
Parameterizable Process Views

In Imperative Process Models

Myriel Fichtner

April 24, 2019

Universität Bayreuth

Fakultät Mathematik, Physik, Informatik
Institut für Informatik

Lehrstuhl für Angewandte Informatik IV

Master Thesis

Parameterizable Process Views
In Imperative Process Models

Myriel Fichtner

1. Reviewer Prof. Dr.-Ing. Stefan Jablonski
Fakultät Mathematik, Physik, Informatik
Universität Bayreuth

2. Reviewer Dr. Lars Ackermann
Fakultät Mathematik, Physik, Informatik
Universität Bayreuth

Supervisors Dr. Lars Ackermann and
Prof. Dr.-Ing. Stefan Jablonski

April 24, 2019

Myriel Fichtner

Parameterizable Process Views

In Imperative Process Models

Master Thesis, April 24, 2019

Reviewers: Prof. Dr.-Ing. Stefan Jablonski and Dr. Lars Ackermann

Supervisors: Dr. Lars Ackermann and Prof. Dr.-Ing. Stefan Jablonski

Universität Bayreuth

Lehrstuhl für Angewandte Informatik IV

Institut für Informatik

Fakultät Mathematik, Physik, Informatik

Universitätsstrasse 30

95447 Bayreuth

Germany

Zusammenfassung

Große Unternehmen müssen sich mit komplexen Geschäftsprozessen auseinanderset-
zen, die eine Vielzahl von Aufgaben und Teilnehmern beinhalten. Derartige Geschäft-
sprozesse können unter Verwendung von Modellierungssprachen auf Prozessmodelle
abgebildet werden. Dabei werden prozedurale Prozesse mit Hilfe von imperativen
Modellierungssprachen wie beispielsweise der Business Process Model and Notation
(BPMN) visualisiert, die als aktueller Standard im Bereich Geschäftsprozessmod-
ellierung gilt. Um alle relevanten Details eines Prozesses zu modellieren, können
Prozessmodelle hunderte von Elementen enthalten. Außerdem werden Prozessmod-
elle Kunden und Domänenexperten mit wenig Modellierungskenntnissen häufig
genau so präsentiert, wie sie vom Prozessdesigner erstellt worden sind. Aus diesen
Gründen sind Arbeitsabläufe für Beteiligte nur schwer nachzuvollziehen und wichtige
Ausschnitte, die sie betreffen, kaum zu bestimmen. Personalisierte Prozesssichten,
in denen Anwender durch Festlegung bestimmter Parameter entscheiden können,
welche Teile des Prozessmodells in welcher Form visualisiert werden, adressieren
dieses Problem.
Im Rahmen dieser Arbeit werden Ansätze zur Erzeugung verschiedener Sichten
auf BPMN-Modelle vorgestellt und implementiert. Dafür werden parametrisierbare
Verfahren zur Erzeugung von Sichten auf Prozessmodellen aus vorangegangenen
Arbeiten für ihre Anwendung auf BPMN-Modelle angepasst. Mit derartigen Oper-
ationen können Prozessinformation individuell reduziert oder aggregiert werden.
Diese Techniken werden um Mechanismen erweitert, die Perspektiven auf Prozess-
modelle in verschiedenen Repräsentationsformen zulassen. Basierend auf dem Mod-
ellierungswerkzeug BPMN.io, werden alle Konzepte implementiert. Die Evaluierung
der Implementierung mit künstlich erzeugten und realen Prozessmodellen bestätigt
die Korrektheit der Verfahren und ihre flexible Einsetzbarkeit. Die Laufzeittests
mittels einer Vielzahl von generierten Prozessmodellen zeigen außerdem, dass das
implementierte Aggregationsverfahren auf Prozessmodelle mit über 500 Elementen
angewendet werden kann. Erweiterungen des Konzepts und der Implementierung
werden in Form von zukünftigen Arbeiten vorgeschlagen.

iv

Abstract

Large companies have to deal with complex business processes involving a multitude
of tasks and participants. Such business processes are visualized in process models
by using modeling languages. In case of procedural processes, imperative modeling
languages are used like for example the Business Process Model and Notation (BPMN)
which is the recent standard for business process modeling. Process models can
contain hundreds of modeling elements to represent all details of large business pro-
cesses. Furthermore, process models are displayed to customers and domain experts
having only limited process modeling knowledge in the same way as modelled by the
process designer. Participants can hardly get the workflows of the underlying process
or extract the parts that are necessary for them, i.e. they are somehow involved in.
For this reason, personalized process views on the process model are needed. This
means that users need to be able to decide which parts of the process model are
contained in their view and how they are visualized by determining corresponding
parameters.
In this work we present an approach to construct different types of process views
based on BPMN models. Therefore we adapt parameterizable view operations
from related work for their application to BPMN models. Respective operations
enable users to reduce or aggregate process information in their desired way. We
extend these techniques by view-building mechanisms which enable perspectives on
the process model in different representation forms. Furthermore, we provide an
implementation based on the modeling tool BPMN.io. The evaluation of our imple-
mentation with artificial and real-life models confirms their correct functionality and
flexible utilization. The performance tests with a large number of generated process
models show that the implemented aggregation procedure can even be used for
process models consisting of more than 500 elements. Ideas for further extensions
concerning the conceptual approach as well as the implementation are suggested.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Thesis Structure . 3

2 Preliminaries and State of the Art 4
2.1 Definitions . 4
2.2 BPMN and tool support . 5

2.2.1 Basics of BPMN . 6
2.2.2 Modeling tool BPMN.io . 9

2.3 Related Work . 14
2.3.1 Non-parameterizable Process Views 14
2.3.2 Parameterizable Process Views 16
2.3.3 View-building Operations in Parameterizable Process Views . 18

2.4 Conclusion . 25

3 Concepts 26
3.1 Definitions and Assumptions . 26
3.2 Abstraction Mechanisms . 27

3.2.1 Aggregation . 27
3.2.2 Reduction . 33

3.3 Further view-building concepts . 34
3.3.1 Hide and Collapse . 35
3.3.2 Matrix-based Views . 35

4 Implementation of Process Views with BPMN.io 37
4.1 Technical Background . 37
4.2 Graphical User Interface . 37
4.3 Realization of Concepts . 40

4.3.1 Diagram-based Views . 42
4.3.2 Matrix-based Views . 46

5 Evaluation 48
5.1 Artificial Models . 48
5.2 Real-life Models . 52

vi

5.3 Runtime Measurements . 55

6 Conclusion 58
6.1 Summary . 58
6.2 Contribution . 58
6.3 Future Work . 59

Bibliography 61

vii

1Introduction

„The best ideas emerge when very different
perspectives meet.

— Frans Johansson
Writer, entrepreneur and public speaker

1.1 Motivation

Large companies have to deal with complex workflows to achieve certain goals like
developing a product or organizing the internal business structure. To visualize these
mainly procedural workflows, the necessary process steps are modeled using an
appropriate modeling notation leading to a workflow descriptive imperative process
model. There are a lot of modeling languages to represent process models, in partic-
ular graphical, textual, abstract or executable languages. The Business Process Model
and Notation (BPMN) is a standard for business processes and therefore a common
used graphical language. BPMN is based on a flowcharting technique and comprises
several diagram elements to cover specific modelling issues. In big enterprises the
resulting process model gets large and confusing because different user or user
groups with a lot of individual process steps have to be involved. Each participant
has its own private business process leading to an overall process model that may
comprise hundreds of process elements, like activities, gateways and data objects.
Mostly not all process elements are relevant for certain stakeholders so they require
different perspectives on the processes they are involved in, realized by a customiz-
able visualization and information granularity. For example organizational positions
like managers prefer an abstract overview, while technical or executing jobs rely on
detailed views [34].
By providing different perspectives on processes and related data the process model
gets more comprehensible to the resepective users. The possibility of creating person-
alized process views enables effective cross-organizational collaborations [17]. This
work addresses the construction of process views for process models represented
with BPMN. The derivation of process views from a process model demands certain
technical conditions as well as requirements with regards to the content. In the next
section this problem statement is explicitly given.

1

1.2 Problem Statement

Process models can be used as visualization of workflows within one enterprise or
between several enterprises. If the process model is shared with other companies,
there is a trade-off in the level of detail shown in the process view. On the one hand,
if the process view reveals too few details of the underlying private business process,
then the other partners of the network cannot effectively detect the local state of the
business process, which might prevent an effective operation of the network. On the
other hand, if the process view reveals all private details, including business secrets,
then the provider runs the risk of loosing its competitive edge. Other partners might
copy then its way of working, turning from collaborators into competitors. [17]
Not only for this reason, it is necessary that users may customize process views. To
get the most meaningful overview of the workflows in which a certain participant
is involved in, users should be able to decide themselves which parts of the model
should be presented in an abstract or detailed way [6]. In other words, the degree
of information loss should be controllable by determining certain parameters.
In order to provide such meaningful and therefore correct process views, the con-
structed process view has to be consistent with the underlying process model. This
condition is satisfied if the orderings of the process model are respected by the
view and no additional orderings are introduced in the view [17]. All operations
that are available for creating process views have to be consistent. If an operation
would lead to a violation of this requirement, it has to be prohibited. That means in
addition, that the consistency of all process views and the process model has also
to be guaranteed in the other way round. If the model is edited in a process view,
all other process views and the underlying process model have to be updated with
these changes [26].
To support users in keeping track of the process model and the workflows they are
involved in, process views should be flexible and not only one representation form
should be possible. In the case of graphical modelling languages like BPMN, process
views could be represented as tables or check-lists beside a graphical representation
[36]. Further process views should enable control flow and data flow perspectives.
There are only a few approaches that provide adequate techniques for visualizing and
abstracting process models and among them less systems that realize these concepts
to tackle the presented problem statement. In this thesis we adress techniques for
constructing process views in imperative models presented with BPMN. To reach this
goal we build up an interactive view modeler based on the established web-based
modeling tool BPMN.io [15]. For realization we select appropriate concepts from
related work and extend them to satisfy the presented requirements.

1.2 Problem Statement 2

1.3 Thesis Structure

The thesis is structured as follows.

Chapter 2

In this chapter we first introduce necessary terms related to our topic. We present
background information of BPMN and give an overview of its basic elements. We
furthermore discuss the tool support of BPMN and present the functionality of
the established web-based modeler BPMN.io. In the second part of this chapter,
we present related work concerning process views by classifying them in non-
parameterizable and parameterizable approaches. Afterwards we choose established
approaches of the latter category and give a detailed and formal explanation of their
view-building operations.

Chapter 3

In this chapter we present our conceptual approach. Therefore we define procss
models according to BPMN and determine necessary assumptions. We show how
we adapt view-building techniques of related work to our definitions and develop
further process view mechanisms.

Chapter 4

This chapter presents our implementation which is based on the BPMN.io modeling
editor. We show how our concepts are realized and point out relevant implementa-
tion details.

Chapter 5

In this chapter we evaluate our view-building mechanisms by using different artificial
process models and a real-life model. We furthermore generate a large set of
process diagrams and evaluate the performance of the implemented aggregation
operations.

Chapter 6

We conclude our work by summarizing our results. We furthermore dicuss the
contribution of the work and give suggestions for future work.

1.3 Thesis Structure 3

2Preliminaries and State of the Art

In this chapter we introduce BPMN and give an overview of the modeling elements
to provide a fundamental understanding of the modeling language. Furthermore, we
present the etablished modeling tool BPMN.io by Camunda that supports the creation
of process models with BPMN and is used as basis for our implementation presented
in Section 4. The second part of this chapter is dedicated to related work concerning
process views in imperative models. We present existing methods by classifying them
in approaches that construct process views in a more static way and concepts that
construct process views in a parameterizable way. Furthermore, we examine two
important abstraction mechanisms that focus on the generation of parameterizable
process views named aggregation and reduction. We distinguish between different
techniques through considering assumptions that are made concering the underlying
process model. To be complete, we introduce different definitions that are necessary
for this work in the following section.

2.1 Definitions

A business process is defined as a set of activites that are performed in coordination
in an organizational and technical environment. These activities jointly realize a
business goal. Each business process is enacted by a single organization, but it may
interact with business processes performed by other organizations [45]. According
to [42], there are three types of business processes: management processes, op-
erational processes and supporting processes. Management processes govern the
operation of a system, while operational processes constitute the core business of
the organization and create the primary value stream. Supporting Processes are
processes that support the core processes, for example accounting and technical
support.
A business process model (BPM) is a visualization of a business process. It consists
of a set of activity models and execution constraints between them [45]. Process
models are used to reason about processes (redesign) and to make decisions inside
processes (planning and control)[2]. A process model can provide a comprehensive
understanding of a process and enables the analysization and integration of an en-
terprise through its business processes [4]. The generation of a BPM is called process
modeling by using process modeling languages. Depending on the underlying business

4

process, process modeling languages and the resulting BPM can be imperative or
declarative [44]. Imperative process modeling specifies the procedure of how work
has to be done and is used in case of routine business processes. These processes are
characterized as stable, predictable and determined [39]. In contrast to imperative
languages, declarative languages do not specify the procedure a priori and are used
in case of flexible business processes [44]. Descriptive buzzwords are dynamic and
decision intensive and the requirement for case-specific handling [39].
Process views can be defined as individual views on a certain business process or
business process model that hide details of an internal process that are secret to or
irrelevant for the customer or stakeholder [17]. Exact meanings of the term process
view strongly depend on the use case, the underlying business process and the used
modeling language.

2.2 BPMN and tool support

The Business Process Model and Notation (BPMN) is a method of illustrating business
processes as process models in a graphical way. The modeling language BPMN was
developed by the Object Management Group (OMG) to provide a notation that
is readily understandable by all business users, from the business analysts that
create the inital drafts of the processes, to the technical developers responsible for
implementing the technology that will perform those processes, and finally, to the
business people who will manage and monitor those processes [33]. Since being
published in its first version 1.0, BPMN is a standard for business process modeling
that provides a graphical notation for specifying business processes in a Business
Process Diagram (BPD), based on a flowcharting technique tailored for creating
graphical models of business process operations [46]. The newest version 2.0 of
BPMN was published by OMG in 2011. Beside a lot of other extensions, one goal of
this version was to standardize execution semantics for BPMN, which allows tool
vendors to implement interoperable execution engines for business processes [1].
Each BPD is made up of a set of graphical elements which are explained in the
following sections.
There are a lot of tools that provide a modeling framework to model business
processes with BPMN. For example the software Innovator for Business Analysts
from MID [32], the modeling tool ARIS Community by Software AG [3] and the
modeling software from Lucidchart [24] which provides a web-based version to
model diagrams online. Another established web-based tool with full support of
BPMN is BPMN.io built by Camunda [15]. Our implementation which is described
in Section 4 is built up on the BPMN.io modeling tool. Advantages of this tool that
motivate our choice and insights of its technical structure are presented in Section

2.2 BPMN and tool support 5

(a) The three event types: start (left), inter-
mediate (middle) and end (right).

(b) The symbols for exclusive, inclusive,
complex and event-based gateways.

(c) The basic task symbol (upper left) and examples of different activity types.

Fig. 2.1: Overview of the symbols according to the three flow object types: event, activity
and gateway.

2.2.2. In the following, we give an overview of the basics of BPMN that are needed
to understand diagrams modelled with BPMN.

