzo, and J. Tailleur. Pattern

formation in self-propelled particles with density-dependent motility. Phys.

Rev. Lett., 108:248101, 2012.

43



[149] G. S. Redner, M. F. Hagan, and A. Baskaran. Structure and dynamics of a

phase-separating active colloidal fluid. Phys. Rev. Lett., 110:055701, 2013.

[150] M. E. Cates and J. Tailleur. Motility-induced phase separation. Annu. Rev.

Condens. Matter Phys., 6:219, 2015.

[151] C. Liu, X. Fu, L. Liu, X. Ren, C. K. L. Chau, S. Li, L. Xiang, H. Zeng,

G. Chen, L.-H. Tang, P. Lenz, X. Cui, W. Huang, T. Hwa, and J.-D. Huang.

Sequential estabishment of stripe patterns in an expanding cell population.

Science, 334:238, 2011.

[152] X. Fu, L.-H. Tang, C. Liu, J.-D. Huang, T. Hwa, and P. Lenz. Stripe forma-

tion in bacterial systems with density-suppressed motility. Phys. Rev. Lett.,

108:198102, 2012.

[153] A. Walther and A. H. E. Müller. Janus particles: Synthesis, self-assembly,

physical properties, and applications. Chem. Rev., 113:5194, 2013.
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Abstract
Pattern formation and selection are fundamental, omnipresent principles in nature—from small cells
up to geological scales. InE. coli bacteria, for example, self-organized pole-to-pole oscillations ofMin
proteins—resembling a short standingwave—ensure correct positioning of the cell division site. The
same biochemical reaction leads to traveling proteinwaves on extendedmembranes in in vitro
experiments. Are these seemingly contradictory observations of system-spanning importance?We
show that a transition of nonlinear travelingwave patterns to reflection-induced standingwaves in
short systems is a generic and robust phenomenon. It results from a competition between two basic
phenomena in pattern formation theory.We confirm the genericfindings for the cell-biologicalMin
reaction and for a chemical reaction–diffusion system. These standingwaves showbistability and
adapt to varying system lengths similar as pole-to-pole oscillations in growing E. coli.Our generic
results highlight key functions of universal principles for pattern formation in nature.

1. Introduction

Avariety of fascinating patterns emerges spontaneously in awealth of living or inanimate driven systems [1–13].
The esthetic appeal of these patterns is immediately apparent to all observers [1]. But universal principles of
patterns and their importance in nature also attract researchers frommany disciplines. They explore, for
instance, the important functions patterns fulfill: self-organized patterns in biology guide size sensing [6],
positioning of protein clusters [7], self-drivenmorphogenesis [8] and communication between species [10].
They furthermore enhance heat transport influid systems [3, 11] and are the basis of successful survival
strategies for vegetation inwater-limited systems [12–14].

Patterns include both stationary spatial structures such as stripes or hexagons, and dynamic structures like
travelingwaves [1–4]. Travelingwaves occur in such different and prominent systems as thermally driven fluid
convection [3, 15–18], electroconvection in nematic liquid crystals [19, 20] or the biochemicalMin protein
reaction on extendedmembranes [21, 22]. As these examples show, patterns emerge in diverse systems and are
driven by very differentmechanisms.Nevertheless, once stripes, hexagons or travelingwaves have evolved, they
often have certain universal properties described by pattern formation theory [2–4, 12].

In nature, patterns often evolve in the presence of domain boundaries—be it thewalls of a convection cell,
thefinite size of a petri dish or themembrane enclosing the cytosol of a biological cell. These boundaries have a
strong influence on the process of pattern formation. Stripe patterns, e.g., respond to systemboundaries by
adjusting their stripe orientation or selecting specificwavelengths [3, 23–25]. Systemboundaries in general
break symmetries. Spatially varying parameters break them, too, and thus have similar effects [26–28]. The
response of stationary periodic patterns to such symmetry breaking effects is broadly similiar in different
systems, i.e. independent of systemdetails [3, 23, 25]. Travelingwaves near boundaries show similar fascinating
spatio-temporal behavior [15, 16, 29, 30]. However, the effects of strong confinement on nonlinear wave
patterns have not yet been thoroughly examined.
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In this work, we show that nonlinear travelingwaves inevitably change into reflection-induced standing
waves in sufficiently short, confined systems. Since this generic phenomenon relies on basic universal principles
of pattern formation, we explore it atfirst within aminimalmodel for nonlinear travelingwaves. The resulting
system-spanning properties can then be transferred to related phenomena in nature: in theMin system, e.g.,
travelingwaves formby coordinated attachment and detachment ofMin proteins from themembrane. This
protein systemoriginates fromE. coli bacteria where it plays an important role in the cell division process
[31–33]: inside the rod-shaped E. coli bacteria, oscillating proteins shuttle between the two cell poles. Thereby,
they ensure the positioning of the cell division site at the cell center. In in vitro experiments on the other hand,
the same biochemical reaction leads to travelingwaves on large extendedmembranes [21, 22]. A deeper
understanding of generic properties of nonlinear waves in confinement will help to reconcile these seemingly
contradictory observations.

2. Transition to reflection-induced standingwaves in short systems

Wefirst analyze the transition fromnonlinear travelingwaves in extended systems to reflection-induced
standingwaves in strongly confined systems using a genericmodel. ‘Strong confinement’ refers to short system
lengths in the order of the preferredwavelength of the travelingwave. Themodel we use is the complex Swift–
Hohenberg (CSH)model [4, 34–36],

u x t a u b q u f u c u u, i 1 i i 1 i , 1t x x0
2

0
2 2 2 2 2e x g¶ = + - + + ¶ + ¶ - +( ) ( ) ( )( ) ( )∣ ∣ ( )

for the complex scalar field u(x, t) in one spatial dimension. In extended systems and for ε>0, thismodel shows
travelingwaveswith a preferred wavelengthλ0=2π/q0 over a wide range of parameters.Wemeasure the
system length L in units ofλ0 since it represents an intrinsic length scale of the problem.

Simulations of equation (1)with no-flux boundary conditions (see appendix A for details) for three different
system lengths lead to the results shown infigure 1: depending on the system length, we get three significantly
different wave solutions.

Inmoderately short systems (L=3λ0, top), wefind a travelingwave pattern in the center (bulk) of the
system. This resembles the travelingwave patterns that occur for theCSHmodel in large, quasi-unconfined
systems. Two travelingwave directions, described by uR(x−ωt) (traveling to the right) and uL(x+ωt)
(traveling to the left), are equally likely in extended pattern forming systems. In contrast to, e.g., light or sound
waves, however, travelingwaves in pattern forming systems are nonlinear.While light or soundwaves are thus
superimposable, two counter-propagating nonlinear waves compete with each other: one of the travelingwave
directions is spontaneously selected, while the other is suppressed [3, 29]. But their confinement infinite systems
introduces an additional effect: travelingwaves are reflected at the boundaries of afinite system. The boundary
conditions apply to thewholefield u(x, t) in equation (1), i.e. the incoming and reflectedwaves together.

Figure 1. Strong confinement leads to significantly different wave solutions depending on the system length. (Top)Modulated
travelingwave (TW) for L=3λ0, (Middle) two-node standingwave (SW) for L=λ0, (Bottom) one-node standingwave for
L=λ0/2. Simulations of equation (1)with no-flux boundaries, represented in space-time plots. Shown is the real part of the complex
field u(x, t) for the parameters ε=0.5, a=−0.8, ξ0=1, b=0, q0=1,f=0.5, γ=1, c=0.5.

2

New J. Phys. 20 (2018) 072001



Therefore, the sum uR+uL, has tomatch them at the systemborders. This boundary coupling forces the
incoming and reflectedwaves into coexistence in afinite neighborhood of the boundary. The resulting
superposition of bothwave directions leads to standingwave patterns. Further away in the bulk the nonlinear
competition between bothwave directions dominates and the reflectedwave is damped by the predominant
incoming travelingwave. The largest system infigure 1 (top) shows the interplay between both bulk and
boundary effects. Reflection effects dominate very close to the top and bottomboundaries of the system. There,
the incoming and reflectedwave form a local standingwave. The extent of this standingwave depends on the
distance ε from threshold and increases by decreasing ε. In the bulk region, however, wave competition prevails
—the pattern resembles a travelingwave. By decreasing the system length L, the boundariesmove closer
together, i.e. the fraction of the systemwith significant superposition of incoming and reflectedwaves increases.
Therefore, the boundary-induced reflection becomesmore andmore important. For sufficiently short systems
—shorter than a critical length Lc—the reflection effect predominates the nonlinear competition in thewhole
system. As a result, standingwaves become inevitable. Note that these standingwaves are reflection-induced. In
principle, standingwave solutions can be inherently stable.However, this is not the case here: in theCSHmodel,
standingwaves in extended systems are always unstable. Thus, the standingwaveswefindhere are a direct
consequence of the confinement.While this novel, reflection-induced transition from traveling to standing
waves is generic, the critical length Lc depends on the chosen parameters and is specific to each system. The
middle and bottompanel infigure 1 show simulations for L=λ0 and L=λ0/2, respectively. Both system
lengths are below Lc leading to standingwave patterns. In the standingwave regime, the system length influences
the number of standingwave nodes. For L=λ0 (figure 1,middle) and similar lengths, wefind a two-node
standingwave. If only about half of the preferredwavelength fits into the system (e.g. L=λ0/2,figure 1
bottom), the standingwave has a single node in the system center.

3. Length adaptability and bistability of nonlinear standingwaves

The discovered reflection-induced standingwaves in strongly confined systems are further characterized by
exploring their linear stability. For stationary stripe patterns it is well known that they are stable for different
wavenumbers in afinite bandwidth. The basis of thismultistability is the so-called Eckhaus stability band
[37, 38]. Both fluid experiments [39, 40] and numerical analysis of different systems [27, 41] confirmed
multistability for stationary patterns (e.g. stripes) in extended systems. The Eckhaus stability band also exists for
travelingwaves in unconfined systems [4, 17, 42, 43]. Do the standingwaveswe find in strongly confined systems
also showmultistable behavior? Does the confinement influence the stability band compared to spatially
extended systems?

An analytical approximation of a standingwave solution of equation (1) is given by

u x t F F qx, e e e 2 e cos , 2t qx qx ti i i i= + =- W - - W( ) [ ] ( ) ( )

with amplitude F and frequencyΩ,
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Due to the no-flux boundaries, thewavenumber q is connected to the system length L via q=nπ/L, where
n=1, 2, 3 ... is the number of nodes. This standingwave solution in equation (2) theoretically exists for F2>0,
i.e. for q q0

2
0
2 2 2e x> -( ) . In nature, e.g. in (bio)chemical reactions, the control parameter value, corresponding

to ε in ourmodel, is oftenfixed above the threshold of pattern formation. Then, standingwaves only fulfill the
aforementioned existence conditionwithin afinite range of system lengths. Therefore standingwaves with n
nodes only exist in a certain length regime (existence band), located around L=nλ0/2. In addition, existence
ranges of standingwaves with different numbers of nodesmay overlap. Thus, for certain system lengths,
multiple standingwave solutions (with different numbers of nodes) exist simultaneously. However, parameter
rangeswhere patterns theoretically exist are not equivalent to the parameter rangeswhere they are stable. In fact,
patterns are usually not stable throughout their whole existence range [3, 17, 27, 39–42]. By also analyzing the
stability of standingwaves, we thus identify the range inwhich to expect these solutions, especially in
experiments (see SM is available online at stacks.iop.org/NJP/20/072001/mmedia formore details on the
linear stability analysis).

Figure 2(a) shows the stability regions of standingwave solutions as a function of both system length L and
the control parameter ε. For a given system length, standingwaveswith n nodes only exist for sufficiently large

q n L0
2

0
2 2 2e x p> -( ( ) ) . Below this threshold (black line infigure 2(a)) , the homogeneous solution u=0 is

stable and no pattern occurs. The stability range of standingwaveswith nnodes is located around L=nλ0/2 at
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moderate values of ε. For L=nλ0/2, thewavelength of the standingwave corresponds to the preferred
wavelengthλ0 of the CSHmodel. For these ‘optimal’ system lengths, standingwaves are stable over a large range
of control parameter values. Nevertheless, we can deviate from these optimal lengthswhile stillmaintaining
stable standingwaves. This creates regions of stability in the ε-L-plane. These stability regions constitute the
Eckhaus stability band for different number of nodes.We can now compare thewidth of the Eckhaus band to the
width of the existence band for the standingwaves. In extended systems, thewaves are only stable in a subrange
of their existence band. In contrast, in our confined systems close to the onset of pattern formation, the Eckhaus
band spans thewhole existence range (see figure 1 in SI). Additionally, adjacent stability regionsmay be large
enough to overlap. In these cases, standingwaveswith both n and n+1 nodes are stable. These overlapping
stability regions therefore constitute areas ofmultistability. For large values of ε (above the dashed line in
figure 2(a)), standingwaves eventually lose stability. Simulations then show a transition to travelingwave
patterns such as infigure 1 (top). The details of the stability regions also depend on the other parameters of the
CSHmodel. Parameter f, e.g., which is connected to the group velocity of thewaves, qualitatively changes the
exact shape of the stability regions (figure 2(b)). As a result, the overlap between adjacent stability regions
increases with increasing f. Other systemparameters such as b or c onlymarginally change the stability of
standingwaves (figures S2 and S3) in confined systems. Importantly, however, the generic principle of a
transition from traveling to standingwaves in short systems remains qualitatively independent from system
details.

Note that due to the shape of the stability regions, different scenarios are possible upon observing systems
with increasing length: if we choose ε such that stability regions overlap, we expect direct transitions between
standingwaveswith an increasing number of nodes (as seen infigure 1). Inside the overlap, there is bistability of
standingwaveswith different numbers of nodes. Therefore, both types of standingwaves are possible and the
resulting pattern depends on initial conditions (see figure 3(a)). Notably, this provides the possibility for
hysteresis. The transition fromone to two nodes in a growing system, e.g., takes place at a different system length
than the reverse transition in a shrinking system. For other values of ε, the different standingwave solutions are
intersected by either the homogeneous solution (for small ε) or by travelingwave patterns (for larger ε,
figures 3(b), (A)–(C)). In all cases, standingwaves eventually lose stability for sufficiently large systems (after
crossing the dashed line infigure 2(a)). For afixed system length L, standingwaves also loose their stability for
sufficiently large ε (figures 3(b), (D)–(E)). These transitions tomodulated travelingwaves—both as a function of
L and ε—take place in the formof supercritical (continuous) bifurcations (figure 3(c), see SM for details on how
this was calculated).

4. Reflection-induced standingwaves inmodels for a chemical reaction and theMin
protein system

Minimalmodels such as theCSHmodel we study here for travelingwaves are powerful tools to study system-
spanning properties of self-organized patterns. System-specificmodels describing travelingwaves are usually
more complex than theCSHmodel. They are, e.g., often composed of several coupled nonlinear equations and/
or include higher order nonlinearities (see e.g. [3, 21, 22, 44–49]).Moreover, travelingwaves can occur far from
the onset of pattern formation. Possible intricacies in these cases include secondary instabilities or anharmonic

Figure 2. Stability and length adaptability of standingwaves. (a) Stability regions of standingwaves as a function of system length L and
control parameter ε. Shaded regions indicate stable standingwaves with n=1, 2, 3, 4 nodes. Homogeneous solution is stable below
solid black line and travelingwave patterns in the bulk above dashed lines. Parameters in equation (1): a=0, ξ0=1, b=0, q0=1,
f=0.5, γ=1, c=0.5. (b) Influence of the group velocity parameter f on the stability of standingwaves solution in the CSH system.
Parameters: f=0.0 (I), 0.2 (II), 0.5 (III), 0.7 (IV), other parameters as in (a).
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wave profiles. Such effects can potentially overshadow the generic behavior of travelingwaves under constraints
discussed so far. Apart from these exceptions, however, evenmore complex scenarios often qualitatively follow
generic principles extracted fromminimalmodels. Thus, our results obtained from the generic CSHmodel help
us to understandwave patterns inmore complex systems.

We support this view by investigating the behavior of nonlinear travelingwaves under confinement in two
specific systems far from equilibrium. Thefirstmodel describes the aforementionedMin protein oscillations in
E. coli bacteria [21]. The second example is an extended Brusselator—a chemical reaction–diffusionmodel that
forms travelingwaves [49] (see appendices B andC for details on bothmodels). Asfigures 4(a) and (b) show, the
qualitative behavior of nonlinear waves in both of thesemodels is very similar to the generic CSHmodel: in
sufficiently strong confinement, travelingwave patterns inevitably change into reflection-induced standing
waves. Depending on the system length, we alsofind standingwave patterns with different numbers of nodes.
Note that both sets of simulations take place far beyond threshold. In this highly nonlinear regime the spatial
dependence of thewaves cannot be described by a single harmonic as in equation (2). Instead, they include
higher harmonics—as seen in the Fourier spectra infigures 4(c) and (d).

Bothmodels have a similar growth dispersion relation for perturbations of the homogeneous basic state as
theCSHmodel—with amaximumat afinite wavenumber, while othermodes are damped. Furthermore, the
extended Brusselator shows a continuous bifurcation from the homogeneous state to travelingwave patterns—
again, similar to theCSHmodel. On the basis of these commonproperties, the similar behavior of nonlinear
waves in strong confinementwere to be expected. Travelingwaves in theMinmodel infigure 4(b) are even
further from threshold and thus in the strongly nonlinear regime.Nevertheless, we find the same scenarios for
theMin reaction as for theCSHmodel and the Brusselator. This further supports the generic nature of our
predictions on reflection-induced standingwaves.

Figure 3. Scenarios for transitions between standing and travelingwave patterns. (a)Bistability of standingwaves with 1 and 2 nodes
due to overlapping stability regions. Depending on initial conditions, both a standingwavewith one node (left) or two nodes (right) is
possible for L=0.79λ0 and ε=0.55. (b)Different scenarios are possible upon changing systemparameters. Forfixed ε=0.8, we
get 3 different solutions upon increasing the system length L: from a standingwavewith one node (A, L=0.5λ0) tomodulated
travelingwaves (B, L=0.8λ0) to 2-node standingwave (C, L=λ0). For a fixed system length L=1.5λ0, there is a transition from a
3-node standingwave (D, ε=0.4) to amodulated travelingwave (E, ε=0.8). (c)Transitions from standingwaves tomodulated
travelingwaves are supercritical bifurcations as both a function of the system length L (left) and the control parameter ε: the amplitude
of travelingwaves increases continuously above the critical length Lc or the critical control parameter εc, respectively (see SM formore
details). Additional systemparameters for all simulations in this panel: f=0.2, rest as given infigure 1.
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Furthermore, ourfindings are not limited to no-flux boundary conditions. The reflection-induced
transition to standingwaves prevails for different boundary conditions such asfixed boundaries
(u u 0x x L0 = == =∣ ∣ ). The only qualitative difference is the position of the standingwave nodes: they are shifted
to the boundaries due to the vanishing fields at these points (see figure S4).

Nonlinear travelingwaves in extended systemsmay be convectively unstable directly beyond threshold. This
is also known as Benjamin–Feir instability [3, 4]. For theCSHmodel, this is the case in the parameter range
b f q c4 10

2
0
2x+ > -( ) . In this Benjamin–Feir unstable regime, spatio-temporally chaotic solutions are possible

(above the transition to absolute instability). System sizematters for spatio-temporal chaos aswell: strong
confinement and the related boundary-induced reflection can reestablish ordered standingwaves (seefigure S5).

5.Discussion

In ourworkwe identified generic properties of nonlinear waves in very short systems, i.e. under strong spatial
confinement.We found a universal and robust reflection-induced transition from travelingwave patterns in
extended systems to standingwaves in sufficiently short systems. Stability analysis shows that these standing
waves can adapt to different system lengths. This corresponds to stability within afinite wavenumber band—a
feature they sharewith stationary spatially periodic patterns or travelingwaves [3, 17, 38–42]. They can also react
to larger length variations by changing their number of nodes.We alsofindmultistability of standingwaveswith
different numbers of nodes in a systemof the same length.

