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Summary

This thesis deals with the construction of macroscopic models for several magnetic macroscopic
phases. The results are applied to the available experimental data or simple experimental
suggestions are made for detecting static or dynamic aspects of each phase. The considered
magnetic systems are ferromagnetic nematic liquid crystals, tetrahedral ferromagnetic gels and
magnetorheological fluids. A common feature in the description of these systems is the inclusion
of an independent dynamic equation for the magnetization. This is a variable that changes sign
under time reversal. Such behavior introduces profound consequences on the static as well as
dynamic phenomena, which are not possible in nonmagnetic systems. The approach used in
this thesis is macroscopic dynamics which is based on linear irreversible thermodynamics. The
equations are nevertheless highly nonlinear as the transport tensors are generally dependent
on the variables. Macroscopic dynamics provides a systematic description valid on length and
time scales much larger than the ones characteristic for microscopic degrees of freedom. It can
be applied to many different systems and to different geometries.

In the Introduction various macroscopic phases are presented that can be seen as basic
ingredients of the magnetic phases we model. The first two sections deal with ferrofluids and
nematic liquid crystals, which are used in the synthesis of ferromagnetic nematics described in
the following section. The next two sections present tetrahedral order and ferrogels, since a
part of the thesis is devoted to describe the effects of the tetrahedral order in ferrogels as well
as in ferromagnetic nematics. Next we consider the magnetorheological fluids. At the end of
the Introduction, a section is devoted to a short introduction to macroscopic dynamics, which
was the main approach used in this thesis to derive the dynamic equations.

Fairly recently ferromagnetic nematic liquid crystals were experimentally realized for the
first time. This is considered to be the first room temperature ferromagnetic liquid. This
discovery gives a way to study interesting phenomena in ferromagnetism. A magnetic domain,
for example, can flow, which is not possible in solid ferromagnets. Several experiments were
performed on this phase to characterize the optical response to external magnetic fields. Owing
to the spontaneous magnetization there are various effects not present in usual nematic liquid
crystals. One such effect is the dissipative cross-coupling between the magnetization and the
director field. We have shown that the presence of such dynamic coupling is crucial to explain
the experimentally investigated initial behavior of the phase difference of the transmitted light
across a sample of a ferromagnetic nematic and secondly, it is the simplest possible mechanism
to explain the linear dependence of the reorientation relaxation rate on the applied magnetic
field. The determination of the dissipative cross coupling has already been proven to be robust
when comparing results for different concentrations and when a different nematic liquid crystal
is used as a solvent. The values of other reversible and dissipative transport coefficients still
have to be determined. We have made simple suggestions for measuring certain combinations
of the dynamic coefficients using simple shear flow. We extended the notion of the Miesowicz
viscosities to ferromagnetic nematics and we showed that due to the additional orientational
order of ferromagnetic nematics, there are nine such viscosities in contrast to three in usual
nematics. Furthermore, it was shown that an application of a small magnetic field can shift
the critical shear rate of the tumbling regime.

With the advent of certain bent-core liquid crystals it has become clear that the usual
description using a director field does not account for all experimental observations such as the
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isotropic to isotropic phase transition, shifts of the temperature of the phase transition linear
in an electric field, etc. The simplest possible mechanism to account for these properties is the
presence of a tetrahedral order. A characteristic property of such an order is that it breaks the
inversion symmetry of the phase. If orientational order is present in addition to the tetrahedral
order, helical configurations of either hand existing simultaneously can be found. This is a
remarkable property, as the molecules are not chiral, which one might be tempted to think due
to the helix formation. We have derived static and dynamic equations for a hypothetical phase
where the tetrahedral order is combined with the ferromagnetic nematic phase. The motivation
for such a study comes from the recent successful experimental realizations of ferromagnetic
fluid phases as well as the distinct features of bent-core liquid crystals. The ground state of this
hypothetical phase would break time reversal symmetry, due to the spontaneous magnetization,
as well as parity due to the tetrahedral structure. We find several interesting static as well as
dynamic effects. The presence of the spontaneous magnetization promotes the formation of
helices through a linear gradient term in the free energy. Especially intriguing are the dynamic
effects of a temperature gradient. We find that it can drive reversible director rotations and it
is only possible if both time reversal and parity are broken.

Experimentally it is known that certain phases made from bent-core molecules produce
macroscopic chiral domains of either hand. An existing model accounts for these observations
by the simultaneous presence of the tetrahedral order and a transient network. A natural
question arises on the effects when one combines tetrahedral order with the ferromagnetic gel
phases. From the applications point of view, ferrogels are commonly considered as actuators or
in medicine for drug release mechanism. The reason behind this is that they can be mani-
pulated strongly using external magnetic fields. We find that the presence of tetrahedral
order in ferromagnetic gels gives unique properties when dealing with mechanical forces. A
uniaxial compression for example, produces interesting spatially modulated patterns of the
magnetization that can only arise when tetrahedral order is present. Different spatial patterns
occur when the gel is sheared. For a transient network, we furthermore find that a temperature
gradient along the spontaneous magnetization induces shear stresses, which could be measured
by mechanical means. If the external temperature gradient is applied perpendicularly to the
magnetization the value of the induced shear stress depends on the angle between the gradient
and the orientation of the tetrahedral structure. In principle one could then determine the
orientation of the tetrahedral structure, which is not possible using light scattering experiments
as they are optically isotropic.

Lastly, we deal with magnetorheological fluids. These fluids are useful in vibration control,
for example as part of the suspension systems in cars, dampers or clutches. They have an
extremely important ability of magnetic field induced transitions from a liquid-like behavior
in the off state to a solid-like behavior when an external magnetic field is applied. Knowing
the dynamics of such a system is therefore of practical importance. We show that a dynamic
interplay of magnetization and the strain field is enough to explain many features of magneto-
rheological fluids, such as the magnetic field dependence of the yield stress. This is made
possible by a quadratic dependence of the elastic moduli on the magnetization. We also find that
the flow curves exhibit a steep increase for low shear rates and a peak structure at intermediate
shear rates and higher magnetic fields. This also indicates that shear thinning, which is usually
observed in magnetorheological fluids, is captured by this model. We furthermore find specific
frequency dependent behavior of the storage and loss moduli. For instance, the loss modulus



iv Contents

appears to have a maximum and a minimum at intermediate frequencies. For the minimum
we also predict a shift to higher frequencies as one increases the external magnetic field. All
these phenomena can be accounted for already on the macroscopic level without considering
microscopic features of magnetorheological fluids.



Zusammenfassung

Diese Dissertation befasst sich mit der Herleitung einer makroskopischen Beschreibung für
mehrere magnetische makroskopische Phasen. Die Ergebnisse werden mit den verfügbaren
experimentellen Daten verglichen und wir machen einfache experimentelle Vorschläge zur Mes-
sung statischer oder dynamischer Aspekte jeder Phase. Die betrachteten magnetischen Systeme
sind ferromagnetische nematische Flüssigkristalle, tetrahedrale ferromagnetische Gele und mag-
netorheologische Flüssigkeiten. Ein gemeinsames Merkmal in der Beschreibung dieser Systeme
ist die Einbeziehung einer unabhängigen dynamischen Gleichung für die Magnetisierung. Diese
ist eine Variable, die das Vorzeichen unter Zeitumkehr ändert. Ein solches Verhalten führt zu
tiefgreifenden Folgen für die statischen und dynamischen Phänomene, die in nichtmagnetischen
Systemen nicht möglich sind. In dieser Dissertation wird die Methode der makroskopischen
Dynamik verwendet, die auf linearer, irreversibler Thermodynamik basiert. Die Gleichungen
sind jedoch stark nichtlinear, weil generell die Transporttensoren von den Variablen abhängig
sind. Die makroskopische Dynamik liefert eine systematische Beschreibung, die auf Längen-
und Zeitskalen gültig ist, welche viel größer sind als die für mikroskopische Freiheitsgrade
charakteristischen Skalen. Man kann deswegen die makroskopische Dynamik auf viele verschie-
dene Systeme und auf verschiedene Geometrien anwenden.

In der Einführung werden verschiedene makroskopische Phasen vorgestellt, die als Bestand-
teile der magnetischen Phasen, die wir modellieren, angesehen werden können. In den ersten
zwei Abschnitten geht es um Ferrofluide und nematische Flüssigkristalle, die bei der Synthese
der ferromagnetischen nematischen Flüssigkristalle verwendet werden. Die ferromagnetischen
nematischen Flüssigkristalle werden dann im folgenden Abschnitt beschrieben. Die nächsten
zwei Abschnitte präsentieren tetrahedrale Ordnung und Ferrogele, da ein Teil der Dissertation
der Beschreibung der Auswirkungen von tetrahedraler Ordnung sowohl auf Ferrogele als auch
auf ferromagnetische nematische Flüssigkristalle gewidmet ist. Dann betrachten wir magneto-
rheologische Flüssigkeiten. Das Ende dieses Kapitels widmet sich einer kurzen Einführung in die
makroskopische Dynamik, die der Hauptzugang in dieser Dissertation war, um die dynamischen
Gleichungen herzuleiten.

Vor kurzem wurden ferromagnetische nematische Flüssigkristalle erstmals experimentell
realisiert. Diese gelten als die erste ferromagnetische Flüssigkeiten bei Raumtemperatur. Diese
Entdeckung ermöglicht es, interessante Phänomene im Ferromagnetismus zu studieren. Eine
magnetische Domäne kann beispielsweise fließen, was in festen Ferromagneten nicht möglich
ist. Für diese Phase wurden mehrere Experimente durchgeführt, um die optische Antwort
auf äußere Magnetfelder zu charakterisieren. Aufgrund der spontanen Magnetisierung gibt
es verschiedene Effekte, die in üblichen nematischen Flüssigkristallen nicht vorhanden sind.
Ein solcher Effekt ist die dissipative Kreuzkopplung zwischen der Magnetisierung und dem
Direktorfeld. Wir haben gezeigt, dass das Vorhandensein einer solchen dynamischen Kopplung
entscheidend ist, um das Anfangsverhalten der Phasendifferenz des durchgehenden Lichts für
eine Probe der ferromagnetischen nematischen Flüssigkristalle zu erklären. Weiterhin ist es der
einfachste Mechanismus die lineare Abhängigkeit der Relaxationsrate der Orientierung vom
Magnetfeld zu erklären. Die Bestimmung der dissipativen Kreuzkopplung hat sich bereits
beim Vergleich der Ergebnisse für unterschiedliche Konzentrationen und bei der Verwendung
anderer nematischer Flüssigkristalle als Lösungsmittel als robust erwiesen. Die Werte anderer
reversibler und dissipativer Transportkoeffizienten müssen noch ermittelt werden. Wir haben
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einfache Vorschläge für die Messung bestimmter Kombinationen der dynamischen Koeffizienten
mit einfacher Scherströmung gemacht. Wir haben die Miesowicz Viskositäten auf ferromagneti-
sche nematische Flüssigkristalle verallgemeinert und gezeigt, dass es aufgrund der zusätzlichen
Orientierungsordnung der ferromagnetischen nematischen Flüssigkristalle neun solche Viskosi-
täten gibt, im Gegensatz zu drei in gewöhnlichen nematischen Flüssigkristallen. Weiterhin
kann man zeigen, dass eine Anwendung eines kleinen Magnetfeldes die kritische Scherrate des
Tumbling-Regimes verschieben kann.

Es ist mit dem Aufkommen bestimmter Flüssigkristallphasen, die von bent-core Molekülen
gebildet werden, klar geworden, dass die übliche Beschreibung des Systems mit einem Direktor-
feld nicht alle experimentellen Beobachtungen, wie zum Beispiel einen isotrop zu isotrop Phasen-
übergang, Verschiebung der Temperatur des Phasenübergangs linear in einem elektrischen Feld,
usw., beschreiben kann. Der einfachste Mechanismus, diese Eigenschaften zu berücksichtigen,
ist die Gegenwart einer tetrahedralen Ordnung. Eine charakteristische Eigenschaft einer solchen
Ordnung ist die Brechung der Inversionssymmetrie in einer solchen Phase. Wenn zusätzlich zur
tetrahedralen Ordnung eine Orientierungsordnung vorhanden ist, können gleichzeitig Helices
beider Händigkeiten gefunden werden. Dies ist eine bemerkenswerte Eigenschaft, weil die
Moleküle nicht chiral sind, was man aufgrund der Helixbildung denken könnte. Wir haben
statische und dynamische Gleichungen für eine Phase hergeleitet, in der die tetrahedrale Ord-
nung mit der ferromagnetischen nematischen Phase kombiniert ist. Die Motivation für eine
solche Studie ergibt sich aus den jüngsten erfolgreichen experimentellen Realisierungen ferro-
magnetischer Flüssigkristallphasen sowie den Besonderheiten von bent-core-Flüssigkristallen.
Der Grundzustand dieser hypothetischen Phase würde die Zeitumkehrsymmetrie, aufgrund der
spontanen Magnetisierung, sowie die Parität, aufgrund der tetrahedralen Struktur, brechen.
Wir finden mehrere interessante statische und dynamische Effekte. Das Vorhandensein der
spontanen Magnetisierung verursacht die Bildung von Helices durch einen linearen Gradienten-
term in der freien Energie. Besonders faszinierend sind die dynamischen Effekte eines Tempera-
turgradienten. Wir zeigen, dass ein Temperaturgradient zu reversiblen Direktor-Rotationen
führen kann; dies ist nur möglich, wenn beide, die Zeitumkehr und die Parität, gebrochen sind.

Experimentell ist bekannt, dass bestimmte Phasen aus bent-core Molekülen makroskopische
chirale Domänen beider Hände erzeugen. Ein bestehendes Modell erklärt diese Beobachtungen
durch das gleichzeitige Vorhandensein einer tetrahedralen Ordnung und eines transienten Netz-
werks. Eine natürliche Frage stellt sich bzgl. der neu auftretenden Effekte, wenn man tetra-
hedrale Ordnung mit ferromagnetischen Gelphasen kombiniert. Aus der Sicht der Anwendungen
werden Ferrogele häufig als Aktuatoren oder in der Medizin als Vehikel zur Medikamentenfrei-
setzung ins Auge gefasst. Der Grund dafür ist, dass sie mit externen Magnetfeldern leicht
manipuliert werden können. Wir finden, dass das Vorhandensein von tetrahedraler Ordnung in
ferromagnetischen Gelen einzigartige Eigenschaften zeigt, wenn man mechanische Kräfte anlegt.
Eine uniaxiale Kompression erzeugt zum Beispiel interessante räumlich modulierte Muster der
Magnetisierung, die nur existieren, wenn tetrahedrale Ordnung vorhanden ist. Verschiedene
räumliche Muster treten auf, wenn man das Gel schert. Für ein transientes Netzwerk finden
wir weiterhin, dass ein Temperaturgradient parallel zur spontanen Magnetisierung Scherspan-
nungen induziert, die man mechanisch messen kann. Wenn der äußere Temperaturgradient
senkrecht zur Magnetisierung angelegt wird, hängt der Wert der induzierten Scherspannung
vom Winkel zwischen dem Gradienten und der Ausrichtung der tetrahedralen Struktur ab.
Prinzipiell kann man dann die Ausrichtung der tetrahedralen Struktur messen, was mit Licht-
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streuexperimenten nicht möglich ist, weil tetrahedrale Strukturen optisch isotrop sind.
Schließlich beschäftigen wir uns mit magnetorheologischen Flüssigkeiten. Diese Flüssigkei-

ten sind für das Gebiet der Schwingungskontrolle nützlich, zum Beispiel als Teil der Federungs-
systeme in Fahrzeugen, als Dämpfer oder Kupplungen. Sie zeigen die überaus interessante
Eigenschaft eines Übergangs von einem flüssigkeitsähnlichen Verhalten im aus-Zustand zu
einem festen Verhalten, wenn man ein externes Magnetfeld anlegt. Es ist deswegen von prak-
tischer Bedeutung die Dynamik solcher Systeme zu verstehen. Wir zeigen, dass ein dyna-
misches Zusammenspiel der Magnetisierungsvariablen und des Dehnungsfeldes ausreicht, viele
Eigenschaften magnetorheologischer Flüssigkeiten zu beschreiben, zum Beispiel die Magnetfeld-
abhängigkeit des yield stress. Dies wird durch eine quadratische Abhängigkeit der elastischen
Moduln von der Magnetisierung ermöglicht. Wir zeigen, dass die Strömungskurven einen
steilen Anstieg für niedrige Scherraten und eine Peakstruktur bei mittleren Scherraten und
höheren Magnetfeldern aufweisen. Dies zeigt auch, dass Scherverdünnung, die normalerweise
in magnetorheologischen Flüssigkeiten beobachtet wird, von diesem Modell erfasst wird. Des
Weiteren finden wir spezifisches frequenzabhängiges Verhalten der Speicher- und Verlustmo-
duln. Zum Beispiel, hat der Verlustmodul ein Maximum und ein Minimum bei mittleren
Frequenzen. Für das Minimum sagen wir eine Verschiebung zu höheren Frequenzen vorher,
wenn man das äußere Magnetfeld erhöht. Alle diese Phänomene können bereits auf makrosko-
pischer Ebene beschrieben werden, ohne die mikroskopischen Eigenschaften magnetorheologi-
scher Flüssigkeiten zu berücksichtigen.



viii Contents



Chapter 1

Introduction

In this chapter I give a short overview of the basic physical systems and concepts, which were
the main focus of this work. I start with ferrofluids and nematic liquid crystals, which are the
basic ingredients for the synthesis of ferromagnetic nematic liquid crystal phases, presented in
the following section. I continue with a description of the tetrahedral order which we combined
with the ferromagnetic nematic phase and ferrogels. In Sec. 1.6 I also give a short overview of
the properties of magnetorheological fluids. At the end of this chapter in Sec. 1.7 I present the
concepts of macroscopic dynamics, which is the main approach used in this thesis to derive the
governing equations.

1.1 Ferrofluids

Ferrofluids are suspensions of ferromagnetic nanoparticles in a carrier liquid, which is typically
water or an organic solvent [1,2]. A common choice for the magnetic nanoparticles are usually
iron oxides (such as magnetite or hematite) or cobalt with a particle diameter of about 10
nm [2].

An external magnetic field aligns the magnetic moments in the direction parallel to the
imposed field. The initial magnetic susceptibility is orders of magnitude higher than in usual
paramagnetic liquids, which means ferrofluids exhibit liquid as well as superparamagnetic
behavior [3]. After the field is switched off the magnetization relaxes by rotation of the particles
itself (Brownian relaxation) or by rotation of the magnetic moment within the particle (Neel
relaxation) [4]. Usual ferrofluids exhibit a complex combination of both processes. For smaller
sized magnetic particles the Neel relaxation is much faster than the Brownian relaxation, while
for larger sized particles, the Brownian relaxation dominates and the particles are also referred
to as magnetically hard. The field of ferrofluid research developed quickly after first stable
ferrofluids were synthesized in the 1960’s [5]. The magnetic particles have a tendency to
agglomerate, largely due to the attractive van der Waals interactions and also due to magnetic
dipole forces. To inhibit this agglomeration, one can either charge the particles, thereby
introducing a strong enough electrostatic repulsion, or coat the particles using special organic
molecules, also called surfactants. These molecules induce steric repulsion, which keeps the
particles apart and stabilizes the suspension [3, 6].

The application of a magnetic field leads to a significant rise of the viscosity. This was first
measured in ferrofluids composed of magnetite nanoparticles [7], followed soon afterwards by
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diluted cobalt based ferrofluids [8]. On the theoretical side this effect was first studied in Ref. [4],
while the dynamics of ferrofluids was modeled macroscopically in Ref. [9]. In Refs. [10,11] the
(reversible) coupling of the magnetization to the symmetric velocity gradient was crucial to
explain the experimental data. By measuring this coupling one can also estimate the length of
magnetic chains, which is typically between 2 and 5 particle diameters.

Ferrofluids are used in various areas of applications such as in computer hard drives, where
ferrofluid seals prevent debris from entering the devices. They can be used as dampers.
In biomedical applications they are used as a contrast fluid in magnetic resonance imaging
[12]. They even have the potential to be used in cancer treatment by the use of magnetic
hyperthermia. This technique utilizes oscillating magnetic fields, which cause the particles to
heat up and in turn damage the tumor without heating the surrounding tissue. Ferrofluids
have been shown to be useful in magnetically controlled drug targeting, where drugs are bound
with magnetic particles and released at the area of interest [13,14].

1.2 Nematic liquid crystals

Certain organic compounds show a series of intermediate phases (mesophases) between the
liquid and the solid state [15]. Such a material can flow like an ordinary liquid, but can also
show additional orientational or partial positional order, which indicates solid-like properties.
Consequently, these phases are also called liquid crystals.

The molecules that form these liquid crystals are usually highly anisotropic in the form of
rod-like or disk-like molecules. There are many different mesophases, since there are numerous
combinations that orientational and positional symmetries can be broken. The classification
of different types of phases was first done in 1922 by Friedel [16], where liquid crystals were
divided into three different classes; nematics, cholesterics and smectics. The simplest possible
phase is the nematic phase, which is characterized by a long-range orientational order, while
the positions of the molecules are still random, Fig. 1.1. This orientational order is for uniaxial
nematics described by the so called director n, with the additional identification of head-tail
symmetry n ↔ −n for non-polar materials. For biaxial nematics an additional director is
needed l, with the equivalent symmetry l ↔ −l. It should be noted, that biaxiality can be
induced in uniaxial nematics by large external fields. Throughout this thesis we discard any
biaxiality. The strength of the nematic ordering is described by the scalar order parameter
S = 1

2
(3〈cos2 θ〉− 1), with θ the angle between the molecular axis and the director and 〈 . 〉 the

thermal average. It takes the values between −1/2 and 1 with 1 corresponding to the case where
all the molecules point along the director and 0 in the isotropic phase, where the molecules
are oriented randomly. In usual nematics S ∼ 0.5− 0.6 at room temperature [15]. Very often
the director and the scalar order parameter are combined into a symmetric traceless tensorial
order, which reads for uniaxial nematics Qij = 1

2
S(3ninj − δij), with δij being the Kronecker

delta. Throughout this work we assume the scalar order parameter to be constant, which is a
valid assumption if one is far away from the isotropic-nematic phase transition or sufficiently
far away from defects. We therefore use the director n to characterize the orientational order
and ensure all equations are invariant with respect to the head-tail symmetry.

Cholesterics are chiral liquid crystals, which break the inversion symmetry and have a strong
tendency to form helical structures. Chiral nematics for example can be obtained by doping
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Figure 1.1: A schematic of a liquid crystal in the isotropic phase (left) and in the nematic phase
(right) with S ≈ 0.8.

nematic liquid crystals by chiral molecules. The pitch of the helices is frequently on the order of
several 100 nanometers, which is the reason they often appear colorful due to Bragg reflection
being in the visible spectrum of light. The pitch is sensitive to temperature, external fields and
concentration of the chiral dopant.

Smectic phases are characterized in addition to the orientational order by some degree of
positional order. In the smectic-A (SmA) phase for example, the translational order is broken
once and the molecules form layers, with the director n on average parallel to the layer normal.
In the smectic-C (SmC) phase, the director is tilted with respect to the layer normal.

The continuum (static) theory of liquid crystals started in the 1930’s with the works of Oseen
[17] and Zocher [18], which was later developed further by Frank [19] and Ericksen [20]. Later
on Ericksen derived the dynamic theory for nematic liquid crystals [21], which was completed
by Leslie [22]. The set of these equations together with the constitutive relations form the
so called Ericksen-Leslie theory. In the 1970’s the linear hydrodynamic approach was used to
derive the dynamic equations [23, 24]. The advantages of this approach is that there is a clear
distinction between reversible and irreversible processes [25] and it can be easily extended to
nonlinear descriptions [26] and to more complex systems. This approach will also be described
at the end of this chapter.

Liquid crystals in sufficiently thick layers appear turbid. Their scattering cross section is of
the order of 106 higher than in usual isotropic liquids [15]. In fact, when liquid crystals were
first discovered by Reinitzer [27] and Lehmann [28], they observed a cloudy phase above the
melting temperature of cholesterol. As they heated this phase further it transformed into a
transparent liquid. First detailed experiments on light scattering were done by Chatelain [29].
It was later understood that the dominant contribution to the scattering of light in nematic
liquid crystals is caused by the thermal fluctuations of the director field n [30]. This is because
fluctuations of the orientation are strongly related to the fluctuations of the dielectric tensor,
which causes the scattering.
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Due to their anisotropic optical properties and high sensitivity to external electric fields,
liquid crystals are of great importance in display devices. In liquid crystal displays (LCDs) a
nematic liquid crystal is placed between two parallel layers located between two polarizers. The
polarizers are crossed and the ground state assumes a twist of 90 degrees across the cell. Such a
slow rotation of the director acts as a waveguide [31] and allows the light to pass through. If a
strong enough electric field of order of 1 V is applied perpendicularly to the layers, the director
field aligns along the electric field and the device is no longer transparent.

Recently, cholesteric liquid crystals were proposed to be used in security applications, such
as the authentication of people. The idea behind this makes use of colored patterns coming
from Bragg reflections of shells of cholesteric liquid crystals [32].

1.3 Ferromagnetic nematics

Ferromagnetism is a phenomenon well known in solids. In 1970 an idea to generate a liquid
ferromagnet was proposed by Brochard and de Gennes [33]. The claim was that by introduction
of ferromagnetic nanoparticles in a nematic liquid crystal one could induce a phase showing
simultaneously ferromagnetic and nematic ordering. The synthesis and experimental character-
izations of magnetic fluids combined with nematic phases followed soon afterwards [34–39].
These experimental works did not lead to ferromagnetic nematic phases, as the particles were
too large and not well enough characterized. In more concentrated systems, phase separation
and segregation as well as aging were the big problems. Such phases are called ferronematics,
where the spontaneous magnetization is zero. They respond superparamagnetically to the
external magnetic field, and typically show a substantial lowering of the critical magnetic field
of the Fredericks transition [40, 41]. Ferronematics have recently also been synthesized using
spindle-like magnetic particles with the magnetic moments oriented perpendicularly to their
main axes [42].

Only rather recently the group of Lisjak and Mertelj successfully experimentally realized
ferromagnetic nematic phases [43] and characterized their macroscopic properties [44, 45]. A
key step in obtaining a ferromagnetic phase was to use platelet-like magnetic nanoparticles,
Fig. 1.2. They used barium hexaferrite particles (BaScxFe12−xO19) with a diameter of 70 nm
and thickness of 5 nm, which were covered by dodecylbenzenesulphonic acid (DBSA). This is
a common surfactant used in colloidal suspensions to ensure that the molecules of the nematic
liquid crystal prefer a perpendicular (homeotropic) orientation with respect to the platelets.
This shape, together with homeotropic anchoring, induces a quadrupolar distortion of the
nematic director field around the platelets, which prevents aggregation in the direction of the
director. Furthermore, the magnetic interaction prefers parallel orientation of the dipoles,
resulting in ferromagnetism [46].

Magnetic particles were then suspended in a nematic liquid crystal (common choices are
5CB [43, 44, 47, 48], E7 [49], 7CB [49], 8CB [45]) above the nematic-isotropic phase transition
temperature. The suspension was then filled in a liquid crystal cell between two parallel glass
plates 20 micrometers apart, with rubbed surfaces, so that the preferred orientation of the
nematic liquid crystal was parallel to the plates (planar orientation). During the filling a small
magnetic field of 8 mT was applied parallel to the rubbing direction to ensure a monodomain
sample. Typical values of the magnetization are 50 A/m - 300 A/m [43–45, 49], which is
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equivalent to a magnetic field of 0.06 mT to 0.38 mT.
Static measurements were performed on a sample of a ferromagnetic nematic confined

between two parallel plates, about 20µm apart. The sample was put between two crossed
polarizers and the intensity of the transmitted light was measured. Measurements revealed a
strong magneto-optic response at very small magnetic fields of order 5 mT [43,44]. This is due
to the linear coupling of the spontaneous magnetization with the magnetic field and a static
coupling between the director and the magnetization. Furthermore, shear flow experiments
revealed a strong magnetoviscous effect, where the effective viscosity could be doubled using
magnetic fields of order 20 mT.

Figure 1.2: A microscopic picture of a ferromagnetic nematic. Taken from Ref. [49].

On the theoretical side, ferronematics were first considered in Ref. [33], where the free energy
was derived by considering orientational distortions induced in a nematic liquid crystals by a
magnetic grain. In addition a strong anchoring of the director n and the local magnetization M
was assumed. It was soon shown that such an approximation is not applicable in thermotropic
ferronematics [35]. A finite anchoring of the director to the magnetic grains has been considered
in Refs. [50,51], thereby treating n and M as independent variables. Macroscopically ferromagnetic
nematics were modeled by assuming the magnetization is already relaxed to the value and the
direction set by the external magnetic field in Ref. [52]. The dynamic effects in such a system
are technically also present in usual nematic liquid crystals, but there is a much higher chance
they would be observed in ferronematics. A model, taking into account the magnetization as
an independent dynamic variable Ref. [53] followed soon afterwards. Suspensions of magnetic
particles in a liquid crystal were also studied microscopically using molecular dynamics simulations
[54].

Since the discovery of ferromagnetic nematics in 2013, additional ferromagnetic fluid phases
have been synthesized. We first mention the biaxial ferromagnetic nematic [48]. There a conical
anchoring of the nematic molecules on the surfaces of the platelets was achieved, which gave
rise to a rich variety of domain structures. Secondly, ferromagnetic cholesteric liquid crystals
have been synthesized using platelet shaped particles [47,55,56].

Since the director and the magnetization are coupled, n is also coupled indirectly to the
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external magnetic field and the magnetization to the external electric field. The former can be
detected in the form of the magneto-optic effect, while the latter is called converse magnetoelectric
effect [43]. Ferromagnetic nematics can be manipulated using a very weak external magnetic
field. Consequently they have a potential use in magneto-optic devices, or as a visualization
of small magnetic fields [57]. An advantage of the magnetic field compared to the use of the
electric fields, is that the former can be applied without any contact and in any direction,
whereas the use of the latter is limited by the geometry of the electrodes.

1.4 Tetrahedral order

In a certain class of liquid crystals formed by bent-core [58–70] or ferrocene-type molecules [71,
72], unusual properties have been observed. Examples are isotropic-isotropic phase transitions,
where the higher temperature is the truly isotropic liquid, while the other is only optically
isotropic, but has lower symmetry. In such liquid crystals it is possible to induce nematic
order linearly in an electric field as well as shift the phase transition temperature up to 10 K
linearly in an electric field. Some compounds, composed of achiral bent-core molecules, show a
spontaneous formation of left and right handed domains [58,62,68].

A candidate to model such a behavior is the presence of tetrahedral order [73–77], which
can be represented by 4 vectors spanning a tetrahedron. The tetrahedral order parameter Tijk
is a fully symmetric third rank tensor [78,79]

Tijk = T0

4∑

β=1

nβi n
β
j n

β
k , (1.1)

where T0 is the strength of the tetrahedral order and nβi are the four vectors spanning a
tetrahedron, Fig. 1.3. The symmetry of a tetrahedron contains four proper threefold axes (nβi ),

Figure 1.3: A schematic of the tetrahedral structure, (right) the mirror image. Taken from
Ref. [74].

and three improper fourfold axes (x, y and z in Fig. 1.3). A special property of the tetrahedral
symmetry is that it breaks the inversion symmetry, i.e., a spatially inverted structure is different
from the original one. An external electric field orients the tetrahedral structure so that one
of the tetrahedral vectors is along the electric field. The lowest possible term is cubic in the
electric field [79]

fel = −ξ1TijkEiEjEk (1.2)
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A magnetic field H alone can not orient the tetrahedral structure, but there is an orienting
effect if an electric field is imposed in addition [80]

fel = −ξ2TijkEiHjHk. (1.3)

In Ref. [73–75] a mechanism was proposed to explain the spontaneous formation of macroscopic
domains of either hand in systems composed of achiral bent-core molecules. It turns out the
presence of the nematic (quadrupolar) in addition to the tetrahedral (octupolar) order can
give rise to ambidextrous helicity and ambidextrous chirality. It should be emphasized that
this phenomenon is different from the formation of helices in chiral nematic liquid crystal,
where the macroscopic chirality originates from the chirality of the molecules. Using a Landau
description it can be shown that in the ground state the director can either point along one of
the tetrahedral vectors or along one of the improper 4̄ axes. In the former case the phase is of
polar C3v symmetry, while the latter is the nonpolar D2d phase. A special feature of this phase
is the presence of a linear gradient term of the director field fl in the free energy

fl = ξTijkni∇jnk. (1.4)

Such a term is only possible due to the broken inversion symmetry of the tetrahedral order.
This term gives rise to helices of both hand as shown in Fig. 1.4. There is also additional

Figure 1.4: Helical configurations of opposite hands. The orange double-headed arrows
represent the director field and the blue tetrahedra the tetrahedral structure.

complexity in the static response of the structure to an applied external electric field. The
nematic dielectric anisotropy favors a parallel (or perpendicular) orientation of n with respect
to the field, while the tetrahedral vectors try to orient along the field. This leads to a field
dependent orientation of the structure [74].

The tetrahedral structure breaks the rotational symmetry three times and therefore gives
rise to three additional hydrodynamic variables. It was found [81] that electric field or gradients
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of temperature or concentration lead to an induced reversible flow. The tetrahedral symmetry
leads to one additional transport parameter in the viscosity tensor compared to ordinary fluids.

Tetrahedral order has also been considered in active matter in models of self propulsion
in two dimensions [82–84]. The dynamical model included an equation for the velocity of
the center of gravity, and equations for the second rank and third rank tensor, describing
the weak deformation of a circular shape of the cell. Because of the couplings between these
dynamic variables one deduces, for example, the migration-induced deformation and vice-versa
deformation-induced migration.

1.5 Ferrogels

Magnetic gels or elastomers are composed of magnetic particles embedded in a polymer gel
and therefore include properties of ferrofluids as well as gels. The elastic response as well
as the properties of such a material can be then controlled using an external magnetic field.
Experimentally, research on magnetic gels started in the 1990’s [85, 86], when isotropic gels
where successfully prepared. As in ferrofluids, in such a gel the magnetic moments of particles
are oriented randomly in the absence of an external magnetic field. A superparamagnetic
response is observed when a magnetic field is applied. A first attempt to produce anisotropic
magnetic gels was reported in Ref. [87], where micrometer sized particles were used. In 2003
uniaxial magnetic gels were synthesized by two groups [88, 89], where the gels was prepared
in the presence of an external magnetic field. During the crosslinking process the magnetic
particles oriented themselves along the magnetic field and formed columns larger than the
mesh size of the network. This lead to a nonzero frozen-in magnetization even if a magnetic
field is switched off. Such gels can be oriented by homogeneous magnetic fields, which is in
contrast to isotropic gels, which can only deform in a magnetic field gradient. In Ref. [88] a high
concentration ferrofluid was used in the synthesis and an anisotropic mechanical and swelling
behavior was observed. In contrast, in Ref. [89] a lower concentrated ferrofluid was used.
Anisotropic magnetic as well as anisotropic optical properties but no anisotropic mechanical
properties were observed.

Isotropic ferrogels were first modeled theoretically macroscopically in Ref. [90]. A contribution
linear in the magnetic field was found for the low frequency regime of the sound spectrum that
depends on the angle between the field and the wave vector. In addition, several reversible and
dissipative couplings are found between the elastic strain, magnetization and flow. Furthermore
if a magnetic field gradient and oscillating temperature gradient is imposed, a shear deformation
perpendicular to both, the field and the temperature gradient is created. Interesting properties
of magnetic gels such as nonaffine deformations and buckling of magnetic particle chains have
been experimentally analyzed and numerically described using a mesoscopic approach [91,92].

A macroscopic theory for uniaxial magnetic gels was presented in [93]. Therein it was
predicted that a constant shear flow induces a rotation of the magnetization out of the shear
plane. This effect is due to the variable of relative rotations between the elastic network and the
magnetization, which is absent in isotropic gels. Another effect special for uniaxial magnetic
gels is magnetic field induces strain. Here an oscillating magnetic field applied perpendicularly
to the magnetization induces relative rotations, which in turn induce shear strains.

Since the shape of the ferrogel can be controlled by an external magnetic field, they
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have the potential to be used as magnetic actuators, where the gels contracts, elongates or
rotates. Ferrogels can also be made from biocompatible materials, which makes them safe
for medical applications. Examples are hyperthermia [94] or drug release mechanisms [95, 96].
The drug release mechanism makes use of an imposed oscillatory magnetic field. During the
remagnetization and relaxation, the heat dissipation increases the temperature of the gel, which
in turn causes swelling or shrinking of the gel [97] and consequently drug release. Due to
their ability to contract or elongate, ferrogels are also considered as candidates for artificial
muscles [98].

1.6 Magnetorheological fluids

Many fluids experience significant changes upon application of an external electric or magnetic
field. Examples are rapid and reversible acquisition of solid-like properties and huge increase
of the viscosity. The effects of external electric or magnetic fields on the viscosity of normal
fluids were studied already by König [99], while the research on electrically polarized liquids
started with the works of Duff [100] and Quincke [101], who studied liquids such as ether,
carbon disulphide and benzene mixed with glass spheres. Winslow [102] found that the effective
viscosity of these so called electrorheological fluids can be varied by orders of magnitude using
an external electric field. More specifically the viscosity varied with the square of the applied
electric field. When an electric field was applied to the initial undisturbed suspension, fibrous
particle chains appeared in the direction of the applied field.

In 1948 Rabinow [103] introduced magnetorheological fluids, which are colloidal suspensions
of micrometer sized magnetizable particles in a carrier fluid. MR fluids are different from
ferrofluids in the diameter of the particles and the fact that ferrofluids stay fluid even in strong
magnetic fields [6], though they do share a magnetic field dependent viscosity. The most
common choices of materials for magnetic particles are iron oxides, carbonyl iron or iron cobalt
with a diameter ranging between 1 to 100 micrometers, suspended in a mineral oil or a silicone
oil. As for ferrofluids, the magnetic particles are coated with surfactants such as oleic or citric
acid to prevent the agglomeration process.

In an external magnetic field, the particles get magnetized and as the magnetic interaction
energy overcomes the thermal energy, the dipole forces promote the formation of chains. If
the concentration is high enough thick columnar structures are formed in the direction of the
magnetic field, see Fig. 1.5. The formation of these gap-spanning columns is fast, usually on the
order of milliseconds. When the magnetic field is switched off, the magnetic particles diffuse,
which leads back to an isotropic state, though in certain cases a small hysteresis was observed,
where the chains persisted even at zero magnetic field [104]. This is in part due to colloidal
van der Waals forces and remnant magnetization of the magnetic particles used [105].

The structural changes are responsible for the resistance of the system to external shear
stress, which gives it solid-like properties. When a critical shear stress, also called the static
yield stress, is applied, the structures break and the material starts to flow. The yield stress
can reach up to 100 kPa at a magnetic field of 1 T. A further increase in the shear yield stress
has been reported [106–108] by uniaxially compressing the system along the direction of the
magnetic field.

On the theoretical side, several microscopic and macroscopic models have been developed



10 Macroscopic dynamics

Figure 1.5: A schematic of a magnetorheological fluid in the isotropic phase (left). When
a magnetic field is applied, columns of magnetizable particles are formed (right), which are
positioned aperiodically and can be of various thicknesses.

to study the magnetic field dependence of the yield stress. Due to the similar form of the
interaction between the particles, certain models made for electrorheological fluids [109, 110]
can be applied to magnetorheological fluids as well. Microscopic models typically assume the
formation of single chain structures [111–115], which deform affinely when the system is sheared.
The yield stress is then proportional to the maximal interparticle force. Certain refinements of
such a model can be done by taking into account the actual crystal structures formed by the
particles [116]. The dynamics of MR fluids was studied microscopically by the simulation of
individual particles [117] or single chains [118, 119]. The independent droplet model was used
in Ref. [120] to describe the shear-thinning behavior.

Macroscopically the static behavior of magnetorheological fluids was modeled using a director-
like degree of freedom [121–123]. In [124] the yield stress was calculated for a fluid with lamellar
structure. The formation of the columnar structures was modeled using a variant of a two-fluid
approach, treating the fluid and the magnetic phases separately. Therein it was found that an
application of an external field leads to thin columns of particles [125–127].

The main limitations of using magnetorheological suspensions is the fact that the particles
tend to sediment, which is no surprise as they are composed of micron sized particles. With such
a suspension the gravitational forces become important. It should be therefore emphasized that
we assume throughout this work that the experiments are done on a timescale shorter than
the sedimentation time. MR fluids are used in automobile industry as an active control of
suspension and vibrations (shock absorbers) as well as for clutches. Other examples are seismic
vibration dampers and magnetic seals.

1.7 Macroscopic dynamics

While microscopic theories and simulations thrive when the number of constituent parts is
small, these techniques are generally not feasible for a macroscopic system where the number
of degrees of freedom is of the order of Avogadro’s constant. In a macroscopic description we
are saved by the fact that there is only a small number of degrees of freedom that relax to



Macroscopic dynamics 11

equilibrium in time proportional to some power of the wave-number [24]. These degrees of
freedom are the variables that constitute the hydrodynamic theory of a system and formally
obey

lim
k→0

ω(k) = 0, (1.5)

where ω and k are the frequency and the wave-vector of a disturbance.
There are three basic classes of macroscopic variables. The first class is connected with

the variables corresponding to global conservation laws. Examples are the conservation of
mass, linear momentum and energy. These variables cannot be created or destroyed and can
only be transported [24,128]. The second class contains variables connected with spontaneously
broken continuous symmetries. The energy functional is invariant with respect to the symmetry
operation, but the macroscopic state itself is not. Using the Goldstone theorem it can be
proven that the frequency of the disturbance of such variables vanishes at zero wave-number,
which makes such a variable hydrodynamic. Examples are the changes of the director n
from the equilibrium direction, the direction of the magnetization in ferromagnetic systems
m, uniform displacements along the layer normal in smectic-A liquid crystals, the relative
velocity in superfluid systems, the elastic strain tensor εij in elastic systems, etc. [129]. It
should be emphasized that in the presence of external electric or magnetic fields, several of these
variables are strictly speaking no longer hydrodynamic. In certain systems there are in addition
microscopic variables that relax on timescales much larger than the rest of the microscopic
degrees of freedom and it is therefore sensible to include these in the macroscopic description.
They constitute the class of slowly relaxing variables. Examples are the magnetization modulus,
nematic scalar order parameter, strength of the tetrahedral order, relative rotations in a nematic
elastomer, etc. The inclusion of such variables in a dynamic description falls outside the realm
of the strictly hydrodynamic approach and one has to present experimental or microscopic
arguments to justify their inclusion.

One of the advantages of the hydrodynamic method is its applicability to different systems
and different geometries. A price one has to pay are the unknown phenomenological coefficients
that come up as generalized susceptibilities and transport parameters in statics and dynamics.
These have to be either measured or estimated from microscopic theories.

The hydrodynamic description is based on local thermodynamic equilibrium [130]. One
starts by writing the total energy E as a function of the relevant variables,

E = εV = E(V,M,G, S,Mxα,M∇ixα), (1.6)

where the mass M , the volume V , the momentum G, and the entropy S are related to their
volume densities ρ = M/V , g = G/V , σ = S/V and xα are assumed to be additional intensive
variables that can for example be connected with spontaneous symmetry breaking. The local
formulation of the first law of thermodynamics (Gibbs relation) establishes the relation between
the change of the energy density and the variables:

dε = Tdσ + µdρ+ v · dg +
∑

α

Fαdxα, (1.7)

where the temperature T , the velocity v, the chemical potential µ, and Fα are the thermodynamic
conjugates (thermodynamic forces) to the corresponding macroscopic variables. These conjugate
quantities express how much the energy density changes when the thermodynamic variable is



12 Macroscopic dynamics

changed when the others are kept constant. The thermal equilibrium is a state with maximal
entropy, dσ = 0 [131], from which one obtains the vanishing of all the thermodynamic forces,
Fα = 0. The statics of the system is obtained by writing the thermodynamic forces in terms of
the relevant macroscopic variables. The obtained energy density must respect all fundamental
invariance principles, such as invariance with respect to parity, time reversal, translational and
rotational symmetry, etc.

The general dynamic equation for the variables yα takes the form
(
∂

∂t
+ vj∇j

)
yα + Jα = 0. (1.8)

It is instructive to split the currents Jα further into dissipative (D) and reversible (R) parts,
Jα = JRα + JDα . This separation is done based on the behavior of the currents under the time
reversal operation. Dissipative currents have the opposite behavior and reversible currents
behave in the same way under time reversal as the time derivative of the dynamic variables,
ẏα. To put these statements in a perspective we write down the conservation laws for the mass
density, energy density and momentum density [129],

ρ̇+∇i(ρvi) = 0, (1.9)

ε̇+∇i([ε+ p]vi) +∇ij
ε
i = 0, (1.10)

ġi +∇j(pδij + givj + σij) = 0, (1.11)

with jεi the energy density current, σij the stress tensor and p the pressure,

p = −∂E
∂V

= −ε+ Tσ + µρ+ v · g. (1.12)

The conservation of angular momentum is ensured by the following condition [24,128,132]:

σij − σji = 2∇lφijl, (1.13)

with φijl = −φjil. To symmetrize a general stress tensor, one can use the rotational invariance
of the energy density (1.7). As a result one typically reduces the number of phenomenological
coefficients, e.g. from two to one in the flow alignment tensor of nematic liquid crystals [23,133].
For uniaxial nematic liquid crystal the flow alignment was derived also microscopically [134].

To derive the dissipative parts of the currents one first sets up the so called dissipation
function R. Formally R is proportional to the source term in the dynamic equation for the
entropy density

σ̇ +∇ij
σ
i =

2R

T
, (1.14)

where jσi is the current of the entropy density. It is positive for irreversible processes and
zero for reversible currents. It is interpreted as half the rate at which energy is dissipated
into microscopic degrees of freedom. It should be pointed out here that having written down
the dynamic equation for the entropy density, there is no need to write down the equation
for the energy density as they are related through the Gibbs relation. The second law of
thermodynamics requires R > 0, while for reversible currents R = 0 must be satisfied. For the
dissipative processes the Gibbs relation then leads to

2R = −jσDi ∇iT − σDijAij + JDα Fα > 0, (1.15)



Macroscopic dynamics 13

where 2Aij = ∇ivj +∇jvi is the symmetrized gradient of the velocity field. In Eq. (1.15) the
antisymmetric part of the gradient of the velocity field does not show up, as solid body rotations
do not produce entropy. In Eq. (1.15) we have also omitted any pure divergence contributions.
For reversible processes the condition,

−jσRi ∇iT − σRijAij + JRα Fα = 0, (1.16)

holds. Equation (1.16) also reveals the equilibrium conditions, Fα = 0, Aij = 0 and ∇iT = 0.
An assumption used in linear irreversible thermodynamics is the linear expansion of currents
in terms of the thermodynamic forces [130,135],

JRα = γRαβFβ, (1.17)

JDα = γDαβFβ, (1.18)

where the transport (pseudo-)tensors γRαβ and γDαβ should obey the correct symmetries and can
be constructed using the available invariants of the system. These invariants are, for example
for nematic liquid crystals, the transverse Kronecker delta δ⊥ij = δij − ninj, the Levi-Civita
symbol εijk and the director ni.

Another way to derive the dissipative parts of the currents is to set up a dissipation function
as a positive quadratic form in the thermodynamic forces. The currents are then obtained by
taking variational derivatives of the dissipation function with respect to the corresponding
thermodynamic force, Jα = δR

δFα
. It should be emphasized that the obtained equations are

generally not linear since the dynamic coefficients can depend on macroscopic variables. An
analogous potential to derive reversible currents does not exist.
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Chapter 2

Overview of the publications

In this chapter I briefly describe each publication in chronological order and present the main
results. At the end I append all of the publications in the same order.

2.1 Magneto-optic dynamics of a ferromagnetic nematic

liquid crystal

As mentioned in the Introduction, the synthesis of truly ferromagnetic nematic liquid crystals
was a challenge for over forty years since their prediction in 1970 [33]. One of the main
reasons for the successful experimental realization in 2013 [43] was the platelet shape of the
magnetic particles. Such a shape allowed for a stable suspension and consequently it opened
the possibility to perform experiments on the phase. A series of static experiments were first
performed, where the magneto-optic response was measured as a function of the magnetic
field [43,44]. In publications [136] and [137], we model the static as well as dynamic magneto-
optic experiments performed on a sample of ferromagnetic nematic liquid crystals.