2.2.1 Basics of BPMN

Each BPD is made up of a set of graphical elements which have fixed and explicit
shapes. The elements can be classified into the four basic categories flow objects,
connecting object, swimlanes and artifacts. The following sections summarize further
information and introduce basic elements of each category according to [46]. We
want to give a short overview and therefore only present the basic form and often-
used types of each element. In general, all elements can be decorated with internal
markers to model additional details.

Flow objects

Flow objects refer to the elements, that build a complete process flow, when con-
nected together [41]. They can be separated in the three element types: event,
gateway and activity.

Event
Events describe happenings during the course of a business process. They

2.2 BPMN and tool support 6

Fig. 2.2: The three types of connecting
objects: sequence flow (top),
message flow (middle) and
association (bottom).

Fig. 2.3: The two swimlane objects: A pool
can contain any number of lanes
to model further responsibility
details.

usually have a cause (trigger) or an impact (result). It is distinguished between
start events, intermediate events and end events (cf. Figure 2.1(a)).

Gateway
Gateways control the divergence and convergence of the sequence flow through
separating and recombining flows. They determine decision, as well as forking,
merging and joining of connections (cf. Figure 2.1(b)).

Activity
An Activity describes an amount of working steps or a single working step
within an process. Figure 2.1(c) shows different kinds of activity types.

Connecting objects

Connecting objects connect flow objects in a diagram to create the basic structure of
a business process [41]. BPMN 2.0 defines three basic connecting objects which are
visualized in Figure 2.2.

Sequence Flow
Sequence flows connect flow objects and are used to determine the order in
which activities will be performed in a process.

Message Flow
Message flows represent messages from one process participant to another.

Association
Associations shows relationships between artifacts and flow objects. They are
used to show the input and output of activities.

2.2 BPMN and tool support 7

Fig. 2.4: The three artifact objects: data object, group and annotation.

Swimlanes

Swimlanes are used to organize aspects of a process in a BPMN diagram [23]. They
visually separate job-sharing and responsibilities of sub-processees within a business
process. BPMN supports swimlanes with the two main constructs pool and lane
which are depicted in Figure 2.3.

Pool
Pools represent participants in a process. It is used as a graphical container for
partitioning a set of activities from other pools. A pool may contain lanes.

Lane
Lanes a sub-partitions within a pool and extend the length of the pool vertically
or horizontally. Lanes are used to represent details of responsibilities through
categorizing activities.

Artifacts

Artifacts provide a mechanism for adding descriptive information about the process
[18]. They are not directly related to the sequence flows or message flows of the
process [30]. Any number of artifacts can be added to a diagram, as appropriate for
the context of the business processes being modeled. The three artifact types are:
data object, group and annotation (cf. Figure 2.4).

Data Object
Data Objects are a mechanism to show how data is required or produced by
activities. They are connected to activities through associations.

Group
Groups organize tasks or processes that have significance in the overall process
[41]. They can be used for documentation or analysis purposes, but does not
affect the sequence flow.

2.2 BPMN and tool support 8

Annotation
Annotations allow the modeler to describe additional flow parts of the model
or notation [23].

Besides the presented elements, BPMN defines a strict syntax for the elements
and the resulting BPD. In order to construct a correct BPD, these rules have to be
respected. All constraints can be found in the international and official standard
[33] published by OMG. Furthermore, the standard provides execution semantics
which describe the meanings of executing elements in BPMN.

2.2.2 Modeling tool BPMN.io

The developers of BPMN.io provide tooling for viewing and editing BPMN diagrams.
It is available both online as a web-based tool and offline as a desktop application.
The web-based version supports an usage independent of the installed operating
system. In contrast to other modeling tools, their libraries are extensible, embeddable
and open source on GitHub. With the available BPMN 2.0 rendering toolkit and web
modeler bpmn-js, BPMN diagrams can easily be created and modified. It is written
in JavaScript and requires no server backend what makes it easy to integrate in any
web application. Furthermore, a walkthrough [14] and a lot of examples [12] how
to use, modify and extend bpmn-js are available. Beside technical aspects, BPMN.io
has a big community that is currently using the toolkit. Consequently the toolkit
stays up to date and there are a lot of users and administrators that support others
to create own and modern applications. In the next sections we first present the
modeling interface of BPMN.io by explaining necessary modelling functions. Second
we summarize the structure and functionality of the rendering toolkit bpmn-js.

Modeling interface

The web-based modeling interface of BPMN.io is depicted in Figure 2.5. The interface
consists of a canvas or drawing area, a toolbox and several functions to support the
modeling creation. Modelling is enabled on the whole surface of the web page so
every free space can be used as canvas.
The toolbox consists of 13 elements that can be used to interact with the drawing
area. A hand tool is provided to grap and move elements on the canvas symbolized
as hand in Figure 2.5. The symbol to the right refers to a lasso tool which select
elements within a resizable rectangle. The tools underneath enable the creation
and removal of space and the connection of elements in the model. The correct
connection type is derived automatically from the object types that will be connected.
The other 9 symbols correspond to their explanation in Section 2.2.1 and can be

2.2 BPMN and tool support 9

Fig. 2.5: Screenshot of the modeling interface of BPMN.io [9]. The modeling toolbox (left),
buttons to save and load the diagram (bottom left) and buttons for making the
drawing area more clearly (right).

Fig. 2.6: The context menus of different modeling elements in BPMN.io [9].

inserted in the model through first clicking on the object and then clicking on a
desired location in the canvas. If the modeling step is invalid in the sense that it
is not supported by BPMN because it violates the syntax, an error pops up and the
action is suppressed. If the modeling step is correct, a context menu opens which
provides additional functionalities to further modulate the element (cf. Figure 2.6).
For example the bin removes the element, while the spanner wrench symbolizes the
possibility to change the type of the referring object. Different selection possibilites
for activties and gateways are given in Figure 2.7. Text annotations can be added
through the context menu, while text in terms of inscriptions on elements can easily
be added through double click on the selected element.
The buttons on the bottom left of the web page manage the input and output
communication. The folder symbol provides the uploading of a BPMN diagram from
the local file system. In order to achieve a correct upload, the chosen file referring to

2.2 BPMN and tool support 10

Fig. 2.7: BPMN.io provides different selection possibilities to change the type of elements
[9].

a model must contain a proper XML structure like depicted in Figure 2.8. By clicking
the button with the plus symbol, the creation of a new BPMN diagram is possible.
Therefore the canvas is resetted and all drawn elements are discarded. The other
two buttons serve to download the modelled BPMN diagram. The left one saves the
diagram as .bpmn file format by transforming it into a proper XML structure. The
right one exports the diagram on the cancas as SVG image.
The buttons on the right of the web page provide functions to keep the overview
while modeling. By clicking the button with the cross-hair symbol, the zoom is
resetted. The two buttons below allow to zoom in and out. The keyboard symbol on
the top right toggles an overlay that contains useful shortcuts like ctrl + Z to undo
the last change on the model. The other symbol enables modeling in a full screen
while the browser menu, url bar and windows taskbar are hidden.

Rendering toolkit bpmn-js

BPMN.io is built up on the rendering toolkit and web-modeler bpmn-js. The library
is designed in a way that it can be both, a viewer and web modeler. The viewer is
used to embed BPMN 2.0 into an application and to enrich it with own data, while
the modeler is used to create BPMN 2.0 diagrams inside an application. To realize
these concepts, bpmn-js is built on top of two other important libraries like depicted
in Figure 2.9: diagram-js and bpmn-moddle.
The library diagram-js is the renderer and modeler part of bpmn-js. It is built around
a number of essential servics that can be understood as functions or instances
that may consume other services to do stuff in the context of the diagram. The
Core Services are named Canvas, EventBus, ElementFactory, ElementRegistry and
GraphicFactory. The developers explain them as follows [14]:

2.2 BPMN and tool support 11

(a) Example of a simple model created with BPMN.io.

(b) The XML structure of the model in Figure 2.8(a).

Fig. 2.8: A simple BPMN model created with BPMN.io (top) and its underlying XML
structure (bottom).

Canvas
The canvas provides APIs for adding and removing graphical elements. It deals
with element life cycle and provides APIs to zoom and scroll.

EventBus
The event bus helps us to decouple concerns and to modularize functionality
so that new features can hook up easily with existing behavior.

ElementFactory
The element factory serves to create shapes and connections according to
diagram-js’ internal data model.

2.2 BPMN and tool support 12

Fig. 2.9: The architecture of bpmn-js according to [14]. It is built upon the two libraries
diagram-js and bpmn-moddle which involve additional modules.

ElementRegistry
The element registry knows all elements added to the diagram and provides
APIs to retrieve the elements and their graphical representation by an internal
id.

GraphicsFactory
The graphics factory is responsible for creating graphical representations of
shapes and connections.

Another essential service is the Modeling service. The element registry manages the
creation of shapes and connections according to a data model which is implemented
by Diagram-js. During modeling, element relationships will be updated correspond-
ing to user operations by the Modeling Service.
The library diagram-js provides additional helpers summarized as Auxiliary Services.
A few of them are presented and explained in the following list:

CommandStack
The command stack is responsible for redo and undo during modeling.

ContextPad
The helper context pad provides contextual actions around an element.

Overlays
Overlays provide APIs for attaching additional information to diagram ele-
ments.

Modeling
The helper service modeling provides APIs for updating elements on the canvas
like moving or deleting.

2.2 BPMN and tool support 13

The library bpmn-moddle reads and writes BPMN 2.0 XML documents and provides
the BPMN meta model. On import, it parses the XML document into a JavaScript
object tree which can be edited during modeling and then exported back to XML once
the user saves the diagram. The module is built on top of the two libraries moddle
and moddle-xml. The library moddle offers a concise way to define meta-models in
JavaScript, while moddle-xml reads and writes XML documents based on moddle.
The BPMN meta-model is essential for bpmn-js, as it allows the validation of BPMN
2.0 documents, provide proper modeling rules and export valid BPMN documents.
[14]

2.3 Related Work

In the next sections we present existing approaches concerning the construction
of process views of imperative process models. In [25], requirements for process
abstractions are analyzed to get user supporting process views. Several case studies
have shown that it should be possible to abstract process models by hiding or
aggregating information. For this reason we have to distinguish between two types
of approaches. Process view constructing approaches that consider abstraction
mechanisms like hide and aggregation are summarized as parameterizable process
views. Inspired by the work of [40], we classify other methods that build process
views according to fixed rules and conditions and therefore are often restricted to
certain use cases as non-parameterizable process views.

2.3.1 Non-parameterizable Process Views

In [16] the concept of views from databases is adapted to workflows which can
be understood as automatized business processes. In this context, workflow views
should enable cross-organizational workflow interoperability through mechanisms
that allow authorized external parties to access only the related and relevant parts
of a workflow while maintaining the privacy of other unnecessary or proprietary
information. The authors present a meta-model of workflow views (cf. Figure 2.10)
and their semantics using a cross-organization workflow example based on a supply-
chain e-service. Furthermore, they provide an implementation of the meta-model in
XML to enable workflow extensions for cross-organizational interoperability in web
services.

The work of [43] is based on the concept of architectural views in the field of
software architecture. This can be understood as representation of a system from
the perspective of a related set of concerns that has the potential to resolve the
complexity challenges in process-driven service-oriented architectures [22]. The
presented framework consists of a meta-meta-model, a meta-model and views which

2.3 Related Work 14

Fig. 2.10: Workflow view meta-model in UML class diagram [16].

Fig. 2.11: Transformation concept from a private to a public view resulting in a
collaborative process [21].

are specified using an adequate framework’s meta-model. The work includes an ex-
ample in the syntax of Business Process Execution Language (BPEL), where different
views are presented and executable code is generated.
The authors of [21] present a concept for transforming internal private processes
to publicly visible processes in a semi-automatic way through hiding the modelling
complexity from the users. Each process presentation (public or private) can be
understood as process view. The public view should enable cross-organizational
interaction through merging public processes of different enterprises in one col-
laborative process. Figure 2.11 visualizes this approach. While each enterprise
can use its preferred language for modelling internal processes, like the Unified
Modelling Language or Event-Driven Process Chains, the collaborative process have
to be modelled in a single standard notation like BPMN.
The authors of [27] propose a shared process model that provides different stake-
holder views at different abstraction levels. They focus on the requirements and
concrete design to synchronize related Business and IT process models, after in-
dependent editing. Each view refers to a single model while the shared process
model defines correspondences between their model elements (cf. Figure 2.12). The
concept is explained using examples modelled in BPMN.

2.3 Related Work 15

Fig. 2.12: Schematic representation of a process view synchronization via a shared process
model [27].

2.3.2 Parameterizable Process Views

The authors of [28] suggest an order-preserving process model abstraction approach
making use of reduction rules developed in [38]. They present an algorithm that
obeys three principles: activity membership, activity atomicity, and order preserva-
tion. The latter principle requires the abstraction to preserve the ordering constraints
of the initial model in the abstract model. This issue is discussed based on possible
results after using aggregation methods on process models to construct participant
oriented process views. Figure 2.13 shows an illustrative example of order preserva-
tion in the loop structure. Furthermore, a formal definition of a process model is
provided and process execution semantics are specified.
The work of [17] is related to the work of [28] and defines a business process model

as structured process model that specifies how a given set of activities is ordered.
The used ordering constructs are sequence, choice, parallelism and structured loop.
Each activity has a type that refers to one of these ordering constructs. Furthermore,
they define a hierarchy relation, while each activity within an ordering construct
is a child of the activity with the respective construction type. A process view is
created through an acyclic inheritance relation on the activities. In other words, the
authors present two concepts to construct a process view from a structured process
model: aggregation and customization (cf. Figure 2.14). They define how a given
set of nodes from the process model can be aggregated in a correct way into a single

Fig. 2.13: Construction of a process view while respecting the order preservation principle
in a loop structure [28].

2.3 Related Work 16

Fig. 2.14: Illustration of approach for generating customized process views [17].

node in the process view by regarding four construction rules. Second, they define
how, given a computed aggregate and a structured process model, a customized and
structured process view can be derived. These two steps can be repeated arbitrarily
often, so a process view can itself be further aggregated into a more abstract process
view. The results of this work can be easily adapted to modelling language like BPEL
or BPMN.
The University of Ulm supported two projects that focus on the research of process
views in the context of process models represented with BPMN.
The Proviado project [35] that were running since 2005, adresses major issues

related to flexible process visualization and monitoring in distributed environments.
In 2011, the ProView project [37] was newly founded and partially reuses the results
from the Proviado project. The research of this project focusses on personalized
and updatable process visualizations. As part of these projects, several case studies
[7] were conducted to identify three fundamental process visualization dimensions.
First, it must be possible to reduce complexity by discarding or aggregating process
information not relevant in the given context. Second, the notation and graphical ap-
pearance of process elements (e.g., activities, data objects, control connectors) must
be customizable. Third, different presentation forms (e.g., process graph, swim lane,
calendar, table) should be supported [6]. A list of publications that covers all three
dimensions can be found on the projects’ web pages [35] and [37]. In both projects,
each process corresponds to a process model that can be presented in a graphical
notation by so-called process schemes. According to [6], a process scheme is a process
graph which consists of (atomic) activities and control dependencies between them.
For control flow modeling, control gateways (e.g., ANDsplit, XORsplit) and control
edges are used. A process instance is executed on basis of a particular process model,
but comprises additional run-time information to be displayed (e.g., activity states or
application data). The application of view-building operations on process schemas
or instances results in a process view. They state that process view operations should

2.3 Related Work 17

Fig. 2.15: Example of a process instance (top) and an associated process view (bottom)
after using the two abstraction concepts aggregation (blue) and reduction
(orange) [6].

contain two elementary concepts: It should be possible to remove process nodes
(reduction) or to replace them by abstract ones (aggregation). Figure 2.15 shows an
example for creating a process view. While the definition of process schemas focuses
on the control flow perspective and can be applied to existing activity-orientied
modeling languages like BPMN, view operations consider other perspectives as well
(e.g, data elements, data flow). Formal definitions and further details can be found
in [6] and [36].
The work of [40] resues results of earlier approaches that are presented above.