Our results obtained in terms of basic pattern formation theory show striking similarities to oscillatingMin
protein patterns.We hypothesize that basic generic properties of nonlinear wave patterns have a key function in
theMin system. Theymay provide themissing link between pole-to-poleMin oscillations in short systems [31,
50–52] and traveling proteinwaves on extendedmembranes [21, 22]: the pole-to-pole oscillations inE. coli
behave like standingwaves originating from travelingwaves confined to short systems.We also suggest that
generic features of the reflection-induced standingwaves such as length adaptability further contribute to the

Figure 4.Waves in confinement in a Brusselator andMinmodel. (a)Effects of strong confinement onwave patterns in an extended
Brusselatormodel, equations (2.1a)–(2.1c): (Top)modulated travelingwave for L=15λc, (Middle) six-node standingwave for
L=3λc, (Bottom) one-node standingwave for L=λc/2. (Shown are space-time plots of the concentration field u(x, t).) (b)Effects of
strong confinement onwave patterns in simulations of theMinmodel, equations (3.1a)–(3.1d): (Top)Modulated travelingwave for
L=300 μm, (Middle) two-node standingwave for L=100 μm, (Bottom) one-node standingwave for L=50 μm. (Shown are
space-time plots of the totalMinD concentration.) (c)Power spectra for the simulations of the Brusselatormodel shown in (a) for
L=λc/2 (left) and L=15λc (right). Themode n=1 corresponds to the dominantmode in the Fourier spectrum, n=2, 3 to
multiples of the dominantmode. (d)Power spectra for the simulations of theMinmodel shown in (b) for L=50 μm (left) and
L=300 μm (right).
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regulation of cell division. This view is supported by experimental observations in theMin system: depending on
bacteria length, theMin proteins also form standingwaveswithmultiple nodes [31, 47, 53] or even traveling
waves [47].More importantly though, not only do living bacteria slightly differ in length, they also actively grow.
Tomaintain accurate cell division at the cell center, the pole-to-pole oscillationsmust be robust over a range of
cell sizes. The generic length adaptability of reflection-induced standingwaves enables pole-to-pole oscillations
in theMin system to adapt to the growing cell. In fact, E. colimaintain robust pole-to-pole oscillations even as
they almost double in length prior to cell division. Continued cell growth tofilamentous bacteria also allows for
transitions between standingwaveswith different numbers of nodes or to travelingwaves [33, 47, 53]. Even
multistability of different wave patterns has recently been found in living E. coli [51].

Due to their generic nature, we expect ourfindings to be independent of systemdetails. Our simulations of a
Min proteinmodel and an extended Brusselator substantiate this claim.While we analyzed one-dimensional
systems in this work, we believe the basic principles also apply to two or three spatial dimensions: in sufficiently
smallmultidimensional systems the boundary reflection of travelingwaves along the long axis will likely
overrule the bulk competition between counter-propagating travelingwaves. Thus, systemborders force them
into reflection-induced standingwaves—with slight system-specificmodifications. Fluid experiments [17, 30]
or oscillating chemical reactions guided by recentmodels as in [48, 49] are further suitable candidates to verify
our results. Pattern formation theory applied to stationary 2d patterns recently provided important insights into
pattern orientationwith respect to spatial inhomogeneities or confinement [28, 54]. A combination of these
approaches with our analysis of nonlinear travelingwaves in confined systems is very promising. Itmay reveal
further generic properties of nonlinear travelingwaves and, e.g., provide additional guidance for experiments in
2dMin systems [50, 52]. This is particularly interesting for designing bottom-up approaches in synthetic biology
to reconstitute cells [52]. In this context, our robust rules about nonlinear (protein)wavesmay present another
puzzle piece to understand hownature controls crucial steps of life.
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AppendixA. Simulationmethods

We solve theCSHmodel aswell as themodels for theMin oscillations and the chemical reactions below
numerically by using a pseudo-spectralmethodwith a semi-implicit time step (implicit Euler for the linear part
of the equation, explicit Euler for the nonlinearities) (66).We calculate all spatial derivatives by transformation
to a suitable function space depending on the boundary conditions.We use Fourier representations of the fields
for periodic boundaries (i.e. in case of theCSHmodel u ux x L0 == =∣ ∣ ), a cosine transform for no-flux
boundaries ( u 0x x L0,¶ ==∣ ) and a sine transform for vanishing fields at the boundary (u 0x L0, ==∣ ), where L is
the system length.

Appendix B.Oscillating chemical reaction

As amodel for a pattern forming chemical reaction, we use an extended Brusselatormodel as proposed by Yang
et al [49]. The Brusselator is awell-known prototype for reaction–diffusion systems. Typically, this system is a
two-component activator-inhibitormodel with a bifurcation to Turing patterns or homogenousHopf
oscillations. Themodel by Yang et al extends the Brusselator by a third component. The dynamics of the three
concentration fields u, v and w are given by:

u D u a b u u v cu dw a1 , 2.1t u x
2 2¶ = ¶ + - + + - +( ) ( )

v D v bu u v b, 2.1t v x
2 2¶ = ¶ + - ( )

w D w cu dw c. 2.1t w x
2¶ = ¶ + - ( )

Wechoose a=0.8, c=2, d=1,Du=0.01,Dv=0 andDw=1.We consider b the control parameter of the
system. The homogeneous solution (uh=a, vh=b/a,wh=ac/d) becomes unstable towards travelingwaves at
the critical value bc=3.076. The intrinsic wavelength of the travelingwave pattern above threshold isλc≈9.5.
We performour simulations close to pattern onset, for b=bc(1+ε)where ε=0.005. The onset of the Turing
instability (i.e. of stationary periodic patterns) tends to infinity for D 0v  . By choosingDv=0, we thereby
eliminate any competition between travelingwaves andTuring structures.

7

New J. Phys. 20 (2018) 072001



AppendixC.Min oscillationmodel

As a representativemodel for theMin oscillations shown infigure 4, we consider themodel given by
equations (3.1a)–(3.1d) as proposed by Loose et al [22] (see also equations [1]–[4] in their supplementary
information). Thismodel describes the dynamics of bothMinD andMinE in the cytosol (cD and cE,
respectively), theMinD concentration on themembrane cd and the concentration ofMinD/MinE complexes on
themembrane cde:

c D c c c c a, 3.1t D D x D de de D D dD d
2 w w w¶ = ¶ + - +( ) ( )

c D c c c c c b, 3.1t E E x E de de E d E eE de
2 2w w w¶ = ¶ + - +( ) ( )

c D c c c c c c c, 3.1t d d x d D D dD d E d E eE de
2 2w w w w¶ = ¶ + + - +( ) ( ) ( )

c D c c c c c d. 3.1t de de x de E d E eE de de de
2 2w w w¶ = ¶ + + -( ) ( )

For the simulation shown in figure 4we choose the parameters as suggested in [22]:DD=DE= 60 μm2 s–1,
Dd= 1.2 μm2 s–1,Dde= 0.4 μm2 s–1,ωde= 0.029 s−1, 2.9 10 sD

4 1w = - -· , 4.8 10 m sdD
8 2 1w m= - -· ,

1.9 10 m sE
9 2 1w m= - -· , 2.1 10 m seE

20 6 1w m= - -· .We choose a totalMinD concentration of
c c c c 3.6 10 mD D d de,tot

6 2m= + + = -· , and a totalMinE concentration of
c c c c 5.8 10 mE E e de,tot

6 2m= + + = -· . In large, quasi-unconfined systems this leads to travelingwaveswith a
typical wavelengthλmin≈ 71 μm.
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Abstract – We investigate the orientation of nonlinear stripe patterns in finite domains. Moti-
vated by recent experiments, we introduce a control parameter drop from supercritical inside a
domain to subcritical outside without boundary conditions at the domain border. As a result,
stripes align perpendicularly to shallow control parameter drops. For steeper drops, non-adiabatic
effects lead to a surprising orientational transition to parallel stripes with respect to the borders.
We demonstrate this effect in terms of the Brusselator model and generic amplitude equations.

editor’s  choice Copyright c© EPLA, 2016

Introduction. – Pattern formation is central to the
wealth of fascinating phenomena in nature. It occurs in a
great variety of physical, chemical and living systems [1,2].
Examples include patterns in isotropic and anisotropic
convection systems [3–7], chemical reactions [8,9] and
biological systems [10–12], or environmental patterns [13].

In real systems, patterns emerge in finite areas or vol-
umes. Consequently, spatially periodic patterns only con-
tain a finite number of wavelengths. Along the system
borders, the relevant fields have to obey boundary condi-
tions that influence the pattern in different ways [3,14–25].
In isotropic systems, stationary patterns may be oriented
perpendicularly to the boundaries [3,15]. In thermal con-
vection, convection rolls align perpendicularly to side walls
due to boundary conditions for the flow fields [17–19].
Boundary conditions at the side walls may also restrict
the range of possible stable wave numbers of periodic pat-
terns [20]. Traveling waves of finite wave number may be
reflected at the boundaries leading to a number of inter-
esting and complex phenomena [21–25].

However, finite systems can also be achieved when the
fluxes and forces driving a pattern, the so-called control
parameters, are sufficiently strong (supercritical) only in a
subdomain of the system. In this case, no specific bound-
ary conditions act on the fields at control parameter drops
to subcritical values. Related to this are studies of ramps
in quasi–one-dimensional systems [26], whereby smooth
ramps may lead to wave number selection [26,27] and rapid
parameter changes to pinning effects for spatially periodic
patterns [28]. But the effects of restricting two dimen-
sional patterns to a finite domain by control parameter

Fig. 1: Stripe patterns inside supercritical subdomains in the
Brusselator model. The control parameter drops on different
length scales δx,y along x and y from βm = 0.05 to subcritical
values in a wide vicinity: (a) δx = δy = λc, (b) δx = δy =
0.32λc, (c) δx = 0.32λc, δy = 1.5λc, (d) δx = 1.5λc, δy =
0.32λc.

drops have not been systematically investigated so far.
Examples of pattern orientations resulting from different
widths of the control parameter drops are shown in fig. 1
and explained in this work.

Recent experiments where pattern forming protein re-
actions take place in finite subdomains of substrates [29]
belong to this class. Control parameter drops can also
be designed in light-sensitive chemical reactions where
illumination of the reaction cell suppresses pattern
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formation [30,31]. If the illumination is only applied to
a subdomain of the system, again no boundary conditions
for the concentration fields are defined along the edge of
the illumination mask.

We investigate how control parameter drops along the
borders of a supercritical subdomain affect the orientation
of stationary spatially periodic patterns when no bound-
ary conditions for the fields are specified. We choose the
Brusselator as a representative model system to study the
influence of the control parameter drop width. This is
complemented by studies of the so-called amplitude equa-
tions for supercritical bifurcations to spatially periodic
patterns [3]. As a general description for this class of pat-
terns, the conclusions drawn from the amplitude equations
emphasize the universality of our results.

For large drop widths, we find that stripes align per-
pendicularly to the borders of the supercritical control
parameter domain. By decreasing the length scale for the
control parameter drop, we find a surprising orientational
transition to stripes in parallel alignment. The analysis of
the amplitude equations reveals additional non-adiabatic,
resonance-like effects favouring parallel stripes.

Model systems and control parameter drop. –

Brusselator. The Brusselator is a common model for
reaction-diffusion systems [32–35]. We use it as a pro-
totype system for supercritical bifurcations to spatially
periodic patterns (Turing patterns). It describes the non-
linear behaviour of the concentration fields u(x, y, t) and
v(x, y, t):

∂tu = ∇2u + a − (b + 1)u + u2v , (1a)

∂tv = D∇2v + bu − u2v, (1b)

with the control parameter b and constant parame-
ters a, D. These equations have the homogeneous fixed
point solution

uh = a , vh = b/a. (2)

Turing patterns with the critical wave number qc bifurcate
from this basic state for control parameter values beyond
its critical one bc [34], where

bc = (1 + aη)2 , qc =
√

aη, (3)

and η :=
√

1/D. The relative distance β of the control
parameter from its critical value bc is given by

b = bc(1 + β), (4)

i.e. βc = 0. Hexagons are typical for the Brusselator near
the onset of Turing patterns. But in this work, we consider
the special case D = a2 where stripes are preferred at the
onset [35]. In this case, the critical wavelength of the
stripes according to eq. (3) is λc := 2π/qc = 2π. We
choose a = 4 throughout this work.

Amplitude equations. The two concentration fields
u and v may be combined to the vector field w(r, t) =
(u(r, t), v(r, t)). We write spatially periodic stripes with
the wave vector qc in the form [3,34]

w(r, t) = wh + Aw̃ei(qc·r) + A∗w̃∗e−i(qc·r), (5)

where wh = (uh, vh). Slow variations (compared to the
wavelength λc) of the envelope A(r, t) can be described
by a dynamical amplitude equation [3,36].

The Brusselator model is isotropic. Hence, in extended
systems only the magnitude qc of the critical wave vector
qc for Turing stripes is fixed, but not its direction. Thus,
all stripe orientations are equally likely at pattern onset.
We consider the amplitude equations in two limits of stripe
orientations: qc = (qc, 0) and qc = (0, qc), called parallel
and perpendicular hereafter. The reduction method to
amplitude equations, the so-called multiple scale analysis,
is well established for supercritical bifurcations [3,36]. The
generic amplitude equations for the two stripe orientations
in the case of a small and constant control parameter β are

∂tA = βA + LA − g|A|2A, (6)

with

L = L2
‖ := ξ2

0

(
∂x − i

2qc
∂2

y

)2

, for qc = (qc, 0), (7a)

L = L2
⊥ := ξ2

0

(
∂y − i

2qc
∂2

x

)2

, for qc = (0, qc). (7b)

The coherence length ξ0 and the nonlinear coefficient g for
the Brusselator in the special case of D = a2 are ξ2

0 = 1
and g = 3/(2a2) [35].

Control parameter drop. We introduce the control pa-
rameter drop by assuming the spatially dependent control
parameter β(x, δx):

β = β0 +
M

2

[
tanh

(
x − xl

δx

)
− tanh

(
x − xr

δx

)]
. (8)

We assume L := xr − xl � λc and β0 < 0. M and β0

are chosen such that the maximum value βm = β0 + M
is small and positive. Then β(x, δx) is supercritical in the
subdomain x̄l < x < x̄r, where

x̄l,r = xl,r ± δx

2
ln

( −β0

M + β0

)
, (9)

and drops down to the subcritical value β0 outside this do-
main. The steepness of the control parameter drop around
x̄l,r increases with decreasing values of the drop width δx.

For small values of δx, the control parameter β(x, δx)
varies rapidly in a narrow range around x̄l,r. However,
only the slowly (adiabatically) varying contributions to
β(x, δx) affect the solutions of amplitude equations. The
rapidly (non-adiabatically) varying part is smoothed out
and must be treated separately. We therefore decompose
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β(x, δx) into an adiabatic and non-adiabatic part. For
this purpose, we introduce the slow length scale δA :=
2ξ0/

√
βm > δx and choose β0 = −ε, M = 2ε (where ε is

positive and small). We then express the slowly varying
contribution B0(x) via eq. (8) by choosing δx = δA:

B0(x) = β(x, δA). (10)

The difference between β(x, δx) and B0(x) becomes
small in the centre of [xl, xr] and takes its largest val-
ues around xl,r. We expand the rapidly varying difference
β(x, δx) − B0(x) into a series to obtain

β(x, δx) = B0(x) +
M

2

∑

m

{
Bl

m(x) sin [mqc(x − xl)]

+Br
m(x) sin [mqc(x − xr)]

}
, (11)

where m = n/NL, n ∈ N and NL = L/λc. The functions
Bl,r

m (x) are localised around xl,r and we choose a Gaussian
for their representation:

Bl,r
m (x) = B̂l,r

m exp

[
− (x − xl,r)

2

δ2
G,m

]
. (12)

The Gaussian amplitudes B̂l,r
m and their widths δG,m are

determined via a correlation analysis. We calculate the
correlation function between the rapidly varying part

Δβ̃(x, δ) = tanh(x/δ) − tanh(x/δA) (13)

and the test function

fm(x, δtest) =
1√

πδtest
e−x2/δ2

test sin(mqcx). (14)

We then choose the Gaussian width δG,m to be the value of
δtest that maximises the correlation function. The ampli-
tudes B̂l,r

m are calculated via the overlap integral between
fm(x, δG,m) and Δβ̃. Figure 2(a) shows the contributions
B̄l

m := εBl
m(x) sin(mqcx) for m = 1, 2 in comparison to

the full shape of β(x, δx). Both functions are localised
around xl = 0 and approach zero within a short range
(� δA) around the control parameter drop. The Gaussian

amplitudes B̂l,r
1 and B̂l,r

2 decrease as a function of the drop
width δx (fig. 2(b)). These non-adiabatic contributions

vanish for δx > δA. The amplitude B̂l,r
1 is usually larger

than B̂l,r
2 , except in the limit of very small drop widths.

The patterns in fig. 1 are obtained for a rectangular su-
percritical subdomain of the control parameter in the form

β = β0 +
M

4

[
tanh

(
x − xl

δx

)
− tanh

(
x − xr

δx

)]

×
[
tanh

(
y − yb

δy

)
− tanh

(
y − yt

δy

)]
. (15)

Here, we introduced a second drop width δy to describe
the additional spatial dependence of β in the y-direction.
β(x, y, δx, δy) is supercritical in the two-dimensional area
[x̄l, x̄r] × [ȳb, ȳt].

-ε

0

ε

-δA 0δx δA

a)

x

β(x) B−l
1(x) B−l

2(x)

0

0.2

0.4

0.6

0 δA/4 δA/2 3δA/4 δA

b)

δx

B̂l,r
1 B̂l,r

2

Fig. 2: (a) Contributions B̄l
1(x) and B̄l

2(x) to the control pa-
rameter drop β(x, δx) for δx = 0.11δA. (b) Gaussian ampli-
tudes B̂l,r

1 and B̂l,r
2 of the localised amplitudes as a function of

the drop width δx for ε = 0.05.

Non-adiabatic effects cause an orientational
transition. – We now include the control parameter drop
into the amplitude equation using the decomposition given
in eq. (11). The control parameter β in eq. (6) is re-
placed by the slowly (adiabatically) varying part B0(x)
as given by eq. (10). The short-wavelength contributions
∝ Bl,r

m (x) exp (imqcx) with m = 1, 2, 3, 4 in eq. (11) cause
additional (non-adiabatic) terms in the amplitude equa-
tion for parallel stripes [37]. It then takes the form

∂tA = B0(x)A + L2
‖A − g|A|2A

+

4∑

m=1

αmBm(x) (A∗)m−1
. (16)

Here, αm are constant parameters depending on the re-
spective system. The complex localised contributions
Bm(x) due to the control parameter drop are given by

Bm(x) = i
M

4

[
Bl

m(x)e−imqcxl − Br
m(x)e−imqcxr

]
. (17)

The magnitudes of B1(x) and B2(x) are similar, as shown
in fig. 2. The coefficient B2(x) reduces the threshold of the
pattern onset [37]. B1(x) changes the supercritical bifur-
cation (in the case B1 = 0) into an imperfect one [37,38]
and, therefore, has a stronger impact than B2(x). The ef-
fects caused by B3,4(x) are restricted to the post-threshold
regime and are much smaller than B1,2(x). Hence, they
are neglected henceforth. Equation (16) can be derived
from the functional

F‖ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 +

∣∣L‖A
∣∣2

−
2∑

m=1

αm

m

(
Bm(x)A∗m

+ B∗
m(x)Am

)]
(18)

via ∂tA = −δF‖/δA∗. For the Brusselator in the case
D = a2, we find α1 = 2a and α2 = 5/3.

The amplitude equation for perpendicular stripes with
qc = (0, qc) is not affected by resonance contributions
∝ Bm. It is described by eq. (6) with L = L2

⊥ as given
in eq. (7b) and the slowly varying control parameter
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β = B0(x), cf. eq. (10). The related functional is

F⊥ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 + |L⊥A|2

]
. (19)

For small values of δx, the coefficients B1,2 have consid-
erable magnitude (fig. 2(b)). However, the related non-
adiabatic effects only affect the amplitude equation for
parallel stripes, cf. eq. (16). Due to the imperfect bifurca-
tion, parallel stripes already have a finite amplitude below
the bulk threshold βm = 0, especially around xl,r, where
B1,2 take the largest values. This finite amplitude A de-
creases the functional F‖ for parallel stripes with respect
to F⊥. Thus, for small values of δx, parallel stripes are
preferred compared to perpendicular stripes.

For large values of δx, the non-adiabatic contributions
B1,2 become small and can be neglected (fig. 2(b)). In this
case, the amplitude equations and the functionals for the
two different stripe orientations only differ in the linear op-
erator. These include different orders of derivatives in the
x-direction: |∂xA|2 in the functional for parallel stripes,
eq. (18), and |∂2

xA|2 for perpendicular stripes, eq. (19).
Thus, spatial variations of the amplitude A(r, t) affect the
two functionals differently. The slow spatial variation of
the control parameter B0(x) in the x-direction is reflected
in a spatial variation of the amplitude A(r, t). This in-
creases both functionals. However, due to the different
orders of x-derivatives, the functional for perpendicular
stripes has a lower value [3,39]. Therefore, perpendicular
stripes will be preferred for large δx.

