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Abstract  

Grasslands are important ecosystems worldwide, exhibiting high biodiversity and providing 

important ecosystem services. In Europe, they occupy more than one-third of the total 

agricultural land area. However, grasslands experience periodical drought during the growing 

season, which reduces their productivity, influences species abundance and distribution, and 

leads to changes in grassland functions. Climate change is expected to increase the intensity 

and frequency of drought and thus intensify the impacts of drought on grasslands. To improve 

our ability to predict the consequences of these changes on grasslands, thorough understandings 

of species responses to drought, of the traits governing drought responses, and of how they 

affect community assembly and ecosystem function are imperative. However, lacking 

comparative datasets on whole-plant drought resistance and comprehensive sets of traits across 

grassland species currently impedes our understanding of the role of drought under past and 

current climate regimes, and our projections for the future. 

To cover the gaps, in this thesis we comparatively assessed whole-plant drought resistance and 

an extensive suite of traits. To our knowledge, these are the first comparative datasets across 

multiple grassland species. With them, we aimed to address the following questions: (1) Do 

species drought responses vary across species? (2) Do performance trade-offs exist at the 

whole-plant and trait levels? (3) Are whole-plant drought resistance and traits related to species 

distribution along moisture gradients? (4) What is the mechanism of drought resistance? (5) 

Which traits can be used to predict drought resistance?  

Whole-plant drought resistance was assessed for 41 common temperate grassland species 

including 20 forbs and 21 grasses in a common garden drought experiment. The experimental 

design allowed us to comparatively assess the effects of drought on performances of individual 

species by only inducing delines in soil water potentials while minimizing effects of other 

cofounding abiotic and biotic factors that influence plant performances. Additionally, midday 

leaf water potential under drought was measured to indicate species efficiency of desiccation 

avoidance. Further, we assessed 38 morphological, anatomical and physiological traits. All 

traits are hypothesized to be mechanistically related to drought resistance, including ‘hard’ 

traits that pertain to plant key processes, i.e., water uptake, water storage, water transport, water 

loss, membrane vulnerability, and carbon gain.  
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We found that drought significantly reduced species survival and growth, while its effects 

varied significantly across species. The ranks of species performances remained consistent 

across drought periods. Many species showed high drought resistance, and a few may suffer 

greatly under drought. Forbs and grasses had similar whole-plant drought resistance, while they 

were divergent along trait axes. 

Performance trade-offs were not supported. At whole-plant level, growth under irrigated 

conditions (optimal growth) was unrelated to whole-plant drought resistance of survival and 

was positively correlated with growth under drought conditions. At trait level, traits that are 

known to enable high optimal growth had relatively low importance for whole-plant drought 

resistance. A ‘fast-slow’ plant economics spectrum did not emerge, suggesting that traits and 

processes involved in drought resistance and growth under optimal conditions should be 

independent. Further, whole-plant drought resistance was not related to species distribution 

along moisture gradients, while drought sensitive species were restricted to wet habitats, 

suggesting that the relation between drought resistance and species distribution was weak. 

Consistently, several traits were significantly correlated with species distribution, but they had 

relatively low importance for whole-plant drought resistance. Together, these results suggest 

that drought acts as a filter excluding drought sensitive species from dry habitats, but other 

factors additionally determine species segregation along realized hydrological niches. 

The dominance of mechanisms of desiccation avoidance over tolerance was supported. Midday 

leaf water potential under drought was positively correlated with whole-plant drought 

resistance. Traits of desiccation avoidance, such as rooting depth, root mass, and stomatal 

index, had the highest importance for whole-plant drought resistance and species distribution. 

However, the coordination among traits was complex and no main axes emerged to define a 

drought resistance spectrum. Many combinations of traits existed to confer grassland species 

the same or different drought resistance.  

Traits can predict species drought resistance. However, a single trait, such as turgor loss point, 

had relatively low prediction accuracy. Using more root traits and treating forbs and grasses 

separately, the predictive models were improved (r2 ≥ 56%).  

In summary, the differential species drought resistance suggests that increasing drought may 

have a great impact on temperate grasslands. Our models had relatively high predictive power, 

which will contribute to predicting the consequences of drought on grasslands and may provide 
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applicable models for grassland conservation and management under climate change. The 

comparative datasets of whole-plant drought resistance and traits can allow to further explore 

of the direct and indirect effects of moisture on community assembly and grassland dynamics 

at community levels within the framework of the Biodiversity Exploratories. 
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Zusammenfassung 

Grasland gehört aufgrund seiner hohen Biodiversität und der Bereitstellung wichtiger 

Ökosystemdienstleistungen zu den weltweit wichtigsten Ökosystemen. In Europa handelt es 

sich bei mehr als einem Drittel der landwirtschaftlichen Fläche um Grasland. In der 

Vegetationszeit ist Grasland immer wieder Trockenheitsperioden ausgesetzt, die die 

Produktivität reduzieren, die Abundanz und Verbreitung von Arten beeinflussen und zu 

Änderungen der Funktion führen. Erwartungsgemäß wird die Intensität und Frequenz von 

Trockenheitsperioden durch den Klimawandel zunehmen, wodurch sich auch der Einfluss von 

Trockenheit auf Grasländer verstärkt. Für Vorhersagen über die Konsequenzen dieser 

Veränderungen auf Graslandgesellschaften sind genaue Kenntnisse nötig, wie Arten auf 

Trockenheit reagieren, welche Pflanzeneigenschaften diese Reaktion hervorrufen und wie dies 

die Artenzusammensetzung und die Funktion des Ökosystems beeinflusst. Bisher existieren 

keine vergleichbaren Datensätze, wie Graslandarten auf Trockenheit reagieren bzw. welche 

Eigenschaften dafür verantwortlich sind. Dadurch ist unser Verständnis über den Einfluss von 

Trockenheit auf Grasländer in der Vergangenheit, unter jetzigen klimatischen Bedingungen 

sowie unsere Prognosen unvollständig.  

Um diese Wissenslücken zu schließen, habe ich in dieser Doktorarbeit vergleichende 

Untersuchungen zu der Trockenresistenz von Graslandpflanzen durchgeführt und eine Vielzahl 

von Pflanzeneigenschaften gemessen. Nach meinem Kenntnisstand, ist dies der erste 

umfassende Datensatz für Graslandarten, der sich für Vergleichszwecke eignet. Mit diesem 

Datensatz habe ich folgende Fragestellungen untersucht: (1) Unterscheiden sich die Arten in 

ihrer Reaktion auf Trockenheit?; (2) Gibt es Kompromisse („Trade-offs“) zwischen den 

Eigenschaften und in der Gesamtleistung der Pflanze?; (3) Steht die Trockenresistenz von 

Arten und deren Eigenschaften in Bezug zu ihrer Verbreitung entlang eines Feuchtgradienten?; 

(4) Was ist der Mechanismus für Trockenresistenz?; (5) Welche Eigenschaften können zur 

Vorhersage von Trockenresistenzen genutzt werden? 

Es wurde die Trockenresistenz von 41 häufigen temperaten Graslandarten (21 Kräuter, 20 

Gräser) in einem kontrollierten Freilandexperiment („Common Garden Experiment“) 

untersucht. Ich habe das Wasserpotenzial der Blätter zur Mittagszeit („Midday Leaf Water“ 

Potenzial) unter Trockenstress gemessen, welches auf eine effiziente 

Austrocknungsvermeidung hinweist. Darüber hinaus habe ich 38 morphologische, 
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physiologische und anatomische Pflanzeneigenschaften und deren phänotypische Plastizität 

untersucht. Alle Eigenschaften (u.a. „Hard Traits“) beeinflussen potenziell die 

Trockenresistenz, die mit Schlüsselprozessen wie Wasseraufnahme, Wasserspeicherung, 

Wassertransport, Wasserverlust, Durchlässigkeit der Membran und Kohlenstoffaufnahme, in 

den Pflanzen in Zusammenhang stehen. Der experimentelle Aufbau erlaubte es die Leistung 

einzelner Arten allein auf die Abnahme des Wasserpotenzials im Boden zurückzuführen, ohne 

weitere biotische und abiotische Faktoren berücksichtigen zu müssen.  

Die Arten reagierten unterschiedlich auf Trockenheit, welche eindeutig das Überleben und 

Wachstum der Arten verringerte. Die Reihenfolge der Artenleistung bei verschiedenen 

Trockenperioden blieb konstant. Viele Arten zeigten eine hohe Trockenresistenz und nur 

wenige litten stark unter der Trockenheit. Kräuter und Gräser hatten eine ähnliche 

Trockenresistenz, aber variierten in ihren Eigenschaften. 

Trade-offs in der Leistung der Pflanzen traten nicht auf. Zwischen der Wachstumsrate unter 

bewässerten Bedingungen und dem Wachstum unter Trockenheit bestand eine positive 

Korrelation, jedoch bestand kein Zusammenhang zur Überlebensrate unter Trockenheit. 

Pflanzeneigenschaften, die ein schnelles Wachstum ermöglichen, hatten einen geringeren 

Einfluss auf die Trockenresistenz. Ein „schnell-langsam“ Wirtschaftsspektrum („slow-fast 

economic spectrum“) trat nicht auf. Das heißt, unter optimalen Wachstumsbedingungen sind 

die Eigenschaften und Prozesse, welche Wachstum und Trockenresistenz bestimmen, 

unabhängig. Die Trockenresistenz stand in keiner Beziehung zu der Verbreitung der Arten 

entlang eines Feuchtegradienten. Trockensensitive Arten waren jedoch auf feuchte Habitate 

beschränkt. Eigenschaften, die mit der Verbreitung der Arten in Zusammenhang standen, 

hatten einen geringen Einfluss auf die Trockenresistenz. Zusammenfassend, deuten diese 

Ergebnisse daraufhin, dass Trockenheit als Filter wirkt, der trockenheitssensitive Arten von 

trockenen Habitaten ausschließt. Jedoch bestimmen nicht „Trade-offs“ zwischen den 

Eigenschaften und der Trockenresistenz, sondern andere Faktoren die Verteilung der Arten 

entlang realisierter hydrologischer Nischen.  

Mechanismen für die Vermeidung von Trockenheit überwiegen gegenüber denen für 

Trockentoleranz. „Midday Leaf Water“ Potenziale unter Trockenheit korrelierten positiv mit 

der Trockenresistenz. Eigenschaften, die der Vermeidung von Austrocknung dienen, wie 

Wurzeltiefe, Wurzelmasse und Stomata-Index, hatten den höchsten Einfluss auf die 

Trockenresistenz und Artverbreitung. Allerdings ist das Zusammenspiel zwischen den 
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verschiedenen Eigenschaften komplex und es gibt keine Hauptachsen, die ein 

Trockenresistenzspektrum definieren würden. Stattdessen existieren zahlreiche 

Kombinationen von Eigenschaften, die dazu führen, dass verschiedene Graslandarten eine 

ähnliche, geringere oder höhere Trockenresistenz besitzen.  

Pflanzeneigenschaften erklärten die Trockenresistenz. Allerdings hatte eine einzelne 

Eigenschaft, wie der Welkepunkt, nur eine sehr geringe Vorhersagekraft. Durch die Nutzung 

weiterer Wurzeleigenschaften und der separaten Berücksichtigung von Gräsern und Kräutern 

konnte die Vorhersagekraft der Modelle verbessert werden (r2 ≥ 56%).  

Insgesamt verweist die unterschiedliche Reaktion der Arten darauf, dass zunehmende 

Trockenheit einen großen Einfluss auf temperate Grasländer haben wird. Obwohl verschiedene 

Eigenschaften zu einer hohen Trockenresistenz führen, können diese Eigenschaften zur 

Vorhersage von artspezifischen Trockenresistenzen genutzt werden. Dies ermöglicht es die 

Konsequenzen von Trockenheit vorherzusagen und dient der Entwicklung 

anwendungsorientierter Modelle für die Erhaltung und das Management von Grasländern unter 

Klimawandel. Umfassende Datensätze über die Trockenresistenz von Arten und Eigenschaften 

erlauben es den direkten und indirekten Einfluss von Feuchtigkeit auf die Zusammensetzung 

der Artengemeinschaft und deren Dynamik im Rahmen der Biodiversitäts-Exploratorien 

abzuschätzen.  
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Synopsis 

Backgrounds 

 

Grasslands and drought  

Grasslands occupy one-fifth of the world’s land surface (Scurlock & Hall, 1998), contain the 

highest biodiversity at small scales in the world (≤ 50 m; Wilson et al., 2012), and store one-

third of terrestrial carbon (Gibson, 2009). In Europe, they cover 8% land surface and 35% 

agricultural area, and provide important goods and services (Smit et al., 2008). However, 

grasslands experience periodical drought during the growing season (Gibson, 2009). In major 

grasslands around world, such as North America's prairie (Tilman & El Haddi, 1992; Harrison 

et al., 2015; Konings et al., 2017), European grasslands (Buckland et al., 1997; Stampfli & 

Zeiter, 2004), savanna grasslands (O'Connor, 1995), and Asian grasslands (Kinugasa et al., 

2012), natural drought has been reported to reduce species abundance, lead to species loss and 

changes in grasslands species and functional compositions, and impair ecosystem services 

(Tilman & El Haddi, 1992; Buckland et al., 1997; Stampfli & Zeiter, 2004; Frank, 2007; 

Harrison et al., 2015; Konings et al., 2017). Under global climate change scenarios, increasing 

temperature and drought are projected to occur in grasslands during the growing season (IPCC, 

2014; Schlaepfer et al., 2017), strengthening the impacts of drought on grasslands. Therefore, 

it is urgently needed to improve our ability to predict the consequences of drought on 

grasslands. However, relevant comparative whole-plant drought resistance datasets are mostly 

restricted to woody species (Kursar et al., 2009; O’Brien et al., 2014; Anderegg et al., 2016). 

The few studies focusing on grassland species are confined to a limited number of species (4-

8 species; Fernandez & Reynolds, 2000; Perez-Ramos et al., 2013; Zwicke et al., 2015). 

Lacking comparative whole-plant drought resistance datasets across multiple species hinders 

our understandings of species responses to drought, of the traits governing drought responses, 

and of how they affect community assembly and ecosystem function, and thus limits our 

projections for the future.  

In the thesis, we comparatively assessed whole-plant drought resistance across 41 common 

temperate grassland species, including 20 forbs and 21 grasses. We further measured a 
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comprehensive of traits, i.e., 38 morphological, anatomical and physiological traits. All traits 

have mechanistic hypotheses on relations with drought resistance, including ‘hard’ traits that 

pertain to key processes in plants, i.e., water uptake, water storage, water transport, water loss, 

membrane vulnerability, and carbon gain. This is the first big dataset of comparative species 

whole-plant drought resistance and of an extensive suite of traits for grassland species. We 

aimed to understand the role of drought and traits in determining species distribution, to 

increase our understandings of drought resistance and its mechanisms, and to improve our 

predictions of consequences of drought on grasslands. This study was conducted within the 

framework of the Biodiversity Exploratories which provides data on vegetation composition 

and moisture variation and allows to further evaluate the relative importance of drought and 

traits for community assembly (Fischer et al., 2010). 

 

Drought resistance and species distribution  

Scientists have long recognized the differential preferences of species to the physical 

environment (Grinnell, 1904). Compared with other factors, species tolerances and 

requirements for certain environmental conditions are hypothesized to be the most important 

determinants of species distribution patterns (Barve et al., 2011). Two hypotheses regarding to 

performance trade-offs can be used to explain species sorting along environmental gradients. 