They give a clear differentiation of these techniques and show how they address real
world use cases. The authors systematically develop, classify, and consolidate the use
cases for business process model abstraction and present a case study to illustrate the
value of this technique. They resuse the knowledge of cartographic generalization
like presented in [31] that refers to the questions why and when generalizations
are needed and how they are reached. They adapt these results to business process
modeling and address the last question by providing two abstraction mechanisms:
aggregation and elimination.

2.3.3 View-building Operations in Parameterizable Process
Views

In this section we present realization concepts for constructing process views. There-
fore the two view-building operations aggregation and reduction are explained in
detail. Necessary definitions are introduced and different approaches based on
assumptions in terms of the process model are outlined.

2.3 Related Work 18

Assumptions

In previous work process views are constructed based on process models with certain
assumptions. The work of [17] and the thesis of [25] that is contributed to the
Proview framework are restricted to block-structured process models or structured
process models for short. In such models, each block has a unique entry and a
unique exit point, and blocks are properly nested. These blocks are also called SESE
(Single Entry Single Exit) blocks [19]. Block-structured process models require that
splits and subsequent joins have the same type [17]. Publications that are part of
the Proviado project lower this restriction. The authors of [36] and [5] assume that
branches may be arbitrarily nested, but must be safe (e.g., a branch following a
XORsplit must not merge with an ANDjoin). Furthermore, they assume that process
models are acyclic and have one start and one end node. Further, it has to be
connected; i.e., each activity can be reached from the start node, and from each
activity the end node is reachable.
To get an abstract view on a process model, the operations aggregation and cus-
tomization [17] or alternatively aggregation and reduction (also referred to as
elimination or hiding) [37], [35], [40] are used. Aggregation operations enable
merging a set of activities into one abstracted node, while reduction operations
remove activities in a process [36]. There exist different approaches to realize these
operations. In the next sections we summarize some established techniques from
related work and organize them as follow: First we present an established technique
referring the operation type that is restricted to block-structured process models
and afterwards an approach that is applicable for arbitrarily nested, but safe process
models.

Aggregation

In order to get a correct process view, it has to be consistent with the underlying
process model like already mentioned in section 1.2. To tackle this problem, the
authors of [17] specify concistency constraints as construction rules to ensure
correct aggregates in block-structured process models. We conclude these rules and
necessary definitions:

Rule 1: X ⊆ agg(X)
Let X be the set of nodes that have to be aggregated. Denote by agg(X) the
set of nodes that the aggregate constructed for X should contain in order to
derive a process view consistent with the underlying process model. Naturally,
all nodes of X should be in agg(X).

2.3 Related Work 19

Rule 2: if x, y ∈ agg(X) and i ∈ N such that x < i < y then i ∈ agg(X)
If two nodes x, y are aggregated such x is before y, then every intermediary
node i, so x < i < y, should be contained in the aggregate as well. Otherwise,
if an intermediary node i is not included, the aggregate will not be atomic
anymore in the process view.

Rule 3: if x ∈ agg(X) then children(x) ⊆ agg(X)
Denote children(n) = n′ ∈ N | child(n′, n). While a child: N×N is a predicate
that defines the hierarchy relation with child(n, n′) if and only if n is a child
(sub) node of n′. Rule 3 states that if a composite node is included in the
aggregate, all its children are included as well. This ensures that in the process
view aggregates have no children, i.e. no internal details of the aggregate are
revealed.

Rule 4: if x ∈ agg(X) and parent(x) ∈ children+(lca(X)) then parent(x) ∈ agg(X)
If c ∈ children(n), node n is parent of c, written parent(c). The variable
children+ denotes the irreflexive-transitive closure of children, respectively.
For a set X of nodes, the least common ancestor (lca) of X, denoted lca(X),
is the node x such that x is ancestor of each node in X, and every other node
y that is ancestor of each node in X, is ancestor of x. Rule 4 describes the
condition that if a node is in the aggregate and its parent is a strict descendant
of lca(X), so x 6= lca(X), then its parent node has to be aggregated as well.

An efficient algorithm to get the minimal aggregate, i.e. the minimal set satisfying
the four construction rules, can be found in the referred work. In order to get a more
abstract view, the authors of [17] provide a fifth rule specified as extension.

Rule 5: if children(lca(X)) ⊆ agg(X) then lca(X) ∈ agg(X)
Rule 5 states that if all children of lca(X) are included in the aggregate, node
lca(X) itself should be included as well.

Given a set X of nodes to be aggregated, the least common ancestor lca(X) is
only aggregated if lca(X) ∈ X. Sometimes, this can lead to process views which
are correct, but not intuitive. In the case that a node has a single child, the fifth
rule would merge both to a single node to achieve more clarity without too much
information loss.

The research group of the Proviado and Proview project presents another approach
for constructing aggregates which works for arbitrarily nested, but safe process mod-
els. Therefore the authors of [36] and [6] provide different elementary aggregation
operations like presented as schema transformations in Figure 2.16. The upper
model of each schema transformation corresponds to one use case and highlights the

2.3 Related Work 20

Fig. 2.16: Overview of elementary aggregation operations according to [6]. Each schema
transformation shows a process model with selected activities (high saturated
blue) and the resulting process model with the aggregation (low saturated blue).

activities users could possibly select for aggregation. The lower model represents the
resulting view with the aggregation. In other words, the result of the aggregation
depends on the ordering of the selected activities in the process model. Although
the transformations preserve the structure of non-affected process regions, the de-
pendencies between the involved activities may be changed. To explain these effect
we first have to introduce two definitions provided by the authors.

Definition 1 Let P be a process model with the set of all activities A and let V (P)
be a corresponding view with activity set A′. Then V (P) is strong order-preserving
iff ∀n1, n2 ∈ A with n1 6= n2 and n1 � n2 : n′1 = V Node(n1) ∧ n′2 = V Node(n2) ⇔
n′1 � n′2 while n1 � n2 ⇔ ∃ path in P from n1 to n2.

This means in other words, that a view is called strong order-preserving if all paths
that exist between activities in the process model, exist in the process view aswell.
Aggregation operations that lead to process views that do not satisfy this condition
indicate deviations from the underlying process model.

Definition 2 A dependency set DP of a process model P with the set of all activities A is
denoted as DP = {(n1, n2) ∈ A×A|n1 � n2} and reflects all direct and indirect control
flow dependencies between any two activities. Accordantly, DV (P) is the dependency set
of a view V (P).

Using aggregation operations on process models lead to process views that can be
assigned to one of the following three classes:

2.3 Related Work 21

Operation
strong oder
preserving

dependency
preserving

dependency
erasing

dependency
generating

AggrSequence + + - -
AggrSESE + + - -
AggrComplBranches + + - -
AggrShiftOut + - - +
AggrAddBranches - - + -

Tab. 2.1: Overview of aggregation operation properties according to [6].

• V (P) is denoted as dependency-erasing iff there exist dependency relations in
DP not existing in D′V (P) anymore.

• V (P) is denoted as dependency-generating iff D′V (P) contains dependency
relations not contained in DP .

• V (P) is denoted as dependency-preserving iff it is neither dependency-erasing
nor dependency-generating.

The authors apply these definitions to the presented aggregation operations and
classify like shown in Table 2.1. For example the operation AggrAddBranch is not
dependency-preserving but dependency-erasing because the number of elements in
the dependency set decreases. Furthermore, it is not strong order-preserving since
the activity C is not reachable from activity B anymore (cf. Figure 2.16c). Although
aggregation operations that lead to not strong-preserving process views violate the
consistency rules like defined by [17], the results of case studies which are part
of the proviado project show, that for the visualization of large processes, minor
inconsistencies or information loss will be tolerated if an appropriate visualization
can be obtained. The operation AggrSESE like examplarly depicted in Figure 2.16b
describes the aggregation of SESE blocks. The Proview project only uses this kind of
aggregation operation since it is restricted to block-structured process models [25].
The other presented elementary aggregation operations are not supported.

Reduction

The second elementary operation type to construct abstract process views is the
reduction or also referred to as elimination or hiding. While in [17] the second
operation technique is called customization and is more like a second phase to
construct additional aggregations, other approaches concentrate on providing proper
operations to delete or hide activities in the process model leading to an simplified
process view. The work of [25] which is part of the Proview Project is restricted

2.3 Related Work 22

Fig. 2.17: View Creation Operation RedActivity according to [25]: The activity B (blue)
and all incoming and outgoing edges are deleted or relinked.

Fig. 2.18: View Creation Operation RedDataElement according to [25]: The data element
d2 (blue) and all incoming and outgoing edges are deleted.

to block-structured process models and defines functions for deleting activities
(RedActivity) and data elements (RedDataElement). For this purpose we define the
business process model as central process model (CPM) which contains N activities
and D data elements.

RedActivity
The method RedActivity(CPM, n) creates a process view, which corresponds
to the CPM except for activity n ∈ N , which is hidden from the user together
with its incoming and outgoing control edges (cf. Figure 2.17). Furthermore,
the operation reinserts a control edge linking the direct predecessor of n with
its direct successor in the resulting process view. All data edges associated with
activity n are removed.

RedDataElement
The operation RedDataElement(CPM, d) creates a process view on CPM hiding
data element d ∈ D as well as all data edges associated with d. An example is
given in Figure 2.18.

The result of RedActivity could lead to a process model view with a data flow that
is not consistent with the data flow of CPM. As opposed to RedActivity, data flow
correctness of the process view is preserved while using RedDataElement because all
data edges associated with the removed data element are eliminated. In difference
to aggregation operations on block-structured process models where whole blocks
have to be aggregated to achieve a correct process view, the presented reduction
operations may be used within blocks.

The Proviado project which focuses on arbitrarily nested process models provides
three elementary reduction operations to achieve simplified views. Based on these

2.3 Related Work 23

Operation
strong oder
preserving

dependency
preserving

dependency
erasing

dependency
generating

RedSequence + - + -
RedSESE + - + -
RedComplBranches + - + -

Tab. 2.2: Overview of reduction operation properties according to [6].

Fig. 2.19: Overview of elementary reduction operations according to [6]. Each schema
transformation shows a process model with selected activities (orange) which
should be reduced and the resulting process model.

elementary operations, higher-level reduction operations (e.g., for removing an
arbitrary set of activities) can be realized. Although the reduction of activities
always come along with a loss of information, the presented elementary operations
preserve the overall structure of the remaining activities. Similar to the aggregation
operarions, they are classified as shown in Table 2.2. The three elementary reduction
operations are depicted in Figure 2.19. The reduction of an activity sequence
(RedSequence) is realized by removing the respective activities from the process
scheme and by adding a new control edge instead (cf. Figure 2.19a). This technique
also works within branches of splits. Single or all activities of a branch can be
deleted with the operation RedComplBranch like visualized in Figure 2.19c. Their
approach also covers block-structured process models by defining the reduction
operation RedSESE. This reduction is performed similar to RedSequence. Since
there are only two edges connecting the block with its surrounding, the SESE block
is completely removed and a new edge between its predecessor and successor is
added (cf. Figure 2.19b). In order to reduce not connected activity sets the basic
view operation Reduce is provided. In this case, the reduction is performed stepwise.
First, the activities to be reduced are divided into subsets, such that each sub-graph
induced by a respective subset is connected. Second, to each connected sub-graph,
the operation RedSESE is applied, i.e. Reduce is based on the reduction of connected
components using the elementary operation RedSESE.
The work of [36] that is part of the Proviado project additionally presents the
reduction operation RedActivity that is comparable to the homonymous function
from [25]. Moreover the operations RedSequence, RedSESE and RedComplBranch
of [6] somehow include the technique of the operation RedActivity.

2.3 Related Work 24

2.4 Conclusion

In this section we have shown fundamentals of BPMN and the functionality of the
modeling tool BPMN.io. We furthermore investigated different approaches to con-
struct process views by classyfing them in techniques that create non-parameterizable
and parameterizable process views. Since non-parameterizable process views are
too limiting in terms of customization, we focus on parameterizable process views
that meet the demands of domain experts. The most promising approaches are [36]
and [6] which are part of the Proviado project. Their concept works for non-block
structured process models. Block-structured process models does not match with
the complexity and workflow of real-life processes. For this reason we choose the
view-building operations aggregation and reduction like defined in [36] and [6]
and adapt them to BPMN like described in the next chapter. We complement these
approaches by enabling further process view mechanisms which include the visual-
ization of processes in different presentation forms. Therefore our concepts tackle
two of the three fundamental process visualization dimensions proposed by [6]. In
contrast to the work of [36] and [6], our approach is restricted to the modeling
phase and does not cover the execution of process models. Since the prototypical
implementation of the Proviado/Proview project that realizes the concepts of [36]
and [6] is not publicly accessible and base on a seven year old technology, we build
up our own application. The implementation of our concepts is based on BPMN.io
and can be used as extended web-based modeling tool. As further explained in
Section 2.2.2 BPMN.io has a lot of benefits and provides several internal functions
that support our concept realization.

2.4 Conclusion 25

3Concepts

In this chapter we present our process view creation concepts on BPMN models that
are following the techniques proposed in [6] and [36] as part of the Proviado project
[35]. For this purpose, we define process models according to BPMN in our context
as well as assumptions that we make on them. We focus on the construction of
parameterizable process views by using the two abstraction mechanisms aggregation
and reduction. Furthermore, we present concepts to extract information of the
process model and presenting it in matrices in order to get a tabular-like perspective
on the process model.

3.1 Definitions and Assumptions

In order to adopt the concepts of [6] and [36] to BPMN, we define a process
model as follows. A process model consists of a set of pools (or participants) P ,
while each pool p ∈ P has a set of lanes Lp. Furthermore, it consists of a set of
start nodes NS , end nodes NE , intermediate nodes NI , activities NA, gateways
NG, data objects NDO and data stores NDS . The set of all nodes is denoted as
N = NS ∪NE ∪NI ∪NA ∪NG ∪NDO ∪NDS . The elements of NS , NE , NI , NA and
NG have different types according to the implementation of BPMN.io. These types
are modelled through mappings NTX : NX → TX with X = E, S, I, A, G where
TX refers to the set of valid types provided by BPMN.io. In addition, we define
the mapping NP : N \NDS → P , assigning each node except data stores to one
unique participant. A process model furthermore includes a set of edges E ⊂ N ×N

containing a set of sequence flows ES ⊂ (NS ∪NA ∪NG)× (NE ∪NA ∪NG), while
∀(a, b) ∈ ES : NP (a) = NP (b). The set of edges E furthermore consists of a set of
message flows EM ⊂ (NE ∪NA)× (NS ∪NA) with ∀(a, b) ∈ EM : NP (a) 6= NP (b)
and a set of associations EA which can be incoming EI

A ⊂ (NS ∪NA)× (NDO∪NDS)
or outgoing EO

A ⊂ (NDO ∪NDS) × (NE ∪NA) resulting in EA = EI
A ∪ EO

A . More-
over these sets are disjunct E = ES∪̇EM ∪̇EA. Finally we define a process model
PM = (N, E, P, NTX , NP).
Most of the approaches in previous work that are related to the creation of pro-
cess views are restricted to block-structured process models because abstraction
mechanisms are much easier to realize. In practice, these process models do not
cover the behavior of reallife processes [5]. For this reason we choose techniques

26

that are not restricted to block-structured process models. Nevertheless we have
to make assumptions on process models to define proper abstraction mechanisms.
According to the work of [6] and [36] our implementation is restricted to acyclic
process graphs that have one start and one end node for each participant or pool
visualized in the process model (∀a, b ∈ NS : a 6= b ⇒ NP (a) 6= NP (b)). Second,
each activity that is referred to a participant can be reached from the respective
start node and from each activity the end node is reachable. Although our abstrac-
tion operations recognize unconnected nodes, they usually have no benefits with
regards to the expressiveness of the model. Third, branchings may be arbitrarily
nested but safe. The latter aspect denotes that if paths in branches are merged, they
have to be merged with an eligible join node which has the same type as the root
node of the branching. According to the BPMN standard, the second gateway is
optional. Fourth, only gateways can have multiple incoming or outgoing sequence
flows (∀n ∈ (N \NG)∃1(ain, bin) ∈ ES ∃1(aout, bout) ∈ ES : bin = n∧aout = n). This
restriction does not apply for associations or message flows.
Gateways can have any amount of incoming and one outgoing sequence flows (open-
ing gateway) or one incoming and any amount of outgoing sequence flows (closing
gateway), i. e. ∀g ∈ NG : (∃1(a, b) ∈ ES : b = g) ∨ (∃1(a, b) ∈ ES : a = g).