According to this reasoning, we predict stripes aligned
perpendicular to the supercritical border for a large drop
width δx and parallel for small δx. Therefore, we expect
an orientational transition for medium values of δx. Note,
for these considerations only the contributions B0, B1 and
B2 to the decomposition in eq. (11) are taken into account.
However, the predicted orientational transition of stripes
is rather insensitive to these approximations as confirmed
by simulations of the Brusselator in the next section.

Numerical results for the Brusselator. – In the
previous part we found an orientational transition of
stripe patterns by changing the width of control parameter
drops. This prediction is based on a reasoning including
approximations. Therefore, the effect is verified by simula-
tions of the Brusselator model, cf. eqs. (1), with supercrit-
ical subdomains of width L = 20λc, embedded in larger
subcritical domains with overall system sizes lx,y. The
model is solved using a common pseudospectral method
with periodic boundary conditions [40] and Nx,y modes,
respectively. We choose β0 = −0.05 and perturb the basic
solution by small amplitude random noise.

For large widths δx of control parameter drops, i.e. slow
variations of the control parameter, the preferred orienta-
tion of a stripe pattern is nearly perpendicular to the bor-
ders of the supercritical domain, i.e. q ∼ (0, qc), as shown
in fig. 3 for δx = 5λc. This confirms the prediction in
terms of the amplitude equations in the previous section

Fig. 3: Stripes favour a perpendicular orientation with respect
to shallow control parameter drops (δx = 5λc). Simulation of
the Brusselator started at βm = 0.001 and was slowly increased
to βm = 0.05. Parameters: lx = ly = 50λc, Nx = Ny = 1024.
Note: only a cutout of the simulation is shown.

Fig. 4: Simulations of the Brusselator model with a narrow
control parameter drop (δx = 0.5λc). Cross-sections of the
two-dimensional stripe pattern for (a) βm = −0.025, (b) βm =
−0.01, (c) βm = 0. (d) The stripe amplitude as a function
of βm implies an imperfect bifurcation. (e) Snapshot of the
parallel stripes for βm = 0.02. Simulation parameters: lx =
50λc, ly = 25λc, Nx = 1024, Ny = 512.

(for similar results for periodic modulations in extended
systems see ref. [41]). Similar orientations are obtained
for drop widths down to about δx 	 λc.

For small δx, e.g. δx = 0.5λc, the stripes align parallelly
to the borders of the supercritical range, i.e. qc ∼ (qc, 0),
as in fig. 4(e) for βm = 0.02. Moreover, localised Tur-
ing stripe patterns of finite amplitude occur around the
borders at xl,r already at subcritical values of βm (see
cross-sections in fig. 4(a) and (b)). For increasing βm,
they expand into the whole supercritical domain. At the
bulk threshold βm = 0 (fig. 4(c)) the stripes already have a
finite amplitude throughout the range [xl, xr]. The maxi-
mum stripe amplitude of the stationary solution as a func-
tion of βm is shown in the bifurcation diagram in fig. 4(d).
The form of the bifurcation is imperfect, as expected from
the analysis on the basis of the amplitude equations in the
previous section.

The two different preferred stripe orientations for large
δx = 5λc in fig. 3 and small δx = 0.5λc in fig. 4
clearly confirm an orientational transition of stripes in the
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Fig. 5: Comparison of the functional for stripes as a function
of the drop width δx with the stripe wave vector qc = (0, qc)
(filled circles) and qc = (qc, 0) (open diamonds). Parameters:
β0 = −0.05, M = 0.1.

supercritical domain depending on the width of the control
parameter drop along its border.

We can further restrict the domain size by varying
the control parameter simultaneously along the x- and
y-direction, cf. eq. (15). In these rectangular domains1,
one can combine different drop widths δx and δy to trig-
ger different stripe orientations as shown by four exam-
ples in fig. 1. Combining, e.g., large drop widths at the
long side of the rectangle with small drop widths at the
short side creates a remarkably uniform stripe pattern, cf.
fig. 1(d). Using different combinations of δx,y may be a
promising tool for designing Turing patterns in localised
light-sensitive chemical reactions [42].

Orientational transition regime. – The orienta-
tional transition of stripes is deduced in terms of ampli-
tude equations and confirmed by numerical simulations of
the Brusselator model. The amplitude equations can be
derived from the functionals, eqs. (18) and (19). Calcu-
lating these functionals as a function of the drop width
allows to determine the preferred orientation for this δx.
In the range where F⊥ < F‖, a perpendicular stripe ori-
entation is expected and vice versa. For this purpose, we
perform simulations of the amplitude equations for the two
stripe orientations using the aforementioned pseudospec-
tral algorithm (simulation parameters: lx = ly = 50λc,
Nx = Ny = 1024, L = 20λc, β0 = −0.05, βm = 0.05).
When the solutions reach the stationary state, the func-
tionals displayed in fig. 5 are calculated.

The functional corresponding to perpendicular stripes
in eq. (19) does not contain the non-adiabatic contribu-
tions B1 and B2 to the control parameter drop. Re-
gardless of the assumptions made for the justification of
eq. (19) and the related amplitude equation, one may use
β(x, δx) instead of B0(x). The functional then deviates
only slightly from its constant value in the case of B0(x).
In addition, fig. 5 shows that the functional with β(x, δx)
is nearly independent of δx, i.e. stripes perpendicular to

1Simulation parameters: β0 = −0.1, βm = 0.05, Lx = 30λc,
Ly = 20λc, lx = 60λc, ly = 50λc, Nx = Ny = 1024.

the border of the supercritical range are rather insensitive
to the width δx.

For parallel stripes, q = (qc, 0), the resonance effects
covered by B1 (and B2) are relevant and the associated
functional is given in eq. (18). The two functionals for
the two different stripe orientations are shown as a func-
tion of the drop width δx in fig. 5. For narrow control
parameter drops, i.e. δx small, the functional for parallel
stripes is significantly lower. Thus, the parallel orientation
is preferred. However, the functional for parallel stripes
strongly increases as a function of the drop width. The
orientational transition takes place at the intersection of
the two functionals. For larger δx, the perpendicular ori-
entation of the stripes is preferred.

Summary and conclusions. – In this work, we iden-
tified and investigated a new class of finite pattern forming
systems confined by control parameter drops from super-
to subcritical values. These orient stripe patterns even
without boundary conditions for the relevant fields. The
stripe orientation depends on the width of the control pa-
rameter drops. We found a novel orientational transition
of stripe patterns with respect to the borders as a function
of the width of control parameter drops.

In light-sensitive chemical reaction-diffusion systems
showing Turing patterns [30,31] the transition length be-
tween the patterns (supercritical) and the homogeneous
state (subcritical) may be varied by the length of a smooth
transition between illuminated and dark areas.

The Swift-Hohenberg (SH) model [43] is, besides the
Brusselator a further paradigmatic model for studying the
formation of spatially periodic patterns [2,3]. It behaves
differently with respect to control parameter drops along
the border of a supercritical domain. The basic state of
the Brusselator is a function of the control parameter b,
cf. eq. (2). Therefore, control parameter drops change
the basic state of the bifurcation to Turing patterns. In
the case of steep control parameter drops, the bifurcation
to parallel stripes becomes imperfect, causing a different
orientation than for smooth control parameter variations.
In contrast, the basic state uh = 0 of the SH model re-
mains unchanged for spatially varying control parameters.
The onset of periodic patterns is reduced but the bifurca-
tion remains perfect. The local 1:2 resonance occurring
in the case of a steep control parameter drop is not suffi-
cient to change the stripe orientation like for the Brusse-
lator. The same applies to the mean-field model for block
copolymers (see, i.e., [44]). Therefore, we do not find the
aforementioned orientational transition of stripe patterns
in the SH or the block copolymer model. However, in
common systems where the basic state is also changed by
control parameter variations, orientational transitions of
stripe patterns are very likely.

Our results for stationary patterns may also be im-
portant for traveling waves that occur, for instance, in
the cell biological MinE/MinD protein reaction on flat
substrates [12,29]. To mimic the effects of cell confinement
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in such extended experiments, reactive membranes were
created in subdomains of the substrate [29,45]. In this
way, the traveling waves are restricted to the range above
the functionalised parts of the membrane. These may be
interpreted as subdomains with a supercritical control pa-
rameter. In this experiment the traveling waves align per-
pendicularly to the borders of the functionalised area [29].
It is very likely that this orientational behaviour is again
governed by generic principles similar to those discussed
in this work and specific molecular reaction schemes or
three-dimensional effects provide quantitative modifica-
tions [29,46,47]. Is the complex behavior of MinE/MinD
oscillations in further restricted domains, as investigated
recently in ref. [48], determined by the specific properties
of the kinetic reaction models? Or do again generic prin-
ciples of pattern formation play a leading role as described
in this work?

∗ ∗ ∗
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We analyse nonlinear traveling wave patterns in the presence of control parameter variations at
the ends of a finite domain. This is motivated by recent experiments, where the control parameter
is supercritical inside a domain and subcritical outside. We find traveling wave reflection near rapid
control-parameter variations at the domain ends even without boundary conditions for the wave
fields. The resulting competition scenarios between the incoming and the reflected traveling waves
depends strongly on the group velocity vg of traveling waves. Traveling waves extend over the
whole subdomain for small vg. Raising vg leads first to confined wave states, before blinking states
occur. Finally we observe a coexistence between right (left) traveling waves localized near the right
(left) end of the subdomain and left (right) traveling waves near left (right) subdomain end. We
analyse these effects in terms of a generic complex Swift-Hohenberg model and universal amplitude
equations for nonlinear wave patterns.

PACS numbers: 47.43.-3, 05.45.-a

I. INTRODUCTION

Self-organized patterns occur in many physical, chemi-
cal and living systems out of thermal equilibrium [51–58].
Very common examples are stripe and traveling (TW)
patterns. In nature as well as in controlled experiments,
they always occur in finite domains which include a finite
number of wavelength of a pattern. Thereby the domain
size often affects the properties of patterns. While de-
tailed mechanisms leading for instance to stripe or trav-
eling wave (TW) pattern are as different as the systems, a
pattern often shows inherent system spanning properties
in the bulk and with respect to effects of domain ends.

Boundary conditions at domain ends imposed on the
fields that describe the patterns break symmetries and
affect their nonlinear behavior. For instance, spatially
periodic stripe patterns are in extended systems stable
for different wave numbers in a so-called Eckhaus stable
wavenumber band [59–66]. However, boundary condi-
tions restrict the wavenumber range of stationary peri-
odic patterns and also affect their orientation [53, 67–73].
Traveling waves may in addition be reflected at system
boundaries and the interplay between incoming and re-
flected traveling waves leads to a number of fascinating
dynamical scenarios [74–79]. Boundary effects usually
increase for a decreasing system size. For instance, in a
very small system size the boundary reflection of travel-
ing waves may even outweigh bulk competition between
counter propagating traveling waves and therefore may
enforce a bifurcation from traveling to standing waves
[80]. Breaking the translational symmetry in time by
temporal modulations [81–83] or in space by spatial mod-
ulations [84, 85] can force nonlinear left and right moving
traveling waves into standing waves.

A restriction of the pattern to a finite subdomain can
also be achieved without boundary conditions for the in-
volved fields. In this case the driving fluxes and forces,
the so-called control parameters, become supercritical
only within a subdomain of a system and become subcrit-

ical outside. Related to this system class are studies in-
vestigating effects of control parameter ramps on station-
ary, spatially periodic patterns in quasi one-dimensional
systems [86], whereby slow (adiabatic) ramps may lead to
wave number selection [86, 87]. Rapid parameter changes
can produce pinning effects for spatially periodic pat-
terns [88]. The effects of a supercritical control param-
eter restricted to two-dimensional subdomains has been
investigated only recently [89] and revealed a surprising
dependence of the orientation of stripe patterns on the
steepness of control parameter drops. In experiments a
restriction of the supercritical range of the control pa-
rameter in a pattern forming system to a subdomain
is possible, for instance, in light sensitive chemical re-
actions by illuminating only a subdomain [90, 91]. An-
other recently studied example are experiments on travel-
ing Min-protein patterns on extended membranes, which
were only reactive in subdomains of the substrate [92, 93].
How control parameter variations affect traveling waves
is not systematically investigated so far.

In this work we investigate generic effects of control
parameter drops on the nonlinear properties of traveling
wave pattern. The control parameter drops from super-
critical to subcritical values at the two ends of a one-
dimensional subdomain at whose ends no boundary con-
ditions for the fields describing traveling wave are spec-
ified. We choose the complex Swift-Hohenberg (CSH)
equation as a generic model for traveling waves to explore
how the control parameter drop affects the nonlinear be-
havior of TWs [94–96]. These investigations are comple-
mented by the analysis of coupled amplitude equations
for counter propagating TWs. Both model approaches
are introduced in Sec. II. For control parameter drop-
widths on the scale of a wavelength of traveling waves we
obtain three typical nonlinear wave patterns depending
on the group velocity as described in III. Small values of
the group velocity lead to extended or confined traveling
wave states. For intermediate values breathing confined
states occur. Finally one observes a coexistence between
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localized left and right traveling waves near the opposite
ends of the finite domain. The conclusions drawn from
the analysis of these equations emphasize the universality
of our results.

II. MODEL

A prototype model for supercritically bifurcating trav-
eling waves (TW) is the complex Swift-Hohenberg equa-
tion (CSH) for the complex order parameter field u(x, t)
(see e.g. [94–96]):

∂tu = (ε(x) + ia)u− (1 + ib)
(
q20 + ∂2x

)2
u

+ if∂2xu− (1 + ic)|u|2u . (1)

This model shows traveling wave solutions of a preferred
wavelength λ0 = 2π/q0 for positive values of the control
parameter ε > 0. Time, space and the complex field,
u(x, t) are already scaled such that the four parameters
a, b, f, c remain. If needed, the parameter a may be also
removed via the transformation u → u · exp(iat). The
complex field u(x, t) can be interpreted as the envelope
of an oscillating real field w(x, t) ∝ u(x, t) exp(iωt) +
u∗(x, t) exp(−iωt). For a = b = f = c = 0 Eq. (1)
reduces to the original Swift-Hohenberg equation for sta-
tionary periodic patterns [53, 97].

A. Control parameter drop

How does a spatially varying control parameter ε(x, δ)

ε = −β +
M

2

(
tanh

[
x− xl
δ

]
− tanh

[
x− xr
δ

])
(2)

affect the dynamics of traveling waves? With L := xr −
xl � λc = 2π/q0 and −β+M > 0 the control parameter
ε is supercritical in the range x̄l < x < x̄r, whereby the
boundary positions x̄l and x̄r are related to δ, M and β
as follows:

x̄l,r = xl,r ±
δ

2
ln

(
β

M − β

)
. (3)

M and β are chosen such that the maximal value of the
control parameter εm = −β + M > 0 remains small.
Around the center of the range [x̄l, x̄r] the profile of ε(x)
is nearly flat and locally translational invariant. The
steepest variations of ε(x) take place at xl and xr. Out-
side the supercritical domain the control parameter ε(x)
drops to the subcritical value −β. The steepness of the
control parameter drop around xl,r increases with de-
creasing values of the drop width δ.

For larger values of δ the control parameter ε(x, δ)
varies slowly (adiabatically) on the length scale of the
wavelength λc. In this case the effects of a spatially
dependent ε(x) can be described in the frame work of
so-called amplitude equations [53], as described below.

-β

0

β

0

(a)

x

ε(x) B
−l

2(x)

0

0.2

0.4

0.6

0 δA/4 δA/2 3δA/4 δA

(b)

δ

 B
^ l,r

2

FIG. 1. (a) shows the contribution B̄l
2(x) = βBl

2(x) sin(2qcx)
(solid lines) to the control parameter ε(x) (dashed lines) in
Eq. (5) for δ = 0.1π (grey) and δ = π (black). In (b) the peak

value B̂l,r
2 of Bl,r

2 (x) in Eq. (6) is plotted as a function of the
drop width δ. This peak value decreases with increasing δ

To cover also the effects of a rapidly (non-adiabatically)
varying contribution to ε(x), the related amplitude equa-
tions for traveling waves have to be complimented.

In order to separate the slowly from the rapidly varying
contributions to ε(x) we introduce the length scale δA =
2ξ0/
√
εm > δ and choose M = 2β with a small value of

β. In this case the boundaries of the supercritical region
x̄l, x̄ correspond to the position of the control parameter
drop xl, xr. The slowly varying part of ε(x) is expressed
via Eq. (2) by choosing δ = δA:

B0(x) = ε(x, δA). (4)

The difference between ε(x, δ) and B0(x) vanishes in the
center of the range [xl, xr] and takes its largest values
around xl,r. We expand the rapidly varying part of the
difference ε(x, δ)−B0(x) into a series as follows

ε(x, δ) = B0(x) +
M

2

∑

m

{
Bl

m(x) sin [mqc(x− xl)]

−Br
m(x) sin [mqc(x− xr)]

}
, (5)

where m = n/NL, n ∈ N and NL = L/λc. The func-
tions Bl,r

m (x) are localized around xl,r and we choose a
Gaussian for their representation:

Bl,r
m (x) = B̂l,r

m exp

[
− (x− xl,r)2

δ2G,m

]
. (6)

The Gaussian amplitudes B̂l,r
m and their widths δG,m

are determined via a correlation analysis as described in
Ref. [89].

The two complementary contributions B̄l,r
2 (x) =

M/2Bl,r
2 (x) sin(2qc(x − xl,r)) to Eq. (5) will be crucial

in reductions of the CSH model in Eq. (1) to equations
for the amplitudes of TWs. The contribution B̄l

2(x) is
shown exemplarily in Fig. 1a) for two values of δ in com-
parison to the full control parameter variation ε(x, δ). B̄l

2

and B̄r
2 are localized around xl and xr and both tend to

zero within a short distance < δA from xl and xr, respec-

tively. The Gaussian amplitudes B̂l,r
1 and B̂l,r

2 decrease
with increasing values of the drop width δ [see Fig. 1b)].
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B. Non-adiabatic contributions to ε(x, δ) cause
resonances

Left and right traveling waves, u ∝
Al,r(x, t)ei(±q0x+ω̃t), with complex amplitudes Al,r(x, t)
that vary slowly on the scale of the intrinsic wavelength
λ0 = 2π/q0, are well known solutions of the CSH model
in Eq. (1) for a constant control parameter ε. There is a
well established mathematical technique for deriving in
the range of small ε two coupled, nonlinear equations for
the envelopes Al(x, t) and Ar(x, t) [52, 53, 75, 98]. This
technique can also be applied in the case of a slowly
varying control parameter ε(x, δA) = B0(x). However,
ε(x) in Eq. (5) may include also local and fast varying
finite contributions ∝ sin(2q0(x − xl,r)) that affect the
solutions considerably as indicated in Fig. 5.

The reduction of the CSH model to the equations for
the envelopes requires a projection of the CSH model
onto the traveling wave modes ei(±q0x+ω̃t). This provides
in the presence of contributions Bl,r

m (x) from Eq. (5) also
a local resonant coupling between right and left trav-
eling waves in the amplitude equations via the product

A(x, t)B̄l,r
2 (x). These spatially dependent coupling terms

are located around x̄l,r and are a conceptual parallel to
temporal resonant forcing [81, 82] near a bifurcation to
traveling waves.

Using

B2(x) =
M

4i
[Bl

2(x)e−2iq0xl −Br
2(x)e−2iq0xr ] (7)

the two coupled equations for the amplitude of the left
traveling wave, Al(x, t), and the right traveling wave,
Ar(x, t), take the following form:

(∂t + vg∂x)Ar = B0(x)Ar + ξ20(1 + ib̃)∂2xAr +B2(x)Al

− (1 + ic)(|Ar|2 + 2|A2
l |)Ar , (8a)

(∂t − vg∂x)Al = B0(x)Al + ξ20(1 + ib̃)∂2xAl +B?
2(x)Ar

− (1 + ic)(|Al|2 + 2|A2
r|)Al . (8b)

Deriving these two coupled equations from the CSHE (1)
the coefficients are

ξ0 = 2q0 , vg = 2fq0, b̃ = b+
f

4q20
. (9)

In the case of a slowly varying control parameter ε(x, δ),
corresponding to larger values of δ, the linear coupling
terms ∝ B2(x) in Eqs. (8) become small.

In the limit B2 = 0 the equations (8) have either a
finite amplitude solution Al(x, t) 6= 0 and Ar(x, t) = 0
or Al(x, t) = 0 and Ar(x, t) 6= 0, i.e. the two possible
counter propagating waves compete and only one of the
two survives.