The ‘growth-stress tolerance’ trade-off hypothesizes that species with low maximum potential 

growth rate are stress tolerant and maintain high survival under environmental stress (Grime & 

Hunt, 1975). Later work has extended it to a trait-based spectrum, i.e., the leaf economics 

spectrum or the ‘fast-slow’ plant economics spectrum, hypothesizing that traits indicating low 

growth rate, such as low specific leaf area, low maximum photosynthesis, low specific root 

length and high root tissue density, are coordinated with each other and confer high stress 

tolerance capacity (Wright et al., 2004; Reich, 2014). The ‘growth rate’ trade-off suggests that 

species have higher growth rate under high resource levels will exhibit lower growth rate at 

low resource levels than their counterparts with lower growth rate under high resource levels 

(Latham, 1992). Both hypotheses have been hypothesized to be crucial and general trade-offs 

and extensively studied regarding to light and nutrient in woody species (Sack & Grubb, 2001; 

Wright et al., 2010; Reich, 2014). However, despite their pervasive implications for species 

distribution, competition and community assembly, their pertinence to drought, in contrast, 

have been rarely empirically investigated. At whole-plant level optimal growth was found to 
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be unrelated to whole-plant drought resistance of survival (Fernandez & Reynolds, 2000) and 

positively, rather than negatively, correlated with growth under drought (Reader et al. 1993). 

Consistently, at trait level, Craine et al. (2013) found that physiological drought resistant 

species had higher maximum photosynthesis. These results suggest that no trade-offs exist 

between optimal growth and survival or growth under drought.  

Yet, across moisture gradients, species drought resistance has been shown to shape species 

distribution in tropical forests (Engelbrecht et al., 2007). It was also suggested to determine 

species segregation along hydrological niches in grassland species (Silvertown et al., 1999). 

However, a direct evaluation of the association of whole-plant drought resistance with species 

distribution has not yet been tested in grassland species. Several studies have tested this by 

relating traits to species distributions, such leaf water potentials at stomatal closure, specific 

leaf area or gas exchange traits, under the assumptions that they are main drivers of differential 

drought performance (Tucker et al., 2011; Craine et al., 2013; Belluau & Shipley, 2017; 

Shipley et al., 2017). Overall, these studies showed weak associations between traits and 

species distributions along moisture gradients suggesting that a weak soring effect of drought 

on grassland species and their traits. However, our understanding of trait associations with 

whole-plant drought resistance remains limited. The weak relations between traits and species 

distribution along moisture gradients could be caused by the poor relations of these traits with 

whole-plant drought resistance.  

In this thesis, we aimed to understand the role of drought and trait on species distribution. We 

specifically addressed the questions: (1) What are the performances of species under drought? 

(2) Do performance trade-offs exist at whole-plant and trait levels? (3) Are whole-plant drought 

resistance and traits related to species distribution along soil moisture? 

Mechanisms of drought resistance 

Mechanisms of drought resistance, i.e,. mechanisms that allow plants to withstand periods of 

low water availability, are usually grouped into two main groups: desiccation avoidance and 

desiccation tolerance (Levitt, 1972). Desiccation avoidance is characterized by high plant water 

potentials under drought (Levitt, 1972). The efficiency of desiccation avoidance thus can be 

assessed by midday leaf water potential under drought, which integrates plant traits at root, 

stem and leaf levels (Levitt, 1972; Comita & Engelbrecht, 2014; Fang & Xiong, 2015). 

Desiccation tolerance enables plants to maintain physiological activities and functions even 
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under severe water stress. Traits confer high efficiency of desiccation avoidance include (1) 

root traits that maximize water uptake, (2) high water storage in plant organ, and (3) traits that 

minimize transpirational water loss through leaves such as high turgor loss point, high leaf 

water potentials at stomatal closure, low stomatal and cuticular conductance, high stomatal 

density and index, low stomatal size and low specific leaf area (Levitt, 1972; Comita & 

Engelbrecht, 2014; Fang & Xiong, 2015). Traits belonging to desiccation tolerance (1) allow 

water transport and gas exchange under low water potentials such as high xylem resistance to 

embolism, high leaf vein density, and insensitive stomatal response to water stress through low 

turgor loss point, and (2) enable cell membrane structure to keep integral under low tissue water 

potentials (Levitt, 1972; Comita & Engelbrecht, 2014; Fang & Xiong, 2015). These traits may 

all contribute to drought resistance with their importance likely to differ (Choat et al., 2018). 

However, an evaluation of the relative importance of these traits are missing in both woody 

and herbaceous species due to the lack of datasets on comparative whole-plant drought 

resistance and a comprehensive set of traits, impeding our understanding of mechanisms of 

drought resistance.  

The interactions among traits are suggested to be complex and may enable many combinations 

of traits to resist drought (Choat et al., 2018). For example, two studies on grassland species 

found that although high rooting depth was important for drought resistance, species with 

shallow roots can still maintain high leaf water potentials and water contents under drought 

(Garwood & Sinclair, 1979; Buckland et al., 1997), suggesting other traits contributed to 

drought resistance in these species. Yet, traits may function in a coordinated way due to 

physiological linkages and natural selections. For instance, traits pertaining to water loss, such 

as turgor loss point and leaf water potentials at stomatal closure, were positively related 

(McAdam & Brodribb, 2015; Bartlett et al., 2016) and both were coordinated with water 

transport in roots, stems, and leaves in woody species (Bartlett et al., 2016). These coordination 

among traits may enable trait interactions collapse into main axes, such as a ‘fast-slow’ plant 

economics spectrum (see above) or a hydraulic spectrum in woody species (Manzoni, 2014; 

Bartlett et al., 2016), but remains to be tested in grassland species.  

To improve our understanding of mechanisms of drought resistance, we assessed the 

importance of traits and midday leaf water potential under drought for whole-plant drought 

resistance, evaluated trait relations and tested if main axes among trait variations emerged.  
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Predictions of species drought resistance using traits 

Traits can be used to predict species performance under certain environmental conditions due 

to their associations with plant functions or as functions themselves (Violle et al., 2007). They 

have been used to predict species performance under natural conditions (Herz et al., 2017; 

Medeiros et al., 2018), to explain community assembly and species distributions (Kraft et al., 

2008; Diaz et al., 2009), and to predict community responses to climate (Lavorel & Garnier, 

2002). The fact that traits are relatively easy to measure and confer the generality and 

predictivity motivates the use of traits as proxies of comparative drought resistance (O'Brien et 

al., 2017). Turgor loss point, i.e., the leaf water potentials at which leaf cells lose turgor, has 

been suggested as a key trait to predict species responses under drought (Blackman, 2018). It 

was significantly correlated with species survival under drought (Zhu et al., 2017) and other 

leaf water relation traits that are important for drought resistance, such as xylem resistance to 

embolism or leaf water potential at stomatal closure (Bartlett et al., 2016). A recent method 

that assesses turgor loss point with osmotic water potential at full turgor using osmometer 

accelerates assessment of turgor loss point and is applicable to various leaf types, making the 

use of turgor loss point even more appealing. For grassland species, however, few studies 

assessed turgor loss point and found it was not related to species distribution (Ocheltree et al., 

2016). No studies have yet tested its association with whole-plant drought resistance in 

grassland species. An evaluation of the association of turgor loss point with whole-plant 

drought resistance across multiple grassland species thus is needed to assess the use of turgor 

loss point for predicting species drought resistance and grassland dynamics under drought.  

Root traits have been suggested to be more appropriate for predicting drought resistance than 

turgor loss point and other leaf level traits because many grassland species showed rapid leaf 

death under drought and can survive drought after complete loss of aboveground tissue (Volaire 

et al., 1998). Consistently, root traits, such as rooting depth and root mass, were found to 

significantly contribute to high growth and survival under drought (Perez-Ramos et al., 2013; 

Zwicke et al., 2015). These results suggest that including root traits may be necessary to 

improve our prediction accuracy.  

In this thesis, we assessed the predictive power of turgor loss point and root traits for whole-

plant drought resistance of survival. The models based on these traits might improve our 

predictions of consequences of drought on grasslands. 
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Materials and Methods 

Study species 

41 temperate grassland species, 20 forbs and 21 grasses, were initially chosen according to the 

following criteria: (1) common in German grasslands based on their high abundance and 

frequency in 150 long-term grassland plots (4m × 4m) in Biodiversity Exploratories in a three 

areas across Germany (Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb; Fischer et al., 

2010), (2) to include grasses and forbs, (3) association to a wide range of soil moisture based 

on Ellenberg’s soil moisture index (M-values from 3 to 7, Ellenberg et al., 1991), and (3) being 

perennial and C3, the dominant life history strategy and photosynthetic pathway in European 

temperate grasslands (Ellenberg et al., 1991; Collatz et al., 1998). The selected species were 

from 33 genera and 10 families, i.e., covered a wide range of phylogenetic backgrounds.  

Experiments 

Two experiments, a common garden drought-irrigation experiment and a greenhouse 

experiment, were carried out to assess species performances under drought and irrigated 

conditions, midday leaf water potential under drought, and 38 morphological, anatomical and 

physiological traits. All traits are associated with key processes in plants, i.e., water uptake, 

water storage, water transport, water loss, membrane vulnerability and carbon gain, and have 

been known or hypothesized to be important for drought resistance.  

The design of the common garden experiment aimed to expose all species to uniformly 

pronounced drought to assess drought performances of the individual species that are directly 

comparable across all species, rather than to mimic climate extreme events or a specific natural 

drought. Other cofounding abiotic and biotic factors that affect plant performances were 

minimized by randomly planting one individual per species into each plot in a 20 cm grid to 

avoid overlaps between roots and between leaves. Plots were fertilized twice before the drought 

treatment to avoid potential nutrient limitation. This is contrasted with field observational data 

or data from experimental drought in natural or manipulated plant communities where 

interactions among plants or the influences of other environmental factor, such as nutrient or 

light, may blur the drought effects (Beier et al., 2012). It also overcomes the potential problems 

in pot experiments that the different transpiration rate caused by plant size and species-specific 



Synopsis ─ Materials and Methods 

 

7 

stomatal responses can drawdown soil water in different pots differentially and hinder the 

comparison across species (Comita & Engelbrecht, 2014).  

Drought performances were measured under experimental drought and irrigated conditions in 

the common garden. Whole-plant drought resistance was assessed as the response ratio of 

survival and growth under drought relative to irrigated conditions. Midday leaf water potentials 

under drought were measured when most plants wilted. To ensure comparativeness across 

species, all individuals within one plot were measured each day, i.e., one individual per species 

each day.  

We used Ellenberg’s indicator values for moisture (M-values) as an index of species 

distribution across moisture gradients (Ellenberg et al., 1991). M-values has been shown to be 

highly correlated with actual quantification of habitat water availability in Europe and be a 

reliable indicators of species association with habitat dryness (Diekmann, 2003; Schaffers & 

Sýkora, 2009).  

Most traits were assessed under well-watered conditions in the greenhouse and the common 

garden experiments. The assessment of these trait was without reference to the specific 

environmental background and conferred the comparativeness across studies (Violle et al., 

2007). However, many of traits express high phenotypic plasticity such as turgor loss point 

(Bartlett et al., 2014) and root traits (Comas et al., 2013). Ignorance of traits responses to 

drought may underestimate the importance of traits and the phenotypic plasticity itself. We, 

therefore, assessed root allocation traits and their phenotypic plasticity under drought 

conditions. For other traits, however, the assessments of trait plasticity will either interrupt our 

drought experiment or destruct our plants greatly. Overall, we found that traits in drought 

conditions are mainly determined by its potential values at optimal conditions or irrigated 

conditions (see below). The role of phenotypic plasticity is thus limited.   
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Manuscripts of this thesis 

This thesis is composited by four manuscripts, each presenting different datasets and 

addressing different questions that we aimed to solve. In Manuscript 1, we assessed species 

performances under drought and irrigated conditions. We tested the performance trade-offs at 

whole-plant level and evaluated the relation of whole-plant drought resistance with species 

distribution along moisture gradients. The dataset in Manuscript 1 provides the basis to assess 

mechanisms of drought resistance, trait importance and the use of traits for predictions. In 

Manuscript 2 and Manuscript 3, we assessed the importance of mechanisms of desiccation 

avoidance for whole-plant drought resistance of survival, and the prediction power of traits. In 

Manuscript 4, we used a comprehensive set of traits to test if performance trade-offs are 

supported at trait level, i.e., if a ‘fast-slow’ plant economics spectrum emerges, to assess the 

relations of traits with species distribution, and to evaluate trait coordination and the relative 

importance of traits for drought resistance. The differences between forbs and grasses in traits, 

drought resistance and predictive models were evaluated from Manuscript 1-4. These studies 

contributed to improve our understanding of the role of drought and traits on species 

distribution, to increase our understandings of drought resistance and its mechanisms, and to 

improve our predictions of consequences of drought on grasslands. The results from each 

manuscript were summarized below.  

Manuscript 1: Comparative drought resistance and its relation with species distribution  

Drought significantly reduced plants growth and survival, but its effect varied across all species 

as well as across forbs and grasses. Species ranks of drought resistance held under a wide range 

of drought intensities as indicated by the positive correlations between species survival after 

different drought periods and the final survival. Many forbs and grasses could efficiently resist 

drought with more than 70% species having survival > 90%, a few showed relatively low 

drought resistance. This could lead to changes in grassland composition and functions under 

drought due to the loss of drought sensitive species and invasion of exotic species or the 

expansion of local drought resistance species. Overall, forbs and grasses showed similar whole-

plant drought resistance. This study provided comparative quantifications of whole-plant 

drought resistance which allows us to test the mechanisms of drought resistance and assess the 

importance of traits for different drought performance parameters and the use of traits for the 

predictions.  
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Growth under irrigated conditions was unrelated to whole-plant resistance of survival, and 

weakly positively correlated with growth under drought, indicating that the performance trade-

offs were not supported at whole plant level. Further, whole-plant drought resistance of both 

survival and growth were not related to species association with habitat dryness. However, the 

most drought sensitive species (e.g. whole-plant drought resistance of survival < 0.8) were 

restricted to wet habitats. These results suggest that drought acts as a filter excluding drought 

sensitive species from dry habitats, but other abiotic and biotic factors additionally influence 

species segregation along the realized hydrological niches.  

Manuscript 2: The importance of desiccation avoidance and the use of turgor loss point 

for predicting whole-plant drought resistance of survival 

In Manuscript 2, three parameters in terms of survival, i.e., drought survival (dead or alive in 

dry treatment), % survival (drought survival/initial number in dry treatment), and response ratio 

(% survival in dry relative to irrigated treatment), were used to assess species drought 

resistance. Forbs had significantly higher turgor loss point and maintained higher midday leaf 

water potential under drought and higher drought survival than grasses, but both had similar 

response ratios. To keep consistent, only results from response ratio, i.e., whole-plant drought 

resistance of survival, were presented.  

We directly related midday leaf water potential under drought and turgor loss point to whole-

plant drought resistance of survival. Significantly positive correlations between midday leaf 

water potential under drought and whole-plant drought resistance of survival across all species 

as well as across forbs and grasses suggest that mechanisms of desiccation avoidance were 

important for grassland species to resist drought. This was supported by a significantly positive 

effect of turgor loss point on whole-plant drought resistance of survival and by that the effect 

was mediated by midday leaf water potential under drought. These results showed that turgor 

loss point is a key trait for desiccation avoidance and drought resistance in grassland species. 