3.2 Abstraction Mechanisms

In this section we present the functionality of the abstraction mechanisms aggrega-
tion and reduction. We follow parts of the approaches of [6] and [36] and explain
the conceptual background to realize these techniques on a process model PM as
defined above. In contrast to process views that can be understood as different
perepectives on a process model (cf. Section 3.3), the application of abstraction
operations lead to process views that are created through persistent changes in
the process model. This means that the execution of an aggregation or reduction
operation has an effect on the number of elements in PM .

3.2.1 Aggregation

Process views that are constructed by using aggregation operations have to be
consistent with the underlying process model. In this work we describe consistency
as preservation of the reachability between activities. This definition is equivalent
to the strong order-preservation criterion in [6] and [36]. For this reason we adopt
all of their defined elementary aggregation operations excluding the aggregation
AggrAddBranch (cf. Figure 2.16), since this operation is not strong order-preserving
(cf. Table 2.1). All aggregation operations are restricted to the aggregation of

3.2 Abstraction Mechanisms 27

activities. We define N∗A ⊆ NA as selected set of activities which should be maximally
aggregated by the following aggregation operations.

AggrSequence
The operation AggrSequence merges all activities that are connected as sequence
into one single node. The challenge to realize this operation is to identify all
sequences that occur in N∗A. In general, a subset S ⊂ N∗A is a sequence if its
elements are connected by sequence flows, i.e. ∃(s1, s2, ..., sn) with {s1, s2, ..., sn} =
S, ∀i ∈ {1, ..., n − 1} : (si, si+1) ∈ ES . Since our approach is restricted to acyclic
graphs and only gateways may have multiple incoming or outgoing sequence flows,
branching is excluded by this definition. We find all sequences in N∗A by considering
the pairwise connectivity of all activities a, b ∈ N∗A, a 6= b. For this purpose, we
check for each pair of activities a, b if the activities are neighbored. This means that
there exists a sequence flow between them while a is the source and b is target of
this edge or vice versa ((a, b) ∈ ES ∨ (b, a) ∈ ES). If this is the case, we create
activity c which inherits the connections of these neighbored activities. We call this
routine on the set N∗A ∪ {c} \ {a, b} recursively until no further neighbored nodes
can be found. Let N∗

′
A be the set with which the routine was called in the final

iteration, then PM ′ = ((N \ N∗A) ∪ N∗
′

A , E′, P ′, NT ′X , NP ′) with E′, P ′, NT ′X and
NP ′ adjusted according to these changes. In the worst case the algorithm needs∑#N∗A−1

i=0 (#N∗A−i) ·(#N∗A−i−1) = 1
3n(n2−1). Through this approach, it is possible

to find all blocks of sequences in the selected activity set, although these blocks are
not connected with each other. Figure 3.1 illustrates this aspect and shows the result
of AggrSequence for a simple process model.

AggrSESE and AggrComplBranches
The aggregation operation AggrSESE serves to aggregate a whole SESE block, while
AggrComplBranches merges the branches of a split that opens a block. We define
a SESE block as a set of activities enclosed by an opening and a closing gateway.
Therefore we first define reachability of node a ∈ N and node b ∈ N using edges
E′ ⊂ N × N as reachable(a, b, E′) ⇔ ∃{(a1, b1), ..., (an, bn)} ⊂ E′ : a1 = a ∧
bn = b ∧ bi = ai+1 for i = 1, ..., n − 1. A subset B ⊂ N∗A is a SESE block, if
an opening gateway go ∈ NG with the incoming sequence flow eo and a closing

Fig. 3.1: A simple process diagram (top) with selected activity set (blue) and the result
after applying AggrSequence (bottom). The selected activities are contained in
two separated blocks of sequences resulting in two individual aggregation nodes.

3.2 Abstraction Mechanisms 28

Fig. 3.2: A simple process diagram (top) with selected activity set (blue) and the result
after applying AggrSESE (bottom). The selected activities are contained in a SESE
block which is replaced by a single activity.

Fig. 3.3: The process diagram in Figure 3.2 can be transformed into three equivalent
alternatives through inserting additional gateways. The subblock consists of
activities B, C and D, E (left) or D, E and F , G (right) or B, C and F , G.

gateway gc ∈ NG with the outgoing sequence flow ec exist, so that B = {n ∈
NA|reachable(go, n, ES \{ec})} = {n ∈ NA|reachable(gc, n, E∗S \{eo})} where E∗S =
{(b, a)|(a, b) ∈ ES}. In this definition we exclude sequences before the opening
and after the closing gateway of the SESE block. Without loss of generality, we
consider only opening gateways with two outgoing sequence flows. At the end of
this section, we will see that all opening gateways with more than two outgoing
edges can be transformed into an equivalent structure of opening gateways with
two outgoing edges each. Since AggrSESE and AggrComplBranches can only be
applied on SESE blocks, we first have to identify the SESE blocks contained in the
selected activity set N∗A. We find all SESE blocks in N∗A by analyzing all pairs of
opening and closing gateways in PM . For each pair (go, gc) with eo, ec as defined
above, we compute the set Bo = {n ∈ NA|reachable(go, n, ES \ {ec})} and the set
Bc = {n ∈ NA|reachable(gc, n, E∗S \ {eo})}. Then if Bo = Bc ⊂ N∗A, B = Bo = Bc

is a block and can be aggregated to activity c inheriting all incoming and outgoing
message flows and associations of the elements of B. The aggregated diagram is
then stated as PM ′ = (N ′, E′, P ′, NT ′X , NP ′), while N ′ is N without B and all
gateways within the block, including go and gc. The sets E′, P ′, NT ′X , NP ′ are
adjusted accordingly. We repeat this routine with the new selected set of elements
(N∗A \B)∪{c} until no further SESE blocks can be found. Figure 3.2 shows the result
of AggrSESE on a set of selected activities.
Each SESE block that is opened by a gateway which has three or more outgoing

sequence flows can be transformed into an equivalent structure of gateways with
exactly two outgoing sequence flows each. The opening gateways of these so-called
subblocks inherit the gate type of the opening gate of the original block. This
transformation is not unique as explained in Figure 3.3 which shows two alternatives
of splitting the SESE block from Figure 3.2 into subblocks. We try all possible

3.2 Abstraction Mechanisms 29

Fig. 3.4: A simple process diagram (top left) with selected activity set (blue). Through
identifying the subblock as intermediate step (top right), the application of
AggrSESE leads to the same result as applying AggrComplBranches on the origin
process diagram (bottom). The branches referring to the selected activities are
aggregated into a single branch.

transformations of opening gateways in our algorithm and therefore implicitly apply
AggrComplBranches while applying AggrSESE. To be more precise, performing
AggrSESE on subblocks lead to the same result as applying AggrComplBranches on
the higher-level block which contains the subblocks like shown in Figure 3.4. For
this reason, a separate consideration of AggrComplBranches is not necessary.

AggrShiftOut
The operation AggrShiftOut aggregates a selected set of activities following a split
into a single node and swaps the positions of the aggregated node with the neigh-
bored gateway. We distinguish between a left shift out (AggrShiftOutLeft) and a right
shift out (AggrShiftOutRight). A left shift out aggregates all activities following an
opening gateway while a right shift out aggregates all activities preceeding a closing
gateway. First we focus on the left shift out. A subset S ∈ N∗A can be aggregated
by performing a left shift out exactly if there is an opening gateway for which S is
the set of its following activities. This means ∃go ∈ NG {b|(go, b) ∈ ES} = S. Then
the activities are aggregated by shifting them to the position preceding the split
node formalized as follows. The new set of nodes is then N ′A = (NA \ S) ∪ {c}
where c is the aggregation of S. The new sequence flows E′S are adjusted so that
∀a ∈ {e|(s, e) ∈ ES , s ∈ S} : (go, a) ∈ E′S and {(go, b) ∈ ES} ∪E′S = ∅. Furthermore
(a, go) /∈ E′S for (a, go) ∈ ES . We add two new sequence flows (a, c) ∈ E′S and
(c, go) ∈ E′S . In contrast, a subset S ∈ N∗A can be aggregated by performing a right
shift out exactly if there is an closing gateway for which S is the set of its preceeding
activities. This means ∃gc ∈ NG {b|(b, gc) ∈ ES} = S. Then the activities are aggre-
gated by shifting them to the position following the merge node formalized as follows.
The new set of nodes is then N ′A = (NA\S)∪{c} where c is the aggregation of S. The
new sequence flows E′S are adjusted so that ∀a ∈ {e|(e, s) ∈ ES , s ∈ S} : (a, gc) ∈ E′S
and {(b, gc) ∈ ES} ∪E′S = ∅. Furthermore (gc, a) /∈ E′S for (gc, a) ∈ ES . We add two
new sequence flows (c, a) ∈ E′S and (gc, c) ∈ E′S . The new diagram after performing

3.2 Abstraction Mechanisms 30

Fig. 3.5: A simple process diagram (top) with different selected activity sets (blue).
Depending on the selected activity set, a left shift out (left bottom) or a right shift
out (right bottom) is applied.

a shift out is then PM ′ = ((N \NA) ∪N ′A, (E′S ∪ E′M ∪ E′A), P ′, NT ′X , NP ′) while
E′M , E′A, P ′, NT ′X and NP ′ are adjusted according to these changes. Figure 3.5
shows the results after applying the two shift out operations. The algorithm checks
the condition above for each gateway that is directly preceeding or following an
activity of the selected set, where S ⊂ N∗A is the set of activities following or preceed-
ing the respective gateway. If the condition is met, S is aggregated as proposed. The
authors of [6] furthermore consider the exception, if not all following or preceeding
activities of the considered gateway are contained in N∗A. In this case the authors
suggest to insert additional gateways into the model leading to further branching.
We exclude this case due to an increasement of the complexity of the model.

Order of aggregation operations
Like already mentioned at the beginning of this section, the operation AggrSequence
and AggrSESE/AggrComplBranches are dependency preserving, while AggrShiftOut
is dependency generating. This property has to be considered when performing an
aggregation by using all three operations. In the following we show, that the execu-
tion order of the two dependency preserving operations has no influence on the result
while the execution order of all three operations does. If a subset S ⊂ NA (in gen-
eral S 6= N∗A) can be aggregated by AggrSequence, AggrSESE/AggrComplBranches
either aggregates S aswell or the subset can still be aggregated after applying
AggrSESE/AggrComplBranches. The same is true for interchanging AggrSequence
and AggrSESE/AggrComplBranches. We proof this as follows. Since a sequence does
not contain any blocks like defined above, AggrSESE/AggrComplBranches can not be
applied to it and AggrSequence is the only operation that leads to an aggregation of
the selected activity set. In return, a block can contain various sequences. We show
that aggregating this sequences via AggrSequence first does not change the result
for AggrSESE/AggrComplBranches. Therefore consider the block B with opening
gateway go and closing gateway gc and let S1, ..., Sn ⊂ NA be disjunct sequences.
Then B′ is the same block after applying AggrSequence, i.e. each sequence Si is

3.2 Abstraction Mechanisms 31

Fig. 3.6: A simple process diagram (left) with a set of selected activities (blue). Performing
AggrShiftOut in a first step does not lead to the maximal aggregation and prevents
further aggregations (middle), while the execution of AggrSequence in a first step,
followed by AggrShiftOut aggregates all selected activities (right).

replaced with an activity si for i = 1, ...n. Since all activities in the sequence are
reachable from its respective start go either Si ⊂ B or Si ∩ B = ∅ and therefore
si ∈ B′ ⇔ Si ⊂ B and B′ is still a block. The aggregated activity si is removed
during AggrSESE of B′ exactly if Si is removed during AggrSESE of B. For this
reason the result is the same if AggrSequence and AggrSESE/AggrComplBranches
are applied to N∗A in an arbitrary order until none of them can be applied anymore.
In contrast, this result is sensitive to the execution order if we include AggrShiftOut.
An example is shown in Figure 3.6. Performing AggrShiftOut in a first step lead to a
new selected activity set on which AggrSequence can not be applied anymore. In re-
verse, the application of AggrSequence in a first step, followed by AggrShiftOut lead
to a more aggregated result. For this reason, we decide to perform AggrShiftOut only
after aggregating all sequences with AggrSequence to ensure maximal aggregations.
We show that our approach does not prevent any AggrShiftOut by previously applying
AggrSequence or AggrSESE/AggrComplBranches. If a subset S ⊂ N∗A can be aggre-
gated via AggrShiftOut, there must be an appropriate gateway with the precondition
from our definition for AggrShiftOut. Since blocks are always enclosed by opening
and closing gateways, either all elements of S are contained within a block or no
element of S is contained within a block. Therefore AggrSESE/AggrComplBranches
either removes S during aggregation or does not have any influence on the elements
of S. Also after applying AggrSequence, each element from S either stays the same
or is replaced by an aggregated Sequence (an activity) which does not affect the pre-

Fig. 3.7: The aggregation procedure: Each aggregation operation is executed in a loop until
none of them can be applied on the selected set of activities anymore.
AggrShiftOut will be executed only then the repetititon of the other two
operations does not lead to further changes in the model.

3.2 Abstraction Mechanisms 32

condition of AggrShiftOut. Figure 3.7 shows our selected execution order. Although
AggrSequence and AggrSESE/AggrComplBranches can be interchanged, we will see
later in Section 5.3 that the execution order has an impact on the runtime. Since
AggrShiftOut can either be a left shift out or a right shift out, first all possible left shift
outs are performed followed by right shift outs. After performing all aggregation
operations subsequent graph simplifications are required in order to provide the
following aggregation routines with well-defined diagrams.