We first describe the experimental set-up, see Fig. 2.1. The sample of a ferromagnetic
nematic, using 5CB [136] or E7 [137] as a nematic solvent, was confined between two parallel
glass plates, approximately 20µm apart. It was then placed between two crossed polarizers,
such that the director was initially at 45 degrees with respect to the polarizer axes. The
intensity of the the transmitted light was then measured dynamically at different values of the
applied magnetic field. Due to the uniaxial symmetry of the nematic solvent, ferromagnetic
nematics are birefringent as well. The effects of biaxiality on the optics, which occur out of
equilibrium when n ∦ M, are discarded in our analysis. The transmitted light intensity is then
related to the phase difference of the ordinary and extraordinary rays of light,

I ∼ sin2

(
φ

2

)
. (2.1)

To present our data we used the normalized phase difference, r = 1 − φ/φ0, where φ0 is the
phase difference in the absence of a magnetic field.

We first modeled the phase difference of the transmitted light as a function of the magnetic
field. We started with the expression for the free energy

f = −µ0M ·H− 1
2
A1(M · n)2 + 1

2
A2 (|M| −M0)2 + fF , (2.2)
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Figure 2.1: Experimental set-up used for the magneto-optic measurements. The thick yellow
arrows indicate the direction of the light passing through the polarizer and the analyzer. The
outgoing arrow is smaller, indicating the transmitted light intensity is smaller than that of the
incoming light. In the absence of an applied magnetic field (H, z direction), the equilibrium
director (n) and magnetization (M) fields are only slightly pretilted from the x direction. Inset:
distortion of the NLC director (ellipsoids, schematic) prevents flocculation of the suspended
nanoplatelets carrying a magnetic moment pm parallel to n in equilibrium. Figure taken from
Ref. [136].

where µ0 is the magnetic constant, H = H êz is the applied magnetic field, and A1,2 > 0
are constants. The first term represents the coupling of the magnetization and the external
magnetic field. Since the applied magnetic field is large compared to the equivalent field
originating from the magnetization, H � M0, the local magnetic field is equal to H, which is
fixed externally, and is thus independent of the M(r) configuration. The second term describes
the static coupling between the director field and the magnetization. The third term describes
the energy connected with the deviation of the modulus of the magnetization from M0. The
last term fF is the Frank elastic energy associated with director distortions [15]

fF = 1
2
K1(∇ · n)2 + 1

2
K2 [n · (∇× n)]2 + 1

2
K3 [n× (∇× n)]2 , (2.3)

with positive elastic constants for splay (K1), twist (K2), and bend (K3). The free energy is
minimized by varying the director field and the magnetization field.

In equilibrium the magnetic field distorted director and magnetization field are both lying
within the xz plane, n = sin θ êx + cos θ êz, and M = sinψ êx + cosψ êz. The phase difference
can be then calculated from the director field using

φ = k0

∫ d

0

(ne(z)− no)dz (2.4)

where k0 = 2π/λ is the wave-number of the light with the wavelength λ, d is the cell thickness, no
is the ordinary refractive index and ne is the refractive index experienced by the extraordinary
ray, defined by

n−2
e = n−2

e0 sin2 θ(z) + n−2
o cos2 θ(z), (2.5)

with ne0 the so called extraordinary refractive index.
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Figure 2.2: Comparison of experimental and theoretical static results: (left) normalized phase
difference r(H) and (right) magnetization component Mz as functions of the magnetic field
µ0H. Figure taken from Ref. [137].

The experimental and theoretical results are shown in Fig. 2.2. One can see that very small
magnetic fields of order 5 mT already produce a significant magneto-optic effect. It should be
mentioned that the magnetic anisotropy was not included in the description, as it becomes
important at larger fields of order 0.5 T.

Experimental measurements of the dynamics of the magneto-optic effect show that the
reorientation process of the ferromagnetic nematic is quite fast, on the order of less than a
second, Fig. 2.4. We have modeled the measurements using just the dynamic variables of the
director and the magnetization and we discarded the velocity field. The evolution of these
two fields can be derived by the macroscopic dynamic approach presented in the Introduction,
which takes into account also the behavior of magnetization under time reversal,

ṅi + Y R
i + Y D

i = 0, (2.6)

Ṁi +XR
i +XD

i = 0, (2.7)

with Y R,D
i and XR,D

i the quasi-currents, which have been explicitly split into reversible (R) and
irreversible (D) parts. At his point we write down only the dissipative parts of the currents as
they were sufficient to explain the experimental results:

XD
i = bDijh

M
j + χDjih

n
j , (2.8)

Y D
i =

1

γ1

hni + χDijh
M
j , (2.9)

with

χDij = χD1 δ
⊥
ikMknj + χD2 δ

⊥
ijMknk, (2.10)

bDij = bD‖ ninj + bD⊥δ
⊥
ij . (2.11)

In Eqs. (2.8) and (2.9) the thermodynamic forces hni and hMi are obtained by variational
derivatives of the free energy Eq. (2.2), with respect to the director and the magnetization,
respectively.
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Figure 2.3: The overall relaxation rate, 1/τ(H), as a function of the magnetic field µ0H,
extracted from the experimental data and the theoretical results using the fitting function
Eq. (2.12). Inset: without the dynamic cross-coupling, the relaxation rate levels off already at
low fields (dashed). Figure taken from Ref. [137].

We show [136,137] that the inclusion of the dissipative cross-coupling between the magnetization
and the director field, described by χDij , is crucial to explain the experimental data. One of the
experimental observations that demonstrates the importance of this dynamic cross-coupling is a
linear dependence of the overall relaxation rate as a function of the magnetic field, see Fig. 2.3.
To extract the relaxation rates from the numerical and experimental data we used a squared
sigmoidal model function for the time dependence of the phase difference:

f(t) = C ′
[
1− 1 + C

1 + C exp(−2t/τ)

]2

. (2.12)

In the absence of χD2 , the relaxation rate levels off already at low fields, see Inset of Fig. 2.3,
as expected since the transient angle between M and n gets larger.

The second proof can be found in the initial dynamics of the phase difference. We show
that the dynamic cross-coupling χD2 induces a director field rotation along the field direction,
which is linear in time and linear in the magnetic field,

nz(t) ≈ ϕs + χD2 M0µ0H t. (2.13)

This in turn means a linear-quadratic initial dependence of the phase difference in time and in
magnetic field. In the lowest order of t, for the phase difference one gets a linear term that is
proportional to the pretilt angle and a quadratic term which does not vanish if the pretilt is
zero:

r(H) ≈ r0

[(
χD2 M0µ0H

)2
t2 + 2ϕsχ

D
2 M0µ0Ht

]

≡ k2t2 + pt. (2.14)

The determination of the dissipative cross-coupling χD2 from the initial dynamics of the phase
difference has already been shown to be robust and reliable, even at different concentrations of
magnetic particles and for different nematic solvents [49].
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A comparison of the numerical and experimental results of the dynamics of the normalized
phase difference is shown in Fig. 2.4. In addition we calculated the dynamics of the normalized
magnetization,

Mz/M0 =
1

d

∫ d

0

cosψ dz. (2.15)

Analysis of the initial dynamics of Mz/M0 yields a linear response in time:

Mz/M0 ≈ ϕs + bD⊥µ0H t, (2.16)

which can be seen in the Inset of Fig. 2.4. The vertical component of the magnetization Mz

is typically measured using a vibrating sample magnetometer, which requires several tenths
of a second for a single measurement. This limits the use of this technique for the dynamic
measurements in a ferromagnetic nematic liquid crystal.
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Figure 2.4: Top: time evolution of the measured normalized phase difference, r(H), fitted by
the dynamic model Eqs. (2.6)-(2.11). The linear-quadratic onset of r(H) is in accord with the
analytic result given in Eq. (2.14). Bottom: the corresponding theoretical time evolution of
Mz/M0, initially growing linearly as given in Eq. (2.16). Figure taken from Ref. [137].

Apart from the comparison to the experimental results we make several theoretical predictions.
We studied the fluctuation modes of the coupled director and magnetization dynamics. We
found four different fluctuation modes. Two of these are the analogues of the splay-bend mode
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in usual nematics and the other two are the twist-bend modes, see Fig. 2.5. The modes can be
further separated into faster (optic) modes and slower (acoustic) modes. Using the common
light scattering geometries for nematic liquid crystals it is impossible to detect only a single
mode in ferromagnetic nematic. One will always detect a complicated combination of two
modes. This is, according to our predictions, not the case at very large fields, when the modes
become decoupled and one observes only the slower mode. We also predict that the relaxation
rate of the slower mode 1/τ tα saturates at a finite value as one increases the field, whereas the
faster modes 1/τ pα grows linearly with the field, where α = 1 for the splay-bend mode and α = 2
for the twist-bend mode,

1

τ pα
=
A1(bD⊥ − χD2 M0)2 + (χD2 M0)2(Kαq

2
⊥ +K3q

2
x)

bD⊥
+
bD⊥
M0

µ0H, (2.17)

1

τ tα
=
A1M

2
0 + (Kαq

2
⊥ +K3q

2
x)

γ1

(
1− (χD2 M0)2γ1

bD⊥

)
. (2.18)

At a critical field µ0H = µ0H
c = − A1M0Kαq2z

Kαq2z+A1M2
0
, where qz = π/d, the dynamics of the acoustic

modes slows down. If the field is more negative than this critical field, the magnetization and
with it the director starts to reverse.
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Figure 2.5: A schematic of the magnetic field dependence of the slower (top) and the faster
(bottom) mode. The vectors δn and δm represent the deviations of the director and the
magnetization orientation from the equilibrium.

2.2 Effects of flow on the dynamics in a ferromagnetic

nematic liquid crystal

In order to understand the dynamic behavior of a system better one needs to study its rheological
properties. A common technique used in rheology is to study the effects of an imposed
shear rate. In a ferromagnetic nematic, the orientations of the molecules and the platelets
are influenced by a shear flow, which in turn influences the measured viscosity. In Ref. [45]
measurements have been done on a sample of ferromagnetic nematic using a cone-plate rheometer.
It was found for example that an imposed magnetic field of order of 20 mT enhances the viscosity
by two times.
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Figure 2.6: The behavior of the effective viscosity for (a) small and (b) large values of the
applied magnetic field at oppositely equal shear rates. The dashed lines represent two of the
Miesowicz viscosities (ηxx and ηzz). Figure taken from Ref. [138].

We study the Couette flow of a ferromagnetic nematic between two parallel plates. Several
theoretical predictions on the effects of flow were made by studying the dynamic interplay of
the director field, the magnetization and the velocity field [53],

(
∂

∂t
+ vj∇j)Mi + εijkMjωk +XR

i +XD
i = 0, (2.19)

(
∂

∂t
+ vj∇j)ni + εijknjωk + Y R

i + Y D
i = 0, (2.20)

ρ(
∂

∂t
+ vj∇j)vi +∇j(σ

R
ij + σDij + σthij )−∇ip = 0, (2.21)

where Y R,D
i , XR,D

i and σR,Dij are the reversible and the dissipative currents for the director, the
magnetization and the velocity field. We shall not write down all the currents explicitly, but
we mention the analogue of the flow alignment tensor for the magnetization, described by the
tensor cRijk [53],

XR
i = . . .− cRijkAjk, (2.22)

σRij = . . .− cRkijhMk , (2.23)
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where . . . contains all the other parts of the currents, 2Aij = ∇ivj +∇jvi is the symmetrized
velocity gradient and hMi is the thermodynamic force, defined by hMi = δε

δMi
. The tensor cRijk

contains 6 coefficients

cRijk = cR1 Minjnk + cR2 (δijMk + δikMj) + cR3 Miδjk

+ cR4 niMpnpδjk + cR5 (niMjnk + niMknj) + cR6 niMpnpnjnk. (2.24)

Our numerical results on the viscosity as a function of the applied magnetic field agree qualitatively
well with experiments. One observes a quick increase of the viscosity for low magnetic fields,
Fig. 2.6. A further increase is observed at fields of order 1 T, when the diamagnetic energy
becomes important.

We also calculate analytically the distortion of the director and the magnetization as a
function of the imposed shear rate and the magnetic field. The angles are defined by n =
cos θ êx + sin θ êz and m = cosψ êx + sinψ êz. The solution at large values of the applied
magnetic field is,

θ±(z) = ±π
2
− CΓx ∓

(π
2
∓ CΓx

) cosh [q(z − d/2)]

cosh (qd/2)
, (2.25)

where

q2 = q2
0

µ0|H|M0

A1M2
0 + µ0|H|M0

, (2.26)

with q0 =
√
A1M2

0/K, and C is a constant determined by the dynamic and the static parameters
[138]. We point out that Eq. (2.25) also predicts the fact that the director can rotate by more
than π/2 in the middle of the cell. These results could be used in future experiments on shear
flow, while simultaneously measuring the magneto-optic response.

In a complex fluid, such as a nematic liquid crystal, there are more dynamical coefficients
compared to ordinary fluids. A simple way to determine some of the additional viscosities in a
nematic is to measure the so called Miesowicz viscosities [139,140], where one fixes the director
by external fields and imposes a simple shear flow. Depending on the direction of the shear
plane, the velocity and the director, there are three different limiting cases for the Miesowicz
viscosities in a nematic. In a ferromagnetic we find 9 different viscosities, which is due to the
additional variable of spontaneous magnetization, see Fig. 2.7. If the director is fixed along the
z axis, for example, the Miesowicz viscosities take the following form

ηzx = ν3 +
γ1

4
(1 + λ)2 − (cD)2

bD⊥
+
M2

0 (1− 2cR2 − 2cR5 )2

4bD‖
, (2.27)

ηzy = ν3 +
γ1

4
(1 + λ)2 − (cD)2

bD⊥
, (2.28)

ηzz = ν3 +
1

4

(
1− (χD2 )2M2

0γ1

bD⊥

)−1

(2.29)

×
[
γ1(1 + λ)2 − 4(cD)2 +

M2
0

bD⊥
(1 + 2cR2 )

(
1 + 2cR2 − 2χD2 γ1(1 + λ)

) ]
.

We furthermore study the flow alignment, which is a phenomenon well known in usual
nematic liquid crystals, where the director is tilted by a finite angle with respect to the velocity
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Figure 2.7: Miesowicz viscosities in a ferromagnetic nematic where the director is indicated by
yellow double-headed arrows. Figure taken from Ref. [138].

field. In ferromagnetic nematics we have an additional dynamic equation for the magnetization
and a different dynamic coupling to the velocity field. This not only leads to different stationary
directions of the magnetization and the director, but both of them can move out of the shear
(xz) plane, see Fig. 2.8. We studied the case, where the magnetic field is pointing along the x
axis. The solution for the angle ψ is

sinψ± = −ΓHx
Γx
±
√(

ΓHx
Γx

)2

+
2cR2 − 1

4cR2
, (2.30)

where ΓHx =
bD⊥

4cR2 M
2
0
µ0HM0 is the characteristic shear rate determined by the magnetic field. In

the absence of the magnetic field and in the large shear rate limit, the stationary solution exists
if |λ| ≥ 1 and |cR2 | ≥ 1

2
. In usual nematic liquid crystals, if |λ| < 1, the stationary solution does

not exist and the system shows a tumbling behavior. In such a system flow alignment can be
recovered if a sufficiently large electric field is applied, see Refs. [141, 142]. In Ref. [138], we
show that in ferromagnetic nematics this can be achieved by using low magnetic fields.

Lastly the effects of flow on the switch-ON dynamics are investigated. In this case flow is
generated by the reorientation of the director field and the magnetization field. An inclusion of
only the reversible couplings of n and M has shown a very small influence on the reorientation



24
Dynamic interplay of nematic, magnetic, and tetrahedral order in

ferromagnetic nematics

x
y

z

M

n

Initial state: n = êx and M = M0êx
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Figure 2.8: A schematic of the director field and the magnetization under imposed shear flow.

dynamics, which is typically observed in usual nematics. On the other hand the dissipative
cross-coupling of n to the velocity field can have a strong effect. Such a coupling induces a
nonzero rotation of the director out of the shear plane, which could potentially be detected
using polarizing microscopy techniques.

2.3 Dynamic interplay of nematic, magnetic, and tetrahedral

order in ferromagnetic nematics

As mentioned in the Introduction, there is a class of liquid crystals, formed by bent-core
molecules, which can show rather unusual properties. The simplest candidate to explain the
properties is the inclusion of the tetrahedral order, described by the fully symmetric third rank
tensor Tijk, Eq. (1.1). Due to the recent successes in the synthesis of ferromagnetic liquid crystal
phases, such as ferromagnetic nematics and ferromagnetic cholesterics, a natural question arises:
how does tetrahedral order influence these phases? We studied the macroscopic aspects of this
hypothetical phase and focused on the effects unique to phases with the simultaneous nematic,
magnetic and tetrahedral order.

Such a phase has an interesting ground state, which breaks the inversion symmetry due to
the tetrahedral order and the time reversal symmetry due to the spontaneous magnetization. To
find the ground state of this phase we minimized the Landau energy. At this point we mention
only the cross-coupling term FQTM between the tetrahedral, quadrupolar and magnetic order
parameter,

FQTM = c1QilMjMmTilkTjmk +
c2

2
(QijMm +QimMj)MlTilkTjmk. (2.31)
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To calculate the ground state we assume the director is fixed with respect to the tetrahedral
structure and then vary the direction of the magnetization. There are five different solutions
of the angles that correspond to the minimum of the free energy. For one of the solutions,
the director and the magnetization are parallel, see Fig. 2.9. For the next two possibilities the
magnetization is in the plane perpendicular to the director. In the last two solutions the angle
between the director and the magnetization depends on the values of the coefficients in the
Landau energy. We studied the case n ‖M, which is an analogue of the D2d phase, mentioned
in the Introduction.

x

y

z

Figure 2.9: The ground state of the system showing the magnetization (red) and the director
(orange) along one of the improper 4̄ axes of the tetrahedron (blue). Figure taken from
Ref. [143].

To describe the system macroscopically one must first recognize the relevant macroscopic
variables. Apart from the usual variables connected with global conservation laws (energy
density ε, mass density ρ, linear momentum g, concentration c), we have additional variables
connected with the broken rotational symmetries and variables that are slowly relaxing. The
magnetic order can be described by the modulus M ≡ M| and its orientation m = M/M .
The modulus is a slowly relaxing variable, while the orientation m belongs to the class of
hydrodynamic variables connected with spontaneous symmetry breaking. Rotations of the
tetrahedral structure can be described by a projection, δΓi, with [74]

δΓi =
1

4α̃
εipqTpklδTqkl, (2.32)

where δTqkl is the deviation of the tetrahedral order parameter from the equilibrium one, δTqkl =
Tqkl − T eq

qkl. We use the normalization [74, 77] TiklTjkl = α̃δij, with α̃ = (32/27)T 2
0 . Since we

assume rigid coupling between the director, the magnetization and the tetrahedral order, we
will use as hydrodynamic variables the director variations δni and the rotations around it
δΩ = niδΓi. The material tensors are constructed using the invariants ni, δ

⊥
ij , εijk and Tijk.

The magnetization does not define an extra, independent preferred direction, and is used when
its specific time-reversal behavior is crucial.
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An interesting consequence of the broken inversion symmetry with the additional orientational
order, is the presence of a linear gradient term:

flin = ξMTijkMi∇jmk + ξnTijkni∇jnk. (2.33)

It contains a linear gradient term already present in the D2d phase and in addition a term
for the magnetization field. As a consequence the ground state might not be homogeneous.
It can be shown that a helical state, where the director and the magnetization rotate around
one of the (other) improper 4̄ axes, has lower energy than the homogeneous state. The energy
reduction of the two linear gradient terms is

∆f = T̃ 2
0

(ξn + ξMM0)2

2(K2 +Km
2 )

, (2.34)

which yields for the helical wave vector

q0 = −T̃0
(ξn + ξMM0)

K2 +Km
2

, (2.35)

with T̃0 = 4T0/3
√

3. Provided the domains are large enough, the optical observation of the
domains of opposite handedness would demonstrate the presence of a tetrahedral order. It
should also be noted that there is no restriction on the sign of the coefficients ξM and ξn. If
the signs happen to be opposite this could lead to helical domains with large wavelengths.

It should be mentioned that δΩ is not a scalar, but transforms as a vector component. This
is also apparent from the dynamic equation for δΩ

(
∂

∂t
+ vj∇j

)
Ω−miωi + Z = 0, (2.36)

where the quasi-current Z contains besides the term proportional to hΩ, the thermodynamic
conjugate of δΩ, also a reversible and a dissipative coupling to the velocity field.

We find that temperature or concentration gradients generate director rotations,

ṅi ∼ Y nR
i = . . .+ ξTnji ∇jT + ξcnji ∇jc, (2.37)

where ξT,cnij = ξT,cnMknrεiprTjpk. For the case m ‖ êz and n ‖ êz one gets explicitly

ṅi ∼ Y nR
x = . . .+ ξTnM0T̃0∇xT + ξcnM0T̃0∇xc, (2.38)

ṅi ∼ Y nR
y = . . .− ξTnM0T̃0∇yT − ξcnM0T̃0∇yc, (2.39)

ṅi ∼ Y nR
z = . . .+ 0. (2.40)

Similarly temperature or concentration gradients produce dissipative magnetization currents,

ṁi ∼ XmD
i = . . .+MjTijk(ψ̃

TD∇jT + ψ̃cD∇jc). (2.41)
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2.4 Influence of tetrahedral order on ferromagnetic gels

Spontaneous formation of chiral domains of either handedness is a phenomenon that has been
observed in bent-core liquid crystals. A distinct property is that the compounds are composed
of achiral molecules. As mentioned in the introduction, this can arise as a consequence of the
simultaneous tetrahedral as well as orientational order (e.g. nematic or magnetic). This can
also be explained in terms of the ambidextrous chirality, which is based on the existence of a
pseudo-scalar quantity due to the special structure of the phase and not because of the chirality
of molecules.

Another mechanism for the chiral symmetry breaking was proposed recently, which takes
into account the simultaneous presence of the tetrahedral order and of a transient network.
The motivation for the inclusion of the latter was that for certain experiments clusters or
agglomerates of substantial size were reported. It was shown that a linear gradient term coupling
the tetrahedral order and elastic strain leads to ambidextrous helicity [76].

Here we consider the effects of tetrahedral order on ferromagnetic gels. Ferromagnetic gels
have been successfully experimentally realized already in 2003 [88,89]. They are distinguished
from other magnetic gels by a spontaneous magnetization and consequently a strong linear
response to a magnetic field. As a consequence many reversible and dissipative effects arise
that are not present in superparamagnetic gels. A natural question is what are the effects of
the tetrahedral order on, for example, the elastic response of a magnetic gel.

A Landau energy analysis yields two energetic minima, when varying the orientation of the
magnetization with respect to the tetrahedral order. The magnetization points either along one
of the tetrahedral vectors or along one of the improper 4̄ axes. The former is of C3v symmetry,
while the later is similar to the tetrahedral nematics with D2d symmetry. For the dynamic
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Shear strain ε0xz

∇zmy =
(χm1 + χm2 )T̃0

K3
ε0xz

Figure 2.10: A shear strain of the initial homogeneous state leads to a nonuniform rotation of
the magnetization (red arrows) within the shear plane (xz).

variables we chose the magnetization M, which is split into equations for its modulus M and
the orientation δm. Next, we have similarly as in tetrahedral ferromagnetic nematics, the
rotations around the magnetization δΩ = miδΓi with δΓi defined in Eq. (2.32). We include also
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the strain field 2εij = ∇iuj +∇jui, with ui the displacement field of the network. In addition,
we consider the relative rotations between the elastic network and the magnetization direction.
This is a variable that plays an important role in the description of nematic gels [144,145].

In our paper we consider static experiments that are unique for a ferromagnetic gel with
the additional tetrahedral order. In particular we study the effects of imposed external strains
on the orientation of the magnetization. The corresponding term in the free energy f is

f ∼ χmijklεij∇lmk, (2.42)

with χmijkl = δ⊥kp(χ
m
1 [Tiplmj + Tjplmi] + χm2 Tijpml). A straightforward calculation then shows

that an external shear strain gives rise to an inhomogeneous rotation of the magnetization out
of the shear plane, Fig. 2.10,

∇zmy = Aε0
xz and ∇zmx = Aε0

yz (2.43)

with A = (χm1 + χm2 )T̃0/K3.
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Figure 2.11: A uniaxial compression of the initial homogeneous state leads to a spatial pattern
of the magnetization (red arrows).

Similarly, a uniaxial compression along the magnetization leads to linear deviations of the
magnetization in the transverse plane, Fig. 2.11,

∇xmy = ∇ymx =
χm1

2K4T̃0

ε0
zz. (2.44)

We investigated the effects of the transient elasticity. In this case the strain field is
relaxing, rather than diffusing. We find that an applied temperature gradient along the
magnetization leads to induced elastic stresses in the plane perpendicular to the gradient.
If the applied gradient is perpendicular to the magnetization, it induces shear stresses that
depend on the orientation of the tetrahedral structure, see Fig. 2.12. By changing the direction
of the temperature gradient one could, in principle, detect the orientation of the tetrahedral
structure. This finding is important, as it opens the door for experiments investigating a
particular orientation of the structure without the need of both magnetic and electric fields. As
a prospect it will be interesting to investigate the rotations around the magnetization, which
couple dynamically (neglecting the inhomogeneous stress forces) only to flow.
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φ
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Figure 2.12: The red circle in the middle indicates the magnetization perpendicular to the
drawing plane, while the temperature gradient (green arrow) is along the x-axis. The blue lines
show the projections of the tetrahedral vectors (where circles and the crosses represent vectors
pointing out or into the plane, respectively). Figure taken from Ref. [146].

2.5 A continuum model of magnetic field induced visco-

elasticity in magnetorheological fluids

Magnetorheological fluids experience significant changes when an external magnetic field is
applied. Examples are fast and reversible acquisition of solid-like properties and a strong
magnetoviscous effect. This makes them suitable for many applications, like shock absorbers,
dampers or clutches. It is of practical importance to construct a macroscopic model, which is
able to reproduce the behavior of MR fluids in many different geometries and on macroscopic
length and time scales that are actually used in applications.

We have constructed a basic model, which takes into account the variables of the strain field
and the magnetization. The motivation behind the inclusion of these variables is the following.
Under the application of an external magnetic field, columns of magnetic particles are formed.
They are the underlying reason for the observed solid-like properties. We model the magnetic
properties by the magnetization, which is a variable included already in ferrofluids, while the
solid-like properties are captured by the strain field εij. To discuss the rheological behavior of
the MR fluid we include the equation for the linear momentum.

The statics of the MR fluid can be split into the magnetic part, which describes the induced
magnetization, and the elastic energy associated with the deformation of the columns. It is
described by the energy density ε(εij,M,g)

ε = ε0 − µ0HiMi +
1

2
αM2 +

1

4
β(M2)2 +

1

2
cijklεijεkl −

1

2
γijklεijMkMl +

1

2ρ
g2. (2.45)

The coupling to an external magnetic field, ∼ µ0H, ensures the induced magnetization to be
parallel to the field, while the next two terms describe the energy associated with the magnitude
of the magnetization (modulus) M ≡

√
M2. The elastic energy is described by the term ∼ cijkl.

To ensure that elasticity vanishes, when there are no columns, the phenomenological coefficients
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of cijkl are proportional to M2,

cijkl = c1M
2δijδkl + c2M

2(δikδjl + δilδkj), (2.46)

with c1 corresponding to compressible and c2 to shear strains. In the statics we have included
a magnetostriction term ∼ γijkl, which produces as one of the consequences, the tilting of the
chains or compression induced magnetization,

γijkl = γ1δijδkl + γ2(δikδjl + δilδkj). (2.47)

As mentioned we model the dynamic interplay of the linear momentum, the magnetization and
the strain field, which is described by the following equations

d

dt
gi +∇j(pδij − ψij + σthij + σij) = 0, (2.48)

d

dt
Mi + εijkMjωk +Xi = 0, (2.49)

d

dt
εij + εkj∇ivk + εki∇jvk − Aij + Yij = 0, (2.50)

where ψij is the elastic stress. The viscoelastic properties of MR fluids are captured by
considering a relaxing strain variable. In Eq. (2.50) this is contained by the term Yij ∼(
1/τ
)
ijkl
ψkl, where

(
1/τ
)
ijkl

takes the form

(
1/τ
)
ijkl

=
1

τ1M2
0

δijδkl +
1

τ2M2
0

(δikδjl + δjkδil). (2.51)

We first studied the influence of a static shear deformation. The upper plate is moved along the
x axis, perpendicularly to the columns. This is a common experimental technique to determine
the stress-strain curves. Experimental results show that the elastic stress first increases linearly
with the shear strain Γ. If one increases the strain further a saturation in the elastic stress is
observed. In our model, the elastic stress is simply

ψxz = c2M
2Γ− γ2MxMz, (2.52)

where the magnetization M is determined from

µ0H = αMz + c2Γ2Mz − γ2ΓMx, (2.53)

0 = αMx + c2Γ2Mx − γ2ΓMz. (2.54)

The elastic shear stress was calculated as a function of the shear strain, see Fig. 2.13. We find
a quadratic dependence of the static yield stress ψyieldxz as a function of the magnetic field, in
accordance with the experiments,

ψyieldxz ≈ 3
√

3

16

√
αc2

(
1− 3

16

γ2
2

αc2

)
µ2

0H
2

α2
. (2.55)
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Figure 2.13: The elastic shear stress as a function of the shear strain γ2 = 0 at three different
values of the applied magnetic field. The black dashed parts of the curves represent the unstable
regime, where the elastic shear stress decreases with the shear strain. Figure taken from
Ref. [147].

A desirable property of MR fluids is a large yield stress. This can to some extent be achieved
by a large magnetic field, however at large magnetic fields the magnetization saturates and with
it also the yield stress. It was found that compressing the MR fluid uniaxially along the columns
increases the shear yield stress, which can be understood by the fact that the compression makes
the columns thicker, which can better resist the forces, compare Fig. 2.14. We have found that
the magnetostriction coefficient ∼ γ1 accounts for these experimental findings. As a result of
the compression, the magnetization Mz increases due to the magnetostrictive coupling ∼ γ1

(Mx vanishes in the γ2 = 0 approximation),

Mz ≈
µ0H

(α + c2Γ2)
+

γ1

c̄1µ0H
P. (2.56)

This leads to an increase of the yield stress linearly in the pressure for small pressures,

ψyieldxz (P ) = ψyieldxz (0) + kP, (2.57)

where ψyieldxz (0) is the static yield stress without compression, and the slope k is

k ≈ 9

32

γ1

c̄1

√
3c2

α
. (2.58)

Dynamically, we have investigated the rheology of MR fluids under the influence of a steady
shear and an oscillatory shear. We assume simple shear with a linear velocity profile of the
form v = γ̇zêx, where the so-called shear rate is constant for a steady shear flow, γ̇ = γ̇0, and
time-dependent for oscillatory flow, γ̇ = γ̇0 cos(ωt), with ω the oscillatory frequency.

The quantity of interest is the total stress tensor, the momentum density current in Eq. (2.48),
contains the elastic stress tensor ψij, as well as the dissipative and reversible phenomenological
parts σDij and σRij ,

−σtot
xz = ν2γ̇ + 2c2M

2εxz +
1

2
(1− 2cR2 )µ0HMx + 2cR2 MxMz(α + βM2 + 4c2ε

2
xz). (2.59)
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Figure 2.14: A schematic of the MR fluid in the uncompressed (left) and compressed state
(right). The columns are thicker when the MR fluid is compressed, which corresponds in our
model to a higher value of magnetization, Eq. (2.56).

We could produce flow curves, i.e. shear stress as a function of the shear rate, that are
characterized by a fast initial increase at small shear rates, a peak at intermediate shear rates
and a linear increase at large shear rates, see Fig. 2.15. The peak structure arises due to
the fast increase of the elastic stress for small shear rates. At intermediate shear rates the
magnetization starts to vanish quickly with the shear rate, which decreases the elastic stress
contribution. Finally the flow curves converge to a linear increase of the shear stress with the
shear rate given by the suspension viscosity ν2.
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Figure 2.15: The shear stress −σtot
xz as a function of the steady shear rate at three different

values of the applied magnetic field. Figure taken from Ref. [147].

In the oscillatory shear mode, we were interested in the complex shear modulus G = G′+iG′′,
defined as the ratio of the shear stress σtotxz , Eq. (2.59), and the imposed strain −γ ≡ γ̇/iω,
G = σtotxz /γ. The real, G′, and the imaginary part, G′′, are the storage and the loss modulus,
describing the reactive and dissipative response, respectively.

Experimental results show that the storage modulus is larger than the loss modulus at
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intermediate frequencies and that both increase with increasing magnetic field, which we could
qualitatively reproduce, see Fig. 2.16. This means that the system behaves more like a solid
than a liquid, which is expected, since a small amplitude shear oscillation can only slightly
influence the strength of the columns. For smaller frequencies, the numerical results show that
the system behaves, as expected, more like a liquid than a solid, Fig. 2.16.

For low frequencies, the storage modulus increases quickly with frequency and then saturates
for larger frequencies. This can be seen in Fig. 2.16. The initial rise of the storage modulus is
quadratic in the frequency

G′ ≈
(α

4
(1 + 2cR2 )2 τ 2

m + c2τ
2
el

)
M2

0ω
2, (2.60)

while for larger frequencies the plateau value

G′∞ =
(α

4
(1 + 2cR2 )2 + c2

)
M2

0 (2.61)

is reached.
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Figure 2.16: Storage modulus G′ (left) and loss modulus G′′ as a function of the frequency at
three different values of the applied magnetic field. Figure taken from Ref. [147].

The loss modulus on the other hand, has a slightly more complicated behavior. Experimentally
one has observed a maximum and a minimum in the frequency dependence of the loss modulus
[148,149]. We find that the frequency of the minimum ωmin shifts linearly with the field, which
is a testable prediction,

ωmin ≈
M0√
ν2

√
4c2

2

τ2

+
1

4

(
1 + 2cR2

)2
bDα2. (2.62)

We found that a simple relation exists for the master curves g′ and g′′ of G′ and G′′,
respectively. The storage modulus has to be rescaled by a factor of µ0H

2, g′(ω) = G′(ω)/µ0H
2,

while the viscosity term needs to be subtracted first from the loss modulus, g′′(ω) = (G′′(ω)−
ν2ω)/µ0H

2. Since the characteristic time scales, τm and τel are independent of magnetic field,
the master curves are obtained without the need to rescale the frequency variable.

We also discussed the dependence of the absolute value of the complex shear modulus
|G| =

√
(G′)2 + (G′′)2 on the frequency. After the initial linear increase, governed by the loss
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modulus there is a plateau at intermediate frequencies, which is basically given by the plateau of
the storage modulus G′∞, Eq. (2.61), since the loss modulus G′′ is much smaller there. For high
frequencies the loss modulus is dominating again, and |G| increases linearly with the frequency.

This scenario applies to the case of (almost) equal elastic and magnetic time scales. If
these time scales are sufficiently well separated, a somewhat different behavior of |G| is found.
After the very steep initial rise a very narrow plateau is found at rather low frequencies, which
is approximately of height c2M

2
0 (for τel � τm) and 1

4
(1 + 2cR2 )2αM2

0 (for τel � τm). At
intermediate frequencies |G| slowly increases to the combined plateau G′∞, Eq. (2.61), and
finally converges to the asymptotic behavior independent of the relaxation times.
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Šprincová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, and J. Jadzyn, Phys.
Rev. E 78, 011702 (2008).

[37] E. Ouskova, O. Buluy, C. Blanc, H. Dietsch and A. Mertelj, Mol. Cryst. Liq. Cryst. 525,
104 (2010).

[38] O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A. Leonhardt, M.
Ritschel, G. Schönhense, and Y. Reznikov, Soft Matter 7, 644 (2011).

[39] N. Podoliak, O. Buchnev, D.V. Bavykin, A.N. Kulak, M. Kaczmarek, T.J. Sluckin, J.
Colloid Interface Sci. 386,158 (2012).
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[41] N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and
T.J. Sluckin, Soft Matter 7, 4742 (2011).

[42] N. Tomašovičová, S. Burylov, V. Gdovinová, A. Tarasov, J. Kovac, N. Burylova, A.
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Hydrodynamics of complex fluids with multiple order parameters is governed by a set of dynamic
equations with many material constants, of which only some are easily measurable. We present a unique
example of a dynamic magneto-optic coupling in a ferromagnetic nematic liquid, in which long-range
orientational order of liquid crystalline molecules is accompanied by long-range magnetic order of magnetic
nanoplatelets. We investigate the dynamics of the magneto-optic response experimentally and theoretically
and find out that it is significantly affected by the dissipative dynamic cross-coupling between the nematic and
magnetic order parameters. The cross-coupling coefficient determined by fitting the experimental results with
a macroscopic theory is of the same order of magnitude as the dissipative coefficient (rotational viscosity) that
governs the reorientation of pure liquid crystals.

DOI: 10.1103/PhysRevLett.119.097802

Fluids with an apolar nematic orientational ordering—
nematic liquid crystals (NLCs)—are well known and under-
stood,withproperties useful for different types of applications
[1]. As a contrast, the possible existence of fluids with a polar
orientational order, thus of a lower symmetry than NLCs, has
always been intriguing. An electrically polar nematic liquid
was theoretically discussed [2] as early as the 1910s, but such
a phase has never been observed. Similarly, vectorial mag-
netic ordering, i.e., ferromagnetism, is a phenomenon that
occurs in solids and has been for the longest time considered
hardly compatible with the liquid state.
Quite recently, however, ferromagnetic NLCs have been

realized in suspensions of magnetic nanoplatelets in NLCs
[3–5] and their macroscopic static properties were charac-
terized in detail [6]. These systems possess two order
parameters giving rise to two preferred directions—the
nematic director n (denoting the average orientation of liquid
crystalline molecules) and the spontaneous magnetizationM
(describing the density of magnetic moments of the nano-
platelets)—that are coupled statically as well as dynamically.
As a consequence, optical and magnetic responses are
coupled in these materials, which makes them particularly
interesting in the multiferroic context: optical properties can
be manipulated with a weak external magnetic field (a strong
magneto-optic effect) and, conversely, the spontaneous mag-
netization can be reoriented by an external electric field (the
converse magnetoelectric effect). Note that subjecting the
liquid crystal to an external electric field is the usual means of
controlling the nematic director in optical applications.
The search for a ferromagnetic nematic phase started when

Brochard and de Gennes [7] suggested and discussed a
ferromagnetic nematic phase combining the long-range

nematic orientational order with long-range ferromagnetic
order in a fluid system. The synthesis and experimental
characterization of ferronematics and ferrocholesterics, a
combination of low-molecular-weight NLCs with magnetic
liquids leading to a superparamagnetic phase, started immedi-
ately and continued thereafter [8–13] (also compare Ref. [14]
for a recent review). These studies were making use of
ferrofluids or magnetorheological fluids (colloidal suspen-
sions of magnetic particles) [15]; their experimental proper-
ties [15,16] have been studied extensively in modeling [17–
23] using predominantly macroscopic descriptions [17–22].
On the theoretical side, the macroscopic dynamics of

ferronematics was given first for a relaxed magnetization
[24] followed by taking into account the magnetization as a
dynamic degree of freedom [25] as well as incorporating
chirality effects leading to ferrocholesterics [26]. In paral-
lel, a Landau description including nematic as well as
ferromagnetic order has been presented [27].
In this Letter we describe experimentally and theoretically

the dynamic properties of ferromagnetic NLCs, focusing on
the coupled evolution of the magnetization and the director
fields actuated by an external magnetic field. The dynamic
coupling betweenM and n has been a complete blank to this
day. It has been known that it is allowed by symmetry and
the rules of linear irreversible thermodynamics, and was cast
in a definite form theoretically [25] as a prediction. Here we
demonstrate that these coupling terms influence decisively
the dynamics. Quantitative agreement between the exper-
imental results and the model is reached and a dissipative
cross-coupling coefficient between the magnetization and
the director is accurately evaluated. It is shown that this
cross-coupling is crucial to account for the experimental
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results, thus underscoring the importance of such cross-
coupling effects in this recent soft matter system.
The suspension of magnetic nanoplatelets in the NLC

pentylcyanobiphenyl (5CB, Nematel) was prepared as
described in Ref. [6]. The magnetic platelets with an
average diameter of 70 nm and thickness of 5 nm, made
of barium hexaferrite doped with scandium, were covered
by the surfactant dodecylbenzenesulphonic acid (DBSA).
The surfactant induced perpendicular anchoring of
5CB molecules on the platelet surface leading to parallel
orientation of the platelet magnetic moments and
the nematic director, Fig. 1 (inset). The volume concen-
tration of the platelets in 5CB, determined by measuring the
saturated magnetization of the suspension, was ∼3 × 10−4,
which corresponds to the magnetization magnitude of
M0 ∼ 50 A=m. The suspension was put in a liquid crystal
cell with thickness d ∼ 20 μm, inducing planar homo-
geneous orientation of n along the rubbing direction x,
Fig. 1. During the filling process a magnetic field (not
shown) of 8 mTwas applied in the direction of the rubbing,
so that a magnetic monodomain sample was obtained. In
the absence of an external magnetic field the spontaneous
magnetization M was parallel to n.
The suspension exhibits a strong magneto-optic effect.

For example, when a magnetic field H is applied perpen-
dicularly to M (z direction) it exerts a torque on the
magnetic moments, i.e., on the platelets, and causes their
reorientation. Because the orientations of the platelets and
the director are coupled through the anchoring of the NLC
molecules on the platelet’s surface, n also reorients, which
is observed as an optic response. In Fig. 2 (left) the
response of M and n is shown schematically. Note the
small angle between M and n in equilibrium.
The reorientation of n is detected optically by measuring

the phase difference ϕ between transmitted extraordinary

and ordinary light [6], Fig. 1. The normalized phase
difference rðHÞ ¼ 1 − ϕðHÞ=ϕ0, where ϕ0 is the phase
difference at zero magnetic field, is shown in Fig. 2 (right)
as a function of the applied magnetic field. While in
ordinary nonpolar NLCs a finite threshold field needs to
be exceeded to observe a response to the external field, in
the ferromagnetic case the response is thresholdless.
The static response was quantitatively studied in

Ref. [6]. Here we focus on the dynamics of the response.
Figure 3 (top) shows two examples of the measured time
dependence of the normalized phase difference rðHÞ. The
time dependences of rðHÞ acquired systematically for

FIG. 1. Sketch of the experimental setup and definition of
coordinate axes. The thick yellow arrows indicate the direction
of the light passing through the polarizer and the analyzer. In the
absence of an applied magnetic field (H, z direction), the
equilibrium director (n) and magnetization (M) fields are only
slightly pretilted from the x direction. Inset: Distortion of the
NLC director (ellipsoids, schematic) prevents flocculation of the
suspended nanoplatelets carrying a magnetic moment pm parallel
to n in equilibrium.

FIG. 2. Left: Response of the magnetization (red arrows) and
the director (ellipsoids) to the external magnetic fieldH applied
in the z direction. Right: Equilibrium normalized phase differ-
ence rðHÞ as a function of the magnetic field μ0H, fitted by the
static model.

FIG. 3. Top: Time evolution of the normalized phase difference
rðHÞ fitted by the dynamic model Eqs. (2)–(11). The linear-
quadratic onset of rðHÞ is in accord with the analytic result given
in Eq. (13). Bottom: The corresponding theoretical time evolution
of Mz=M0, initially growing linearly as expected analytically.
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several field strengths were fitted by a squared sigmoidal
function,

fðtÞ ¼ C0
�
1 −

1þ C
1þ C expð−2t=τÞ

�
2

; ð1Þ

to obtain the characteristic switching time τðHÞ.
Remarkably, its inverse shows a linear dependence on
H, Fig. 4. Considering only a static (energetic) coupling
between M and n one would expect that 1=τðHÞ saturates
already at low fields as the transient angle betweenM and n
gets larger.
In a minimal theoretical model we include the magneti-

zation field MðrÞ and the director field nðrÞ and focus on
the essential ingredients of their dynamics necessary to
capture the experimental results. For a complete set of
macroscopic dynamic equations for ferronematics, we refer
to Ref. [25], and for ferromagnetic NLCs, to Ref. [28].
The statics is described by a free-energy density

fðM;n;∇nÞ,

f ¼ −μ0M ·H −
1

2
A1ðM · nÞ2 þ 1

2
A2ðjMj −M0Þ2 þ fF;

ð2Þ
where μ0 is the magnetic constant, H ¼ Hêz is the
homogeneous magnetic field fixed externally (since
H ≫ M0), A1;2 > 0 will be assumed constant, and the
Frank elastic energy of director distortions is [29]

fF ¼ 1

2
K1ð∇ · nÞ2 þ 1

2
K2½n · ð∇ × nÞ�2

þ 1

2
K3½n × ð∇ × nÞ�2; ð3Þ

with positive elastic constants for splay (K1), twist (K2),
and bend (K3). To a good approximation, one can assume
that jMj ¼ M0. We will, however, allow for small varia-
tions of jMj (large A2), which is physically sound and
technically convenient.

At the cell plates, the director is anchored with a finite
surface anchoring energy [30], fS ¼ − 1

2
WðnS · nÞ2, where

W is the anchoring strength and nS ¼ êz sinφs þ êx cosφs
is the preferred direction specified by the director pretilt
angle φs.
The total free energy is F ¼ R

fdV þ R
fSdS, and the

equilibrium condition requires δF ¼ 0.
The dynamics is governed by the balance equations

[25,31],

_Mi þ XR
i þ XD

i ¼ 0; ð4Þ
_ni þ YR

i þ YD
i ¼ 0; ð5Þ

where the quasicurrents have been split into reversible
(XR

i , Y
R
i ) and irreversible, dissipative (XD

i , Y
D
i ) parts. The

reversible (dissipative) parts have the same (opposite)
behavior under time reversal as the time derivatives of
the corresponding variables; i.e., Eqs. (4) and (5) are
invariant under time reversal if and only if dissipative
quasicurrents are zero.
The quasicurrents are expressed as linear combinations

of conjugate quantities (thermodynamic forces), which in
our case are the molecular fields

hMi ≡ δf
δMi

¼ ∂f
∂Mi

; ð6Þ

hni ≡ δ⊥ik
δf
δnk

¼ δ⊥ik
� ∂f
∂nk − ∂jΦkj

�
; ð7Þ

where Φkj ¼ ∂f=∂ð∂jnkÞ and δ⊥ik ¼ δik − nink projects
onto the plane perpendicular to the director owing to the
constraint n2 ¼ 1. These molecular fields can be viewed as
exerting torques on M and n. In equilibrium they are zero,
yielding the static solutions forM and n, Fig. 2. When they
are nonzero, they generate quasicurrents, which drive the
dynamics through Eqs. (4) and (5). If there is no dynamic
cross-coupling, hM drives the dynamics ofM and hn drives
the dynamics of n. In Fig. 4, 1=τðHÞ for this case is shown
as the dashed line. The clear deviation from the experi-
ments indicates the importance of the dynamic cross-
coupling.
We will focus on the dissipative quasicurrents as they

have a direct relevance for the explanation of the exper-
imental results discussed. The dissipative quasicurrents
read [25]

XD
i ¼ bDijh

M
j þ χDjih

n
j ; ð8Þ

YD
i ¼ 1

γ1
hni þ χDijh

M
j ; ð9Þ

where

χDij ¼ χD1 δ
⊥
ikMknj þ χD2 δ

⊥
ijMknk; ð10Þ

bDij ¼ bD∥ ninj þ bD⊥δ⊥ij; ð11Þ

FIG. 4. The inverse of the switching time, 1=τðHÞ, as a function
of the magnetic field μ0H, extracted from the experimental data
and the theoretical results using the fitting function Eq. (1).
Without the dynamic cross-coupling, 1=τðHÞ saturates already at
low fields (dashed line).
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and we will everywhere disregard the biaxiality of the
material tensors that takes place when n ∦ M. We speculate
that a possible origin of this dissipative dynamic coupling
between M and n is a microscopic fluid flow localized in
the vicinity of the rotating magnetic platelets.
The system Eqs. (4) and (5) is discretized in the z

direction and solved numerically. By fitting the static data
to the model, Fig. 2 (right), we extract the values for the
anchoring strength W ∼ 2.3 × 10−6 J=m2, the pretilt angle
φs ∼ 0.05, and the static magnetic coupling coefficient
A1 ∼ 130μ0. The agreement between the static experimen-
tal data and the model underscores that we have solid
ground for the analysis of the dynamics.
In Fig. 3 (top) the measured time dependence of the

normalized phase difference rðHÞ is compared [6] to the
model for two rather distinct values of the magnetic field.
The fits are performed by varying the values of the dynamic
parameters subject to stability restrictions, while keeping
the values of W, φs, and A1 fixed as determined from
the statics. The model captures the dynamics very well for
all times from the onset to the saturation. The extracted
values of the dynamic parameters are γ1 ∼ 0.03 Pa s,
bD⊥ ∼ 7.8 × 104 Am=Vs2, and χD2 ∼ 23ðPa sÞ−1, which
safely meets the positivity condition of the entropy pro-
duction jχD2 j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bD⊥=ðγ1M2

0Þ
p

∼ 32 ðPa sÞ−1. The remain-
ing two dynamic parameters do not affect the dynamics
significantly and are set to bD∥ ¼ bD⊥ and χD1 ¼ 0.
Figure. 3 (bottom) shows the corresponding theoretical

time dependence of the normalized z component of the
magnetization, which is not measured due to insufficient
time resolution of the vibrating sample magnetometer [6]
(LakeShore 7400 Series VSM, several seconds are required
for ambient magnetic noise averaging).
Initially, n is homogeneous and aligned with M, such

that hn is zero and the director dynamics in Eq. (9) is due
to hM alone. For small times when M and n are only
slightly pretilted from the x direction, it thus follows from
Eqs. (5) and (9) that

nzðtÞ ≈ φs þ χD2 M0μ0Ht; ð12Þ
and hence [6],

rðHÞ ¼ n0eðn0e þ n0Þ
2n20

½ðχD2 M0μ0HÞ2t2 þ 2φsχ
D
2 M0μ0Ht�

≡ k2t2 þ pt; ð13Þ
which is also revealed by Fig. 3 (top, inset); n0 and n0e are
the ordinary and the extraordinary refractive indices. In
principle, k2 contains a small static coupling (A1) correction
linear in the pretilt, which is, however, within the error
margin and is neglected. The initial dynamics of the
director and the behavior of rðHÞ are thus governed by
the dissipative dynamic cross-coupling between director
and magnetization, Eq. (9), described by the parameter χD2 .