However, direction of the effect of turgor loss point on drought resistance in grassland species 

was opposite to in woody species that a low turgor loss point contributed to high drought 

resistance. Nevertheless, the explained variance of whole-plant drought resistance by turgor 

loss point was low. Including other important mechanisms of desiccation avoidance is 

necessary for the prediction.  
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Manuscript 3: Root traits contributed to whole-plant drought resistance of survival and 

improved our prediction  

In this manuscript, we included root traits that are known or hypothesized to be important for 

water uptake. Rooting depth and root mass in dry treatment plots were significantly correlated 

with and had higher importance than other root traits and turgor loss point for whole-plant 

drought resistance, suggesting that maximize water uptake from deep soils under drought were 

more important for drought resistance. Both traits were also significantly correlated with 

midday leaf water potential under drought supporting the importance of mechanisms of 

desiccation avoidance in grassland species, consistent with results from Manuscript 2.  

Low root tissue density has been suggested to enable high root length per unit biomass allocated 

(i.e. high root specific length) and thus increase plants water uptake under drought. Opposite 

to this expectation, high root tissue density promoted high midday leaf water potential under 

drought. High root tissue density can reflect high number of small and highly lignified xylem 

vessels that are resistant to drought-induced embolism. It may thus indicate a role of 

mechanisms of desiccation tolerance in promoting high midday leaf water potentials under 

drought in grassland species.  

Root traits under drought conditions were significantly correlated with trait values under 

irrigated conditions, suggesting that species water uptake capacity was largely determined by 

inherent root characteristics. Phenotypic plasticity of root traits overall showed weak 

correlations with whole-plant drought resistance of survival and midday leaf water potential 

under drought, and had relatively low importance.  

Many root traits were significantly different between forbs and grasses. The traits had the 

highest importance for whole-plant drought resistance of survival and midday leaf water 

potential under drought were also different between both groups.  

The inclusion of important root traits increased our predictive power. When forbs and grasses 

were treated separately, root morphological traits, i.e., root diameter, root tissue density and 

root specific length, can explain 56% variance in forbs, and root mass and rooting depth in 

irrigated treatment plots and root depth distribution explained 60% in grasses. These traits were 

assessed under well-watered conditions which facilitates the applications of these models.  
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Manuscript 4: Mechanisms of drought resistance and trait relations to species 

distribution  

Mechanisms of desiccation avoidance were dominant for drought resistance and distribution in 

grassland species. Traits of desiccation avoidance, rooting depth and root mass under drought 

conditions and stomatal index, had the highest importance for whole-plant drought resistance 

of both survival and growth and for species associations to habitat dryness. These results 

support the use of root traits to predict whole-plant drought resistance of survival in Manuscript 

3. In contrast, few traits of desiccation tolerance were significantly correlated whole-plant 

drought resistance and species distribution but had relatively low importance.  

Traits were coordinated with each other, while many trade-offs and independence existed. This 

complicated trait relations enabled many different trait combinations to promote drought 

resistance. No dominating axes of trait variation emerged including the ‘fast-slow’ plant 

economics spectrum. Traits measured in our study that are supposed to align on the ‘fast-slow’ 

plant economics spectrum were maximum photosynthesis, leaf nitrogen content, specific leaf 

area, specific root length, root tissue density, and root diameter. However, most of them varied 

independently. Nevertheless, these results were consistent with results in Manuscript 1, 

namely, at whole-plant level the performance trade-offs were not supported. 

Different sets of traits contributed to drought resistance and species distribution. Traits that 

were significantly correlated with species association to habitat dryness were unrelated to 

whole-plant drought resistance and midday leaf water potential under drought. Consistently, 

stomatal index which had the highest importance for species association to habitat dryness had 

relatively low importance for whole-plant drought resistance and midday leaf water potential 

under drought. These results were in line with the weak relation of whole-plant drought 

resistance with species distribution from Manuscript 1, suggesting that other factors together 

with drought determine grassland species distribution across moisture gradients.  

Consistent with results from Manuscript 3, we found forbs and grasses significantly differed in 

most of the traits besides root traits and turgor loss point. These differences were strong enough 

to separate them along trait axes. Further, different combinations of traits promoted drought 

resistance in both groups.  
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General discussion 

In the following section, I discussed the results from different manuscripts in view of the role 

of drought and trait on species distribution, mechanisms of drought resistance, and prediction 

of drought resistance. I further presented some results that went beyond current thesis and 

linked whole-plant drought resistance and traits datasets to species distribution and responses 

to drought at community level. 

Drought resistance and species distribution 

Performance trade-offs have been used to explain species distribution along light and nutrient 

gradients (Sack & Grubb, 2001; Wright et al., 2010; Reich, 2014). We expected that they would 

shape species sorting across moisture gradients, i.e., on one hand, species with inherent high 

growth rate can eliminate drought resistant species from wet habitats due to competition; on 

the other hand, they will be excluded from dry habitats due to low drought resistance or growth 

rate under drought.  However, at both whole-plant and traits levels, we found no indication for 

performance trade-offs. Optimal growth was not negatively correlated with whole-plant 

drought resistance of survival or growth under drought (Manuscript 1). Traits that are 

hypothesized to enable ‘fast’ growth showed no or weak correlations with whole-plant drought 

resistance of both survival or growth (Manuscript 4). The ‘fast-slow’ plant economics spectrum 

did not emerge (Manuscript 4). Consistently, at whole-plant level, Fernandez and Reynolds 

(2000) also found no trade-off between maximum potential growth and whole-plant drought 

resistance of survival in desert grassland species. Reader et al. (1993) found a positive 

correlation between growth under irrigated and drought conditions in grassland species. At trait 

level, although the ‘fast-slow’ plant economics spectrum was found at global scale (Wright et 

al., 2004), at regional and local scales no supports were found (Craine et al., 2001; Tjoelker et 

al., 2005; Tucker et al., 2011; Maire et al., 2012; Perez-Ramos et al., 2013; Bergmann et al., 

2017; Zhou et al., 2018). In contrast, Grime et al. (2000) found that a limestone grassland 

composed of ‘fast-growing’ species were more sensitive to drought in term of species richness 

and functional composition than of ‘slow-growing’ species. However, the classification of 

species into fast- or slow-growing groups in Grime et al. (2000) was based on S values rather 

than actual growth rate, i.e., stress tolerance value of the CSR triangle (competitor, stress-

tolerator, and ruderal) using leaf morphological traits (Hodgson et al., 1999). The associations 

of S values with optimal growth and drought resistance are overall weak. In our grassland 
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species, S values were unrelated to optimal growth or whole-plant drought resistance (Jung 

unpublished data). In woody species, S values were not related to traits indicating ‘fast’ growth 

or high drought resistance such as leaf longevity, leaf nitrogen content and turgor loss point 

(Rosado & de Mattos, 2017). Collectively, these results suggest that a trade-off between ‘fast’ 

growth and drought resistance is not supported, and traits and processes involved in drought 

resistance and growth under optimal conditions should be independent.  

Consistent with the lack of a trade-off between optimal growth and drought resistance, the role 

of species drought resistance in shaping species distribution across moisture gradients was 

limited. Drought sensitive species was excluded from dry habitats due to drought while drought 

resistant species were associated with a wide range of moisture gradient (Manuscript 1). These 

results suggest that other factors additionally determine species distribution across moisture 

gradients, but with no trade-offs with drought resistance. This is in line with our results with 

traits, namely stomatal index had the highest importance for species distribution and highly 

correlated with it (r = 0.64, P < 0.001), while it had relatively low importance for whole-plant 

drought resistance (Manuscript 4). Consistently, previous study also found the positive relation 

between stomatal index and species association to habitat dryness (Salisbury, 1927). Stomatal 

index was found to response to both water availability (Xu & Zhou, 2008) and light (Lake et 

al., 2001). The later is another important factor that influences grassland species distribution 

(Borer et al., 2014). Thus, along the moisture gradients, changed light regimes might 

additionally determine species segeragaion along realized hydrological niches, but the 

association of stomatal index with species distribution across light gradients, and of drought 

resistance with shade resistance remain to be assessed.  

This thesis provided the first comparative datasets on whole-plant drought resistance of both 

survival and growth and a comprehensive of traits that are hypothesized or known to be 

important for drought resistance. We attempted to combine these data with Biodiversity 

Exploratory data on vegetation composition and moisture variation in the experimental plots 

(Fischer et al., 2010) to evaluate the relative importance of drought for species distribution and 

community assembly. Although such an approach is powerful to assess the role of resource 

availability in shaping communities, it has so far rarely been applied. Our preliminary results 

showed that community weighted means of whole-plant drought resistance and trait values that 

conferred high drought resistance increased with decreasing soil moisture in relatively dry sites, 

but not in wet sites. These results support that drought acts as a filter to exclude drought 
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sensitive species from dry habitats but only in dry areas. In wet areas, other factors are more 

importance.  

Mechanisms of drought resistance 

Evaluating trait importance for species performance under certain environmental conditions is 

one of the main schemes of functional ecology (Shipley et al., 2016). Regarding to drought, 

multiple processes are involved in drought resistance, which in turn multiple traits with their 

roles likely to differ with increasing drought stress (Choat et al., 2018). However, the relative 

importance of these traits for drought resistance has rarely been assessed due to lack of a 

comprehensive traits dataset. Here we found that root traits that maximize water uptake from 

deep soil layers, such as rooting depth and root mass, were more important than others 

(Manuscript 4). These results support the argument in Volaire et al. (1998) that root traits were 

important than leaf traits for grassland species because leaf death under drought in grassland 

species was rapid and any role of leaf traits such as turgor loss point to minimize water loss 

was limited. However, loss of leaves itself is an important mechanism to reduce water loss 

under drought. Many individuals of our species resprouted with complete leaf mortality in the 

following spring after the drought treatment (Manuscript 1). Further, many leaf traits did 

contribute to whole-plant drought resistance (Manuscript 4). Nevertheless, by assessing the 

importance of various traits of desiccation avoidance and desiccation tolerance, our results 

suggest that mechanisms of desiccation avoidance are more important than mechanisms of 

desiccation tolerance (Manuscript 4).  

Some important mechanisms of desiccation tolerance were not measured in our study, e.g., 

species resistance to embolism. Previous studies found that for woody species, differences in 

their resistance to embolism influenced their mortality under drought and distribution 

(Anderegg et al., 2016; Larter et al., 2017; Johnson et al., 2018). In grassland the quantification 

of species resistance to embolism is rare due to technical obstacles. By extracting data from 

Lens et al. (2016), we found it was unrelated to whole-plant drought resistance of survival or 

growth assessed in our study. Further, we measured pit membrane thickness, a key factor that 

has been suggested to influence species resistance to embolism (Li et al., 2016), in six of our 

species with whole-plant drought resistance of survival from high to low. Consistently, no 

significant correlations between pit membrane thickness and whole-plant drought resistance of 

survival were found. In general, these results suggest that species differences in resistance to 

embolism may not drive differential drought resistance in grassland species. A new method 
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established by Brodribb et al. (2016) can allow to assess species resistance to embolism using 

an optical technique with cameras or flatbed scanners. It may contribute to enlarging the dataset 

in grassland species and to further testing the importance of species resistance to embolism for 

drought resistance. 

Many coordination among traits were found in our study (Manuscript 4). These relations have 

been shown in disparate studies involving subsets of traits (Jackson et al., 1997; Craine et al., 

2001; Tucker et al., 2011; Zwicke et al., 2015; Bartlett et al., 2016; Lawson & McElwain, 

2016). One of the important coordination is the mechanistic linkage between turgor loss point 

and leaf water potentials at stomatal closure. In angiosperms, stomatal closure is caused by the 

loss of turgor pressure in the guard cells that surrounding the stomatal pore, which in turn is 

actively regulated by abscisic acid (ABA; Raschke, 1975). McAdam and Brodribb (2016) 

found that turgor loss of the whole leaf triggered ABA accumulation and stomatal closure. 

Later work criticized their work and argued that it was a decrease in cell volume that provided 

endogenous signal for ABA accumulation (Sack et al., 2018). Nevertheless, turgor loss is 

companied by a reduction in cell volume which will lead to stomatal closure (Zhang et al., 

2018). The positive correlation between turgor loss point and stomatal closure has been 

extensively tested in woody species (Brodribb et al., 2003; Bartlett et al., 2016). Some 

researchers even used turgor loss point as the values of leaf water potentials at stomatal closure 

when its actual value was unavailable (Martin-StPaul et al., 2017). However, this relation has 

been rarely tested in herbaceous species. Here, we found that turgor loss point was significantly 

positively correlated with the leaf water potentials at stomatal closure (Manuscript 4), 

supporting the mechanistic linkage between turgor loss and stomatal closure. Yet, the relation 

between them is not 1:1, i.e., most species lost leaf turgor before stomatal closure, while a few 

after stomatal closure (Manuscript 4), supporting that the use turgor loss point as the proxy of 

stomatal closure should be treated with caution (Farrell et al., 2017).  

Although the coordination among traits, many trade-offs and independence existed 

(Manuscript 4). This leaded to many combinations of traits to confer grassland species the same 

or different drought resistance and no main axes emerged to define a drought resistance 

spectrum (Manuscript 4). Consistently, focus only eight leaf and allometric traits, Valladares 

and Sanchez-Gomez (2006) found that in woody species, despite of the significant correlations 

of individual traits with species survival under drought, no single combination of traits existed 

to achieve high drought resistance. These results seem to challenge our capacity to establish 
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simple models for the predictions of drought resistance and the consequences of drought. 

Medeiros et al. (2018) even suggested to use more complicated sets of traits to increase the 

predictive power for predicting plants performances. However, as we found, only few traits 

had relatively high importance for whole-plant drought resistance (Manuscript 4). The use of 

these traits with high importance could largely simply our predictive models (see below).  

The predictions of species drought resistance using traits 

Traits, compared with whole-plant drought resistance, are relatively easy to measure and have 

the generality and predictivity properties (O'Brien et al., 2017). Many efforts have been 

devoted for the ‘soft’ trait measurements, leading to large trait datasets (Kattge et al., 2011). 

‘Soft traits’ are the traits that are easy to measure but have indirect effects on species 

performances through ‘hard’ traits (Hodgson et al., 1999). ‘Hard’ traits, in contrast, are 

relatively difficult and expensive to assess, but have mechanistic linkages with plant key 

processes. To our best knowledge, our traits dataset is the first comprehensive set of ‘hard’ 

traits that are important for drought resistance across multiple temperate grassland species. 

Some previous studies have found that ‘soft’ traits had lower predictive power for species 

distribution across moisture gradients than ‘hard’ traits (Tucker et al., 2011; Belluau & Shipley, 

2017; Belluau & Shipley, 2018). While others found that even with ‘hard’ traits the predictive 

power for species distribution was also low (Craine et al., 2013; Ocheltree et al., 2016). As we 

shown, the relation between whole-plant drought resistance and distribution was weak 

(Manuscript 1), and different sets of traits were important for them (Manuscript 4). Thus, the 

weak associations of traits with species distribution may not necessarily indicate that the traits 

tested were poor proxies of drought resistance.  

Many studies have advocated to use turgor loss point to predict species drought resistance due 

to its mechanistic linkage with stomatal closure and other important hydraulic traits (Bartlett 

et al., 2012b; Blackman, 2018; Hochberg et al., 2018). In woody species, it was highly 

correlated with species survival under natural drought at the community level (r2 = 0.76; Zhu 

et al., 2017). However, in our grassland species, the explained variance of whole-plant drought 

resistance of survival by turgor loss point was low (20%; Manuscript 2), suggesting that other 

important traits are needed to improve the prediction. We extended the rapid method that 

assesses turgor loss point with osmotic water potential at full turgor from original woody 

species (Bartlett et al., 2012a) to herbaceous species. The validation of this method can allow 

to further test the use of turgor loss point for the predictions in other herbaceous taxa.  
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By inclusion of important traits of drought resistance, we improved our predictive power. Only 

two variables, midday leaf water potential under drought and root mass in dry treatment plots, 

can explain 48% variance of whole-plant drought resistance of survival (Manuscript 3). 