3.2.2 Reduction

Like presented in Section 2.3.3, the authors of [6] suggest three elementary reduction
operations to eliminate sets of activities: RedSequence, RedSESE, RedComplBranches.
All of these reduction operations are performed stepwise by repeating the basic re-
duction operation which eliminates only one single activity. We define a basic
reduction as elimination of an activity n ∈ NA leading to the reduction of diagram
PM to PM ′: PM ′ = (N \ {n}, E′, P ′, NT ′X , NP ′), where E′ = E \ {(a, b) ∈ E|a =
n ∨ b = n} ∪ (nin, nout) and nin is the source element of the unique incoming se-
quence flow of n and nout is the target element of the unique outgoing sequence
flow of n. P ′, NT ′X and NP ′ are adjusted accordingly. Let N∗A ⊆ NA be again the
set of selected activities. In contrast to the aggregation operations which are only
applicable if #(N∗A) > 1, the reduction is defined for one single activity. As similar
to the aggregation procedure, N∗A should be maximal reduced. For this reason we
allow the elimination of single activities which are not neighbored to other activites
in N∗A in all three reduction operations.

RedSequence
The operation RedSequence removes all sequences S ∈ N∗A, while single activities
n ∈ N∗A, but n /∈ S remain unchanged. Since all activities in N∗A shall be removed,
we perform the basic reduction as described above on each element n ∈ N∗A au-
tomatically including the reduction of S. This stepwise procedure guarantees a
preservation of the process structure and a maximal reduction (cf. Figure 3.8).

Fig. 3.8: A simple process diagram (top) with selected activity set (blue) and the result
after applying RedSequence (bottom). The reduction of each sequence is
guaranteed by performing the basic reduction on each activity of the selection set.

3.2 Abstraction Mechanisms 33

Fig. 3.9: A simple process diagram (top) with selected activity set (blue) and the result
after applying RedSESE (bottom). The block-referring gateways as well as
associations connected with activities in the block are removed.

Fig. 3.10: A simple process diagram (top) with selected activity set (blue) and the result
after applying RedComplBranches (bottom). Because the block is opened by a
XOR gateway, the empty edge is preserved.

RedSESE
The operation RedSESE removes all blocks B ∈ N∗A. This goal can be achieved by
applying RedSequence on N∗A and performing a postprocessing step. Since the basic
reduction operation is not defined for gateways, we have to extend this definition
leading to PM ′′ as follows. PM ′′ = (N ′′, E′′, P ′′, NT ′′X , NP ′′) with N ′′ = (N \ {n ∈
B}) \ {go, gc} and E′′ = (E′ \ {(a, go), (go, gc), (gc, b)})∪{(a, b)}. Then P ′′, NT ′′X and
NP ′′ are adjusted accordingly. The result of RedSESE is visualized in Figure 3.9.

RedComplBranches
The application of RedComplBranches leads to the reduction of branches in a block
B. To be more precise, the subset B′ ⊂ B with B′ ∈ N∗A but B /∈ N∗A is reduced
by applying RedSequence. In the case of reducing complete branches of a parallel
branching (the opening gateway go and the closing gateway gc are parallel gateways),
the resulting sequence flow (go, gc) can be removed as well. As opposed to this, in
case of an XOR-or OR-branching, the empty sequence flow must be preserved like
shown in Figure 3.10.

3.3 Further view-building concepts

In addition to the abstraction mechanisms inspired by [6] and [36], we develop
further concepts to create process views based on BPMN process models. We present
another graph-based approach to hide and collapse pools in process models and
show how to generate process views visualized as tabular or matrix. Depending on
the process model, the matrix view gives better or other insights to the process model

3.3 Further view-building concepts 34

for a certain user than the graphical view or vice versa. We will show examples of
resulting process views after applying these approaches in Sections 4.3 and 5.1.

3.3.1 Hide and Collapse

In order to get a better overview of the processes a certain participant is involved in,
other participants can be put into the background. Therefore they can be hidden
or collapsed. We start with the explanation of hiding a participant. Consider
a participant p ∈ P . We remove all elements n ∈ N \ NDS with NP (n) = p.
We call the new set of nodes N ′. Furthermore, we remove all (a, b) ∈ E with
NP (a) = p∨NP (b) = p, leading to a new set of edges E′. Finally we set P ′ = P \{p}.
NTX and NP are adjusted according to these changes resulting in a new diagram
PM ′ = (N ′, E′, P ′, NT ′X , NP ′). Multiple participant can be hidden by repeating this
procedure for each of them.
The other alternative can be achieved by collapsing a pool defined as follows.
Consider again a participant p ∈ P . We hide it like described above but add further
elements to PM ′. We extend the set of nodes N ′ by an activity n leading to a new set
of nodes N ′′ = N ′ ∪ {n}. For each message flow (a, b) ∈ EM which were removed
by the hiding procedure, we add a new message flow (a, n) if NP (b) = p or (n, b)
if NP (a) = p resulting in a new set of edges E′′M . Since we defined our edges as
sets, E′′M contains only singletons, i.e. no redundant message flows can be added
this procedure. The new diagram PM ′′ = (N ′′, (E′ \ E′M) ∪ E′′M , P ′, NT ′′X , NP ′′)
while NT ′′X and NP ′′ are again adjusted. The same way multiple participants can be
hidden, it is possible to collape any amount of participants.

3.3.2 Matrix-based Views

We give another presentation of a process model by considering the relation between
model elements described as binary mappings f : X × Y → Z. These mappings can
be visualized as matrices where each column refers to an element of X each row
refers to an element of Y and each cell zxy holds the result f(x, y). We apply this
concept to the following mappings:

Role-Role
This matrix focuses on the mapping pp : P × P → P(EM) from pairs of partic-
ipants to the message flows occuring between them. The cells of the matrix
then either contain the resulting message flow or the activities it is sourcing
from and targeting to.

3.3 Further view-building concepts 35

Role-Data
We distinguish between the relation of participants to data objects and the
relation of participants to data stores.
Data Objects
This matrix focuses on the mapping do : P × NDO

→ P(EA) from a partici-
pant and a data object to the associations occuring between them. The cells
of the matrix then either contain the the information whether the occuring
association is incoming or outgoing or contain the activities it is sourcing from
or targeting to.
Data Stores
This matrix focuses on the mapping ds : P × NDS

→ P(EA) from pairs a
participant and a data store to the associations occuring between them. As
similar to the data object relation, the cells of the matrix then either contain
the the information whether the occuring association is incoming or outgoing
or contain the activities it is sourcing from ot targeting to.

Task-Task
This matrix focuses on the mapping tt : NA × NA → P(EM) from pairs of
activities to the message flows occuring between them. Since EM is a relation
⊂ NA ×NA, tt(a, b) has 0 or 1 element. The cells of the matrix either contain
the resulting message flow or the data elements which are transferred by it.
A data element d is transferred by a respective message flow (a, b) ∈ EM , if
d is connected with activity a by an output association (∃(d, a) ∈ EO

A) or d is
connected with b by an input association (∃(b, d) ∈ EI

A).

3.3 Further view-building concepts 36

4Implementation of Process Views
with BPMN.io

In this chapter we present our implementation based on BPMN.io that realizes
our concepts along with platform specific details. We summarize the technical
background and present the extension of the user interface of BPMN.io as well
as the underlying program architecture and functionality. We focus on important
implementation details that show the access and usage of internal functions provided
by BPMN.io.

4.1 Technical Background

Our implementation is built up on the web-based BPMN modeling tool BPMN.io
[15] like further described in Section 2.2.1. For this purpose, we set up an Angular
[20] web application and integrated the rendering tool bpmn-js. Our application
uses components which are associated with templates and services. Components,
services and routing modules are written in TypeScript (version 3.4.1). Components
implement the application data and logic of our concepts through interacting with
bpmn-js. The associated templates are written in HTML and determine the repre-
senation of content on the webpage. Services contain data structs that has to be
shared across components. The application is developped on a desktop PC running
on Windows 10 and the Mozilla Firefox web browser (version 65.0.2).

4.2 Graphical User Interface

In this work we implemented several functions to provide different view-building
mechanisms. In order to integrate them in the modeling tool provided by BPMN.io,
we built up a graphical user interface based on four components (cf. Figure 4.1).
The App Component is the root and contains all other components. It determines
the structure of the web page as described by the router. The Full View Component
consists of a slide menu and enables the toggling between different process views.
It is the parent component and therefore responsible for the navigation between
the other two components. The Drawing Area Component includes the toolbar, the
modeling toolbox and the canvas. This component creates a new modeler object

37

Fig. 4.1: The programming structure of our implementation: The GUI is built up on four
components accessing to four services.

and controls important core services like the ElementRegistry. All changes in the
model are managed by this component. The third component manages the matrix
views, while each matrix view type is assigned to another URL path. We further
implemented four services to provide an interface for importing data to and exporting
data from the webpage (IO Service), enable graph reductions (Reduction Service)
and aggregations (Aggregation Service), and include several auxiliary functions that
deal with the elements in the graph, i.e. graph simplification mechanisms (Element
Service). All services are accessed by the full view component, while the Drawing
Area Component also requires the IO Service and Reduction Service.
The main page of the website is presented in Figure 4.2 and is structured into
three parts as follows. While we took over the modeling toolbox and the canvas
of BPMN.io, we added a toolbar (I) at the top of the webpage, a slide menu (II)
which opens from the left side and is accessible by the menu button, as well as a
notification area (III).

Toolbar
The toolbar contains seven buttons which provide different functions. The first two
buttons manage the reduction and aggregation of any number of selected elements.
They are disabled while no or only one element is selected. As alternative to the
reduction button, any amount of elements can be removed by clicking the bin symbol
in the element context menu or using the referring keyboard shortcut. Clicking the
aggregation button enables the user to choose between an aggregation of the selected
elements while preserving dependencies or to allow the generation of dependencies.

4.2 Graphical User Interface 38

Fig. 4.2: The graphical user interface of the start page with an exemplary model and its
three extensions: the toolbar (I), the expanded slide menu (II) and the
notification area (III).

The underlying concepts of the reduction and aggregation buttons are described
in Section 3, while further implementation details are given in Sections 4.3.1. The
next two buttons provide the option to confirm or decline the chosen aggregation
function on second thought. The fifth button enables the user to reverse the last
reduction or aggregation operation. The sixth button manages the visibility of the
text annotations of activities which contains former activity names. The button on
the top right of the web page toggles a zoom out function leading to a full view of
the diagram.

Slide Menu
The slide menu manages the input and output of data and provides different repre-
sentation forms of process views. The first two buttons in the data category permit
the import and export of process models as XML file from or to the explorer. The
third button downloads the diagram as SVG file to the explorer. The other two
buttons provide a quick save and quick load of the actual process diagram and serve
as temporary storage. The second category enables the user to get two types of
process views, which can be understood as different perspectives on the process
model: a parameterizable graphical view and a matrix-structured view. Their func-
tionalities and implementations are further described in Section 4.3. In contrast
to the two graphical views, the three matrix views are realized on own web pages
while the navigation between them is managed by the slide menu. Figure 4.3 shows
the webpage of a matrix view for the exemplary model. At the top of the page, the
element properties ID, name and type can be switched on and off to determine the
level of detail.

4.2 Graphical User Interface 39

Fig. 4.3: Matrix view referring to the exemplary model in Figure 4.2.

(a) Creation of a new bpmn modeler
object.

(b) Access to the core and helper services

Fig. 4.4: Code snippets which describe the initialization procedure and the access to
BPMN.io services.

Notification Area
The space at the bottom of the main page is used as notification area to inform the
user about actions that will not longer be possible after aggregation on the bottom
of the web page. Furthermore, it enables the user to rename the activities that result
after the aggregation procedure.

4.3 Realization of Concepts

To realize the concepts presented in Section 3, we reutilize internal functions and
modules of BPMN.io. In an initial step, a new bpmn modeler object has to be
created like visualized in Figure 4.4(a). This object is the root of the modeling
tool and manages the model on the canvas as well as all interactions with it. Like
already described in Section 2.2.2, BPMN.io provides access to the model elements

4.3 Realization of Concepts 40

by the ElementRegistry, to their graphical representation by the GraphicsFactory and
enables actions like adding and deleting elements with the helper service Modeling.
Since we need all of this services in our implementation, we request them from the
modeler object like depicted in Figure 4.4(b). We use the functions provided by the
respective services as listed:
elementRegistry.filter(condition): returns an array of the elements that fullfill the
condition.
elementRegistry.get(id): returns the element corresponding to a given id leading
to the possibility to request attributes like incoming or outgoing edges, the name or
the parent element.
elementRegistry.getAll(): returns a list of all model elements
elementRegistry.getGraphics(element, boolean): returns the graphical SVG rep-
resentation of a given element.
graphicsFactory.update(type, element, gfx): updates the visualization of an ele-
ment according to the given gfx.
modeling.updateProperties(element, property: value): updates a property of an
element with a given value.
modeling.appendShape(source, type, position, target): adds a new element to
the model according to the parameters.
modeling.createConnection(source, target, type, parent): adds a new connec-
tion to the model, connecting source and target.
modeling.connect(element1, element2, attrs, hints): connects element1 with
element2.
modeling.reconnectStart(connection, element, position): sets element as source
of a connection at a given position.
modeling.reconnectEnd(connection, element, position): sets element as target
of a connection at a given position.
modeling.removeConnection(connection): deletes a connection from the model.
modeling.removeShape(element): deletes an element from the model.
Since all services are connected to each other by the modeler, they are automatically
kept up to date if changes occur in the model. In general, the presented functions
according to the ElementRegistry can be understood as requests to get insights to an
element, while the functions referring to the Modeling service perform persistent
changes on the model. The latter ones have further to be distinguished between
functions that effect the number of elements in the model (i.e. appendShape or
removeShape) and those that change attributes of elements but preserve the num-
ber of elements (i.e. updateProperties or reconnectStart). According to this we
differentiate between view-building mechanisms that lead to persistent changes in
the model and views that can be understood as different perspectives on the model
without effecting its underlying structure. Furthermore, we distinguish between
the presentation form of process views in diagram-based and matrix-based. These
four dimensions lead to a classification of our implementation like shown in Tabular

4.3 Realization of Concepts 41

Complexity Reduction
non-persistent persistent

Presentation
Form

Diagram
based

Hide
Collapse

Aggregation
Reduction

Matrix
based

Role-Role
Role-Data
Task-Task

Tab. 4.1: Classification of the implemented view-building concepts depending on the
presentation form and the type of complexity reduction.

4.1. In terms the user changes the process model by adding, removing or changing
model elements or by executing persistent process view mechanisms, all services
are automatically updated through the bpmn modeler object they are connected
with. This effect transfers to the provided process views which access all model
elements by the ElementRegistry. This furthermore ensures that all process views
stay up-to-date and no inconsistency occurs between the views.
In the following sections, we show how we implemented the different views by uti-
lizing the provided functions of BPMN.io by differentiating between diagram-based
views and matrix-based views. Like further explained in Section 3, we focus on
processes which involve multiple participants modelled as pools.

4.3.1 Diagram-based Views

Hide and Collapse

The view-building functions hide and collapse enable the user to temporarily reduce
the complexity of a process model. For this purpose, we retrieve a list of all modelled
participants by the ElementRegistry and provide check boxes for each entry. All check
boxes are marked as selected by default, showing the diagram with all its details on
the canvas. The user can hide or collapse any amount of participants by deselecting
the referring check boxes under the tag hide or collapse. Since both approaches are
graphical representations, modeling is allowed while one of the views is active.

Hide
If a user deselects a check box under this tag, the pool that refers to the deselected
participant and all its elements disappear. For this purpose we implemented the
method setVisibilityOfElements to manipulate the visibility of a given element by
using the update function of the GraphicsFactory like shown in Figure 4.5(a). For
all model elements within a pool, the parent value of each element refers to the
same participant. Due to this, we can easily identify all modeling elements of a
pool by using the ElementRegistry and manipulate their visibility like presented in

4.3 Realization of Concepts 42

(a) Elements are made invisible by setting their hidden attribute to true and updating the GraphicsFac-
tory.