Fitting Eq. (13) to the initial time evolution of
measured normalized phase differences for several values
of the magnetic field μ0H, we determine the parameters
k and p, Fig. 5, and extract therefrom values of the
dissipative magnetization-director coupling parameter
χD2 ∼ ð21� 2Þ ðPa sÞ−1 and the pretilt φs ∼ 0.05� 0.03.
The best match of 1=τðHÞ, Fig. 4, extracted from the

experimental data and the model via Eq. (1), allows for a
robust evaluation of the dissipative magnetization-director
coupling parameter: χD2 ¼ ð23� 2Þ ðPa sÞ−1. The theoreti-
cal results confirm that the linear shape of 1=τðHÞ is due
precisely to this dissipative cross-coupling and would not
take place if only the static coupling [the A1 term in Eq. (2)]
were at work, as demonstrated in Fig. 4 (dashed curve).
The coupling of M and n to flow was not taken into

account. As flow is generated by gradients (i.e., divergence
of the stress tensor), starting with a homogeneous con-
figuration it is absent initially. To lowest order, Eq. (12) is
thus unaffected by the flow coupling, irrespective of its
details. Moreover, in ordinary NLCs the small backflow
effect makes the response a little faster [32]. In a ferro-
magnetic NLC, additional couplings to the velocity field
are possible. Nevertheless, the match of χD2 extracted from
the initial (where flow is absent) and the overall dynamics
speaks for only a minor flow coupling effect.
In summary, we have presented experimental and theoreti-

cal investigations of themagnetization and director dynamics
in a ferromagnetic liquid crystal.We have demonstrated that a
dissipative cross-coupling between themagnetization and the
director, which has been determined quantitatively, is crucial
to describe the experimental results. Such a couplingarises for
all systems with macroscopic magnetization and director
fields, and its presence dictated by symmetryhas beenpointed
outbefore for ferronematics.Clearly its strength is expected to
be higher in ferromagnetic systems of the type studied here.
This coupling makes the response of such materials much
faster, which is important for potential applications in mag-
neto-optic devices, e.g., devices for magnetic field visualiza-
tion [33]. Their main advantage compared to existing
techniques is that both the magnitude and the direction of

FIG. 5. The coefficients k and p (inset) of Eq. (13) as functions
of μ0H, extracted from the initial stage rðHÞmeasurements by the
straight line fits.
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the field can be simultaneously visualized. Further possible
applications include remote optical sensing ofmagnetic fields
and the use of a magnetic field to manipulate complex
(patterned) structures in liquid crystals, e.g., for spatial light
modulation [34,35].An advantageof themagnetic field is that
it canbeapplied in a noncontactway in any direction,whereas
theapplicationof theelectric field is limitedby thegeometryof
the electrodes. The main challenge is to produce a variety of
suspensions with different magnetic and viscoelastic proper-
ties, stable in a wide temperature range.
Wehavelaidhere, inapioneeringstep, theexperimentaland

theoreticalbasisofadynamicdescription.Naturally to include
the coupling to flow is next. First experimental results in this
directionhavebeendescribed inRef. [36],where itwas shown
that viscous effects can be tuned by an external magnetic field
of about 10−2 T by more than a factor of 2, indicating a
potential for applications in the field of smart fluids.
As ferromagnetic NLCs have two order parameters

characterized by the magnetization and the director field,
they offer the possibility to chiralize the material to obtain a
ferromagnetic cholesteric NLC breaking parity and time-
reversal symmetry in a fluid ground state. The formation of
solitons in an unwound ferromagnetic cholesteric NLC has
been recently realized and discussed in Refs. [35,37].
Another promising direction to pursue will be to produce
a liquid crystalline version of uniaxial magnetic gels
[38,39]. Cross-linking a ferromagnetic NLC gives rise to
the possibility to obtain a soft ferromagnetic gel opening
the door to a new class of magnetic complex fluids. This
perspective looks all the more promising since recently
[40,41] important physical properties of magnetic gels such
as nonaffine deformations [40] and buckling of chains of
magnetic particles [41] have been characterized well
experimentally and modeled successfully.
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We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and
theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when
an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the
director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally
studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and
n. The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also
make concrete predictions about how reversible cross-coupling terms between the magnetization and the director
could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the
azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the
external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We
show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend
eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least
two eigenmodes.

DOI: 10.1103/PhysRevE.97.012701

I. INTRODUCTION

In Ref. [1] Brochard and de Gennes suggested and discussed
a ferromagnetic nematic phase combining the long-range ne-
matic orientational order with long-range ferromagnetic order
in a fluid system. The synthesis and experimental character-
ization of ferronematics and ferrocholesterics, a combination
of low-molecular-weight nematic liquid crystals (NLCs) with
magnetic liquids leading to a superparamagnetic phase, started
immediately [2] and continued thereafter [3–9]. These studies
made use of ferrofluids or magnetorheological fluids (colloidal
suspensions of magnetic particles) [10]; their experimental
properties [10,11] have been studied extensively in modeling
[12–17] using predominantly macroscopic descriptions [12–
14,16].

On the modeling side, the macroscopic dynamics of fer-
ronematics was given first for a relaxed magnetization [18]
followed by taking into account the magnetization as a dynamic
degree of freedom [19] as well as incorporating chirality
effects leading to ferrocholesterics [20]. In parallel a Landau
description including nematic as well as ferromagnetic order
has been presented [21].

Truly ferromagnetic NLCs have been generated [22] in
2013 followed by reports of further ferromagnetic NLCs in
Refs. [23,24], and their macroscopic static properties were
characterized in detail [25]. Quite recently ferromagnetic
cholesteric liquid crystals have been synthesized and inves-

*tilen.potisk@uni-bayreuth.de

tigated [26–28]. For a review on ferromagnetic NLCs, see
Ref. [29].

In the present paper we describe in detail experimentally
and theoretically the static and dynamic properties of ferro-
magnetic NLCs [30]. We analyze the coupled dynamics of
the magnetization and the director, initiated and controlled
by an external magnetic field. We show experimentally and
theoretically that dissipative dynamic coupling terms influence
qualitatively the dynamics. Experimentally, this is done by
measuring the temporal evolution of the normalized phase dif-
ference associated with the dynamics of the director. Quantita-
tive agreement between the experimental results and the model
is reached and a dissipative cross-coupling coefficient between
the magnetization and the director is accurately evaluated. It is
demonstrated that this cross-coupling is crucial to account for
the experimental results thus underscoring the importance of
such off-diagonal effects in this first multiferroic fluid system.
We also make concrete theoretical predictions of how the re-
versible dynamic cross-coupling terms between magnetization
and director influence the macroscopic dynamics and how
these effects can be detected experimentally. The experimental
and theoretical dynamic results discussed in some detail in
this paper for low magnetic fields in ferromagnetic NLCs
demonstrate the potential for applications of these materials
in displays and magneto-optic devices as well as in the field of
smart fluids.

The paper is organized as follows. In Sec. II we describe
the experimental setup followed in Sec. III by the macroscopic
model. The connection between the measurements and the
model is established in Sec. IV. In Sec. V we analyze the

2470-0045/2018/97(1)/012701(18) 012701-1 ©2018 American Physical Society
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statics and in Secs. VI and VII we analyze in detail the coupled
macroscopic dynamics of the magnetization and the director
field when switching the external magnetic field on and off,
respectively. Section VIII is dedicated to a theoretical analysis
of fluctuations and light scattering and in the conclusions we
give a summary of the main results and a perspective.

II. EXPERIMENTS

The experimental samples have been prepared along the
lines described in detail in Refs. [22,25]. In brief, the
BaScxFe12−xO19 nanoplatelets were suspended in the liquid
crystal mixture E7 (Merck, nematic-isotropic transition tem-
perature TNI = 58 ◦C). The suspension was filled in liquid
crystal cells with rubbed surfaces (thicknessd = 20 μm, Instec
Inc.), which induced homogeneous in-plane orientation of the
NLC. The volume concentration of the magnetic platelets in the
nematic low-molecular-weight liquid crystal E7 (Merck) has
been estimated to be ∼1.3 × 10−3 from the measurements of
the magnetization magnitude [25] which was M0 ∼ 200 A/m.
E7 suspensions show long-term stability, with a homogeneous
response to magnetic fields and no aggregates for a period of
several months. A surfactant (dodecylbenzene sulfonic acid)
was used for the treatment of the nanoplatelets, which favors a
perpendicular orientation of the NLC molecules with respect to
the nanoplatelets. Quantitative values for the Frank coefficients
for E7 are available in the literature [31].

Dynamics of the director was measured by inducing director
reorientation in planarly treated 20-μm cells (pretilt in the
range 1◦−3◦) when applying a magnetic field perpendicularly
to the cell plates, Fig. 1 (top). Experiments were performed
on monodomain samples (see Ref. [29] for a description
of monodomain sample preparation) so that the director is
initially at 45◦ with respect to the crossed polarizers, Fig. 1
(bottom). Using polarizing microscopy, the monochromatic
light intensity transmitted through the sample was recorded
with a complementary metal-oxide-semiconductor (CMOS)
camera (IDS Imaging UI-3370CP, 997 fps) as a function of
time on switching the magnetic field on and off. An interference
filter (623.8 nm) was used to filter the light from the halogen
lamp used in the microscope. The transmitted light intensity
is related to the phase difference between the ordinary and the
extraordinary light as will be explained below. The advantage
of using polarization microscopy is that the measurements are
performed in the homogeneous region of the sample without
spacers or other impurities. Recording the image of the sample
during the measurements also allows us to simultaneously
monitor the homogeneity of the response.

With the use of a vibrating sample magnetometer [25]
(LakeShore 7400 Series VSM) also the equilibrium z com-
ponent of the magnetic moment of the sample is measured.
We note that this technique is not suitable for measuring the
magnetization dynamically, as several seconds per measure-
ment are required for ambient magnetic noise averaging.

III. MACROSCOPIC MODEL

Throughout the present paper we take into account the
magnetization M and the director field n as macroscopic
variables; in the following we focus on the essential ingredients
of their dynamics necessary to capture the experimental results
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FIG. 1. Top: Sketch of the experimental setup and definition of
coordinate axes [30]. The thick yellow arrows indicate the direction of
the light passing through the polarizer and the analyzer. In the absence
of an applied magnetic field (H, z direction), the equilibrium director
(n) and magnetization (M) fields are only slightly pretilted from the x

direction. Inset: Distortion of the NLC director (ellipsoids, schematic)
prevents flocculation of the suspended nanoplatelets carrying a mag-
netic moment pm parallel to n in equilibrium. Bottom: Ferromagnetic
E7 nematic 20-μm sample placed between crossed polarizers, with
the director at an angle of 45◦. Polarizing optical microscopy image
width corresponds to 700 μm. The spheres are cell spacers.

we will discuss. That is we assume isothermal conditions
and discard flow effects. For a complete set of macroscopic
dynamic equations for ferronematics we refer to Ref. [19].

The static behavior is described by the free energy density
f (M,n,∇n),

f = −μ0M · H − 1
2A1(M · n)2 + 1

2A2(|M| − M0)2 + f F ,

(1)

where μ0 is the magnetic constant, H = H êz is the applied
magnetic field, and A1,2 > 0 will be assumed constant. The
first term represents the coupling of the magnetization and the
external magnetic field. Since H � M0, the local magnetic
field is equal to H, which is fixed externally and is thus
independent of the M(r) configuration. The second term
describes the static coupling between the director field and the
magnetization (originating from the magnetic particles). The
third term describes the energy connected with the deviation
of the modulus of the magnetization from M0. The last term
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is the Frank elastic energy associated with director distortions
[32]

f F = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3[n × (∇ × n)]2, (2)

with positive elastic constants for splay (K1), twist (K2), and
bend (K3). The saddle-splay elastic energy [32] is zero in
the considered geometry. While it is a good approximation
to assume that |M| = M0, we will take into account small
variations of |M| (corresponding to large values of A2).

The anchoring of the director at the plates is taken into
account using a finite surface anchoring energy [33],

f S = − 1
2W (nS · n)2, (3)

where W is the anchoring strength and nS = êz sin ϕs +
êx cos ϕs is the preferred direction specified by the director
pretilt angle ϕs .

For the total free energy we have F = ∫
f dV + ∫

f S dS and
the equilibrium condition requires δF = 0.

The macroscopic dynamic equations for the magnetization
and the director read [19,34]

Ṁi + XR
i + XD

i = 0, (4)

ṅi + YR
i + YD

i = 0, (5)

where the quasicurrents have been split into reversible (XR
i ,

YR
i ) and irreversible, dissipative (XD

i , YD
i ) parts. The reversible

(dissipative) parts have the same (opposite) behavior under
time reversal as the time derivatives of the corresponding
variables, i.e., Eqs. (4) and (5) are invariant under time reversal
only if the dissipative quasicurrents vanish.

The quasicurrents are expressed as linear combinations of
conjugate quantities (thermodynamic forces); they take the
form

hM
i ≡ δf

δMi

= ∂f

∂Mi

, (6)

hn
i ≡ δ⊥

ik

δf

δnk

= δ⊥
ik

(
∂f

∂nk

− ∂j�kj

)
, (7)

with �kj = ∂f/∂(∂jnk) and where the transverse Kronecker
delta δ⊥

ik = δik − nink projects onto the plane perpendicular to
the director due to the constraint n2 = 1.

In Ref. [30] we focused on the dissipative quasicurrents
as they had a direct relevance for the explanation of the
experimental results discussed there. In the present paper we
also include the reversible quasicurrents, which give rise to
transient excursions of M and n out of the switching plane.

The dissipative quasicurrents take the form [19]

XD
i = bD

ij h
M
j + χD

ji h
n
j , (8)

YD
i = 1

γ1
hn

i + χD
ij hM

j , (9)

with

χD
ij = χD

1 δ⊥
ikMknj + χD

2 δ⊥
ij Mknk, (10)

bD
ij = bD

‖ ninj + bD
⊥δ⊥

ij (11)

Throughout the present paper we will discard the biaxiality of
the material which arises for n ∦ M.

The reversible quasicurrents are obtained by requiring that
the entropy production Yih

n
i + Xih

M
i is zero [19]:

XR
i = bR

ijh
M
j + χRεijknjh

n
k , (12)

YR
i = (

γ −1
1

)R

ij
hn

j + χRεijknjh
M
k , (13)

where [18]

bR
ij = bR

1 εijkMk + bR
2 εijknknpMp

+ bR
3 (εipqMpnqnj − εjpqMpnqni), (14)(

γ −1
1

)R

ij
= (

γ −1
1

)R

1 εijknknpMp

+ + (
γ −1

1

)R

2 (εijpεipknknj − εjpknkni)Mp. (15)

For solving the system Eqs. (4) and (5) a simple numerical
method was used. We first discretized space into slices of width
	z = d/(N − 1), where N is the number of discretization
points. Empirically it was found that using N = 50 is already
sufficient. After discretizing space one obtains N ordinary
differential equations. Due to its simplicity, we use the Euler
method. One step of the Euler method for the ith component
of the director field at z is

ni(t + δt,z) = ni(t,z) − δtYi(t,z) + O(δt2), (16)

where δt is the time step. An analogous equation holds for
the magnetization field and the equations are solved simulta-
neously. Since the numerical scheme for the director field is
not norm preserving, we normalize the director field after each
time step: ni → ni/

√
njnj .

In the discrete version, the two surface points are best treated
by satisfying the same dynamic equations Eqs. (4) and (5) as
the internal points, with the addition of the surface anchoring
energy Eq. (3) expressed as a volume density. The divergence
part of the force Eq. (7) is then replaced by its surface flux (the
volume density thereof again):

hn surf.
i = δ⊥

ik

[
∂f

∂nk

+ 1

	z

(
νj�kj + ∂f S

∂nk

)]
, (17)

where ν is the surface normal pointing down (up) at the bottom
(top) plate.

IV. CONNECTION BETWEEN MEASUREMENTS
AND THE MODEL

In equilibrium the magnetic-field-distorted director and
magnetization fields are lying in the xz plane, n =
(sin θ,0, cos θ ) and M = M(sin ψ,0, cos ψ). In the absence of
the magnetic field, the director is tilted from the x axis by the
pretilt ϕs , Eq. (3). The coordinate system used here is shown
in Fig. 1. As explained earlier, the average z component of
the magnetization, Mz, is measured by the vibrating sample
magnetometer. In modeling, it is obtained by averaging the z

component of the magnetization field,

Mz = 1

d

∫ d

0
M cos ψ(z) dz. (18)
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To derive the expression for the phase difference we start
with an electric field E, which is linearly polarized after the
light passes through the polarizer,

E = E0j ei(ki ·r−ωt), (19)

where E0 is the electric field amplitude, j the initial polariza-
tion, ki the wave vector, and ω the frequency of the incident
light. In our case the wave vector points in the z direction,ki =
k0êz, with k0 = 2π

λ
being the wave number. The polarization

of the light therefore lies in the xy plane and is described by
the two-component complex vector j = jx(z)êx + jy(z)êy . As
the light passes through the sample also the components of
this (Jones) polarization vector change and we analyze these
changes using the Jones matrix formalism (assuming perfectly
polarized light) [35].

The incident light first goes through the polarizer oriented
at 45◦ with respect to the x axis, Fig. 1, and is linearly polarized
with the initial Jones vector being j = 1√

2
(1,1)T . The optical

axis is parallel to the director and generally varies through the
cell. For any ray direction we can decompose the polarization
into a polarization perpendicular to the optical axis (ordinary
ray) and a polarization which is partly in the direction of the
optical axis (extraordinary ray). The ordinary ray experiences
an ordinary refractive index no and the extraordinary ray
experiences a refractive index ne,

n−2
e (z) = n−2

e0 sin2 θ (z) + n−2
o cos2 θ (z), (20)

where ne0 is the extraordinary refractive index.
To calculate the intensity of the transmitted light, one first

divides the liquid crystal cell into N thin slices of width h =
d/N and describes the effect of each slice on the polarization
by the phase matrix

W(z) =
(

eik0[ne(z)−no]h/2 0
0 e−ik0[ne(z)−no]h/2

)
. (21)

In the limit N → ∞ we can express the transmission matrix
of the liquid crystal cell as

T =
(

eiφ/2 0
0 e−iφ/2

)
, (22)

where we have introduced the phase difference

φ = k0

∫ d

0
[ne(z) − no]dz. (23)

In general, as we will see, the director can have also a
nonzero component in the y direction. In this case the simple
expression for the transmission matrix Eq. (22) does not hold
anymore and must be generalized.

We start the derivation of the general transmission matrix
by assuming a general orientation of the director,

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). (24)

The azimuthal angle of the director ϕ can vary through the cell
and the transformation matrix at point z is

T(z) = R[−ϕ(z)]W(z)R[ϕ(z)], (25)

where R is the rotation matrix

R(ϕ) =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
. (26)

Our goal is to find the transfer matrix for the whole cell,

T =
←−∏

z∈[0,d]

T(z), (27)

where the arrow denotes the ordered product starting from T(0)
at the right side. We first notice that

T(z) ≈ I + i
k0[ne(z) − no]h

2

(
cos[2ϕ(z)] sin[2ϕ(z)]
sin[2ϕ(z)] − cos[2ϕ(z)]

)
,

(28)

where I is the identity matrix. Consequently, we can write T(z)
as an exponential,

T(z) = lim
h→0

exp[iA(z)h], (29)

where A is defined by

A(z) = k0[ne(z) − no]

2

(
cos[2ϕ(z)] sin[2ϕ(z)]
sin[2ϕ(z)] − cos[2ϕ(z)]

)
. (30)

We can now rewrite Eq. (27) as

T = lim
h→0

exp

⎡
⎣i

∑
z∈[0,d]

A(z)h

⎤
⎦ = exp

[
i

∫ d

0
A(z)dz

]
, (31)

where we used

eAheBh = e(A+B)h + 1
2 [A,B]h2 + O(h3). (32)

The exponential of the 2 × 2 matrix from Eq. (31) reads

T =
[

cos(c) + i a
c

sin(c) i b
c

sin(c)
i b

c
sin(c) cos(c) − i a

c
sin(c)

]
, (33)

where c = √
a2 + b2 with

a = k0

2

∫ d

0
[ne(z) − no] cos[2ϕ(z)]dz,

b = k0

2

∫ d

0
[ne(z) − no] sin[2ϕ(z)]dz. (34)

We then let the light pass through an analyzer Pα at an
angle α,

Pα =
(

cos2 α sin α cos α

sin α cos α sin2 α

)
, (35)

which gives for the final Jones vector (α = −45◦)

j′ = ia sin(c)√
2c

(
1

−1

)
. (36)

This yields the measured normalized intensity

I

I0
= j′∗T j′ = a2

c2
sin2(c). (37)

Next we evaluate the relation between the phase difference
and the measured intensity. Let j be the Jones vector after the
liquid crystal cell,

j =
(

z1e
iφ

z2

)
, (38)
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where z1 and z2 are real and z2
1 + z2

2 = 1. Generally |z1| �= |z2|.
After an analyzer with α = −45◦ we have a Jones vector

j′ = 1

2
(z1e

iφ − z2)

(
1

−1

)
(39)

and the intensity is related to the phase difference as

I

I0
= 1

2
[1 − 2z1z2 cos(φ)]. (40)

Only if the director is restricted to the xz plane, z1 = z2 and
we have

I

I0
= 1

2
[1 − cos(φ)] = sin2

(
φ

2

)
, (41)

such that the relation between the intensity and the phase
difference is

φ = mπ ± 2 arcsin

[√
I

I0

]
, (42)

where m ∈ Z and the sign ± is determined by demanding
that φ is sufficiently smooth. Generally, however, the quantity
obtained from the measured intensity by Eq. (42) is not the
phase difference. It is the phase difference only when the
director field is in the xz plane. For the analysis of the dynamics
not confined to the xz plane, Sec. VI C, we will therefore use
the normalized intensity Eq. (37).

In the case when the dynamics is in the xz plane, to
compare the numerical results with the experiments and also
to compare the dynamics of the director with the dynamics of
the magnetization, it is convenient to introduce the normalized
phase difference

r(H ) = 1 − φ(H )

φ0
, (43)

where φ0 is the phase difference at zero magnetic field. The
normalized phase difference is zero at t = 0 and is always
smaller or equal to 1. It can also assume negative values as we
will see.

V. STATICS

In this section we present experimental and numerical re-
sults of statics and derive analytic formulas for the equilibrium
configurations in the low and large external magnetic field
limits.

In Fig. 2 we compare the numerical results of the equi-
librium normalized phase difference to the experimental data.
Below we will show in Eqs. (52) and (53) that the equilibrium
normalized phase difference is quadratically dependent on the
applied magnetic field at small magnetic fields. The normalized
phase difference saturates quickly above μ0H = 10 mT at a
value which is less than 1, which means there is a limit to
how much the director field deforms. We also observe that the
dependence of the equilibrium normalized phase difference is
not symmetric with respect to the μ0H = 0 axis, which is seen
in experiments as well. The reason for this is the nonzero pretilt
at both glass plates.

From the fits to the model we extract values for the
anchoring strength W , the pretilt angle ϕs , the Frank elastic
constant K ≡ K1 = K3 in the one constant approximation, and

FIG. 2. Comparison of experimental and theoretical static results.
Top: Normalized phase difference r(H ). Bottom: Magnetization
component Mz as functions of the magnetic field μ0H .

the static coupling coefficient A1:

W ∼ 4 × 10−5 J/m2, (44)

ϕs ∼ −0.05, (45)

K ∼ 17 pN, (46)

A1 ∼ 140μ0. (47)

The extracted parameters Eqs. (44)–(47) correspond to the
(local) minimum of the sum of squares of residuals between
the numerical and experimental values of the normalized phase
difference. This minimum was sought in sensible parameter
ranges (for example, the Frank elastic constant was sought in
the range between 5 and 25 pN). There are several indications
that this minimum is at least very close to the global one. First,
the extracted value of the Frank elastic constant is close to the
value of K3 in the pure E7 NLC. Second, the extracted pretilt is
within the range specified by the cell provider. Moreover, the
value of the static coupling is similar to that estimated for the
ferromagnetic NLC based on pentylcyanobiphenyl (5CB) [25].

The limiting behaviors of the normalized phase difference
and the normalized z component of the magnetization as
the magnetic field goes to zero or infinity can be calculated
analytically. In all cases the boundary condition is

K
∂θ

∂z
νz + ∂f S

∂θ
= 0, (48)
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where νz is the z component of the surface normal pointing
upwards at z = d and downwards at z = 0.

A. Low magnetic fields

The free energy density in lowest order in deviations of
magnetization and director field from the equilibrium is

f = 1

2
K

(
∂θ

∂z

)2

+ 1

2
A1M

2
0 (θ − ψ)2 + μ0HM0ψ. (49)

The equilibrium solutions for the angles are

θ (z) = 1

2

μ0HM0

K
z(z − d) − μ0HM0d

2W
+ π

2
− ϕs, (50)

ψ(z) = θ (z) − μ0HM0

A1M
2
0

. (51)

After inserting the solutions Eqs. (50) in equations for
the normalized phase difference and magnetization, one
gets

r(H ) = r0
μ0HM0d

2

6K

×
[
μ0HM0d

2

20K

(
1+10

ξ

d
+30

ξ 2

d2

)
+

(
1+6

ξ

d

)
ϕs

]
,

(52)

where ξ = K/W is the so-called anchoring extrapolation
length and r0 = ne0(ne0 + no)/(2n2

o). In the limit of infinite
anchoring the normalized phase difference reads

r(H ) = r0
μ0HM0d

2

6K

(
μ0HM0d

2

20K
+ ϕs

)
. (53)

One can also observe that the location of the minimum of
the normalized phase difference is shifted to a value μ0Hmin

determined by the pretilt:

− 10Kϕs

(
1 + 6 ξ

d

)
M0d2

(
1 + 10 ξ

d
+ 30 ξ 2

d2

) W→∞−−−→ −10Kϕs

M0d2
. (54)

Equations (52) and (54) are useful for determining the anchor-
ing strength W and the pretilt ϕs .

From the behavior of the normalized phase difference at low
fields [Eqs. (52) and (53)] one cannot determine the value of
the static coupling A1. It can, on the other hand, be determined
from the low-field behavior of the magnetization. In Fig. 2 we
see that the behavior is linear for low magnetic fields as can be
shown analytically:

Mz

M0
= ϕs +

(
1

A1M
2
0

+ 1

12

d2

K
+ d

2W

)
μ0HM0. (55)

B. Large magnetic fields

In the large-magnetic-field limit we assume that both the po-
lar angle of the director and the magnetization are either close
to 0 if the applied magnetic field is positive (+) or close to π if
the applied magnetic field is negative (−). The corresponding
solutions will be denoted as θ+(z),θ−(z),ψ+(z), ψ−(z), M+

z ,
M−

z , r+, and r−.
The free energy in the case of a positive magnetic field is

f ≈ 1

2
K

(
∂θ

∂z

)2

+ 1

2
A1M

2
0 (θ − ψ)2 + 1

2
μ0HM0ψ

2.

(56)

The equilibrium solutions for the angles θ+(z) and ψ+(z) are

θ+(z) =
π
2 − ϕs

1 + qξ tanh
(

qd

2

) cosh
[
q
(
z − d

2

)]
cosh

(
qd

2

) , (57)

ψ+(z) = θ+(z)

1 + μ0|H |M0

A1M
2
0

, (58)

where

q2 = q2
0

μ0|H |M0

μ0|H |M0 + A1M
2
0

(59)

with q0 =
√

A1M
2
0 /K (which is proportional to the inverse

“magnetization coherence length” of the director).
The normalized z component of the magnetization for large

fields is

M+
z

M0
= 1 −

[
π
2 − ϕs

]2
(qd + sinh(qd))A2

1M
4
0

4qd
[
1 + qξ tanh

(
qd

2

)]2
cosh2

(
qd

2

)(
A1M

2
0 + μ0|H |M0

)2 (60)

and the normalized phase difference is

r+(H ) = 1 − nor∞k0d

2φ0

[
π
2 − ϕs

]2[
1 + qξ tanh

(
qd

2

)]2

qd + sinh(qd)

2qd cosh
(

qd

2

)2

− nor∞k0d

4φ0
(3r∞/4 − 1/3)

[
π
2 − ϕs

]4[
1 + qξ tanh

(
qd

2

)]4

6qd + 8 sinh(qd) + sinh(2qd)

8qd cosh
(

qd

2

)4 , (61)

where r∞ = (n2
e0 − n2

o)/n2
e0.

It follows from symmetry that θ−(ϕs) = π − θ+(−ϕs),
ψ−(ϕs) = π − ψ+(−ϕs), M−

z (ϕs) = −M+
z (−ϕs), and

r−(ϕs) = r+(−ϕs).
Since the magnetization is not anchored at the boundary,

in Eq. (60) it was sufficient to consider terms not higher than

(ψ+)2. On the other hand, due to the anchoring of the director
field, in Eq. (61) we expanded the phase difference to the order
(θ+)4. It should be noted that the approximation for the phase
difference is better if the anchoring W is low, i.e., qξ � 1 or
W �

√
A1M

2
0 K .
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FIG. 3. For low magnetic fields, the numerically calculated polar
angle of the director is in agreement with Eq. (50).

In the large-magnetic-field limit, where qd � 1, and if
qξ � 1 in addition, one can study asymptotic behavior of
Eqs. (60) and (61):

r+(H ) � r+(∞) − f +(q0)

μ0|H | , (62)

M+
z

M0
� 1 − h+(q0)

(μ0H )2
, (63)

where f + and h+ are functions of static parameters for positive
magnetic fields and r+(∞) = limμ0H→∞ r+(H ). The behavior
of the magnetization Mz, Fig. 2, may at a first glance look like
the Langevin function, often observed in magnetic systems.
Equation (63) tells us that this is not the case, since the
Langevin function saturates with the first power in magnetic
field, whereas here the saturation Eq. (63) is of second order
in H .

C. Comparison of analytic approximations with numerics

A comparison of analytic and numeric results for the
director polar angle θ (z) is made in Figs. 3 and 4 for small and
large magnetic fields, respectively. We find a good agreement
for small magnetic fields up to 0.7 mT and for large magnetic
fields above 4 mT. It should be emphasized that the values

FIG. 4. For large magnetic fields, the numerically calculated polar
angle of the director is in agreement with Eq. (57).

FIG. 5. Comparison of numeric and analytic results at low and
high values of the applied magnetic field. Top: Magnetic field
dependence of the normalized phase difference for small magnetic
fields is in agreement with Eq. (52) below 0.5 mT, whereas the
approximation for large magnetic fields, Eq. (61), is within 1% of
the numerical value already when above 0.8 mT. Bottom: Magnetic
field dependence of the z component of the magnetization for small
magnetic fields is in agreement with Eq. (55) below 0.5 mT, whereas
the approximation for large magnetic fields, Eq. (60), is within 1% of
the numerical value already when above 0.8 mT.

of the magnetic fields at which the approximations become
valid depend on the values of the static parameters. We use the
values Eqs. (44)–(47) extracted from the fits to the macroscopic
model.

In Fig. 5 we compare analytic and numeric results for the
z component of the magnetization and the normalized phase
difference. Again we find a good agreement between the results
at similar ranges of the magnetic field. From the insets of
Fig. 5 one can conclude that for our system a magnetic field as
small as 1 mT can be considered as large already. The notable
discrepancy of the numeric and analytic normalized phase
difference at large magnetic fields is due to the fact that one
has expanded the expression for the phase difference, Eq. (23),
up to the order θ4. Since θ does not saturate to zero, this means
that the constant term of Eq. (61) is slightly different from the
actual value determined numerically.

The agreement between experimental data and the model for
two key static properties underscores that we have solid ground
for the analysis of the dynamic results which now follows.
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FIG. 6. Top: Time evolution of the measured normalized phase
difference, r(H ), fitted by the dynamic model Eqs. (1)–(11). The
linear-quadratic onset of r(H ) is in accord with the analytic result
given in Eq. (79). Bottom: The corresponding theoretical time
evolution of Mz/M0, initially growing linearly as given in Eq. (85).

VI. SWITCH-ON DYNAMICS

In this section we present the experimental and theoretical
results of the dynamics that takes place when the magnetic
field is switched on.

In Fig. 6 we plot the comparison of experimental and
theoretical data for the dynamics of the normalized phase
difference (top) as well as the theoretical results for the
normalized z component of the magnetization (bottom) for two
values of the applied magnetic field. As an inset we show that
for small times the magnetization grows linearly, which is also
obtained analytically in Sec. VI A. As expected the rise time
for the magnetization is reduced as the applied magnetic field
is increased. The inset for the top graph shows that the initial
phase difference is quadratic in time, which is again obtained
also analytically, see Sec. VI A.

The fits for the comparison of the experimental and theo-
retical normalized phase difference are performed by varying
the dynamic parameters taking into account the fundamental
restrictions [30] on their values, at fixed values of the static
parameters Eqs. (44)–(47). The model captures the dynamics
very well for all times from the onset to the saturation. The
extracted values of the dynamic parameters are

γ1 ∼ 0.13 Pa s, (64)

FIG. 7. The overall relaxation rate, 1/τ (H ), as a function of the
magnetic field μ0H , extracted from the experimental data and the
theoretical results using the fitting function Eq. (68). Inset: Without
the dynamic cross-coupling, the relaxation rate levels off already at
low fields (dashed).

bD
⊥ ∼ 1.5 × 105 Am/V s2, (65)

χD
2 ∼ 4 (Pa s)−1. (66)

The dissipative cross-coupling coefficient χD
2 is within the

allowed interval determined by the restriction [30]

∣∣χD
2

∣∣ <

√
bD

⊥
γ1M

2
0

≈ 5.4 (Pa s)−1. (67)

The remaining two dynamic parameters do not affect the
dynamics significantly and are set to b‖ = b⊥ and χD

1 = 0.
To extract from the time evolution of the normalized phase

difference, Fig. 6 (top), a switching time τ as a measure of
an overall relaxation rate of the dynamics, we use a squared
sigmoidal model function,

f (t) = C ′
[

1 − 1 + C

1 + C exp(−2t/τ )

]2

. (68)

Remarkably, the relaxation rate, 1/τ (H ), shows a linear de-
pendence on H , Fig. 7. We were first interested in the effect of
the dissipative cross-coupling on 1/τ (H ). We find that a rea-
sonably strong dynamic cross-coupling χD

2 is needed in order
to obtain the observed linear magnetic field dependence of the
relaxation rate. In the absence of this dynamic cross -coupling,
Fig. 7, the relaxation rate levels off already at low fields as
expected since the transient angle between M and n gets larger
and starts to decrease for even higher magnetic fields.

The best match of the relaxation rates 1/τ (H ) extracted
from the experimental data and the model, Fig. 7, allows for
a robust evaluation of the dissipative cross-coupling between
the magnetization and the director:

χD
2 = (4.0 ± 0.7) (Pa s)−1. (69)

A. Initial dynamics

We investigate the initial dynamics of the normalized phase
difference and magnetization on application of the magnetic
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field. Up to linear order we also take into account the pretilt.
Initially, n and M are parallel to nS . Keeping the modulus of the
magnetization exactly fixed, the initial thermodynamic forces
Eqs. (6) and (7) are

hn = 0, h⊥M = μ0H (ϕs,0,−1). (70)

where h⊥M is the projection of hM perpendicular to M. With
that, the initial quasicurrents are

Yi = χD
ij h⊥M

j + χRεijknjh
⊥M
k ⇒

Y = μ0H
(
χD

2 M0ϕs,χ
R,−χD

2 M0
)
, (71)

Xi = bD
ij h

⊥M
j + bR

ijh
⊥M
j ⇒

X = μ0H
(
bD

⊥ϕs,−
(
bR

1 + bR
2

)
M0,−bD

⊥
)
. (72)

At finite χD
2 and zero χR it follows from Eq. (71) that the z

component of the director field responds linearly in time as
well as linearly in the magnetic field for small times:

nz(t) ≈ ϕs + χD
2 M0μ0H t. (73)

As a contrast, if χD
2 is zero, then the director responds

through the nonzero molecular field hn
z due to the static

coupling A1,

hn
z = −A1M0Mz(t) = −A1M0b

D
⊥μ0H t, (74)

where Mz(t) = bD
⊥μ0Ht is the initial response of the z com-

ponent of the magnetization, Eq. (72). The z component of the
director field thus responds quadratically in time rather than
linearly,

nz(t) ≈ ϕs + A1M0b
D
⊥μ0H

2γ1
t2. (75)

For small times t we can express the refractive index
Eq. (20) as

ne(t) ≈ ne0

[
1 − n2

e0 − n2
o

2n2
o

(
ϕs + χD

2 M0μ0Ht
)2

]
. (76)

The coefficients a and b from Eq. (34) are then

a ≈ k0d

2
[ne(t) − no][1 − 2(χRμ0H )2t2],

b ≈ k0d

2
[ne(t) − no](−2χRμ0H )t (77)

and the normalized intensity of the transmitted light for small
times is

I

I0
≈ sin2

(
φ0

2

)
− r0ϕsχ

D
2 μ0HM0φ0 sin(φ0)t

−
[
r0

2

(
χD

2 μ0HM0
)2

φ0 sin(φ0)

+ 4(χRμ0H )2 sin2

(
φ0

2

)]
t2. (78)

In the lowest order of t , for the phase difference, one gets a
linear term that is also linear in pretilt and a quadratic term
which does not vanish if the pretilt is zero:

r(H ) ≈ r0
[(

χD
2 M0μ0H

)2
t2 + 2ϕsχ

D
2 M0μ0Ht

]
≡ k2t2 + pt. (79)

FIG. 8. Inverse of the time of the minimum determined from the
measured normalized phase difference as a function of the magnetic
field. The linear behavior in magnetic field is in agreement with
Eq. (80).

Equation (79) will be used to extract the dissipative cross-
coupling coefficient χD

2 and the pretilt ϕs from the experimen-
tal data. Furthermore, from Eq. (79) one can see that in the case
of positive (negative) pretilt the normalized phase difference
has a minimum at negative (positive) magnetic fields. By
measuring the time of this minimum, Fig. 8,

tmin = − ϕs

χD
2 μ0HM0

, (80)

one can calculate the ratio of the pretilt and the dissipative
cross-coupling. If χD

2 = 0, then the time of the minimum
decreases more slowly with increasing magnetic field:

tmin =
√

− 2γ1ϕs

A1b
D
⊥μ0HM0

. (81)

The normalized phase difference evaluated at tmin is of
second order in the pretilt:

r(H )min = −r0ϕ
2
s . (82)

The minimum value Eq. (82) is independent of the applied
magnetic field. This can be explained by the fact that the
director field goes through an intermediate state which is
approximately aligned with the glass plates of the cell.

We note that if both the dissipative cross-coupling coef-
ficient χD

2 and the pretilt ϕs are zero, the normalized phase
difference initially grows as t4.

Assuming a negative pretilt, Eq. (79) predicts a minimum
for positive magnetic fields, which is also seen in experiments,
Fig. 6 (top). In Fig. 8 we show experimental inverse times of the
minima. The large error at high magnetic fields is due to the
time resolution limitations (1 ms). From the linear behavior
predicted by Eq. (80) we can extract the ratio between the
dissipative cross-coupling and the pretilt. Independently, we
can extract the pretilt by measuring the values of the minima,
Fig. 9.

Fitting Eq. (79) to the initial time evolution of measured
normalized phase differences (like those presented in Fig. 6)
for several values of the magnetic field μ0H , we determine the
parameters k and p shown in Figs. 10 and 11, respectively.
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FIG. 9. Pretilt, determined from experimental data using Eq. (82).

Therefrom we extract the value of the dissipative cross-
coupling parameter χD

2 between director and magnetization,

χD
2 ∼ (4.0 ± 0.5) (Pa s)−1, (83)

and from the parameter p of Eq. (79) we extract the pretilt,

ϕs ∼ −0.065 ± 0.01. (84)

The normalized z component of the magnetization Eq. (18)
is linear in t :

Mz

M0
= ϕs + bD

⊥
M0

μ0Ht, (85)

which is in accord with Fig. 6 (bottom). From the initial
behavior one can therefore directly determine the dissipative
coefficient bD

⊥ .
Let us define the initial rate of the director reorientation as

the time derivative of the director z component at t = 0,

1

τd

= ∂nz

∂t

∣∣∣∣
t=0

. (86)

FIG. 10. The coefficient k of Eq. (79) as a function of the magnetic
field μ0H . The straight line fits are used to extract χD

2 .

FIG. 11. The coefficient p of Eq. (79) as a function of the
magnetic field μ0H . The straight line fit is used to extract ϕs .

For a nonzero dissipative cross-coupling coefficient χD
2 the

initial rate, Eq. (73), is

1

τd

= χD
2 M0μ0|H |. (87)

However, if χD
2 = 0, then the initial rate of the director reorien-

tation is proportional to the z component of the magnetization,
Eq. (74),

1

τs

= A1M0

γ1
|Mz(t)|. (88)

The relaxation rates Eqs. (87) and (88) describe two different
mechanisms of the director reorientation. The former is as-
sociated with the dynamic coupling of the director and the
magnetization, whereas the latter is governed by the static
coupling A1 of the director and the magnetization. Here a
deviation of the magnetization from the director is needed to
exert a torque on the director.

B. Dissipative cross-coupling

We have demonstrated that the dissipative cross-coupling of
the director and the magnetization, i.e., the χD

ij terms of Eqs. (8)
and (9), affects the dynamics decisively and is crucial to explain
the experimental results. It is described by the parameters χD

1
and χD

2 of Eq. (10). Here we check the sensitivity of the
dynamics to the values of these two parameters. Varying χD

1
while keeping χD

2 = 0, Fig. 12, we see that the influence of
χD

1 is rather small and is not substantial. Moreover, the initial
dynamics is not affected, Fig. 12 (inset).

On the other hand, increasing χD
2 strongly reduces the rise

time of the normalized phase difference, Fig. 13, and also
strongly affects the initial behavior (inset). For large values
of χD

2 one also observes an overshoot in the normalized phase
difference.

By inspecting Eq. (10) one sees that the influence of χD
1

is largest when M ⊥ n, hn ‖ M, and hM ‖ n. On the other
hand, the influence of χD

2 is largest when M ‖ n. Since M
and n are initially parallel and, moreover, the transient angle
between them never gets large due to the strong static coupling
compared to the magnetic fields applied, it is understandable
that χD

2 affects the dynamics more than χD
1 .
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FIG. 12. Normalized phase difference at different values of the
dissipative cross-coupling parameter χD

1 , χD
2 = 0, μ0H = 50 mT.

Inset: The initial behavior is not affected.

C. Reversible cross-coupling

The reversible cross-coupling of the director and the mag-
netization, described by the χR terms of Eqs. (12) and (13), has
not been considered up to this point. We focus on the reversible
cross-coupling coefficient χR and put both reversible tensors
bR

ij and (γ −1)Rij of Eqs. (14) and (15) to zero.
If the reversible currents are included, then both vari-

ables wander out of the xz plane dynamically, which
will be described by the azimuthal angles δ and ϕ of
the magnetization and the director, respectively, defined
by M = M0(cos δ sin ψ, sin δ sin ψ, cos ψ), n = (cos ϕ sin θ,

sin ϕ sin θ, cos θ ). The dynamic behavior of both azimuthal
angles is shown in Fig. 14.

Contrary to the polar angles we find that the response
of the azimuthal angle of the director is faster than that
of the magnetization. From Fig. 14, we read off that the
maximum azimuthal angles increase with χR , being higher
for the magnetization than for the director.

We note again that here we only included the reversible
cross-coupling χR . From the initial quasicurrents Eqs. (71)
and (72) one can see that the initial azimuthal response of

FIG. 13. Normalized phase difference at different values of the
dissipative cross-coupling parameter χD

2 , χD
1 = 0, μ0H = 50 mT.

Inset: The initial behavior is strongly affected as well.

FIG. 14. The time dependencies of the azimuthal angles (degrees)
of the director (ϕ) and the magnetization (δ) at z = d/2 for different
values of χR , χD

1 = χD
2 = 0, μ0H = 10 mT.

the magnetization can be faster than that of the director if the
coefficients of the tensor bR

ij are sufficiently large,∣∣bR
1 + bR

2

∣∣ > |χR|/M0. (89)

There exists a direct way of detecting the possible dynamics
in the xy plane. The intensity of the transmitted light in the
experiments with crossed polarizers at 45◦ and −45◦ is given
by Eq. (37),

I

I0
= a2

c2
sin2(c). (90)

It is this quantity that is typically measured. On the other hand,
crossed polarizers at 0◦ and 90◦ give us the intensity

I

I0
= b2

c2
sin2(c), (91)

with a and b given by Eq. (34). This method is better suited
for detecting the xy dynamics, since b is more sensitive to the
deviation of the director field from the xz plane.

Our numerical calculations have revealed that, due to the
reversible dynamics, the magnetization and the director are
not confined to the xz plane. As a consequence, the maxima
of the time-dependent intensity of transmitted light are lower
than unity, Fig. 15, in contrast to the case of a purely in-plane
(dissipative) dynamics. Observation of the lower maxima could
thus be an indication of the azimuthal dynamics. This effect is
more prominent at higher magnetic fields and at higher values
of the reversible cross-coupling coefficients.

In recent experiments no clear-cut consequences of the
azimuthal dynamics have been found using crossed polarizers
at 0◦ and 90◦. In the following we will therefore discard the
reversible dynamics.

VII. SWITCH-OFF DYNAMICS

Dynamics of the normalized phase difference after switch-
ing off the magnetic field has been also measured. In ex-
periments, the initial state is obtained by switching on the
desired magnetic field and waiting for a couple of seconds.
Contrary to the previous experiments, here the initial state is
not homogeneous.

012701-11



TILEN POTISK et al. PHYSICAL REVIEW E 97, 012701 (2018)

FIG. 15. Time dependence of the normalized intensity of trans-
mitted light for zero and nonzero values of the reversible cross-
coupling coefficient χR; μ0H = 5 mT.

In Fig. 16 we compare the experimental and numerical
normalized phase difference at two different fields. We ob-
serve, similarly to the switch-on case, that the normalized phase
difference goes through a minimum. This is again explained
by the fact that the director field goes through a state, which
is approximately aligned with the surfaces of the glass plates.
Numerical calculations reveal that a strong dissipative cross-
coupling causes the initial behavior of the normalized phase
difference to be a linear function in time, Fig. 17, as found
experimentally, Fig. 16.