Further, if forbs and grasses were treated separately, root morphological traits, i.e., root 

diameter, root tissue density and root specific length, can explain 56% variance in forbs, and 

root mass and rooting depth in irrigated treatment plots and root depth distribution 60% in 

grasses (Manuscript 3). These root traits can be easily assessed under well-watered conditions 

and thus may facilitate the prediction of grassland dynamics under climate change. The next 

step will be to link our models to the observed grassland dynamics that were caused by water 

stress at Biodiversity Exploratories (Fischer et al., 2010) to assess to the predictive power of 

these models at community levels.  
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Conclusion 

Assessing species drought resistance is important for predicting the consequences of drought 

on grassland species. Multiple processes, i.e., water uptake, water storage, water transport, 

water loss, membrane stability and carbon gain, are involved in promoting species drought 

resistance. These processes in turn entail various traits with interactions among each other. 

However, to my knowledge, no studies that have evaluated the relations and importance of 

these traits with several comparatively assessed drought performance parameters across 

multiple grassland species. Here using a relatively large number of species including both forbs 

and grasses, we answered several important questions for functional ecology and for the 

predictions of grassland dynamics under climate change. Although most of our species were 

quite resistant to drought, some of them were vulnerable. Due to the high abundance and 

frequency of these drought-sensitive species in German grasslands, changes in species 

composition and reduced productivity or other ecosystem services would be expected if no 

appropriate managements, such as irrigation during the growing season, were applied. Overall, 

our results support the use of traits for the predictions of species performances under drought. 

Separate models for forbs and grasses with root traits can provide relatively high predictive 

power. The facts that trait importance differed between forbs and grasses and between different 

drought performance parameters, and the contrasting mechanisms of drought resistance 

between herbaceous species and woody species suggest that we should take cautions with our 

generalizations of trait relations with performance parameters. Nevertheless, our results 

provide practical recommendations for trait selection and trait measurement schemes, which 

will aid grassland conservation and management under climate change. 
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Abstract 

Intensity and frequency of drought events are expected to increase with climate change. To 

improve our capability of projecting consequences of these changes for grasslands, we need a 

thorough understanding of species performance responses to drought, of performance trade-

offs and how drought responses are related to species distributions. However, comparative and 

quantitative assessments of whole-plant drought resistance that allow to rigorously address 

these aspects are lacking for grassland species. In this study, we conducted a common garden 

experiment with 41 common temperate grassland species including grasses and forbs to assess 

species’ whole-plant drought resistance as the response ratio of survival or growth in drought 

relative to well-irrigated conditions. Overall, survival and growth were significantly reduced 

under drought, with the effect varying across species. No performance trade-offs emerged 

between optimal growth and drought resistance of survival (‘growth-stress tolerance’ trade-off 

hypothesis), or between growth under well-watered and dry conditions (‘growth rates’ trade-

off hypothesis). Species' moisture association was unrelated to drought resistance in terms of 

survival or growth, but drought sensitive species were restricted to moist habitats. Together our 

results indicate that drought acts as a filter excluding drought sensitive species from dry 

habitats, but that any trade-offs against drought resistance are weak and do not limit species 

distribution in moist habitats. Our results imply that additional abiotic and biotic factors play a 

substantial role in influencing the realized hydrological niche in grassland species. The 

comparative experimental assessment of species whole-plant drought resistance provides a 

basis to further increase our understanding of direct and indirect effects of moisture for 

community assembly and species distributions, and to rigorously test the importance of 

functional traits for drought responses. It will therefore contribute to understanding current and 

predicting future grassland responses to variation of moisture regimes.  

Keywords 

Hydrological niche; drought tolerance; forbs; grasses; response ratio; habitat moisture 
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Introduction 

Drought is an important driver of community composition, diversity, and ecosystem function 

in a variety of ecosystems worldwide (e.g. Knapp et al. 2002, Engelbrecht et al. 2007a, 

Reichstein et al. 2013). Temperate grasslands are among the most widespread biomes on earth, 

exhibit high species richness, and provide important ecosystem services (Gibson 2009, Wilson 

et al. 2012). They periodically experience years with low rainfall that lead to drought stress 

(Gibson 2009). In a wide range of temperate grasslands drought decreases productivity, and 

influences species abundances and distribution across time and space, as well as community 

composition and diversity patterns (Tilman and El Haddi 1992, Buckland et al. 1997, Knapp 

et al. 2002, Hoover et al. 2014). In turn, the response and resilience of grasslands to drought 

are influences by community composition and diversity (Tilman and Downing 1994, Vogel et 

al. 2012, Isbell et al. 2015). With global climate change, increasing temperatures and 

decreasing water availability are projected during the growing season for many regions, 

including temperate grasslands (Orth et al. 2017, Schlaepfer et al. 2017), and the intensity and 

frequency of drought events is expected to increase (IPCC 2014). The importance of drought 

for temperate grasslands will therefore increase in the future. Species resistance to drought 

varies widely even within grassland communities (Buckland et al. 1997, Tucker et al. 2011, 

Craine et al. 2013), and this difference frequently demonstrate segregated distribution of 

species across moisture gradients (Silvertown et al. 2015). To appreciate the role of drought 

for community assembly and ecosystem function under past and current climate regimes, and 

to improve projections for the future, an understanding of species differential responses to 

drought is urgently needed.  

Performance trade-offs are central in explaining species sorting along environmental gradients 

and species coexistence (Levins and Culver 1971, Chesson 1985, Rees et al. 2001). A 

prominent trade-off that has been suggested is a trade-off between growth rates under optimal 

conditions and tolerance against stress (i.e. ‘growth-stress tolerance’ trade-off hypothesis, 

Grime and Hunt 1975), which is consistent with the concepts of resource acquisition vs. 

conservation strategies or the slow vs. fast plant economics spectrum (Craine 2009, Reich 

2014). On the other hand, a trade-off between species relative growth rate at different resource 

levels has been proposed to leading to species rank reversals along gradients of resource 

availability (‘growth rates’ trade-off hypothesis, Latham 1992). Both trade-offs have been 

extensively addressed, mainly with respect to light and nutrient for woody species, considering 
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whole-plant performance and the trait level (e.g. Sack and Grubb 2001, Kitajima and Poorter 

2008, Reich 2014, but see Craine 2009 for nutrients in grassland species). In contrast, 

performance trade-offs with respect to drought have rarely been empirically studied despite 

their pervasive implications for competition, community dynamics and species distributions, 

especially under changing moisture regimes (e.g. Kneitel and Chase 2004). To our knowledge, 

for drought only two studies have explicitly tested the ‘growth-stress tolerance’ trade-off 

hypothesis at the level of whole-plant performance, both in grassland species, and both did not 

find a trade-off (Fernández and Reynolds 2000, Zwicke et al. 2015). The ‘growth rates’ trade-

off has been tested in one study, to the best of our knowledge, using grassland species under 

high vs. low moisture conditions, and did find a strong positive correlation rather than a trade-

off (Reader et al. 1993). A lack of comparative datasets on whole-plant drought performance 

considering both growth and survival currently hinders further testing these central hypotheses.  

Associations of plant species local and regional distribution patterns with variation in soil water 

availability are among the most prominent biogeographic patterns (Silvertown et al. 2015 and 

references therein). Direct effects of water availability on plant performance as well as indirect 

effects through variation of the strength of biotic interactions or of other abiotic factors 

correlated with water availability (e.g. nutrients, light) may lead to these patterns (Normand et 

al. 2009, Silvertown et al. 2015). Drought periods can act as a filter, directly excluding drought-

sensitive species from drier sites (‘physiological tolerance hypothesis’, Currie et al. 2004). On 

the other hand, trade-offs between drought resistance and optimal growth rates, and between 

performance under different moisture levels (see above), as well as trade-offs involving 

herbivores or pathogens, or tolerance to water logging, low nutrients or low light have been 

suggested to limit the occurrence of drought-resistant species under moist conditions (e.g. 

Baltzer and Davies 2012, Silvertown et al. 2015, Grubb 2016). This should lead to a turnover 

of species with increasingly lower drought resistance along moisture gradients, resulting in a 

negative relation between species drought resistance and their association to moist conditions. 

Linking species’ whole-plant drought resistance, which refers to species fundamental niche 

regarding drought, and their association to habitat moisture allows to test to what extend species 

differential drought resistance in combination with soil water availability directly determines 

species occurrence across moisture gradients. To our knowledge, the relation of whole-plant 

drought resistance to species distributions has so far only been explicitly tested in tropical 

forests (Engelbrecht et al. 2007a, Esquivel-Muelbert et al. 2017a). Evaluation of the direct role 
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of drought for species distributions in grasslands is still outstanding, although it is fundamental 

to projecting consequences of changing moisture regimes.  

To improve our understanding of species drought resistance in grasslands, several recent 

studies have addressed the relation of physiological and morphological traits to leaf damage 

under drought or to species distribution with respect to moisture or examined the coordination 

of traits relevant for plant drought responses (Pérez-Ramos et al. 2013, Zwicke et al. 2015, 

Belluau and Shipley 2017, 2018). Other studies have focused on specific traits under the 

assumption that they are functionally important for demographic rates and fitness (Tucker et 

al. 2011, Craine et al. 2013). However, our understanding of the links between traits and whole-

plant responses to drought remain limited, although this link is a foundation assumption of 

trait-based ecology (Shipley et al. 2016). Considering whole-plant rather than leaf responses is 

especially important in perennial temperate grassland species, since many of them are capable 

of recovering even from full aboveground mortality (Volaire and Norton 2006, Zwicke et al. 

2015). 

Relevant comparative datasets on whole-plant performance responses to drought remain scarce 

and mostly restricted to woody plants (Kursar et al. 2009, O'Brien et al. 2014, Anderegg et al. 

2016). The few studies that have assessed comparative species-specific survival and growth 

responses to drought focusing on grassland species remain confined to a small number of 

species (4−8 species, Fernández and Reynolds 2000, Pérez-Ramos et al. 2013, Zwicke et al. 

2015, but see Reader et al. 1993 for growth responses to drought in 42 species), limiting their 

power to test performance trade-offs, relations to distributions and community assembly and 

the traits underlying drought resistance.  

Given the central role of drought resistance in predicting consequences of climate change, 

rapidly and easily assessable proxies of species whole-plant responses to drought would be 

highly desirable (Bellaue and Shipley 2018). While some progress has been made towards 

predicting species distributions along moisture gradients in grasslands from traits, the 

predictive power generally remains low, especially for easily assessable and widely available 

'soft traits' (Shipley et al. 2017), and/or traits are difficult and time consuming to assess, 

precluding comparable assessments across large species numbers (Bellaue and Shipley 2017). 

Wilting and drought damage can be easily visually assessed and have been used as indicators 

of plant drought sensitivity in horticulture, agriculture and ecological studies (IRRI 1996, 

Engelbrecht and Kursar 2003, Pathan et al. 2014, Belluau and Shipley 2017). Intuitively, one 
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might expect that species that wilt early will suffer higher mortality under drought. A strong 

positive correlation between visually assessed wilting and drought mortality has indeed been 

reported for tropical tree seedlings (Engelbrecht et al. 2007b). However, changes of leaf angle, 

leaf rolling and leaf abscission may also minimize water loss and extend survival under drought 

(Fischer and Turner 1978, Turner and Begg 1981). The relation between this promising 

parameter and drought survival therefore has to be established in different life forms and 

habitats before using it as a proxy. 

In this study, we quantified whole-plant drought resistance of 41 common temperate grassland 

species by comparing plant performance (growth and survival) under dry and irrigated 

conditions in a common garden experiment. This approach allowed us to assess the importance 

of drought effects on species' performance, independent of effects of other abiotic (e.g. light 

and nutrients) and biotic factors (e.g. competition, herbivore or pest pressure; Engelbrecht and 

Kursar 2003). We tested the hypotheses that (1) species differ in their drought responses, (2) 

there are performance trade-offs with respect to drought, specifically (a) a ‘growth-stress 

tolerance’ trade-off, and (b) a trade-off between growth rates under high and low water 

availability, and (3) species’ drought resistance is negatively related to their association to 

moist habitats. We additionally tested if visually assessed drought damage based on wilting 

and necrosis provides a suitable proxy for species whole-plant drought survival. 

Materials and methods 

Field site 

The experiment was conducted in a meadow in the Ecological Botanical Garden (EBG) of the 

University of Bayreuth, Germany (49°55'19''N, 11°34'55''E). The area has a temperate climate 

with a mean annual temperature of 8.7°C and a mean annual precipitation of 745 mm (1998–

2007, data: EBG). Mean monthly temperature ranges between -0.1°C and 17.8°C with July 

being the warmest month. Rainfall occurs mostly in the growing season (from May to 

September) with mean monthly rainfall between 60 mm and 85 mm.  

Study species 

We initially selected 44 focal species, 21 grasses (Poaceae) and 23 forbs (9 families including 

five legume species; Table S1), based on the following criteria: (a) common species in German 
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grasslands, based on their frequency and abundance in 150 grassland plots (4m x 4m) in 

Northeast, Central and Southwest Germany (Biodiversity Exploratories, Socher et al. 2012), 

(b) association with a wide range of soil moisture conditions (based on Ellenberg indicator

values for soil water availability, M-values ranging from 3 to 7, Ellenberg et al. 1992), and (c) 

to include grasses and forbs including legumes and non-legumes. Grasses and forbs did not 

differ in soil moisture associations (median M-value = 5 for both). All species had the C3 

photosynthetic pathway.  

Seedlings were grown from seeds purchased from commercial seed suppliers (Rieger-Hofmann 

GmbH and Saaten Zeller, Germany, and Cruydt-Hoeck, Netherlands). They were germinated 

and grown in the greenhouse for three months (March‒May, 2015) in the same substrate used 

in the field experiment (see below). Similar size individuals were selected within each species 

for the experiment to reduce effects of size variability. 

Three species (Capsella bursa-pastoris, Medicago lupulina, Trifolium repens, all forbs) 

exhibited poor performance already in the greenhouse, and less than 70% survival even under 

irrigated conditions. We therefore excluded these three species from the analyses presented in 

the text. Analyses with and without these three species yielded qualitatively the same results, 

and analyses including the three species are presented in the supporting materials (Tables S3–

S5).  

Experimental design 

Seedlings were transplanted to 72 plots and exposed to two treatments: a dry treatment, where 

irrigation was discontinued for 10 weeks in the late summer (36 plots), and an irrigated 

treatment, where high and favorable water availabilities were maintained throughout the 

experiment (36 plots). All plots were located under transparent rain-out shelters ensuring that 

both treatments experienced the same light and temperature conditions. One individual of each 

species was planted into each plot (i.e. aiming for 36 individuals per species in each treatment) 

in a 20 cm grid with species randomly assigned to the grid points. The distance among the 

plants was chosen to minimize interactions (i.e. competition or facilitation; leaves and roots 

were not overlapping among individuals), thus allowing us to assess the drought responses of 

the individual species.  
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Treatments were blocked to avoid cross-effects of irrigation on dry plots: two plots (1 m x 2 

m) were set under each shelter (3 m x 3.5 m size, 2.1 m high at the highest point), and six

shelters were blocked for a treatment (in total six blocks with 36 shelters). Plots under each 

shelter were set up at 0.5 m distance, and shelters and blocks had 1 m and 2 m distance to each 

other, respectively.  