(b) A participant is hidden by hiding the element that refers to the pool and all of its child elements.

Fig. 4.5: Implementation of the hiding procedure of a pool.

Figure 4.5(b). Outgoing or incoming message flows that originate from or target
activities of the hidden pool are made invisible in a postprocessing step. This also
applies for data which is modelled wihin another pool but have an associations to
an activiy of the considered pool. Since these connection types can refer to more
than one participant, their parent attributes are related to the collaboration which is
the container of all pools.

Collapse
The deselection of a check box under this tag leads to a full aggregation of a pool
into one activity. In fact, there occurs no real aggregation in terms by using one of
the aggregation operations decribed in the following section. Similar to the hiding
procedure, the pool that refers to the deselected participant and all its elements are
made invisible by calling setVisibilityOfRole for the respective participant (cf. code
snippet 4.5(b)). In difference to it, we further add an temporarily existing activity to
the model which represents the collapsed pool. Each message flow and association
that interacts with the pool like described above, an additional, also temporarily
existing, connection with the proper type is added to the model and the original
connections are made invisible. In case of incoming edges, the new connection
targets the newly created activity and inherits the source of the original connection.
In case of outgoing edges, the target of the new connection is determined by the
original connection and the new acticity is set as source. If multiple connections
would be created, which have the same source and target, we avoid this redundancy
by adding only one representative connection. We realized this procedure by using
the functions appendShape and createConnection provided by the Modeling service.
The temporarily existing elements are deleted from the model, if the collapsed view
is reversed or another view is selected. Figure 4.6 shows the result of this procedure.

4.3 Realization of Concepts 43

Fig. 4.6: Resulting process view after collapsing participant 1 (left) and participant 2
(right) of the model visualized in Figure 4.2.

Fig. 4.7: The implementation of the aggregation procedure. Secondary code is omitted but
commented.

To keep consistency, changes in the process model should only be made between
and within fully expanded and not collapsed pools.

Aggregation and Reduction

Aggregation
Each aggregation operation presented in Section 3.2.1 aggregates a number of se-
lected activities into one single activity. This can be realized through the following
three steps. First, a new activity has to be created which represents the aggregation.
Second, all necessary reconnections with the new task have to be performed. The
reconnection of sequence flows depends on the aggregation operation, while associ-
ations and message flows that are connected with activities that will be aggregated
have to be reconnected with the new task. In a last step, all activities that take part
in the aggregation as well as remaining unnecessary edges have to be removed. We
implemented these steps in the method createAggreation by using functions of the
Modeler Service like shown in Figure 4.7. The method is used in the implementation
of all aggregation operations AggrSequence, AggrSESE/AggrComplBranches and
AggrShiftOut. The edges that have to be reconnected are passed as parameter and
are calculated in a preprocessing step which may differ depending on the aggregation

4.3 Realization of Concepts 44

Fig. 4.8: Code snippet of the while-loop in the method aggregateSelectedElements. The
variable filteredSelectedElements contains only the activities of the selected set of
elements.

operation. The names of the activities that will be replaced through the aggregation
are stored in a text annotation associated with the new activity to keep the overview
of model changes. The method createAggregation can be reused without adaption
in the implementation of further aggregation concepts.
To guarantee the maximal possible aggregation of a selected set of activities, we recall
the aggregation operations in a while-loop which is breaked if none of the operations
can be applied anymore, or in other words, if no further changes occur in the model
(cf. Figure 4.8). In the graphical user interface, the users are able to choose between a
dependency preserving aggregation (AggrSequence, AggrSESE/AggrComplBranches
or to allow dependency generating operations (AggrShiftOut) in addition. To real-
ize these options, the dependency preserving aggregations are wrapped in a inner
while-loop, because they are called in both cases. The outer while-loop is breaked
immediately after the inner loop is breaked, if the first option is selected. In case
further aggregation operations are implemented, they can be easily integrated in this
procedure. If the new operation is dependency preserving or dependency generating,
its function call can be added to the block containing function calls with the same
dependency type. If the operation refers to a new dependency type, i.e. dependency
erasing, a new case distinction has to be added similiarly to the dependency generat-
ing case.

Reduction
We implemented the three reduction operations to eliminate sequences(RedSequence),
blocks (RedSESE) and branches of blocks (RedComplBranches) in one single method
which covers all cases. Like described in Section 3.2.2, the reduction of elements
have to comply certain rules. For example the incoming and outgoing sequence
flows of the removed activity have to be reconnected or to be replaced, since the

4.3 Realization of Concepts 45

process flow would be interrupted and other activities would lose their connection
to start or end nodes. The removing function removeShape provided by the Modeler
service meet these requirements in case of sequence flows becaue they automati-
cally preserve the process structure and consistency of the model by default. For
each activity in the selected activity set, we first remove all incoming and outgo-
ing message flows and associations of it by using the function removeConnection.
Subsequent we remove the respective activity from the model with the function
removeShape. Then the toolkit automatically performs the necessary reconnections
of the sequence flows reffering to the deleted activity. Furthermore, the function
keeps all empty branchings possibly resulting through this procedure independent
of the branching type. In the case of blocks caused by parallel branchings, this fact
could lead to any number of redundant empty branches preventing the elimination of
the corresponding gateways. For this reason we implement two graph simplification
mechanisms. First we eliminate all redundant sequence flows by using the function
removeConnection resulting in unique empty control edges between opening and
closing gateways of any type. Second we remove all gateway from the model by
using removeShape which have only one incoming and one outgoing sequence flow
exlucing XOR/OR gateways. Therefore we guarantee a correct execution of RedSESE
and RedComplBranches leading to well-defined process diagrams. Remark that our
approach called by the button at the top of the web page is restricted to activities
and only associated gateways or connections are deleted automatically. Executing
the procedure on a selection that does not contain any activities would lead to no
changes in the model. However, connections and other shapes, like gateways, text
annotations or start and end nodes can be directly removed from the model through
the respective context menu or toggling the delete key. The elimination of shapes
by using one of this options could lead to interruptions in the control flow and
should be used wisely. In contrast to our reduction approach, these built-in functions
directly call removeShape or removeConnection. The application of removeShape
on activities having incoming or outgoing message flows or associations deletes
the activity and all of its referring connections from the model resulting in two not
connected diagrams. The same applies for gateways having multiple outgoing or
incoming sequence flows.

4.3.2 Matrix-based Views

In order to realize the matrix-based views we compute the view-related elements
via the ElementRegistry and visualize them as table defined in the HTML template
referring to the Matrix View Component. The structure of an examplary table is
shown in Code Snippet 4.9. We implemented all three views like described in Section
3.3.2 according to this example. As you can take from the figure, the table is built up
line by line while a row is introduced by the <tr> environment and the content of a

4.3 Realization of Concepts 46

Fig. 4.9: The creation of the Role-Role Matrix containing information about message flows
between participants in the cells.

cell is contained in a <th> environment. Depending on which view is selected the
first row of the table referring to the first <tr> environment contains the names of
participants in the model in the case of Role-Role, the names of data elements in the
case of Role-Data and the names of activities in the case Task-Task. The second <tr>
environment is nested in a for-loop and therefore creates multiple rows. The first
cell of each of this rows contains the name of a participant in the case of Role-Role
and Role-Data or the name of an activity in the case Task-Task. These cells and the
first row of the table build the matrix structure while the content of each other cell
is related to exactly one entry in the first row and one entry in the first column.
The other cells are filled with ids, names or type descriptions of model elements
depending on which check box is selected in the slide menu. This can either be
message flows or activities in the case of Role-Role, the information of input/output
data or referring activities in the case of Role-Data or message flows and associated
data elements in the case of Task-Task. Since we access the content which should
be visualized in this cells by using a for-loop, the respective information has to be
pushed in an array consistent to the order of the entries in the first row of the table.
We compute this order for each matrix view in a preprocessing step.

4.3 Realization of Concepts 47

5Evaluation

In this section we evaluate our implementation by presenting results of different
experiments. For this purpose we applied our concepts to manually created process
models and real-life process models. Furthermore, we present results of runtime
measurements evaluated by different parameters.

5.1 Artificial Models

Since we implemented the concepts of [6] and [36], it is reasonable to test the
abstraction mechanisms on the non-block-structured process model which is used as
example in their work over and over again (cf. Figure 2.15). We rebuilt the model on
the webpage with the appropriate BPMN elements provided by BPMN.io and added
a start and end event like depicted in Figure 5.1(a). According to the example, we
reduce the activities E, F , G and R, S in a first step. Afterwards the activities B, C,
H, K, as well as L, J and T , U , V are selected for aggregation. Figure 5.1(b) shows
the result after applying the aggregation option which allows dependency generating
aggregations. The reduction operation on the selected activities lead to the same
result as in the work of [6]. The empty branch is preserved in the XOR-branching.

(a) The exemplary process model according to [6] and [36].

(b) The resulting process model after reducing the activities E, F , G, R, S and aggregating the activities
B, C, H, K, L, J , T , U , V by allowing dependency generating aggregations.

Fig. 5.1: A process model (top) and the result (bottom) after applying the abstraction
mechanisms on a selected set of activities. The set of activities highlighted in blue
are aggregated, while the activities highlighted in yellow are reduced.

48

Fig. 5.2: A simple process diagram with multiple participants and a message flow between
them.

In contrast to the work of [6], the aggregation differs in two points. First of all, the
shift out that is applied on the activities C, H, K also affects the activity L. Second,
the activity J stays unchanged in the whole procedure. The first result is due to the
order of function calls in our implementation. As explained in Section 4.3.1, first
all sequences are aggregated by executing AggrSequence recursively. This results
in the aggregation of the activities K and L in a first step leading to a left shift
out that consideres the activities C, H and KL. In a final step the activities B and
CHKL are aggregated. The result in [6] can be reached by performing a step-wise
aggregation. Aggregating the activities C, H, K by applying a shift out through
selecting the dependency generating option and aggregating the activities B, CHK

afterwards through selecting any option, would lead to the same result. In difference,
the aggregation of activity J in the selected activity set is not possible by using one of
the implemented aggregation operations. The authors of [6] aggregate the activities
J and L by applying the function AggrAddBranch which is not implemented in our
work. Due to this, our result presented in Figure 5.1(b) is correct as it performs the
maximal possible aggregation of the selected activity set.
In the next example we consider process models with multiple participants. The
process diagram in Figure 5.2 consists of three participants with different workflows.
To further evaluate the aggregation operation, we select all process model elements.
Figure 5.3 shows the process model after applying the aggregation concepts of our
implementation. Since all pools, data elements and events are still visualized as
before, the result demonstrates that only activities are considered in the aggregation
process. Like expected, the result further shows that the aggregation of activities
is only executed within pools. Sequence flows are manipulated, while message

5.1 Artificial Models 49

Fig. 5.3: The result after aggregating all activities of the process model in Figure 5.2.

flows and associations are preserved but reconnected with aggregated activities in
a correct way. In some cases, self-loops may occur through aggregating activities.
Since we assumed that process models have to be acyclic in this work, all derived
views resulting after using abstraction mechanisms have to be acyclic aswell. Due
to this assumption, we remove self-loops, i.e. sequence flows that have the same
activity as target and source, that possibly occur after aggregation. This restriction
does not apply for message flows and associations. For this reason the data object
with the label data 3 is correctly associated as input and output of the aggregated
activity HFG of Participant 2. Since the operation aggrShiftOut can not be applied
to the selected activity set, both options of aggregation procedures lead to the same
result.
This example further shows that the application of an aggregation operation leads to
different types of information loss. In the case of aggregating a sequence of activities,
the ordering of the referring activities gets lost. The aggregation of blocks leads
to a loss of the gateway types which describe whether the branches in a block are
alternatives or parallel processes. The information of the orderings of the activities
which are included in a sequence can be easily kept by adapting the text annotation
box which is created in our implementation if an aggregation is performed. Similarly,
the gateway types of an aggregated block can be stored. In order to preserve the
clarity of a created process views, we restrict to text annotations which keep the
names of the activities that are eliminated by performing an aggregation procedure.
The scenario presented in Figure 5.4 is a process diagram which contains of four
participants and a lot of message flows and associations. Although that model is not
complex concerning its control flow, it is hard to get an overview of the interactions
and dependencies between the participants and data elements. Especially the
workflow of Participant 2 surrounded by the other participants is hard to understand.
The moving of the pool in the viewer improves the result only marginally. In such

5.1 Artificial Models 50

Fig. 5.4: A process model with four participants and nine data elements leading to
confusing and crossing message flows and associations.

Fig. 5.5: The role-role matrix view of the process diagram in Figure 5.4 with focus on the
activities that are involved by different participants. Due to lack of space we
ommit the last column which is left empty referring to Participant 4 as source. The
grey lines stand for further entries.

cases, the strengths of the matrix view are revealed. In contrast to the graphical
views, the matrix view provides a structured overview of the interactions between
the participants and the used data. As shown by Figure 5.5 Participant 2 has only
one outgoing sequence flow that targets activity F of Participant 3. This information
is hardly to get in the graphical view without using abstraction mechanism which
lead to persistent changes in the process model. Another aspect concerns the data
objects. The high number of associations that result from a high number of data
elements are crossing the pools. Like already mentioned, their depositioning in the
viewer to get better insights on which participant uses which data object is possible
but time-consuming and the improvement is limited. The matrix view enables a
compact representation of this information like shown in Figure 5.6.

5.1 Artificial Models 51

Fig. 5.6: The role-data matrix view of the process diagram in Figure 5.4 with focus on the
data objects that can be the input or output of activities of participants.

5.2 Real-life Models

A real-life process model is given in Figure 5.7. It describes the interaction between
the participants customer and company and visualizes the process steps that are
necessary to accomplish a customer’s request. The process model contains three
different subprocesses which are highlighted in different colors. The subprocess
Execute Order is highlighted in two colors, since it contains another subprocess. An
aggregation of the subprocesses would be possible by applying AggrSequence but
would not be meaningful with regards to the evaluation of our implementation. For
this reason we expand all subprocesses and color them according to their affiliation
in the collapsed visualization as shown in Figure 5.8. We slightly modified the
process model, i.e. added start events, so it meets our requirements. The light-blue
highlighted activities correspond to a subprocess in the process Execute Order whose
activities are colored dark-blue. The expanded business process model contains
of three participants and the pool referring to the Company is divided into five
lanes. The diagram shows how that a lot of participants are involved in a process

Fig. 5.7: Real-life process model describing a business process involving two participants.