To extract a relaxation time τ of the normalized phase
difference, we use an exponential function

f (t) = f (0)e−t/τ . (92)

FIG. 16. Experimental and numerical normalized phase differ-
ence as a function of time at different values of the applied magnetic
field.

FIG. 17. Normalized phase difference as a function of time at
5 mT, calculated with χD

2 = 0 and χD
2 = 4.0 (Pa s)−1.

The relaxation rate 1/τ for the experimental data is shown
in Fig. 18. It saturates at a finite value as one increases the
magnetic field. This is expected since the initial director and
magnetization fields do not change much with magnetic field
any more when the field is large. In Fig. 19 the relaxation rate
of both the computed phase difference and the magnetization is
shown. One can see that the relaxation rate of the magnetization
is smaller than that of the normalized phase difference, due to
the fact that it is the director that is driven by the nonzero elastic
force, while the magnetization only follows. This is true for all
allowed values of the dynamic cross-coupling parameters.

One can derive analytic formulas for the relaxation rate in
the limit of low magnetic fields. With the assumption that
the relaxation follows a simple exponential function, it is
possible to extract the relaxation rate 1/τ off from the initial
time derivative of the normalized phase difference,

r(H,t) ≈ r(H,t = 0)

(
1 − t

τ off

)
. (93)

Note that Eq. (93) is defined only when r(H,t = 0) �= 0.
One starts with the director quasicurrent Y, Eq. (9).

The response of the z component of the director field is

FIG. 18. Experimental switch-off relaxation rate of the normal-
ized phase difference as a function of the applied magnetic field.
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FIG. 19. Relaxation rate of the normalized phase difference and
z component of the magnetization after switching off the magnetic
field of strength μ0H at χD

2 = 4 (Pa s)−1 and ϕs = 0.

nz ≈ nz(z,t = 0) − Yz(z,t = 0) t , which one uses in Eq. (23)
for the phase difference,

1

τ off
= 2k0r0(ne0 − no)

φ0r(H,t = 0)

∫ d

0
dz

nz(z)Yz(z)[
1 + n2

e0−n2
o

n2
o

n2
z(z)

]3/2
, (94)

where all z-dependent quantities are evaluated at t = 0. In the
last step the integrand is expanded up to linear order in time
and the relaxation rate in the low-magnetic-field limit is finally
expressed as

1

τ off
=

(
1 + r0ϕ

2
s

)[
μ0HM0

(
1 + 6 ξ

d

) + 12 K1ϕs

d2

]
χD

2
μ0HM0d2

20K1

(
1 + 10 ξ

d
+ 30 ξ 2

d2

) + (
1 + 6 ξ

d

)
ϕs

, (95)

which is linear in the dissipative cross-coupling coefficient χD
2 .

Not only does the dissipative cross-coupling make the
switching process faster when switching on the field, this
can be also true for switching off the field, Figs. 17 and 20.
Figure 20 shows the relaxation rate of the normalized phase
difference at a high magnetic field as a function of the
dissipative cross coupling coefficient χD

2 . As expected, the

FIG. 20. Relaxation rate at μ0H = 50 mT as a function of the
dissipative coefficient χD

2 for different values of the director rotational
viscosity γ1.

relaxation rate decreases with increasing rotational viscosity
γ1. The relaxation rate at first increases with increasing values
of χD

2 , which seems also to be the case for small magnetic
fields described by Eq. (95). For values above approximately
χD

2 = 3.5 (Pa s)−1, the relaxation rate starts to decrease rather
rapidly. This is in contrast with the field switch-on case, where
the response is faster for increasing values of χD

2 .
The increasing part of the dependence τ−1(χD

2 ) in Fig. 20
is due to the director elastic forces, which drive the switch-
off dynamics and also enter Eq. (4) through the dissipative
cross-coupling governed by χD

2 . At higher values of χD
2 one

must, however, also consider the part of the thermodynamic
forces corresponding to the static (A1) coupling between the
director and the magnetization. Focusing only on the director
equation Eq. (5), one sees that the director relaxes towards the
magnetization with a characteristic time set by the rotational
viscosity and the static coupling (A1). On the other hand, the
positive value of χD

2 has the opposite effect. While both fields
eventually relax to the ground state parallel to x, the angle
between them is decreasing slower and slower as the dynamic
cross-coupling (χD

2 ) gets larger. For small magnetic fields
one can study the relaxation rate of the dynamic eigenmodes
[Eq. (122)] of the next section. The value of χD

2 above which
the relaxation rate starts to decrease then reads

χD
2 =

⎧⎨
⎩

A1b
D
⊥

A1M
2
0 +K(π/d)2 if 1

γ1
>

bD
⊥

M2
0
,

1
γ1

if 1
γ1

<
bD

⊥
M2

0
.

(96)

In our case 1
γ1

>
bD

⊥
M2

0
holds and the maximum is at χD

2 ≈
3.5 (Pa s)−1.

The switch-on case is different in that the dynamics is driven
by the external magnetic field. If the external field is sufficiently
high (large compared to A1M0), the static cross-coupling
effects, which decrease the relaxation rate in the switch-off
case through the increasing dynamic cross-coupling χD

2 , can
be neglected and hence the relaxation rate is monotonically
increasing with χD

2 .

VIII. FLUCTUATIONS AND LIGHT SCATTERING

Nematic liquid crystals appear turbid in sufficiently thick
layers [32]. The scattering of light is caused by strong director
fluctuations which cause fluctuations in the dielectric tensor

εij = ε⊥δ⊥
ij + ε‖ninj , (97)

where ε⊥ and ε‖ are dielectric susceptibilities for the electric
field perpendicular and parallel to the director, respectively.
Fluctuations are easy to observe experimentally and are used
to determine the viscoelastic properties of liquid crystals [36].

In this paper we derive the relaxation rates of the fluctuations
without taking into account the effects of flow. Since the
director is coupled to the magnetization, we now have two
fluctuation modes for each director fluctuation mode of the
usual nematic [22].

The fluctuating director and magnetization fields are lin-
earized as

n = n0 + δn, M = M0 + M0δm, (98)
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where the equilibrium director n0 and magnetization M0 fields
point in x direction in which a magnetic field is applied,
whereas fluctuations δn and δm are perpendicular, n0 · δn =
M0 · δm = 0. The ansatz for the director fluctuations is

δn(r) = 1

V

∑
q

δn(q)eiq·r, (99)

where q = qx êx + qy êy + qzêz is the wave vector of the fluc-
tuation. A similar ansatz is used for the fluctuations of the
magnetization. In a confined system, the fluctuation spectrum
generally depends on the interaction of the nematic with the
surface [36]. For simplicity we will use the infinite anchoring
limit, so thatqz = nπ/d,n ∈ N, whileqx andqy are in principle
arbitrary. For details regarding the anchoring effect we refer to
Ref. [36].

To understand the static light-scattering experiments one
must determine thermal averages of the fluctuations. This is
done by finding linear combinations of the variables in terms
of which the free energy functional Eq. (1) is expressed as a sum
of quadratic terms and making use of equipartition. Such linear
combinations are uncorrelated (statistically independent). A
systematic way to perform this decomposition is to write the
free energy of a fluctuation q-mode as a quadratic form and
find the corresponding eigenvalues and eigenvectors,

F (q) = 1
2δx(q)H E(q)δx(q), (100)

where δx(q) = {δnz(q),δmz(q),δny(q),δmy(q)}, in short
δx(q) ≡ {nz,mz,ny,my}, is the vector of the fluctuation am-
plitudes, E(q) is a self-adjoint matrix, and superscript H is the
conjugate transpose.

In lowest order of fluctuations, the contributions Eq. (100)
of the free energy Eq. (1) are [32]

F (q) = 1

2V

[(
K1q

2
y + K2q

2
z + K3q

2
x + A1M

2
0

)|ny |2

+ (
K1q

2
z + K2q

2
y + K3q

2
x + A1M

2
0

)|nz|2

+ (K1 − K2)qzqy(nyn
∗
z + n∗

ynz)

+ (
μ0HM0 + A1M

2
0

)
(|my |2 + |mz|2)

− A1M
2
0 (nym

∗
y + n∗

ymy + nzm
∗
z + n∗

zmz)
]
.

(101)

For completeness (not needed here), the volume-integrated free
energy is F = ∑

q F (q).
Before giving the eigenvectors of the quadratic form E,

we perform a rotation in the yz plane, (ny,nz) → (n1,n2) and
(my,mz) → (m1,m2), where the new bases in this plane are
{ên

1,ê
n
2} and {êM

1 ,êM
2 }. Vectors ên

2 and êM
2 are normal to the

(q,n0) and (q,m0) plane, respectively, and vectors ên
1 and êM

1
are normal to ên

2 and êM
2 , respectively. It should be emphasized

that we are studying the case n0‖m0, so the planes (q,n0) and
(q,m0) are identical. In the confined system, this would not
be the case if the external magnetic field were applied in any
direction other than parallel to the initial homogeneous state.

A general fluctuation δx(q) can be written as

δx = t1t1 + p1p1 + t2t2 + p2p2, (102)

where t1,t2,p1, p2 are the eigenvectors of the quadratic form
E and t1,t2,p1, p2 are the amplitudes of these uncorrelated

FIG. 21. The normalized coefficients Eq. (103) of the eigenvec-
tors t1 and t2 as a function of the applied magnetic field with qx = 0
and q⊥ = π/2; K1 = K2.

excitations. The eigenvectors are

tα = at
α ên

α + bt
α êM

α

= Z−
α√

1 + (Z−
α )2

ên
α − 1√

1 + (Z−
α )2

êM
α , (103)

pα = ap
α ên

α + bp
α êM

α

= Z+
α√

1 + (Z+
α )2

ên
α − 1√

1 + (Z+
α )2

êM
α , (104)

where

Z±
α = −μ0HM0 + Kαq2

⊥ + K3q
2
x ± sα

2A1M
2
0

, (105)

with q2
⊥ = q2

y + q2
z and

s2
α = 4A2

1M
4
0 + (

Kαq2
⊥ + K3q

2
x − μ0HM0

)2
. (106)

The excitation modes t1 and p1 are the analogues of the
splay-bend mode in the usual NLCs, whereas t2 and p2 are the
analogues of the twist-bend mode.

It is found that in the limit of large magnetic fields these ex-
citations become decoupled, i.e., one eigenvector only contains
the fluctuation of the director field and the other the fluctuation
of the magnetization field, Figs. 21 and 22.

The thermal averages of the squared amplitudes of the
independent excitations read

〈|tα(q)|2〉 = kBT V
1
2

(
2A1M

2
0 + μ0HM0 + Kαq2

⊥ + K3q2
x − sα

) ,

(107)

〈|pα(q)|2〉 = kBT V
1
2

(
2A1M

2
0 + μ0HM0 + Kαq2

⊥ + K3q2
x + sα

) ,

(108)

with kB the Boltzmann constant and T the temperature,
whereas their thermal cross-correlations are zero.

If K1 = K2, then the splay-bend (α = 1) and the twist-bend
(α = 2) excitation modes have the same structure [Eqs. (105)
and (106)] (Figs. 21 and 22), as well as the same energy
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FIG. 22. The normalized coefficients Eq. (104) of the eigenvec-
tors p1 and p2 as a function of the applied magnetic field with qx = 0
and q⊥ = π/2; K1 = K2.

and thermal amplitude [Eqs. (107) and (108)]. The same is
true in the degenerate case when q = q êx , i.e., for a pure
bend excitation (in an unconfined system), where there is no
difference between the modes α = 1,2 and the bases {ên

1,ê
n
2}

and {êM
1 ,êM

2 } are chosen arbitrarily in the yz plane.
The space correlations are expressed as

〈tα(r)tα′(r′)〉 = 1

V 2

∑
q,q′

〈tα(q)tα′(q′)〉e−i(q·r+q′ ·r′)

= δα,α′

V 2

∑
q

〈tα(q)tα(−q)〉e−iq·(r−r′), (109)

and similarly for 〈pα(r)pα′ (r′)〉, whereas 〈tα(r)pα′(r′)〉 = 0. In
the large magnetic field limit these correlations are

〈tα(r)tα(r′)〉 ≈ kBT

4πK

1

r
e−q0r , (110)

〈pα(r)pα(r′)〉 ≈ kBT

(2π )3μ0HM0
δ(r), (111)

where r = |r − r′| and q0 =
√

A1M
2
0 /K .

In experiments one measures the intensity of the scattered
light. To calculate this intensity, we need an expression for
the amplitude of the outgoing electric field. We start with
an incident electric field Ei , described by a plane wave: E =
E0 î ei(ki ·r−ωt), where ki is the wave vector, E0 the amplitude,
and ω the frequency of the incident light. We then proceed with
a summation of the electric field contributions of the scattered
light through the whole cell, treating every point r as a radiating
dipole. Last, we project the electric field on the axis f̂ of the
analyzer. The electric field amplitude of the scattered light is
[32]

Ef (q,t) = E0ω
2

c2R
ei(kf ·r′−ωt)

∫
V

d3r e−iq·rf̂i [εij (r,t) − δij ] îj

= E0ω
2

c2R
ei(kf ·r′−ωt) f̂iεij (q,t) îj , (112)

where kf is the wave vector of the scattered light, R is the
distance from the sample to the detector at r′, and q = kf − ki

is the fluctuation wave vector. In the last line of Eq. (112) we

discarded the Fourier contribution of δij , since it is nonzero
only if q = 0. We have assumed that R is large compared to
the size of the scattering region, which in turn is much larger
than the wave length of the light, and that we are in the limit
of small dielectric anisotropy.

In our calculations below, we will be using details of an
experimental setup usually used for measuring splay-bend
fluctuations in a NLC, which in our geometry have δn = δnzêz,
qy = 0, ên,M

2 = êy , and ên,M
1 = êz. In this case we have a

polarizer and an analyzer that are both in the xz plane. The
polarizer î is parallel to the x axis, whereas the analyzer f̂ is at
an angle ζ from the x axis. In Eq. (112), the projection of the
fluctuating part of the dielectric tensor Eq. (97) reads

f̂i εij (q,t) îj = εafzδnz, (113)

where fz = f̂ · êz. Using the expansion

δnz = (t1t1 + p1p1) · ên
1, (114)

the scattering cross section σ = 〈E∗
f (q,t)Ef (q,t)〉 with

q · êy = 0 is

σ = ε2
aω

4

c4
〈|δnz(q)|2〉f 2

z

= ε2
aω

4

c4
(C+

1 〈|t1(q)|2〉 + C−
1 〈|p1(q)|2〉)f 2

z , (115)

with the coefficient

C±
1 = (Z∓

1 )2

1 + (Z∓
1 )2

. (116)

In the usual experimental setup one observes two splay-bend
modes, t1 and p1, as opposed to the usual NLC, where one
observes only one splay-bend mode.

Asymptotic behaviors of the coefficients C+
1 and C−

1 at large
magnetic fields,

C+
1 � 1 − A2

1M
4
0

(μ0HM0)2
, (117)

C−
1 � 2

(
Kαq2

⊥ + K3q
2
x

)2 − 3A2
1M

4
0

(μ0HM0)2
, (118)

reveal that in the large-magnetic-field limit only the eigenmode
t1 contributes to the scattering cross section [Eq. (115)].

The dynamics of the fluctuations is probed by dynamic light
scattering, where one measures the time correlation of the light
intensity I (t),

g(2)(t) = 〈I (0)I (t)〉
〈I (0)〉2

. (119)

Assuming Gaussian fluctuations it follows that

g(2)(t) = 1 + |g(1)(t)|2, (120)

where

g(1)(t) = 〈E∗
f (q,0)Ef (q,t)〉
〈|Ef (q,0)|2〉 (121)

is the time correlation of the scattered light electric field.
To calculate the time dependence of the fluctuations, we

first linearize the system of dynamic equations and determine
the dynamic eigenmodes. Considering only the dissipative
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dynamics, Eqs. (8) and (9), and using δn = δn1ên
1 + δn2ên

2 ,
δm = δm1êM

1 + δm2êM
2 , we find a 2 × 2 homogeneous system

for each α = 1,2,

1

τ
δnα =

[
1

γ1

(
Kαq2

⊥ + K3q
2
x + A1M

2
0

) − χD
2 A1M

2
0

]
δnα

+
[
A1M

2
0

(
χD

2 − 1

γ1

)
+ χD

2 μ0HM0

]
δmα,

1

τ
δmα = [−bD

⊥A1 + χD
2

(
Kαq2

⊥ + K3q
2
x + A1M

2
0

)]
δnα

+
[
bD

⊥A1

(
1 + μ0HM0

A1M
2
0

)
− χD

2 A1M
2
0

]
δmα,

(122)

which can be rewritten as(
A − 1

τ
I
)(

δnα

δmα

)
= 0 (123)

and has nontrivial solutions if det(A − 1
τ
I) = 0. The dynamic

eigenmodes are the eigenvectors of the matrix A,

th
α = ct

α ên
α + dt

α êM
α , (124)

ph
α = cp

α ên
α + dp

α êM
α , (125)

where the components ct
α,c

p
α ,dt

α,d
p
α are functions of the static

and dynamic material parameters and will not be given ex-
plicitly. It is important to realize that the dynamic fluctuation
modes [Eqs. (124) and (125)] in general differ from the
statistically independent excitation modes [Eqs. (103) and
(104)]. If the reversible dynamics [Eqs. (12) and (13)] is
included, then a 4 × 4 eigensystem is obtained coupling both
α’s. In that case, splay-bend and twist-bend dynamic modes are
no longer decoupled and each eigenmode spans all directions
{ên,M

1 ,ên,M
2 }.

The time dependence of a fluctuation is first expressed in
terms of the dynamic eigenmodes [Eqs. (124) and (125)],
which are then further expressed by the uncorrelated exci-
tation modes [Eqs. (103) and (104)]. Using Eqs. (112) and
(113) and expressing δnz(t) of the splay-bend fluctuation as
just explained, the electric field time correlation [Eq. (121)]
becomes

|g(1)(t)| = D+
1 (t)〈|t1(q,0)|2〉 + D−

1 (t)〈|p1(q,0)|2〉
C+

1 〈|t1(q,0)|2〉 + C−
1 〈|p1(q,0)|2〉 , (126)

where

D+
1 (t) = (

t1 · ên
1

)2
fI(t) + (

t1 · ên
1

)(
t1 · êM

1

)
fII(t),

D−
1 (t) = (

p1 · ên
1

)2
fI(t) + (

p1 · ên
1

)(
p1 · êM

1

)
fII(t). (127)

The functions fI(t) and fII(t) are expressed using the com-
ponents ct

1,c
p

1 ,dt
1,d

p

1 and the relaxation times of the dynamic
eigenmodes denoted by τ t

1 and τ
p

1 :

fI(t) = ct
1d

p

1 e−t/τ t
1 − c

p

1 dt
1e

−t/τ
p

1

ct
1d

p

1 − c
p

1 dt
1

, (128)

fII(t) = dt
1d

p

1

(
e−t/τ t

1 − e−t/τ
p

1
)

ct
1d

p

1 − c
p

1 dt
1

. (129)

FIG. 23. Relaxation rates of almost pure bend fluctuations (qx �
q⊥) and the corresponding dynamic eigenmodes as a function of
the applied magnetic field. The dashed lines represent the limiting
behavior of the relaxation rates, described by Eqs. (132) and (133).
For clarity, a smaller value of the rotational viscosity was used to
make the asymptotic behavior set in sooner.

In the limit of large magnetic fields one gets D±
1 →

C±
1 e−t/τ t

1 . Taking into account also the large-magnetic-field
dependence of the coefficients C±

1 , Eqs. (117) and (118), the
intensity correlation function Eq. (120) is a single exponential

g(2)(t) = 1 + e−2t/τ t
1 . (130)

It is found that the dynamics of the eigenmodes th
α slows

down (τ t
α → ∞) at a negative critical magnetic field, here given

for q = qzêz:

μ0H
(α)
c = − A1M0Kαq2

z

Kαq2
z + A1M

2
0

. (131)

The negative value of the critical magnetic field means that it
is pointing in the direction opposite to the magnetization. If the
applied magnetic field is more negative than the critical field,
then the magnetization starts to reverse. In NLCs, K2 < K1

usually holds and it is the twist mode th
2 that slows down at a

less-negative magnetic field. With the smallest wave number
qz = π/d we get μ0H

(2)
c = −2.5 mT.

In Fig. 23 we present the magnetic field dependence of the
relaxation rate of almost pure bend (qx � q⊥) fluctuations. We
also depict the corresponding eigenmodes at a small positive
field and at large magnetic fields.

For a general fluctuation, in the limit of large magnetic fields
the relaxation rate of the faster (magnetization-like) ph

α mode
is proportional to the applied magnetic field (Fig. 23 presents
the bend fluctuation as an example),

1

τ
p
α

= A1
(
bD

⊥ − χD
2 M0

)2 + (
χD

2 M0
)2(

Kαq2
⊥ + K3q

2
x

)
bD

⊥

+ bD
⊥

M0
μ0H. (132)

The relaxation rate of the slower (director-like) th
α mode

saturates at a finite value (Fig. 23 presents the bend fluctuation

012701-16



MAGNETO-OPTIC DYNAMICS IN A FERROMAGNETIC … PHYSICAL REVIEW E 97, 012701 (2018)

as an example),

1

τ t
α

= A1M
2
0 + (

Kαq2
⊥ + K3q

2
x

)
γ1

[
1 −

(
χD

2 M0
)2

γ1

bD
⊥

]
. (133)

It is also illuminating to study the relaxation rates of general
fluctuations at zero magnetic field, H = 0. Expanding the
relaxation rates to second order in qx and q⊥ one gets

1

τ
p
α

= A1M
2
0

γ1

(
1 − 2χD

2 γ1 + bD
⊥γ1

M2
0

)

+
(
Kαq2

⊥ + K3q
2
x

)
�p

γ1
, (134)

1

τ t
α

=
(
Kαq2

⊥ + K3q
2
x

)
�t

γ1
, (135)

where

�p =
(
χD

2 γ1 − 1
)2

M2
0

bD
⊥γ1 + (

1 − 2χD
2 γ1

)
M2

0

, (136)

�t = γ1
(
bD

⊥ − (
χD

2 M0
)2

γ1
)

bD
⊥γ1 + (

1 − 2χD
2 γ1

)
M2

0

. (137)

From Eqs. (134) and (135) one can see that the relaxation rate
1/τ

p
α of the faster (optic) mode ph

α stays finite in the limit
q → 0. The slower mode th

α is, on the other hand, acoustic,
i.e., 1/τ t

α → 0 as q → 0.

IX. SUMMARY AND PERSPECTIVE

In the present extensive study we have presented detailed ex-
perimental and theoretical investigations of the dynamics of the
magnetization and the director in a ferromagnetic liquid crystal
in the absence of flow. We have shown that a dissipative cross-
coupling between these two macroscopic variables, which has
been determined quantitatively, is essential to account for the
experimental results also for the compound E7 as a nematic
solvent for the ferromagnetic nematic phase. Before, this was
demonstrated for 5CB as a nematic solvent [30]. We also find
that all the experimental results presented here for E7 com-
plement well and are consistent with the previous ones using
5CB as the nematic component. Remarkably, the dissipative
cross-coupling (χD

2 ) found for the E7-based ferromagnetic
nematic liquid crystal is about a factor of 5 smaller than
that of the 5CB based, while the dissipative coefficient of the
magnetization (bD

⊥ ) is (only) twice as large. This leads to an
interesting suggestion for future experimental work, namely
to address the question of which molecular features determine
the strength of this dissipative cross-coupling. The nematic
phases of 5CB and E7, respectively, show one qualitatively
different feature: The nematic phase of 5CB is well known
to favor the formation of transient pairlike aggregates [37]
because of its nitrile group, while such tendencies are reduced
in E7 since it is mixture of four different compounds and

also contains a terphenyl. A natural experiment to study these
features in more detail would be to investigate the dependence
of the dissipative cross-coupling on the magnetic particle
concentration on one hand and to investigate mixtures of the
nematic solvents 5CB and E7 on the other to learn more about
the coupling mechanisms between the nematic order and the
magnetic order.

We have also analyzed the consequences of an out-of-plane
dynamics, i.e., out of the plane spanned by the magnetic field
and the spontaneous magnetization. We give predictions for
both the azimuthal angles of director and magnetization as well
as for the intensity change related to the reversible dynamic
cross-coupling terms between the two order parameters, the
magnetization and the director. We find that from both mea-
surements a value for the reversible cross-coupling terms can
be extracted.

From the present analysis the next steps in this field appear
to be quite well defined. First, the incorporation of flow effects
appears to be highly desirable both from a theoretical as well as
from an experimental point of view. Early experimental results
in this direction have been described in Ref. [38], where it has
been shown that viscous effects can be tuned by an external
magnetic field of about 10−2 T by more than a factor of two.
From a theoretical perspective, questions like the analogs of
the Miesowicz viscosities and flow alignment are high on the
priority list [39].

Moreover, it will be important to realize, although perhaps
experimentally challenging, a nematic or cholesteric liquid
crystalline version of uniaxial magnetic gels and rubbers
[40,41]. Cross-linking a ferromagnetic nematic would give rise
to the possibility to obtain a soft ferromagnetic gel, opening the
door to a new class of magnetic complex fluids. This way, one
could combine the macroscopic degrees of freedom of the first
liquid multiferroic, namely the ferromagnetic nematic liquid
crystal, with the strain field as well as with relative rotations.
In a step towards this goal, we will derive macroscopic
dynamic equations generalizing those for uniaxial magnetic
gels and ferronematics to obtain the macroscopic dynamics
for ferromagnetic nematic and cholesteric gels [42].
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[36] M. Čopič, M. Vilfan, and A. Mertelj, Liq. Cryst. 40, 1646 (2013).
[37] P. E. Cladis, Mol. Cryst. Liq. Cryst. 67, 177 (1981).
[38] R. Sahoo, M. V. Rasna, D. Lisjak, A. Mertelj, and S. Dahra,

Appl. Phys. Lett. 106, 161905 (2015).
[39] T. Potisk, D. Svenšek, H. Pleiner, and H. R. Brand (unpublished).
[40] D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and

H. R. Brand, Macromol. Rapid Commun. 24, 737 (2003).
[41] S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411

(2004).
[42] T. Potisk, D. Svenšek, H. Pleiner, and H. R. Brand (unpublished).

012701-18



68 Publications

Publication 3

Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal

T. Potisk, H. Pleiner, D. Svenšek, and H.R. Brand
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We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we
study the coupled dynamics of the magnetization, M, the director field, n, associated with the liquid crystalline
orientational order, and the velocity field, v. We evaluate how simple shear flow in a ferromagnetic nematic is
modified in the presence of small external magnetic fields, and we make experimentally testable predictions for
the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow
alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic
nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find
that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow
alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow
alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of
the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different
configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.

DOI: 10.1103/PhysRevE.97.042705

I. INTRODUCTION

Many complex fluids show anisotropic and/or non-
Newtonian behavior in their flow properties. A class of
anisotropic complex fluids for which the flow behavior has
been studied in some detail because of their wide-ranging
applications are liquid crystals, in particular nematic liquid
crystals [1]. Uniaxial nematics are uniaxially anisotropic liquid
systems that find applications, for example, in large area
displays. Clearly the flow properties of the uniaxial nematic
phase are the most studied and best understood among all liquid
crystalline phases [1].

In parallel, the field of magnetic liquids, i.e., suspensions
of magnetic monodomain particles, has developed [2]. Various
aspects of their characterization as well as of their macroscopic
and microscopic properties are addressed in Refs. [3–8].

There has been considerable recent interest in a novel type
of nematic phase, namely ferromagnetic nematics, showing
simultaneously nematic as well as ferromagnetic order. While
such a phase was predicted and investigated theoretically
almost 50 years ago [9], its synthesis was reported experimen-
tally only recently [10,11].

The ferromagnetic nematic is a room-temperature liquid
multiferroic system. The only other liquid multiferroic systems
known earlier are the superfluid phases of 3He [12,13]. Two
of them, namely 3He-A and 3He-A1, are also uniaxial and
show spontaneously broken orientational order as well as
(anti)ferromagnetism. Besides superfluidity, both phases show
rich macroscopic behavior including spin waves [14–18].

*tilen.potisk@uni-bayreuth.de

We also note that in the meantime ferromagnetic cholesteric
phases have been described and characterized [19–21], thus
complementing the abundant usual cholesteric phases, which
break parity symmetry, because they are composed of chiral
molecules: left- and right-handed helices differ from their
mirror image in a nontrivial way, i.e., they cannot be brought
to coincidence by mere rotations. The macroscopic behavior
of ferrocholesterics has been elucidated in Ref. [22].

As for ferromagnetic nematics, most studies focused on
their synthesis, their characterization, and their static properties
[10,11,23]. There is also early work discussing a Landau
description of phase transitions involving a ferromagnetic ne-
matic phase [24]. A systematic investigation of their dynamic
properties was initiated only quite recently [25,26]. These first
two publications focused on the coupled dynamics of the two
order parameters, namely the magnetization, M, characterizing
spontaneously broken rotational symmetry in spin space, and
the director, n, characteristic for systems with spontaneously
broken rotational symmetry [27].

In this paper, we analyze the coupling of these two order
parameters to flows generalizing simple flow situations for uni-
axial nematics to ferromagnetic nematics. For the new liquid
multiferroic system, we include a discussion of the analogs of
effective viscosity, Miesowicz viscosities, flow alignment, as
well as transient backflow [28,29] and kickback [30] effects, all
familiar from usual nematics [1]. The main goal of this study
is to make concrete experimentally testable predictions.

The paper is organized as follows. In Sec. II, we present
the macroscopic model used throughout the present paper.
In Sec. III, we discuss simple shear flow and its experimen-
tally accessible consequences. Section IV is dedicated to a
characterization of the analogs of the Miesowicz viscosities
for ferromagnetic nematic liquid crystals leading to many

2470-0045/2018/97(4)/042705(13) 042705-1 ©2018 American Physical Society
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predictions. In Sec. V, we consider the analog of flow align-
ment and show how the transition to tumbling can be shifted
by small external magnetic fields. In Sec. VI, we sketch out the
effects of flow on the the dynamic behavior when an external
magnetic field is switched on. In the brief last section, we
conclude and give a perspective.

II. MACROSCOPIC MODEL

Throughout the present paper, we take into account the
magnetization M, the director field n, and the velocity field
v as macroscopic variables. For a complete set of macroscopic
dynamic equations for ferronematics, we refer the reader to
Refs. [31,32].

The static behavior is described by the free-energy density
f (M,n,∇n),

f = −μ0M · H − 1
2A1(M · n)2 + 1

2A2(|M| − M0)2 + f F ,

(1)

where μ0 is the magnetic constant, H is the applied magnetic
field, and A1,2 > 0 will be assumed constant. The first term
represents the coupling of the magnetization and the external
magnetic field. The second term describes the static coupling
between the director field and the magnetization (originating
from the magnetic particles). The third term describes the
energy connected with the deviation of the modulus of the
magnetization from M0. The last term is the Frank elastic
energy associated with director distortions [1]

f F = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3[n × (∇ × n)]2, (2)

with positive elastic constants for splay (K1), twist (K2), and
bend (K3). Throughout this paper, a one-constant approxima-
tion will be used, i.e., K1 = K2 = K3 = K . While it is a good
approximation to assume that |M| = M0, we will take into
account small variations of |M| (corresponding to large values
of A2).

The total free energy is F = ∫
f dV and the equilibrium

condition requires δF = 0. The macroscopic dynamic equa-
tions for the magnetization, the director field, and the velocity
field read [32,33](

∂

∂t
+ vj∇j

)
Mi + εijkMjωk + XR

i + XD
i = 0, (3)

(
∂

∂t
+ vj∇j

)
ni + εijknjωk + YR

i + YD
i = 0, (4)

ρ

(
∂

∂t
+ vj∇j

)
vi + ∇j

(
σR

ij + σD
ij + σ th

ij

) − ∇ip = 0, (5)

where ωi = 1
2εijk∇j vk is the vorticity and ρ is the density. The

(quasi)currents have been split into reversible (XR
i ,YR

i ,σR
ij )

and irreversible, dissipative (XD
i ,YD

i ,σD
ij ) parts. In Eq. (5), the

reversible part of the stress tensor has been further split to
include a thermodynamic part σ th

ij ,

σ th
ij = −BjHi − 1

2

(
hn

i nj − hn
jni

) − 1
2

(
hM

i Mj − hM
j Mi

)
+Kkjmp∇pnm∇ink, (6)

and the thermodynamic pressure

p = −ε + T σ + μρ + g · v + B · H, (7)

with temperature T , entropy density σ , chemical potential μ,
density of linear momentum g, and magnetic flux density B.
The reversible (dissipative) parts of the (quasi)currents have
the same (opposite) behavior under time reversal as the time
derivatives of the corresponding variables, i.e., Eqs. (3)–(5)
are invariant under time reversal only if the dissipative (quasi)
currents vanish.

The (quasi)currents are expressed as linear combinations of
conjugate quantities (thermodynamic forces)

hM
i ≡ δf

δMi

= ∂f

∂Mi

, (8)

hn
i ≡ δ⊥

ik

δf

δnk

= δ⊥
ik

(
∂f

∂nk

− ∂j	kj

)
, (9)

Aij ≡ 1
2 (∂ivj + ∂jvi), (10)

with 	kj = ∂f/∂(∇jnk) and where the transverse Kronecker
delta δ⊥

ik = δik − nink projects onto the plane perpendicular to
the director due to the constraint n2 = 1.

In Ref. [25], only the dissipative quasicurrents XD
i and YD

i

were taken into account as they had a direct relevance for
the explanation of the experimental results discussed there.
The effects of the reversible quasicurrents XR

i and YR
i were

modeled in Ref. [26]. In the present paper, we also include the
velocity variable in the approximation of an incompressible
flow, ∇ivi = 0.

The dissipative quasicurrents take the form [32]

XD
i = bD

ij h
M
j + χD

ji h
n
j + cD

ijkAjk, (11)

YD
i = 1

γ1
δ⊥
ikh

n
k + χD

ij hM
j + λD

ijkAjk, (12)

σD
ij = −νD

ijklAkl − λD
kijh

n
k − cD

kijh
M
k , (13)

with

χD
ij =χD

1 δ⊥
ikMknj + χD

2 δ⊥
ij Mknk, (14)

bD
ij =bD

‖ ninj + bD
⊥δ⊥

ij , (15)

νD
ijkl = 2(ν1 + ν2 − 2ν3)ninjnknl

+ (ν3 − ν2)(njnlδik + njnkδil + ninkδjl + ninlδjk)

+ (ν4 − ν2)δij δkl + ν2(δjlδik + δilδjk)

+ (ν5 − ν4 + ν2)(δijnknl + δklninj ), (16)

λD
ijk = λD

1 (δ⊥
iqεpjqMpnk + δ⊥

iqεpkqMpnj )

+ λD
2 (δ⊥

ikεpjqMpnq + δ⊥
ij εpkqMpnq)

+ λD
3 (εipkMjnp + εipjMknp)

+ λD
4 Mqnq(εipknjnp + εipjnknp)

+ λD
5 εpiqMpnqnjnk + λD

6 εpiqMpnqδ
⊥
jk, (17)

cD
ijk = cD(εimknmnj + εimjnmnk). (18)
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The tensor χD
ij describes the dissipative cross-coupling be-

tween the director and the magnetization. In Refs. [25] and [26]
it was shown that it is of major importance for the dynamics and
was crucial to explain the presented experiments. The viscosity
tensor νD

ijkl is the same as for usual nematic liquid crystals
(in the Appendix, the connection with the Leslie viscosity
coefficients is reviewed). The existence of the magnetization
gives rise to an additional dissipative coupling of the velocity
with the director, described by the tensor λD

ijk , which is not
present in usual nematics. Moreover, there exists also a direct
dissipative coupling of the velocity and the magnetization,
described by the tensor cD

ijk . Throughout the present paper, we
will discard the biaxiality of the material that arises for n ∦ M.

The reversible quasicurrents [32] are obtained by requiring
that the entropy production Yih

n
i + Xih

M
i + σijAji is zero.

They are

XR
i = bR

ijh
M
j + χRεijknjh

n
k − cR

ijkAjk, (19)

YR
i = (

γ −1
1

)R

ij
hn

j + χRεijknjh
M
k − 1

2λijkAjk, (20)

σR
ij = −νR

ijklAkl − 1
2λkjih

n
k − cR

kijh
M
k . (21)

In Eqs. (20) and (21), the reversible couplings between the
velocity field on the one hand and the director field and the
magnetization are described by the flow alignment tensor

λijk = λ(δ⊥
ij nk + δ⊥

iknj ) (22)

and by the tensor cR
ijk [32], respectively,

cR
ijk = cR

1 Minjnk + cR
2 (δijMk + δikMj ) + cR

3 Miδjk

+ cR
4 niMpnpδjk + cR

5 (niMjnk + niMknj )

+ cR
6 niMpnpnjnk. (23)

In the following, we will discard the contributions of the
tensors νR

ijkl , (γ −1
1 )Rij , bR

ij , and χR , which can be found in
Ref. [32].

A. Geometry and method

In this paper, we study the situation in which a ferromagnetic
nematic liquid crystal is confined between a pair of infinite
parallel plates separated in the z direction by the cell thickness
d. We assume that the fields are functions only of the coordinate
z and time t . For solving Eqs. (3)–(5), a simple numerical
method is used. We first discretize space into slices of width
�z = d/(N − 1), where N is the number of discretization
points. By varying N , it is found that using N = 50 is already
sufficient. We use a variant of the so called staggered grid,
Fig. 1, to avoid possible numerical instabilities. The velocity
field is defined in the middle of the slices, while the stress
tensor, the director field, and the magnetization field are defined
at the edges of the slices. The velocity field at these edges can
be calculated simply by averaging the neighboring points,

vi(j�z) = 0.5{vi[(j − 1/2)�z] + vi[(j + 1/2)�z]}, (24)

where �z is the step size and j ∈ {0,1, . . . ,N − 1} is an
integer.

After discretizing space, one obtains N ordinary differential
equations. For the second derivative in the bulk of the liquid-

vi(−Δz/2) = −vi(Δz/2) vi((N − 1/2)Δz) = −vi((N + 1/2)Δz)

FIG. 1. A schematic representation of the staggered grid used to
solve Eqs. (3)–(5). The director field, the magnetization field, and
the (quasi)currents are defined on the points (black circles), while
the velocity field is defined on the crosses located between the points.
There are two crosses outside of the physical space, which are present
in order to satisfy the boundary condition for the velocity field.

crystal cell, we used the usual central finite-difference scheme,

f ′′(z) ≈ f (z + �z) − 2f (z) + f (z − �z)

(�z)2
+ O[(�z)2].

(25)

At the boundaries, we use an asymmetric finite-difference
scheme for the derivatives.

Due to its simplicity, we use the Euler method for our
analysis. An example for one step of the Euler method for
the ith component of the director field at coordinate z is

ni(t + δt,z) = ni(t,z) − δt Yi(t,z) + O(δt2), (26)

where δt is the time step. An analogous equation holds for
the magnetization field, and the equations are solved simulta-
neously. Since the numerical scheme for the director field is
not norm-preserving, we normalize the director field after each
time step: ni → ni/(njnj )1/2.

The velocity field relaxes on time scales much shorter than
the director field or the magnetization, and thus Eq. (5) can be
simplified to

∇j σ
R
ij + ∇j σ

D
ij + ∇j σ

th
ij − ∇ip = 0. (27)

The equation for the pressure field can be obtained by taking
the divergence of Eq. (27). The boundary conditions for the
pressure are obtained by taking the inner product of Eq. (27)
with the surface normals, pointing up (down) at the top
(bottom) plate. The resulting pressure field is

p(z) = p0 + σzz(z), (28)

where p0 is an arbitrary constant and σzz includes all the
stresses σzz = σR

zz + σD
zz + σ th

zz . Since p is only a function of z,
it only shows up in the dynamic equation for the z component of
the velocity field, where it exactly cancels out the contributions
of all the stresses. The z component of the velocity field is
therefore independent of time, i.e., ∂vz/∂t = 0, and is zero,
vz = 0, due to the boundary condition.

Given the director and the magnetization field, we solve
Eq. (27) on a staggered grid for the velocity field, as shown in
Fig. 1.

For the director field, we assume infinitely strong (planar)
anchoring at the boundaries, n = êx at z = 0 and z = d. For
the velocity field, we assume the no-slip condition v = 0 at
z = 0 and z = d. In the case of shear experiments, v = v0x êx

at z = d, where v0x is the velocity of the upper plate. The lower
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plate is fixed. We define the shear rate

�x = v0x

d
. (29)

B. Material parameters

Throughout this study, we will be using similar values
of the static and the dynamic coefficients as determined in
Ref. [25]. Therein, a ferromagnetic nematic using 5CB as a
nematic solvent was studied. For the static coefficients, we
used A1 = 130μ0, A2 = 1000A1, K = 7 pN, M0 = 50 A/m,
and d = 50 μm and for the dynamic ones we used χD

2 =
20 (Pa s)−1, χD

1 = 0, and bD
⊥ = bD

‖ = 1.5×105 A m/V s2.
For the coefficients of the viscosity tensor, the rotational
viscosity γ1, and the flow alignment parameter λ, we used ν1 =
0.092 Pa s, ν2 = 0.038 Pa s, ν3 = 0.045 Pa s, γ1 = 0.081 Pa s,
and λ = 1.05; see the data for 5CB in Ref. [34]. For the
remaining coefficients of νD

ijkl , we chose ν4 = ν2 and ν5 = 0.
In the literature, one often encounters the so called Ericksen-
Leslie viscosities, which are related to the set of viscosities
used here (compare the Appendix for the detailed relations).
For the reversible coupling cR

ijk between the magnetization and
the velocity field in Eqs. (19) and (21), which is the analog
of the flow alignment tensor λijk of Eqs. (20) and (21), we
use the coefficient cR

2 , Eq. (23), as a representative, since it
has the same structure as λ in Eq. (22). We choose the
value cR

2 = 0.55 so that its effects on the magnetization are
comparable to the effects of λ on the director field. It should
be noted that for simple shear flow, the contributions of cR

3 and
cR

4 are automatically zero. Furthermore, due to the approxi-
mately fixed modulus of the magnetization, the contribution of
the coefficient cR

1 is negligible. The effect of cR
5 is biggest when

the magnetization (director) is parallel to the velocity field and
the director (magnetization) is perpendicular to the velocity
field and within the shear plane, which is perpendicular to
the vorticity. Lastly, the effect of cR

6 is biggest when the
magnetization is either parallel or perpendicular to the velocity
field and the director is at 45◦ with respect to the magnetization
while both fields are in the shear plane.

III. SIMPLE SHEAR

A classical approach to study the rheology of simple and
complex fluids is the investigation of a simple shear flow. Here
we will focus on the changes compared to the case of uniaxial
nematics by the application of a magnetic field perpendicular
to the plates of a shear cell.

In this section, we discard the dissipative couplings of the
director and the magnetization to the velocity field, i.e., the
tensors λD

ijk and cD
ijk of Eqs. (17) and (18) are set to zero. From

the form of the tensor λD
ijk (cD

ijk) one can see that there is, in
general, a nonzero coupling between the out-of-shear plane
component of the director (magnetization) field with the part
of the director (magnetization) molecular field hn

i (hM
i ), which

is within the shear plane. Since we have set these tensors to
zero, the velocity points along the x axis everywhere with the
director and the magnetization being within the shear plane,
which is also confirmed numerically.

In Fig. 2 we present the solutions of vx/v0x , nz, and
Mz/M0 as functions of z. A magnetic field H = H êz of

vx�v0 x

nz

Mz�M0
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M
0
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(b)

FIG. 2. Profiles of vx/v0x , Mz/M0, and nz at a shear rate
�x = 1 s−1 with (a) μ0H = 10 mT and (b) μ0H = −10 mT.

H = 10 mT [Fig. 2(a)] and H = −10 mT [Fig. 2(b)] was
applied perpendicularly to the plates, and a shear rate of
�x = 1 s−1 was imposed. We observe that for the negative
magnetic field, the director in the middle of the cell rotates
by an angle of more than π/2. This is due to the fact that the
shear forces, which are described by the tensor λijk , change
direction at a certain orientation of the director. This orientation
is determined by the parameter λ. Secondly, it is more favorable
for the director to rotate further, since the coupling energy (A1)
gets lower.

The dependence of the x component of the velocity field on
the magnetic field at a shear rate of 1 s−1 is shown in Fig. 3.
One can see, as expected, that the velocity profile is not linear,
and a boundary layer of order 10% of the cell thickness is
visible using �x = 1 s−1 and magnetic fields of order 1 mT.
The thickness of the boundary layer of the velocity field can be
connected with the deformation of the director field, where the
boundary layer is determined by the competition of the forces
related to the static coupling A1 and the Frank elastic forces.

The quantity that is normally measured is the effective
viscosity of the sheared sample, i.e., the shear force per unit
area σxz exerted by the fluid on the glass plate divided by the
shear rate �x . In the present system, one must, however, take
into account that the Maxwell stress−BjHi , unlike all the other
contributions to the stress tensor, does not end at the boundary
of the fluid as the magnetic flux continues into the glass plate.
Consequently, the Maxwell stress does not contribute to the
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Μ0H � 0
Μ0H � 1 mT
Μ0H � 50 mT
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0

x

FIG. 3. The normalized x component of the velocity field vx/v0x

for different values of the applied magnetic field at a shear rate
�x = 1 s−1.

force on the glass plate. This is best seen by calculating the
force as the integral of σxz over a pair of planes tightly enclosing
the z = d interface. In the resulting difference of shear stresses
across the interface, [σxz], all contributions to σxz(z = d) are
recovered as usual, except the term −BjHi of Eq. (6), which
cancels out. The effective viscosity is thus

νeff = [σxz]

�x

. (30)

In Fig. 4, the effective viscosity is plotted as a function of
the magnetic field for two values of the shear rate �x , which
are equal in magnitude but opposite in sign.

Most strikingly, a rather large increase in the effective
viscosity by about a factor of 2 can be achieved by applying a
rather small magnetic field of about 20 mT; see Fig. 4(a). The
reason the effective viscosity increases at very low fields is due
to the response of the magnetization and the director field in an
external magnetic field, which was studied in detail in Ref. [26].
There it was shown analytically that the configuration of the
system, i.e., the director and the magnetization field, saturates
quickly above a characteristic magnetic field determined by
the static coupling, μ0H ∼ A1M0, which for the parameters
used here is approximately 10 mT. The viscosity increases as n
and M rotate toward getting perpendicular to the velocity field
and lying within the shear plane. This opens the door to an
easily accessible viscosity control for a nematic fluid system
by using small magnetic fields.

In addition, we see that—just as the absolute value of the
vertical component of the director—also the effective viscosity
is invariant with respect to the transformation �x → −�x ,
μ0H → −μ0H .

As we increase the magnetic field, we see that the effective
viscosity first saturates at fairly low magnetic fields of order
30 mT, Fig. 4(a). A similar effect has been observed in experi-
ments using 8CB [35]. There, a rather complex shear geometry
was used, therefore the experimental results cannot be mapped
in a straightforward manner onto the results presented here.

In should be noted that we take into account also the dia-
magnetic contribution, − 1

2μ0χa(n · H)2, with a diamagnetic
anisotropy, χa = 5×10−6. For small magnetic fields, Fig. 4(a),

�x � �1.0 s�1

�x � 1.0 s�1

�40 �20 0 20 40
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Νe
ff
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a
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Μ0H �mT�

Νe
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s�

(a)

(b)

FIG. 4. The behavior of the effective viscosity for (a) small and (b)
large values of the applied magnetic field at oppositely equal shear
rates. The dashed lines represent two of the Miesowicz viscosities
(ηxx and ηzz), defined in Sec. IV.

the effects of this term are very small, which is verified by
comparing the numerical results with χa = 0. On the other
hand, if we increase the magnetic field further, the viscosity
starts to increase again; see Fig. 4(b). This is due to the
diamagnetic anisotropy, which tries to align the director along
the external magnetic field. The viscosity finally saturates at
fields of order 1 T, where the director field along with the
magnetization field point approximately along the applied
magnetic field. In the limit of large magnetic fields, the director
and the magnetization both point along z and, therefore,
the effective viscosity converges to one of the Miesowicz
viscosities, ηzz [dashed line in Fig. 4(b)], defined and calculated
in Sec. IV. In the absence of the magnetic field, the director
and the magnetization point approximately along the x axis,
which means the effective viscosity approaches the value of
another Miesowicz viscosity, ηxx [dashed line in Fig. 4(a)].
The behavior at larger magnetic fields is a prediction, which
can be experimentally tested.