The localized coefficients B2(x) and B∗
2(x) cause local

coupling between Al(x, t) and Ar(x, t) and have a simi-
lar effect as reflections at x̄l and x̄r, respectively. In the
case of steep control parameter drops and therefore suf-
ficiently large magnitudes of B2, this resonance induced

coupling leads to the interesting spatio-temporal scenar-
ios shown in this work.

III. NONLINEAR WAVE PATTERNS
BETWEEN CONTROL PARAMETER DROPS

During the following exploration of the effects of con-
trol parameter drops on traveling waves we vary espe-
cially the drop width δ and the TW group velocity vg via
the parameter f . The other parameters are fixed: b = 0,
c = 0.5, q0 = 2π/λ0 = 1, β = 0.4 and M = 0.5, i. e.
εm = 0.1. The length of the subdomain with a supercriti-
cal control parameter is Ls = x̄r−x̄l ≈ 40·2π = 40λ0 and
the length of the whole simulated system is Lw = 120λ0.
The initial condition in the following simulations is al-
ways a right moving wave ∝ exp(q0x− ω̃t) with a small
amplitude.

A. Traveling waves

For a width δ = λ0 of the control-parameter drop and
rather small values of the group velocity vg = 2fq0 with
f = 0.2 we find the scenario shown in Fig. 2 (a). Herein
the right traveling wave nearly covers the whole subdo-
main [x̄l, x̄r] forming a so-called filled state [75]. Increas-
ing the group velocity to f = 0.6 leads to a shrinking of
the TW domain. This so-called confined state is shown
in Fig. 2(b).

xl xr

x

tim
e

xl xr

x

(a) (b)

FIG. 2. The time evolution of the real part Re(u(x, t)) of the
traveling wave solution of Eq. (1) is shown for a drop width
δ/λ0 = 1 and the parameter value f = 0.2 in (a) and f = 0.6
in (b). Obviously the beginning of the finite amplitude range
of RTW shifts to the right when increasing the group velocity.

Even if the solutions shown in Fig. 2 resemble pure
right traveling waves, they also include contributions of
a left TW with a much smaller magnitude. To depict
this, we separate the left and right moving contributions
to the full solution Re(u(x, t)). This gives access to the
spatially varying envelopes

ACSH
r,l (x) = e−i(±q0x+ωt)u(x, t) , (10)

which are the amplitudes of the right and left TW that
constitute Re(u(x, t)). Fig. 3 shows the modulus of these
spatially varying envelopes for the two different values
f = 0.2 and f = 0.6. Part (a) in Fig. 3 thereby confirms



4

xl xr
x

0.0

0.1

0.2

0.3

|A
SH r

|

xl xr
x

0

1

2

3

|A
SH l

|

(a) (b) x10−6

FIG. 3. Part (a) shows |ASH
r | the dominant RTW contribu-

tion to the whole solutions Re(u(x, t)) in in Fig. 2 for the same
values f = 0.2 (dashed line) and f = 0.6 (solid line). Part (b)
shows |ASH

l | of reflected left traveling wave contribution for
f = 0.2 (dashed line) and f = 0.6 (solid line), respectively.

the expectations gained from looking at the space-time
diagrams in Fig. 2: The amplitude of the right mov-
ing TW is dominant and their left flank shifts to the
right with increasing group velocity. However, part (b)
in Fig. 3 reveals that in both cases a left TW of a small
magnitude occurs near the right control parameter drop
at x = xr. For f = 0.2 this is also the case at the left
control parameter drop, while this is no longer true for
f = 0.6.

The emergence of a finite amplitude left moving TW
is at first glance rather surprising, since the starting con-
dition is Ar 6= 0, Al = 0, i.e. a right moving TW. This
right moving TW - at least in extended systems - sup-
presses any left moving waves via nonlinear competition.
Looking at the amplitude equations (8), the left TW is
excited via the local contribution B2(x)Ar in the dynam-
ical equation (8b). This implies that Al only becomes fi-
nite where both Ar and B2(x) are finite. The coefficient
B2(x) thereby is finite in the vicinity of x = x̄l or x = x̄r
for a small width of control parameter drops δ = λ0.

For such δ and f = 0.2 also Ar is finite at both control
parameter drops xl and xr. This means at both control
parameter drops that the right moving wave induces
a left moving one (see Fig. 3(b)). This is a difference
to ’regular’ reflection with the boundary condition
Ar, Al = 0 at xl,r in Ref. [75]. In the case of control
parameter drops considered in this work, the right TW
is already finite at xl, cf. dashed line in Fig. 3(a). There-
fore, the resonant contribution B∗

2(x)Ar(x) in Eq. (8b)
can already excite a left TW at xl. For f = 0.6 the
amplitude of Ar at x = xl and therefore also no left TW
is exited via Bl

2. Fig. 4 shows the maximum amplitude
of the resonance induced left moving wave at x = xr as
a function of the steepness of the control parameter drop
δ. Since the local resonance contribution B2 decreases
with increasing drop width δ, also the magnitude of the
resonance induced left TW does. Thereby the group
velocity only has a minor impact on the amplitude of the
resonance induced left moving wave. Fig. 5 shows the
relevance of B2(x) in the scope of a amplitude equation.
This figure compares the solutions of the full system to
the amplitude equation neglecting the contribution B2
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0 2π 4π 6π
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10-10

f=0.2 f=0.6

FIG. 4. The maximal value of the spatially varying modu-
lus |ASH

l (x)| of the reflection induced left traveling wave de-
creases as function of the drop width δ as shown for f = 0.2
and f = 0.6.
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x
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0.2
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(b) B2 (x)≠0

amplitude equation complex SH

FIG. 5. The envelope |ASH
r | (dashed) of the RTW solution of

CSH model (1) is compared with |Ar| obtained by simulations
of Eqs. (8) for f = 0.6 and δ/λ0 = 1. In (a) the nonadiabatic
contribution B2(x) to Eqs. (8) was neglected, but taken into
account in part (b). The inclusion of B2(x) leads to a much
better agreement between the solution of CSH model and the
coupled amplitude equations in Eq. (8). Most important, if
B2(x) is neglected the reflection of Ar and the excitation of
Al vanishes, i.e. the two equations (8) decouple.

in part (a) and taking it into account in part (b). Taking
B2(x) into account leads to a much better agreement
between the CSH equation and its amplitude equation.
This means that the local resonance contribution B2(x)
is crucial for the resulting pattern.

The dependence of the wave pattern on the group ve-
locity can be understood as follows: In the case of finite
values of the group velocity and a supercritical control
parameter, small local perturbations evolve into nonlin-
ear wave patterns in a frame comoving with the pattern.
In our case, the initial condition around xl is a right
TW. For small group velocity this wave pattern is only
slightly transported and the local growth of the pattern
can outweigh its transport away from xl, i. e. the pattern
fills the whole area in the case of a supercritical control
parameter. Increasing the group velocity a perturbation
around xl is transported faster away to the right and than
the pattern is growing locally, i.e. the pattern grows only
in the comoving frame . This means a larger group ve-
locity shifts the pattern to the right, leading to confined
nonlinear states as indicated in Fig. 2.(b)
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B. Patterns for large group velocities

In extended systems for the CSH model the convective
instability occurs in the range f & 0.62 for ε = 0.1. In
this case and for smooth boundaries (or large values of
δ) we observe no traveling waves anymore in the range
[xl, xr] . Surprisingly crossing the boarder to convective
instability does not cause the pattern to vanish in the
presence of a rather steep control parameter drop. In-
stead it first leads to time-dependent amplitudes shown
in Fig. 6. Even if Ar is dominant in that case we also
see a non vanishing left TW. Moreover, the amplitudes
now are time dependent. While Al rises and decays com-
pletely, the tail of the right moving wave breathes back
and forth. According to a similar phenomenon described
in Ref. [75] we call this a blinking state. Raising f and

xl xr

am
p
li

tu
d
es

(t
)

x

|A
SH
l | |A

SH
r |

FIG. 6. A so-called blinking state with a time-dependent
modulus |ASH

r (x, t)| of the right traveling and that of the left
traveling wave |ASH

l (x, t)| is shown for f = 0.7 > fc.
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e
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itu
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s
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FIG. 7. Part (a) shows the real part of Re(u(x, t)) for a rather
large group velocity, i. e. f = 0.8 > fc, with a localized RTW
near xr and a localized LTW near xl. Part (b) shows the cor-
responding localized modulus |ASH

r | (|ASH
l |) of the localized

RTW (LTW).

therefore vg even further, this leads to a return of sta-
tionary amplitudes, but now both left and right moving
waves coexist as indicated in Fig. 7. The right moving
wave is still located at the right part of the supercritical
region whereby the left moving wave is on the left. We
call this a counter-propagating wave state.

Note that the relative amplitudes of the two counter
propagating waves do not have to be equal. They can be
tuned by adjusting the group velocity from |Ar| > |Al|
to the opposite case.
Both blinking and counter propagating wave states can
be qualitatively understood by the interplay of convec-
tive instability and resonance induced reflection. In the
range where these states appear, the group velocity is
very high. This means initial right moving TW is shifted
to the right half of the overcritical range [xl, xr]. At the
right control parameter drop xr this right moving wave
induces a left moving wave via resonance effects (see pre-
vious section). This resonance induced left moving wave
now is also transported with the group velocity. Thereby
the left moving wave gets advected into the left half of
the overcritical region. There the amplitude of the right
moving wave is small, i.e. there is no competing right
moving wave that suppresses the left moving one. In
contrast to confined states the left moving wave can now
freely grow in the neighborhood of the left control pa-
rameter drop. This results in a pattern with amplitudes
of both left and right moving waves.

C. Phase diagram in the δ − vg plane

The blinking and the counter propagating wave states
appear via an interplay of the resonance induced reflec-
tion of an incoming wave at the control parameter drop
on the one hand and the convective instability in a finite
system on the other. Since the coefficient B2, that cap-
tures the reflection effect in the scope of an amplitude
equation, depends on the steepness of the control param-
eter drop, also the drop width δ is a crucial parameter
for those states.

For a more quantitative view the different scenarios are
depicted in a phase diagram in the δ − f -plane Fig. 8.

This figure contains a border in the range f ∈
[0.6; 0.65] and independent of δ. This range inclues the
boarder separating absolute instability for smaller f and
the convective instability for larger ones. This is still true
for larger values of δ > δc ≈ 3.3π, i.e. for adiabatically
varying control parameters. But for smaller values of δ
and accordingly sharper changes of the control parameter
the resonance due to the non-adiabatic contributions to
the control parameter drop come into play. In this case
also time dependent blinking states and counter propa-
gating waves occur. The parameter region where these
new states exist clearly depends on δ. Decreasing the
value of δ lead to a larger region of both blinking and
counter propagating wave states. Raising δ seems first
to let the blinking states vanish before at δ > δc also the
counter propagating wave states no longer occur.
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FIG. 8. The different nonlinear wave states shown in previous
figures are found besides the basic state u = 0 (triangles) in
the following ranges in the δ-f -plane: Filled or confined trav-
eling wave states (non-filled diamonds), blinking states (filled
circles) and counter propagating wave states (grey diamonds).

IV. DISCUSSION AND CONCLUSION

We investigated the behavior of traveling wave pat-
terns within the complex Swift-Hohenberg (CSH) model
and generic amplitude equations in one spatial dimen-
sion. We thereby regard a control parameter that is su-
percritical only in a finite subdomain. At the borders of
the subdomain the control parameter drops from super-
to subcritical values without imposing boundary condi-
tions for the involved fields. We show, that traveling
waves are ’reflected’ at steep non-adiabatically varying
control parameter drops due to local resonant couplings.

Depending on the value of the control parameter in
the supercritical range and the system length, one finds
the following scenario for a broad range of parameters.
At a low group velocity vg one finds at first traveling
waves filling the whole finite subdomain. Raising the
group velocity leads to a vg-range with confined travel-
ing wave states. Increasing vg further, so-called blinking
states occur. These are composed of left traveling waves
localized in the left part and right traveling waves local-
ized in the right part of the subdomain (or vice versa)
whereby the width of both is breathing. At even larger
values of vg the interaction between the localized left and

right traveling waves becomes weaker and one finds a
coexistence between a left traveling wave localized near
left end of the subdomain and a right traveling waves
localized near the right end (or vice versa). A key to
understand these phenomena is the resonant interaction
of counter-propagating traveling waves that occurs for
sufficiently steep control parameter variations near the
ends the supercritical subdomain. A Fourier represen-
tation of sufficiently strong control parameter variation
include local contributions with twice the wavenumber of
the TW patterns. Such local 2:1 resonances induce a lo-
cal coupling between left and right traveling waves near
the domain ends that leads to reflection-like behavior of
traveling waves. The resulting nonlinear wave scenarios
behave similar as in the case of boundary conditions for
the wave field as described in Refs. [74, 75]. However,
here traveling wave ’reflection’ decays and vanishes for a
smooth and adiabatically varying (on the length scale of
the wavelength of traveling waves) control parameter.

The results obtained for traveling waves within the
CSH model and the generic coupled Ginzburg-Landau
equations in the case of spatial variations of the control
parameter are also expected for traveling waves in other
systems such as for reaction-diffusion models, Min pro-
tein patterns [92] or chemical reactions [78, 89, 99, 100].
Even though traveling waves bifurcate in such systems
from a more complex basic state, due to symmetry rea-
sons ocalized 2 : 1 resonances between traveling waves
and the local spatial control parameter variation will oc-
cur as well. Therefore reflection-like effects of traveling
wave near control parameter drops as described in this
work are also be expected in such systems. A specific
example are experiments on Min-protein patterns on ex-
tended membranes, which were only reactive in subdo-
mains of the substrate [92, 93]. In this way, the traveling
waves are restricted to the range above the functionalized
finite subdomain without any imposed lateral boundary
conditions.

It is an interesting question whether in-vitro experi-
ments with Min proteins allow for a ’tuning’ of the group
velocity such that one also observes confined or blinking
states. If this is the case one can at this point only spec-
ulate for their biological function of such local traveling
wave states.
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Demixing phenomena in active, nonequilibrium systems
currently attract great attention. Examples include cell polar-
ization [1–12], chemotactically communicating cells [13–17],
self-propelled particles [18–21], active matter models [22],
mixtures of particles with different mobilities [23–26], models
of ion-channel densities [27], or mussels in ecology [28]. All
of these examples have three properties in common: First,
they resemble classic equilibrium phase separation. Second,
in contrast to classic phase separation, these are nonequilib-
rium transitions. Third, they are all subject to conservation
constraints. Since these demixing phenomena take place in
nonequilibrium systems, we call them active phase separa-
tion. Their (local) driving mechanisms are as different as
the systems themselves. But do these systems nevertheless
share fundamental properties described by a generic model?
Here we provide a universal framework for the cross-system
characteristics of a class of active phase separation phenomena.

A conceptual parallel to this idea are self-organized patterns
in nature. Stripe, hexagonal, or traveling wave patterns are
driven by mechanisms that are also as diverse as the systems
in which they form [29–34]. Nevertheless, periodic patterns
in these different nonequilibrium systems share well-known
generic properties [33,34]. They are covered by unconserved
order-parameter fields that describe the slowly varying am-
plitude(s) [envelope(s)]. Even though stripe patterns occur
in very different systems, the envelope obeys the same fun-
damental (nonlinear) Ginzburg-Landau equation [33,34]. It
can be derived from basic equations and provides the key
to understanding the generic properties of stripe patterns
[30,34–36].

In this work, we formulate a similar approach for active
phase separation in nonequilibrium systems. We present a
reduction scheme generalized to conserved order parame-
ters. At leading order, we thereby obtain the Cahn-Hilliard
model [37,38] as the generic model for active phase separation

*Corresponding author: walter.zimmermann@uni-bayreuth.de

in nonequilibrium systems. So far, it has typically been used to
model liquid-liquid demixing in thermal equilibrium [37,38].
However, we show here that it also describes the system-
spanning properties of phase separation in nonequilibrium.
Thus, we manage to capture the essence of active phase
separation in very different systems in one universal equation.
At the same time we expose the underlying similarities between
phase separation in and out of equilibrium. The reduction
scheme we present here provides a direct mathematical link
between the Cahn-Hilliard (CH) model and system-specific
models. It also provides the criteria to identify candidates for
this class of active phase separation. Our approach is explicitly
demonstrated for two representative examples from living
matter: a continuum model for cell polarization and a model
for chemotactic cell communities.

Cell polarization is central to processes as diverse as
cell motility, differentiation, and cell division [1–10]. The
polarized cell has two distinct regions similar to the two
phases of a separated liquid-liquid mixture. However, cell
polarization in living systems is a nonequilibrium phenomenon
driven by dissipative processes. The molecules that trigger
cell polarization are conserved on the timescales of the self-
organization. Models for cell polarization usually involve the
nonlinear dynamics of several coupled concentration fields
for regulating molecules (see, e.g., [4]). However, minimal
models with only two concentration fields for the membrane-
cytosol exchange already cover essential properties [5–10].
One concentration field ũ(r, t ) thereby represents molecules
bound to the membrane. The other concentration field ṽ(r, t )
describes molecules in the cytosol. Here, we use

f̃ (ũ, ṽ) = −bũ + (ũ + ṽ)2 − (ũ + ṽ)3 (1)

for the membrane to cytosol exchange in the one-dimensional
equations for the fields ũ and ṽ:

∂t ũ = Du∂
2
x ũ + f̃ (ũ, ṽ), (2a)

∂t ṽ = Dv∂
2
x ṽ − f̃ (ũ, ṽ) (model P ). (2b)

2470-0045/2018/98(2)/020603(5) 020603-1 ©2018 American Physical Society
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Both fields are coupled via the conservation condition

M = 1

L

∫ L

0
[ũ(x) + ṽ(x)]dx. (3)

Another variant of a nonequilibrium phase separation process
is clustering of chemotactically communicating cells. They
play, for instance, a central role on the route to multicellular
fruiting bodies [39]. Here the number of cells is conserved on
the timescale of the clustering, but the chemical density field
for the cell-cell communication is not [13–17]. We describe a
system of chemotactically communicating cells by an extended
Keller-Segel model [13–16] with cell density ρ̃(r, t ) and signal
molecule density c̃(r, t ):

∂t ρ̃ = ∂2
x ρ̃ − s∂x

(
ρ̃

1 + βρ̃
∂x c̃

)
, (4a)

∂t c̃ = Dc∂
2
x c̃ + ρ̃ − c̃ (model C). (4b)

Model P in Eqs. (1) and model C in Eqs. (4) have spatially
homogeneous solutions uh, vh or ρh, ch, respectively. These
become unstable beyond critical values of the respective con-
trol parameters Dv and s. Immediately above these thresholds,
a generic equation can in both cases describe the resulting
active phase separation. In the following steps we develop this
equation for the conserved order-parameter field.