5.2 Real-life Models 52

Fig. 5.8: Expanded version of the real-life process model shown in Figure 5.7. The
activities can be assigned to the subprocesses in the collaped model by their color.

and that many steps are necessary between them to achieve a certain goal. From
this perspective, the collapsed process model can be interpreted as process view
using subprocesses to hide internal process details of the company and to make the
process model shareable with other companies. Since our aggregation mechanisms
can also be used to hide business secrets, we aggregate all elements referring to
a subprocess. For this we perform a step-wise aggregation, by first selecting all
activties of the subprocess Receive Order and aggregating them with the option
dependency preserving. Both options would lead to the same result, since the
aggregation operation shift out could not be applied. Then we repeat this procedure
for the subprocesses Organize Project and Execute Order. In the latter case, we
select all of the blue highlighted activities because they also represented by one
subprocess in the collapsed process model. Figure 5.9 shows the resulting process
model. While the activities of the subprocess Organize Project could be aggregated
into one single activity, the activities of the other subprocesses are aggregated
into three activities. Two activities of the subprocess Execute Order remain even
unchanged in the process model, since the aggregation between activity that refer
to different participants is not supported. In contrast, the aggregation between
lanes of the same pool is possible, what leads to a loss of information. Consider
for example the activity Execute Order-1 which results from the aggregation of the
activities execute construction and request offer. The latter was modelled within

5.2 Real-life Models 53

Fig. 5.9: The resulting process model after performing a step-wise aggregation of the
activity set referring to the same subprocess in Figure 5.8.

the lane Management, while the aggregated activity is modelled within the lane
Construction. After aggregation it is not possible to reconstruct which lanes were
initially involved. This is explained by the internal structure of a process diagram
in BPMN.io. The parent attribute of each activity refers to the corresponding pool
instead of the corresponding lane. Due to this, lanes have no child elements and can
only be used as graphical element to model more detailed diagrams. Associations
between lanes and activities could only be reconstructed by the positioning of the
elements in the diagram. For this reason we eliminate all lanes, leading to a more
compact process model like shown in Figure 5.10. Compared to the collaped process
diagram in Figure 5.7, the model consists of one additional paticipant, as well as
six additional activities. In case of the activities of subprocess Organize Project, the
aggregation leads to the same result as modeling them as collapsed subprocess.
Allowing aggregations between different participants could lead to a result more
comparable to the collapsed process diagram, but would also lead to the same
information loss as discussed for the aggregation between lanes. In conclusion, our
implemented aggregation operations can not be used instead of subprocesses but
are a great support in terms of creating models which reveal any amount of detail.

5.2 Real-life Models 54

Fig. 5.10: The result after eliminating all lanes of the pool Company in the process model
shown in Figure 5.9.

5.3 Runtime Measurements

The evaluation of the runtime of our aggregation procedure requires a large amount
of (real-life) process models. Despite the increasing availability of such data, they
do not fit our assumptions, e.g. acyclic process diagrams. Therefore we use the
Processes and Logs Generator (PLG) provided by [8]. This software is designed to
help researchers in the construction of a large set of processes and corresponding
execution logs. The following parameters can be defined while generating a process
diagram.

• ANDBranches: the maximum number of AND branches (must be > 1), default
value: 5

• XORBranches: the maximum number of XOR branches (must be > 1), default
value: 5

• loopWeight: the loop weight (must be in [0, 1]), default value: 0.1
• singleActivityWeight: the weight of single activity (must be in [0, 1]), default

value: 0.2
• skipWeight: the weight of a skip (must be in [0, 1]), default value: 0.1
• sequenceWeight: the weight of sequence activity (must be in [0, 1]), default

value: 0.7
• ANDWeight: the weight of AND split-join (must be in [0, 1]), default value 0.3
• XORWeight: the weight of XOR split-join (must be in [0, 1]), default 0.3
• maxDepth: the maximum network deep, default value 3
• dataObjectProbability: probability to generate data objects associated to se-

quences and events, default value 0.1

5.3 Runtime Measurements 55

Detailed explanations of the parameters are given in the referred work. For our
evaluation, we focus on the parameters ANDBranches, XORBranches, loopWeight,
ANDWeight and XORWeight. The other parameters will keep their default value.
Furthermore, we set the loopWeight to 0.0 for each generated graph, since our
approach is limited to acyclic process diagrams. We generate three test sets with
different parameters while each set consists of 1000 generated process diagrams.
The first test set is created with the parameters (5, 5, 0.0, 0.2, 0.1, 0.7, 0.3, 0.3, 3, 0.1)
leading to diagrams containing 1 to 60 activities and 0 to 24 gateways. The second
test set increases the number of branches by keeping the number of gateways
and is based on the parameters (15, 15, 0.0, 0.2, 0.1, 0.7, 0.3, 0.3, 3, 0.1) leading to
diagrams containing 1 to 476 activities and 0 to 96 gateways. The increase of
the maximum number of branches also leads to an increase of the number of
gateways and activities. This follows from the fact, that each branch targets an
activity and therefore additional activities have to be generated. Furthermore, a
higher number of activities induces a higher probability for generating gateways.
The third test set increases the number of gateways by keeping the number of
branches of the first test set (5, 5, 0.0, 0.2, 0.1, 0.7, 1.0, 1.0, 3, 0.1) leading to diagrams
containing 1 to 80 activities and 0 to 36 gateways. We evaluate the runtime of
the implemented aggregation procedure by performing a full aggregation on each
diagram, i.e. selecting all diagram elements. Since the PLG generates only block-
structured process diagrams, we focus on our dependency preserving approach. By
restricting to the operations AggrSequence and AggrSESE, the result will always be
a process diagram consisting of an start event which is connected to the aggregated
task which is in turn connected to the end event. Like shown in 3.2.1, the execution
order of AggrSequence and AggrSESE is irrelevant with regards to the resulting
process diagram. Nevertheless the execution order can have an influence on the
performance. For this reason we run all tests for both cases. We use a desktop PC
running on Windows 10 with an Intel(R) Core(TM) i5-2500 CPU @ 3.3 GHz, 8.0 GB
of RAM and the Mozilla Firefox web browser (version 65.0.2). The results of our
runtime measurements are shown in Tabular 5.1.
For all test sets the order of first performing AggrSESE and then AggrSequence lead
to better results. The runtime of this order is about one-third faster for the first and
the third test set than interchanging the two operations. For the second test set
this order is about three times faster. This result can be explained on the basis of
the number of gateways. Since our implemented algorithm referring to AggrSESE
consideres pairs of opening and closing gateways, its runtime depends on the number
of gateways in the process model. The second test set consists of five times more
activities than gateways. For this reason, AggrSESE has to consider significant less
pairs than AggrSequence. Furthermore, the aggregation of blocks leads to a decrease
of the number of activities in the model. AggrSESE is able to aggregate blocks
containing nested blocks resulting in a strong reduction of the number of modeling
elements. This means in turn, that AggrSequence need to consider less combinations

5.3 Runtime Measurements 56

Runtime
Test set 1

#Activities: 1-60
#Gateways: 0-24

Test set 2
#Activities: 1-476
#Gateways: 0-96

Test set 3
#Activities: 1-80
#Gateways: 0-36

AggrSequence
AggrSESE

497.03 s
SQ: 58.5 %
SE: 41.5 %

15426.41 s
SQ: 65.2 %
SE: 34,8 %

958.75 s
SQ: 44.8 %
SE: 55.2 %

AggrSESE
AggrSequence

366.77 s
SQ: 36.4 %
SE: 63.6 %

4954.72 s
SQ: 8.6 %
SE: 91.4 %

613.86 s
SQ: 23.0 %
SE: 77.0 %

Tab. 5.1: The computation times of the aggregation mechanisms executed on the three test
sets. Besides the full runtime, we present the percentages of AggrSequence (SQ)
and AggrSESE (SE).

of activities. The percentages show, that AggrSESE computes the main part of
the aggregation (91.4%) resulting in an elimination of a lot of activities so that
AggrSequence only constitutes a small part of the runtime (8.6%). For the first and
third test set, executing AggrSESE first in the procedure similiarly leads to a shorter
computation time but in contrast having a higher pecentage for AggrSequence. This
is due to the fact that the relation between the number of activities and the number
of gateways is less than in the second test set.
Concluding we can state that the implemented execution order leads to correct and
runtime efficient results in case of block-structured process models. Our results show
that the performance mostly depends on the number of elements in such process
models. The computation time of the aggregation of all activities in block-structured
process models consisting of more than 500 elements needs on average less than 5
seconds. Although our measurements base on generated process models, our results
also apply for real-life process models. This is due to the fact that the generated
models as well as real-life process models always consist of a higher number of
activities than number of blocks. A block enclosed by 2 gateways will always contain
at least 2 activities, otherwise the split would not be necessary. An exception is made
for blocks initiated by XOR-or OR-branchings. In this case one empty control flow
edge may exist and therefore only 1 activity would be contained in the minimal case,
leading to an equal number of blocks and activities. Since AggrSESE is dependency
preserving, such blocks would not be aggregated by this operation. This could lead to
an increase of the runtime of AggrSequence and would need further evaluation.

5.3 Runtime Measurements 57

6Conclusion

We summarize and discuss the results of this work and give suggestions for future
work.

6.1 Summary

In this work we show how different and consistent process views of an underlying
business process model can be created. For this we first give an overview of pre-
vious work which present mechanisms to create process views based on process
models. Therefore we classified concepts of related work in parameterizable and
non-parameterizable approaches (cf. Section 2.3). Since the latter ones does not
meet the requirements formulated in Section 1.2, we focus on parameterizable
process views. From these, we select view-building mechanisms that are not re-
stricted to block-structured process models and adapt them to BPMN by preserving
the syntax and semantic of this modeling language further presented in Section
2.2.1. For this purpose we define a process model in our context and determine
necessary assumptions (cf. Section 3). We complement the abstraction mechanisms
reduction and aggregation from related work with own approaches which enable
hiding and collapsing pools in a BPMN model and provide a matrix-based view on
the process. In Section 4 we describe the implementation of our concepts which is
built on the web-based modeling tool BPMN.io presented in Section 2.2.2. We give
insights into the graphical user interface and present implementation details which
explain how the internal functions of BPMN.io are used and how they support our
concepts. We show the functionality of our implementation regarding different case
examples of artifical process models as well as a real-life process model (cf. Section
5). Furthermore, we evaluate the performance of our aggregation algorithm with a
large number of generated process models.

6.2 Contribution

Since the Proviado [35] and Proview [37] projects are not supported anymore,
there exists no working implementation of the abstraction mechanisms aggregation
and reduction presented in [6] and [36]. As to the contribution of this work, we

58

provide an implementation of these concepts as well as the realization of further
view-building techniques. In contrast to non-parameterizable approaches, the im-
plemented abstraction mechanisms enable the creation of parameterizable process
views, i.e. the user determines the set of elements which should be modified as well
as the algorithm which should be used for the aggregation. The degree of abstraction
can be adjusted according to the use case. Furthermore all of our concepts work for
non-block-structured process models as well as for block-structured process models.
Therefore we meet an important requirement of real-life BPMN models.
Since the implementation is built on BPMN.io, it can be easily extended with fur-
ther functions regarding multiple dimension. Besides, BPMN.io is a modern and
constantly updated tool ensuring our framework a long-term usability. The growing
community continually develops new extensions leading to a wide scope for improve-
ments and future work. The results of our evaluation show the correct functionality
of our implementation regarding aggregation and confirm the determined execution
order of the respective algorithms for block-structured process models.

6.3 Future Work

Future work should concentrate on extending the conceptual approaches as well
as increasing the functionality of our implementation. The abstraction mechanisms
in our implementation are restricted to the aggregation or reduction of activities.
In contrast, the work of [25] also covers the aggregation of data objects. This
approach should be implemented to extend our pool of functions of diagram-based
and persistent process views. With regards to our aggregation operations, the
authors of [6] and [36] provide further concepts which were excluded in our work
in order to avoid inconsistent process views. The authors state that users accept
minor inconsistencies in return of a higher model abstraction proved by several case
studies. Inspired by this aspect, our implementation could be extended with these
operations following our parameterizable approach.
Another aspect is the space of representation forms. In our work we cover diagram-
based and matrix-based perspectives. Our current implementation enables three
matrix views revealing interactions between a few model elements. However there
are more aspects in a diagram that could be considered, e.g. the decisiveness or the
depth of a pool until a certain activity is reached.
As illustrated in Table 4.1, this work enables persistent and non-persistent graph-
based process views. In contrast, matrix-based views are restricted to non-persistent
approaches. Since the matrix-based views can reveal details of the model that are
hard to figure out in the graph like shown in Section 5.1, it could be helpful to also
use this view for modeling to add for example further pools or to use persistent
abstraction mechanisms. We suggest this point as future work in order to complete

6.3 Future Work 59

our approaches.
In order to realize our algorithms, we made certain assumptions on process models
like described in Section 3.1. These assumptions restrict the application of our
implementation in case of real-life process models. For this reason, future work
should concentrate on lowering them. For example the restriction to acyclic process
models can be neglected by using graph transformations like suggested by [29] to
transform cyclic to acyclic graphs or by extending our algorithms with appropriate
stop criterions.
Overall we can state, that this work tackles two of the three fundamental process
visualization dimensions proposed by [6]. Our approach enables the reduction of
complexity by using the abstraction mechanisms aggregation and reduction or hide
and collapse. Furthermore, we provide different presentation forms of a process
by supporting matrix-based and graph-based views. Although our work does not
cover the third dimension referring to the graphical appearance of process elements,
this aspect can be easily realized in our implementation. BPMN.io supports different
styles of process models as well as the creation of custom elements [11]. It further
enables users to create custom overlays [13] or styling elements with colors [10]
leading to an uncomplicated realization of the third dimension.
In general, future work should support users in constructing individual and compact
process views which contain all needed information spread in the underlying business
process model.

6.3 Future Work 60

Bibliography

[1]Gustav Aagesen and John Krogstie. Handbook on Business Process Management 2. 2014,
pp. 219–250. arXiv: arXiv:1011.1669v3 (cit. on p. 5).

[2]W.M.P. van der Aalst. ProM: Process Mining. 2016 (cit. on p. 4).

[3]Software AG. ARIS Community. https://www.ariscommunity.com/aris-express/bpmn-2-
free-process-modeling-tool (cit. on p. 5).

[4]Ruth Sara Aguilar-Savén. „Business process modelling: Review and framework“. In:
International Journal of Production Economics 90.2 (2004), pp. 129–149. arXiv: arXiv:
1504.02218v1 (cit. on p. 4).

[5]Ralph Bobrik. Konfigurierbare Visualisierung komplexer Prozessmodelle. 2008, p. 272
(cit. on pp. 19, 26).

[6]Ralph Bobrik, Manfred Reichert, and Thomas Bauer. „Parameterizable views for process
visualization“. In: Information Systems (2007), pp. 1–17 (cit. on pp. 2, 17, 18, 20–22,
24–27, 31, 33, 34, 48, 49, 58–60).

[7]Ralph Bobrik, Manfred Reichert, and Thomas Bauer. „Requirements for the visualization
of system-spanning business processes“. In: Proceedings - International Workshop on
Database and Expert Systems Applications, DEXA 2006.August (2005), pp. 948–954
(cit. on p. 17).

[8]Andrea Burattin. „PLG2: Multiperspective Process Randomization with Online and
Offline Simulations“. In: Online Proceedings of the BPM Demo Track 2016 (2016) (cit. on
p. 55).

[9]Camunda and contributors. BPMN modeler. https://demo.bpmn.io/new. 2019 (cit. on
pp. 10, 11).

[10]Camunda and contributors. Color Elements in bpmn-js. https://github.com/bpmn-
io/bpmn-js-examples/tree/master/colors (cit. on p. 60).

[11]Camunda and contributors. Custom Elements in bpmn-js. https://github.com/bpmn-
io/bpmn-js-examples/tree/master/custom-elements (cit. on p. 60).

[12]Camunda and contributors. Examples of bmpn-js. https://bpmn.io/toolkit/bpmn-js/ex-
amples/ (cit. on p. 9).

[13]Camunda and contributors. Overlays in bpmn-js. https://github.com/bpmn-io/bpmn-js-
examples/tree/master/overlays (cit. on p. 60).