In Fig. 4 one also observes that the effective viscosity
strongly increases when one increases the magnetic field from
the intermediate saturation region at 50 mT to a large magnetic
field of order of 1 T. A possible explanation for such a dramatic
increase can be deducted from Fig. 5, where we present the
profiles of the fields vx/v0x , Mz/M0, and nz at these two
magnetic fields. For the lower magnetic field, Fig. 5(a), the
boundary layer ξ l of nz is of order of 10% of the cell thickness,
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FIG. 5. Profiles of vx/v0x , Mz/M0, and nz at a shear rate �x =
1 s−1 with (a) μ0H = 50 mT and (b) μ0H = 1 T. The boundary layers
for (a) the lower magnetic field, ξ l , and (b) the higher magnetic field,
ξq , can be estimated from Eqs. (31) and (32), respectively.

which can be estimated from the parameter q of Eq. (39),
discussed in the next subsection:

ξ l

d
∼

√
K

A1M
2
0 d2

≈ 0.1. (31)

In the large magnetic-field limit, the diamagnetic energy term
is dominant. Equating the typical Frank elastic energy with the
typical diamagnetic energy gives us a boundary layer ξq of 2%
of the cell thickness:

ξq

d
∼

√
K

μ0χaH 2d2
≈ 0.02. (32)

Smaller boundary layers for the director field mean stronger
elastic forces close to the boundaries. These forces increase
the shear stress and therefore also the effective viscosity.

It should be noted that a crossover from a ferromagnetic
response linear in H , for small fields, to a regime quadratic in
H , for large fields, has also been observed in uniaxial magnetic
gels [36], a class of soft matter systems that also shows rich
macroscopic behavior [37].

A. Small shear rate behavior

For small shear rates, nz increases linearly as we increase the
shear rate. This can be shown analytically by first assuming that

the velocity profile is linear, i.e., v = �xzêx . We furthermore
discard the dissipative cross-couplings between the velocity
field and the director or the magnetization, described by the
tensors λD

ijk and cD
ijk , Eqs. (17) and (18). Consequently, there

are no terms in the dynamic equations (4) and (3) that couple
the thermodynamic forces to the currents in the y direction.
The fields thus stay within the shear (xz) plane,

n = cos θ êx + sin θ êz,

M/M0 = cos ψ êx + sin ψ êz. (33)

The dynamic equations for the angles θ and ψ then read

∂θ

∂t
= −1

2
�x[1 − λ cos(2θ )] + K

γ1

∂2θ

∂z2

− A1M
2
0

8

(
χD

1 + χD
2

)
sin[4(ψ − θ )]

+μ0HM0
[
χD

2 cos2(ψ − θ ) − χD
1 sin2(ψ − θ )

]
cos ψ

+ A1M
2
0

4

(
2

γ1
+ χD

1 − χD
2

)
sin[2(ψ − θ )], (34)

∂ψ

∂t
= −1

2
�x

[
1 − 2cR

2 cos(2ψ)
] + bD

⊥
M2

0

μ0HM0 cos ψ

+ 1

2

{(
χD

1 + χD
2

)
cos[2(ψ − θ )] − χD

1 + χD
2

}
K

∂2θ

∂z2

+ A1M
2
0

8

(
χD

1 + χD
2

)
sin[4(ψ − θ )]

− A1M
2
0

4

(
2bD

⊥
M2

0

+ χD
1 − χD

2

)
sin[2(ψ − θ )]. (35)

In the small-magnetic-field limit, we can use the small-angle
approximation (θ,ψ � 1). Setting the time derivatives ∂θ/∂t

and ∂ψ/∂t to zero, the solution for the angle θ reads

θ (z) = �x

4K
(

bD
⊥

γ1M
2
0

− (
χD

2

)2
)[

(λ − 1)

(
χD

2 − bD
⊥

M2
0

)

− (
2cR

2 − 1
)( 1

γ1
− χD

2

)]
z(z − d)

− μ0HM0

2K
z(z − d), (36)

from which one can see that for small magnetic fields and
shear rates, nz is linear in both of them. In the limit �x → 0,
one obtains a solution in agreement with the one in Ref. [26].
It is interesting to note that for small shear rates and in the
absence of the magnetic field, the angle can decrease as one
increases the shear rate, provided that the following inequality
is satisfied:

2cR
2 > 1 + (λ − 1)

χD
2 − bD

⊥
M2

0

1
γ1

− χD
2

. (37)

It is rather realistic that this inequality is satisfied using known
and/or extracted values of the involved parameters.

In the large magnetic-field limit, the director and the
magnetization point approximately along the z axis. The
solution for the angles θ+ (θ−) for positive (negative) magnetic
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x
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z

ηx ηy ηz

FIG. 6. Miesowicz viscosities in a usual nematic liquid crystal.
The director field is indicated in orange.

fields is

θ±(z) = ±π

2
− C�x ∓

(
π

2
∓ C�x

)
cosh [q(z − d/2)]

cosh (qd/2)
,

(38)

where

q2 = q2
0

μ0|H |M0

A1M
2
0 + μ0|H |M0

, (39)

with q0 =
√

A1M
2
0 /K , and C is a constant determined by the

dynamic and the static parameters:

C = γ1(1 + λ)bD
⊥ + (1 − d2)M2

0

2μ0|H |M0
(
bD

⊥ − [
χD

2

]2
γ1M

2
0

)
+ γ1(1 + λ)bD

⊥ − (
1 + 2cR

2

)
χD

2 γ1M
2
0

2A1M
2
0

(
bD

⊥ − [
χD

2

]2
γ1M

2
0

) (40)

with the abbreviation d2 = 2cR
2 (χD

2 γ1 − 1) + χD
2 γ1(2 + λ).

We point out that Eq. (38) correctly predicts the fact that the
director can rotate by more than π/2 in the middle of the cell,
as is observed in Fig. 2.

IV. MIESOWICZ VISCOSITIES

There exists a number of different ways one can measure
viscosities of a nematic liquid crystal. The earliest technique
and a particularly useful one is the concept of Miesowicz
viscosities, where one fixes by an external magnetic or electric
field the director and exposes the system to a shear flow [38,39].
Depending on the relative orientation of the director with
respect to the velocity field or the shear plane, Fig. 6, there
exist, for sufficiently high external fields, three limiting cases
of the measured viscosities: ηx when n = êx , ηy when n = êy ,
and ηz when n = êz. The shear flow is applied in the xz plane.
These Miesowicz viscosities are

ηx = ν3 + γ1

4
(λ − 1)2, (41)

ηy = ν2, (42)

ηz = ν3 + γ1

4
(λ + 1)2. (43)

Below, we derive analogous viscosities for the ferromag-
netic nematic liquid crystal. Since we have the additional
variable of magnetization, not only are the expressions for
the viscosities different but there are also more possible

x
y

z

ηxx ηxy ηxz

(a)

ηyx ηyy ηyz

(b)

ηzx ηzy ηzz

(c)

FIG. 7. Analogs of the Miesowicz viscosities in a ferromagnetic
nematic liquid crystal, when the director (orange) is along the (a) x,
(b) y, and (c) z axis. The magnetization is shown in red.

combinations. We will denote the analogous viscosities by
ηαβ , where α,β ∈ {x,y,z} represent the fixed directions of the
director and the magnetization, respectively.

A simple shear flow vx(z) = �xz, vy(z) = 0, vz(z) = 0 is
imposed. The resulting nine independent possible configura-
tions of the magnetization and the director are shown in Fig. 7.

To simplify the expressions, we have set, besides the tensors
νR

ijkl , (γ −1
1 )Rij , bR

ij , and χR , also the tensors λD
ijk and χD

1 to
zero, which is the same as in Sec. III, but here we keep cD

ijk ,
Eq. (18). To derive the Miesowicz viscosities, one first sets
the quasicurrents Xi and Yi to zero. From this one obtains
the thermodynamic forces hn

i and hM
i , Eqs. (9) and (8), as a

function of the shear rate �x . Finally, one uses the thermody-
namic forces in the expression for the xz component of the
total stress tensor σxz.

When the director is along the x axis, Fig. 7(a), the three
independent viscosities are

ηxx = ν3 + 1

4

(
1 −

(
χD

2

)2
M2

0 γ1

bD
⊥

)−1[
γ1(1 − λ)2 − 4(cD)2

+ M2
0

bD
⊥

(
1 − 2cR

2

)[
1 − 2cR

2 − 2χD
2 γ1(1 − λ)

]]
, (44)
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ηxy = ν3 + γ1

4
(1 − λ)2 − (cD)2

bD
⊥

, (45)

ηxz = ν3 + γ1

4
(1 − λ)2 − (cD)2

bD
⊥

+ M2
0

(
1 + 2cR

2 + 2cR
5

)2

4bD
‖

.

(46)

When the director is along the y axis, Fig. 7(b), the three
independent viscosities are

ηyx = ν2 + M2
0

(
1 − 2cR

2

)2

4bD
⊥

, (47)

ηyy = ν2, (48)

ηyz = ν2 + M2
0

(
1 + 2cR

2

)2

4bD
⊥

. (49)

One can see that in the case in which the director and the
magnetization are both perpendicular to the shear plane, the
viscosity is ηyy = ηy = ν2, as in ordinary nematic liquid
crystals.

When the director is along the z axis, Fig. 7(c), the
viscosities are similar as in the case when the director is along
the x axis. One can get the viscosities ηzi from ηxi by the
transformation λ → −λ, cR

2 → −cR
2 , cR

5 → −cR
5 , and x ↔ z.

This can be explained by the fact that the contributions of λ,
cR

2 , and cR
5 in the quasicurrents change sign as one rotates the

director or the magnetization by 90◦ within the shear plane.
We thus have

ηzx = ν3 + γ1

4
(1 + λ)2 − (cD)2

bD
⊥

+ M2
0

(
1 − 2cR

2 − 2cR
5

)2

4bD
‖

,

(50)

ηzy = ν3 + γ1

4
(1 + λ)2 − (cD)2

bD
⊥

, (51)

ηzz = ν3 + 1

4

(
1 −

(
χD

2

)2
M2

0 γ1

bD
⊥

)−1

×
[
γ1(1 + λ)2 − 4(cD)2

+ M2
0

bD
⊥

(
1 + 2cR

2

)[
1 + 2cR

2 − 2χD
2 γ1(1 + λ)

]]
. (52)

We observe that the viscosities reduce to Miesowicz viscosi-
ties, Eqs. (41)–(43), in the limit cD → 0 and M0 → 0.

In Refs. [25,26], the value of the dissipative cross-coupling
coefficient χD

2 was shown to be large and thus it should strongly
affect the values of the Miesowicz viscosities ηxx and ηzz as
compared with the nematic analogs ηx and ηy .

One notices that the Miesowicz viscosities only contain
the coefficients cR

2 and cR
5 of cR

ijk . As discussed in Sec. III,
for simple shear the coefficients cR

3 and cR
4 do not contribute.

The coefficient cR
1 is irrelevant due to the fixed modulus M0.

The contributions of cR
6 are zero in the chosen configurations,

which is due to either the fixed modulus or the perpendicular
orientations of the director and the magnetization.

We emphasize that important relations between the nine
Miesowicz viscosities exist, e.g.,

ηyz − ηyx = M2
0 cR

2

bD
⊥

, (53)

ηzz − ηxx = bD
⊥γ1λ − [

2cR
2

(
χD

2 γ1 − 1
) + χD

2 γ1λ
]
M2

0

bD
⊥ − (

χD
2

)2
M2

0 γ1

, (54)

ηzx − ηxz = γ1λ − M2
0

(
cR

2 + cR
5

)
bD

‖
, (55)

which can be used to determine certain combinations of
dynamic coefficients experimentally.

V. FLOW ALIGNMENT

In this section, we study the flow alignment in a ferromag-
netic nematic. For usual uniaxial nematics, this is a well-known
phenomenon, where under the influence of a simple shear flow
the director is tilted by a finite angle with respect to the velocity
field. In the case of uniaxial nematics, this angle is determined
by the flow alignment parameter λ, which is a reversible
transport coefficient and not associated with any dissipation.
For biaxial nematics and for mixtures of uniaxial nematics,
various aspects of flow alignment have also been addressed
[40–44]. In ferromagnetic nematic liquid crystals, we have to
take into account also the dynamics of the magnetization. This
means that in simple shear flow, generally, the director and the
magnetization are not parallel.

We investigate the case in which the shear flow is imposed
with the external magnetic field pointing along the x axis,
H = H êx , as opposed to the case in Sec. III in which the mag-
netic field points in z direction. This direction of the magnetic
field is chosen to ensure that the director and the magnetization
field are in the presence of a magnetic field homogeneous
across the cell. The homogeneous response makes it convenient
to analyze the ferromagnetic nematic flow alignment as a
function of the applied magnetic field. The contribution of the
Frank elastic term, Eq. (2), can thus be discarded. Generally,
there exists a boundary layer with thickness

ξv ∼
√

K

γ1�x

, (56)

which decreases with increasing shear rate. This boundary
layer is defined by a competition between the viscous forces
and the elastic forces. In the limit ξv/d � 1, the velocity profile
is linear, v = �xzêx . For the parameters used in this study,
this limit can be achieved using shear rates �x � 0.03 s−1.
We remind the reader that two different boundary layers,
corresponding to the deformation of the director field in a
magnetic field, are defined in Sec. III, Eqs. (31) and (32). Since
we discard the elastic forces, these boundary layers are zero.

As is done in Sec. III, we again discard the dissipative cross-
couplings between the velocity field and the director or the
magnetization, Eqs. (17) and (18). In this case, the director
and the magnetization both stay in the shear (xz) plane and
can be described by Eq. (33), as discussed in Sec. III.

The dynamic equations for the angles θ and ψ are then
similar to those presented in Sec. III, Eqs. (34) and (35), with
the difference being in the term describing the magnetic field
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and in the absence of elastic forces:

∂θ

∂t
= −1

2
�x[1 − λ cos(2θ )] − A1M

2
0

8
χD

2 sin[4(ψ − θ )]

−χD
2 μ0HM0 cos2(ψ − θ ) sin(ψ)

+ A1M
2
0

4

(
2

γ1
− χD

2

)
sin[2(ψ − θ )], (57)

∂ψ

∂t
= −1

2
�x

[
1 − 2cR

2 cos(2ψ)
] + A1M

2
0

8
χD

2 sin[4(ψ − θ )]

− bD
⊥

M2
0

μ0HM0 sin(ψ)

− A1M
2
0

4

(
2bD

⊥
M2

0

− χD
2

)
sin[2(ψ − θ )], (58)

where, for simplicity, cR
2 is taken as a representative of cR

ijk ,
and χD

1 is set to zero. A stationary solution exists if ∂θ/∂t = 0
and ∂ψ/∂t = 0.

In the limit of large shear rates (�x � A1M
2
0

γ1
) and in zero

magnetic field, we obtain

cos(2θ ) = 1

λ
, (59)

cos(2ψ) = 1

2cR
2

. (60)

The solutions of Eqs. (59) and (60) are θ = ± 1
2 arccos(1/λ)

and ψ = ± 1
2 arccos(1/2cR

2 ). A linear stability analysis of
Eqs. (57) and (58) has been done, where the angles are
perturbed from their stationary values θ0 and ψ0, i.e., θ =
θ0 + δθ and ψ = ψ0 + δψ . We find that for positive (negative)
shear rates, the positive (negative) angle is the stable solution.

In the large magnetic-field limit, bD
⊥

M2
0
μ0HM0 � A1M

2
0

γ1
, while

still assuming that the effects of the diamagnetic anisotropy are
negligible, stationary solutions ψ± for the magnetization angle
are

sin ψ± = −�H
x

�x

±
√(

�H
x

�x

)2

+ 2cR
2 − 1

4cR
2

, (61)

where

�H
x = bD

⊥
4cR

2 M2
0

μ0HM0 (62)

is the characteristic “magnetic” shear rate determined by the
magnetic field.

It has not been possible to make the analytical solution for
the angle θ tractable. We thus only present the asymptotic
behavior of this angle and for completeness also the asymptotic
behavior of the angle ψ . From Eq. (61) one can see that in the
limit �x/�H

x � 1 one finds, to first order,

ψ+ = 2cR
2 − 1

8cR
2

�x

�H
x

, (63)

tan θ+ =
√

bD
⊥ (λ − 1) − (

2cR
2 − 1

)
χD

2 M2
0

bD
⊥ (1 + λ)

−
(
2cR

2 − 1
)2

χD
2 M2

0

8bD
⊥cR

2 (1 + λ)

�x

�H
x

, (64)

+

+
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FIG. 8. The theoretical dependence of the magnetization ψ+

(blue curve) and director θ+ (red dashed curve) angles in degrees
as functions of the dimensionless ratio of the characteristic magnetic
shear rate [Eq. (62)] and the applied shear rate, �H

x /�x .

while ψ− does not exist and tan θ+ is calculated by inserting
the solution for the angle ψ+ from Eq. (61) into Eq. (57). It is
tractable to perform a linear stability analysis of the solution
Eq. (58) analytically, finding the stability condition

±cR
2 �x

√(
�H

x

�x

)2

+ 2cR
2 − 1

4cR
2

> 0, (65)

where the sign ± corresponds to the solutions ψ±. From
Eq. (65) we see that the solution ψ+ (ψ−) is stable if the
product cR

2 �x is positive (negative).
In Fig. 8 we present the numerical solutions of Eqs. (57)

and (58) for the angles ψ+ and θ+ as functions of �H
x /�x .

As predicted in Eqs. (63) and (64), we see that the angle ψ+
decreases to zero, while the angle θ+ saturates at a finite value
as the field is increased.

In the absence of the magnetic field and in the large shear
rate limit, the stationary solution exists if |λ| � 1 and |cR

2 | � 1
2 .

In usual nematic liquid crystals, if |λ| < 1 holds, the system
shows a tumbling behavior. In such a system flow alignment
can be recovered if a sufficiently large electric field is applied;
see Refs. [45,46]. In our system, this could be achieved with
the use of low magnetic fields.

To check this possibility, one must first ensure the existence
of the solutions Eq. (61). Secondly, we are only interested in
the stable solutions, i.e., Eq. (65) must hold. We find that the
required magnetic field depends on four different ranges of
the cR

2 values:

cR
2 < 0, ± �x < 0,

�H
x

�x

> ∓1 + 2cR
2

8cR
2

, (66)

0 < cR
2 <

1

6
, ± �x > 0,

�H
x

�x

> ±1 + 2cR
2

8cR
2

, (67)

1

6
< cR

2 <
1

2
, ± �x > 0,

�H
x

�x

> ±
√

1 − 2cR
2

4cR
2

, (68)

cR
2 >

1

2
, ± �x > 0,

�H
x

�x

> ∓1 + 2cR
2

8cR
2

, (69)

where the signs ± correspond to the two solutions Eq. (61).

042705-9



POTISK, PLEINER, SVENŠEK, AND BRAND PHYSICAL REVIEW E 97, 042705 (2018)

Another stationary solution of the dynamic equations is
found when the director is in the shear plane, while the
magnetization is perpendicular to this plane,

n = cos θ êx + sin θ êz, (70)

M = M0êy. (71)

In this case, we do not discard any dynamic coefficients. The
solution for the angle θ is

tan(θ ) = λD
effM0

λ + 1
±

√(
λD

effM0

λ + 1

)2

+ λ − 1

λ + 1
, (72)

where λD
eff = 2λD

1 + 2λD
2 − λD

5 + λD
6 . A solution exists if the

term under the square root is positive, leading to the condition

λ2 � 1 − (
λD

effM0
)2

. (73)

This means that one can observe flow alignment in a ferromag-
netic nematic, even if the pure nematic solvent shows tumbling
behavior.

We investigated the stability of the solution Eq. (72) nu-
merically. We find that it is stable in the absence of a magnetic
field if the static coupling (A1) between the director and the
magnetization is negative, because in that case n ⊥ M is the
equilibrium orientation. For a positive A1, even the slightest
perturbation in the magnetization field drives the director
toward it, since it is favorable for them to be parallel rather
than perpendicular. The solution Eq. (72) can nevertheless
be made stable for ferromagnetic nematics with positive A1,
provided one uses a large magnetic field in the y direction and
the diamagnetic anisotropy χa is negative. This is to ensure that
the director stays within the shear plane and the magnetization
is perpendicular to it.

The case discussed above, in which the magnetization is
perpendicular to the shear plane and the director is in the
shear plane at an angle θ with respect to the velocity field,
most closely resembles one of the possible stationary solutions
of a biaxial nematic liquid crystal exposed to a shear flow;
see Ref. [43]. In the latter system, the angle of one of the
preferred directions with respect to the velocity field is given
by the reversible coupling of the corresponding variable to
the velocity field. In contrast, in ferromagnetic nematic liquid
crystals this angle is determined by both the reversible and the
dissipative coupling of the director to the velocity field.

VI. SWITCH-ON DYNAMICS

In this section, we study the reorientation of the director and
the magnetization in an external magnetic field applied per-
pendicularly to the glass plates, H = H êz. We are particularly
interested in the influence of flow on this transient dynamics.
Unlike in the previous sections, flow is not externally imposed,
but is generated by the reorientation dynamics itself, i.e.,
by backflow. Throughout this section, the dissipative cross-
coupling between the magnetization and the velocity cD

ijk ,
Eq. (18), is set to zero.

As a first step, we take into account only the reversible
cross-coupling λijk between the director and the velocity,
Eqs. (20)–(22), while the analog cross-coupling cR

ijk between

No flow
Flow included
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n z
�d
�2
�

FIG. 9. The theoretical time dependence of nz in the middle of the
cell, for the cases with and without inclusion of flow, μ0H = 5 mT.
In the former case, only the flow alignment tensor λijk and the viscous
tensor νD

ijkl are taken into account in the dynamics.

the magnetization and the velocity, Eqs. (19), (21), and (23),
is set to zero. Figure 9 shows the time dependence of nz

in the midplane of the cell (z = d
2 ). A comparison is made

between cases with and without inclusion of flow. We find that
the influence of the reversible director–flow coupling is small
and makes the transient dynamics a little faster; see Fig. 9.
This has also been readily encountered in usual nematic liquid
crystals [28,29]. We find furthermore that a strong dissipative
cross-coupling between the director and the magnetization
makes these backflow effects even less visible. To isolate them,
we have set the tensor χD

ij , Eq. (14), to zero.
When the term cR

2 of the cross-coupling cR
ijk , Eq. (23), is

included in addition to λijk , the backflow effects are similar,
i.e., the dynamics is only slightly faster. This is not surprising,
since the tensor λijk and the term cR

2 have a similar form.
On the other hand, we find that the dissipative cross-

coupling between the director and the velocity λD
ijk , Eq. (17),

which is absent in usual nematics, can have a somewhat larger
influence, Fig. 10. In our numerical calculations, we used the
coefficient λD

3 as the representative of the tensor λD
ijk , i.e.,

λD
ijk = λD

3 (εipkMjnp + εipjMknp).
The reason for this choice is that at t = 0, when both n and

M are parallel and within the xz plane, λD
3 provides a nonzero

contribution to the director quasicurrent component Yy . The
same is true for the coefficients λD

1 and λD
4 , while the initial

contributions of λD
2 , λD

5 , and λD
6 are zero. It should be noted

that, due to the additional dissipative cross-coupling λD
ijk , the

velocity field has a general orientation somewhere in the xy

plane and hence n and M wander out of the xz plane, Fig. 10(b).
This is in contrast to the case in Sec. III, where the velocity
points along the x direction throughout the cell, and n and M
stay in the shear plane.

The vx and vy profiles at four different moments are
presented in Fig. 11 in terms of the Ericksen number, defined
as the ratio of viscous and elastic forces on the director,

Eri = γ1vid

K
, (74)
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FIG. 10. The theoretical time dependence of the (a) z and (b) y

component of the director field at μ0H = 5 mT for two different
values of λD

3 .

with i corresponding to either the x or y velocity component.
For the chosen value of λD

3 , the maximum values in both
directions are comparable, Erx ∼ Ery ∼ 2.

It should be noted that the values of the dissipative cross-
coupling coefficients are fundamentally restricted by the pos-
itivity of the entropy production. In our case (zero χD

1 , χD
2 ,
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λD

3 M0 = 0.7.
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FIG. 12. The x and y components of the stress tensor divergence
(a) σ ′

xz = ∂σxz/∂z and (b) σ ′
yz = ∂σyz/∂z, at z = d/2, in units of

characteristic divergence of the elastic stress K/d3 for each of the
three different backflow-driving stress tensor contributions explained
in the text.

and cD), the restriction is

∣∣λD
3 M0

∣∣ �
√

ν3

γ1
∼ 0.75, (75)

where ν3 is chosen as the representative of the tensor νijkl .
We are interested in the importance of specific contributions

to components σxz and σyz of the stress tensor. These are the
usual nematic backflow-driving stress 1

2λkijh
n
k , the analogous

stress corresponding to the dynamics of the magnetization,
cR
kijh

n
k , and the stress from the dissipative director–velocity

cross-coupling, λD
kijh

n
k . The divergence of these stresses has

nonzero x and y components that are individually presented in
Fig. 12.

We first analyze the σxz component, Fig. 12(a). The contri-
butions of cR

kxzh
n
k and λD

kxzh
n
k are smaller than those of 1

2λkxzh
n
k .

This can be explained by two facts. First, at any moment the
director field is much more deformed than the magnetization
field, which means that the thermodynamic force hn

i , Eq. (9),
will have a much bigger impact on the divergence of the stress
than the thermodynamic force hM

i , Eq. (8). This automatically
explains that the backflow from the director field 1

2λkxzh
n
k is

bigger than that from the magnetization cR
kxzh

n
k . Secondly, the

contribution λD
kxzh

n
k is proportional to λD

3 nyMzh
n
z . Since ny is

never large [Fig. 10(b)], neither is the contribution of λD
kxzh

n
k .
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The situation is different for the σyz component.
Figure 12(b) reveals that the contribution of λD

kyzh
n
k is the

biggest. This can be explained by writing its leading term as
λD

3 nxMzh
n
z , which does not contain ny . The leading terms of

the backflow contributions, 1
2λkyzh

n
k and cR

kyzh
n
k , are smaller in

comparison, since they are always proportional to either ny and
My , or to hn

y and hM
y .

Next, we are interested in the magnitude of the flow
generated when a magnetic field is applied perpendicularly
to the plates in one case and a voltage difference is applied
across the plates in the other case. The magnitude of the flow
is measured using the Ericksen number Erx , Eq. (74), which we
have calculated using the maximum magnitude of the velocity
across the cell. We find that Erx ∼ 1 can be achieved using
either a rather small magnetic field of 3 mT or a voltage
difference of 2.5 V.

We conclude this section by pointing out that there are no
effects of flow on the initial dynamics, at least up to first
order in time. This can be shown by expanding the currents
in Eqs. (3)–(5). Since the initial thermodynamic forces hn

i and
hM

i are homogeneous, the generated stress σij in Eq. (5) is also
homogeneous. Its divergence, which generates flow, is thus
absent initially. Consequently, Eqs. (3) and (5) are initially
also unaffected by flow. It is the dissipative cross-coupling
coefficient χD

2 between the director and the magnetization that
gives a linear time dependence of nz, as was shown in Ref. [25]
and discussed in Ref. [26].

VII. CONCLUSIONS AND PERSPECTIVE

In this paper, we have analyzed the consequences of some
simple flows on various configurations of ferromagnetic ne-
matic liquid crystals. These flows include simple shear flow,
the determination of transport coefficients in the spirit of
Miesowicz, and the analog of flow alignment for ferromagnetic
nematics.

For the case of simple shear, we find that the effective
viscosity can be increased by a factor of about 2 for rather
small magnetic fields of about 20 mT. This effect can be tuned
continuously in magnitude simply by varying the external
magnetic field. For the determination of transport coefficients,
we analyze the analog of the three Miesowicz configurations
well-known from usual uniaxial nematics. Since one can fix
the director and the direction of the spontaneous magnetization
by external electric and magnetic fields, it is now possible to
analyze nine independent different geometries. We find that
these various geometries can be used to determine experimen-
tally combinations of coefficients including dissipative and
reversible terms characteristic of a system with a director, a
magnetization, and a velocity field as macroscopic variables.

For the analog of flow alignment in usual uniaxial nematics,
we find simple stationary solutions without an external mag-
netic field involving an orientation of both the director and the
magnetization for the case in which both of these variables
are in the shear plane in the limit of sufficiently large shear.
In addition, we show that a small external magnetic field can
shift the boundary between tumbling and flow alignment. For
the case in which the magnetization M0 is perpendicular to the
shear plane and the director n is lying in the shear plane, we
find for a range of parameters that a ferromagnetic nematic can

reveal flow alignment, although the nematic solvent by itself
shows tumbling.

As a perspective, we point out that we are aware of only
one experimental publication investigating the effect of flow
on ferromagnetic nematics, namely the effects of shear flow in a
rather complicated geometry [35]. These experimental results
are compatible with our theoretical results in the sense that
they show qualitatively similar behavior as a function of an
external magnetic field and a viscosity enhancement effect of
comparable magnitude. In a next step, it is highly desirable
to compare experimental and theoretical results quantitatively
for a simple and well-controlled geometry. There appear to
be no experimental results available so far for the question
of flow alignment and the evaluation of transport coefficients,
parallel to the Miesowicz concept, for ferromagnetic nematics.
Clearly, any experimental results in these two directions will
stimulate refinement of the modeling of this exciting first liquid
multiferroic system at room temperatures.
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APPENDIX: LESLIE COEFFICIENTS

In the Ericksen-Leslie formulation of nematodynamics, a
different set of coefficients is used. The Leslie coefficients are
defined [1] by the symmetrized stress tensor

σ EL
ij = α1ninjnknpAkp + (α2 + α3)(niNj + njNi)

+α4Aij + (α5 + α6)(ninkAjk + njnkAik), (A1)

and the molecular field

hEL
i = γ1Ni + γ2njAij , (A2)

with γ2 = α3 + α2 being a reversible transport parameter, not
a viscosity. Here, the superscript EL denotes Ericksen-Leslie,
Ni = ∂ni/∂t − ωijnj is the corotational time derivative of the
director—or rather its dissipative quasicurrent, −YD

i [Eq. (4)],
and ωij = 1

2 (∂vi/∂xj − ∂vj/∂xi) is the vorticity tensor.
The set of Leslie coefficients is related to the coefficients of

the tensor νD
ijkl [33]:

α1 = 2(ν1 + ν2 − 2ν3) − γ1λ
2, (A3)

α2 + α3 = −γ1λ, (A4)

α4 = 2ν2, (A5)

α5 + α6 = 4(ν3 − ν2) + γ1λ
2. (A6)

The flow alignment parameter λ = −γ2/γ1 is expressed as the
ratio of reversible transport parameter γ2 and the rotational
viscosity γ1.
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We consider the influence of tetrahedral (octupolar) order on ferromagnetic nematic liquid-crystalline phases.
The presence of tetrahedral order leads to broken parity symmetry in an achiral liquid-crystalline system, in
addition to broken time-reversal symmetry associated with the existence of a spontaneous magnetization. As a
consequence, we find static as well as reversible and irreversible dynamic cross-coupling terms absent in usual
ferromagnetic nematics. Several static and dynamic experiments are suggested to detect possible tetrahedral
order. We predict that linear gradient terms in the generalized energy involving the ferromagnetic magnetization
and the nematic director field lead to chiral domains of ambidextrous helicity. As a characteristic dissipative
dynamic cross coupling we point out that the rotation of the magnetization can be driven by temperature
and/or concentration gradients. Conversely, heat and concentration currents can be generated by rotations of
the magnetization. As a characteristic example for reversible cross-coupling terms we analyze the consequences
of the coupling between the molecular field of the nematic director and temperature and concentration gradients.

DOI: 10.1103/PhysRevE.98.042703

I. INTRODUCTION

Following the pioneering work of Fel [1,2] on tetrahedral
(octupolar) order in liquid crystals the theoretical investiga-
tions of the physical consequences of this type of nonpolar
order associated with broken parity symmetry focused on
applications in liquid crystals: phase transitions [1,3–5], mi-
croscopic models, and phase diagrams [6–8] as well as the
macroscopic properties of liquid-crystalline phases involving
tetrahedral order [9–15]. Most of the experimental work on
the question of tetrahedral order concentrated on the influence
on phase transitions and on macroscopic properties of liquid-
crystalline phases formed by bent-core molecules [16–28].
In addition, there were experimental reports indicating the
presence of tetrahedral order in another class of compounds,
namely, ferrocenomesogens [29,30]. Most of these observa-
tions and experimental results such as ambidextrous helicity
and ambidextrous chirality [16,19,26] and unusual behavior
near the isotropic–liquid-crystal phase transitions including
shifts of the phase transition temperature by up to 10 K linear
in electric fields, two optically isotropic phases in magnetic
fields, and reentrant isotropic phases [17,18,20,23,25,27,28]
could be interpreted successfully in terms of the occurrence
of tetrahedral order [12,14,15,31,32]. In parallel, tetrahedral
order has been incorporated into the dynamic description of
movable and deformable active particles which are used as
models for self-propelled microorganisms in biological appli-
cations [33–35]. Quite recently there is also growing interest
in clarifying various mathematical aspects of tetrahedral order
in two and three spatial dimensions [36–38]. Last year it has
been pointed out [31] that the observed macroscopic chiral
domains in optically isotropic, partially fluid systems [39–41]

*tilen.potisk@uni-bayreuth.de

can be interpreted naturally in terms of tetrahedral order
provided a transient network is assumed. For a recent review
of tetrahedral order in liquid crystals we refer to [32].

An important issue so far not considered is the influence
of a magnetization on tetrahedral liquid-crystalline phases.
This influence is interesting from a symmetry point of view,
because the magnetization is odd under time reversal, and in
a ferromagnet with a spontaneous magnetization the ground
state breaks time-reversal symmetry.

In the magnetic domain of soft matter physics Brochard
and de Gennes predicted in their seminal work [42], the exis-
tence of ferromagnetic nematics and ferromagnetic cholester-
ics in the domain of liquid crystals. Simultaneously, first ex-
perimental efforts along these lines started immediately [43],
but they were not leading to ferromagnetic nematic phases,
since suitably characterized and uniform magnetic nanoparti-
cles did not exist in 1970. Only about five years ago the group
around Lisjak and Mertelj reported the successful synthesis
and characterization of a homogeneous phase of a truly ferro-
magnetic nematic [44]. This is of particular interest, since this
material represents the first liquid multiferroic system at room
temperature. In addition to the director characterizing spon-
taneously broken rotational symmetry, a truly ferromagnetic
phase breaks time-reversal symmetry and rotational symmetry
in spin space. Several synthetic and static investigations also
involving the phase transition to the isotropic phase followed
quickly [45–48]. Biaxial ferromagnetic nematics have also
been reported quite recently [49]. An earlier Landau inves-
tigation of the phase transitions involved [50] could be used
to interpret some of the experimental results [44]. Building on
the macroscopic dynamic work of Jarkova et al. [51,52], the
approach of macroscopic dynamics for truly ferromagnetic
nematics has been used successfully recently to describe
quantitatively dynamic experimental results [53,54] and to
make further experimentally testable predictions [55]. For a

2470-0045/2018/98(4)/042703(10) 042703-1 ©2018 American Physical Society
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recent review on truly ferromagnetic nematics we refer to
Ref. [56].

More recently, ferromagnetic cholesterics, for which a ne-
matic containing chiral molecules has been used as the liquid-
crystalline solvent, have been synthesized and characterized
[57–59]. While ferromagnetic cholesterics turn out to have
many different textures and defects depending on the ratio of
cholesteric pitch and sample thickness, also simple textures
could be obtained recently [59]. The latter observation will
open the door to apply a recent macroscopic description of
ferrocholesterics [60] to this rather complex system.

Our goal in the present paper is to analyze how to detect the
possible presence of tetrahedral (octupolar) order in ferromag-
netic nematics, a system composed of nonchiral molecules.
We focus our investigations on macroscopic properties in the
static as well as in the dynamic domain.

The paper is organized as follows. In Sec. II we give a
Landau analysis and determine the macroscopic variables.
In Sec. III we present the thermodynamics and the static
properties of ferromagnetic nematics followed in Sec. IV
by the derivation of the macroscopic dynamic equations. In
Sec. V we make suggestions on how to detect the presence of
tetrahedral order statically and dynamically followed by brief
conclusions and a perspective.

II. LANDAU ENERGIES AND MACROSCOPIC
VARIABLES

In this section we discuss the properties of a phase, for
which one allows for the additional presence of a tetrahedral
order parameter in a ferromagnetic nematic phase. We use a
Landau energy approach to discuss the possible ground states.
We then identify all macroscopic variables for a selected
ground state.

A. Landau energy considerations

As variables in a Landau expansion we take into account, in
addition to the magnetization, Mi , and the quadrupolar order
parameter, Qij , the tetrahedral order parameter, Tijk , a fully
symmetric third-rank tensor [1]

Tijk = T0

4∑
ζ=1

n
ζ

i n
ζ

j n
ζ

k , (1)

where the vectors nζ (ζ = 1, 2, 3, 4) span a tetrahedron and
the order parameter T0 describes the strength of the tetrahedral
order. We assume the strength of the tetrahedral order, T0,
as constant, which is a good approximation far away from a
phase transition, where the tetrahedral order vanishes.

Tetrahedral order fully breaks rotational symmetry of
isotropic space. However, in the absence of any orienting
external field or boundary the actual orientation of the tetra-
hedron is arbitrary: Any homogeneous rotation of the tetrahe-
dron leads to a distinct, but energetically identical equilibrium
state. These are the three Goldstone modes that appear as
(symmetry) variables in the hydrodynamic description. In that
respect, tetrahedral order is analogous to the case of biaxial
nematic liquid crystals [61,62].

The nematic (quadrupolar) order parameter is described by
a symmetric traceless second-rank tensor Qij = 1

2S(3ninj −
δij ) [63]. The quantity S is a scalar order parameter, which
describes the strength of the orientational ordering. It is zero
in the isotropic phase, where the molecules are randomly
oriented, while it is equal to 1 if on average all the molecules
point in the same direction. The unit vector n is the director
field and describes the orientation of the nematic ordering.
Without loss of generality one can assume nini = 1. It should
be emphasized that due to the equivalence n → −n all of the
equations should be invariant with respect to this transforma-
tion.

The Landau energy has, in addition to the terms already
present in a magnetic tetrahedral phase [64], also the Landau
energy expressions for a pure nematic phase and the various
coupling terms between the magnetization, the quadrupolar,
and the tetrahedral order parameters. These coupling terms
read

FC = FQM + FQT + FMT + FQT M, (2)

with FQM being the same as for the ferromagnetic nematic
phase (see Ref. [50]):

FQM = γ

2
MiMjQij + δ1

2
MkMkQijQji + δ2

2
MiMkQijQkj .

(3)

The second term in Eq. (2) was investigated in Ref. [14]:

FQT = d1QilQjmTilkTjmk

+ d2

2
(QimQjl + QijQlm)TilkTjmk. (4)

There it was found that if d1 + d2 > 0, the phase is of
D2d symmetry where the director points along one of the
improper 4̄ axes, whereas if d1 + d2 < 0, the phase is of C3v

symmetry and the director points along one of the tetrahedral
vectors. The cross-coupling terms between the magnetization,
the quadrupolar, and the tetrahedral order parameters, FQT M ,
are of quintic order:

FQT M = c1QilMjMmTilkTjmk

+ c2

2
(QijMm + QimMj )MlTilkTjmk. (5)

One can see the similarities of Eqs. (5) and (4). This
is due to the fact that the free energy should be even in
the magnetization to ensure invariance with respect to time-
reversal symmetry.

As a first step we assume the director is fixed with respect
to the tetrahedral structure and points along the z axis, n =
êz. To find the orientation of M in the ground state, we
vary the azimuthal and the polar angle, defined by M =
M0(cos ϕ sin ψ, sin ϕ sin ψ, cos ψ ). There are five different
solutions of the angles that correspond to a minimum of the
free energy. The first solution is where the magnetization
points along the director field M ‖ n.

Next, also the energy term coupling the magnetization and
the tetrahedral order parameter enters the picture:

FMT = aTilkTjmkMiMlMjMm. (6)
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x

y
z

FIG. 1. The ground state of the system showing the magneti-
zation (red) and the director (shown as a double-headed arrow in
orange) along one of the improper 4̄ axes of the tetrahedron (blue).

Two of the other solutions correspond to the magnetization
lying in the plane perpendicular to the director. One of these
solutions is stable if a > 0 and the magnetization points along
one of the other two improper 4̄ axes. The other solution is
stable if a < 0 and the magnetization lies within one of the
mirror planes. For the last two solutions the angle ψ depends
on the value of coefficients in the expression for the free
energy, Eq. (2).

In the following we focus on the solution where the director
and the magnetization are parallel in the ground state as
depicted in Fig. 1.

B. Macroscopic variables

To derive the macroscopic equations of a particular macro-
scopic system one must first identify the relevant macroscopic
variables based on a specific ground state as input. In addition
to the conserved variables characteristic of an isotropic fluid—
the mass density ρ, the energy density ε, and the density of
linear momentum g—one must address the issue of variables
associated with spontaneously broken continuous symmetries
and of macroscopic variables, which relax on a long, but finite
timescale [65–67].

Inspired by the experimental results available on ferromag-
netic nematic liquid-crystalline phases [44–48,53,54,56], we
will assume that in the ground state the director n and the
magnetization M are parallel. In addition, we assume that
a > 0 and that the magnetization points along one of the im-
proper 4̄ axes of the tetrahedron. Thus the situation considered
in the following is that of a nematic phase with D2d symmetry
[14] with an additional spontaneous magnetization parallel to
the nematic director in the ground state.

Rotations of the tetrahedral structure can be described by a
projection, δ�i , with [14]

δ�i = 1

4α̃
εipqTpklδTqkl, (7)

where δTqkl is the deviation of the tetrahedral order parameter
from the equilibrium one, δTqkl = Tqkl − T

eq
qkl . We use the

normalization [14,32] TiklTjkl = α̃δij , with α̃ = (32/27)T 2
0 .

This relation can be inverted [14,32] to yield

δTqlk = 2εipqTpklδ�i . (8)

In this paper we focus on the importance and influence
of tetrahedral order on a ferromagnetic nematic phase. The
hydrodynamic orientational degrees of freedom associated
with the director are characterized by the variations of the
director field, δni , with δnini = 0. The magnetic order is due
to the existence of a spontaneous magnetization, M. It de-
scribes the strength of magnetic order by the order parameter
M ≡ |M|, and its orientation by the unit vector m = M/M .
The former is neither connected to a Goldstone mode, nor to a
conservation law, and therefore does not give rise to a genuine
hydrodynamic variable. Nevertheless, its relaxation time can
be large enough to be relevant in the hydrodynamic regime,
and we will keep δM ≡ M − M0, with M0 the equilibrium
magnetization, as a macroscopic variable.

Since we will assume a rigid coupling between the director,
the tetrahedral order, and the magnetization in the ground
state, we have as hydrodynamic variables the director vari-
ations δni and the quantity δ� ≡ niδ�i , with δ�i given by
Eq. (7), which describes a rotation of the tetrahedral structure
about the equilibrium director and thus also about the magne-
tization in equilibrium. In addition, we have as macroscopic
variables δmi and δM .

III. THERMODYNAMICS AND STATIC PROPERTIES

To describe the statics of the tetrahedral ferromagnetic
nematic phase we proceed along the same lines as for fer-
ronematics [51,52] and ferromagnetic nematics [53–55]. We
use the conservation laws for density ρ, energy density ε,
density of linear momentum g, and particle concentration c.
For the magnetic degrees of freedom we have the variation
of the modulus δM and the variations of the magnetic unit
vector m, δmi . In addition, we have the director degrees of
freedom, δni . As discussed above there is now the additional
variable δ� describing rotations of the tetrahedral structure
about the equilibrium director. To satisfy Maxwell’s equations
the magnetic induction B must be considered as well.

Throughout this paper we assume local thermodynamic
equilibrium. Changes of the macroscopic variables listed
above are then related to changes of the total energy density
via the Gibbs relation, which is the local formulation of the
first law of thermodynamics:

df = T dσ + μdρ + vidgi + μcdc + hMdM

+hm′
i dmi + �m

ij d∇jmi + h�′
d� + ��

i d∇i�

+hn′
i dni + �n

ij d∇j ni . (9)

In Eq. (9), hm′
i , h�′

, and hn′
i are the thermodynamic con-

jugate forces to mi , �, and ni and are given explicitly in
Eqs. (37), (42), and (39).
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In the static behavior only the combinations

hM
i = hM ′

i − ∇j�
M
ij ,

hn
i = hn′

i − ∇j�
n
ij , and (10)

h� = h�′ − ∇i�
�
i

enter the picture. In addition, in the absence of boundaries
or orienting fields, hm′

i = hn′
i = h�′ = 0 to guarantee that

changes in the orientation do not change the energy.
The thermodynamic conjugates are prefactors of the dif-

ferentials in Eq. (9), i.e., temperature T , chemical potential
μ, velocity vi , osmotic pressure (divided by the pressure) μc,
so-called molecular fields of the magnetic order hM , of the
magnetization rotations hm

i , of rotations about the director
h�, and of director rotations hn

i . They (or their gradients)
act as thermodynamic forces in the dynamics (depending on
whether they are zero or finite in equilibrium).

Rotational invariance leads, for Eq. (9), to the additional
requirement

0 = εijk

(
hm′

i mj + hn′
i nj + ��

i ∇j� + �m
li ∇jml

+�m
il ∇lmj + �n

li∇j nl + �n
il∇lnj

) − h�mk, (11)

where the last term is due to the fact that � is not a scalar
quantity and is not invariant under rotations. For details, cf.
[14,64].

The material tensors will be constructed using the invari-
ants ni , δ⊥n

ij = δij − ninj , εijk , and Tijk . The magnetization
Mi does not define an extra, independent preferred direction,
and will occur only when its specific time-reversal behavior
is crucial. Since all material parameters can be arbitrary
functions of M2, only linear contributions of Mi will explicitly
show up in the material tensors. This is in the same spirit as
for the case without tetrahedral order [51–54].

The thermodynamic conjugates are defined as partial
derivatives of the total energy density with respect to the
appropriate variable. Thus they follow from a total energy
functional that can be written as

f = f0 + fel + fM + fMgrad + flin, (12)

where f0 is the total energy of an isotropic liquid mixture;
fel contains the gradient terms associated with the director,
the orientation of the magnetization, and with �; fM is the
spatially homogeneous magnetic energy including external
magnetic fields; and fMgrad contains gradients of M while flin

is linear in gradients.
When constructing the explicit forms of the various energy

contributions one can make use of the totally antisymmetric
symbol εijk , the tetrahedral structure Tijk , and the director ni .
One has to note that Tijk is odd under spatial inversion and
ni is even under time reversal, while mi is odd under time
reversal. In particular, we find [67]

f0 = T

2CV

(δσ )2 + 1

2ρ2κs

(δρ)2 + γ

2
(δc)2 + 1

ραs

(δσ )(δρ)

+βσ (δc)(δσ ) + βρ (δc)(δρ) + g2
i

2ρ
(13)

containing the standard thermodynamic susceptibilities, such
as specific heat CV , compressibility κs , thermal expansion αs ,
etc.