For both models, we separate the inhomogeneous parts
from the basic state, writing ũ = uh + u(x, t ), etc. We first
consider the instability of the homogeneous states with respect
to small perturbations. The linear equations in u, v are then
solved by the ansatz u, v = ū, v̄ exp(σ t + iqx) (or for ρ

and c, respectively). We consider the case when one of two
eigenvalues σ1,2 is always negative close to the onset of phase
separation. The other eigenvalue, expanded with respect to
powers of q2, is of the form

σ = G2q
2 − G4q

4 + O(q6) (5)

with G4 > 0. The leading order coefficients G
(P )
2 or G

(C)
2

include the control parameters Dv and s for models P and
C, respectively. The homogeneous solutions become linearly
unstable for G2 > 0. G2 = 0 thus defines the critical values of
the control parameters:

Dc
v = Dufv/fu, sc = (ρ0h)−1, (6)

where fu,v = ∂u,vf and h = (1 + βρ0)−1. As a measure for
the distance from the onset of phase separation, we choose the
dimensionless control parameter ε, where

Dv = Dc
v (1 + ε), s = sc(1 + ε). (7)

Next, we consider the basic equations [cf. Eqs. (2) and (4)] in
the range of small ε, i.e., G2 ∝ ε. With G4 = O(1) the growth
rate σ becomes positive in a range of small q2 ∝ ε and is of the
order σ ∝ ε2. Therefore, we introduce the “slow” spatial scale
X = √

εx and the timescale T = ε2t , which is slower than
for periodic patterns [34]. The nonlinear analysis demands the
introduction of an additional slow timescale, T3 = ε3/2t [40].
This leads to the operator replacements

∂x → √
ε∂X, ∂t → ε3/2∂T3 + ε2∂T . (8)

In compact matrix form, Eqs. (2) and (4) are

∂tw = Lw + N, (9)

with the respective vectors w = (u, v) and w = (ρ, c). The
right-hand side includes a linear part Lw and the nonlinear
part N. For both models we expand w in orders of ε1/2:

w = ε1/2w1 + εw2 + ε3/2w3 + O(ε2), (10)

leading to

L = L0 + (εL1 + ε2L2)∂2
X + O(ε3), (11)

N = εN2 + ε3/2N3 + ε2N4 + ε5/2N5 + O(ε3). (12)

Inserting the new scalings and expansions into Eq. (9) requires
a sorting of the basic equations up to two orders higher in ε1/2

than for common spatial patterns [34]:

ε1/2 : L0w1 = 0, (13a)

ε : L0w2 = −N2, (13b)

ε3/2 : L0w3 = −L1∂
2
Xw1 − N3, (13c)

ε2 : L0w4 = ∂T3 w1 − L1∂
2
Xw2 − N4, (13d)

ε5/2 : L0w5 = ∂T3 w2 + ∂T w1 − L1∂
2
Xw3

− L2∂
2
Xw1 − N5. (13e)

For model P , we find at order ε1/2 [41]

w1 = Ã(X, T )

(
fv

−fu

)
. (14)

Note that in contrast to the Ginzburg-Landau equation for
stripes, Ã(X, T ) in our case is not the envelope of an underyling
small-scale structure. An iterative solution of the hierarchy,
Eqs. (13), leads to a dynamical equation for Ã via Fredholm
alternatives at orders ε2 and ε5/2 [34]. After returning to
the original coordinates x and t , and rescaling the amplitude
A = √

εÃ, it takes the following form:

∂tA = −∂2
x

[
α1εA + α2∂

2
xA − α3A

2 − α4A
3
]
. (15)

This is the Cahn-Hilliard model in one dimension [37] with
a quadratic nonlinearity ∝A2 (where α1, α2, α4 > 0). It cor-
responds to nonsymmetric mixtures of two liquids at thermal
equilibrium. Equation (15) covers the approximate dispersion
relation of the full model in Eq. (5) and nonlinearities up to third
order inA. The derivation of the CH equation via the introduced
reduction scheme automatically provides a mathematical link
to the model for cell polarization in Eqs. (2). That is, the
coefficients αi are expressed by the parameters of the full
model:

α1 = Dufv/b, α2 = D2
ufv/(bfu), (16a)

α3 = Dub(3M − 1)/fu, α4 = Dub
2/fu, (16b)

with fu = −3M2 + 2M − b and fv = −3M2 + 2M .
By application of the reduction scheme, the chemotaxis

model C reduces to a similar equation for the density variation
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FIG. 1. Steady-state profiles A(x ) in the symmetric case (M =
1/3): Comparison of model P , Eqs. (2) (solid lines), to the corre-
sponding solutions of the reduced CH model, Eq. (15) (dashed lines),
for two values of the control parameter ε = 0.01, 0.04.

ρ, but with different coefficients [41]:

∂tρ = −∂2
x

[
ερ + Dc∂

2
xρ + 1

2 sch
2ρ2 − 1

3 scβh3ρ3
]
. (17)

Note that the chemical signal c follows the cell density
adiabatically.

The reduced models, Eqs. (15) and (17), capture the dynam-
ics of the respective slow mode of phase separation [34]. Both
CH models follow potential dynamics [38] even though the
full Eqs. (2) and (4) do not. These qualities are a direct parallel
to stripe patterns and their representation via the universal
Ginzburg-Landau equation [30,34–36]. Thus, similar to the
amplitude equation for stripes, we expect the CH model to play
a generic role for active phase separation. Note that the reduced
CH models, Eqs. (15) and (17), describe the behavior of a
conserved order parameter—a reflection of the conservation
constraints placed upon the original models P and C. The
reduced models certainly cover the behavior of the full system
near the (supercritical or weakly subcritical) bifurcation point.
But in which parameter range further from the onset of phase
separation does this agreement prevail? We will explore this
by comparison of stationary solutions for the cell polarization
model [cf. Eqs. (2)] and its approximation by the CH model in
Eq. (15). We first study the special case M = 1/3, i.e., α3 = 0
and ± symmetry of Eq. (15). This corresponds to the classic
CH model [37]. For this case we compare in Fig. 1 steady-state
solutions of the full model P to those of the related CH model
for two different control parameter values ε (see Supplemental
Material [41] for details on simulation methods). Due to the
± symmetry in Eq. (15), the maximum and minimum of
these profiles have the same absolute value. According to
the conservation condition, the two phases with increased or
decreased concentration each occupy half the system. With
respect to both properties, the CH model covers the behavior
of the full model. With increasing ε, the plateau values of
the steady-state profiles increase and the coherence length
decreases. Consequently, the profiles in Fig. 1 evolve toward
a more steplike form. Note that in Figs. 1–5, the amplitude for
the full model is calculated from the field v. The amplitude
for u resembles the amplitude A from Eq. (15) even more
closely.

FIG. 2. Plateau values of the steady-state solutions in the symmet-
ric case (M = 1/3): Comparison of model P , Eqs. (2) (solid line), to
the corresponding values of the reduced CH model, Eq. (15) (dashed
line), as a function of the control parameter ε.

Figure 2 shows the plateau values of the steady-state
solutions as a function of ε. It thereby illustrates the validity
range of the CH model—including the perfect agreement at
onset, and the expected increasing deviations with increasing
ε. Figure 2 also illustrates that the transition to active phase
separation in the symmetric case occurs in a supercritical
bifurcation. Note that the finite system size shifts the onset
of phase separation to a positive value εc = α2π

2/(L2α1)
(=0.00296 for the chosen parameters).

For M �= 1/3, the quadratic term in Eq. (15) is finite. This
leads to asymmetric phase separation, where the concentration
deviates asymmetrically from its mean value. An example of
this scenario is shown in Fig. 3 for M = 0.3. This corresponds
to a small asymmetry parameter α3/

√
α4 � 0.055. In this

case, Eq. (15) captures the behavior of the full model very
well. A comparison between the CH equation and the full
model as a function of ε is presented in Fig. 4. In the
presence of A2, the bifurcation from the homogeneous state

FIG. 3. Similar as in Fig. 1, but in the asymmetric case (M = 0.3),
i.e., with theA2 contribution in Eq. (15). Steady-state profiles of model
P , Eqs. (2) (solid lines), compared to the corresponding solutions of
the reduced CH model, Eq. (15) (dashed lines), for two values of the
control parameter ε = −0.03, 0.04.
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FIG. 4. Similar as in Fig. 2, but in the asymmetric case (M =
0.3). Upper and modulus of the lower plateau values of model P ,
Eqs. (2) (solid lines), compared to the corresponding values of the
reduced CH model, Eq. (15) (dashed lines), as a function of the control
parameter ε.

to phase separation is subcritical. That is, we find a jump
from A = 0 to finite plateau values. Moreover, we observe the
phase-separated state already for subcritical control parameter
values. If the asymmetry parameter α3/

√
α4 is of O(

√
ε), both

nonlinear terms in Eq. (15) are of the same order. As Fig. 5
shows, the reduced CH model is a good representation of the
full model up to these moderate asymmetries. For stronger
asymmetries, however, the full model may deviate strongly
from its approximation [41]. That is, the full model may exhibit
either for strong asymmetries or for large values of ε its own
nongeneric “dialect” of active phase separation.

In this work, we identify a generic, system-spanning be-
havior for a number of very different demixing phenomena
in active and living systems—a class of active phase sep-
aration. We have shown that this nonequilibrium transition
is at leading order described by the CH equation [37,38]—
the same equation that usually describes phase separation at
thermal equilibrium. All models in this class have three central

FIG. 5. Upper and modulus of the lower plateau values of the
full (dashed lines) vs reduced model (solid lines) as a function of the
asymmetry parameter M at a fixed control parameter value ε = 0.01.

properties in common: First, the slow mode growing out of a
homogeneous basic state is conserved. Second, the slow mode
follows the dispersion relation in Eq. (5). Third, nonlinearities
up to third order in the order-parameter fields are sufficient near
onset of active phase separation. These conditions ensure the
correct signs of the coefficients αi in the CH equation, Eq. (15).
Furthermore, we introduced a perturbative reduction scheme
that allows a direct derivation of the CH equation from system-
specific nonequilibrium models. With this mathematical link,
we can also determine the system-specific values of the coef-
ficients in the CH model. This even allows for a quantitative
comparison between the CH model and the original model
equations. Note that the derived CH model follows potential
dynamics [38], even though the system-specific equations—
as the starting point of the reduction—are nonpotential
systems.

We verified our generic approach by applying it explicitly to
two active matter systems: a minimal model of cell polarization
and a model for clustering in chemotactic cell communities.
We found a convincing validity range of the generic CH
equation as a representation of a cell polarization model
near onset. Beyond the system-specific validity range of the
CH model further interesting individual “dialects” of active
phase separation may come into play. These include, for
instance, the effects of higher-order nonlinearities covered by
the full system-specific models. The so-called “active model
B,” for example, was recently introduced for modeling the
nonequilibrium phenomenon “motility-induced phase sepa-
ration’ (MIPS) by a single mean field [42,43]. It includes
the higher-order nonlinearity �[∇A(r)]2 ∝ ε3. This additional
contribution renders the active model B nonintegrable [42] (see
Supplemental Material [41] for a more detailed discussion of
integrability with higher-order nonlinearities). However, this
higher-order contribution becomes negligible near the onset of
active phase separation, i.e., the validity range of the generic
CH model. For some systems, fluctuations may also become
relevant—especially for the coarsening dynamics in low spatial
dimensions. This is similar to coarsening in equilibrium phase
separation [38].

Our work also suggests the universality of phase separation
processes—whether in or out of equilibrium. Their shared
characteristics at leading order are reflected in the joint rep-
resentation by the CH model. Our insights justify the recent
usage of the CH equation as a phenomenological model for the
clustering phenomenon observed for mussels [28] and further
nonequilibrium demixing phenomena.

We expect our generic reduction to the CH model to work
for further systems showing active phase separation. These
include active colloids [18,21,43], active matter systems [22],
or ion channels [27]. We anticipate these systems to also
show the fingerprints of the class of active phase separation
we introduced here for systems with a conserved order pa-
rameter. In this sense, our results are a conceptual parallel
to the Ginzburg-Landau equation for an unconserved order
parameter [30,34–36], which captures the essence of nonequi-
librium stripe patterns near onset and also follows potential
dynamics.

Our generic approach is a starting point for further inves-
tigations of nonequilibrium phenomena in systems with con-
served quantities. Possible generalizations are order-parameter
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models that also cover systems with more general dispersion
relations than in Eq. (5) (see, e.g., Refs. [44,45]) or oscillatory
phase separation phenomena.
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Abstract

A number of mathematical models have been suggested to describe cell polarization in

eukaryotic cells. One class of models takes into account that certain proteins are conserved

on the time scale of cell polarization and may switch between a fast and a slow diffusing

state. We raise the question whether models sharing this design feature can be condensed

into one system-spanning model. We show exemplarily for the mass-conserved reaction-

diffusion model of Otsuji et al. (Otsuji M et al. (2007) PLoS Comput Biol 3(6):e108) that cell

polarization can be classified as active phase separation. This includes a fundamental con-

nection between a number of non-equilibrium demixing phenomena such as cell polarization

to phase separation. As shown recently, generic properties of active phase separation close

to its onset are described by the Cahn-Hilliard model. By a systematic perturbation analysis

we directly map the basic cell polarization model to the universal Cahn-Hilliard model. Com-

paring the numerical solutions of the polarization model and the Cahn-Hilliard equation also

provides the parameter range where the basic cell polarization model behaves like other

systems showing active phase separation. Polarization models of the active phase separa-

tion type cover essential properties of cell polarization, e.g. the adaptability of cell polarity

to the length of growing cells. Our approach highlights how basic principles of pattern forma-

tion theory allow the identification of common basic properties in different models for cell

polarization.

Introduction

Cell polarization is one of many fascinating self-organized patterns in living systems that has

simultaneously an important functionality [1–8]. During the polarization of living cells certain

proteins are enriched in the front and back half of the cell [9–22]. This breaks the symmetry of

the cell and defines a unique axis. Polarization of cells is therefore crucial for cell locomotion,

the orientation of cell divisions in tissues and the formation of organized multicellular struc-

tures [9]. But since cell polarization is this crucial for the reliability of biological processes,

we address the question whether these different kinds of polarization follow a similar and

robust syntax (at least in certain parameter ranges). All examples differ in the participating

proteins, the type of interactions and their trigger mechanisms. However, they also have sev-

eral features in common. Cell polarization occurs on time scales of minutes. On these time
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scales degradation or de-novo production of proteins is negligible. Therefore the total amount

of the respective proteins is conserved inside the cell [13–20, 22]. Simulations of numerous

different mathematical models of such mass-conserved systems often provide similar results,

e.g. showing a transition to a globally similar polarization state. Finally, cell polarization with

mass-conserved reaction-diffusion models resembles very much a demixing process. However,

all cell polarization processes involve the consumption of some kind of mostly chemical energy

to perform directed movement, rendering them non-equilibrium phenomena. For this class of

non-equilibrium transitions the notion active phase separation was coined recently [23]. This

class unites non-equilibrium demixing phenomena that are induced by so-called type II insta-

bilities [3] and fulfill a global (mass) conservation constraint. Apart from cell polarization,

examples for active phase separation range from clustering of chemotactically communicating

cells [24–28], to self-propelled particles [29–33], patterning in active matter models [34], mix-

tures of particles with different models of ion-channel densities [35] or mussels in ecology

[36]. We showed in Ref. [23] that near onset of active phase separation the Cahn-Hilliard (CH)

model [37, 38] is the universal order parameter equation. We demonstrated a related perturba-

tive reduction scheme for two very elementary models. Here we show that mass-conserved

reaction diffusion systems with two involved fields belong to the class of systems showing

active phase separation. We thereby use the established model for cell polarization introduced

by Otsuji et al. [14] as a seminal example. We derive the universal CH equation directly from

the established cell polarization model by applying the perturbational expansion introduced

in Ref. [23], while also showing their applicability of in the general case. Since the reduction

method applies especially close to the onset of cell polarization, we compare the polarization

model with the reduced model in this neighborhood. We thereby consider both stationary

solutions as well as the dynamics of the cell polarization model and its reduction.

Considering cell polarization as a realization of a universal equation–at least close to its

onset—opens a new route to explain why cell polarization is often very similar across many

different systems. We thereby especially show and discuss how the dynamics of the Cahn-

Hilliard equation offers an explanation for similarities in mass-conserved reaction-diffusion

systems. Our results may therefore help to identify and understand collective and universal

features such as spontaneous polarization, adaptability to the cell length and robustness of the

polarization pattern.

Results and discussion

Cell polarization model

A class of models for cell polarization share the unifying feature of fast and slow diffusing

forms of the same type of signal molecules [14–18, 39]. These are for instance different forms

of GTPases: an active, membrane-bound and slowly diffusing form ~u, and an inactive and

fast diffusing counterpart ~v. The overall number of signal molecules with two different states is

conserved on the time scale of cell polarization. In this temporal regime the two states of signal

molecules are described by two coupled reaction-diffusion equations for ~u; ~v of the following

form:

@t~u ¼ Dur
2~u þ f ð~u; ~vÞ ; ð1Þ

@t~v ¼ Dvr
2~v � f ð~u; ~vÞ : ð2Þ

The symmetrical reaction term f ð~u; ~vÞ with two different signs in both equations reflects

the overall conservation of the signal molecules.
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Here we exemplarily analyze the model of Otsuji et al. [14, 19], with the reaction term

f ð~u; ~vÞ ¼ a1 ~v �
~u þ ~v

ða2ð~u þ ~vÞ þ 1Þ
2

 !

: ð3Þ

Note we extend this analysis to arbitrary reaction terms f(u, v) in S1 Appendix. For simplic-

ity reasons we restrict ourselves to one spatial dimension for most parts of the work. In this

case the global conservation condition reads

N ¼
1

L

Z L

0

½~uðxÞ þ ~vðxÞ�dx : ð4Þ

The coupled equations in Eqs (1) and (2) have the homogeneous basic solution

uh ¼
a2N2ða2N þ 2Þ

ða2N þ 1Þ
2

; ð5Þ

vh ¼
N

ða2N þ 1Þ
2
: ð6Þ

Onset of cell polarization

We first separate the homogeneous parts uh and vh from the inhomogeneous parts u and v
with

~u ¼ uh þ u ; ð7Þ

~v ¼ vh þ v : ð8Þ

At first we assume small inhomogeneous perturbations |u|, |v|� uh, vh with respect to the

basic state. This allows for a linearization of the basic equations (Eqs (1) and (2)) with respect

to small perturbations u, v leading to two coupled equations:

@tu ¼ Du@
2

xuþ fuuþ fvv ; ð9Þ

@tv ¼ Dv@
2

xv � fuu � fvv ; ð10Þ

with

fu ¼ @uf
�
�
�
u¼uh ;v¼vh

¼
a1ða2N � 1Þ

ða2N þ 1Þ
3
; ð11Þ

fv ¼ @vf
�
�
�
u¼uh ;v¼vh

¼
a1a2Nða2

2
N2 þ 3a2N þ 4Þ

ða2N þ 1Þ
3

: ð12Þ

The two coupled equations in Eqs (9) and (10) are solved by

u; v ¼ �u; �v estþiqx : ð13Þ
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The two resulting linear equations for �u and �v have a solubility condition leading to a qua-

dratic polynomial for the growth rate σ:

s2 þ½ðDu þ DvÞq2 þ fv � fu�s

þDuDvq4 þ ðDufv � DvfuÞq2 ¼ 0 :
ð14Þ

For positive values of the parameter a1 in Eq (3) one has fv> fu. In this case an expansion of

the root σ+(q) up to the order q4 gives

sþ ¼ G2q2 � G4q4Oðq6Þ ; ð15Þ

with

G2 ¼
Dvfu � Dufv

fv � fu
; G4 ¼

ðDu � DvÞ
2fufv

ðfv � fuÞ
3

: ð16Þ

The growth rate σ+(q) becomes positive in a finite range of q, if G2 > 0. Choosing Dv as the

control parameter, the homogeneous state loses stability and G2 becomes positive for

Dv > Dc
v ¼ Du

fv
fu
: ð17Þ

This critical value Dc
v marks the onset of cell polarization. We introduce a small quantity ε

in order to parameterize the control parameter Dv near its critical value Dc
v:

Dv ¼ Dc
vð1þ εÞ : ð18Þ

At the critical point (ε = εc = 0) the maximum of the growth rate is at q = 0 (see Fig 1A).

Raising the control parameter ε shifts this maximum to finite values of q. For ε> 0 there is a

range [0 < |q|< qright] with a positive growth rate σ> 0 (see Fig 1B). In contrast to classical

Turing patterns, this range of positive growth rate extends down to q = 0, which is a signature

of the overall conservation of the two densities ~u and ~v. Fig 1 additionally shows a comparison

of the full dispersion relation (14) and its approximation up to order q4 in Eq (15).

Derivation of the generic Cahn-Hilliard model

The two concentration fields u(x, t) and v(x, t) are coupled by the conservation law in Eq (4).

We show that near the onset of cell polarization the dynamics of both fields can be described

Fig 1. Growth rate σ+ as a function of the wavenumber q. Comparison between the full solution in Eq (14) (solid line) and its

Taylor expansion up to the order q4 given by Eq (15) (dashed line) at the critical point ε = 0 (A) and slightly above ε = 0.1 (B) (for

a2 = 2).

https://doi.org/10.1371/journal.pone.0218328.g001
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by only one order parameter field. The dynamical equation for this field is the famous Cahn-

Hilliard (CH) model for demixing phenomena at and far from thermal equilibrium (see e.g.

[23] and references therein), as we derive in the following. Note, that this is in contrast to a

so-called Galerkin method made under the assumption of spatially periodic solutions of the

model of Otsuji et al, cf. [19], which we do not find in a wide parameter range around the

onset of cell polarization.