61

https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1504.02218v1
https://arxiv.org/abs/arXiv:1504.02218v1

[14]Camunda and contributors. Walkthrough of bpmn-js. https://bpmn.io/toolkit/bpmn-
js/walkthrough/ (cit. on pp. 9, 11, 13, 14).

[15]Camunda and contributors. Web-based tooling for BPMN, DMN and CMMN. https://bpmn.io/
(cit. on pp. 2, 5, 37).

[16]Dickson K.W. et al. Chiu. „Workflow view driven cross-organizational interoperability
in a web-service environment“. In: Lecture Notes in Computer Science 2512 (2002),
pp. 41–56 (cit. on pp. 14, 15).

[17]Rik Eshuis and Paul Grefen. „Constructing customized process views“. In: Data and
Knowledge Engineering 64.2 (2008), pp. 419–438 (cit. on pp. 1, 2, 5, 16, 17, 19, 20,
22).

[18]Valeria Evgeneva. Elma Blog: Lesson 6: Using Artifacts and Data Objects in BPMN.
http://www.elma-bpm.com/2016/06/27/lesson-6-using-artifacts-and-data-objects-in-bpmn/.
2016 (cit. on p. 8).

[19]Khaled Gaaloul, Rainer Schmidt, Selmin Nurcan, Sérgio Guerreiro, and Qin Ma. Enter-
prise, Business-Process and Information Systems Modeling. Stockholm: Springer, 2015
(cit. on p. 19).

[20]Google. Angular. https://angular.io/ (cit. on p. 37).

[21]Volker Hoyer, Eva Bucherer, and Florian Schnabel. „Collaborative e-business process
modelling: Transforming private EPC to public BPMN business process models“. In:
Lecture Notes in Computer Science 4928 LNCS (2008), pp. 185–196 (cit. on p. 15).

[22]IEEE. „Recommended Practice for Architectural Description of Software Intensive
Systems“. In: Technical Report IEEE-std-1471-2000 (2000) (cit. on p. 14).

[23]Lucid Software Inc. BPMN Diagram Symbols & Notation. https://www.lucidchart.com/pages/
bpmn-symbols-explained (cit. on pp. 8, 9).

[24]Lucid Software Inc. Lucidchart. https://www.lucidchart.com/pages/de (cit. on p. 5).

[25]Jens Kolb. „Abstraction, Visualization, and Evolution of Process Models“. PhD thesis.
University of Ulm, 2015, p. 288 (cit. on pp. 14, 19, 22–24, 59).

[26]Jens Kolb and Manfred Reichert. „A flexible approach for abstracting and personalizing
large business process models“. In: ACM SIGAPP Applied Computing Review 13.1 (2013),
pp. 6–18 (cit. on p. 2).

[27]Jochen Küster, Hagen Völzer, Cédric Favre, Moisés Castelo Branco, and Krzysztof
Czarnecki. „Supporting different process views through a Shared Process Model“. In:
Software and Systems Modeling 15.4 (2016), pp. 1207–1233 (cit. on pp. 15, 16).

[28]Duen Ren Liu and Minxin Shen. „Workflow modeling for virtual processes: An order-
preserving process-view approach“. In: Information Systems 28.6 (2003), pp. 505–532
(cit. on p. 16).

[29]David E. Martin and David E. Martin. „Models of Computational Systems—Cyclic to
Acyclic Graph Transformations“. In: IEEE Transactions on Electronic Computers EC-16.1
(1967), pp. 70–79 (cit. on p. 60).

[30]NobleProg Training Materials. BPMN 2.0 Artifacts. https://training-course-material.com/
training/BPMN_2.0_Artifacts. 2014 (cit. on p. 8).

Bibliography 62

[31]Robert B. McMaster and K. Stuart Shea. „Generalization in Digital Cartography“. In:
Resource Publication of the Association of American Geographers (1992), p. 67 (cit. on
p. 18).

[32]MID. Innovator for Business Analysts. https://www.mid.de/leistungen/tools/innovator/
business-analysts?gclid=EAIaIQobChMI1ova1dfq4AIVD-J3Ch2ilw5XEAAYASAAEgLB0_
D_BwE (cit. on p. 5).

[33]OMG. „Business Process Model and Notation 2.0 (BPMN)“. In: January (2011), p. 538.
arXiv: arXiv:1011.1669v3 (cit. on pp. 5, 9).

[34]Manfred Reichert. „Visualizing large business process models: Challenges, techniques,
applications“. In: Lecture Notes in Business Information Processing 132 LNBIP (2012),
pp. 725–736 (cit. on p. 1).

[35]Manfred Reichert and Ralph Bobrik. Proviado - Visualizing Large Business Processes.
https://www.uni-ulm.de/in/iui-dbis/forschung/abgeschlossene-projekte/proviado/ (cit.
on pp. 17, 19, 26, 58).

[36]Manfred Reichert, Jens Kolb, Ralph Bobrik, and Thomas Bauer. „Enabling personalized
visualization of large business processes through parameterizable views“. In: Proceedings
of the 27th Annual ACM Symposium on Applied Computing - SAC ’12 (2012), p. 1653
(cit. on pp. 2, 18–20, 24–27, 34, 48, 58, 59).

[37]Manfred Reichert, Jens Kolb, and Klaus Kammerer. ProView - Personalized and Updat-
able Process Visualizations. https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-
projekte/proview-project/ (cit. on pp. 17, 19, 58).

[38]Wasim Sadiq and Maria E. Orlowska. „Analyzing process models using graph reduction
techniques“. In: Information Systems 25.2 (2000), pp. 117–134 (cit. on p. 16).

[39]Stefan Schönig. Process Aware Information Systems: Process Mining [Slides for the Lec-
ture]. Bayreuth, 2018 (cit. on p. 5).

[40]S. et al. Smirnov. „Business process model abstraction: A definition, catalog, and survey“.
In: Distributed and Parallel Databases 30.1 (2012), pp. 63–99 (cit. on pp. 14, 18, 19).

[41]Zyxware Technologies. BPMN Flow Objects. https://www.zyxware.com/categories/bpmn
(cit. on pp. 6–8).

[42]Techopedia. Business Process. https://www.techopedia.com/definition/1168/business-
process (cit. on p. 4).

[43]H Tran, U Zdun, and S Dustdar. „View-based and Model-driven Approach for Reducing
the Development Complexity“. In: in Process-Driven SOA. In: Intl. Working Conf. . . .
(2007) (cit. on p. 14).

[44]Barbara Weber, Stefan Zugal, Jakob Pinggera, and Jan Mendling. „Imperative versus
Declarative Process Modeling Languages: An Empirical Investigation – Experimental
Material“. In: (2011) (cit. on p. 5).

[45]Mathias Weske. Chapter 1: Introduction in Business Process Management: Concepts,
Languages, Architectures. Springer Science & Business Media, 2012, pp. 1–24 (cit. on
p. 4).

[46]Stephen White. „Introduction to BPMN“. In: BPTrends (2004) (cit. on pp. 5, 6).

Bibliography 63

https://arxiv.org/abs/arXiv:1011.1669v3

List of Figures

2.1 Overview of the symbols according to the three flow object types: event,
activity and gateway. 6

2.2 The three types of connecting objects: sequence flow (top), message
flow (middle) and association (bottom). 7

2.3 The two swimlane objects: A pool can contain any number of lanes to
model further responsibility details. 7

2.4 The three artifact objects: data object, group and annotation. 8
2.5 Screenshot of the modeling interface of BPMN.io [9]. The modeling

toolbox (left), buttons to save and load the diagram (bottom left) and
buttons for making the drawing area more clearly (right). 10

2.6 The context menus of different modeling elements in BPMN.io [9]. . . 10
2.7 BPMN.io provides different selection possibilities to change the type of

elements [9]. 11
2.8 A simple BPMN model created with BPMN.io (top) and its underlying

XML structure (bottom). 12
2.9 The architecture of bpmn-js according to [14]. It is built upon the two

libraries diagram-js and bpmn-moddle which involve additional modules. 13
2.10 Workflow view meta-model in UML class diagram [16]. 15
2.11 Transformation concept from a private to a public view resulting in a

collaborative process [21]. 15
2.12 Schematic representation of a process view synchronization via a shared

process model [27]. 16
2.13 Construction of a process view while respecting the order preservation

principle in a loop structure [28]. 16
2.14 Illustration of approach for generating customized process views [17]. 17
2.15 Example of a process instance (top) and an associated process view

(bottom) after using the two abstraction concepts aggregation (blue)
and reduction (orange) [6]. 18

2.16 Overview of elementary aggregation operations according to [6]. Each
schema transformation shows a process model with selected activi-
ties (high saturated blue) and the resulting process model with the
aggregation (low saturated blue). 21

2.17 View Creation Operation RedActivity according to [25]: The activity B

(blue) and all incoming and outgoing edges are deleted or relinked. . . 23

64

2.18 View Creation Operation RedDataElement according to [25]: The data
element d2 (blue) and all incoming and outgoing edges are deleted. . . 23

2.19 Overview of elementary reduction operations according to [6]. Each
schema transformation shows a process model with selected activities
(orange) which should be reduced and the resulting process model. . . 24

3.1 A simple process diagram (top) with selected activity set (blue) and the
result after applying AggrSequence (bottom). The selected activities
are contained in two separated blocks of sequences resulting in two
individual aggregation nodes. 28

3.2 A simple process diagram (top) with selected activity set (blue) and the
result after applying AggrSESE (bottom). The selected activities are
contained in a SESE block which is replaced by a single activity. 29

3.3 The process diagram in Figure 3.2 can be transformed into three equiv-
alent alternatives through inserting additional gateways. The subblock
consists of activities B, C and D, E (left) or D, E and F , G (right) or
B, C and F , G. 29

3.4 A simple process diagram (top left) with selected activity set (blue).
Through identifying the subblock as intermediate step (top right),
the application of AggrSESE leads to the same result as applying
AggrComplBranches on the origin process diagram (bottom). The
branches referring to the selected activities are aggregated into a single
branch. 30

3.5 A simple process diagram (top) with different selected activity sets
(blue). Depending on the selected activity set, a left shift out (left
bottom) or a right shift out (right bottom) is applied. 31

3.6 A simple process diagram (left) with a set of selected activities (blue).
Performing AggrShiftOut in a first step does not lead to the maximal
aggregation and prevents further aggregations (middle), while the
execution of AggrSequence in a first step, followed by AggrShiftOut
aggregates all selected activities (right). 32

3.7 The aggregation procedure: Each aggregation operation is executed in
a loop until none of them can be applied on the selected set of activities
anymore. AggrShiftOut will be executed only then the repetititon of the
other two operations does not lead to further changes in the model. . . 32

3.8 A simple process diagram (top) with selected activity set (blue) and
the result after applying RedSequence (bottom). The reduction of each
sequence is guaranteed by performing the basic reduction on each
activity of the selection set. 33

3.9 A simple process diagram (top) with selected activity set (blue) and the
result after applying RedSESE (bottom). The block-referring gateways
as well as associations connected with activities in the block are removed. 34

List of Figures 65

3.10 A simple process diagram (top) with selected activity set (blue) and the
result after applying RedComplBranches (bottom). Because the block is
opened by a XOR gateway, the empty edge is preserved. 34

4.1 The programming structure of our implementation: The GUI is built up
on four components accessing to four services. 38

4.2 The graphical user interface of the start page with an exemplary model
and its three extensions: the toolbar (I), the expanded slide menu (II)
and the notification area (III). 39

4.3 Matrix view referring to the exemplary model in Figure 4.2. 40
4.4 Code snippets which describe the initialization procedure and the access

to BPMN.io services. 40
4.5 Implementation of the hiding procedure of a pool. 43
4.6 Resulting process view after collapsing participant 1 (left) and partici-

pant 2 (right) of the model visualized in Figure 4.2. 44
4.7 The implementation of the aggregation procedure. Secondary code is

omitted but commented. 44
4.8 Code snippet of the while-loop in the method aggregateSelectedEle-

ments. The variable filteredSelectedElements contains only the activities
of the selected set of elements. 45

4.9 The creation of the Role-Role Matrix containing information about
message flows between participants in the cells. 47

5.1 A process model (top) and the result (bottom) after applying the ab-
straction mechanisms on a selected set of activities. The set of activities
highlighted in blue are aggregated, while the activities highlighted in
yellow are reduced. 48

5.2 A simple process diagram with multiple participants and a message flow
between them. 49

5.3 The result after aggregating all activities of the process model in Figure
5.2. 50

5.4 A process model with four participants and nine data elements leading
to confusing and crossing message flows and associations. 51

5.5 The role-role matrix view of the process diagram in Figure 5.4 with
focus on the activities that are involved by different participants. Due
to lack of space we ommit the last column which is left empty referring
to Participant 4 as source. The grey lines stand for further entries. . . . 51

5.6 The role-data matrix view of the process diagram in Figure 5.4 with
focus on the data objects that can be the input or output of activities of
participants. 52

5.7 Real-life process model describing a business process involving two
participants. 52

List of Figures 66

5.8 Expanded version of the real-life process model shown in Figure 5.7.
The activities can be assigned to the subprocesses in the collaped model
by their color. 53

5.9 The resulting process model after performing a step-wise aggregation
of the activity set referring to the same subprocess in Figure 5.8. 54

5.10 The result after eliminating all lanes of the pool Company in the process
model shown in Figure 5.9. 55

List of Figures 67

List of Tables

2.1 Overview of aggregation operation properties according to [6]. 22
2.2 Overview of reduction operation properties according to [6]. 24

4.1 Classification of the implemented view-building concepts depending on
the presentation form and the type of complexity reduction. 42

5.1 The computation times of the aggregation mechanisms executed on the
three test sets. Besides the full runtime, we present the percentages of
AggrSequence (SQ) and AggrSESE (SE). 57

68

Declaration

I herewith declare that I have composed the present thesis myself and without
use of any other than the cited sources. Sentences or parts of sentences quoted
literally are marked as such; other references with regard to the statement and
scope are indicated by full details of the publications concerned. The thesis in
the same or similar form has not been submitted to any examination body and
has not been published. This thesis was not yet, even in part, used in another
examination or as a course performance. Furthermore I declare that the submitted
written (bound) copies of the present thesis and the version submitted on the data
carrier are consistent with each other in contents.

Bayreuth, April 24, 2019

Myriel Fichtner

	Cover
	Titlepage
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Structure

	2 Preliminaries and State of the Art
	2.1 Definitions
	2.2 BPMN and tool support
	2.2.1 Basics of BPMN
	2.2.2 Modeling tool BPMN.io

	2.3 Related Work
	2.3.1 Non-parameterizable Process Views
	2.3.2 Parameterizable Process Views
	2.3.3 View-building Operations in Parameterizable Process Views

	2.4 Conclusion

	3 Concepts
	3.1 Definitions and Assumptions
	3.2 Abstraction Mechanisms
	3.2.1 Aggregation
	3.2.2 Reduction

	3.3 Further view-building concepts
	3.3.1 Hide and Collapse
	3.3.2 Matrix-based Views

	4 Implementation of Process Views with BPMN.io
	4.1 Technical Background
	4.2 Graphical User Interface
	4.3 Realization of Concepts
	4.3.1 Diagram-based Views
	4.3.2 Matrix-based Views

	5 Evaluation
	5.1 Artificial Models
	5.2 Real-life Models
	5.3 Runtime Measurements

	6 Conclusion
	6.1 Summary
	6.2 Contribution
	6.3 Future Work

	Bibliography
	Declaration