In general, inhomogeneous rotations of ni , mi , and � must
increase the total energy

fel = 1
2Km

ijkl (∇jmi )(∇lmk ) + 1
2Kijkl (∇jni )(∇lnk )

+Knm
ijkl (∇inj )(∇kml ) + 1

2K�
ij (∇i�)(∇j�)

+Cn�
ijk (∇i�)(∇knj ) + C

Mi�
ijk (∇i�)(∇kmj )

+�c
ijk (∇ic)(∇knj ) + �σ

ijk (∇iσ )(∇knj )

+�
ρ

ijk (∇iρ)(∇knj )

+�
Mic
ijk (∇ic)(∇kmj ) + �

Miσ
ijk (∇iσ )(∇kmj )

+�
Miρ

ijk (∇iρ)(∇kmj )

+ (∇i�)
(
Cc�

ij ∇j c + Cσ�
ij ∇j σ + C

ρ�

ij ∇j ρ
)

(14)

with the rotational stiffness (or rotational elastic) tensors

Km
ijkl = Km

1 δ⊥
ij δ

⊥
kl + Km

2 npnqεijpεklq

+Km
3 njnlδ

⊥
ik + Km

4 npnqTijpTklq , (15)

Kijkl = K1δ
⊥
ij δ

⊥
kl + K2npnqεijpεklq

+K3njnlδ
⊥
ik + K4npnqTijpTklq , (16)

Kmn
ijkl = Kmnδ⊥

j l (niMk + nkMi ), (17)

K�
ij = K�

⊥δ⊥
ij + K�

‖ ninj , (18)

Cn�
ijk = C⊥(εjkpni + εjipnk )np, (19)

C
Mi�
ijk = C

Mi�
2 (εjkpni + εjipnk )Mp

+C
Mi�
3 (εjkpMi + εjipMk )np, (20)

�λ
ijk = �λ(niδ

⊥
jk + nkδ

⊥
ij ), (21)

�
Miλ
ijk = �Miλ(Miδ

⊥
jk + Mkδ

⊥
ij ), (22)

Cλ�
ij = Cλ

⊥nkTkps (εirsTjpr + εjrsTipr ), (23)

where λ ∈ {σ, ρ, c}.
The structure of fel bears some similarity with the gradient

energy in the D2d phase [68] and contains four coefficients
each related to bending distortions of the orientation of the
magnetization and the director. In addition there are two
coefficients related to inhomogeneous rotations about the
director and one mixed one. We emphasize that there is only
one gradient term coupling the gradients of the director with
those of mi . In addition, there are cross couplings of the
inhomogeneous rotations of � with gradients of the scalar
conserved variables. Also note that the contribution ∼C⊥
[69], which couples gradients of ni and of � is associated with
∇ × n.

The magnetic part of the free energy homogeneous in the
magnetization in Eq. (12) reads

fM = −MiHi − 1
2A1(mini )

2 + 1
2αM2 + 1

4βM4. (24)
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This expression is derived taking into account the static mag-
netic Maxwell equations. α and β are expansion coefficients
in a Landau expansion for M and where the contribution ∼A1

describes the coupling between mi and ni . The derivation
parallels very closely that given in Ref. [52] and quite recently
in Ref. [64]. fM is the Legendre transformed magnetic energy
containing the magnetic field H. The ferromagnetic coupling
in fM leads to the parallel equilibrium orientation of the
magnetization along an external magnetic field. As a result,
a homogeneous external field is compatible with a homoge-
neous combined magnetization and tetrahedral structure in the
phase considered here: ferromagnetic nematic with additional
tetrahedral order. However, the degeneracy of the (combined)
orientation of the magnetization and the tetrahedral structure
is partially lifted and only the orientation of the structure
perpendicular to the field (and m) is still arbitrary.

For the magnetic gradient energy we find

fMgrad = 1
2KM

ij (∇iM )(∇jM ) + CM�
ij (∇iM )(∇j�)

+KMm
ijk (∇iM )(∇jmk ) + KMn

ijk (∇iM )(∇jnk )

+ (∇iM )
(
�cM

ij ∇j c + �σM
ij ∇j σ + �

ρM

ij ∇j ρ
)

(25)

with

KM
ij = KM

⊥ δ⊥
ij + KM

‖ ninj , (26)

CM�
ij = C‖nkTkps (εirsTjpr + εjrsTipr ), (27)

KMm
ijk = KMm(Mjδ

⊥
ik + Miδ

⊥
jk ), (28)

KMn
ijk = KMn(njδ

⊥
ik + niδ

⊥
jk ), (29)

�λM
ij = �λM

⊥ δ⊥
ij + �λM

‖ ninj , (30)

where λ ∈ {σ, ρ, c}. There are two stiffness coefficients
(KM

⊥ ,KM
‖ ) related to distortions of M . Cross couplings be-

tween distortions of M and inhomogeneous rotations of and
about the director, are described by one coefficient each (KMn

and C‖, respectively), while there are in total six coefficients
(�λM

⊥,‖) connected to the coupling of gradients of M with gra-
dients of the scalar conserved variables. Finally we note that
we have kept in Eq. (25) one term linear in the magnetization
Mi : KMm.

The last energy contribution we are discussing here is the
linear gradient energy

flin = ξMTijkMi (∇jmk ) + ξnTijkni (∇jnk ). (31)

This expression is identical to the linear gradient term in the
D2d phase [14] for the director ni . In addition, it also contains
the analogous linear gradient term, when one uses mi instead
of the director ni . These two linear gradient terms are allowed
due to the presence of tetrahedral order, which breaks parity.
The present system appears to be the first one for which two
of these linear gradient terms exist: one associated with the
nematic director and one associated with the direction of the
magnetization. As a consequence, the ground state might not
be homogeneous, resembling the case of added chirality to
nematic liquid crystals. In fact, these terms are well known
by now to give rise to ambidextrous helicity [14,15,31,32].
In the case in which one can obtain sufficiently large do-
mains of either handedness in a ferromagnetic nematic liquid
crystal composed of nonchiral constituents, this would be
rather obvious evidence of the presence of tetrahedral order.
Naturally, an observation in the visible range would be most
attractive.

For completeness we list the expressions for the thermo-
dynamic conjugates that follow from the energy contributions
introduced above:

vi = 1

ρ
gi, (32)

δT = T

CV

δσ + 1

ραs

δρ + βσ δc − ∇i

(
�σ

ijk∇knj + �σM
ij ∇jM + Cσ�

ij ∇j�
) − ∇i

(
�

Miσ
ijk ∇kmj

)
, (33)

δμ = 1

ρ2κs

δρ + 1

ραs

δσ + βρδc − ∇i

(
�

ρ

ijk∇knj + �
ρM

ij ∇jM + C
μ�

ij ∇j�
) − ∇i

(
�

Miρ

ijk ∇kmj

)
, (34)

δμc = γ δc + βσ δσ + βρδρ − ∇i

(
�c

ijk∇knj + �cM
ij ∇jM + Cc�

ij ∇j�
) − ∇i

(
�

Mic
ijk ∇kmj

)
, (35)

hM = −miHi + αM + βM3 − ∇i

(
KM

ij ∇jM + CM�
ij ∇j� + KMm

ijk ∇jmk

) − ∇i

(
KMn

ijk ∇j nk

)
−∇i

(
�σM

ij ∇j σ + �
ρM

ij ∇j ρ + �cM
ij ∇j c

) + [
C

Mi�
2 (εjkpni + εjipnk )mp + C

Mi�
3 (εjkpmi + εjipmk )np

]
(∇i�)(∇kmj )

+ [�Miρ∇iρ + �Miσ∇iσ + �Mic∇ic]
(
miδ

⊥
jk + mkδ

⊥
ij

)
(∇kmj ), (36)

hm′
i = −MHi − A1(mjnj )ni, (37)

�m
ij = Km

ijkl∇lmk + Knm
jikl∇lnk + KMm

kji ∇kM + �
Miσ
kji (∇kσ ) + �

Miρ

kji (∇kρ) + �
Mic
kji (∇kc) + C

Mi�
kji (∇k�), (38)

hn′
i = −A1(mjnj )mi, (39)

�n
ij = Kijkl∇lnk + Cn�

kij ∇k� + KMn
kji ∇kM + �σ

kij∇kσ + �
ρ

kij∇kρ + �c
kij∇kc + Knm

jikl∇kml, (40)

��
i = K�

ij ∇j� + Cn�
ijk ∇knj + CM�

ij ∇jM + Cσ�
ij ∇j σ + C

μ�

ij ∇jμ + Cc�
ij ∇j c + C

Mi�
ijk ∇kmj , (41)

h�′ = 0. (42)
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Since the δ’s in Eqs. (33)–(35) describe deviations from
the constant equilibrium values of the appropriate variable, all
expressions on the left-hand side of Eqs. (32)–(42) are zero
in equilibrium and can act as thermodynamic forces that drive
the dynamics of the system. On the other hand, the right-hand
sides of all these equations have to be zero in equilibrium
(Euler conditions). Note that the energy flin does not enter
any Euler condition (except for ∇lTijk 
= 0), since it is linear
in gradients of mi .

IV. DYNAMICS OF FERROMAGNETIC NEMATICS
WITH TETRAHEDRAL ORDER

A. Dynamic equations

The hydrodynamic variables can be put into two different
classes. There are conserved variables, like the mass density,
energy density, and momentum density g, which are gov-
erned by conservation laws. The second class of variables
corresponds to the variables associated with spontaneously
broken continuous symmetries. Their dynamics is governed
by balance laws. In our case we have from this class the
director variations, δni , and the rotation around the director,
δ�. There are some macroscopic variables that relax on a
finite but very long timescale and it is therefore sensible to
include them into the macroscopic description, Ref. [67]. In
our case we will consider the magnitude of the magnetization,
M , as well as the orientational variations of the magnetization,
Mi : δmi .

The dynamic equations read (including the dynamic equa-
tions already given in Ref. [52])

∂

∂t
f + ∇i

(
[f + p]vi + j

f

i

) = 0, (43)

∂

∂t
ρ + ∇igi = 0, (44)

∂

∂t
gi + ∇j

(
givj + pδij + σ th

ij + σij

) = 0, (45)

∂

∂t
σ + ∇i

(
σvi + jσ

i

) = 2R

T
, (46)

ρ

(
∂

∂t
+ vj∇j

)
c + ∇ij

c
i = 0, (47)

(
∂

∂t
+ vj∇j

)
M + XM = 0, (48)

(
∂

∂t
+ vj∇j

)
mi − εijkωjmk + Xm

i = 0, (49)
(

∂

∂t
+ vj∇j

)
� − miωi + Z = 0, (50)

(
∂

∂t
+ vj∇j

)
ni − εijkωjnk + Yn

i = 0, (51)

with the vorticity ωi = (1/2)εijk∇j vk and the pressure p.

The vorticity contributions are due to the fact that mi and
ni transform under spatial rotations as a vector, and � as a
special component of a vector [32]. These terms ensure that
only those rotations enter hydrodynamics that go beyond the
global rotation (e.g., of the coordinate system).

In Eq. (45) we have explicitly written down the nonphe-
nomenological part of the stress tensor, σ th

ij , which is given
by

σ th
ij = 1

2

(
mih

m
j − mjh

m
i

) + �m
kj∇imk + ��

j ∇i�

− h�εijkmk + 1
2

(
nih

n
j − njh

n
i

) + �n
kj∇ink. (52)

Using the condition of a rotational invariant free energy,
Eq. (11), it can be brought into the form [67]

2σ th
ij = �m

kj∇imk + �m
ki∇jmk + ��

j ∇i� + ��
i ∇j�

+ �n
ki∇j nk + �n

kj∇ink

+ ∇k

(
mj�

m
ik − mi�

m
jk + nj�

n
ik − ni�

n
jk

)
(53)

that guarantees angular momentum conservation [65].
The source term in the dynamic evolution equation for

the entropy density, Eq. (46), is proportional to the dissi-
pation function R representing (half of) the rate at which
the heat is transferred to the microscopic degrees of free-
dom. The second law of thermodynamics requires R > 0
for dissipative processes, while R = 0 holds for the re-
versible parts of the currents, in which case Eq. (46) is a
conservation law. Splitting the phenomenological currents
(jf

i , σij , j
σ
i , j c

i , XM,Xm
i , Z, Y n

i ) into the dissipative part (su-
perscript D) and the reversible one (superscript R) the Gibbs
relation Eq. (9) then leads to the condition

2R = −∇ij
f D

i − jσD
i ∇iT − jcD

i ∇iμc − σD
ij Aij

+XMDhM + XmD
i hm

i + ZDh� + YnD
i hnD

i > 0 (54)

for dissipative processes, where only the symmetrized veloc-
ity gradient 2Aij = ∇ivj + ∇j vi enters, in order to prevent
solid body rotations to produce entropy. For reversible cur-
rents, the condition

−∇ij
f R

i − jσR
i ∇iT − jcR

i ∇iμc − σR
ij Aij

+XMRhM + XmR
i hm

i + ZRh� + YnR
i hnR

i = 0 (55)

applies. Possible pure divergence contributions (surface
terms) are put into j

f

i , but are not needed in the following.
The various transport contributions in the time derivatives of
Eqs. (43)–(50) are all reversible. Their zero entropy produc-
tion is ensured by the nonphenomenological parts of the stress
tensor σ th

ij and by the pressure p.
A current is reversible, if it transforms under time reversal

in the same way as the time derivative of the appropriate vari-
able, while the dissipative part of a current has the opposite
time-reversal behavior. In the following we will discuss the
dissipative and reversible dynamics separately.

To derive the dissipative parts of the phenomenological
currents one first writes the dissipation function as a posi-
tive quadratic form in the thermodynamic forces taking into
account that R has to be a time-reversal-symmetric, scalar
quantity. By taking the variational derivative of this function
with respect to the chosen thermodynamic force one gets the
corresponding dissipative current.
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B. Dissipation function and dissipative currents

The dissipation function reads

R = 1

2
κij (∇iT )(∇j T ) + 1

2
Dij (∇iμc )(∇jμc ) + DT

ij (∇iT )(∇jμc ) + 1

2
νD

ijklAijAkl + 1

2
bD

ij h
m
i hm

j + 1

2
bMhMhM + 1

2
b�h�h�

+ 1

2γ1
hn

i δ
⊥
ij h

n
j + τijAijh

� + cM
ij Aijh

M + χD
ij hm

j hn
i + cD

ijkAjkh
m
i + λD

ijkAjkh
n
i

+�
(2)
ijkAij∇kT + �

(3)
ijkAij∇kμc + TijkMj (ψ̃T D∇kT + ψ̃cD∇kμ)hm

i + Tijknj δ
⊥
iq (ψT D∇kT + ψcD∇kμ)hn

q (56)

and the dissipative parts of the currents are

jσD
i = −κij∇j T − DT

ij∇jμc − ψ̃T DMjTkjih
m
k − ψT Dnjδ

⊥
kqTkjih

n
q − �

(2)
kjiAkj , (57)

jcD
i = −Dij∇jμc − DT

ji∇j T − ψ̃cDMjTkjih
m
k − ψcDnjδ

⊥
kqTkjih

n
q − �

(3)
kjiAkj , (58)

σD
ij = −νD

ijklAkl − cD
kjih

m
k − cM

ij hM − τijh
� − �

(2)
ijk∇kT − �

(3)
ijk∇kμc − λD

kijh
n
k , (59)

XmD
i = bD

⊥δ⊥
ij h

m
j + cD

ijkAjk + χD
ji h

n
i + MjTijk (ψ̃T D∇kT + ψ̃cD∇kμc ), (60)

XMD = bMhM + cM
ij Aij , (61)

ZD = b�h� + τijAij , (62)

YnD
i = 1

γ1
δ⊥
ij h

n
j + χD

ij hm
j + λD

ijkAjk + Tqjknj δ
⊥
iq (ψT D∇kT + ψcD∇kμ), (63)

where the tensors κij , Dij , DT
ij , and bD

ij are of the usual uniaxial form

ζD
ij = ζD

1 δ⊥
ij + ζD

2 ninj . (64)

while the others read

�
(2)
ijk = �D

21εkprTijpMr + �D
22(εiprTkjpMr + εjprTkipMr ), (65)

�
(3)
ijk = �D

31εkprTijpMr + �D
32(εiprTkjpMr + εjprTkipMr ), (66)

νD
ijkl = ν1δ

⊥
ij δ

⊥
kl + ν2(δ⊥

j lδ
⊥
ik + δ⊥

il δ
⊥
jk ) + ν3ninjnknl + ν4(δ⊥

ij nknl + δ⊥
klninj )

+ ν5(δ⊥
iknjnl + δ⊥

jkninl + δ⊥
il njnk + δ⊥

j lnink ) + ν6npnqTijpTklq , (67)

cD
ijk = cD

1 (εimknj + εimjnk )nm, (68)

τij = τ (niMj + njMi ), (69)

cM
ij = cD

2 (εirsTjpr + εjrsTipr )MkTkps, (70)

χD
ij = χD

2 δtr
ij Mknk, (71)

λD
ijk = λD

1

(
δtr
iqεpjqMpnk + δtr

iqεpkqMpnj

) + λD
2 (Mjεipknp + Mkεipjnp ) + λD

3 (Mqnqnj εipknp + Mqnqnkεipjnp ). (72)

C. Reversible currents

The reversible parts of the currents do not follow from any
potential, but can be derived by requiring that the entropy
production R in Eq. (54) is zero:

jσR
i = −κR

ij ∇j T − DT R
ij ∇jμc + ψT

ij h
m
j + �T

kjiAjk + ξT n
ij hn

j ,

(73)

jcR
i = −DR

ij∇jμc + DT R
ij ∇j T + ψc

ijh
m
j + �c

kjiAjk + ξ cn
ij hn

j ,

(74)

σR
ij = − 1

2λkjih
n
k − νR

ijklAkl − cR
kijh

m
k − cR

ijh
M

−�T
ijk∇kT − �c

ijk∇kμc − τR
ij h�, (75)

XmR
i = bR

ijh
m
j − cR

ijkAjk + ψT
ji∇j T + ψc

ji∇jμc

+χR (n × hn)i , (76)

XMR = −cR
ijAij, (77)

ZR = −τR
ij Aij, (78)
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YnR
i = (

γ −1
1

)R

ij
hn

j + λijkAjk + ξT n
ji ∇j T

+ ξ cn
ji ∇j c + χR (n × hm)i , (79)

where the tensors κR
ij , DT R

ij , DR
ij , bR

ij , and (γ −1
1 )ij are all of

the form

κR
ij = κR

1 εijkMk + κR
2 εijknknpMp (80)

and the other tensors read

ψ
c,T
ij = ψc,T εiprTjpknknr , (81)

cR
ijk = cR

1 (Mjδ
⊥
ik + Mkδ

⊥
ij ), (82)

cR
ij = cR

⊥δ⊥
ij + cR

‖ ninj , (83)

τR
ij = τR (εirsTjpr + εjrsTipr )nkTkps, (84)

ξT n
ij = ξT nMknrεiprTjpk, (85)

ξ cn
ij = ξ cnMknrεiprTjpk, (86)

λijk = λ(δ⊥
ij nk + δ⊥

iknj ), (87)

�
T ,c
kji = Tqjk

(
�

T R,cR
1 δ⊥

qi + �
T R,cR
2 nqni

)
. (88)

It is straightforward to check that there is no linearly
independent reversible coupling of ni and mi containing Tijk

quadratically in addition to the contribution ∼χR . We note
that ξT n

ij and ξ cn
ij are odd under parity, time-reversal, and

n → −n symmetry. This type of coupling has not been given
before and its possible experimental consequences will be
discussed in the next section.

The reversible analog of the viscosity tensor has five com-
ponents:

νR
ijkl = νR

1 [εikpnjnl + εilpnjnk

+εjlpnink + εjkpninl] npnmMm

+ νR
2 [εikpnjnl + εilpnjnk

+ εjlpnink + εjkpninl] Mp

+ νR
3 [εikpδjl + εilpδjk + εjlpδik + εjkpδil] npnmMm

+ νR
4 [εikpδjl + εilpδjk + εjlpδik + εjkpδil] Mp

+ νR
5 [εikp(Mjnl + Mlnj ) + εilp(Mjnk + Mknj )

+ εjlp(Mink + Mkni ) + εjkp(Minl + Mlni )]np.

(89)

This fourth-order tensor is antisymmetric in the exchange of
the first pair of indices with the second one, thus guaranteeing
zero entropy production.

Due to the presence of a tetrahedral order parameter, one
has dissipative dynamic cross couplings of the temperature
and the concentration gradients with the magnetization or
the director field. This is, in principle, also possible in the
ferromagnetic cholesteric phase.

If one applies a temperature or a concentration gradient
to the sample of a tetrahedral ferromagnetic nematic phase,
one can induce flow via both the dissipative and reversible
currents.

V. SUGGESTIONS FOR EXPERIMENTS

In this section we discuss various experimental setups that
can reveal selected static and dynamic cross-coupling effects
due to the presence of tetrahedral order in ferromagnetic
nematics.

A. Ambidextrous helical domains

In Sec. III we already briefly discussed the linear gradient
energy

flin = ξMTijkMi (∇jmk ) + ξnTijkni (∇jnk ). (90)

We note that these two terms can only arise for a system
with broken parity. In addition, ξM and ξn can have either
sign, since they are linear gradient terms. To study their con-
sequences we perform an analysis, which closely resembles
that for D2d nematics given in Ref. [14]. That is, we look for
a helical state, which has lower energy than the homogeneous
state. As a result of this analysis we obtain an energy reduction
due to the two linear gradient terms, which takes the form

�f = 8

27
T 2

0
(ξn + ξMM0)2

K2 + Km
2

, (91)

which yields for the helical wave vector

q0 = − 4

3
√

3
T0

(ξn + ξMM0)

K2 + Km
2

. (92)

We point out that the cross-coupling term ∼Kmn between
gradients of the director and the magnetization does not enter
the picture, since the components of the director and the
magnetization along the helical axis are zero. From Eqs. (91)
and (92) two important conclusions follow immediately. First
of all the system can gain energy by generating a helical
state. Surely the system will also generate defects, which
cost energy. Provided the helical domains obtained are large
enough, this result leads to a straightforward way to detect
the presence of octupolar order in a ferromagnetic nematic:
the optical observation of domains of opposite handedness.
The other conclusion is closely tied to the fact that we have
two linear gradient terms. The sign and magnitudes of ξn and
ξM are material properties that are fixed. In the case in which
the signs of ξn and ξM are opposite, but their magnitude is
comparable, the expectation is to have a small value of the
net wave vector or a large wavelength for the ambidextrous
helical domains.

B. Temperature gradients can drive reversible director rotations

As a reversible cross-coupling term characteristic of ferro-
magnetic nematics with octupolar order we consider coupling
terms involving temperature, concentration, and the director
field. For heat and concentration currents we get a coupling to
the molecular field of the director (compare Sec. IV C):

jσR
i = · · · + ξT n

ij hn
j , (93)

jcR
i = · · · + ξ cn

ij hn
j (94)
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or, explicitly for σ and for mi‖ẑ and ni‖ẑ:

jσR
x = · · · + ξT nM0T̃0h

n
x, (95)

jσR
y = · · · − ξT nM0T̃0h

n
y, (96)

jσR
z = · · · + 0, (97)

where T̃0 = 4
3
√

3
T0.

From inspection of Eqs. (85) and (86) we see that the cross
coupling ∼ξT n

ij and ∼ξ cn
ij is linear in M, Tijk , and n. Thus the

coupling is mediated by making use of the odd behavior under
parity and time reversal of the ground state. And the physics is
quite apparent: director rotations drive heat and concentration
currents without generating entropy.

As a complement we find that temperature gradients and
concentration gradients applied externally generate director
rotations

ṅi ∼ YnR
i = · · · + ξT n

ji ∇j T + ξcn
ji ∇j c (98)

or, explicitly for mi ‖ ẑ and ni ‖ ẑ:

YnR
x = · · · + ξT nM0T̃0∇xT + ξcnM0T̃0∇xc, (99)

YnR
y = · · · − ξT nM0T̃0∇yT − ξcnM0T̃0∇yc, (100)

YnR
z = · · · + 0. (101)

C. Magnetization rotations can drive heat currents

Here we present an example of a dissipative effect, which
requires a magnetization as well as tetrahedral order. From
Sec. IV B we have for the parts of the heat and concentration
current coupling to magnetization rotations

jσD
i = · · · − ψ̃T DMjTkjih

m
k , (102)

jcD
i = · · · − ψ̃cDMjTkjih

m
k (103)

or, explicitly for the concentration c and for mi ‖ ẑ and ni ‖ ẑ:

jcD
x = · · · − ψ̃cDM0T̃0h

m
y , (104)

jcD
y = · · · − ψ̃cDM0T̃0h

m
x , (105)

jcD
z = · · · + 0. (106)

Inspecting Eqs. (102) and (103) we see that heat currents
as well as concentration currents are induced by rotations of

the magnetization for ferromagnetic nematics with tetrahedral
order, since such a rather unique system breaks both time-
reversal and parity symmetry. Conversely, temperature gradi-
ents as well as concentration gradients drive the dynamics of
the magnetization via

ṁi ∼ XmD
i = · · · + MjTijk (ψ̃T D∇kT + ψ̃cD∇kμc ) (107)

or, explicitly for mi ‖ ẑ and ni ‖ ẑ:

XmD
x = · · · + M0T̃0(ψ̃T D∇yT + ψ̃cD∇yμc ), (108)

XmD
y = · · · + M0T̃0(ψ̃T D∇xT + ψ̃cD∇xμc ), (109)

XmD
z = · · · + 0. (110)

VI. SUMMARY AND PERSPECTIVE

In this paper we have analyzed how the macroscopic prop-
erties of ferromagnetic nematic liquid crystals are influenced
by the presence of parity breaking octupolar order. It turns out
that many additional cross-coupling terms arise in statics and
dynamics, since now one has a ground state that breaks both
time-reversal and inversion symmetry. Clearly the hallmark
for the presence of octupolar order will be the detection of
chiral domains of both hands in a ferromagnetic nematic
compound composed of nonchiral molecules: ambidextrous
helicity. Since there are two linear gradient terms in the system
investigated here, one associated with the nematic director
and one associated with ferromagnetic order, one can tune the
helical pitch by changing the magnitude of the spontaneous
magnetization, M0.

As a perspective it will be most interesting to investigate
how tetrahedral order will influence ferromagnetic cholesteric
liquid crystals, since in such a system parity symmetry break-
ing is achieved by two different mechanisms: a pseudoscalar
quantity associated with the chirality of the molecules of at
least one of the constituents as well as with octupolar order.
Such a system represents also a challenge for its mathematical
description in three spatial dimensions, when both parity
breaking mechanisms are at work.
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Nature (London) 504, 237 (2013).

[45] A. Mertelj, N. Osterman, D. Lisjak, and M. Čopič, Soft Matter
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Abstract. We investigate the macroscopic dynamics of gels with tetrahedral/octupolar symmetry, which
possess in addition a spontaneous permanent magnetization. We derive the corresponding static and dy-
namic macroscopic equations for a phase, where the magnetization is parallel to one of the improper
fourfold tetrahedral symmetry axes. Apart from elastic strains, we take into account relative rotations
between the magnetization and the elastic network. The influence of tetrahedral order on these degrees of
freedom is investigated and some experiments are proposed that are specific for such a material and allow
to indirectly detect tetrahedral order. We also consider the case of a transient network and predict that
stationary elastic shear stresses arise when a temperature gradient is applied.

1 Introduction

Ferrofluids are a well-established subfield of complex flu-
ids [1,2] showing a strong response to small external mag-
netic fields since they contain magnetic monodomain par-
ticles in a solvent. They have numerous applications in-
cluding seals, dampers, loud speakers etc. They are strictly
speaking super-paramagnetic and have no spontaneous
magnetization in contrast to, for example, ferromagnetic
solids. Their description on many length and time scales
is well established [3–8]. Truly ferromagnetic fluids have
not yet been reported for room temperature and ambient
conditions.

More recently isotropic magnetic gels have been in-
vestigated for a number of polymeric systems containing
magnetic particles and combining the properties of a fer-
rofluid with those of a polymeric gel [9–13]. Also their
macroscopic and mesoscopic properties have been ana-
lyzed in some detail [14–16]. Synthesizing ferrogels in the
presence of an external magnetic field has led to uniax-
ial magnetic gels [10, 17] with a finite magnetization M0

in the absence of a magnetic field, which is implemented
during the cross-linking process. This property is of high
physical significance, since such systems show a linear re-
sponse in a magnetic field [17], in addition to the usual
quadratic field response. For both, isotropic ferrogels [14]
and uniaxial [18] ferromagnetic gels, dynamic macroscopic
descriptions are available.

We derive the hydrodynamics of tetrahedral ferromag-
netic gels. They can be viewed as (uniaxial) magnetic gels

a e-mail: tilen.potisk@uni-bayreuth.de
b e-mail: pleiner@mpip-mainz.mpg.de

with an additional tetrahedral order. Uniaxial magnetic
gels have been described theoretically in ref. [18] and are
investigated experimentally in ref. [17]. Here we are in-
terested in finding new effects that would hallmark the
presence of an additional tetrahedral order. We consider
predominantly the case of permanent gels, where elastic
strains do not relax. As before, we will assume that the
magnetic preferred direction is along one of the 4̄ axes of
the tetrahedral order and that this coupling is rigid.

Here we investigate macroscopically the influence of
octupolar/tetrahedral order on the physical properties of
ferromagnetic gels. This issue is important, because the
presence of octupolar order is associated with sponta-
neously broken inversion (parity) symmetry and can thus
lead to static and dynamic cross-coupling effects absent
otherwise. For gelled magnetic systems we are not aware
of any previous study in this direction.

The major part of the investigations on the influence
of octupolar order for fluid and gel-like systems has been
in the field of liquid crystals [19–33] starting with the
pioneering papers of Fel [19, 20]. From an experimental
point of view the systems of interest have been liquid-
crystalline phases derived from bent-core or ferrocene-type
molecules [34–48]. For a recent review of the field of tetra-
hedral order in liquid crystals we refer to ref. [49]. Quite
recently, the hydrodynamics of tetrahedral ferromagnetic
nematic fluids has been discussed [50]. Only rather re-
cently the presence of octupolar order has been suggested
as an explanation [51] for the observation of macroscopic
chiral domains of either hand in some optically isotropic
phases [52–54]. In ref. [51] it has been shown in the
framework of macroscopic dynamics that the simultane-
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ous presence of octupolar order and a transient network is
sufficient to produce ambidextrous helicity and thus to the
possibility to obtain macroscopic chiral domains of either
hand in compounds composed of non-chiral molecules.

The present paper is organized as follows. In sect. 2
we discuss the macroscopic dynamic description of ferro-
magnetic gel phases with octupolar order. This is followed
in sect. 3 by suggestions of possible static and dynamic
experiments that are specific for such phases including
elasticity, tetrahedral and magnetic order. In sect. 4 we
consider the case of a transient network and propose an
experiment to study its influence. A summary and per-
spective, sect. 5, concludes the main text. In appendix A
we list the full expressions for the thermodynamic con-
jugate forces and in appendix B we present the explicit
expressions for the dissipative parts of the currents.

2 Ferromagnetic gel phases with tetrahedral
order

2.1 Macroscopic variables

To derive the macroscopic equations of a particular macro-
scopic system one must first identify the relevant macro-
scopic variables. In addition to the conserved variables
characteristic of an isotropic fluid, the mass density ρ, the
energy density ε, the density of linear momentum g, and
the concentration c, related to an additional mass con-
servation law in binary mixtures, tetrahedral phases are
described by a fully symmetric third rank tensor Tijk =

T0

∑4
β=1 nβ

i nβ
j nβ

k [19], where the vectors nβ (β = 1, 2, 3, 4)

span a tetrahedron and the order parameter T0 (or rather

T̃0 ≡ 4T0/3
√

3) describes the strength of the tetrahe-
dral order, which we take as constant. Tetrahedral or-
der breaks spatial inversion symmetry, but does not imply
polar order, nor chirality. It fully breaks (spontaneously)
rotational symmetry of isotropic space and its three in-
dependent rotations are the symmetry or Goldstone vari-
ables [49].

In ferromagnetic systems the spontaneous magnetiza-
tion, M, describes the strength of magnetic order by the
order parameter M ≡ |M|, and its orientation by the unit
vector m = M/M . The former is neither connected to a
Goldstone mode, nor to a conservation law, and therefore
does not give rise to a genuine hydrodynamic variable.
Nevertheless, its relaxation time can be large enough to
be relevant in the hydrodynamic regime, and we will keep
δM ≡ M − M0, with M0 the equilibrium magnetization,
as a macroscopic variable.

The orientation of the magnetization breaks rotational
symmetry of isotropic space partially twice, but is ar-
bitrary in the absence of any orienting external field or
boundary, constituting two Goldstone or symmetry vari-
ables δm with m · δm = 0. In this respect they are
equivalent to director rotations in uniaxial nematic liq-
uid crystals. However, in the present system, where rota-
tional symmetry is already broken by the tetrahedral or-
der, magnetic orientation does not give rise to additional

independent Goldstone modes, and only the (three) com-
bined (rigid) rotations of tetrahedral and magnetic orien-
tations give rise to hydrodynamic degrees of freedom. Ob-
viously, there must be an energetic penalty for rotations of
the magnetization relative to the tetrahedral orientation.

Indeed, a simple Landau free energy argument shows
that there are two energetic minima (stable thermody-
namic phases), either with the magnetization pointing
along one of the tetrahedral vectors, or along one of the
improper 4̄ axes of the tetrahedron. The former is a phase
of C3v symmetry, which we will not consider here. The
latter is a D2d symmetric phase, similar to the tetrahe-
dral nematic liquid crystal phase D2d [49]. Nevertheless,
the hydrodynamics of the ferromagnetic tetrahedral gel
phase (called Dmg

2d in the following) is quite different from
that of a D2d phase, since the magnetization is a variable
that changes sign under time reversal (in contrast to the
nematic director) and since the D2d phase is fluid. The
static and the dynamic behavior of the Dmg

2d phase is also
quite different from that of a tetrahedral ferromagnetic
nematic phase [50], where the magnetization and the di-
rector field point both along one of the improper 4̄ axes.
This phase includes as an example a dynamic interaction
of the magnetization and the director field, which is differ-
ent from the interplay of the magnetization and the strain
field (defined at the end of this subsection). Furthermore,
in a Dmg

2d phase one can induce an inhomogeneous rotation
of the magnetization by application of an external strain,
which, of course, has no effect in a tetrahedral ferromag-
netic nematic phase, since the latter is fluid.

As hydrodynamic variables one can use the (three)
combined rigid rotations of the tetrahedral structure to-
gether with the magnetization. An alternative possibility,
more appropriate to the magnetic nature of the phase (and
the application of external magnetic fields) is the use of the
two magnetization rotations δm (implying an appropriate
co-rotation of the tetrahedral structure to preserve rigidly
the combined structure) and a rotation of the tetrahedral
structure about the magnetization, δΩ. The latter is not
just a scalar variable, but has rather unusual rotational
properties [32,49].

We describe the elastic properties of a gel by the lin-
earized version of the strain field εij = 1

2 (∇iuj + ∇jui)
with ui the displacement field of the network. Note that
εij is invariant under time reversal and spatial inver-
sion. For a hydrodynamic implementation of nonlinear
elasticity, see refs. [55, 56]. We also consider as macro-
scopic variables the relative rotations between the pre-
ferred direction mi and the polymer network, defined lin-
early as Õi = δmi − 1

2mj(∇iuj −∇jui). The relative rota-
tions are transverse to the magnetization by construction
(miÕi = 0), invariant under spatial inversion, but change
sign under time reversal. For a nonlinear description of
relative rotations we refer the reader to ref. [57]. From
uniaxial nematic gels (with the director as preferred di-
rection) it is well known that those relative rotations play
a crucial role in the static and dynamic behavior of ne-
matic gels [58, 59], and we expect similar importance for
the magnetic case.
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2.2 Thermodynamics and statics

In this section we deal with static deviations from the equi-
librium state. Changes of the variables introduced above
are related to changes of the total energy density f by the
Gibbs relation, which is the local formulation of the first
law of thermodynamics

df = T dσ + μdρ + vidgi + μcdc + hMdM

+hm′
i dmi + Ψm

ij d∇jmi + hΩ′
dΩ + ΨΩ

i d∇iΩ

+Ψijdεij + WidÕi, (1)

where we have explicitly considered gradients of the rota-
tional degrees of freedom, since they are symmetry vari-
ables and, in the absence of any orienting fields or bound-
aries, changes of their orientations must not change the
energy (hm′

i = 0 = hΩ′
). In the statics only the combina-

tions

hM
i = hM ′

i − ∇jΨ
M
ij and hΩ = hΩ′ − ∇iΨ

Ω
i (2)

do occur.
The thermodynamic conjugates are the prefactors of

the differentials in eq. (1), i.e. temperature T , chemical
potential μ, velocity vi, osmotic pressure (divided by the
pressure) μc, so-called molecular fields of the magnetic
order hM , of the magnetization rotations hm

i , of rotations
about the magnetization hΩ and the elastic stress, Ψij and
the molecular field corresponding to the relative rotations,
Wi. They (or their gradients) act as thermodynamic forces
in the dynamics (depending whether they are zero or finite
in equilibrium).

The energy has to be rotationally invariant. This re-
quires for eq. (1) the condition

0 = εijk

(
hm′

i mj + Ψm
li ∇jml + Ψm

il ∇lmj + ΨΩ
i ∇jΩ

+Ψilεjl + Ψliεlj + WiÕj

)
− hΩmk, (3)

which will later be used to symmetrize the stress tensor.
The last term in this condition is due the fact that Ω is not
a scalar, but a component of a vector that is not invariant
under rotation. To find its rotational behaviour one can
use the fact that δTqkl transforms under rotations like an
ordinary vector in each of its indices [32].

Since the energy of the total volume, F =
∫

f dV , has
to be a first order Eulerian form of the extensive vari-
ables, the thermodynamic pressure, p ≡ −∂F/∂V , can be
written as a bilinear expression of the extensive variables
and their thermodynamic conjugates with the final result
(Gibbs-Duhem equation)

dp = σ dT + ρdμ + gidvi + cdμc + M dhM

−hm′
i dmi − Ψm

ij d∇jmi − hΩ′
dΩ − ΨΩ

i d∇iΩ

−εijdΨij − ÕidWi. (4)

The thermodynamic conjugates are defined as partial
derivatives of the total energy density with respect to the

appropriate variable. Thus they follow from a total energy
functional that can be written as

f = f0 + frotel + fM + flin + fel + frr, (5)

where f0 is the total energy of an isotropic liquid, frotel

contains the rotational-elastic energy, fM is the magnetic
energy including external magnetic fields, and fel contains
the elastic energy and all cross-couplings of the strain ten-
sor with the other variables (except relative rotations) and
finally, frr, shows all contributions of the relative rota-
tions.

When constructing the explicit forms of the various
energy contributions one can make use of the Levi-Civita
tensor εijk, the tetrahedral structure Tijk and the mag-
netic direction mi, where the latter two are not really in-
dependent. One has to note that Tijk is odd under spatial
inversion and mi is odd under time reversal. In particular
we find [60]

f0 =
T

2CV
(δσ)2 +

1

2ρ2κs
(δρ)2 +

γ

2
(δc)2 +

1

ραs
(δσ)(δρ)

+βσ(δc)(δσ) + βρ(δc)(δρ) +
g2

i

2ρ
(6)

containing the standard thermodynamic susceptibilities,
like specific heat, compressibility, thermal expansion etc.

Rotations of the magnetization must not increase the
total energy of the system, since mi is a symmetry vari-
able. Therefore, only inhomogeneous rotations enter frotel

frotel =
1

2
Kijkl(∇jmi)(∇lmk) +

1

2
KΩ

ij (∇iΩ)(∇jΩ)

+CmΩ
ijk (∇iΩ)(∇kmj) + Πc

ijk(∇ic)(∇kmj)

+Πσ
ijk(∇iσ)(∇kmj) + Πρ

ijk(∇iρ)(∇kmj)

+(∇iΩ)
(
CcΩ

ij ∇jc + CσΩ
ij ∇jσ + CρΩ

ij ∇jρ
)

(7)

with the rotational stiffness (or rotational elastic) tensors

Kijkl = K1δ
⊥
ijδ

⊥
kl + K2mpmqεijpεklq

+K3mjmlδ
⊥
ik + K4mpmqTikpTjlq, (8)

KΩ
ij = KΩ

⊥ δ⊥
ij + KΩ

‖ mimj , (9)

CmΩ
ijk = C⊥(εjkpmi + εjipmk)mp, (10)

Πλ
ijk = Πλ(miδ

⊥
jk + mkδ⊥

ij), (11)

CλΩ
ij = Cλ

⊥mkTkps(εirsTjpr + εjrsTipr), (12)

where λ ∈ {σ, ρ, c}. The structure of fel is isomorphic to
the gradient energy in the D2d phase and contains 4 co-
efficients related to bending distortions of the magnetiza-
tion, 2 related to inhomogeneous rotations about the mag-
netization and 1 mixed one. In addition there are cross-
couplings of those inhomogeneous rotations with gradients
of the scalar conserved variables. We note that the contri-
bution ∼ C⊥ is associated with ∇×m; while this quantity
typically vanishes statically, this need not be the case dy-
namically1.

1 The appropriate term ∼ K7 in refs. [49] and [32] should
have the form of eq. (11)
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The magnetic part of the free energy in eq. (5) reads

fM = −MiHi +
1

2
αM2 +

1

4
βM4 + fgM , (13)

where fgM contains gradients of the magnetic order pa-
rameter M , which are often neglected, but come here in
parallel to gradients of the magnetic direction mj . The
homogeneous part of fM is derived in sect. 2.4 taking
into account the static magnetic Maxwell equations. fM is
the Legendre transformed magnetic energy containing the
magnetic field H. The ferromagnetic coupling in fM leads
to the parallel equilibrium orientation of the magnetiza-
tion along an external magnetic field. As a result a homo-
geneous external field is compatible with a homogeneous
combined magnetization/tetrahedral structure in the Dm

2d
phase. However, the degeneracy of the (combined) orien-
tation of the magnetization and the tetrahedral structure
is partially lifted and only the orientation of the struc-
ture perpendicular to the field (and m) is still arbitrary.
A discussion on how the degeneracy can completely be
eliminated by additional (e.g., electric fields) is discussed
below.

For the magnetic gradient energy we find

fgM =
1

2
KM

ij (∇iM)(∇jM) + CMΩ
ij (∇iM)(∇jΩ)

+KMm
ijk (∇iM)(∇jmk)

+(∇iM)
(
ΠcM

ij ∇jc + ΠσM
ij ∇jσ + ΠρM

ij ∇jρ
)

(14)

with

KM
ij = KM

⊥ δ⊥
ij + KM

‖ mimj , (15)

CMΩ
ij = C‖mkTkps(εirsTjpr + εjrsTipr), (16)

KMm
ijk = KMm(mjδ

⊥
ik + miδ

⊥
jk), (17)

ΠλM
ij = ΠλM

⊥ δ⊥
ij + ΠλM

‖ mimj , (18)

where λ ∈ {σ, ρ, c}. There are two stiffness coefficients
(KM

⊥ ,KM
‖ ) related to distortions of M . Cross-couplings

between distortions of M and inhomogeneous rotations
of, and about the magnetization, are described by one co-
efficient each (KMm and C‖, respectively), while there are

in total six coefficients (ΠλM
⊥,‖ ) connected to the coupling

of gradients of M with gradients of the scalar conserved
variables.

The next energy contribution we are discussing here is
the linear gradient energy

flin = ξTijkmi(∇jmk). (19)

This expression is identical to the linear gradient term in
the D2d phase [32], when mi is replaced by the director ni.
This linear gradient term is allowed due to the presence of
tetrahedral order, which breaks parity. As a consequence,
the ground state might not be homogeneous, resembling
the case of added chirality to nematic liquid crystals. How-
ever, here is no chirality involved and helices of both ro-
tation sense are equally well possible (ambidextrous chi-
rality) [49]. This is further investigated in appendix A.

The elastic part of the energy reads

fel =
1

2
cijklεijεkl − γijεijM0δM

+
(
χσ

ijδσ + χρ
ijδρ + χc

ijδc
)

εij

+
(
τσ
ijk∇kσ + τ c

ijk∇kc + τρ
ijk∇kρ + τM

ijk∇kM
)

εij

+χΩ
ijk εij∇kΩ + χm

ijkl εij∇lmk. (20)

The first two lines of fel are known from uniaxial mag-
netic gels [18]. The elastic tensor cijkl is of the form of
the viscosity tensor, eq. (46), and has six elastic moduli,
c1,...,6, one more than in uniaxial magnetic gels due to the
tetrahedral order. The rank-2 tensors are of the standard
uniaxial form, eq. (15), and describe magnetostriction as
well as elastic deformations due to changes in temperature,
density or concentration. The third line describes static
couplings between gradients of temperature, density, con-
centration or magnitude of the magnetization with elastic
deformations with the tensors

τλ
ijk =

(
τλ
⊥δ⊥

kl + τλ
‖ mkml

)
Tijl (21)

containing two coefficients for each λ ∈ {σ, ρ, c,M}. In
ref. [51] such a coupling is also present, but shows only one
coefficient for each λ due to the optically isotropic nature
of the Td phase. The fourth line contains couplings genuine
for the Dmg

2d phase between elastic deformations and in-
homogeneous rotations of the tetrahedral/magnetization
structure with the material tensors

χΩ
ijk = χΩ

1 (εiprTjkp + εjprTikp) mr + χΩ
2 εkprTijpmr,

(22)

χm
ijkl = δ⊥

kp (χm
1 [Tiplmj + Tjplmi] + χm

2 Tijpml) . (23)

Finally, the energy containing relative rotations

frr =
1

2
D1ÕiÕi + D2(mjδ

⊥
ik + mkδ⊥

ij)Õiεjk

+
(
ψc

ij∇ic + ψρ
ij∇iρ + ψσ

ij∇iσ + ψM
ij ∇iM

)
Õj (24)

contains the stiffness of relative rotations, D1, and the
standard uniaxial coupling between elasticity and relative
rotations, D2, well known from nematic and magnetic gels.
The second line describes the genuine couplings of gradi-
ents of temperature, density, concentration, and magni-
tude of the magnetization with relative rotations in the
Dmg

2d phase by

ψλ
ij = ψλmkTijk. (25)

The expressions for the thermodynamic conjugates
that follow from the energy contributions introduced
above are listed in appendix A.

2.3 Dynamic equations

The hydrodynamic variables can be put into two different
classes. There are conserved variables, like the mass den-
sity, energy density and momentum density g, which are
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governed by conservation laws. The second class of vari-
ables corresponds to the variables associated with spon-
taneously broken continuous symmetries. Their dynamics
is governed by balance laws. In our case we have from
this class the magnetization and the rotation around the
magnetization Ω. There are some variables, that relax on
a finite but very long time scale and it is therefore sen-
sible to include them into the macroscopic description,
ref. [60]. In our case we will consider the relative rota-

tions Õi, which are important, if the magnetization and
the strain are weakly coupled.

The dynamic equations read

∂

∂t
f + ∇i([f + p]vi + jf

i ) = 0, (26)

∂

∂t
ρ + ∇igi = 0, (27)

∂

∂t
gi + ∇j(givj + pδij + σth

ij + σij) = 0, (28)

∂

∂t
σ + ∇i(σvi + jσ

i ) =
2R

T
, (29)

ρ

(
∂

∂t
+ vj∇j

)
c + ∇ij

c
i = 0, (30)

(
∂

∂t
+ vj∇j

)
M + XM = 0, (31)

(
∂

∂t
+ vj∇j

)
mi − εijkωjmk + Xm

i = 0, (32)

(
∂

∂t
+ vj∇j

)
Ω − miωi + Z = 0, (33)

(
∂

∂t
+ vk∇k

)
εij + Y th

ij + Yij = 0, (34)

(
∂

∂t
+ vj∇j

)
Õi + εijkÕjωk + Y O

i = 0 (35)

with the vorticity ωi = (1/2)εijk∇jvk. The vorticity con-

tributions are due to the fact that mi and Õi transform
under spatial rotations as vectors, and Ω as a special com-
ponent of a vector [49]. These terms ensures that only
those rotations enter hydrodynamics that go beyond the
global rotation (e.g., of the coordinate system). In eq. (33)
the miωi term shows again that Ω is not a scalar quantity.

In eq. (34) we have introduced the non-
phenomenological current of the strain as

Y th
ij = −Aij + εkj∇ivk + εki∇jvk (36)

containing Aij = (1/2)(∇ivj + ∇jvi) due to the transla-
tional nature of the displacement field, as well as the co-
rotational part of the time derivative of the strain tensor.

In eq. (28) we have explicitly written down the non-
phenomenological part of the stress tensor ∇ip, the pres-
sure gradient given by eq. (4), and σth

ij given by

2σth
ij = Ψm

kj∇imk + Ψm
ki ∇jmk + ΨΩ

j ∇iΩ + ΨΩ
i ∇jΩ

+∇k(mjΨ
m
ik − miΨ

m
jk) − 2Ψij + Ψikεkj + Ψjkεki,

(37)

which has been brought, using eq. (3), into the form [61]
that guarantees angular momentum conservation [62].
The three last terms describe linear and nonlinear elas-
tic stresses.