We introduce the vector fields w = (u, v) and N = (f(u, v), − f(u, v)) and rewrite the two cou-

pled Eqs (1) and (2) in terms of the two vector fields in a compact form:

@tw ¼ Lw þ N : ð19Þ

Considering again the growth rate in Eq (15), the upper limit of the q-range with positive σ
is qmax /

ffiffiffi
ε
p

. Therefore, the inhomogeneous parts u(x, t) and v(x, t), cf. Eqs (7) and (8), are

slowly varying functions in space. This suggests the introduction of a new spatial scale with

X ¼
ffiffiffi
ε
p

x and two slow time scales T = ε2t and T3 = ε3/2t. These scales lead to the following

replacements of the spatial and temporal derivatives:

@x !
ffiffiffi
ε
p

@X ; ð20Þ

@t ! ε3=2@T3
þ ε2@T : ð21Þ

Note that the introduction of two different time scales is necessary to fulfill the solvability

condition in the hierarchy of equations following below in Eqs (24), (25), (26), (27) and (28)

(see also supplement S1 Appendix for additional information). Here we consider the basic

equations (see Eqs (1) and (2)) in the range of small modulations u; v �
ffiffiffi
ε
p

of the average con-

centrations uh and vh. Accordingly we expand the field w with respect to the small parameter ε
as follows:

w ¼ ε1=2w1 þ εw2 þ ε
3=2w3 þ ε

2w4 þ ε
5=2w5 þ ::: ; ð22Þ

leading to

N ¼ εN2 þ ε
3=2N3 þ ε

2N4 þ ε
5=2N5 þ :::: ð23Þ

Inserting this expansion of the field w and the derivatives in Eqs (20) and (21) results in the

following ε-hierarchy of equations:

ε1=2 : L0w1 ¼ 0 ; ð24Þ

ε : L0w2 ¼ � N2 ; ð25Þ

ε3=2 : L0w3 ¼ � L1@
2

Xw1 � N3 ; ð26Þ

ε2 : L0w4 ¼ @T3
w1 � L1@

2

Xw2 � N4 ; ð27Þ

ε5=2 : L0w5 ¼ @T3
w2 þ @Tw1 � L1@

2

Xw3 � L2@
2

Xw1 � N5 : ð28Þ

Solving the eigenvalue equation in Oð
ffiffiffi
ε
p
Þ leads to

u1ðx; tÞ ¼ fv ~Aðx; tÞ ; v1ðx; tÞ ¼ � fu ~Aðx; tÞ : ð29Þ
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This means the two fields u1(x, t) and v1(x, t) are proportional to each other whereby the

eigenvector (fv, −fu)T of L0 is the proportionality factor. With this starting point the hierarchy

of Eqs (24), (25), (26), (27) and (28) is solved successively as described in more detail in the

supplemental part S1 Appendix. The solubility conditions at the orders ε2 and ε5/2 provide

expressions for @T3

~A and @T
~A. After reconstituting the original scalings x and t in Eqs (20) and

(21) via @t
~A ¼ @T3

~A þ @T
~A we obtain an equation for Aðx; tÞ ¼

ffiffiffi
ε
p

~A. This equation has the

form of the Cahn-Hilliard equation [37, 38, 40] with an additional quadratic term:

@tA ¼ � @
2

x½g1εAþ g2@
2

xA � g3A2 � g4A3� : ð30Þ

The parameters γi are determined in terms of the parameters of the starting model in Eqs

(1), (2) and (4) as follows:

g1 ¼
Dufv
a1

¼ Du
a2Nða2

2
N2 þ 3a2N þ 4Þ

ða2N þ 1Þ
3

; ð31Þ

g2 ¼
D2

ufv
a1fu
¼ D2

u
a2Nða2

2
N2 þ 3a2N þ 4Þ

a1ða2N � 1Þ
; ð32Þ

g3 ¼
Du

fu

a2
1
a2ða2N � 2Þ

ða2N þ 1Þ
4
¼ Du

a1a2ða2N � 2Þ

1 � a2
2
N2

; ð33Þ

g4 ¼
Du

fu

a2
2
a3

1
ð3 � a2NÞ

ða2N þ 1Þ
5
¼

Dua2
1
a2

2
ð3 � a2NÞ

ða2N þ 1Þða2
2
N2 � 1Þ

: ð34Þ

Among the coefficients, γ1 is always positive. To make the linear part of Eq (30) (considered

in Fourier space) capture the approximate dispersion relation given by Eq (15) γ2 has to be

positive, i.e. a2 N> 1. The nonlinear coefficient γ4 is positive in the range 1< a2 N< 3. In this

range the CH model has a cubic limitation term. If γ4 is negative there is no limiting nonlinear-

ity, i.e. the reduction is no longer valid and would require going to higher orders of ε [23]. In

this work we focus on the range of γ4 > 0 where cell polarization close to its onset belongs to

the universal class of active phase separation [23]. Within this range the coefficient γ3 changes

its sign at a2 N = 2. For γ3 = 0 cell polarization is symmetric close to its onset because the CH

model in Eq (30) has a ±A-symmetry in this case. In this instance the transition to cell polariza-

tion takes place continuously or supercritically in the language of pattern formation [2]. The

reduction of the basic model in Eqs (1) and (2) to the CH model thereby allows the important

distinction between the parameter ranges where cell polarization takes place continuously or

discontinuously. Eq (30) can also be represented by a variational derivative of a related func-

tional

@tA ¼
@

2

@x2

dF
dA

; ð35Þ

with

F ¼
Z

dx �
g1ε
2

A2 þ
g2

2
ð@xAÞ

2
þ
g3

3
A3 þ

g4

4
A4

� �
: ð36Þ

It is a surprising result that the order parameter field A(x, t) follows the potential dynamics

according to Eq (35), because the basic model in Eqs (1) and (2) cannot be derived from a

functional even in the range of small ε for which the CH model was derived. However, this
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phenomenon is not exclusive to cell polarization. The same relaxation dynamics are also found

in other demixing systems showing active phase separation [23]. Moreover, the envelope of

spatially periodic patterns in non-equilibrium systems, including spatially periodic Turing pat-

terns, also follow potential dynamics while the dissipative starting equations do not (see e.g. [2,

3] and references therein).

These relaxational dynamics of the solution A of Eq (30) are helpful for further analysis. For

instance, Eq (36) allows to estimate the magnitude of piecewise constant solutions with A 6¼ 0.

These correspond to the minimum of the functional in Eq (36) with respect to A. For further

details of related analytical considerations we refer to part S2 Appendix of the supplementary

information. The constant plateau values of opposite signs are

A� ¼
� g3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g2

3
þ 9εg1g4

p

3g4

: ð37Þ

In the symmetric case, γ3 = 0, the Cahn-Hilliard model in Eq (30) has a well known domain

wall solution in long systems [38, 40]:

AðxÞ ¼ F tanh
x
x0

� �

; ð38Þ

with x0 ¼

ffiffiffiffiffiffiffi
2g2

g1ε

r

¼

ffiffiffiffiffiffiffiffi
2Du

εfu

r

; F ¼ �
ffiffiffiffiffiffiffi
g1ε
g4

r

: ð39Þ

The coherence length ξ0 is a measure for the width of the domain wall, the transition range

between the positive and negative plateau values of the hyperbolic tangent. The expression

for ξ0 shows that in the context of cell polarization the width of the transition range depends

directly on the diffusion constant of membrane-bound state u and the distance from the onset

of cell polarization. This is an important insight found via the reduction to the CH model in

Eq (38).

Comparison of solutions of the basic and the Cahn-Hilliard model

In this section we determine numerically the steady state solutions of the basic equations for

cell polarization in Eqs (1) and (2) and the CH model in Eq (30) in a finite one-dimensional

domain of length L. Additional informations about the simulations can be found in the materi-

als and methods section. By comparing the steady state solutions of both equations we deter-

mine in which parameter range the solutions agree qualitatively or even quantitatively. We

focus our simulations on the parameter range with a positive coefficient γ4 > 0, where cell

polarization is limited by a cubic nonlinearity. In the following analysis we therefore keep the

parameters Du = 0.1, a1 = 3 and N = 1 fixed, while Dv and a2 will be varied.

Comparison of steady state solutions in the symmetric case γ3 = 0. For γ3 = 0 the

reduced CH model is ±A-symmetric. This is illustrated by the numerical solutions A(x) of the

CH model, in Fig 2A (solid lines) for the two control parameter values ε = 0.001, 0.01. Due to

the ±-symmetry the solutions of the CH model above the onset of cell polarization show a pla-

teau with increased and a plateau with decreased concentration, each covering exactly half of

the system. Increasing the control parameter ε leads to increased plateau values as well as

more step-like profiles. This trend is also indicated by the coherence length ξ0 in Eq (39),

which decreases with increasing ε. For ε = 0.001, the cell polarization in the full model is also

perfectly symmetric (see Fig 2A, dashed orange line). Additionally the approximation via the

CH model matches the results of the full model almost perfectly. Increasing ε to ε = 0.01 leads

On system-spanning demixing properties of cell polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0218328 June 21, 2019 7 / 16





to slightly asymmetric polarization in the full model, which can be identified by the off-center

shift of the zero-crossing as well as the different magnitude of the plateau values. Since the CH

model (for a2 = 2) is ±-symmetric irrespective of ε, the asymmetry in the full model leads to

slight deviations between the two.

This means, in the basic model the ±-symmetry is broken with an increasing distance ε
from the onset of cell polarization. For the derivation of the CH model only contributions up

to cubic order in u and v were taken into account. However, an expansion of the denominator

of the function f(u, v) includes also higher terms, such as u4, v4, which break the ±-symmetry

with increasing ε.

To quantify this symmetry-breaking effect and estimate a validity range of our reduction for

γ3 = 0, we also compare the plateau values as a function of ε in Fig 2B. Additionally, we approxi-

mate the plateau values analytically from the CH model assuming a two plateau solution as in

Eq (37). For small values of ε, the simulation results of the polarization and the reduced model

as well as the analytical solution match almost perfectly. For larger control parameter values,

the system-specific ‘dialects’ like the increasing asymmetry begin to play a role which leads to

deviations between the full model and the CH equation. Moreover, Fig 2 shows that the transi-

tion from the homogenous state to the phase-separated state is smooth, i.e. it occurs in a super-

critical bifurcation in the parameter range predicted by our perturbation expansion.

Comparison of steady state solutions in the asymmetric case γ3 6¼ 0. For γ3 6¼ 0 the

±-symmetry is already broken immediately at onset. Fig 3A therefore shows that the phase

with increased concentration takes a smaller fraction of the system than the phase with

decreased concentration or vice versa. For small control parameter values the full polarization

model and its corresponding CH equation are in good agreement. For larger values of ε the

approximation still provides the correct trends but with less predictive power. Comparing the

plateau values in Fig 3B and 3D quantifies this validity range. The deviations in the analytical

solution compared to the simulations in the range ε< 0 are due to the neglection of the inter-

face energy term in the functional that covers the spatial variations between the plateau values.

These become more and more relevant if the control parameter is decreased.

Fig 3D also reveals that the broken symmetry at threshold already changes the character of

the onset of cell polarization, i.e. for a2 6¼ 2 the bifurcation is no longer smooth. Instead the

Fig 2. Comparison of steady state solutions of the polarization model and its corresponding CH model in the symmetric case. (A) Steady state profiles for a2 = 2

and two values of ε = 0.001 and ε = 0.01 for the polarization model in Eqs (1) and (2) with AðxÞ ¼ ðvh � ~vðxÞÞ=fu (dashed lines) and for the solution A(x) of the CH

model in Eq (30) (solid lines). (B) Plateau values of the steady state profiles shown in (A) as function of ε for the basic polarization model (circles) and the CH model

(crosses). The solid line shows an analytical approximation for the plateau values in the CH model given by Eq (37).

https://doi.org/10.1371/journal.pone.0218328.g002
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transition of the homogenous basic states to polarization is subcritical (discontinuous). In this

case we observe a bistable region where both the polarized and the homogenous state are sta-

ble. This also implies a hysteretic behavior if we increase and decrease the control parameter:

Starting with a negative ε, the basic state A = 0 stays stable until ε = 0. For larger control

parameter values we end up in a polarized state. But starting in the polarized state and decreas-

ing the control parameter, the polarized state remains even in a range of negative values of ε.

Fig 3C shows a comparison of the polarization model and the corresponding CH equation

as a function of the asymmetry parameter a2 for fixed control parameter ε = 0.001. While for

small asymmetry the agreement is almost perfect, in case of more asymmetric polarization the

system specific ‘dialects’ come into play.

Comparison of dynamics. Apart from the stationary profiles considered in the previews

section, we also consider the temporal evolution of the polarization model and its correspond-

ing CH equation. Thereby we distinguish between two different scenarios depending on the

Fig 3. Comparison of steady state solutions of the polarization model and its corresponding CH model in the asymmetric case. (A) Steady state profiles for a2

N = 1.95 and two values of ε = 0.001 and ε = 0.01 for both the basic polarization model in Eqs (1) and (2) with AðxÞ ¼ ðvh � ~vðxÞÞ=fu (dashed lines) and the solution A
(x) of the CH model in Eq (30) (solid lines). (B), (D) Plateau values of the steady state profiles shown in (A) from simulations of the basic polarization model (purple

circles) and the reduced CH model (yellow crosses) as a function of ε. The yellow solid line is an analytical approximation for the plateau values of the CH model given

by Eq (37). (D) is a close-up around ε = 0 that shows the subcriticality of the bifurcation. (C) Plateau values of the steady state profiles for simulations of the

polarization model (purple circles) and the reduced CH model (yellow crosses) as a function of the asymmetry parameter a2. The yellow line depicts again an

approximation via Eq (37).

https://doi.org/10.1371/journal.pone.0218328.g003
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system size. To measure the system size we express the wavenumber qmax of the fastest growing

mode also in terms of the coherence length ξ0 (see Eq (39))

q2
max ¼

1

x
2

0

: ð40Þ

Note that the length scale ξ0 of the domain wall between the two polar states also determines

the preferred mode during onset of cell polarization. In the case of large system sizes L� 2π/|

qmax| we compare in Fig 4A the qualitative dynamics of both the polarization model and its

corresponding CH model for a fixed set of parameters in 2D. For a control parameter value

above the threshold of pattern formation, the homogenous basic state is unstable. This leads to

an initial patterned state whose wavelength is dominated by the fastest growing mode qmax.

But this patterned state is unstable towards perturbations with a larger wavelength, i.e. the sys-

tem undergoes a coarsening process. Fig 4A shows 2D snapshots of this coarsening process for

different times in a quadratic system of length L = 800. At every time step the snapshots of the

polarization and the CH model show striking similarities. The figure also depicts the visual

similarity between the polarization process modeled here and phase separation of e.g. a liquid-

liquid mixture [38]. For a quantitative comparison of the full model and the CH model we

compare the dominating wavelength over time. We determine the dominating wavelength (or

the cluster size in 2D) using the pair correlation function (see also Methods) on simulation

results in 2D. We consider 2D simulations instead of 1D as in the previous section due to the

scaling expected from the CH equation. The cluster size in this equation scales logarithmically

in 1D, i.e. a comparison is computationally very expensive. In 2D, the cluster size is expected

to scale with a power law, which is much more convenient. Fig 4B shows a comparison of the

dynamics of the polarization model and its corresponding CH model for the symmetric case

and ε = 0.01. The CH model captures the dynamics of the full model very well with deviations

under 5%. For small times the systems show an interplay between growth of the pattern and

the coarsening process which leads to a rather constant cluster size. When the growth process

of the amplitudes stops, the dynamics is dominated by coarsening. In this regime the dynamics

Fig 4. Comparison of the dynamics of the polarization model and its corresponding CH model. (A) 2D snapshots of the full model (upper row, purple) and the

corresponding CH model (bottom row, orange) for different times. The Cahn-Hilliard model captures the coarsening dynamics of the full model. (B) Cluster size as a

function of time for the polarization model (purple circles) and the corresponding CH model (orange crosses). The solid orange line shows the power law that is

expected as a long-term behavior. Parameters: a2 = 2, ε = 0.01.

https://doi.org/10.1371/journal.pone.0218328.g004
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of both the polarization and the CH model follow the power law/ t1
3. In the language of the

original work of Otsuji et al. [14] this coarsening dynamic in 2D corresponds to the observed

instability of multi-peak solutions towards a single peak in 1D. The parameters in the original

work correspond to a large value of ε� 1.8 and a strongly asymmetric cell polarization leading

to a more peak-like profile compared to the step-like profiles shown here (see Figs 2A and 3A).

Even if a quantitative comparison between the polarization model and the CH equation is no

longer valid in this parameter regime similarities in the qualitative dynamical behavior still

prevail: Initially a multi-peak solution develops with a wavenumber qmax. However this pattern

is unstable and evolves or coarsens into a single peak solution. Our analysis shows that this

behavior is no surprise for mass-conserved reaction-diffusion systems but instead generic in

systems that can be reduced to the CH equation. Nevertheless for biological cell polarization

reaching a polar state trough a coarsening process might be too slow. To therefore avoid a

coarsening dynamics nature has to tune the system parameters appropriately. If the system

length L� O(2π/|qm|), the short system length suppresses any coarsening. This means if the

system parameters are such that the width of the transition ξ0 is of the order of the system

length L, like the extension of a cell, we expect a direct transition to a polar state without a

complex intermediate temporal behavior like coarsening regimes. Our analysis allows the

identification of the parameters Du, fu and ε where to expect this direct transition to the polar

state from an unstable homogenous basic state:

L � 2p

ffiffiffiffiffiffiffiffi
2Du

εfu

r

: ð41Þ

For the chosen parameters, this is the case for L� 84. We verify this claim in simulations

with a system length L = 80 shown in Fig 5. As expected, the average cluster size (see Fig 5B)

almost immediately approaches the system size and stays constant from there on. The final

state is a fully polar system with one region with increased and one with decreased concentra-

tion (see 2D snapshots in Fig 5A). This state corresponds to what is called a single-peak solu-

tion in 1D in Ref. [14]. Note, however, that suppressing the coarsening dynamics does not

require the system length to fit the condition in Eq (41) perfectly. Since the initially growing

wavelength is unstable towards larger wavelengths, the system tends to settle into the largest

wavelength, which has also been verified numerically.

Fig 5. Coarsening is suppressed in small systems. (A) 2D snapshots of the full model (left, purple) and the corresponding CH model (right, orange) for t = 5 � 106 in a

small system (L = 80). Both simulations show a fully phase separated (one peak) system. (B) Cluster size as a function of time for the polarization model (purple circles)

and the corresponding CH model (orange crosses). The cluster size almost immediately goes to the system size L = 80. Parameters: a2 = 2, ε = 0.01.

https://doi.org/10.1371/journal.pone.0218328.g005
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Conclusion

In this work we analyzed the well-known mass-conserved reaction-diffusion model for cell

polarization of Otsuji et al. [14] as a representative of a model class from the perspective of pat-

tern formation theory. The model belongs to a class that describes the dynamics of protein mole-

cules that change from a slow diffusing membrane-bound state to a fast diffusing state in the

cytosol and vice versa. We showed for this representative how such mass-conserved models

comprising several equations can be mapped by a recently introduced method [41] to the single

universal Cahn-Hilliard (CH) equation. Additionally, we present an extension to a general mass-

conserved reaction- diffusion system of a similar form in S1 Appendix. Our perturbative reduc-

tion technique directly connects the parameters of the original cell polarization model to those

of the CH equation. Because of this system-specific link between the polarization model and the

CH equation, the analytical solution of the latter also become solutions of the original model.

Comparing numerical stationary solutions of the basic model, the CH model and analytical

solutions of the CH model reveals a convincing agreement between all three approaches. In a

comparison of the dynamics we also found coarsening behavior in large 2D systems. Near onset

of cell polarization we find an almost perfect quantitative agreement between the polarization

model and the CH equation while the solutions of the CH model still provide predictions on a

qualitative level in even larger parameter ranges. The CH equation is the universal order parame-

ter equation for mass-conserved reaction-diffusion systems near instabilities like that of the

model of Otsuji et al., near so-called type II stabilities, cf. Ref. [3]. This also explains their differ-

ent behavior compared to classical reaction-diffusion models leading to Turing patterns via a

finite wavelength instability. While Turing models can often be reduced to the Ginzburg-Landau

equation as a universal order parameter equation [3], the CH equation takes that role for mass-

conserved reaction-diffusion models. A common underlying order parameter equation for dif-

ferent models of cell polarization explains why they often behave in a similar way in large param-

eter ranges. Hence, studying mass conserved models of cell polarization via a reduction to the

CH model can help to identify and explain the universal and generic features cell polarization.

One of them is the instability of multi-peak solutions that (almost) always leads to a fully

polar system. The inherent coarsening behaviour of the CH equation with typical scaling laws

[38] ensures exactly this behavior. The initially growing pattern is unstable towards one with a

larger wavelength. Thereby the system settles in the largest possible wavelength—which is the

system length, corresponding to a single-peak solutions observed in 1D. However, a long last-

ing coarsening process from a solution with a large number of peaks might be not the desired

way for a cell to reach a polar, i.e. single-peak state. In this case our analysis also allows the

identification of the parameter region where a direct transition from the homogenous state to

the polar state takes place without undergoing a complex coarsening process. On the other

hand the instability of i.e. a double-peak solution towards a single peak enables the cell to

always adapt their polarization pattern to the cell length using the generic feature of coarsening

to its advantage. This adaptability of the polar zone to the cell length is crucial for biological

tasks such as cell division or the transition to a moving cell.