The rain-out shelters were covered with transparent plastic foil (200 μm; Gewächshausfolie 

UV5, folitec Agrarfolienvertriebs GmbH, Westerburg, Germany), with two sides and the lower 

approx. 50 cm open to allow air circulation. To expose all plants to uniform soil conditions, 

and to ensure that they dry down to stressfully low levels of water availability, the plots were 

dug out to 1 m depth and filled with sand (97% sand, 2% silt and 1% clay). 

Seedlings were transplanted in the first week of June 2015, and all were regularly watered 

before the start of the dry treatment to allow for establishment in the soil. Irrigation was 

implemented with a drip-irrigation system onto the soil surface. The amount of irrigation before 

the start of the experiment and in the irrigated plots was adjusted individually for each plot and 

according to weather conditions to ensure optimal moist conditions, avoiding both superficial 

soil drying and waterlogging (based on inspection at least five times a week, higher irrigation 

on warmer/sunnier days). Irrigation was discontinued in the dry treatment plots from 3rd August 

to 9th October, 2015 (10 weeks, 67 days), and the soils were allowed to dry down through 

evapotranspiration. At the end of the drought treatment, we rewatered all plots and removed 

plastic covers from the rain-out shelters so that all plots were exposed to natural conditions 

until the next spring to allow for potential recovery from surviving below-ground parts.   

The goal of the experiment was to expose all species to uniformly pronounced drought stress 

in order to assess drought resistance in a way that is directly comparable across all species, 

rather than to mimic a specific natural drought event or climate change regime. Exposing the 

plants to experimental drought in the field avoided common problems associated with drought 

experiments in pots, namely that soil water depletion is strongly influenced by plant size and 

differences in transpiration rates, hindering meaningful comparisons among species (Comita 

and Engelbrecht 2014). 

Fertilizer (Terra Plus N 12+4+6, 30 g m-2) was applied twice before the start of the drought 

treatments to minimize potential nutrient limitation. Plots were regularly weeded and 
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surrounding areas were mowed to avoid competition from non-target species. All plots were 

fenced to avoid mammalian herbivores such as dears or hares.   

Environmental conditions 

In the study area, 32 days or 42 consecutive days without rain during the growing season are 

considered extreme meteorological drought events based on the 100-year and 1000-year 

recurrence, respectively (Jentsch et al. 2011). The 2015 summer was additionally extremely 

hot and dry with the lowest rainfall since 1901 in Central Europe (Orth et al. 2017), which was 

also reflected in the local conditions during the experiment (Table S2). The naturally dry, sunny 

and warm conditions ensured high evapotranspiration rates so that soils in the non-irrigated 

plots under the rainout-shelters dried out fast and strongly, and plants clearly experienced 

drought stress (see below).  

We monitored soil water status with gypsum blocks (GB-1 and KS-D1, Delmhorst, NJ), 

installed at 15 cm soil depth in every plot and additionally at 30 cm depth in six haphazardly 

chosen plots in each treatment. Readings were initially taken daily after the start of the 

treatments, and later every three to five days around midday. Meter readings were converted 

to soil water potentials according to the device instructions. In the irrigated plots soil water 

potentials remained above -0.04 MPa throughout the experiment. In the dry treatment, water 

potential readings declined sharply after discontinuation of irrigation. After 18 days the first 

dry plot reached values below -1.5 MPa, exceeding the lower measurement range of the 

equipment and the permanent wilting point in agricultural plants (Veihmeyer and Hendrickson 

1928). After 50 days all dry plots had reached values below -1.5 MPa.  

Air temperature and relative humidity were measured hourly in three randomly selected plots 

in each treatment at 1.8 m height during the experiment (i-buttons, DS1920, Maxim Integrated, 

CA). Light was repeatedly measured inside and outside the rain-out shelters with the built-in 

light sensor of a leaf porometer (AP4, Delta-T, Cambridge) to calculate light transmittance. 

Daily mean air temperature was 19.4°C, daily mean relative humidity 74.7% and light 

transmittance 86 ± 3%, and values did not differ between the treatments (p > 0.3 for all). 

Assessments of plant performance and drought sensitivity 
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We assessed species performance based on three parameters: visual drought-damage, survival 

and relative growth rates (RGR). Visually observable drought damage in each individual was 

scored weekly based on wilting and necrosis in the dry plots (starting in week 2). Categories 

(1−9) were modified from existing systems for visual evaluation of drought damage in rice and 

tropical seedlings (IRRI 1996, Engelbrecht and Kursar 2003; Table 1). 

Survival was assessed based on above-ground organs (leaves and stems) at the end of the dry 

treatment, and additional checks for resprouting from surviving below-ground organs in the 

next growing season (June 2016) in all of the dry and irrigated plots. We quantified species’ 

survival in the irrigated and dry treatment (Sirrigated and Sdry) as the percentage of individuals 

that survived in the respective treatment relative to the initial number of individuals. Growth 

was assessed in 6 plots randomly selected for each treatment. We monitored growth non-

destructively based on the increase or loss of the plants’ projected green leaf area (LA, compare 

Breitschwerdt et al. 2018) to allow repeated monitoring of growth and survival on the same 

individuals. LA was determined as the area of an octagon with the focal plant in the center, and 

with the endpoints of living leaf area along eight plant radii (in 45° angles) representing the 

corners. LA was assessed twice, in the first week and sixth week of the treatment, for all 

individuals in a subsample of six plots for each treatment. We calculated RGR (cm2 cm-2 day-

1) from the consecutive measurements in each individual as RGR = (LA2 – LA1)(LA1)
 -1(T2 –

T1)
-1 (Hunt 1978), where LA1 and LA2 are projected green leaf area at time T1 and time T2. 

Species RGRs under irrigated conditions (combined with high light and nutrients, for survivors, 

see below) were marginally significantly correlated with comparative assessments of optimal 

growth rates (RGRmax) of subset of our species in the literature (p < 0.1 for each individual 

study: 24, 9 or 13 overlapping species from Grime and Hunt 1975, Poorter and Remkes 1990, 

Ryser and Wahl 2001, respectively), supporting that the method usefully captured comparative 

growth rates. 

Species RGR was assessed both based on survivors only and based on all individuals including 

dead ones. Growth of survivors focuses on those individuals that will contribute to future 

population dynamics and is most frequently assessed. However, this parameter does not capture 

the loss of leaf area (or biomass) occurring in the plants that died, which is relevant for a 

community or ecosystem perspective. These two aspects of growth do not necessarily correlate 

(Engelbrecht and Kursar 2003). 
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A specific focus of our study was to assess the species’ comparative whole-plant drought 

resistance. We calculated species’ drought resistance (DR) as the response ratio of survival and 

growth in dry relative to irrigated plots (compare Engelbrecht and Kursar 2003) to present 

intuitive and consistent indices for both performance parameters, i.e. DRsurvival = Sdry/Sirrigated, 

where Sdry and Sirrigated are the % of individuals of a species that survived in the dry and the 

irrigated treatment, respectively, and DRgrowth = RGRdry/RGRirrigated, where RGRdry and 

RGRirrigated are the median RGR in each treatment.  

Statistical analyses 

To test the effects of treatment, species and their interactions (treatment x species) on survival 

and growth, generalized linear mixed effects models (GLMM) with binomial distribution and 

linear mixed models (LMM) were fitted for survival and growth data, respectively. Treatment 

and species were used as fixed effects and blocks and plots nested in blocks were used as 

random effects in each model. Significance of the random effects was assessed by comparing 

the log-likelihoods of models with and without the random effects. All models were fitted over 

all species as well as separately for grasses and forbs. For RGR, we fitted two different models 

considering only surviving individuals or all individuals including dead ones (see above). 

Using separate models for each species, we additionally assessed the significance of the effect 

of the drought treatment on survival and growth of each individual species. For every model, 

treatment was used as a fixed effect and block as a random effect. Drought resistance (DRsurvival 

and DRgrowth) was compared between grasses and forbs using a t-test.  

To test the relations between growth under optimal conditions and drought resistance of 

survival (RGRirrigated vs. DRsurvival, ‘growth-stress tolerance’ trade-off hypothesis), between 

species’ growth under irrigated and dry conditions (RGRirrigated vs. RGRdry, ‘growth rates’ 

trade-off hypothesis), and between species’ drought resistance with respect to survival and 

growth (DRsurvival vs. DRgrowth), we used Pearson correlations and again conducted analyses 

over all species and separately for each life form. RGRirrigated, measured under irrigated and 

concurrently high light and nutrient conditions, was used as growth rate under optimal 

conditions to test the ‘growth-stress tolerance’ trade-off.  

Ellenberg indicator values (Ellenberg et al. 1992) categorize species based on non-systematic 

observations of their abundance along environmental gradients in Germany. They have been 

shown to be highly correlated with quantitative assessments of associations with habitat 
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environmental conditions across Europe and can thus be considered reliable indicators of 

species association with environmental factors (Schaffers and Sýkora 2000, Diekmann 2003). 

We used Ellenberg indicator values for moisture (M-values, Table S1) as an index of species 

moisture association. Previous studies have shown that Ellenberg indicator values can be 

treated as continuous values in statistical analysis (Ellenberg et al. 1992, Diekmann 2003, 

Bartelheimer and Poschlod 2016). We thus analyzed the relations of DRsurvival and DRgrowth to 

M-values using regression analysis. Species that showed no association with moisture regimes

(M-value = X) were excluded from these regression analyses. To test if species that are found 

over a wide range of moisture conditions have a higher drought resistance than species 

associated to distinct moisture regimes (Currie et al. 2004), we additionally compared drought 

resistance (DRsurvival and DRgrowth) between species with an M-value of X (no association) and 

species with assigned M-values using a t-test. 

To evaluate if visually assessed drought damage after a relatively short period is a useful proxy 

to predict longer-term survival under dry condition, we related % survival after the 10-week 

intense drought to the percentage of severely drought-damaged individuals of each species 

(drought-damage category 5–9, see Table 1) after various periods of drought. Additionally, the 

significance levels were evaluated at α =0.05 with Bonferroi correction (Rice 1989). However, 

the results and discussion are based on unadjusted values, as we were mainly interested in a 

relation at a single period. 

To test if species ranking of drought survival depends on the duration/intensity of drought, we 

examined correlations between above-ground survivals (% individuals in drought-damage 

category 9) after different lengths of drought treatment, and with the final survival (Sdry). 

We visually evaluated normality of the residuals in all analyses. DRgrowth was consequently log 

transformed to improve normality, and for handling negative values in DRgrowth 4 was added as 

a constant value to the data prior to applying the log transformation. 

Data were analyzed in R version 3.3.3 (<www.r-project.org>) using the lme4 (Bates et al. 

2017), lsmeans (Lenth 2017), and car (Fox and Weisberg 2011) packages. 
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Table 1 Drought-damage categories based visual assessments. The categories were modified 

from systems for rice (IRRI 1996) and for tropical tree seedlings (Engelbrecht and Kursar 

2003). 

Category Visual characteristics 

1 no signs of drought stress 

2 
slight signs of wilting (leaf angle changes, rolling, or folding) without 

leaf necrosis 

3 
strong signs of wilting (leaf angle changes, rolling, or folding) without 

leaf necrosis 

4 slight leaf tip drying (necrosis) 

5 
tip drying (necrosis) extended to ¼ length in up to 25% of the leaves 

(normally old leaves) 

6 
tip drying (necrosis) extended to ¼ length in up to 50% of the leaves 

(or 25% of leaves fully dried) 

7 more than 50% of the leaves fully dried 

8 more than 70% of the leaves fully dried 

9 all above-ground parts dead 

Results 

Drought damage and resprouting 

All species exhibited at least some visual drought damage in the dry treatment, and its 

progression varied strongly among species (Fig. 1, Fig. S1). Many species maintained living 

aboveground biomass throughout the intense drought treatment, some with pronounced wilting 

and tissue necrosis (e.g. the grasses Holcus lanatus and Lolium perenne), while others showed 

wilting but only slight necrosis (e.g. the forbs Achillea millefolium and Leucanthemum 

vulgare). For a few species, tissue death started early (week 1) and all aboveground biomass 

had died after the 10 weeks of drought in more than half of the individuals (e.g. the grass Poa 

trivialis and the forb Cerastium holosteoides). In general, grasses exhibited leaf rolling and 

folding early (week 1 and 2), and already showed necrosis in week 2 of the drought treatment. 

In comparison, in forbs leaf angle changes and/or leaf shrinking occurred later and leaf necrosis 

progressed slowly (only the three Ranunclus species and Cerastium holosteoides showed fast 

necrosis). In the irrigated treatment, no drought damage was observed.  

In many species resprouting occurred, i.e. individuals without any living aboveground biomass 

after the drought period resprouted from surviving belowground organs. 83% of the species 

exhibited at least some resprouting (of the 36 species where some individuals exhibited 
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complete aboveground mortality). Within species, up to 40% of the individuals without living 

aboveground biomass directly after the drought resprouted (see Table 1S for the species and 

number of the individuals that resprouted). Overall low mortality (see below) did not allow for 

a meaningful formal analysis of species’ resprouting capacity, which was not the focus of this 

study.  

Figure 1 Progression of visual damage in selected temperate grassland species over 10 weeks 

of drought as examples. The color scale represents damage categories from no visual sign of 

drought stress (1, dark green) through progressive signs of wilting or rolling, and tissue necrosis 

to complete death of all above ground plant parts (9, black). For a description of the drought 

damage categories and for species codes, see Table 1 and Table S1, respectively. Grasses are 

presented in the first row, and forbs in the second row. Shown are two examples for species 

with low mortality and either with early signs of drought damage (HOLCLA) or few and late 

visual signs of stress (ACHIMI), two examples of species with high mortality and early visual 

drought damage (POATR, CERAHO), and two examples for intermediate species with 

moderate mortality and early visual drought damage (ARRHEL, RANUAC). See Figure S1 for 

graphs for all species.  
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Figure 2 (A) Survival of 41 temperate grassland species under dry and irrigated conditions 

(red and blue bars, respectively). Given are the proportion individuals that survived relative to 

the initial number of individuals. Significance of treatment effects on survival within each 

species is given above the bars ((*) p < 0.1, * p < 0.05, ** p < 0.01), for details see Tables S3 

and S4. (B) Drought resistance of survival (DRsurvival, response ratio of survival in the dry 

treatment relative to the irrigated treatment). Species are sorted by increasing drought 

resistance. For species codes, see Table S1. Grasses and forbs are indicated with G and F, 

respectively. 

Drought effect on survival and growth 

Survival was overall high. In all 41 species analyzed, survival in the irrigated treatment was 

above 90% and even under the intense dry treatment 29 of the species (70%) exhibited more 

than 90% survival (Fig. 2A). The dry treatment had a significant negative effect on survival of 

grasses, but no effect on forbs, resulting in a marginally significant effect over all species 

(GLMM; Table 2). Species significantly differed in their survival (overall and within grasses 

or forbs), and there was no significant treatment x species interaction (Table 2). In six of the 

individual species (15%), the dry treatment had a significant negative effect on survival (p < 

0.05, GLMM) and in further two species a marginally significant effect (p < 0.1), while the 

remaining the species (78%) showed no significant treatment effect (Fig. 2A, Table S4).  
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Aboveground survival (i.e. % of individuals in drought-damage category 9) after different 

periods of drought (from 2 to 10 weeks) was highly positively correlated with each other and 

with the final survival (Sdry) (r > |0.8|, p < 0.001 for all), indicating that species ranking of 

drought survival did not change with progressing length of drought.  