The source term in the dynamic evolution equation
for the entropy density, eq. (29), is proportional to the
dissipation function R representing (half of) the rate at
which the heat is transferred to the microscopic degrees
of freedom. The second law of thermodynamics requires
R > 0 for dissipative processes, while R = 0 holds for
the reversible parts of the currents, in which case eq. (29)
is a conservation law. Splitting the phenomenological cur-

rents (jf
i , σij , j

σ
i , jc

i ,X
M ,Xm

i , Z, Yij , Y
O
i ) into the dissipa-

tive part (superscript D) and the reversible one (super-
script R) the Gibbs relation eq. (1) then leads to the con-
dition

2R = −∇ij
fD
i − jσD

i ∇iT − jcD
i ∇iμc − σD

ij Aij + XmD
i hm

i

+XMDhM + ZDhΩ + Y D
ij Ψij + Y OD

i Wi > 0 (38)

for dissipative processes, where only the symmetrized ve-
locity gradient Aij enters, in order to prevent solid body
rotations to produce entropy.

For reversible currents, the condition

0 = −∇ij
fR
i − jσR

i ∇iT − jcR
i ∇iμc − σR

ijAij + XMRhM

+XmR
i hm

i + ZRhΩ + Y R
ij Ψij + Y OR

i Wi (39)

applies. Possible pure divergence contributions (surface

terms) are put into jf
i , but are not needed in the following.

The various transport contributions in the time deriva-
tives of eqs. (26)–(35) are all reversible. Their zero entropy
production is ensured by the non-phenomenological parts
of the stress tensor σth

ij and by the pressure p. Similarly,

Y th
ij compensates the linear and nonlinear elastic stresses

in σth
ij to give R = 0.
A current is reversible, if it transforms under time re-

versal in the same way as the time derivative of the appro-
priate variable, while the dissipative part of a current has
the opposite time reversal behavior. In the following we
will discuss the dissipative and reversible dynamics sepa-
rately.

To derive the dissipative parts of the phenomenological
currents one first writes the dissipation function as a pos-
itive quadratic form in the thermodynamic forces taking
into account that R has to be a time reversal symmetric,
scalar quantity. By taking the variational derivative of this
function with respect to the chosen thermodynamic force
one gets the corresponding dissipative current. The dissi-
pation function reads

R =
1

2
κij(∇iT )(∇jT ) +

1

2
Dij(∇iμc)(∇jμc)

+DT
ij(∇iT )(∇jμc) + Γ

(2)
ijkAij∇kT + Γ

(3)
ijkAij∇kμc

+
1

2
νD

ijklAijAkl + cD
ijkAijh

m
k + cM

ij Aijh
M

+τijAijh
Ω + Tijkmj

(
ψTD∇kT + ψcD∇kμ

)
hm

i
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+
1

2
bD
ijh

m
i hm

j +
1

2
bMhMhM +

1

2
bΩhΩhΩ

+
1

2
DΨ

ij(∇kΨik)(∇lΨjl) +
1

2
τW WiWi

+
(
ξT
ij∇iT + ξc

ij∇iμc + ξM
ij ∇ih

M
)
(∇kΨjk)

+ ξA
ijkAijWk + Tijkmk(pW Wi + pmhm

i )∇lΨjl

+ Tijkmk

(
pT ∇jT + pc∇jμc + pM∇jh

M
)
Wi

+ fD
ijkAij∇lΨkl + ξWmδ⊥

ijWih
m
j . (40)

Note that we have used the divergence of the elastic
stress, ∇jΨij , as the thermodynamic force, rather than
the elastic stress tensor itself, Ψij . Using the latter there
are additional contributions to the dissipation function,
which will be discussed in detail in sect. 4 on transient
networks. Since we assume in this section that the network
of the gel is permanent, elastic strains can only diffuse, but
not relax. Therefore we discard the part of the dissipation
function associated with transient networks, eq. (87), and
write in the following the elastic currents in the form

Y D,R
ij = −1

2

(
∇jF

D,R
i + ∇iF

D,R
j

)
, (41)

which reflects the definition of the linear strain tensor. in
terms of the displacement vector. The dissipative expres-
sion FD

i follows from eq. (40) by FD
i = ∂R/(∂∇kΨik).

The dissipative currents for permanent networks will
be given explicitly in appendix B.

The dissipative material tensors κij , Dij , DT
ij , τij , DΨ

ij ,

ξT
ij , ξc

ij and ξM
ij are of the standard uniaxial form

ζD
ij = ζD

1 δ⊥
ij + ζD

2 mimj (42)

with a perpendicular and a parallel component, while the
others read

Γ
(2)
ijk = ΓD

21εkprTijpmr

+ΓD
22(εiprTkjpmr + εjprTkipmr), (43)

Γ
(3)
ijk = ΓD

31εkprTijpmr

+ΓD
32(εiprTkjpmr + εjprTkipmr), (44)

fD
ijk = fD

1 εkprTijpmr

+fD
2 (εiprTkjpmr + εjprTkipmr), (45)

νD
ijkl = ν1δ

⊥
ijδ

⊥
kl + ν2(δ

⊥
jlδ

⊥
ik + δ⊥

il δ
⊥
jk)

+ν3mimjmkml + ν4(δ
⊥
ijmkml + δ⊥

klmimj)

+ν5(δ
⊥
ikmjml + δ⊥

jkmiml + δ⊥
il mjmk + δ⊥

jlmimk)

+ν6mpmqTijpTklq, (46)

cD
ijk = cD

1 (εikpmj + εjkpmi)mp, (47)

ξA
ijk = ξA(εikpmj + εjkpmi)mp, (48)

cM
ij = cD

2 (εirsTjpr + εjrsTipr)mkTkps. (49)

The reversible parts of the currents do not follow from
any potential, but can be derived by requiring that the

entropy production R in eq. (38) is zero. Replacing there
Y R

ij Ψij by FR
i ∇kΨik one gets

jσR
i = −κR

ij∇jT − DTR
ij ∇jμc + ψT

ijh
m
j + ΓT

kjiAjk

−dT
ijWj − fT εijkmj∇lΨkl, (50)

jcR
i = −DR

ij∇jμc + DTR
ij ∇jT + ψc

ijh
m
j + Γ c

kjiAjk

−dc
ijWj − fcεijkmj∇lΨkl, (51)

σR
ij = −νR

ijklAkl − cR
kijh

m
k − cR

ijh
M − τR

ij hΩ

+dA(miδ
⊥
kj + mjδ

⊥
ki)Wk + fA

kji∇lΨkl

−ΓT
ijk∇kT − Γ c

ijk∇kμc, (52)

XmR
i = bR

ijh
m
j − cR

ijkAjk + ψT
ji∇jT + ψc

ji∇jμc

+dmεijkmjWk, (53)

XMR = −cR
ijAij , (54)

ZR = −τR
ij Aij + fΩ

ij ∇j∇kΨik, (55)

FR
i = dΨ

kiWk + fT εijkmj∇kT + fcεijkmj∇kμc

+fΨ εijkmj∇lΨkl + fΩ
ij ∇jh

Ω + fA
ijkAjk, (56)

Y OR
i = dT

ij∇jT + dc
ij∇jμc + dΨ

ij∇kΨjk + dW εijkmjWk

+dmεijkmjh
m
k + dA(mkδ⊥

il + mlδ
⊥
ik)Akl, (57)

where the tensors fΩ
ij and cR

ij are of the standard uniaxial

form, eq. (15) with two coefficients fΩ
⊥,‖ and cR

⊥,‖, respec-

tively. The antisymmetric tensors κR
ij , DTR

ij , DR
ij , and bR

ij
have only one coefficients and are of the form

κR
ij = κRεijkmk, (58)

while for the other tensors we find

ψc,T
ij = ψc,T εiprTjpkmkmr, (59)

dT,c,Ψ
ij = dT,c,Ψ εiprTjpkmkmr, (60)

νR
ijkl = νR

1

(
εikpδ

⊥
jl + εjkpδ

⊥
il + εilpδ

⊥
jk + εjlpδ

⊥
ik

)
mp

+νR
2 (εikpmjml + εjlpmimk + εilpmjmk

+εjkpmiml)mp + νR
3 TijpTklr, εprsms, (61)

cR
ijk = cR

1

(
mjδ

⊥
ik + mkδ⊥

ij

)
, (62)

τR
ij = τR (εirsTjpr + εjrsTipr) mkTkps, (63)

ΓT,c
kji = Tqjk

(
ΓT,c

⊥ δ⊥
qi + ΓT,c

‖ mqmi

)
, (64)

fA
ijk = Tqjk

(
fA

⊥ δ⊥
qi + fA

‖ mqmi

)
. (65)

The dissipative coupling between flow and gradients of
temperature and concentration, described by ΓD

21, Γ
D
22, Γ

D
31

and ΓD
32 in eqs. (43) and (44), is genuine for magnetic tetra-

hedral fluids, while their reversible counterparts, ΓT,c
⊥ and

ΓT,c
‖ and in eqs. (50) and (51), are already known from

the nematic tetrahedral D2d phase, refs. [32, 49], and for

ΓT,c
⊥ = ΓT,c

‖ from the isotropic Td phase, refs. [27, 49].

Similarly, for the reversible cross-coupling between ro-
tations of the magnetization and gradients of tempera-

ture and concentration, ψc,T
ij , eq. (59), are already found
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in D2d. Their dissipative counterparts, ψTD and ψcD,
eqs. (B.1), (B.2) and (B.4), are genuine for a tetrahedral
ferromagnetic (fluid) phase. This is also true for the dissi-
pative coupling between flow and changes of M , provided
by cM

ij , eq. (49), and the reversible coupling between flow

and rotations about the magnetization, τR
ij , eq. (63). Cou-

plings provided by fD
1 , fD

2 , pW , pm, pT , pc are genuine for
the Dmg

2d phase and require the simultaneous presence of
tetrahedral and magnetic order and of elasticity.

2.4 External fields

In the case that we have not only an external magnetic,
but also an electric field, there are many competing ori-
enting energy contributions

ffields = −MiHi + aTilkTjmkMiMlMjMm

−ζ1TijkEiEjEk − ζ2TijkEiHjHk

−ζ3TijkEiMjHk − ζ4TijkEiMjMk, (66)

which we discuss in the spirit of a Landau description. The
first term, the ferromagnetic coupling between the magne-
tization and the external magnetic field, aligns the mag-
netization along the field and the second one governs the
relative orientation of the magnetization with the tetra-
hedron, which for a > 0, leads to the Dmg

2d structure. The
terms ∼ ζ1,2 are the typical couplings of external fields
with the tetrahedral orientation, present in any tetrahe-
dral phase. The last two terms ∼ ζ3,4 are specific for the
magnetic tetrahedral phase.

A full minimization of ffields is beyond the scope of
this work. We look for some special cases. First, we as-
sume that the energy contribution ∼ a, which defines the
structure of the Dmg

2d phase, is the dominant one (a → ∞).
In that case the energy contribution ∼ ζ4 is identically
zero for all orientations of the fields. The ferromagnetic
energy is minimal for the magnetization (and thus the 4̄
axis of the tetrahedron) to be parallel with the magnetic
field (z-axis), while the cubic electric field contribution
is minimal, if the electric field is parallel (for ζ1 > 0) or
antiparallel (for ζ1 < 0) to one of the tetrahedral axes.
However, the tetrahedral vectors make a finite angle θT /2

(with cos(θT /2) = ±1/
√

3) with the 4̄ axes, leading to
frustration (except for the very special case that the two
external fields make an angle of θT /2). Since the magnetic
field does not fix the transverse structure, the energy ∼ ζ1

can be minimized independently with regard to this trans-
verse direction. As a result, the directions êx±êy are given
by (the tilt direction of) the electric field (the ζ2,3 energies
do not change that statement).

The frustration of the orientation of the magnetization
(or 4̄ axis) with respect to the orientation of the external
fields, can be discussed along the lines of the liquid crystal
case [32]. For strong magnetic and weak electric fields the
ferromagnetic energy will win, while for weak magnetic
and strong electric fields the magnetization will approach
the orientation of the electric field. The transition process

is governed by the parameters β1,2,3, indicating the bal-
ance of ferromagnetic energy to those including electric
fields, ∼ ζ1,2,3, respectively

β1 =
M0H0

ζ1T0E3
0

, (67)

β2 =
M0

ζ2T0E0H0
, (68)

β3 =
1

ζ3T0E0
. (69)

Qualitatively, a large β1 leads to an orientation of the
magnetization close to that of the magnetic field, while a
small β1 results in an orientation close to the electric field.
The parameters β2,3 come into play only for orientations
in-between, neither very close to the magnetic, nor very
close to the electric field.

If there is only an electric, but no magnetic field, the
former fixes the orientation of the tetrahedron according
to the ζ1 energy. In the case of the Dmg

2d phase, where the
magnetization is along one of the 4̄ axes, however, the ζ1

energy vanishes and the electric field does not orient the
tetrahedron. But the electric field induces elastic deforma-
tions according to the energy

festrict = −ζεTijkEiεjk (70)

that leads to elastic stresses

Ψes
xy = ζεT̃0E‖,√

(Ψes
xz)

2 + (Ψes
yz)2 = ζεT̃0E⊥ (71)

for the field parallel to the magnetization (E‖) and per-
pendicular to it (E⊥), respectively. The elastic stresses
are compensated by appropriate deformations in the equi-
librium state. This constitutes linear electrostriction in a
magnetic phase that does not possess a permanent electric
polarization.

On the other hand, there is a permanent magnetization
and therefore magnetostriction

fmstrict = −1

2
γijklMkMlεij (72)

leading to elastic strains of a completely different form

Ψms
xx = Ψms

yy = −γ⊥M2
0 ,

Ψms
zz = −γ‖M

2
0 . (73)

In equilibrium they are compensated by appropriate de-
formations, and hydrodynamic deviations are described
by the energy ∼ γij in eq. (20), with γij = γijzz. In the
case of an additional external magnetic field (but without
an electric one) M0 is replaced by M0 + H0. In the pres-
ence of both external fields the strictive deformations are
extremely complicated due to the complicated orientation
of the tetrahedron.

From eqs. (71) and (73) we read off immediately that
external electric and magnetic fields lead to an anisotropy
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of the stresses and thus also of the associated strains. This
anisotropy, which is probably very small, is neglected. We
note that the coefficient α in eq. (13) is also modified
by external fields due to the effects of the equilibrium
strains ε0

ij . The corresponding anisotropy will be neglected
as well.

3 Suggestions for experiments involving
elasticity

In this section we discuss experiments that are specific
for the ferromagnetic tetrahedral gel phases. In partic-
ular, we consider experiments in the homogeneous state
with a constant orientation of the preferred direction. We
propose experiments that probe static couplings specific
for the presence of tetrahedral order in sect. 3.1. In par-
ticular, we consider static external strains applied to the
gel that affect the magnitude and the orientation of the
magnetization and the relative rotations. In addition, we
show, how relative rotations can induce gradients of den-
sity, concentration, or temperature perpendicular to the
magnetization. In sect. 3.2 we discuss strains induced dy-
namically by temperature gradients, as well as reversible
and irreversible heat or concentration currents induced by
relative rotations.

3.1 Static experiments

There is a static coupling between elastic stresses and
the orientation of the magnetization in eq. (20) provided
by the material tensor χm

ijkl with two coefficients χm
1,2 in

eq. (23). Together with the rotational stiffness energy of
the magnetization in eq. (7), given by the Frank-type ten-
sor Kijkl, eq. (8), and neglecting other cross-couplings, the
stationarity condition, Ψm

ij = 0, leads, for linear deviations
from m = ez, to

∇zmy = Aε0
xz and ∇zmx = Aε0

yz (74)

with A = (χm
1 + χm

2 )T̃0/K3. This describes an inhomoge-
neous rotation of the magnetization out of the shear plane
of the external strain ε0

xz or ε0
yz. This effect only occurs

when tetrahedral order is present.
Similarly, a uniaxial compression along the preferred

axis leads to linear deviations of the magnetization in the
transverse plane given by

∇xmy = ∇ymx =
χm

1

2K4T̃0

ε0
zz. (75)

This solution describes a spatial pattern, where the in-
duced transverse magnetization is of constant magnitude
(m2

x + m2
y = const) on circles around the z-axis, but

changes its direction by 2π, when moving along the circle.
This pattern has no splay, bend or twist character, but is
quite special for tetrahedral order.

External strains (ε0
xz, ε0

yz, and ε0
xx −ε0

yy) create spatial

patterns of relative rotations, due to the χΩ
1,2 coupling in

eq. (22), which, however, might be difficult to observe.

A well-known effect of external strains applied to ferro-
magnetic gels is magnetostriction, the change of the mag-
nitude of the magnetization. Using the magnetostrictive
coupling, described by γij in eq. (20), the homogeneous
changes induced by compressional strains have the uniax-
ial form

M0δM = − α

γ‖
ε0
zz − α

γ⊥

(
ε0
xx + ε0

yy

)
, (76)

where α is the magnetic stiffness coefficient.
In ferromagnetic gels with tetrahedral structure, in ad-

dition, external shear strains change the magnitude of the
magnetization

αδM = −2τ‖T̃0∇zε
0
xy − 2τ⊥T̃0

(
∇yε0

xz + ∇xε0
yz

)
(77)

although the inhomogeneous external shear strains are
probably not easy to apply.

Another possibility to probe magnetic and tetrahe-
dral order is the application of a static relative rota-
tion, Õi. Due to the coupling provided by ψλ

ij in eq. (24)
or (A.11), this results in gradients of the scalar variables

λ ∈ {σ, ρ, c,M} perpendicular to mi and Õi

∇yλ =
D1

ψλT̃0

Õx, (78)

∇xλ =
D1

ψλT̃0

Õy (79)

with ψλ defined in eq. (25).

3.2 Dynamic experiments

As an example for a dynamic coupling, we discuss induced
stresses due to an external temperature gradient perpen-
dicular to the direction of the magnetization. Such cou-
plings are specific for tetrahedral order. Already in the

fluid case, there is a dissipative, Γ
(2)
ijk , and reversible, ΓT

ijk,

coupling according to eqs. (B.3) and (52), respectively,

σij = −Γ
(2)
ijk∇kT − ΓT

ijk∇kT. (80)

With the explicit form of the material tensors, eqs. (43)
and (64), one gets for the temperature gradient applied
along the x-axis, ∇xT = β0 (and the magnetization along
the z-axis) the induced stresses

σxz = σzx = β0T̃0

(
ΓD

21 + ΓD
22

)
, (81)

σyz = σzy = β0T̃0Γ
T
⊥ , (82)

where the in-plane shear stresses are due to the dissipa-
tive coupling, while the shear stresses perpendicular to the
temperature gradient result from the reversible coupling.

If the temperature gradient is along the y-axis, equiv-
alent expressions for the appropriate induced stresses are
found, with the same prefactor for the reversible coupling
and opposite sign in the dissipative case. This reflects the
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breaking of transverse isotropy by the tetrahedral order.
A temperature gradient along the magnetic field does not
induce any stresses.

In a fluid phase such constant stresses only act as pos-
sible boundary conditions for flow and are difficult to mea-
sure. In a gel phase the stress tensor also comprises the
elastic stresses, which are easier measurable by mechani-
cal means. However, in the gel case there are additional
couplings that effectively add to the response of stresses
on external temperature gradients. In particular, temper-
ature gradients induce non-zero values of Wi, the molec-
ular field of relative rotations, due to the stationary con-
dition Y O

i = 0. The couplings described by pT and dW in
eqs. (B.8) and (57) are provided by the tetrahedral order.
On the other hand, those induced non-zero values of Wi

act as forces that give rise to additional stresses via ξA

and dA in eqs. (B.3) and (52). As a result, induced elas-
tic stresses Ψxz = Ψzx and Ψyz = Ψzy are obtained that

are proportional to β0T̃0. The proportionality factors are
lengthy expressions containing static susceptibilities and
(in both cases) reversible and irreversible transport coef-
ficients, which we will not show in detail here.

Applying a thermodynamic force Wi, by means of a
relative rotation Wi = D1Õi, eq. (A.11), heat and con-
centration currents, both reversibly, eqs. (50) and (51), as
well as irreversibly, eqs. (B.1) and (B.2) are triggered of
the form

j(σ,c)R
x = d(T,c)T̃0Wx, (83)

j(σ,c)R
y = −d(T,c)T̃0Wy, (84)

and

j(σ,c)D
x = p(T,c)T̃0Wy, (85)

j(σ,c)D
y = p(T,c)T̃0Wx, (86)

where d(T,c) is defined in eq. (60).

4 On the influence of transient elasticity

If the elastic network is not permanent, but transient,
strains are relaxing (rather than diffusing). This means
that elastic stresses Ψij act as thermodynamic forces
(rather than ∇jΨij) and the dissipation function acquires
additional contributions

Rrelax =
1

2
τΨ
ijklΨijΨkl + ξTΨTijkΨij∇kT

+ξcΨTijkΨij∇kc + ξMΨTijkΨij∇khM . (87)

The strain relaxation tensor τΨ
ijkl has the same form as

the viscosity tensor νijkl in eq. (46) containing six relax-
ation times τΨ

1 –τΨ
6 . There are dissipative cross-couplings

between the elastic stresses and temperature, concentra-
tion gradients and gradients of M . The form of the dissi-
pative currents is given in appendix B.

The reversible currents have to fulfil the proper time-
reversal symmetry requirements and must not increase the

entropy, i.e. they must fulfil eq. (39). Under that proviso
we find

jσR
i = ξTRTjkmεimlmlΨjk, (88)

jcR
i = ξcRTjkmεimlmlΨjk, (89)

XMR = ξMRεklm∇k(mlTijkΨij), (90)

Y R
ij = τR

ijklΨkl + ξTRTijkεklmml∇mT

+ξcRεklmml∇mc + ξMRTijkεklmml∇mhM , (91)

where the tensor τR
ijkl has the same form as νR

ijkl in eq. (61)

with three parameters τR
1 , τR

2 , τR
3 . All the cross-couplings

are possible due to the simultaneous presence of magnetic
and tetrahedral order.

As far as static deformations are concerned, there is
no difference between permanent and relaxing elasticity,
and sect. 2.2 applies here as well.

If the elasticity is transient, one can induce elastic
shear stresses directly using a temperature gradient. From
eqs. (B.12) and (91) we get

Yij =
(
τΨ
ijkl+τR

ijkl

)
Ψkl+

(
ξTRTijkεklmml+ξTΨTijm

)
∇mT.

(92)
A stationary solution for the elastic stress is then obtained
by setting all components Yij = 0. These induced stresses
are constant, and so are the additions to the heat current,
eq. (B.9), preserving the stationarity of such solutions.

For a temperature gradient in the direction of the mag-
netization, shear stresses in the perpendicular plane are
induced

Ψxy =
T̃0ξ

TΨ∇zT

2(τΨ
2 + T̃ 2

0 τΨ
6 ) + 8(τR

1 )2/τΨ
2

(93)

involving dissipative as well as reversible transport pa-
rameters. The reversible couplings have also the effect of
creating compressive stresses

Ψxx = −Ψyy = −2τR
1

τΨ
2

Ψxy, Ψzz = 0. (94)

The result given in eq. (94) demonstrates the significant
difference between reversible dynamic effects studied here
and static magnetostriction presented in eq. (73).

If the external temperature gradient is perpendicular
to the magnetization, it defines a preferred direction in
this plane, which we will take without loss of generality as
the x-axis, ∇xT ≡ Δ. Then, of course, the y-direction is
fixed by m × ∇T. The orientation of the tetrahedron in
the x/y-plane is arbitrary and the x, y, z components of
the four tetrahedral vectors can be written as

Tijk =
T0√

3

⎛
⎝

C + S −C − S C − S −C + S

−C + S C − S C + S −C − S

1 1 −1 −1

⎞
⎠ (95)

with C = cos ϕ and S = sin ϕ. For ϕ = 0 the projections
of the four tetrahedral vectors are along the bisections
(1/

√
2)(êx ± êy), while for ϕ = π/4 they are along the x-

and y-axis, cf. fig. 1.
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φ

x

y

Fig. 1. The red circle in the middle indicates the magnetiza-
tion perpendicular to the drawing plane, while the temperature
gradient (green arrow) is along the x-axis. The blue lines show
the projections of the tetrahedral vectors (where circles and
the crosses represent vectors pointing out or into the plane,
respectively).

Disregarding the reversible contributions in eq. (92)
for the moment, we get the induced stresses

Ψxz = −ξTΨ T̃0Δ

2τΨ
5

sin(2ϕ), (96)

Ψyz =
ξTΨ T̃0Δ

2τΨ
5

cos(2ϕ). (97)

As a result, the shear stresses are perpendicular to the
temperature gradient for ϕ = 0, while for ϕ = π/4 the in-
duced shear stress is in the x/z plane given by the magne-
tization and the temperature gradient. In the general case,
both types of stresses are present. By measuring Ψxz/Ψyz

one can determine the angle ϕ and therefore the orienta-
tion of the tetrahedron. Alternatively, one could change
the orientation of the temperature gradient to find one of
the two special cases discussed above.

Taking into account also the reversible couplings, the
results get more complicated, but the general features are
similar

Ψxz =
Aa − Bb

a2 + b2
T̃0Δ, (98)

Ψyz =
Ba + Ab

a2 + b2
T̃0Δ (99)

with

A = −ξTΨ sin(2ϕ) + ξTR cos(2ϕ), (100)

B = ξTΨ cos(2ϕ) + ξTR sin(2ϕ), (101)

a = 2τΨ
5 , (102)

b = 2τR
2 − 2τR

3 T̃ 2
0 . (103)

The orientation of the tetrahedral vectors, for which the
resulting shear stress is perpendicular to the temperature
gradient, i.e. Ψxz = 0, is now given by

tan(2ϕ) = −b ξTΨ − a ξTR

a ξTΨ + b ξTR
. (104)

The other special case, Ψyz = 0, is still obtained by ϕ →
ϕ + π/4.

5 Summary and perspective

The macroscopic dynamics of ferromagnetic gels with
tetrahedral order is rather peculiar due to two aspects.
First, the permanent magnetization that spontaneously
breaks part of rotational symmetry, is a variable that
changes sign under time reversal. Second, the tetrahedral
order, not only lifts the transverse isotropy perpendicular
to the magnetization, but also breaks inversion symmetry
already of the ground state. For the Dmg

2d phase, where
the orientation of the magnetization is rigidly coupled to
one of the tetrahedral 4̄ directions, we have discussed in
detail, in the statics as well as in the reversible and ir-
reversible dynamics, the possible cross-couplings among
the three rotational symmetry variables, the strain ten-
sor, relative rotations between the elastic network and the
magnetization, and the usual fluid degrees of freedom.

We describe experimentally accessible effects that are
specific for the Dmg

2d phase. In particular, we show that
static external deformations lead to spatial patterns in
the orientation of the magnetization. Shear deformations
with the preferred direction in the shear plane trigger rota-
tions of the magnetization direction out of the shear plane,
while longitudinal compressions along the preferred direc-
tion result in a complicated, characteristic spatial pattern
of the magnetization in the transverse plane. Both effects
are only possible due to the tetrahedral order. In addition
to the standard linear magnetostriction effects in ferro-
magnetic gels, the Dmg

2d phase also shows a kind of linear
electrostriction, where the application of an electric field
results in elastic shear stresses. Although there is no polar-
ization present in the ground state of this phase, the nec-
essary breaking of inversion symmetry is provided by the
tetrahedral order. Another consequence of the tetrahedral
order is a change of the magnitude of the magnetization
due to external distortional deformation. Finally, relative
rotations lead to gradients in the temperature, density,
concentration, and the magnitude of the magnetization.

From the dynamics of tetrahedral fluids it is well
known that, e.g. temperature gradients give rise to con-
stant shear stresses. In a gel phase the stress tensor com-
prises also elastic stresses, which are easier measurable by
mechanical means. In addition, in Dmg

2d there are addi-
tional couplings, mediated by relative rotations, that ef-
fectively add to the response of elastic stresses on exter-
nal temperature gradients. Conversely, relative rotations
trigger heat (and concentration) currents in the plane per-
pendicular to the magnetization. In the case of transient
elasticity the elasticity is not permanent, but can relax
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either simply in the course of time (like polymers) or due
to external (generalized) forces (eventually above a cer-
tain threshold value like in magneto-rheological systems).
Here, the relaxation of strains can be compensated by e.g.
external temperature gradients, such that stationary elas-
tic stresses result. For gradients along the magnetization,
elastic shear stresses, but also compressional ones (due to a
specific reversible dynamic coupling), occur in the perpen-
dicular plane. If the temperature gradient is perpendicular
to the magnetization the resulting elastic shear stresses
(in a plane that contains the magnetization direction) al-
low the identification of the transverse orientation of the
tetrahedron relative to the gradient direction. This find-
ing opens the door for the experiments investigating the
orientation of the tetrahedron without the need of both
magnetic and electric fields.

As a perspective it would be interesting to investi-
gate the effects of dynamic (e.g., oscillatory) shear ex-
periments on the orientation of the tetrahedral structure.
Since several variables couple to the velocity field, both re-
versibly and dissipatively, one might expect a rich behav-
ior depending on the amplitude as well as the frequency
of the oscillations. Of special interest are also the rota-
tions around the magnetization, which couple dynamically
(neglecting the inhomogeneous stress forces) only to flow.
It would also be important to investigate how the addi-
tional elastic network will influence the recently investi-
gated tetrahedral ferromagnetic nematic liquid crystals.
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Appendix A. Conjugate quantities

For convenience we give the explicit form of the conjugate
quantities that follow from the energy functional f , eq. (5),
by partial derivation

vi ≡ ∂f

∂gi
=

1

ρ
gi, (A.1)

δT ≡ ∂f

∂σ
=

T

CV
δσ +

1

ραs
δρ + βσδc − ∇i(Π

σ
ijk∇kmj

+ΠσM
ij ∇jM + CσΩ

ij ∇jΩ) + χσ
ijεij − τσ

ijk∇kεij

−ψσ
ij∇iÕj , (A.2)

δμ ≡ ∂f

∂ρ
=

1

ρ2κs
δρ +

1

ραs
δσ + βρδc − ∇i(Π

ρ
ijk∇kmj

+ΠρM
ij ∇jM + CμΩ

ij ∇jΩ) + χρ
ijεij − τρ

ijk∇kεij

−ψρ
ij∇iÕj , (A.3)

δμc ≡ ∂f

∂c
= γδc + βσδσ + βρδρ − ∇i(Π

c
ijk∇kmj

+ΠcM
ij ∇jM + CcΩ

ij ∇jΩ) + χc
ijεij − τ c

ijk∇kεij

−ψc
ij∇iÕj , (A.4)

hM ≡ ∂f

∂M
= −miHi + αM + βM3 − γijM0εij

−τM
ijk∇kεij − ψM

ij ∇iÕj

−∇i

(
KM

ij ∇jM + CMΩ
ij ∇jΩ + KMm

ijk ∇jmk

+ΠσM
ij ∇jσ + ΠρM

ij ∇jρ + ΠcM
ij ∇jc

)
, (A.5)

hm′
i ≡ ∂f

∂mi
= −MHi, (A.6)

Ψm
ij ≡ ∂f

∂∇jmi
= Kijkl∇lmk + CmΩ

kij ∇kΩ + KMm
kji ∇kM

+χm
klijεkl + Πσ

kij∇kσ + Πρ
kij∇kρ + Πc

kij∇kc, (A.7)

hΩ′ ≡ ∂f

∂Ω
= 0, (A.8)

ΨΩ
i ≡ ∂f

∂∇iΩ
= KΩ

ij ∇jΩ + CmΩ
ijk ∇kmj + CMΩ

ij ∇jM

+χΩ
kjiεkj + CσΩ

ij ∇jσ + CμΩ
ij ∇jμ + CcΩ

ij ∇jc, (A.9)

Ψij ≡ ∂f

∂εij
= cijklεkl − γijM0δM + χσ

ijδσ + χρ
ijδρ

+χc
ijδc+τσ

ijk∇kσ+τ c
ijk∇kc+τρ

ijk∇kρ+τM
ijk∇kM

+χΩ
ijk∇kΩ + χm

ijkl ∇lmk + D2(miδ
⊥
kj + mjδ

⊥
ki)Õk,

(A.10)

Wi ≡ ∂f

∂Õi

= D1Õi + D2(mjδ
⊥
ik + mkδ⊥

ij)εjk + ψc
ji∇jc

+ψρ
ji∇jρ + ψσ

ji∇jσ + ψM
ji ∇jM. (A.11)

Since the δ’s in eqs. (A.2)–(A.4) describe deviations from
the constant equilibrium values of the appropriate vari-
able, all expressions on the left-hand side of the above
equations are zero in equilibrium and can act as thermo-
dynamic forces that drive the dynamics of the system.
On the other hand, the right-hand sides of all these equa-
tions have to be zero in equilibrium (Euler-Lagrange con-
ditions). Note that the energy flin does not enter any
Euler-Lagrange condition (except for ∇lTijk 	= 0), since
it is linear in gradients of mi.

Appendix B. Dissipative currents

For permanent elasticity the dissipative parts of the cur-
rents follow from the dissipation function R, eq. (40),

jσD
i ≡ − ∂R

∂∇iT
= −κij∇jT − DT

ij∇jμc
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−ψTDmjTkjih
m
k − Γ

(2)
kjiAkj − pT TijkmkWj

−ξT
ij∇kΨjk, (B.1)

jcD
i ≡ − ∂R

∂∇iμc
= −Dij∇jμc − DT

ji∇jT

−ψcDmjTkjih
m
k − Γ

(3)
kjiAkj − pcTijkmkWj

−ξc
ij∇kΨjk, (B.2)

σD
ij ≡ − ∂R

∂Aij
= −νD

ijklAkl − cD
ijkhm

k − cM
ij hM − τijh

Ω

−ξA
ijkWk − Γ

(2)
ijk∇kT − Γ

(3)
ijk∇kμc − fD

ijk∇lΨkl,

(B.3)

XmD
i ≡ ∂R

∂hm
i

= bD
⊥δ⊥

ijh
m
j + mjTijk(ψTD∇kT

+ψcD∇kμc) + cD
jkiAjk + pmTijkmk∇lΨjl

+δ⊥
ijξ

WmWj , (B.4)

XMD ≡ δR

δhM
= bMhM + cM

ij Aij + ξM
ij ∇i∇kΨjk

−pM∇i(TijkmkWj), (B.5)

ZD ≡ ∂R

∂hΩ
= bΩhΩ + τijAij , (B.6)

FD
i ≡ ∂R

∂∇kΨik
= DΨ

il∇kΨlk + ξT
li∇lT + ξc

li∇lμc

+fD
kjiAjk + Tilkmk(pW Wl + pmhm

l )

+ξM
ij ∇jh

M , (B.7)

Y OD
i ≡ ∂R

∂Wi
= τW Wi + ξA

jkiAjk + pW Tijkmk∇lΨjl

+ξWmδ⊥
ijh

m
j + Tijkmk(pT ∇jT + pc∇jc

+pM∇jh
M ), (B.8)

where FD
i is related to the dissipative strain current by

Y D
ij = − 1

2 (∇jF
D
i + ∇iF

D
j ).

In case of a relaxing elasticity there are additional con-
tributions in the dissipation function Rrelax, eq. (87), giv-
ing rise to the following additional dissipative currents

jσD
i ≡ −∂Rrelax

∂∇iT
= −ξTψTkjiΨkj , (B.9)

jcD
i ≡ −∂Rrelax

∂∇iμc
= −ξcψTkjiΨkj , (B.10)

XMD ≡ −∇k
∂Rrelax

∂∇khM
= −ξMΨ∇k(TijkΨij), (B.11)

Y D
ij ≡ ∂Rrelax

∂Ψij
= τψ

ijklΨkl + ξTΨTijk∇kT

+ξcΨTijk∇kc + ξMΨTijk∇khM (B.12)

that come in addition to those of eqs. (B.1)–(B.8) shown
above.
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P. Babinec, J. Magn. & Magn. Mater. 225, 109 (2001).

14. E. Jarkova, H. Pleiner, H.-W. Müller, H.R. Brand, Phys.
Rev. E 68, 041706 (2003).

15. G. Pessot, P. Cremer, D.Y. Borin, S. Odenbach, H. Löwen,
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36. W. Weissflog, M.W. Schröder, S. Diele, G. Pelzl, Adv.

Mater. 15, 630 (2003).
37. T. Niori, J. Yamamoto, H. Yokoyama, Mol. Cryst. Liq.

Cryst. 409, 475 (2004).
38. M.W. Schroeder, S. Diele, G. Pelzl, W. Weissflog,

ChemPhysChem 2004, 99 (2004).
39. D. Wiant, J.T. Gleeson, N. Eber, K. Fodor-Csorba, A.

Jakli, T. Toth-Katona, Phys. Rev. E 72, 041712 (2005).
40. J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S.

Sprint, J.T. Gleeson, A. Jakli, Phys. Rev. Lett. 97, 157802
(2006).

41. D. Wiant, S. Stojadinovic, K. Neupane, S. Sharma, K.
Fodor-Csorba, A. Jakli, J.T. Gleeson, S. Sprunt, Phys.
Rev. E 73, 030703 (2006).

42. D. Wiant, K. Neupane, S. Sharma, J.T. Gleeson, S. Sprunt,
A. Jakli, N. Pradhan, G. Iannacchione, Phys. Rev. E 77,
061701 (2008).

43. T. Ostapenko, D.B. Wiant, S.N. Sprunt, A. Jakli, J.T.
Gleeson, Phys. Rev. Lett. 101, 247801 (2008).

44. Y. Jang, R. Balachandran, C. Keith, A. Lehmann, C.
Tschierske, J.K. Vij, Soft Matter 8, 10479 (2012).

45. F. Vita, I.F. Placentino, C. Ferreo, G. Singh, E.T. Samul-
ski, O. Francescangeli, Soft Matter 9, 6475 (2013).

46. M. Jasinski, D. Pociecha, H. Monobe, J. Szczytko, P.
Kaszynski, J. Am. Chem. Soc. 136, 14658 (2014).

47. O.N. Kadkin, E.H. Kim, Y.J. Rha, S.Y. Kim, J. Taem,
M.-G. Choi, Chem. Eur. J. 15, 10343 (2009).

48. E.H. Kim, O.N. Kadkin, S.Y. Kim, J. Taem, M.-G. Choi,
Eur. J. Inorg. Chem. 2011, 2933 (2011).

49. H. Pleiner, H.R. Brand, Braz. J. Phys. 46, 565 (2016).
50. T. Potisk, H. Pleiner, H.R. Brand, Phys. Rev. E 98, 042703

(2018).
51. H.R. Brand, H. Pleiner, Eur. Phys. J. E 40, 34 (2017).
52. C. Dressel, T. Reppe, M. Prehm, M. Brautzsch, C.

Tschierske, Nat. Chem. 6, 971 (2014).
53. C. Dressel, W. Weissflog, C. Tschierske, Chem. Commun.

51, 15850 (2015).
54. M. Alaasar, M. Prehm, Y. Cao, F. Liu, C. Tschierske,

Angew. Chem. Int. Ed. 55, 312 (2016).
55. H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev.

Lett. 84, 3228 (2000).
56. H. Pleiner, M. Liu, H.R. Brand, Rheol. Acta 39, 560

(2000).
57. A.M. Menzel, H. Pleiner, H.R. Brand, J. Chem. Phys. 126,

234901 (2007).
58. A. Menzel, H. Pleiner, H.R. Brand, J. Appl. Phys. 105,

013503 (2009).
59. A. Menzel, H. Pleiner, H.R. Brand, Eur. Phys. J. E 30,

371 (2009).
60. H. Pleiner, H.R. Brand, Hydrodynamics and Electrohydro-

dynamics of Nematic Liquid Crystals, in Pattern Forma-
tion in Liquid Crystals, edited by A. Buka, L. Kramer
(Springer, New York, 1996).

61. H.R. Brand, H. Pleiner, Eur. Phys. J. E 37, 122 (2014).
62. P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401

(1972).



Publications 107

Publication 6

Continuum model of magnetic field induced viscoelasticity in magnetorheological fluids

Reproduced from

T. Potisk, D. Svenšek, H. Pleiner, and H.R. Brand
J. Chem. Phys. 150, 174901 (2019),

with the permission of AIP Publishing.



J. Chem. Phys. 150, 174901 (2019); https://doi.org/10.1063/1.5090337 150, 174901

© 2019 Author(s).

Continuum model of magnetic
field induced viscoelasticity in
magnetorheological fluids
Cite as: J. Chem. Phys. 150, 174901 (2019); https://doi.org/10.1063/1.5090337
Submitted: 26 January 2019 . Accepted: 12 April 2019 . Published Online: 06 May 2019

Tilen Potisk , Daniel Svenšek , Harald Pleiner, and Helmut R. Brand



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Continuum model of magnetic field induced
viscoelasticity in magnetorheological fluids

Cite as: J. Chem. Phys. 150, 174901 (2019); doi: 10.1063/1.5090337
Submitted: 26 January 2019 • Accepted: 12 April 2019 •
Published Online: 3 May 2019

Tilen Potisk,1,a) Daniel Svenšek,2 Harald Pleiner,3 and Helmut R. Brand1

AFFILIATIONS
1Department of Physics, University of Bayreuth, 95440 Bayreuth, Germany
2Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
3Max Planck Institute for Polymer Research, 55021 Mainz, Germany

a)Electronic mail: tilen.potisk@uni-bayreuth.de

ABSTRACT
An effective macroscopic model of magnetorheological fluids in the viscoelastic regime is proposed. Under the application of an external
magnetic field, columns of magnetizable particles are formed in these systems. The columns are responsible for solidlike properties, such
as the existence of elastic shear modulus and yield stress, and are captured by the strain field, while magnetic properties are described by
the magnetization. We investigate the interplay of these variables when static shear or normal pressure is imposed in the presence of the
external magnetic field. By assuming a relaxing strain field, we calculate the flow curves, i.e., the shear stress as a function of the imposed
shear rate, for different values of the applied magnetic field. Focusing on the small amplitude oscillatory shear, we study the complex shear
modulus, i.e., the storage and the loss moduli, as a function of the frequency. We demonstrate that already such a minimal model is capable
of furnishing many of the key physical features of these systems, such as yield stress, enhancement of the shear yield stress by pressure,
threshold behavior in the spirit of the frequently employed Bingham law, and several features in the frequency dependence of storage and loss
moduli.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5090337

I. INTRODUCTION

Magnetorheological (MR) fluids are a class of fluids, which
experience significant changes upon application of an external mag-
netic field. Examples of such changes are a fast and reversible acqui-
sition of solidlike properties and a dramatic increase in the viscos-
ity. This makes such systems suitable for many applications such as
shock absorbers, clutches, and brakes.

Introduced in Ref. 1, MR fluids are composed of micron sized
magnetizable particles, typically suspended in oil. Under the influ-
ence of the external magnetic field, gap-spanning chains or columns
of the particles in the direction of the field are formed and a finite
stress, also called the yield stress, is needed to break these struc-
tures and initiate flow. The columnar structure can be explained by
the induced dipole interaction between the particles, which is attrac-
tive when they are parallel to the magnetic field. The application of
the magnetic field also leads to a significant rise in the viscosity. For
reviews of general aspects of MR fluids, cf. Refs. 2–6.

Several microscopic and macroscopic models have been devel-
oped to predict the column formation and the dependence of the
yield stress on the applied magnetic field. Due to the similar form
of the interaction between the particles (dipolar), the studies of the
electrorheological fluids are also relevant for the description of MR
fluids. Microscopic models usually assumed single chain structures,
which are deformed in the shear plane,7–11 although certain refine-
ments on the electrorheological fluids have been done taking into
account the crystal structure of the particle aggregates.12 Theoretical
studies of rheological properties are much less frequent. In Ref. 13,
the so-called independent droplet model was used to model the
shear-thinning behavior. Other studies focus on single chains14,15 or
simulations of individual particles.16

Macroscopic models usually rely on the Maxwell stress ten-
sor and magnetostriction effects.9 In the case of electrorheological
fluids, the anisotropy caused by the chains was treated using a direc-
torlike degree of freedom known in nematic liquid crystals.17–19 In
Ref. 20, the static yield stress was calculated for a fluid with lamellar

J. Chem. Phys. 150, 174901 (2019); doi: 10.1063/1.5090337 150, 174901-1

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

structure. To predict the rheological properties, the two fluid
approach, where the solvent phase and the particle phase are treated
separately, has been used.21,22 With this approach, various aspects of
pattern formation including sheets, disktype structures in a rotating
field, etc., have also been analyzed.23–25

The aim of this paper is to construct a minimal macroscopic
model for MR fluids, which is capable of capturing the main phys-
ical effects found in static as well as dynamic experiments. To
derive the static and the dynamic equations, a symmetry based
approach is used.26 One of its advantages with respect to micro-
scopic approaches is the applicability to different systems and
geometries.

This article is organized as follows: The macroscopic model
is introduced in Sec. II, followed by the numerical analysis of the
static shear deformation in the external magnetic field in Sec. III A.
In Sec. III B, the effects of the normal pressure on the static
yield stress are considered. Flow properties are discussed by ana-
lyzing shear stresses due to stationary (Sec. IV A) and oscillatory
(Sec. IV B) imposed shear flow.

II. MACROSCOPIC MODEL
Generally, in a fluid mixture, the macroscopic variables are

mass density ρ, momentum density g, entropy density σ, and con-
centration density c. For magnetic fluids, there is, in addition, a
magnetization field M, which is zero in equilibrium in the absence
of an external magnetic field. For MR fluids, in particular, an exter-
nal field triggers columnar structures of the magnetizable parti-
cles due to the attractive magnetic forces between the particles
that lead to solidlike, elastic properties. Therefore, we introduce a
strain field εij as a macroscopic variable that is zero in the field-free
case and finite in a magnetic field. For the dynamics, we restrict
ourselves to the regime, where the viscoelastic nature of the MR
fluids can be described by a relaxational dynamics for the strain
field.

In order to make the model as simple as possible, we disre-
gard the density ρ, the entropy density σ, and the concentration c as
variables, effectively meaning they are constant. This implies incom-
pressibility and the neglect of temperature and concentration gradi-
ents (sedimentation). Thus, we deal with elastic deformations and
flow, as well as the magnetization. Furthermore, we will consider all
material tensors only in their isotropic form. This seems to be a rea-
sonable simplification, since we only consider shear in the plane per-
pendicular to the magnetization (and compression along the field).
It turns out that the static and the dynamic theoretical behavior is in
qualitative agreement with experiments. Even the anisotropy of the
ultrasound velocity can be explained without invoking anisotropic
material tensors.27–29 We emphasize that the introduction of a direc-
tor in the present context is inappropriate, since it has the wrong
behavior under time reversal. If anisotropy is taken into account,
all the material tensors acquire additional terms due to the lower
symmetry. Furthermore, in an elastic system with an orientational
order, one must, in principle, consider the additional variable of
relative rotations between the network and the preferred direction.
These relative rotations play an important role in the description of
nematic gels.30,31 Throughout most of this paper, we concentrate on
the isotropic aspects of material properties and, therefore, discard
relative rotations.

A. Statics
The statics of a macroscopic system is best set up by consider-

ing its total energy density �. The Gibbs relation, a manifestation of
the first law of thermodynamics, relates changes of the macroscopic
variables to energy changes

d� = d�0 + vidgi + hMi dMi + ψijdεij, (1)

where d�0 represents the neglected macroscopic degrees of free-
dom and is given in Ref. 26. The thermodynamic conjugates to the
macroscopic variables considered here are the bulk velocity vi, the
magnetic molecular field hMi , and the elastic stress ψij.

The statics is described by the energy density �(εij, M, g),32

� = �0 − µ0HiMi +
1
2
αM2 +

1
4
β(M2

)
2

+
1
2
cijklεijεkl −

1
2
γijklεijMkMl +

1
2ρ

g2, (2)

where the coupling to an external magnetic field, ∼µ0H, ensures
the induced magnetization to be parallel to the field, while the next
two terms govern the magnitude of the magnetization (modulus)
M ≡

√
M2 that is induced by the field. The form given in Eq. (2)

is suitable for rather small fields, while in the general case, the α and
β terms have to be replaced by a more complicated function f 1(M2)
that can be taken from experimental results.

The material tensors cijkl and γijkl describe elasticity and mag-
netostriction, respectively. In their standard isotropic form,32

cijkl = c1M2δijδkl + c2M2
(δikδjl + δilδkj), (3)

γijkl = γ1δijδkl + γ2(δikδjl + δilδkj), (4)

where we have assumed here that the elastic moduli are proportional
to M2. This ensures that elasticity, and therefore the elastic tensor
cijkl, vanishes, when there are no columns, i.e., when the magnetiza-
tionM is zero. This quadratic dependence is the simplest assumption
but can be replaced by a more complicated (even discontinuous)
function f 2(M2), provided f 2(M2) → 0 for M → 0. The depen-
dence on M2 (rather than Mi) is due to the time reversal behavior
of M.