Spontaneous polarization without an external gradient is another feature observed in sev-

eral models for cell polarization [42]. In the CH model this would correspond to the onset

of polarization with a positive control parameter. In this case the CH model develops into a

polarized state for both the symmetric and the asymmetric case. Another important task in

many cell polarization systems is the sustainability of the polar or single-peak state, i.e. the pat-

tern has to persist even if the external stimulus is no longer present [18, 34]. In the CH model

this would correspond to the bistability between the homogeneous and the polarized state in

the asymmetric case. In this bistable range a temporal increase of the control parameter (above
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ε = 0) could push the system into the polarized state. If the control parameter then decreases

again to subcritical values, the polarized state remains due to the hysteretic behavior in the bis-

table region. However, in this model this is only possible for asymmetric polarization (γ3 6¼ 0).

To extend the sustainability also to symmetric polarization, a (intrinsic) subcritical bifurcation

in the original model is necessary. In the picture of the Cahn-Hilliard equation this would lead

to a change in the sign of the cubic nonlinearity γ4. To stabilize the system in this case, higher

order nonlinearities have to be taken into account. The Cahn-Hilliard equation has to be

extended up to (at least) quintic order which will provide further generic aspects of cell polari-

zation in upcoming works.

Materials and methods

Simulation methods

We solve the cell polarization model in Eqs (1), (2) and (3) numerically by using a pseudo-

spectral method. We calculate all spatial derivatives by transformation to a suitable function

space depending on the boundary conditions. For periodic boundaries used here i.e. u|x=0 =

u|x=L, v|x=0 = v|x=L, where L is the system length, we use a Fourier representation of the fields.

For Figs 2 and 3 in the main text, we use a system length L = 800 and N = 512 modes in Fourier

space. The initial condition is a step-like function of the form

uðxÞ ¼ A tanh
x � xl
d

� �
� tanh

x � xr
d

� �h i
� C; ð42Þ

where we choose C such that
R L

0
uðxÞdx ¼ 0 to fulfill the conservation law. We let this initial

condition relax to a steady state. These steady state solutions are shown in Fig 2A and 2B and

are also used to calculate the plateau values for different ε and a2 values in Figs 2B and 3B, 3C

and 3D respectively (all references refer to the main text). Figs 2A and 3A show only one half

of the system. The second half is axially symmetric and thus does not contain additional infor-

mation. Note that due to this inherent symmetry of the profiles, the result for periodic bound-

ary conditions with a system size L are equivalent to those with no-flux boundaries and the

system size L/2.

For the simulations in 2D in Fig 4 we use Lx = Ly = 800 and Nx = Ny = 512, starting from

random initial conditions.

Calculation of the coarsening dynamics

The domain size L(t) in Fig 4B is determined via

LðtÞ ¼ 2p

P
Sðki; tÞdkP
Sðki; tÞkidk

; ð43Þ

where S(ki, t) is the spherically averaged structure factor

Sðki; tÞ ¼ hjaki j
2
iki : ð44Þ

aki are the coefficients of the two dimensional Fourier transform whereby hiki denotes the

radial average over all ki with ki = |ki|.
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Abstract. We consider a continuum model for motility-induced phase separation (MIPS) of active Brow-
nian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative
analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic
Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called
active phase separation. We further introduce a generalization of the perturbative analysis to the next
higher order. This results in a generic higher-order extension of the CH model for active phase separation.
Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand,
and the leading order and extended CH models on the other hand. Comparing numerical simulations of
the three models, we find that the leading-order CH model agrees nearly perfectly with the full contin-
uum model near the onset of MIPS. We also give estimates of the control parameter beyond which the
higher-order corrections become relevant and compare the extended CH model to recent phenomenological
models.

1 Introduction

Active matter systems are non-equilibrium systems which
consume fuel and disspative energy locally. These sys-
tems are full of fascinating phenomena and have recently
attracted increasing attention in the scientific commu-
nity [1–8]. Examples range from active molecular pro-
cesses which are driven by chemical free energy provided
by metabolic processes [9] up to flocks of birds and schools
of fish [1,2]. Various active matter systems also show col-
lective non-equilibrium transitions. On the time scale of
these transitions, the number of involved entities such as
proteins, cells or even birds is conserved. Examples include
cell polarization [10–16], chemotactically communicating
cells [17–20], self-propelled colloidal particles [21–27], as
well as mussels in ecology [28].

Self-propelling colloidal particles undergo a non-
equilibrium phase transition into two distinct phases —a
denser liquid-like phase and a dilute gas-like phase [21–
23]— if their swimming speed decreases with increasing
local density. This is known as motility-induced phase
separation (MIPS) [4, 24, 26]. It strikingly resembles well-
known phase separation processes at thermal equilibrium
such as the demixing of a binary fluid. We recently in-
troduced a class of such non-equilibrium demixing phe-

a e-mail: walter.zimmermann@uni-bayreuth.de

nomena we call active phase separation [16]. Among the
phenomena identified as members of this class are cell po-
larization or chemotactically communicating cells. For this
class we have shown that the similarities between equilib-
rium and non-equilibrium demixing phenomena are in fact
not coincidental. We have generalized a classical weakly
nonlinear analysis near a supercritical bifurcation with
unconserved order parameter fields [29] to the case of ac-
tive phase separation with a conserved order parameter
field [16]. The generic equation describing active phase
separation systems turned out to be the classic Cahn-
Hilliard (CH) model —the same generic model that also
describes equilibrium phase separation. The class of ac-
tive phase separation thus defines non-equilibrium demix-
ing phenomena whose conserved order parameter is close
to onset described by the Cahn-Hilliard model.

In this work, we raise the question whether the recently
introduced nonlinear perturbation approach in ref. [16] is
also directly applicable to MIPS. We employ this reduc-
tion approach to a mean-field description of active Brow-
nian particles (ABP) showing MIPS provided by Speck et
al. [27, 30] and show how the ABP model reduces to the
CH model at leading order.

Recently, several phenomenological extensions of the
CH model have also been considered as continuum mod-
els of MIPS [31,32]. These are extensions of the CH model
to the next higher order of nonlinear contributions. In this
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work, we therefore also introduce an extension of our per-
turbative scheme that allows us to systematically derive
higher-order nonlinearities directly from the continuum
model for MIPS. Due to our systematic approach, the ex-
tended CH model we derive is not a phenomenological
model. Instead, we directly map the continuum model for
ABP to the extended CH model. Note that we concentrate
on the example of MIPS in this work. However, the exten-
sion introduced here can be applied to any system in the
class of active phase separation. We thus show in general
how both the leading-order CH model and its extension
describe active phase separation as a non-equilibrium phe-
nomenon.

This work is organized as follows: We first present the
mean-field ABP model and calculate the onset of phase
separation in the system. We then introduce the pertur-
bative scheme we use to reduce the ABP model to the
classic CH equation near the onset of phase separation.
In the next step, we extend the previous approach to in-
clude nonlinearities at the next higher order. Section 5 is
an in-depth discussion of the derived leading-order and ex-
tended CH models including their connection to the mean-
field ABP model and other phenomenological descriptions
of MIPS. Finally, in sect. 6, we present numerical simu-
lations comparing leading-order and extended CH to the
full mean-field ABP model to assess validity and accuracy
of the reduced models.

2 Model

On a mean-field level, phase separation of active Brow-
nian particles (ABP) can be described by two coupled
equations for the particle density ρ̃(r, t) and a polariza-
tion p(r, t) [23, 30]. The evolution of the particle density
ρ̃ is determined by

∂tρ̃ = −∇ · [v(ρ̃)p − De∇ρ̃] , (1)

where De is the effective diffusion coefficient of the active
Brownian particles. v(ρ̃) is the density-dependent particle
speed given by

v(ρ̃) = v0 − ρ̃ζ + λ2∇2ρ̃; (2)

v0 is the speed of a single self-propelled particle. With in-
creasing particle density, the velocity is reduced by ζρ̃ due
to interactions with other particles. ζ is related to the pair
distribution function of the individual particles and as-
sumed to be spatially homogeneous [23]. The nonlocal con-
tribution in eq. (2) was earlier introduced in refs. [25, 33]
and later incorporated into the model by Speck et al. [30].
It incorporates the effect that active Brownian particles
sample the neighboring particle density on a length scale
λ larger than the particle spacing. Equation (2) is coupled
to a dynamical equation for the polarization [23,30],

∂tp = −∇P (ρ̃) + De∇2p − p, (3)

with the “pressure”

P (ρ̃) =
1

2
v(ρ̃)ρ̃. (4)

3 Onset of phase separation

A stationary solution of eq. (1) and eq. (3) is any con-
stant density ρ̄ and p = 0. Therefore, we decompose the
particle density into its homogeneous part ρ̄ and the in-
homogeneous density variation ρ:

ρ̃ = ρ̄ + ρ. (5)

Accordingly, we investigate the following dynamical equa-
tions for ρ and p in one spatial dimension:

∂tρ = −∂x

[
α − ζρ + λ2∂2

xρ
]
p + De∂

2
xρ, (6a)

∂tp = −∂x

[
βρ − 1

2
ζρ2 +

λ2

2
(ρ̄ + ρ) ∂2

xρ

]

+De∂
2
xp − p, (6b)

where

α = v0 − R, β =
1

2
(v0 − 2R), (7)

with the density parameter

R = ζρ̄. (8)

We assume ζ and De to be constant [30].
The homogeneous basic solution ρ = 0, p = 0 is unsta-

ble if the perturbations ρ, p = ρ̂, p̂ exp(σt+ iqx) grow, i.e.
if the growth rate σ is positive. Solving the linear parts of
eqs. (6) with this perturbation ansatz, the largest eigen-
value gives us the dispersion relation

σ(q) = −1

2
− Deq

2 +
1

2

√
1 − 4αβq2 + 2λ2αρ̄q4,

= D2q
2 − D4q

4 + O(q6), (9)

where

D2 = −(De + αβ), (10)

D4 =

(
α2β2 − λ2

2

R

ζ
α

)
. (11)

D2 changes its sign as a function of v0. Assuming D4 >
0, the growth rate σ becomes positive in a finite range
of q = [0, qmax], when D2 > 0. Note that the range of
wavenumbers q with positive growth rate extends down
to q = 0. The related instability condition

De + αβ = 0 (12)

provides a quadratic polynomial for the critical mean den-
sity ρ̄ (represented by the density parameter R) and the
respective particle speed v0(R):

1

2
v2
0 − 3

2
Rv0 + De + R2 = 0. (13)

For particle speeds v0 > v∗, where

v∗ = 4
√

De, (14)
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Fig. 1. Instability curve R±(v0) as given by eq. (15). The
minimum of the parabolic function is at (v∗, R∗) = (1.0, 0.75),
assuming ζ = 1, De = 1/16. For v0 > v∗, the homogeneous so-
lution is unstable for mean densities within the shaded region.

this polynomial has two real solutions

R± =
1

4

[
3v0 ±

√
v2
0 − 16De

]
. (15)

This corresponds to a critical value R∗ of the density pa-
rameter:

R∗ = R(v∗) =
3

4
v∗. (16)

Note that the assumption D4 > 0 is fulfilled if λ2 <
2ζαβ2/R, i.e. for sufficiently small λ. At the critical point,
v0 = v∗ and R = R∗, this condition simplifies to

λ2 < ζv2
∗/24. (17)

For particle velocities below v∗, the homogeneous solution
is stable for any value of the density parameter R = ζρ̄.
For v > v∗ and R− < R < R+ (shaded region in fig. 1)
the homogeneous particle density becomes unstable with
respect to perturbations.

4 Derivation of Cahn-Hilliard models

In this section, we will apply the systematic pertubative
scheme introduced recently in ref. [16] to the mean-field
model, eqs. (6), and reduce them near onset to the well-
known Cahn-Hilliard (CH) model. In a second step, we
will then expand the pertubative scheme to include higher-
order contributions.

The transition from the homogenous state of eqs. (1)
and (3) to MIPS is either supercritical or slightly subcriti-
cal. In both cases, cubic nonlinearities limit the growth of
density modulations —as we also confirm in this work a
posteriori. Therefore, the amplitudes of the density mod-
ulations near MIPS are small and we write

ρ =
√

ερ1 (18)

with a small parameter ε and ρ1 ∼ O(1). Thereby ε mea-
sures the distance from the critical velocity v∗:

v0 = v∗(1 + ε). (19)

This also allows an expansion of R±(v0) in eq. (15) near
R∗. At leading order, we find R± � R∗(1 ± η

√
ε) with

η =
√

2/3. This suggests the following parameterization
of R in the ranges v0 > v∗ and R− < R < R+ near R∗:

R = R∗(1 + r1), with r1 =
√

εr̃1. (20)

According to the dispersion relation in eq. (9), the
fastest growing mode is given by q2

e = D2/(2D4). The
largest growing wavenumber qmax (calculated from σ = 0)
is q2

max = D2/D4. Thus, both q2
e and q2

max scale with the
factor D2/D4. Using the previously introduced definitions
and expanding for small values of the control parameter
ε, we find D2/D4 ∝ ε at leading order. Thus, both qe

and qmax are of the order
√

ε, i.e. perturbations of the
homogeneous basic state vary on a large length scale. Ac-
cordingly, we introduce the new scaling x̃ =

√
εx, resulting

in the following replacement of the differential operator:

∂x → √
ε∂̃x. (21)

From q2 of order O(ε) and D2 ∝ ε follows that σ ∝ ε2

according to eq. (9). Thus, the growth of these long wave-
length perturbations is very slow. Accordingly, we intro-
duce the slow time scale T1 = ε2t. In order to capture the
dynamics at the next higher order of ε1/2, we also intro-
duce a second slow time scale T2 = ε5/2t. This suggests
the following replacement of the time derivatives:

∂t → ε2∂T1
+ ε5/2∂T2

. (22)

Since we expressed the density ρ as a multiple of
√

ε, see
eq. (18), we also expand the polarization field p in orders
of

√
ε:

p =
√

εp0 + εp1 + ε3/2p2 + ε2p3 + ε5/2p4 + . . . . (23)

We insert these scalings into the dynamic equations (6)
and collect terms of the same order

√
ε
n
. The polarization

follows the density field adiabatically. Thus, the contribu-
tions to the polarization in increasing orders up to ε5/2

are

p0 = 0, (24)

p1 = −β∗∂̃xρ1, (25)

p2 = R∗r̃1∂̃xρ1 +
ζ

2
∂̃x(ρ2

1), (26)

p3 = −v∗
2

∂̃xρ1 −
(

Deβ∗ +
λ2

2

R∗
ζ

)
∂̃3

xρ1, (27)

p4 = De∂̃
3
x

(
r̃1R∗ρ1 +

ζ

2
ρ2
1

)

−λ2

2
∂̃x (r̃1ρ∗ + ρ1) ∂̃2

xρ1. (28)
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With these solutions, we can systematically solve the
equations for the density ρ1 in the successive orders of√

ε. In the lowest order O(ε3/2), we find

0 = (α∗β∗ + De) ∂̃2
xρ1. (29)

This equation, however, is trivially satisfied due to the
instability condition α∗β∗ + De = 0.

At order O(ε2), we get

0 = −(α∗ + β∗)
[
R∗r̃1∂̃

2
xρ1 + ζ∂̃x

(
ρ1∂̃xρ1

)]
. (30)

With the definition of R∗ in eq. (16) it follows that α∗ +
β∗ = 0. Thus, eq. (30) is again trivially fulfilled.

At order O(ε5/2), we finally get a dynamic equation
for ρ1:

∂T1
ρ1 = −∂̃2

x

[(
1

8
v2

∗ − 9

16
v2

∗ r̃2
1

)
ρ1

+

(
1

256
v4

∗ − 3

32ζ
λ2v2

∗

)
∂̃2

xρ1

− 3

4
ζv∗r̃1 ρ2

1 − 1

3
ζ2 ρ3

1

]
. (31)

Note that we used the expressions in eq. (14) and eq. (16)
to eliminate R∗ and De. Equation (31) has the form
of the well-known Cahn-Hilliard (CH) equation [34, 35].
This shows that MIPS is a further example of the
non-equilibrium demixing phenomenon which shares the
universal CH model with classic phase separation. Re-
cently, the notion active phase separation was coined for
these types of non-equilibrium phenomena [16]. Other re-
cently discussed examples of active phase separation are
cell polarization or chemotactically communicating cell
colonies [16]. All of these very different systems can be
reduced to the same universal equation near the onset of
phase separation. They thus share generic features as ex-
pressed in their common representation via the CH equa-
tion.

In the next step, we extend the reduction scheme in-
troduced in ref. [16] to include higher-order nonlinearities.
Continuing the expansion above to the next order O(ε3),
we obtain:

∂T2
ρ1 = −∂̃2

x

[
9

8
v2

∗ r̃1ρ1 +
3

16ζ
λ2v2

∗ r̃1

(
∂̃2

xρ1

)
+

3

4
ζv∗ρ

2
1

+

(
3

128
ζv3

∗ − 5

16
λ2v∗

) (
∂̃xρ1

)2

+
λ2

8
v∗∂̃

2
xρ2

1

]
. (32)

We will discuss these new contributions in detail in
sect. 5.2 below.

Equations (31) and (32) can be combined into a sin-
gle equation by reconstituting the original time scale via
∂tρ1 = ε2∂T1

ρ1 +ε5/2∂T2
ρ1. In addition, we go back to the

original spatial scaling by setting ∂̃x = ∂x/
√

ε, to the orig-
inal density ρ via eq. (18), and r1 as defined in eq. (20).

The complete extended amplitude equation for the density
variations ρ then reads:

∂tρ = −∂2
x

[
(α1 + β1) ρ + (α2 + β2) ∂2

xρ

+(α3 + β3) ρ2 − α4ρ
3

+β5 (∂xρ)
2

+ β6∂
2
xρ2

]
. (33)

In this equation, contributions with the coefficients αi

originate from the leading order and are given by

α1 =
1

8
v2

∗ε − 9

16
v2

∗r2
1, (34a)

α2 =
1

256
v4

∗ − 3

32ζ
λ2v2

∗, (34b)

α3 = −3

4
ζv∗r1, (34c)

α4 =
1

3
ζ2. (34d)

In other words, eq. (33) with βi = 0 is the rescaled version
of eq. (31). The coefficients βi signal the new contributions
from the next higher order. They are given by

β1 =
9

8
v2

∗r1ε, (35a)

β2 =
3

16ζ
λ2v2

∗r1, (35b)

β3 =
3

4
ζv∗ε, (35c)

β5 =
3

128
ζv3

∗ − 5

16
λ2v∗, (35d)

β6 =
λ2

8
v∗. (35e)

5 Discussion of the derived Cahn-Hilliard
models

In this section, we will discuss the results obtained in the
previous sect. 4. At first we consider the classic CH equa-
tion that resulted at leading order of our perturbative
analysis. We then take a closer look at the higher-order
corrections ∝ βi in eq. (33). We also focus on the relation
of the higher-order coefficients βi to the parameters of re-
cently introduced phenomenological extensions of the CH
model for MIPS [31,32,36].

5.1 Classic CH equation at leading order

For βi = 0, the leading order of eq. (33),

∂tρ = −∂2
x

[
α1ρ + α2∂

2
xρ + α3ρ

2 − α4ρ
3
]
, (36)

corresponds to the asymmetric version of the Cahn-
Hilliard (CH) equation, see e.g. refs. [34, 35], The coef-
ficients αi are given in eqs. (34). Note that the quadratic
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nonlinearity implies a broken ±ρ-symmetry. This is usu-
ally not included in the classic representation of the CH
equation since it can be removed by adding a constant to
the density: ρ → ρ + ρh. In any case, the quadratic non-
linearity vanishes for α3 = 0. For the ABP model, this is
fulfilled for r1 = 0, or ρ̄ = ρ∗ accordingly. This special
case has also been considered in [30] where they found a
CH equation with coefficients consistent with αi above.

Equation (36) can be derived from the energy func-
tional

F =

∫ [
−α1

2
+

α2

2
(∂xρ)2 − α3

3
ρ3 +

α4

4
ρ4

]
dx (37)

via

∂tρ = ∂2
x

δF

δρ
. (38)

At first glance this is a surprising result since the two
initial dynamical equations for the density, eq. (1), and
the polarization, eq. (3), do not follow potential dynamics
and therefore cannot be derived from a functional. Nev-
ertheless, this specific property has been seen for other
non-equilibrium systems: The evolution equation for the
envelope of spatially periodic patterns also follows poten-
tial dynamics while the dissipative starting equations do
not [29,37].