Whole-plant drought resistance based on survival (DRsurvival, i.e. survival under dry relative to 

irrigated conditions, the response ratio), varied continuously across the species (Fig. 2B), and 

did not differ between grasses and forbs (p > 0.05, t-test). The most drought-sensitive species 

was Poa trivialis (grass) followed by Cerastium holosteoides (forb). 

Figure 3(A) Relative growth rate (RGR) of projected living leaf area for 41 forb and grass 

species under dry and irrigated conditions (red and blue boxes, respectively). Boxes give the 

median, the 25% and 75% quartiles. Significant treatment effects within each species are given 

below the box plots ((*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001), for details see Tables 

S3 and S4. RGR is based on surviving individuals. For results based on all individuals including 

dead ones see Fig. S2. (B) Drought resistance of growth (DRgrowth, ratio of median RGR in the 

dry relative to the irrigated treatment). Note that the data are log-transformed. Values below 

the line at 0.7 indicate a decrease in RGR in the dry relative to the irrigated treatment. Species 

are sorted by increasing drought resistance. Grasses and forbs are indicated as G and F, 

respectively. For species codes and sample sizes, see Table S1.  

−0.05

0.00

0.05

0.10

0.15

0.20

R
G

R
 (

c
m

2
c
m

-
2
d

a
y

-
1
)

Treatment dry irrigated

0.25

0.50

0.75

1.00

V
IC

IC
R

 (
F

)

R
A

N
U

A
C

 (
F

)

E
L

Y
M

R
E

 (
G

)

R
A

N
U

R
E

 (
F

)

T
R

IS
F

L
 (

G
)

A
L

O
P

P
R

 (
G

)

L
A

T
H

P
R

 (
F

)

G
A

L
IM

O
 (

F
)

C
E

R
A

H
O

 (
F

)

L
O

L
IP

E
 (

G
)

R
U

M
E

A
C

 (
F

)

P
O

A
P

R
 (

G
)

P
L

A
N

L
A

 (
F

)

B
R

O
M

H
O

 (
G

)

P
H

L
E

P
R

 (
G

)

A
G

R
O

C
A

 (
G

)

P
R

U
N

V
U

 (
F

)

P
O

A
T

R
 (

G
)

C
R

E
P

B
I 

(F
)

H
E

L
IP

U
 (

G
)

F
E

S
T

G
U

 (
G

)

D
A

C
T

G
L

 (
G

)

A
C

H
IM

I 
(F

)

H
O

L
C

L
A

 (
F

)

L
O

T
U

C
O

 (
F

)

T
A

R
A

R
U

 (
F

)

F
E

S
T

R
U

 (
G

)

A
R

R
H

E
L

 (
G

)

B
R

A
C

P
I 

(G
)

L
E

U
C

V
U

 (
F

)

C
IR

S
O

L
 (

F
)

F
E

S
T

O
V

 (
G

)

C
E

N
T

J
A

 (
F

)

D
A

U
C

C
A

 (
F

)

F
E

S
T

P
R

 (
G

)

A
N

T
H

O
D

 (
G

)

R
U

M
E

C
R

 (
F

)

B
R

IZ
M

E
 (

G
)

A
G

R
O

S
T

 (
G

)

R
A

N
U

B
U

 (
F

)

L
E

O
N

H
I 

(F
)

Species code

lo
g

(R
G

R
+

4
)

A 

B 

* * * 

*** 
*** 

** 
*** * (*) 

** * * (*) * (*) * * 

L
o

g
(D

R
g

ro
w

th
 +

 4
)



Manuscript 1 

46 

Table 2 Effects of drought treatment and species on survival and growth. Results were from 

generalized linear mixed models (GLMM, for survival) and linear mixed models (LMM, for 

growth of survivors, RGR) with treatment, species and treatment x species interaction as fixed 

effects and block and plot as random effects. Models were set up for over all 41 species and 

for the two life forms (grasses and forbs) separately. For fixed effects Chi2 (X2) and F-values 

are given for survival and for growth, respectively, and for random effects X2 are given. 

Significance levels are presented as (*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. For the 

results for 44 species and for analyses of growth for all individuals including dead ones, see 

Table S3. 

Treatment Species 

Treatment 

x species 

Block 

and plot 

Survival 

All 20.41(*) 106.148*** 13 40.58*** 

Grasses 17.09* 71.35*** 11.6 33.37*** 

Forbs 3.54 34.92* 1.5 3.33 

RGR 

All 7.98* 2.69*** 1.08 25.48*** 

Grasses 12.05* 1.11 1.19 6.07* 

Forbs 4.49 4.09*** 1.02 13.38** 

Relative growth rate (RGR) was also significantly lower in the dry than in the irrigated 

treatment across all species and for grasses, but not for forbs (LMM; Fig. 3A, Table 2). Species 

differed significantly in RGR among all species and forbs (but not among grasses) with no 

treatment x species interaction (Table 2). Under irrigated conditions, RGR was positive for all 

species. Even under dry conditions, surviving individuals of most species maintained positive 

RGR, and net losses of projected leaf area were only found in five of the species (12%). Within 

species, the dry treatment had a significant negative effect on RGR of the surviving individuals 

in 14 of the species (34%) and a marginally significant effect in three species (LMM; Fig. 3A, 

Table S4), whereas the remaining 59% showed no treatment effect on RGR. Based on all 

individuals (i.e. including dead ones) the negative effect on growth was significant in 16 of the 

species (39%) and a marginally significant effect in four species (Fig. S2, Table S4).  

Whole-plant drought resistance based on growth (DRgrowth) again varied continuously across 

species (Fig. 3B), and did not differ between life forms (p > 0.05, t-test).  

DRgrowth considering only surviving individuals or all individuals including dead ones were 

highly significantly correlated across all species as well as within life forms (p < 0.001 for all, 
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Table S5), and results of all analyses were qualitatively similar (Fig. S2, Table S3). All 

following analyses presented in the text refer to survivors only. 

Performance relations 

We found no indication of a trade-off between optimal growth and drought survival. Growth 

in the irrigated treatment (RGRirrigated) and drought resistance (DRsurvival) were unrelated across 

all species and within grasses, and marginally positively related within forbs (Fig. 4B, Table 

S5). DRsurvival was also unrelated to RGRmax from the literature (24, 9, 13 species from Grime 

and Hunt 1975, Poorter and Remkes 1990, Ryser and Wahl 2001, respectively, p > 0.1 for 

species sets from all individual studies), further supporting our results. 

Species growth rates in the irrigated and the dry treatment (RGRirrigated vs. RGRdry) were 

marginally positively correlated over all species, with a significant positive relation within 

forbs and, no relation within grasses (Fig. 4A, Table S5), indicating that there was clearly no 

trade-off between growth rates under high and low moisture conditions.  

The drought resistance of growth and survival (DRgrowth and DRsurvival) were again marginally 

significantly positively correlated with each other across all species and within forbs (Fig. 4C, 

Table S5), i.e. growth reduction under drought did not lead to improved drought resistance in 

terms of survival in our species. 

Relations of drought resistance and habitat moisture associations 

Species habitat association with moisture (Ellenberg’s moisture values, M-value) was not 

related to drought resistance (DRsurvival and DRgrowth) over all species nor within life forms (p > 

0.05; Fig. 5A and B). However, the four most drought-sensitive species (DRsurvival < 0.8) were 

restricted to moist habitats (M-value ≥ 5, Fig. 5A, lower right corner), while more drought-

resistant species (DRsurvival > 0.8), exhibited a large range of moisture associations (M-value 

from 3 to 7, Fig. 5A). The 11 species indifferent to habitat moisture (M-valaue = X) exhibited 

a wide range of DRsurvival and DRgrowth. Species with narrow ranges with respect to moisture 

(assigned M-values) did not have a lower drought resistance than species with a wide range 

(M-value = X) for both DRsurvival and DRgrowth (p > 0.05 for both, t-test).  
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Figure 4 Performance relations with respect to drought across 41 forb and grass species. 

Relations (A) between growth under irrigated conditions and survival (RGRirrigated vs. DRsurvival; 

test of ‘growth-stress tolerance’ trade-off hypothesis), (B) between growth under irrigated and 

under dry conditions (RGRirrigated vs. RGRdry; test of ‘growth rates’ trade-off hypothesis), and 

(C) between drought resistance of growth and survival (DRgrowth vs. DRsurvival). Grasses and

forbs are indicated as gray open triangles and green open circles, respectively. Species median

RGR are given, and DRgrowth was log transformed (compare Fig. 3). Significant correlations

over all species are given as black solid lines, for forbs as green dashed lines (no significant

relations for grasses). R2 and the significance level ((*) p < 0.1, ** p < 0.01) are given for

significant correlations (only).
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Figure 5 Relations of species’ drought resistance with respect to (A) survival (DRsurvival) and 

(B) growth (DRgrowth) to their habitat associations with moisture. Species associations with

moisture are given as Ellenberg’s indicator values for moisture (M-value, Ellenberg et al.

1991), with low values indicating association with dry habitats. ‘X’ indicates species that are

indifferent to habitat moisture, and were not included in the regression analyses. Grasses are

indicated as gray open triangles and forbs as green open circles. Note in (A) that none of the

drought sensitive species (DRsurvival < 0.8) was associated to dry habitats (M-value < 5, lower

left corner), while several drought resistant species were associated with moist habitats (upper

right corner).
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Relation between visual drought damage and drought survival 

Survival after the 10 weeks of drought (Sdry) was significantly positively related to the 

percentage of individuals that exhibited severe visual drought damage (i.e. drought-damage 

categories 6−9). The relation already emerged in the second week of the dry treatment and 

remained highly significant within life forms and over all species throughout the experiment 

(Fig. 6, Table S6). The highest R2 emerged in the third and fourth week of drought (i.e. R2= 

0.4–0.5 over all species and within grasses or forbs). Similar relations emerged between 

drought resistance of survival (DRsurvival) and wilting (Table S6).  

For drought resistance of growth (DRgrowth), the relations were overall much weaker and not 

consistently significant through time over all species and within forbs, and no significant 

relation emerged in grasses, for both surviving individuals only and all individuals including 

dead ones (Table S6). 

Figure 6 Relation between the % individuals that showed visual signs of severe drought 

damage (drought-damage categories 5−9, see Table 2) under drought in week 4 and the % 

survival after intensive drought across 41 species. The relations over all species, grasses, and 

forbs were all significant (black solid line, gray and green dashed lines, respectively). The 

respective R2 and the significance level (** p < 0.01, *** p < 0.001) are given. For relations 

after different time periods and different species sets, see Table S6. Grasses are given as gray 

open triangles and forbs as green open circles.  
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Discussion 

Drought resistance of temperate grassland species 

Drought had an overall negative impact on survival and growth of common temperate grassland 

species, and drought damage increased with drought duration. However, more than 70% of the 

species survived well (> 90% survival) over the experimental drought, indicating that many 

species in temperate grasslands are well adapted to even intense drought conditions. These 

findings are consistent with previous studies, which reported reduced biomass productivity 

during drought, but high resilience after the drought for natural and experimental temperate 

grassland communities (Grime et al. 2008, Kreyling et al. 2008, Gilgen and Buchmann 2009, 

Vogel et al. 2012, Hoover et al. 2014, Hofer et al. 2016). Nevertheless, species responded 

differentially to drought, both in terms of survival and growth. Differential responses of species 

to drought have been suggested to alter species distribution, and the composition and diversity 

of grassland communities (Silvertown et al. 1999, Grime et al. 2000, Hoover et al. 2014). To 

our knowledge this is the most extensive study that directly and experimentally assessed 

comparative whole-plant drought responses of individual species in grasslands. It allows for 

the first time to rigorously test trade-offs and relations between performance parameters with 

respect to drought, and the relation of individual species drought responses to distributions and 

community composition of grasslands across natural gradients of soil moisture. It also provides 

an urgently needed basis for testing the relative importance of various traits and their 

combinations for drought resistance of grassland species.  

Our species ranking held under a wide range of drought intensities, as indicated by the strong 

correlations of species survival after various lengths of experimental drought. The actual 

performance of the species in our drought experiment should, however, not be interpreted as 

directly representing performance of grassland plants under natural extreme drought events of 

comparable length, because the soil water status as well as the soil-atmosphere water potential 

gradient that plants experience are highly dependent on actual weather conditions as well as 

soil characteristics and site hydrology.  

Quantification of plant drought resistance 

Our experimental approach allowed to comparatively quantify effects of drought conditions on 

individual species and to separate them from effects of non-drought related factors acting on 
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the plants (Engelbrecht and Kursar 2003, Engelbrecht et al. 2005). Across treatments soil water 

potential varied, while other environmental abiotic and biotic factors that influence plant 

performance remained constant, so that all differences between treatments were either a direct 

consequence of low water availability for the plants, or indirect consequences, e.g. through 

altered soil and plant nutrient relations, or plant defenses to herbivore or pest (Engelbrecht et 

al. 2005, Jactel et al. 2012, Delgado-Baquerizo et al. 2013). Effects of competition and 

facilitation were excluded by avoiding any overlap of roots or leaves, allowing to assess 

species-specific effects of drought. At the same time, all species were exposed to the same soil-

atmosphere water potential gradient, i.e. all species were exposed to the same rate of drying 

leading to severe drought, and the same horizontal soil water gradients and air humidity. The 

'innate whole-plant performance response' of the individual species, integrating the full suite 

of molecular, physiological and morphological traits and their plasticity, could therefore be 

compared across species. The species resistance to drought, i.e. to low levels of water 

availability, represents the low resource side of the fundamental hydrological niche of a 

species.  

In contrast to our experimental approach, complex interactions between abiotic and biotic 

factors, and changes of such interactions across resource gradients preclude rigorously isolating 

drought effects and comparing them across individual species based on observational data 

across spatial or temporal moisture gradients, or on rainfall manipulations in natural or 

experimental plant communities (Beier et al. 2012, Condit et al. 2013). On the other hand, in 

pot experiments, useful species comparisons are defied by the differential drawdown of soil 

water in plants with different transpiration rates due to size and/or species-specific stomatal 

responses, and restrictions of root development by pot size, unless careful precautions are taken 

(Poorter et al. 2012, Comita and Engelbrecht 2014). Few studies have therefore usefully 

assessed comparative species-specific responses to drought in terms of survival and growth 

(Engelbrecht et al. 2007a), and in herbaceous plants these remained restricted to few species 

(less than 8 species; Fernández and Reynolds 2000, Pérez-Ramos et al. 2013, Zwicke et al. 

2015).  

The fact that experimentally quantifying comparative species drought resistance based on 

whole plat performance responses requires tremendous effort in terms of time and labor 

motivated the use relatively easily measured traits to characterize species’ drought resistance, 

under the assumption that they are suitable proxies. For example, leaf water potential at 
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stomatal closure has been characterized as 'physiological drought tolerance' across grass 

species (Craine et al. 2013), and some studies have linked this proxy to other traits, which are 

hypothesized to shape drought resistance (Tucker et al. 2011, Farrell et al. 2017). However, the 

importance of this and other traits for drought performance of herbaceous species remains 

poorly established. Other studies have linked traits to species distributions across habitat or 

biome moisture gradients (Tucker et al. 2011, Bartlett et al. 2012, Belluau and Shipley et al. 