As usual, the isotropic tensors cijkl and γijkl have two coefficients
each, where the terms ∼c1 and ∼γ1 describe the energy associated
with the compressive or elongational strains, while the coefficients
c2 and γ2 correspond to the shear strains. In the examples described
in Secs. III A and III B we assume that the compression is always
parallel to the magnetic field and that for the shear deformation the
shear plane contains the magnetic field. For completeness, if uni-
axial anisotropy of the system is considered, with the axis along
m = M/|M|, one gets additional terms in Eqs. (3) and (4)33

c̃ijkl = c̃1δ⊥ijδ
⊥
kl + c̃2(δ⊥ikδ

⊥
jl + δ⊥ilδ

⊥
kj − δ

⊥
ijδ
⊥
kl) + c̃3mimjmkml

+ c̃4(mimjδ⊥kl + mkmlδ
⊥
ij) + c̃5(mimkδ

⊥
jl + mimlδ

⊥
jk

+mjmkδ
⊥
il + mjmlδ

⊥
ik), (5)

γ̃ijkl = γ̃1δ⊥ijδ
⊥
kl + γ̃2(δ⊥ikδ

⊥
jl + δ⊥ilδ

⊥
kj − δ

⊥
ijδ
⊥
kl) + γ̃3mimjmkml

+ γ̃4mimjδ⊥kl + γ̃5mkmlδ
⊥
ij + γ̃6(mimkδ

⊥
jl + mimlδ

⊥
jk

+mjmkδ
⊥
il + mjmlδ

⊥
ik), (6)
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where δ⊥ij = δij −mimj and where c̃1, c̃2, c̃3, c̃4, and c̃5 are all propor-
tional to M2. As already mentioned above, here we will not pursue
these refinements and will be using the isotropic forms [Eqs. (3)
and (4)].

To calculate the equilibrium values of the variables, one must
first calculate the thermodynamic forces. These are the thermody-
namic conjugates of the macroscopic variables [Eq. (1)] and are
derived by taking the variational derivatives of the energy density
[Eq. (2)] with respect to the corresponding variables26

hMi =
δ�
δMi

=(α + βM2
)Mi − µ0Hi − γ1Miεkk − 2γ2Mjεij

+ (c1ε2
kk + 2c2εkjεjk)Mi, (7)

ψij =
δ�
δεij

= c1εkkM
2δij + 2c2M2εij −

1
2
γ1M2δij − γ2MiMj, (8)

vi =
δ�
δgi

=
1
ρ
gi. (9)

Thermodynamic equilibrium requires all thermodynamic forces to
be zero, i.e., hMi = 0 and ψij = 0. For a finite external magnetic
field, Hi = Hδiz , the conditions (7)–(9) lead to a finite equilib-
rium magnetization Meq

z = µ0H/α and a finite equilibrium strain
εeqzz = (1/2)(γ1 + 2γ2)/(c1 + 2c2). The latter is independent of the
field since the field dependences of the magnetostriction and the
elasticity compensate each other. Note that our simplified linear
model only applies for finite fields and does not describe the case
H ≡ 0.

B. Macroscopic dynamics
The dynamic evolution of deviations from the equilibrium state

is described by the proper macroscopic equations discussed in the
following. The dynamic equations for the momentum density gi, the
magnetization Mi, and the strain field εij are32

d
dt
gi +∇j(pδij − ψij + σthij + σij) = 0, (10)

d
dt
Mi + �ijkMjωk + Xi = 0, (11)

d
dt
εij + εkj∇ivk + εki∇jvk − Aij + Yij = 0, (12)

where d/(dt) ≡ ∂/(∂t) + vj∇j is the material derivative,
Aij = (∇ivj + ∇jvi)/2 is the symmetric gradient of the velocity field,
and the vorticity ωi = �ijk∇jvk/2 corresponds to its antisymmetric
gradient.

The thermodynamic pressure, p, is given by26

p = −� + vigi + BiHi + �0, (13)

where B = µ0(H + M) is the magnetic flux density and �0 represents
the neglected macroscopic degrees of freedom. The nonlinear stress
tensor contributions read in symmetrized form32

σthij = −
1
2
(BiHj + BjHi) +

1
2
(ψjkεki + ψikεkj). (14)

The nonphenomenological parts of the currents, shown explic-
itly in Eqs. (10)–(14), are not related to any phenomenological
(transport) parameters and are given by general symmetry and ther-
modynamic principles.26 We emphasize that their structure, in par-
ticular, that of the convective derivative εkj∇ivk + εki∇jvk in Eq. (12),
is uniquely determined.34,35 All those terms are reversible, mean-
ing that they transform under time reversal, t → −t, in the same
way as the time derivative of their appropriate variable. For a gen-
eral discussion of time reversal symmetry and its importance for
macroscopic equations, we refer to Ref. 36.

The phenomenological part of the stress tensor σij and the
quasicurrents Xi and Y ij describe temporal changes of their cor-
responding variables and can be written as a sum of a reversible
(superscript R) and an irreversible part (superscript D). They are
functions of the thermodynamic forces [Eqs. (7)–(9)] (Aij, hMi ,
and ψij) involving phenomenological transport parameters. The sec-
ond law of thermodynamics states that irreversible dynamic pro-
cesses always dissipate energy (transfer energy to the microscopic
degrees of freedom as heat) and therefore increase the entropy. On
the contrary, reversible processes are nondissipative and must not
increase the entropy.

Within linear irreversible thermodynamics,37 the dissipation
function R, which is proportional to the entropy production, can be
written as a bilinear form of fluxes and forces, in our case

2R = −σijAij + XihMi + Yijψji. (15)

For the reversible parts of the currents {σRij , XR
i , YR

ij }, one has
to require R = 0, while the dissipative ones {σDij , XD

i , YD
ij } fulfill

R > 0.
To derive the dissipative parts of the (quasi-) currents, one

writes the dissipation function R as a quadratic form in the relevant
thermodynamic forces. By taking the variational derivative of this
function with respect to the chosen thermodynamic force, accord-
ing to Eq. (15), one gets the corresponding dissipative current. The
dissipation function is

R =
1
2
νDijklAijAkl +

1
2
bDhMi h

M
i +

1
2
(1/τ)

ijkl
ψijψkl + dijkψjkh

M
i , (16)

leading to

σDij = −ν
D
ijklAkl, (17)

XD
i = bDhMi + dijkψjk, (18)

YD
ij = (1/τ)ijklψkl + dkijh

M
k . (19)

As in Eqs. (3) and (4), we again assume an isotropic form of
the material tensors νDijkl and (1/τ)ijkl describing viscosity and strain
relaxation, respectively,

νDijkl = ν1δijδkl + ν2(δikδjl + δjkδil), (20)

(1/τ)ijkl =
1

τ1M2
0
δijδkl +

1
τ2M2

0
(δikδjl + δjkδil). (21)

Thus, we model the viscoelastic properties of MR fluids38–43 by
using the strain field as a relaxing variable. When the columns
are deformed, the particles experience a drive to redistribute,
e.g., by permeation effects, which shows on the macroscopic level
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FIG. 1. Sketch of a MR fluid, confined between two parallel plates. (a) The external magnetic field is applied perpendicularly to the plates, which induces a nonzero
magnetization (red arrow) along the z axis. (b) MR fluid, when an additional static shear deformation is imposed.

as relaxation of the strain. In addition, we assume that the relax-
ation coefficients, τ1M2

0 and τ2M2
0 , are proportional to M2

0 , which
is motivated by the fact that the elastic network relaxes on longer
time scales in larger magnetic fields, i.e., it behaves more elastically.
Depending on the type of deformation, either compression or shear,
the strain relaxes with a characteristic time proportional to τ1 + 2τ2
or τ2, respectively. It should be noted that τ1,2 can still be func-
tions of M2, which is also the case for the viscosities ν1,2 and the
magnetization relaxation bD. In the incompressible case, ν1 drops
out and can be put to zero. We discard diffusiontype contributions
∼∇kψij.

In Eq. (16), the material tensor

dijk = d1Miδjk + d2(Mjδik + Mkδij) (22)

represents the dissipative coupling of the elastic stress to the mag-
netization. It is linear in the magnetic field to make sure that the
contributions to XD

i and YD
ij are irreversible, but an additional M2

dependence is possible.
The reversible currents cannot be derived from the dissipation

function since R ≡ 0 for the reversible case. Instead, they are set up by
collecting all possible combinations allowed by (e.g., time-reversal)
symmetry that leads to a vanishing R in Eq. (15),

σRij = −ν
R
ijklAkl − cRkijh

M
k , (23)

XR
i = bRijh

M
j − cRijkAjk, (24)

YR
ij = 0. (25)

The material tensors in Eqs. (23) and (24) read32

νRijkl = ν
R
(�ikpδjl + �jkpδil + �ilpδjk + �jlpδik)Mp, (26)

cRijk = cR1Miδjk + cR2 (Mjδik + Mkδij), (27)

bRij = bR�ijkMk, (28)

where cRijk has the same form as dijk in Eq. (22). To make these cur-
rents reversible, all three material tensors have to be odd functions
in Mi and additional M2 dependences of the parameters are possi-
ble. In the incompressible case, νR and cR1 drop out and can be put to
zero.

C. Geometry and material parameters
Throughout this paper, we use the geometry of two parallel

plates, as shown in Fig. 1. The macroscopic variables are assumed to

be only a function of the z coordinate. The magnetic field will always
be applied normal to the plates (along the z axis). In Secs. III A
and IV, we consider shear deformations as shown in Fig. 1(b),
while in Sec. III B, a compressive strain (along the field direction)
is additionally assumed.

Here, we list the values of the material parameters that we gen-
erally use in our numerical calculations (exceptions are indicated in
the figure captions). The prefactors of the elastic moduli are c1 = c2
= 10 Pa A−2 m2, and the coefficients connected with the modulus of
the magnetization are α = 0.06 Pa A−2 m2 and β = 10−8 Pa A−4 m4.
The values for c2 and α are estimated by comparing the results of
Sec. III [Eqs. (34) and (36)] to the measurements of the static (elas-
tic) yield stress and the value of the critical strain in Ref. 44. For
the magnetostrictive parameters, we find, by comparison of Eq. (38)
with experimental results, γ2 ≈ 0.3 Pa A−2 m2, cf. Sec. III A, and γ1
≈ 1.2 Pa A−2 m2, see Eq. (42) in Sec. III B.

Among the transport parameters that we use are ν2 = 0.2 Pa
s, bD = 40 A2 Pa−1 s−1 m−2, and τ2 = 0.1 Pa s m2 A−2 or
τ2 = 10 Pa s m2 A−2 in Sec. IV B. The coefficient, τ2, correspond-
ing to the strain relaxation, is estimated from viscoelastic measure-
ments, where, under a step shear strain deformation, the shear stress
relaxed on the order of 0.01 s45 or 1 s.38 This time is then compared
to the characteristic time scale that shows up in our model, τel =
τ2/4c2, cf. Sec. IV B. The reversible coupling coefficient, cR2 , relat-
ing the magnetization to the symmetric velocity gradient is already
known from the dynamics of magnetic liquids,46–48 where it was cru-
cial to explain dynamic experiments.49,50 We use a similar value as in
Ref. 50, cR2 = 0.4.

III. STATIC DEFORMATIONS
We discuss first the relation between static deformations and

elastic stresses for different magnetic field strengths. Since the
strains are relaxing, purely static experiments can only be per-
formed on time scales short compared to the strain relaxation time,
where strains can effectively be described by the static equations of
Sec. II A.

A. Static shear deformation
In this section, we study the static shear deformation, when

the MR fluid is confined between two parallel plates and the upper
plate is displaced parallel to the x axis. Such a geometry is typically
used in experiments to measure the elastic shear stress as a func-
tion of the shear strain. Experimental results show that the elastic
shear stress first increases linearly with the shear strain, but when
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the shear strain is increased further, one typically observes a satura-
tion in the elastic shear stress. The value of the elastic stress, where
the stress-strain curve levels off, is known as static yield stress, and it
is from the application point of view desirable to have it as large as
possible. The value of the static yield stress was measured for many
different MR fluids and it increases quadratically with the field for
small fields.44 For intermediate magnetic fields, the static yield stress
increases with the power of 3/2, which was measured experimen-
tally,43 as well as modeled numerically in Ref. 7, taking into account
the saturation effects of the magnetization of the particles. The static
yield strain does not depend on the magnetic field and is typically
around 0.5%.42,44

Throughout this section, we assume that the elastic shear defor-
mation of Fig. 1(b) is constant, εxz = εzx = 1

2Γ, and all other compo-
nents are vanishing. This can be achieved by a displacement of the
upper plate by u = Γêx, where Γ is called the shear strain.

The elastic shear stress induced by the shear deformation
follows from Eq. (8), which now reads

ψxz = c2M2Γ − γ2MxMz , (29)

while the magnetization follows from Eq. (7)

µ0H = αMz + c2Γ2Mz − γ2ΓMx, (30)

0 = αMx + c2Γ2Mx − γ2ΓMz , (31)

where β is neglected here.
These equations can be solved analytically, but the resulting for-

mulas are rather involved. We will discuss and explain the main
features either using special cases or show figures of numerical
solutions.

In Fig. 2, we present the elastic shear stress as a function of the
shear strain at three different values of the applied magnetic field.
One can see that the elastic shear stress first increases linearly, then
goes through a maximum, and starts to decrease as one increases
the shear strain. This can be understood by inspecting Eq. (29) for
the elastic shear stress. The applied magnetic field induces a nonzero
magnetization, which, in turn, induces a nonzero elastic shear
modulus. For small values of the shear strain Γ, in particular, for

FIG. 2. The elastic shear stress as a function of the shear strain γ2 = 0 at three
different values of the applied magnetic field. The black dashed parts of the curves
represent the unstable regime, where the elastic shear stress decreases with the
shear strain.

Γ≪ α/γ2 and Γ2
≪ α/c2, the elastic shear stress [Eq. (29)] increases

linearly with the shear strain

ψxz ≈
µ2

0H2

α2 (c2 −
γ2

2

α
)Γ (32)

and the initial slope of the elastic shear stress increases quadratically
with the applied magnetic field.

As one increases the shear strain, the elastic shear stress satu-
rates and finally decreases (Fig. 2). One reason for this is the mag-
netization, which decreases for increasing strains (see Fig. 3). Dis-
regarding the magnetostrictive parameter γ2 for the moment, the
induced elastic shear stress reads (for any Γ)

ψxz = µ2
0H

2 c2Γ
(α + c2Γ2)2 . (33)

Equation (33) provides a tool to determine the static coefficients c2
and α from the comparison of the model to the measurements of the
stress as a function of the strain. The stress-strain curve indeed has a
maximum at

Γc =
√

α
3c2

, (34)

which is called the yield strain. Taking into account γ2 perturba-
tively, e.g., for γ2

2 ≪ αc2, it is shifted to higher strains (Fig. 4),

Γyield ≈ Γc(1 +
5
8
γ2

2

αc2
) (35)

and does not depend on the magnetic field.
The value of the maximum elastic shear stress, the static yield

stress, decreases with increasing γ2 according to

ψyield
xz ≈

3
√

3
16
√
αc2(1 −

3
16

γ2
2

αc2
)
µ2

0H2

α2 . (36)

In addition, the static yield stress scales quadratically with the
applied magnetic field (as is also visible in Fig. 2), which is in
agreement with experiments.

The magnetostriction is responsible for the tilting of the chains
of magnetizable particles. The tilt angle θ can be calculated from
Eqs. (30) and (31) and is proportional to γ2,

FIG. 3. The z component of the magnetization Mz as a function of the shear strain
for γ2 = 0 at three different values of the applied magnetic field.
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FIG. 4. The elastic shear stress vs shear strain for three different values of the
magnetostriction coefficient γ2 at a magnetic field µ0H = 0.3 T. The black dashed
parts of the curves represent the unstable regime, where the elastic shear stress
decreases with the shear strain.

tan θ =
Mx

Mz
=

γ2Γ
α + c2Γ2 (37)

with the maximum tilt value

tan θmax
=

γ2

2
√
αc2

(38)

which is taken at Γ =
√
α/c2.

We note, in passing, that given Eqs. (33) and (37), it is obvious
that tan θ and ψxz do not have their maximum at the same Γ. As a
consequence of the tilting of the chains, the elastic stress decreases as
has been discussed, above. Experimentally, the maximum tilt angle
of the chains with respect to the direction of the magnetic field is on
the order of 10○, which implies γ2 ≈ 0.4

√
αc2 ≈ 3.0×10−1 Pa A−2 m2.

This means that the approximation γ2
2 ≪ αc2, which we used for

some of the analytical results of this section, is quite appropriate.

B. Effects of normal pressure
A desirable property of MR fluids is a high static shear yield stress.
This can to some extent be achieved by using a large magnetic
field; however, due to the saturation of the magnetization, the static
yield stress also saturates as one increases the magnetic field. In
Refs. 51–54, it was found that, after the application of a magnetic
field, compressing the MR fluid along the field direction strongly
increases the static shear yield stress. Moreover, the static yield stress
was found to be linearly dependent on the applied pressure P,

ψyield
xz (P) = ψ

yield
xz (0) + kP, (39)

whereψyield
xz (0) is the static yield stress without compression, and the

slope k was shown in Ref. 51 to be only very slightly increasing with
the magnetic field.

Physically, the increase in the static shear yield stress can be
explained by the fact that the compression pushes the chains of mag-
netizable particles to form thicker columns, which can better resist
the shear forces.

We have found that the magnetostriction coefficient ∼γ1
accounts for these experimental findings. Since the effect of γ2

on the elastic shear stress has been discussed in Sec. III A, we will put
γ2 = 0 here. The external pressure P corresponds to an external
stress ψzz = +P, from which a compressive strain εzz is induced via
Eq. (8),

εzz = +
P

c̄1M2 , (40)

where the effective longitudinal elastic coefficient is c̄1 = c1 + 2c2.
This strain comes in addition to the equilibrium compressive strain
εeqzz due to the external field, discussed in Sec. II A.

As a result of the compression, the magnetization Mz increases
due to the magnetostrictive coupling ∼γ1 (Mx vanishes in the γ2 = 0
approximation)

Mz ≈
µ0H

(α + c2Γ2)
+

γ1

c̄1µ0H
P, (41)

which we have linearized in the pressure.
An increase in the magnetization leads, according to Eq. (29),

to an enhanced shear yield stress. In Fig. 5, we show the elastic shear
stress as a function of the shear strain at three different values of the
applied normal pressure.

Indeed, the elastic shear stress and its maximum (the static yield
stress) increase linearly with the pressure (Fig. 6). For small values of
the applied pressure, this is described by k [Eq. (39)] which takes the
form

k ≈
9

32
γ1

c̄1

√
3c2

α
. (42)

For typical experimental values of k ≈ 1/4, one finds
γ1 ≈ 1.2 Pa A−2 m2.

In addition, the static yield stress is shifted to higher strains.
This shift of the critical strain is also linear in the pressure and can
be observed in Fig. 5 for different values of the field.

For small values of the applied pressure, one gets

Γyield ≈ Γc +
1
2

γ1α
c̄1µ2

0H2 P, (43)

FIG. 5. Elastic shear stress as a function of shear strain using µ0H = 0.3 T at three
different values of the applied compressive pressure. The black dashed parts of the
curves represent the unstable regime, where the elastic shear stress decreases
with the shear strain.
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FIG. 6. Static yield stress as a function of the applied compressive pressure at
three different values of the applied magnetic field.

showing also the 1/H2 field dependence. By measuring the yield
stress and the yield strain as a function of the pressure, one could, in
principle, determine the coefficients γ1 and c1, while the coefficients
c2 and α could already be determined in the shear strain experiments
(see Sec. III A).

IV. DYNAMIC DEFORMATIONS
In this section, we investigate the effect of the magnetic field on

the measured viscosities of MR fluids in the presence of an applied
shear flow. Experimental results show a threshold behavior, where a
finite stress, also called the dynamic shear stress, is needed to sustain
a shear flow. In addition, MR fluids are typically found to be slightly
shear thinning, which means the viscosity decreases as one increases
the shear rate.

We assume simple shear with a linear velocity profile of the
form v = γ̇zêx, where the so-called shear rate is constant for a
steady shear flow, γ̇ = γ̇0, Sec. IV A, and time-dependent for oscil-
latory flow, γ̇ = γ̇0 cos(ωt), Sec. IV B, with ω being the oscillatory
frequency.

For shear flow, the dynamics of the magnetic degree of freedom,
given in Sec. II, reads

−
∂

∂t
Mx = bDMx(α + βM2 + 4c2ε2

xz) −
1
2
(1 + 2cR2 )Mzγ̇, (44)

−
∂

∂t
Mz = bDMz(α + βM2 + 4c2ε2

xz) − bDµ0H

+
1
2
(1 − 2cR2 )Mxγ̇ = 0, (45)

where we have neglected γ2, since it provided only corrections to
the main results in the static shear strain case, and we expect the
same for the presence of a shear flow. The couplings provided by the
coefficient d2 are comparable and are also neglected. We also take
bR = 0, which ensures that the orientation of the magnetization (of
the chains) does not deviate from the shear plane. Equations (44) and
(45) are equivalent to those studied by Liu’s group47,48 for magnetic
liquids (where εxz = 0), when we use the identification 2cR2 = λ2 and
take β = 0.

For the elastic degree of freedom, we get

−
∂

∂t
εxz =

4c2

τ2
εxz −

1
2
γ̇. (46)

Finally, the total stress tensor, the momentum density current in
Eq. (10) not only contains the elastic stress tensor ψij [Eq. (8)]
but also the dissipative and reversible phenomenological parts σDij
[Eq. (17)] and σRij [Eq. (23)]. It is given by

−σtot
xz =ν2γ̇ + 2c2M2εxz +

1
2
(1 − 2cR2 )µ0HMx

+ 2cR2MxMz(α + βM2 + 4c2ε2
xz) (47)

and will be needed to set up the stress-strain rate relations, i.e., the
apparent viscosity in Sec. IV A and the complex shear modulus in
Sec. IV B.

A. Steady shear flow
In this section, we are only interested in stationary solutions of

the dynamic equations. In that case, the left-hand sides of Eqs. (44)–
(46) are zero. This immediately allows us to relate the stationary
shear strain to the applied shear flow

εxz = εzx =
γ̇τ2

8c2
. (48)

Of course, a stationary strain is only possible for a relaxing strain
variable, while for permanent elasticity, the strain would increase
indefinitely, when a constant flow is applied. Equation (48) repre-
sents the stationary balance between the increasing strain due to the
shear flow and its relaxation due to the microscopic redistribution of
the particles.

With this result, Eqs. (44) and (45) can be solved for the mag-
netization components Mx and Mz as functions of γ̇ and H. This can
only be done numerically due to the nonlinearities involved.

In Fig. 7, the shear stress Eq. (47) is plotted as a function of the
shear rate for different values of the field. We also study the apparent
viscosity, defined by

η =
−σtot

xz

γ̇
. (49)

FIG. 7. The shear stress −σtot
xz as a function of the steady shear rate at three

different values of the applied magnetic field.
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There are basically three regimes. For very small shear rates, there
is a steep linear increase in the stress and the slope (apparent vis-
cosity η) strongly depends on the magnetic field. At very high shear
rates, there is another (almost) linear stress increase, which is much
smaller than in the initial regime and is, for very large shear rates,
field independent. In between, the transition region shows a peak
structure for higher magnetic fields. Reducing the external field,
the peaklike structure diminishes until it simply denotes the transi-
tion between the low and high shear rate regimes. A peak structure,
which gives rise to a local minimum at intermediate shear rates, can
be explained by the induced elastic stress, described by the second
term in Eq. (47). Initially, this stress increases linearly with the shear
rate, which results in a steep initial slope of the flow curve [Eq. (50)].
At higher shear rates, the magnetization modulus starts to decrease
inversely with the square of the shear rate, which decreases the elas-
tic stress contribution toward zero. If the applied magnetic field is
large enough, a peak structure will be observed.

The initial slope for small γ̇ can be written approximately

ηin = ν2 + (
1
4
τ2 +
(1 + 2cR2 )2

4bD
)M2

0 , (50)

where M0 = µH0/α and ν2 is the viscosity (without field) due to
the carrier fluid and the magnetizable particles suspended in it. The
initial slope ηin strongly increases with the external field, which is
a prediction that could be tested in experiments. This is because
shear flow reorients the columns of magnetizable particles due to
the reversible coupling between flow and the magnetization via cRijk
[Eq. (27)]. The z-component of the magnetization is basically given
by the magnetic field resulting in the field dependence of ηin. This
effect is even bigger for smaller values of bD, i.e., when the relax-
ation time of the magnetization is longer. This is the magnetic field
dominated regime.

At a very high shear rate, the hydrodynamic regime is reached.
Here, the influence of the magnetic field on the slope η diminishes
and finally, for γ̇ → ∞, the flow curves converge to the same line,
−σtot

xz = ν2γ̇.
In the transition region, the stress obtains its (dynamic) yield

stress value, −σ0
xz , which is the stress needed to sustain flow.

There is some arbitrariness in the definition of the yield stress.
Usually, it is read off from stress-strain relations as in Fig. 7 by
extrapolating the high strain rate curves to zero strain rate. Or one
could use as the yield stress the peak of the shear stress, or the
shoulder, where the initial linear behavior turns into the final one.
We determine this transition point as the shear rate at which the
total shear stress, with the viscous contribution ∼ν2 subtracted, i.e.,
−σtot

xz − ν2γ̇, attains a maximum. The dynamic yield stress is shown
in Fig. 8 to be a quadratic function of the external field, −σ0

xz =

Ξ(µ0H)2 with Ξ ≈ 150 A2 Pa−1 m−2.
We have used the same set of parameters as in Sec. III, dis-

cussing the static deformations. It should be noted that a higher
value of the yield stress may be obtained by using, for example,
lower values of α, which as a consequence increases the magnetic
susceptibility. This stress also increases with increasing bD, while the
dependence of the yield stress on τ2 increases for low values and then
starts to decrease for larger values of τ2.

Beyond the initial steep rise, the shear stress is often described
approximately by a Bingham model

FIG. 8. The yield shear stress −σ0
xz as a function of the magnetic field.

− σxz = −σ0
xz + η∞γ̇, (51)

where a Newtonian viscous contribution is combined with the yield
stress −σ0

xz . Real MR fluids generally deviate from the Bingham
model, in particular, for higher magnetic fields. Somewhat better
fits to the experimental data can be achieved by using the so called
Casson or Herschel-Bulkley models,55 which are frequently more
suitable for flow curves that are not linear. In Fig. 9, it is shown, for
the highest field case, that the apparent viscosity in our description
is lower than in the Bingham model, demonstrating shear thinning.
This effect is smaller for intermediate fields and almost invisible
for low fields. This is in accordance with experimental findings,
where the Mason number40,56 is often found to be slightly lower
than 1, indicating shear thinning.57–63 We mention that a model
that takes into account the anisotropy together with the additional
dynamic interplay of the relative rotations between the magneti-
zation and the elastic network may produce a stress-strain curve
that is closer to the Bingham model, Eq. (51). Another possibility
is to consider the 2-fluid description of the magnetizable partic-
ulate phase and the solvent, but this is beyond the scope of this
work.

FIG. 9. The apparent viscosity η, scaled by η∞, as a function of the shear rate
for three different values of the applied magnetic field. Bingham behavior is shown
as a dashed-dotted line for the high field case. The shear thinning of the apparent
viscosity at intermediate shear rates compared to the Bingham model is obvious.
For γ̇→∞, all curves converge at η/η∞ → 1.
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B. Oscillatory shear flow
In this section, we study the viscoelastic properties of MR fluids

in the linear response regime. We impose an oscillatory deforma-
tion along the x axis, v(z) = γ̇e−iωtz êx + c.c., with ω being the
frequency of the oscillation and where c.c. denotes the complex con-
jugate. A measure of the viscoelastic properties is the complex shear
modulus G = G′ + iG′′, defined as the ratio of the shear stress σtotxz
[Eq. (47)] and the imposed strain −γ ≡ γ̇/iω, G = σtotxz /γ. The real,
G′, and the imaginary part, G′′, are the storage and the loss mod-
ulus, describing the reactive and dissipative response, respectively.
We note that γ is not identical to the Γ of Sec. III, as can be seen from
Eq. (46).

To calculate the complex shear modulus, we linearize Eqs. (44)–
(46) around equilibrium, where the strain field εij is zero and the
magnetization points along the z axis, M = M0êz , with M0 = µ0H/α
for low magnetic fields. For the relevant variables Mx, Mz , and εxz ,
we use the ansatz Mx =M(0)x e−iωt + c.c., Mz =M0 +(M(0)z e−iωt + c.c.),
and εxz = ε(0)xz e−iωt + c.c., with M(0)x , M(0)z , and ε(0)xz being the cor-
responding amplitudes, which are, in general, complex quantities.
The frequency is assumed to be sufficiently small so that the linear
velocity profile is established at any time.

The characteristic time scales are τel = τ2/(4c2), corresponding
to the relaxing strain, and τm = 1/(bDα), corresponding to the mag-
netization relaxation. For the parameter values used in this section,
the time scales are almost equal, τel ≲ τm.

Experimental results63–65 show that the storage modulus is con-
siderably larger than the loss modulus at intermediate frequencies
and that both increase with increasing magnetic field, which we
could qualitatively reproduce (see Fig. 10). This means that the sys-
tem behaves more like a solid than a liquid, which is expected,
since a small amplitude shear oscillation can only slightly influence
the strength of the columns. For smaller frequencies, the numerical
results show that the system behaves, as expected, more like a liquid
than a solid (Fig. 10).

For low frequencies, the storage modulus increases quickly with
frequency and then saturates for larger frequencies.64,65 This can be
seen in Fig. 10. The initial rise of the storage modulus is quadratic in
the frequency

G′ ≈ (
α
4
(1 + 2cR2 )

2 τ2
m + c2τ2

el)M
2
0ω

2, (52)

while for larger frequencies, the plateau value

G′∞ = (
α
4
(1 + 2cR2 )

2 + c2)M2
0 (53)

is reached. The increase in the storage modulus at low frequencies is
not reported often, which is either because many of the experiments
have not gone quite to the low frequency regime, or the characteristic
frequency where one observes such an effect, is not experimentally
accessible for many setups. In Ref. 64, a saturation of the storage
modulus is observed at a frequency of about 1 Hz.

The loss modulus, on the other hand, has a slightly more com-
plicated behavior. Theoretical results show that the loss modulus
increases linearly for low frequencies

G′′ ≈ ηinω, (54)

where ηin is the initial slope of the steady shear stress [Eq. (50)]. After
a maximum, it starts to decrease, and at intermediate frequencies, it

FIG. 10. (a) Storage modulus G′ and (b) loss modulus G′′ as a function of the
frequency at three different values of the applied magnetic field.

passes a minimum before it increases, finally. The location of the
maximum is at

ωmax ≈ 1/τel (55)

and is independent of the magnetic field.
The minimum of the loss modulus at intermediate frequen-

cies shifts to larger frequencies as one increases the magnetic
field [Fig. 10(b)], which is detected in certain experiments.63,64 For
ω2τ2

m ≫ 1 and ω2τ2
el ≫ 1, the minimum is at

ωmin ≈
M0
√
ν2

√
4c2

2
τ2

+
1
4
(1 + 2cR2)

2 bDα2, (56)

where the frequency of the minimum ωmin shifts linearly with the
field.

The final, asymptotic behavior of the loss modulus for ω →∞

is described by the viscosity ν2,

G′′ ≍ ν2ω. (57)

The maximum of the loss modulus at small frequencies has
not been reported often, perhaps due to the experimental limita-
tions at lower frequencies. There are certain indications that such
a maximum exists.65

We found that a simple relation exists for the master curves g′
and g′′ of G′ and G′′, respectively. The storage modulus has to be
rescaled by a factor of µ0H2, g′(ω) = G′(ω)/µ0H2, while the viscosity
term needs to be subtracted first in the loss modulus, g′′(ω) = (G′′(ω)
− ν2ω)/µ0H2. The storage and the loss moduli can be at any given

J. Chem. Phys. 150, 174901 (2019); doi: 10.1063/1.5090337 150, 174901-9

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. The master curves g′ and g′′ as a function of the frequency ω
corresponding to the storage G′ and the loss modulus G′′, respectively.

magnetic field H reduced exactly to the curves g′(ω) and g′′(ω),
which is not surprising because all contributions in the stress ten-
sor [Eq. (47)] apart from the viscosity term ∼ν2, are proportional to
the square of the magnetic field. Since the characteristic time scales
τm and τel are independent of the magnetic field, the master curves
are obtained without the need to rescale the frequency variable
(Fig. 11).

We now discuss the dependence of the absolute value of the
complex shear modulus ∣G∣ =

√
(G′)2 + (G′′)2 on the frequency.

After the initial linear increase, governed by the loss modulus
[Eq. (54)], there is a plateau at intermediate frequencies, which is
basically given by the plateau of the storage modulus G′∞ [Eq. (53)],
since the loss modulus G′′ is much smaller there. For high frequen-
cies, the loss modulus is dominating again and |G| increases accord-
ing to Eq. (57). This final increase is best visible in Fig. 12 for low
fields.

This scenario applies to the case of (almost) equal elastic and
magnetic time scales. If these time scales are sufficiently well sepa-
rated, a somewhat different behavior of |G| is found (Fig. 13). After
the very steep initial rise, a very narrow plateau is found at rather low
frequencies, which is approximately of height c2M2

0 (for τel ≪ τm)
and 1

4(1 + 2cR2 )2αM2
0 (for τel ≫ τm). At intermediate frequencies, |G|

FIG. 12. |G| as a function of the frequency at three different values of the applied
magnetic field.

FIG. 13. Shear modulus |G| as a function of the frequency in a semilog plot at
µ0H = 0.5 T for three different (arbitrary) choices of the time scales τel and τm.
The light black dashed horizontal lines denote the values of the plateaus for the
different cases. To enhance the visibility of the lowest plateau, cR2 = 4 has been
chosen in this plot.

gently increases to the combined plateau G′∞ [Eq. (53)] and finally
converges to the asymptotic behavior independent of the relaxation
times.

In polymer dynamics, the empirical Cox-Merz rule is often very
well fulfilled. It allows us to estimate shear stresses when a steady
shear is imposed from data obtained by small amplitude oscillatory
strain rate experiments. This rule states that at a given frequency
ω, the modulus |G| is identical to the shear stress, −σtotxz , under a
steady shear rate γ̇ = ω. It is trivially fulfilled for γ̇ → ∞ and
ω → ∞, where |G| ≍ ν2ω and −σtotxz ≍ ν2γ̇. Similarly, for very small
ω, |G| ≈ G′′ ∼ ω [Eq. (54)] increases the same way as −σtotxz ∼ γ̇.
Applying the Cox-Merz rule to the yield shear stress, however, would
lead to

− σ0
xz = (

(1 + 2cR2 )2

4
+
c2

α
)αM2

0 ≈ 2800 (µ0H)2 (58)

for the stationary yield stress, which is, though, much larger than the
value of 150 (µ0H)2 found in Sec. IV A (Fig. 9). This shows that the
Cox-Merz rule is not obeyed in MR fluids. This difference is prob-
ably due to the columnar structures, which are not destroyed in the
small amplitude oscillatory shear, but are destroyed in steady shear.
Equations (56) and (58) can be used to determine the dynamic coef-
ficients cR2 , bD, and τ2 or serve as an additional method to determine
the static parameter c2.

V. SUMMARY AND PERSPECTIVE
In this study, a simple macroscopic model for the MR fluids has

been proposed. We tested the model on several simple experimental
configurations, such as the influence of a magnetic field or a normal
pressure on the static shear deformations as well as simple shear flow
in the steady and the oscillatory regime.

In order to model the effects of the chains of magnetizable
particles, which are observed in experiments, and to capture the
solidlike properties, we included as the macroscopic variables the
magnetization and the strain field. We have shown that the inclu-
sion of these variables well explains certain experimental facts, such
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as the existence of a static yield stress or the influence of a normal
pressure on the static yield stress. We have successfully reproduced
the quadratic field dependence of the static yield stress with the
appropriate critical strain being independent of the magnetic field.
This was made possible by a (quadratic) dependence of the elas-
tic moduli on the magnetization, which is motivated by the fact
that the solidlike properties of MR fluids are due to the magnetic
field.

Furthermore, we probed the dynamics of our model by inves-
tigating the stresses that arise by applying a shear flow. Here, our
assumption that the strain relaxation coefficients are proportional
to the magnetization squared comes into play, which is motivated
by the fact that the elastic network relaxes on longer time scales in
larger magnetic fields. First, we applied a stationary shear flow, lead-
ing to the flow curves describing the shear stress as a function of the
shear rate. For intermediate values of the shear rate, a maximum,
the dynamic yield stress, was obtained and the flow curve could
almost be described by the Bingham law. However, deviations were
found indicating shear thinning, in particular, for higher magnetic
fields.

We also studied the effects of an imposed oscillatory shear flow.
We showed that the complex shear modulus as a function of the fre-
quency exhibits a plateau. The values of the plateau are related to
the elastic shear modulus or to the hydrodynamic coupling between
magnetization and flow, or to both, depending on whether the elastic
relaxation time is much larger, or much smaller, or almost equal to
the magnetic relaxation time, respectively. Applying the Cox-Merz
rule, which compares the plateau regime with the dynamic yield
stress of the stationary case, revealed that the Cox-Merz rule is not
fulfilled by our model.

We derive equations and present expressions that can be
used for measuring certain phenomenological coefficients. Exam-
ples are the elastic and magnetostriction coefficients, which could
be determined from measurements of the stress-strain curves and
the maximum tilt angles of the chains. We also discuss the pos-
sibilities to determine the dynamic coefficients by measuring, for
example, the initial slope of the stress as a function of the shear
rate, the shift of the minimum in the loss modulus G′′ as a
function of the magnetic field, or by measuring the plateau val-
ues of the shear modulus |G|. We have also shown that a sim-
ple master curve may be generated for the storage and the loss
modulus.

In the next step, it is desirable to capture various aspects of pat-
tern formation in MR fluids. Examples of these patterns include the
formation of the columns themselves, the thickening of the columns
under a pressure force,66 the stripe formation under shear flow,67–69

or structures formed in a rotating magnetic field.70 A macroscopic 2-
fluid model has been presented in Ref. 71, but has never been applied
to magnetic systems such as MR fluids. In this case, one would model
the MR fluid with the solvent phase and the particle phase as two
separate fluid phases.

As a perspective, we mention the generalizations to large mag-
netic fields for which the approximation used in the present no
longer applies. In addition, the role of relative rotations between
the magnetization, Mi, and the elastic matrix should also be inves-
tigated. Relative rotations could also contribute to the tilting of
the chains, complementing the magnetostrictive effects discussed in
Sec. III A.

ACKNOWLEDGMENTS
We thank one of the referees for asking about the existence

of the master curve in the dynamic oscillatory shear flow. Par-
tial support of this work through the Schwerpunktprogramm SPP
1681 “Feldgesteuerte Partikel-Matrix-Wechselwirkungen: Erzeu-
gung, skalenübergreifende Modellierung und Anwendung mag-
netischer Hybridmaterialien” of the Deutsche Forschungsgemein-
schaft is gratefully acknowledged, as well as the support of the
Slovenian Research Agency, Grant No. P1-0055 (D.S.).

REFERENCES
1J. Rabinow, Trans. Am. Inst. Electr. Eng. 67, 1308 (1948).
2B. J. Park, F. F. Fang, and H. J. Choi, Soft Matter 6, 5246 (2010).
3J. de Vicente, D. Klingenberg, and R. Hidalgo-Alvarez, Soft Matter 7, 3701 (2011).
4A. Zubarev, L. Iskakova, M. T. Lopez-Lopez, P. Kuzhir, and G. Bossis, J. Rheol.
58, 1673 (2014).
5J. A. Ruiz-Lopez, J. C. Fernandez-Toledano, D. J. Klingenberg, R. Hidalgo-
Alvarez, and J. de Vicente, J. Rheol. 60, 61 (2016).
6G. Bossis, O. Volkova, Y. Grasselli, and A. Ciffreo, Front. Mater. 6, 4 (2019).
7J. M. Ginder and L. C. Davis, Appl. Phys. Lett. 65, 3410 (1994).
8J. M. Ginder, in Encyclopedia of Applied Physics, edited by G. L. Trigg (VCH,
Weinheim, 1996), Vol. 16, p. 487.
9G. Bossis, E. Lemaire, O. Volkova, and H. Clercx, J. Rheol. 41, 687 (1997).
10G. Bossis, O. Volkova, S. Lacis, and A. Meunier, Lect. Notes Phys. 594, 202
(2002).
11D. J. Klingenberg and C. F. Zukoski, Langmuir 6, 15 (1990).
12G. L. Gulley and R. Tao, Phys. Rev. E 48, 2744 (1993).
13T. C. Halsey, J. E. Martin, and D. Adolf, Phys. Rev. Lett. 68, 1519 (1992).
14S. Melle and J. E. Martin, J. Chem. Phys. 118, 9875 (2003).
15J. E. Martin, J. Odinek, T. C. Halsey, and R. Kamien, Phys. Rev. E 57, 756 (1998).
16R. T. Bonnecaze and J. F. Brady, J. Chem. Phys. 96, 2183 (1992).
17P. O. Brunn and B. Abu-Jdayil, Z. Angew. Math. Mech. 78, 97 (1998).
18Y. M. Shkel and D. J. Klingenberg, J. Rheol. 43, 1307 (1999).
19A. T. Horvath, D. J. Klingenberg, and Y. M. Shkel, Int. J. Mod. Phys. B 16, 2690
(2002).
20R. E. Rosensweig, J. Rheol. 39, 179 (1995).
21J. W. Zhang, X. Q. Gong, C. Liu, W. Wen, and P. Sheng, Phys. Rev. Lett. 101,
194503 (2008).
22P. Sheng and W. Wen, Solid State Commun. 150, 1023 (2010).
23K. von Pfeil, M. D. Graham, D. J. Klingenberg, and J. F. Morris, Phys. Rev. Lett.
88, 188301 (2002).
24K. von Pfeil, M. D. Graham, D. J. Klingenberg, and J. F. Morris, J. Appl. Phys.
93, 5769 (2003).
25K. von Pfeil and D. J. Klingenberg, J. Appl. Phys. 96, 5341 (2004).
26H. Pleiner and H. R. Brand, “Hydrodynamics and electrohydrodynamics of
nematic liquid crystals,” in Pattern Formation in Liquid Crystals, edited by A. Buka
and L. Kramer (Springer, New York, 1996).
27W. E. Isler and D. Y. Chung, J. Appl. Phys. 49, 1812 (1978).
28H. Pleiner and H. R. Brand, J. Magn. Magn. Mater. 85, 125 (1990).
29H. R. Brand and H. Pleiner, Phys. Rev. Lett. 86, 1385 (2001).
30A. Menzel, H. Pleiner, and H. R. Brand, J. Appl. Phys. 105, 013503 (2009).
31A. Menzel, H. Pleiner, and H. R. Brand, Eur. Phys. J. E 30, 371 (2009).
32E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand, Phys. Rev. E 68, 041706
(2003).
33S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411 (2004).
34H. Temmen, H. Pleiner, M. Liu, and H. R. Brand, Phys. Rev. Lett. 84, 3228
(2000).
35H. Pleiner, M. Liu, and H. R. Brand, Rheol. Acta 39, 560 (2000).
36H. R. Brand, H. Pleiner, and D. Svenšek, Rheol. Acta 57, 773 (2018).

J. Chem. Phys. 150, 174901 (2019); doi: 10.1063/1.5090337 150, 174901-11

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

37S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland,
Amsterdam, 1962).
38W. H. Li, H. Du, G. Chen, and S. H. Yeo, Mater. Sci. Eng. A 333, 368 (2002).
39J. Claracq, J. Sarrazin, and J.-P. Montfort, Rheol. Acta 43, 38 (2004).
40Y. Otsubo and K. Edamura, J. Rheol. 38, 1721 (1994).
41Z. Wang, K. Shahrivar, and J. de Vicente, J. Rheol. 58, 1725 (2014).
42K. D. Weiss, J. D. Carlson, and D. A. Nixon, J. Intell. Mater. Syst. Struct. 5, 772
(1994).
43B. D. Chin, J. H. Park, M. H. Kwon, and O. O. Park, Rheol. Acta 40, 211 (2001).
44Y. Yang, L. Li, and G. Chen, Rheol. Acta 48, 457 (2009).
45S. S. Deshmukh and G. H. McKinley, in Proceedings of XIVth International
Congress on Rheology, Seoul, South Korea, August 2004.
46H. W. Müller and M. Liu, Phys. Rev. E 64, 061405 (2001).
47O. Müller, D. Hahn, and M. Liu, J. Phys.: Condens. Matter 18, S2623 (2006).
48S. Mahle, P. Ilg, and M. Liu, Phys. Rev. E 77, 016305 (2008).
49S. Odenbach and H. W. Müller, Phys. Rev. Lett. 89, 037202 (2002).
50S. Odenbach and H. W. Müller, J. Magn. Magn. Mater. 289, 242 (2005).
51X. Tang, X. Zhang, R. Tao, and Y. M. Rong, J. Appl. Phys. 87, 2634 (2000).
52X. Z. Zhang, X. L. Gong, P. Q. Zhang, and Q. M. Wang, J. Appl. Phys. 96, 2359
(2004).
53S. A. Mazlan, N. B. Ekreem, and A. G. Olabi, J. Mater. Process. Technol. 201,
780 (2007).
54H. Wang, D. Cheng, J. Kan, C. Gao, and W. Ziao, J. Intell. Mater. Syst. Struct.
22, 811 (2011).

55D. Susan-Resiga, J. Intell. Mater. Syst. Struct. 20, 1001 (2007).
56D. J. Klingenberg, J. C. Ulicny, and M. A. Golden, J. Rheol. 51, 883 (2007).
57D. W. Felt, M. Hagenbuchle, J. Liu, and J. Richard, J. Intell. Mater. Syst. Struct.
7, 589 (1996).
58B. J. de Gans, H. Hoekstra, and J. Mellema, Faraday Discuss. 112, 209
(1999).
59O. Volkova, G. Bossis, M. Guyot, V. Bashtovoi, and A. Reks, J. Rheol. 44, 91
(2000).
60Y. D. Liu, F. F. Fang, and H. J. Choi, Colloid Polym. Sci. 289, 1295 (2011).
61Y. Rabbani, M. Ashtiani, and S. H. Hashemabadi, Soft Matter 11, 4453 (2015).
62Y. Fu, J. Yao, H. Zhao, G. Zhao, Z. Wan, and Y. Qiu, Smart Mater. Struct. 27,
125001 (2018).
63J. H. Lee, Q. Lu, J. Y. Lee, and H. J. Choi, Polymers 11, 219 (2019).
64G. Wang, Y. Ma, G. H. Cui, N. N. Li, and X. F. Dong, Soft Matter 14, 1917
(2018).
65I. Arief and P. K. Mukhopadhyay, J. Alloys Compd. 696, 1053 (2017).
66R. Tao, J. Phys.: Condens. Matter 13, R979 (2001).
67S. Cutillas and G. Bossis, Eur. Phys. Lett. 40, 465 (1997).
68S. Cutillas, G. Bossis, and A. Cebers, Phys. Rev. E 57, 804 (1998).
69O. Volkova, S. Cutillas, P. Carletto, G. Bossis, A. Cebers, and A. Meunier,
J. Magn. Magn. Mater. 201, 66 (1999).
70P. Carletto, G. Bossis, and A. Cebers, Int. J. Mod. Phys. B 16, 2279 (2002).
71H. Pleiner and J. L. Harden, AIP Conf. Proc. 708, 46 (2004); e-print arXiv:cond-
mat/0404134.

J. Chem. Phys. 150, 174901 (2019); doi: 10.1063/1.5090337 150, 174901-12

Published under license by AIP Publishing



121

Acknowledgement

• First of all, I would like to thank prof. dr. Helmut Brand for offering me the opportunity
to work with him. I appreciate that you always had time and patience to discuss science
with me. I thank you for sharing with me your enthusiasm for physics and also for caring
for my scientific career. I also thank you for your help with the bureaucracy, especially
with all the documents I had to fill in at the beginning of my stay.

• Second, I would like to thank prof. dr. Harald Pleiner. I benefited very much from your
constructive comments on the projects we did. They shined a light on the problem from
a different perspective, from which I was able to put the missing pieces together. Thank
you also for inviting me to the Max Planck Institute in Mainz to give a seminar.
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