5.2 Extended CH model

We now take a closer look at the CH model extended to
the next higher order, eq. (33) with coefficients βi given
in eqs. (35). The contributions β1, β2 and β3 are correc-
tions to the coefficients α1, α2 and α3 of the leading-
order CH equation. Note, however, that according to
eqs. (35a) and (35c), β1 and β3 are functions of ε and
thus both increase with the distance ε from phase separa-
tion onset. Notably, β3 —the correction to the quadratic
nonlinearity— is not a function of the relative deviation
r1 from the critical density parameter R∗. Thus, while for
r1 = 0 the CH model at leading order is ±ρ-symmetric,
the symmetry is always broken at higher order.

The coefficients β5 and β6 are the prefactors of higher-
order nonlinearities. These new contributions ∝ ∂2

x(∂xρ)2

and ∝ ∂4
xρ2 are structurally different compared to the

terms in the leading-order CH model. In general, an ad-
ditional nonlinearity ∝ ∂2

xρ4 is of the same order as these
two contributions. However, in the exemplary case of ABP
we analyze here this term does not appear. Note, however,
that the higher-order extension of the CH model presented
here can also be applied to other active phase separation
systems. We expect the additional nonlinearity of the form
∝ ∂2

xρ4 to be relevant in other examples such as cell po-
larization or chemotaxis.

In the context of MIPS, a contribution ∝ ∂2
x(∂xρ)2

has been introduced via a phenomenological approach
in ref. [31]. The CH model extended by this term has
been called Active Model B. It was considered as a non-
equilibrium extension of the CH model and minimal model
for MIPS. We would like to reiterate that the CH model as

given by eq. (36) (without any additional nonlinear terms)
is the leading-order description of the non-equilibrium
phenomenon of active phase seperation [16]. As we have
shown here, this also includes MIPS. All higher-order non-
linearities vanish for ε → 0 (see also the discussion in
sect. 5.4). In that respect Active Model B is a nonlin-
ear extension of the CH model —not an extension of the
CH model to non-equilibrium systems. Our systematic ap-
proach reveals the existence of the additional higher non-
linearity ∝ ∂4

xρ2 = 2∂2
x[(∂xρ)2 + ρ∂2

xρ]. It includes the
nonlinear correction to the CH model, ∝ ∂2

x(∂xρ)2, that
leads to the Active Model B [4, 31]. The second part of
the new nonlinear correction term, ∝ ∂2

x(ρ∂2
xρ), has re-

cently been included in a further CH extension for MIPS
called Active Model B+ [32, 36]. Note that the contribu-
tion ∝ β6 in eq. (33) vanishes for λ = 0. Active Model B
and Active Model B+ also do not include the quadratic
nonlinearity ∝ β3ρ

2. Our analysis shows, however, that
the coefficients βi in general are not independent of each
other and β2 in fact always appears simultaneously with
the nonlinearity ∝ β5. The broken ±-symmetry and the
resulting asymmetric phase separation profiles depend on
the distance ε from threshold (see β3 in eq. (35c)). It is
an important qualitative feature of the system behavior
above threshold.

As discussed in sect. 5.1, the leading-order CH model
can be derived from an energy potential. For the extended
CH model, eq. (33), the existence of an energy functional
depends on the coefficients of the additional higher-order
contributions: for arbitrary values of β5 and β6, the ex-
tended CH model is non-potential. In the special case
β6 = −β5, however, eq. (33) can be derived from the en-
ergy functional

F =

∫ [−α1 + β1

2
ρ2 +

α2 + β2

2
(∂xρ)2

−α3 + β3

3
ρ3 − α4

4
ρ4 +

β5

2
ρ2∂2

xρ

]
dx. (39)

For the ABP model, eqs. (6), this condition is fulfilled for

λ2 =
ζv∗2

8
. (40)

Note, however, that the linear stability analysis in sect. 3
introduced a condition for λ: λ2 < ζv2

∗/24 in eq. (17). This
condition and eq. (40) cannot be fulfilled simultaneously.
Thus, whether the extended CH model can be derived
from an energy functional depends on the exact parame-
ter choices. For the ABP continuum model we investigate
here, there do not seem to be suitable parameter choices.
But note again that our approach can be applied to other
systems showing active phase separation. For these other
models, the coefficients of the extended CH model could
allow for the existence of a suitable potential.

5.3 Comparison of linear stability

As a first step to assess the quality of our derived reduced
equation, eq. (33), we analyze the linear stability of the
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homogeneous basic state ρ = 0, and compare to the sta-
bility of the full ABP model. As discussed in sect. 3, the
instability condition for the full ABP system is given by
eq. (12). Using v0 = v∗(1 + ε), R = R∗(1 + r1) and the
definitions of De and R∗ as given by eqs. (14) and (16),
we find

εc =
1

8
(1 + 9r1) − 1

8

√
1 + 18r1 + 9r2

1

≈ 9

2
r2
1 − 81

2
r3
1 +

891

2
r4
1 + O(r5

1) (41)

for the onset of phase separation. Thus, in the symmet-
ric case r1 = 0 the threshold is εc = 0. For r1 	= 0 the
onset of phase separation is shifted to larger values of ε.
Larger particle velocities v0 are thus required to trigger
the demixing process.

Similarly, we can analyze the linear stability of both
the leading-order CH equation, eq. (36), and its higher-
order extension, eq. (33). The threshold calculated from
the linear parts of eq. (36) is given by

εc,lead =
9

2
r2
1. (42)

Comparing this to εc in eq. (41), we find that the shift-
ing of the threshold due to finite r1 is represented up to
leading order of r1. Assuming r1 > 0, εc,lead significantly
overestimates the real threshold εc. For the extended CH
equation, eq. (33), we find the threshold

εc,ext =
9r2

1

2(1 + 9r2
1)

≈ 9

2
r2
1 − 81

2
r3
1 +

729

2
r4
1 + O(r5

1). (43)

This is in agreement with the threshold for the full model,
eq. (41), up to the order O(r3

1). The threshold is therefore
only slightly underestimated compared to the full model.
Keeping these different threshold values in mind is partic-
ularly important for the numerical comparison of the ABP
model, eqs. (1) and (3), to its two reductions, eqs. (36)
and (33) in sect. 6. All three equations only provide the
exact same threshold, namely εc = 0, in the special case
r1 = 0.

The linear stability analysis also provides the disper-
sion relation for the perturbation growth rate σ. For the
full model, it is given by eq. (9). Expanding for small per-
turbation wavenumbers q, the general form of the growth
rate is

σ = D2q
2 − D4q

4 + O(q6). (44)

The coefficients D2 and D4 are given in eqs. (10) and (11),
respectively. Using the definitions introduced in the course
of the perturbative expansion, D2 can be rewritten to

D2 =
1

8
v2

∗ε − 9

16
v2

∗r2
1 +

9

8
v2

∗r1ε − 1

2
v2

∗ε2. (45)

Good agreement between the full ABP model and its re-
duction to eq. (33) can only be expected if the reduced
equations are able to reproduce the basic form of this

growth rate. The linear part of eq. (33) leads to a growth
rate of the form

σ(q) = G2q
2 − G4q

4, (46)

where

G2 =
1

8
v2

∗ε − 9

16
v2

∗r2
1 +

9

8
v2

∗r1ε, (47)

G4 =
1

256
v4

∗ − 3

32ζ
λ2v2

∗ +
3

16ζ
λ2v2

∗r1. (48)

G2 is in agreement with D2 of the full model equations up
to linear order in ε. D2 only includes an additional term
of order O(ε2): D2 = G2 − v2

∗ε2/2. G4 exactly reduces to
D4 in the case ε = r1 = 0. In the limit ε → 0 but r1 	= 0,
the two terms agree up to linear order in r1. As discussed
in sect. 3, the coefficient D4 has to be positive for the
instability condition to hold and to ensure damping of
short wavelength perturbations. The same applies to the
coefficient G4. The condition G4 > 0 is fulfilled if

λ2 <
1

24
v2

∗ζ
1

1 − 2r1
. (49)

Note the similarity to the previously derived condition in
eq. (17).

5.4 Significance of nonlinear corrections

In this section, we discuss the importance of the higher-
order nonlinearities compared to the leading-order terms
of the classic Cahn-Hilliard model in eq. (36). For this
comparison we focus on the case with ±-symmetry at
leading order, i.e. r1 = 0. We rescale time, space and
amplitude in eq. (33) via t′ = τ0ε

2t, x′ = ξ0
√

εx and
ρ′ = ρ0ρ/

√
ε, respectively, where

τ0 =
4ζv2

∗
v2∗ζ − 24λ2

, (50a)

ξ2
0 =

32ζ

v2∗ζ − 24λ2
, (50b)

ρ0 =
2
√

6

3

ζ

v∗
. (50c)

This allows us to rewrite eq. (33) in the following form:

∂t′ρ′ = −∂2
x′

[
ρ′ + ∂2

x′ρ′ − ρ′3]

−√
ε∂2

x′

[
γ1ρ

′2 + γ2∂
2
x′ρ′2 + γ3 (∂x′ρ′)

2
]
, (51)

where

γ1 =
3
√

6

2
, (52a)

γ2 =
8
√

6λ2

v2∗ζ − 24λ2
, (52b)

γ3 =

√
6(3v2

∗ζ − 40λ2)

2(v2∗ζ − 24λ2)
. (52c)
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The first line in eq. (51) is the parameter-free, ±ρ-
symmetric version of the Cahn-Hilliard model as de-
scribed, e.g., in refs. [34, 35]. The additional three con-
tributions are the first higher-order corrections as gained
above via a systematic reduction of the continuum model
for MIPS. These three corrections are proportional to

√
ε

and thus vanish when approaching the onset of active
phase separation (ε → 0). In the limit ε → 0 the classic CH
model thus fully describes the non-equilibrium mean-field
dynamics of MIPS. With increasing ε, the higher-order
contributions become more and more important.

Note that eq. (51) was derived under the assumption
r1 = 0. As discussed in sect. 5.1, the CH model at leading
order is ±ρ-symmetric in this case. The three higher-order
contributions in eq. (51), however, break the ±ρ-symmetry
with increasing ε. Moreover, in the case of the ABP model
we analyze here, the coefficient γ1 does not depend on any
of the system parameters at all. Thus, there is in fact no
special case in which this contribution can be neglected.

The coefficients of the other two higher-order nonlin-
earities, γ2 and γ3, are functions of the system parameters,
especially of λ. Typical parameter choices for the contin-
uum model in eq. (6) are such that v∗ and ζ are of order
O(1). Accordingly, λ has to be small to fulfill the condi-
tion in eq. (17). Therefore, an expansion of γ2 and γ3 in
terms of small λ is appropriate:

γ2 =
8
√

6

v2∗ζ
λ2 + O(λ4), (53)

γ3 = γ1 + 2γ2 + O(λ4). (54)

In the limit λ = 0 the coefficient γ2 vanishes, i.e. γ2 = 0,
and γ3 simplifies to γ3 = γ1. For finite λ, γ2 also becomes
finite. But since according to eq. (53) γ2 is proportional to
λ2, it will be much smaller than γ3 for small λ. For MIPS
as described by the mean-field model in eqs. (6), the im-
pact of the nonlinearity ∝ ∂2

x(∂xρ)2 thus seems to over-
shadow the term ∝ ∂4

xρ2. This predominance of γ3, how-
ever, is specific to MIPS as described by the ABP model.
For other examples of active phase separation such as cell
polarization or chemotactically communicating cells, we
expect that the nonlinearities described by γ1 or γ2 can
be of similar order as γ3. As mentioned earlier, for both ex-
amples of active phase separation we also expect an addi-
tional higher-order correction ∝ ∂2

xρ4 which is completely
absent in the ABP model.

6 Numerical comparison

In this section, we compare numerical simulations of the
full ABP model, eqs. (6), to both the leading-order CH
equation, eq. (36), as well as the extended version includ-
ing higher nonlinearities, eq. (33). On the one hand, this
allows us to assess the quality and validity range of our re-
duction scheme in general. On the other hand, comparing
the leading-order and the extended CH model also gives
us information about the importance of higher-order non-
linearities in MIPS.

Fig. 2. Comparison of the steady-state profiles in the “sym-
metric” case (ρ̄ = ρ∗) at ε = 0.01: full ABP model (shaded
grey) vs. leading-order CH equation (dashed line) vs. extended
CH equation (dotted line). Other parameters: ζ = v∗ = 1.

All simulations were performed using a spectral
method with a semi-implicit Euler time step. The system
size was L = 100 with periodic boundary conditions and
N = 256 Fourier modes were used.

We first analyze the special case r1 = 0, i.e. ρ̄ =
ρ∗. This is the case in which the ±-symmetry-breaking
quadratic nonlinearity vanishes at leading order. We
choose v∗ = 1 and ζ = 1 throughout all of the follow-
ing simulation results. As discussed in sect. 5.4, λ has to
be small and is thus not expected to significantly influence
the results. We thus set λ = 0.

Figure 2 shows the steady-state profiles for the three
models (full ABP model, leading-order CH and extended
CH) at ε = 0.01. The profiles are typical for phase sepa-
ration solutions: We find two distinct regions where the
mean density is either increased (ρ > 0) or decreased
(ρ < 0). In each of the regions ρ is essentially spatially
constant, creating two distinct density plateaus ρmin and
ρmax. The two plateaus are smoothly connected at their
boundary, resembling a hyperbolic tangent function. Note
that the mean density in the system is conserved. Thus,
the areas under the positive and negative parts of ρ(x) are
equal.

The solution for the full system is represented as the
outline of the grey shaded area. We first compare this
to the leading-order CH equation (dashed line). As pre-
dicted, the leading-order CH equation results in a sym-
metric phase separation profile, i.e. the two plateaus have
the same absolute value: ρmax = |ρmin|. This does not ac-
curately represent the solution for the full system, which
is already slightly asymmetric. However, the leading-order
CH equation gives a good approximation of the plateau
values with a deviation of less than 7% from the real value.
Extending the CH equation to the next higher order (dot-
ted line in fig. 2), we can almost perfectly reproduce the
profile for the full ABP model. It accurately represents the
asymmetry of the phase separation profile. The deviation
in the plateau values shrinks to less than 2%.
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Fig. 3. Comparison of plateau values |ρmin| and ρmax as a
function of the control parameter ε for ρ̄ = ρ∗ (i.e., r1 = 0): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

Figure 3 shows the absolute plateau values |ρmin| and
ρmax as a function of ε —the distance from the phase
separation onset. The bifurcation to active phase separa-
tion is supercritical in this case: starting at εc = 0, the
plateau values increase monotonically. Considering only
the leading-order approximation (dashed line), we again
find the system to be symmetric for all values of ε. In
reality, the full system (solid lines) becomes more and
more asymmetric for increasing ε. This is very accurately
represented by the higher-order approximation (dotted
lines). It only starts to deviate from the full model fur-
ther from threshold. Importantly though, close to the on-
set of mobility-induced phase separation, as ε becomes
smaller, the full model becomes more and more symmetric.
All three models then are in increasingly good agreement.
This again underlines the fact that the classic CH model
is the simplest generic model for active phase separation.
All active phase separation phenomena of this type can
be reduced to the CH model close to onset. Higher-order
nonlinearities only come into play further from threshold.

If we allow r1 	= 0, phase separation is asymmetric even
at leading order. This can be seen in fig. 4 which shows the
steady-state profiles for the full ABP model, leading-order
CH and extended CH at ε = 0.02. Here, the leading-order
CH equation (dashed line) results in an asymmetric solu-
tion. However, the predicted plateau values deviate about
20% from the full system (outlines of shaded grey region).
The extended CH model, meanwhile, is still able to accu-
rately predict the full system solution with a deviation of
less than 6%.

Looking at the plateau values as a function of ε (see
fig. 5) solidifies this impression: the leading-order CH
model gives a good qualitative representation of the full
system. Going to the extended CH model provides very
good quantitative agreement with the full model even for
larger values of ε. As discussed earlier in sect. 5.3, the
onset of phase separation (i.e. the ε-value at which the
homogeneous solution |ρmin| = ρmax = 0 becomes unsta-
ble) is shifted to finite values of ε in the case r1 	= 0.

Fig. 4. Comparison of the steady-state profiles for ρ̄ = 0.8 at
ε = 0.02: full ABP model (shaded grey) vs. leading-order CH
equation (dashed line) vs. extended CH equation (dotted line).

Fig. 5. Comparison of plateau values |ρmin| and ρmax as a func-
tion of the control parameter ε for ρ̄ = 0.8 (or r1 = 1/15): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

For the given system parameters, the threshold for the
full system is shifted to εc ≈ 0.013. The leading-order CH
model significantly overestimates this threshold, shifting
to εc ≈ 0.02. The extended CH model only very slightly
underestimates the real threshold. Note that above this
threshold, the plateau values immediately jump to finite
values. Thus, the transition from the homogeneous to the
phase-separated state is no longer smooth. On the other
hand, fig. 5 also shows that the branches of finite density
plateau values extend below the thresholds noted above.
This creates a range of bistability —a range of control
parameter values in which both the homogeneous and
the phase-separated state are stable simultaneously. All
of these characteristics indicate that bifurcation from the
homogeneous state to active phase separation is now sub-
critical.
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7 Conclusion

Starting from the mean-field model for active Brownian
particles in refs. [23, 30], we applied a perturbative ap-
proach introduced in ref. [16]. We showed that the non-
equilibrium phenomenon motility-induced phase separa-
tion (MIPS) is described near its onset at leading order
by the Cahn-Hilliard (CH) model [34,35,38,39]. This is in
agreement with a recent observation that the CH model
describes the system-spanning behavior of a number of
very different demixing phenomena in active and living
systems far from thermal equilibrium [16]. The results
in this work show that MIPS also belongs to this class
of active phase separation. Thus, even though the CH
model was originally introduced to describe phase sep-
aration of binary mixtures in thermal equilibrium, our
analysis shows that it is also the generic leading-order de-
scription of active phase separation —a non-equilibrium
phenomenon.

We also extended the perturbative scheme introduced
in ref. [16] beyond the CH model to next higher-order
nonlinearities. In this work, we used the continuum ABP
model as a framework to establish this concept. The ex-
tension of our nonlinear expansion, however, can also be
applied to other systems showing active phase separation
(with a conserved order parameter field) such as cell po-
larization and clustering of chemotactically communicat-
ing cells. Having a ±-symmetric CH model at the onset
of active phase separation, we find that in general four
nonlinear terms come into play at the next higher or-
der. Two of them have the same form as contributions
suggested in previous phenomenological extensions of the
CH model for MIPS [4,31,32,36]. These phenomenological
models are thus related to the extended CH model that
our perturbative scheme provides. Our approach, however,
is non-phenomenological: it establishes a direct mathe-
matical link between the coefficents of the extended CH
model and the full mean-field description of ABPs (or any
other basic model of active phase separation in general). It
shows in addition, that the coefficients of the additional
contributions in the extended CH model are in general
not independent of each other, as often assumed in phe-
nomenological approaches. Furthermore, these coefficents
are system-specific and cannot be removed by rescaling
as in the case of the leading-order CH model. It is also
important to reiterate that these nonlinear extensions be-
come negligible when approaching the onset of MIPS or
other examples of active phase separation. Therefore, the
leading-order CH model already covers the universal be-
havior of MIPS (as a non-equilibrium phenomenon) near
its onset. Higher-order nonlinearities mainly improve ac-
curacy and become relevant further from threshold. They
should thus not be seen as the key to expand the CH
model to non-equilibrium systems.

Within the systematics of the pattern formation the-
ory, the work we introduced in ref. [16] and extended here
is a weakly nonlinear analysis and reduction method for
active phase separation described by conserved order pa-
rameter fields. It can be seen as a yet unexplored counter-
part to the weakly nonlinear analysis of (non-oscillatory)

spatially periodic patterns with unconserved order param-
eter fields and its numerous applications [29,37,40–42].

Our generic approach for active phase separation opens
up several pathways for further system-spanning investi-
gations. Coarsening dynamics in large systems, and es-
pecially the role of higher nonlinearities in this context,
have already been of particular interest to the scientific
community (see, e.g., ref. [32] for MIPS). Other active
phase separation phenomena such as cell polarization, on
the other hand, take place in very small systems where
coarsening plays a less important role [43]. For these sys-
tems, spatial constraints may significantly influence the
behavior instead. Studies on spatially periodic patterns
have already shown that confinement may trigger various
interesting generic effects (see e.g. [44]) and even induce
patterns in small systems which are unstable in larger sys-
tems (see [45] and references therein). On the basis of our
results, it will be interesting to investigate finite size ef-
fects on non-equilibrium phase transitions with conserva-
tion constraints.
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