2017, Shipley et al. 2017). Nevertheless, the predictive power of these relations was low, and 

the physiological mechanisms and/or the ecological processes leading to these links remain 

unresolved, especially as other factors than moisture itself additionally influence species 

distributions (e.g. Condit et al. 2013, Silvertown et al. 2015). Establishing links between traits 

and performance responses to enable predicting ecological phenomena across species and 

environments is a main objective of trait-based community ecology (Shipley et al. 2016). 

Comparative whole-plant performance response to drought can provide the necessary link to 

test the importance of traits and trait combinations for species drought responses, and to 

understand how these affect community composition and species distributions across moisture 

gradients, pertaining to their realized hydrological niche. Characterization of species’ 

fundamental niche (species drought resistance) is an important step to understand species 

realized niche in the real, complex world with confounding factors and multispecies 

interactions (Poorter et al. 2016).   

Visual drought damage - a useful simple proxy for whole-plant drought resistance? 

Simple proxies for species resistance to drought are urgently needed to expand evaluations of 

its role for community composition and diversity, and for species distributions under current 

and future conditions to many more species. In our study, the percentage of plants exhibiting 

severe visual drought damage after a short duration of drought (2−4 weeks) was strongly 

correlated with species differential survival of the 10-week drought (Fig. 6, Table S6). Similar 

results have previously been found for temperate grassland species (Zwicke et al. 2015) and 

for seedlings of tropical woody species (Engelbrecht et al. 2007b). Our results confirm for 

grassland species that simple, fast and inexpensive visual assessments of the percentage of 

wilted or damaged individuals can provide a suitable ranking of species survival for longer and 

more severe drought of different length and intensity.  

Performance trade-offs with respect to drought? 
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We found no indication for a trade-off between relative growth rates in the irrigated treatment 

and drought resistance in terms of survival (‘growth-stress tolerance’ trade-off, Fig. 4A), nor 

for a trade-off between relative growth rates in the irrigated and dry treatment (‘growth rates’ 

trade-off, Fig. 4B), despite of a large (> 5-fold) variation in growth rates of well-watered plants 

across species. Any trends we found were even in the opposite direction.  

Although the lack of trade-offs was unexpected, it was consistent with previous studies that 

also found no support for the ‘growth-stress tolerance’ trade-off for grassland species at the 

level of whole plant performance (Fernández and Reynolds 2000, Zwicke et al. 2015). Indirect 

evidence for the ‘growth-stress tolerance’ trade-off has been provided by relating species 

moisture association with growth rate in grassland species (Bartelheimer and Poschlod 2016) 

and tropical woody seedlings (Gaviria et al. 2017). At the trait level, evidence for a trade-off 

between some traits enabling fast-growth and proxies of drought resistance was also reported 

for grassland species (Craine et al. 2013) and trees (Reich et al. 2013). However, plants cope 

with and adapt to drought through various different processes such as minimizing water loss, 

maximizing water uptake and transport, and maintaining carbon gain (Choat et al. 2018). 

Morphological, anatomical and physiological traits relevant for these processes can be 

coordinated among each other or trade-off, but can also be orthogonal to each other (Tucker et 

al. 2011, Zwicke et al. 2015). In addition, many relevant traits exhibit phenotypic plasticity in 

responding to varying soil moisture (Jung et al. 2014, De Vries et al. 2016). The many 

physiological processes involved in growth and drought resistance, and the complexities in trait 

relations and plasticity, may lead to independent variation of species whole-plant drought 

resistance and maximum growth rate.      

Adaptations to high resource conditions have been hypothesized to preclude optimal trait 

combinations under low resource conditions, leading to rank reversals across resource 

gradients (Latham 1992), such as the hypothesized ‘growth rates’ trade-off. In contrast, we 

found that species growth rates in the dry and irrigated treatments were independent in grasses, 

and even significantly positive in forbs and marginally across all species. The studies testing 

the hypothesis in grassland species found a rank reversal under nutrient rich vs. poor 

conditions, but not under different water and light conditions (Reader et al. 1993, Meziane and 

Shipley 1999), and in woody species with respect to drought or to light (Dalling et al. 2004, 

Baraloto et al. 2006, Kitajima and Poorter 2008) and in shoreline species regarding nutrients 
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(Keddy et al. 2000) overall also found no evidence of consistent rank reversals of growth rate 

across resource levels.  

The lack of a ‘growth-stress resistance’ or ‘growth-rates’ trade-off with respect to drought 

implies that these performance trade-offs are not dominant drivers of hydrological niche 

differentiation or maintenance of diversity in temperate grasslands. Other factors, such as 

nutrients or pest pressure, and/or other coexistence mechanisms such as temporal fluctuations 

in limiting factors (i.e. storage effect), competition-defense trade-offs or negative density 

dependence may be more important for community assembly and species distributions across 

moisture gradients in temperate grasslands (Harpole and Tilman 2007, Chesson and Kuang 

2008, Adler et al. 2013).  

Relation between survival and growth under drought 

Drought resistance in terms of survival and of growth rate of the surviving individuals 

(DRsurvival vs. DRgrowth) were marginally positively related to each other across all species and 

within forbs, and unrelated in grasses (Fig. 4C) in our study. The clear lack of a negative 

relation indicates that reductions in shoot growth did not contribute to species’ survival by 

minimizing transpirational leaf area through leaf deciduousness. Our findings for temperate 

grassland species differ from results on Mediterranean grass species (Volaire et al. 1998, Pérez-

Ramos et al. 2013). Such differences imply that strategies of drought resistance vary across 

ecosystems, and underline the importance of testing relations of traits to whole-plant drought 

performance in different systems and/or species with different life histories. 

When including dead individuals for growth, which contributing to total decrease of 

productivity in community level, giving better insight for a decrease in productivity the 

relations were significantly positive across all species as well as within both life forms (Table 

S5).  

Drought resistance and species distribution 

Species differential drought resistance is expected to shape species distribution across moisture 

gradients (Silvertown et al. 1999, Hoover et al. 2014). Relations between physiological traits 

related to water relations and gas exchange and species’ habitat wetness support this 

expectation (Belluau and Shipley 2017). However, contrary to our expectations, we found that 
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species whole-plant drought resistance of survival or growth (DRsurvival or DRgrowth) was not 

related to habitat associations with moisture (Fig. 5). Nevertheless, the most drought-sensitive 

species in our study were restricted to moist habitats, consistent with drought acting as a filter 

that excludes drought-sensitive species from dry habitats. At the same time, drought resistant 

species were associated to a wide range of moisture conditions, which in turn is consistent with 

the observed lack of ‘growth-drought tolerance’ or ‘growth rates’ trade-offs (see above). That 

several of the species with high drought resistance were associated with moist habitats 

additionally implies that they were not systematically excluded from moist habitats due to other 

possible trade-offs with drought stress tolerance, e.g. against competitive ability, herbivore or 

pathogen defenses (Grime et al. 1997, Haugen et al. 2008). On the other hand, our data also do 

not support the ‘physiological tolerance’ hypothesis, which postulates that resistant species that 

are able to withstand extreme conditions are widely distributed (Currie et al. 2004). Other 

factors that differ between habitats with different water availability must limit the distribution 

of the drought resistant species to habitats with various different moisture conditions. For 

example, high nitrogen requirements may limit the distribution of a drought resistant species 

to water regimes that are suitable to high microbial nitrogen mineralization rates and at the 

same time allow high nitrogen uptake with the transpiration stream (Araya et al. 2013). 

Complex interactions of drought resistance with other factors, such as nutrients, can accelerate 

or dampen effects of water availability (e.g. Eskelinen and Harrison 2015), and may limit 

species to specific parts of the gradient. Additionally, plant-plant interactions, i.e. competition 

and facilitation, are known to play an important role in performance of grassland species across 

soil water availability gradients and to influence species distributions (e.g. Brooker et al. 2008). 

Thus, multiple assembly processes, i.e. environmental resistance (environmental filtering) and 

plant-plant interactions, could operate simultaneously to structure plant communities along a 

resource gradient (Spasojevic and Suding 2012).  

Our results on temperate grassland plants on one hand differed from findings from moist 

tropical forests where species whole-plant drought resistance had a pronounced direct effect on 

their distribution along rainfall gradients (Engelbrecht et al. 2007, Esquivel-Muelbert et al. 

2017a), underlining that the relative importance of mechanisms for species distributions differs 

across ecosystems. On the other hand, consistent with our results, drought resistant species 

were also not excluded from even wet tropical forests, entailing that potential trade-offs of 

drought resistance with other factors were also weak and did not limit species distribution 

(Esquivel-Muelbert et al. 2017b).  
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To further our understanding of the importance of individual species drought responses for 

their distribution as well as for community composition and ecosystem functions across 

moisture gradients in grasslands, we need to go beyond the coarse grained non-quantitative 

classification of habitat association and link species drought resistance to abundance changes 

in response to temporal and spatial variation of soil water potentials. We will also have to 

explicitly consider interactions with species responses to additional abiotic and biotic factors 

on one hand, and environmental co-variation of these factors on the other hand. Linking 

drought resistance of individual species, i.e. their fundamental niche, with their responses to 

drought in community level experiments focusing on neighbor or diversity effects (e.g. Isbell 

et al. 2015, Herz et al. 2017) as well as in natural communities (e.g. Tilman and El Haddi 1992, 

Bütof et al. 2012), will allow to further elucidate the traits and factors shaping species 

distributions across moisture gradients, i.e. their realized hydrological niche. 
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Table S2 Comparison of monthly rainfall and average temperature during the experimental 

period in 2015 with long-term averages (1881−2010, data EBG). 

Rainfall (mm) Temperature (°C) 

2015 long-term average 2015 long-term average 

July 32 92 19.9 17.6 

August 40 64 20.5 16.6 

September 25 64 12.7 12.6 

Table S3 Treatment and species effects on plant performances for all 44 species (including the 

ones with poor performance under irrigated conditions excluded in the main analyses) and for 

growth based on surviving individuals only (RGRs) or on all individuals (RGRall), including 

the dead ones (living leaf area = zero). Generalized linear mixed models (GLMM, for survival) 

and linear mixed models (LMM, for growth) were used with treatment, species and treatment 

x species as fixed factors and block and plot as random effect. Models were set up over all 

species and for the two life forms (grasses and forbs) separately. The three species excluded 

were all forbs and therefore the results from grasses presented here are same as those presented 

in Table 2. For fixed effects Chi2 (X2) and F are given for survival and RGR, respectively, and 

for random effect X2 are given. Significance levels are presented as (*) p < 0.1, * p < 0.05, ** 

p < 0.01, *** p < 0.001. Note that all results for RGR are qualitatively the same as in Table 2, 

but treatment effect became significant for survival of forbs when the three species were 

included.  

Treatment Species Treatment x species Block and plot 

Survival (44 species) 

All 55.16** 309.44*** 34.47 83.81*** 

Grasses 17.09* 71.35*** 11.6 33.37*** 

Forbs 37.11*** 184.1*** 19.61 16.75*** 

RGRs (44 species) 

All 6.89(*) 2.47*** 0.94 26.26*** 

Grasses 12.05* 1.11 1.19 6.07* 

Forbs 3.57 3.35*** 0.78 14.34*** 

RGRall (44 species) 

All 9.85* 2.68*** 1.24 25.85*** 

Grasses 13.64* 1.29 1.43 9.35** 

Forbs 4.51 3.8*** 1.19 22.46*** 

RGRall (41 species) 

All 10.77* 3*** 1.41(*) 22.9*** 

Grasses 13.64* 1.29 1.43 9.35** 

Forbss 5.05(*) 4.81*** 1.46 17.86*** 
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Table S6 Relations of the % individuals with severe visual drought damage (drought-damage 

category 5−9, see Table 2) at various times into the drought with % survival of 10 weeks of 

drought (Sdry) and drought resistance of survival (DRsurvival) and growth for surviving 

individuals (DRgrowth.surv) and for all individuals including dead ones (DRgrowth.all). % 

individuals were log transformed. Shown are R2 values and significance level as (*) p < 0.1, * 

p < 0.05, ** p < 0.01, *** p < 0.001, over 41 species. Significant relations after Bonferroni 

correction are in bold. All results were qualitatively same when considering all 44 species (data 

not shown).  

Week All Grasses Forbes All Grasses Forbes 

Log(% damaged individuals) vs. Sdry 
Log(% damaged individuals) vs. 

Log(DRgrowth.surv) 

2 0.36*** 0.45*** 0.27* 0.00 0.02 0.00 

3 0.44*** 0.50*** 0.45** 0.07(*) 0.06 0.11 

4 0.43*** 0.42** 0.54*** 0.04 0.01 0.07 

5 0.36*** 0.33** 0.46*** 0.11* 0.02 0.20* 

6 0.36*** 0.33** 0.44*** 0.13* 0.02 0.23* 

7 0.31*** 0.36*** 0.36*** 0.28*** 0.01 0.04 

8 0.28*** 0.36** 0.28* 0.03 0.01 0.05 

9 0.16** 0.18* 0.20* 0.03 0.01 0.04 

Log(% damaged individuals) vs.  DRsurvival Log(% damaged individuals) vs. 

Log(DRgrowth.all) 

2 0.36*** 0.42** 0.30** 0.02 0.11 0.01 

3 0.45*** 0.50*** 0.41** 0.10* 0.14(*) 0.11 

4 0.42*** 0.39** 0.47*** 0.08(*) 0.12 0.09 

5 0.35*** 0.32** 0.38** 0.15* 0.11 0.20* 

6 0.34*** 0.32** 0.37** 0.17** 0.11 0.23* 

7 0.28*** 0.37** 0.25* 0.05 0.06 0.05 

8 0.25*** 0.37** 0.20* 0.05 0.06 0.05 

9 0.14* 0.18(*) 0.13 0.04 0.05 0.04 
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Figure S1 Progression of visual drought damage from wilting through leaf tip drying to above-

ground mortality in 41 grassland species. Species are sorted alphabetically, separately for 

grasses (A) and forbs (B). For species codes, see Table S1. For a description of the drought 

damage stages, see Table 2.
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Figure S2 (A) Relative growth rate (RGR, cm2cm-2day-1) for 41 fobs and grass species under 

dry and irrigated conditions (red and blue boxes, respectively) including both surviving and 

dead individuals (RGRall). RGR was based on projected living leaf area. Results of treatment 

effects on growth within each species are given below the box plots ((*) p < 0.1, * p < 0.05, ** 

p < 0.01, *** p < 0.001), for details see Tables S3 and S4. (B) Drought resistance of growth 

(DRgrowth) based on the response ratio between dry and irrigated conditions for all individuals 

(alive and dead). Values below the line at 0.7 indicate a decrease in RGR in the dry relative to 

the irrigated treatment. Species are sorted by increasing drought resistance. Grasses and forbs 

are indicated as G and F, respectively. For species codes and sample size, see Table S1.  
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Abstract 

Understanding the mechanisms underlying differential drought resistance of temperate 

grassland species is crucial to predict consequences of global climate change. Turgor loss 

point (πtlp) has been suggested to be a key drought resistance trait in woody species. In 

herbaceous species its role has not yet been tested. We first validated the osmometer 

method to assess πtlp in herbaceous species. We then assessed πtlp of 41 temperate grassland 

species common in Germany (20 forbs, 21 grasses), and directly related them to species' 

whole-plant survival and midday leaf water potentials under drought in a common garden 

experiment. Species drought survival increased with increasing πtlp in forbs and grasses. 

Moreover, midday leaf water potential under drought was positively related to πtlp and 

drought survival. Our results indicate that πtlp is a key trait that promotes drought resistance 

of grassland species by enabling the maintenance of high water potentials under drought, 

i.e. a desiccation avoidance strategy. The positive relations of πtlp to drought resistance in

forbs and grasses were opposite to the negative relation found in woody plants, indicating 

that mechanisms of drought resistance differ fundamentally between woody and 

herbaceous species. 

Keyword: drought resistance, drought tolerance, forbs, functional traits, grasses, midday leaf 

water potential, water relations.  
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Introduction 

Grasslands occupy one-fifth of the world’s land surface, store about a third of terrestrial carbon, 

and provide important goods and services, such as food, forage, livestock and biodiversity 

(Scurlock & Hall, 1998; Gibson, 2009; Hoover & Rogers, 2016). Grasslands worldwide are 

influenced by drought (Gibson, 2009), which alters species abundances across time and space, 

shapes species distribution patterns and community composition, and reduces productivity 

(Weaver, 1968; Tilman & El Haddi, 1992; Buckland et al., 1997). Under climate change, 

precipitation patterns are projected to change, and the frequency and severity of droughts are 

expected to increase (IPCC, 2014), enhancing effects of drought on grasslands.  

A large number of experimental studies investigating effects of drought on grasslands exist, 

which mostly focus on ecosystem properties and how they are affected by community 

composition. They consistently show that the response and resilience of ecosystems to drought 

are influenced by community trait and species composition, and by diversity (e.g. Tilman & 

Downing, 1994; Bai et al., 2004; Wu et al., 2011; Isbell et al., 2015; Wagg et al., 2017). 

However, much less attention has been dedicated to understanding how in turn drought affects 

species performance and the composition and diversity of grasslands (Tilman & El Haddi, 

1992). Drought resistance - the capacity to survive periods of low water availability - varies 

widely among species within and across plant communities, including in grasslands (e.g. 

Buckland et al., 1997). To predict the response of grassland communities to changing drought 

regimes, a thorough understanding of the differential drought resistance of grassland species 

and the underlying mechanisms is necessary. 

Plants exhibit a wide range of morphological, anatomical and physiological mechanisms that 

allow them to withstand drought. Mechanisms of whole-plant drought resistance can be 

categorized into (1) mechanisms of desiccation tolerance, which allow plants to sustain 

physiological activities despite of low water potentials, and (2) mechanisms of desiccation 

avoidance, which allow plants to maintain high water potentials during drought through 

maximizing water uptake and water storage, and minimizing water loss (Levitt, 1972; 

Vilagrosa et al., 2012; Comita & Engelbrecht, 2014). Efficient avoidance of desiccation leads 

to the maintenance of high midday leaf water potentials under drought (ΨMD), which thus 

provides a comparative measure of desiccation avoidance across species (Comita & 

Engelbrecht, 2014).  
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The question which mechanisms and their combinations are important for species differential 

drought resistance has been a focus of a large body of research (e.g. Chaves et al., 2003; 

McDowell et al., 2008, Skelton et al., 2015). Various morphological traits, e.g. leaf area, 

specific leaf area, leaf dry matter content and seed mass, as well as leaf water potential at 

stomatal closure are broadly related to habitat affinities with respect to soil moisture in forbs 

and grasses (Tucker et al., 2011; Craine et al., 2013; Shipley et al., 2017; Belluau & Shipley, 

2018). However, relations remain broad and the insight into the functional role of the traits 

limited. Recent studies have tested linkages between additional physiological and 

morphological functional traits and various drought responses, e.g. leaf mortality, or/and 

habitat water availability (Zwicke et al., 2015; Ocheltree et al., 2016; Farrell et al., 2017; 

Belluau & Shipley, 2017). However, rigorous tests of the role of different mechanisms for 

drought resistance require to explicitly directly relate traits and their combinations to 

comparative assessment of whole-plant survival under drought. Surprisingly, such studies 

remain exceedingly scarce and restricted to woody species (e.g. Engelbrecht et al., 2007; 

Kursar et al., 2009; Brenes-Arguedas et al., 2013, Urli et al., 2013, O'Brien et al., 2017). Many 

grassland species can resprout after drought from surviving belowground organs even after 

complete aboveground mortality, and leaf abscission may even promote drought performance 

by minimizing water loss (Volaire et al., 1998). Direct linkages to whole-plant drought survival 

are therefore especially important in grassland species for evaluating the mechanisms of 

drought resistance and impacts of drought. To our knowledge, to date no study has directly 

related potentially important mechanisms of drought resistance to whole-plant drought survival 

in temperate grassland species, severely limiting our ability to predict consequences of drought 

for these important systems.  

Turgor loss point (πtlp), the leaf water potential at which the turgor pressure of leaf cells equals 

zero, has long been considered a crucial parameter in plant water relations (Cheung et al., 

1975). It varies widely among plant species and has more recently been suggested to be a useful 

proxy of species drought resistance (Bartlett et al., 2012b). A low (more negative) turgor loss 

point can allow the leaf to remain turgid despite of decreasing leaf water potential (Ψleaf), and, 

therefore, maintain photosynthesis, water transport, transpiration and growth, conferring high 

drought resistance as a mechanism of desiccation tolerance (Bartlett et al., 2012b). On the other 

hand, a high (less negative) turgor loss point may also promote drought resistance by leading 

to early stomatal closure and thus enabling plants to maintain high water potential and 
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hydration even under decreasing soil water status (Bartlett et al., 2012b), therefore reflecting 

mechanisms of desiccation avoidance.  

A low turgor loss point has been shown to be associated with increasing dryness across biomes 

(Bartlett et al., 2012b), with increasing regional and local occurrence under dry conditions 

along rainfall, topographical and soil texture gradients (Lenz et al., 2006; Mitchell et al., 2008; 

Maréchaux et al., 2015), and with a high survival ratio under natural drought across subtropical 

tree species (Zhu et al., 2017). Together, these studies provide strong evidence that a low turgor 

loss point can indeed promote drought resistance as a mechanism of desiccation tolerance.  

Studies of turgor loss point as an indicator of drought resistance have almost exclusively 

focused on woody plants, e.g. recent comprehensive meta-analyses on turgor loss point and its 

relation to drought regimes or further drought related traits included 93 and 100% woody 

species, respectively (Bartlett et al., 2012b, Bartlett et al., 2016). In contrast, the knowledge 

about the association of turgor loss point with drought resistance in herbaceous species, and 

specifically in grassland species, is limited and inconsistent. A study of 33 C4 grasses found 

the opposite trend than the one in woody species, with species that occupy drier habitats 

exhibiting higher turgor loss points than those in wetter habitats (Liu & Osborne, 2014). In 

contrast, across 8 C4 grasses the water potential at which 50% of the leaves died was marginally 

positively correlated with the turgor loss point (Ocheltree et al., 2016), and across 12 pea 

cultivars (Pisum sativum L.) the growth of epicotyls under conditions of low water potentials 

was higher in cultivars with low turgor loss point (Sánchez et al., 2004) – both results consistent 

with the patterns in woody species. In further studies, turgor loss point did not show any relation 

with dryness across habitats (9 C4 grasses, Ocheltree et al., 2016 and 7 herbaceous species, 

Farrell et al., 2017) or biomes (18 herbaceous species, reanalyzed from Bartlett et al., 2012b). 

In summary, the role of the turgor loss point for drought responses in herbaceous species 

remains inclusive, and its potential as a proxy of drought resistance is unclear.  

The use of turgor loss point to infer plant drought resistance became especially appealing by 

the development of a method for its rapid assessment. Bartlett et al. (2012a) showed that in 

woody species turgor loss point can be estimated from measurements of the osmotic potential 

at full turgor with an osmometer. This 'osmometer method' makes turgor loss point 

measurement 30 times faster than traditional approaches using pressure-volume curves (Tyree 

& Hammel, 1972; Bartlett et al., 2012a). However, whether turgor loss point can be reliably 
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assessed by osmometer measurements of the osmotic water potential at full turgor in 

herbaceous species has not yet been verified.  

In our study, we first validated the 'osmometer method' for forbs and grasses by relating turgor 

loss point measured with traditional pressure-volume curves (Tyree & Hammel, 1972) to 

osmotic water potential at full turgor assessed with an osmometer (Bartlett et al., 2012a). We 

then tested two alternative hypotheses for the linkage of turgor loss point with drought 

resistance in grassland species: (1) a low turgor loss point is associated with high species 

drought survival and unrelated to midday leaf water potential, implying a strategy of 

desiccation tolerance consistent with woody species; or (2) a high turgor loss point is associated 

with high species drought survival and a high midday leaf water potential, indicating the 

importance of desiccation avoidance mechanisms, a strategy contrasting to woody species. 

To test these hypotheses, we assessed the turgor loss points for 41 temperate grassland species 

and related them to their midday leaf water potentials and to their whole-plant survival in a 

field common garden drought experiment. 

Materials and Methods 

Study species 

We initially chose 43 temperate grassland species (Table S1), 22 forbs and 21 grasses, common 

in Germany. Species were selected based on the following criteria: (1) high abundance and 

frequency in 150 long-term grassland plots (4m × 4m) in Biodiversity Exploratories from three 

areas across Germany (Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb; Fischer et al., 

2010), (2) to include different life forms i.e. forbs and grasses, (3) to represent a wide range of 

moisture associations based on Ellenberg’s soil moisture index (F-value from 3 to 7, Ellenberg 

et al., 1991), and (4) to be perennial, the dominant life history strategy in European temperate 

grasslands (Ellenberg et al., 1991). The selected species were from 34 genera and 9 families 

and all have C3 photosynthesis (Collatz et al., 1998). Seeds were bought from a commercial 

supplier (Rieger-Hofmann GmbH and Saaten Zeller, Germany) and germinated in a 

greenhouse in mid-March, 2015. Plants were transplanted to larger pots for the measurement 

of turgor loss point in the greenhouse and to a field common garden drought experiment for 

the assessments of comparative midday leaf water potential and whole-plant drought survival 

in mid-June 2015.  
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Two of the original 43 species established poorly before transplanting to the field and showed 

poor performance even in well-watered plots (< 70% survival, Medicago lupulina L. and 

Trifolium repens L.). We therefore excluded these species from the analyses presented in the 

main text. However, analyzing the data including or excluding these species yielded 

qualitatively the same results (Table S4, Table S3). 

Assessments of turgor loss point 

Plants were grown in pots (13.8 cm diameter × 35.6 depth) with sand in the greenhouse under 

well-watered and regularly fertilized conditions until assessments of turgor loss point from 

November 2015 to February 2016. To validate the osmometer method that uses measurements 

of the osmotic potential at full turgor with an osmometer to assess turgor loss point, we 

measured osmotic potential at full turgor both with the osmometer method (Bartlett et al., 

2012a) and the pressure-volume curve method (Tyree & Hammel, 1972), and turgor loss point 

with the pressure-volume curve method.  

Osmometer measurements of leaf osmotic potential at full turgor (πo-osmo) were taken for all 

study species with 6 individuals per species. Plants were watered in the evening and fully 

rehydrated overnight in the dark to avoid transpiration at room temperature of about 20 °C. A 

healthy mature leaf from each individual was used to sample one disc (4-mm-diameter), 

avoiding major veins. The disc was wrapped in foil and submerged in liquid nitrogen for 2 

minutes, then punctured 10-15 times, and sealed in an osmometer (VAPRO 5500, Wescor, 

Logan, UT; following Bartlett et al., 2012a). Osmolality was repeatedly measured until 

equilibrium was reached (change between consecutive measurements < 2.5 mmol kg-1). πo-osmo

was converted from osmolality using the equation: 

πo-osmo = -RT ∙ osmolality = -0.0025 ∙ osmolality 

where R is the universal gas constant, and T is 298.15 Kelvin (Sweeney & Beuchat, 1993). 

Pressure-volume curves (P-V curves) were measured for a subset of 14 species (7 forbs, 7 

grasses), using a bench drying method (Tyree & Hammel, 1972; Sack et al., 2011) on three 

individuals per species to validate the osmometer assessments of turgor loss point. Plants were 

rehydrated overnight in the dark. One healthy mature leaf from each individual was cut in the 

morning. During bench drying, we repeatedly measured the leaf water potential (Ψleaf) and the 
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corresponding leaf weight. Ψleaf was measured with a pressure chamber (Model 1000 Pressure 

Chamber Instrument, PMS Instrument Company, USA) at Ψleaf intervals of approximately 0.2-

0.3 MPa until Ψleaf reached -3.0 MPa (Sack et al., 2011). Leaves were weighed on an analytical 

balance (to 0.00001g, Mettler AE163, Mettler-Toledo, Giessen, Germany). Subsequently, 

leaves were oven-dried to determine relative water content (RWC, (leaf weight – leaf dry 

weight)/(leaf saturated weight – leaf dry weight)). P-V curves (1/Ψleaf versus RWC) were 

constructed after removing data points representing oversaturated symplastic water content 

(Kubiske & Abrams, 1991; Sack et al., 2011). Turgor loss point (πtlp-P-V, osmotic water 

potential at turgor loss), and leaf osmotic potential at full turgor (πo-P-V) were calculated for 

each leaf from the P-V curves using standard methods (Tyree & Hammel, 1972). 

Whole-plant drought survival and midday leaf water potential 

To assess whole-plant drought survival and comparative midday leaf water potential (ΨMD) 

under drought conditions, we established a field drought experiment at the Ecological Botanical 

Garden of the University of Bayreuth, Germany. Plants were transplanted to 72 plots in a 20 

cm grid with one individual per species being randomly assigned to each plot. All plots were 

covered with transparent rainout shelters. After an initial acclimation period under well-

watered conditions, irrigation was discontinued for 10 weeks in half of the plots (3rd August – 

October 9th, 2015). Soil water potentials in drought plots declined sharply and started to reach 

-1.5 MPa, the permanent wilting point in agricultural plants, within 18 days of ceasing

irrigation (Veihmeyer & Hendrickson, 1928; Manuscript 1). Plant drought survival was 

assessed weekly throughout the experiment based on living aboveground tissue as well as after 

potential resprouting from surviving underground organs in the next spring (April 2016). 

Survival ranking of the species remained consistent throughout, indicating that it was 

indipendent of drought duration and intensity. For details on the field experiment see 

Manuscript 1. We used the survival in April 2016 for further analyses. 

Midday leaf water potential under drought was measured when most plants started wilting in 

eight randomly selected plots under the drought treatment (generally in 8 individuals per 

species). To ensure comparability across species and to avoid any bias introduced by sampling 

date, we sampled plants plot by plot, i.e. one individual of each species per day. Measurements 

were taken with leaf cutter psychrometers (Merrill Specialty Equipment, Logan, Utah, USA) 

and a PSYPRO™ water potential system (Wescor, Inc., Logan, Utah, USA). Samples were 

taken from 11:30 am to 12:30 pm from August 8th – 15th 2015. One leaf disk per individual 
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(diameter 6 mm) was sampled with leaf cutter psychrometers from the middle of a healthy, 

mature leaf avoiding major leaf veins, transported back to the laboratory, and equilibrated in a 

water bath at 25℃ for 5 hours. Midday leaf water potentials were analyzed based on previously 

established calibration curves with 5 different levels of standard NaCl solutions for each sensor.  

Statistical analyses 

To assess if the osmotic potential at full turgor measured with an osmometer (πo-osmo) is a 

suitable proxy for the turgor loss point in grassland species, we correlated πo-P-V and πtlp-P-V 

with πo-osmo across the 14 species measured in our study. To further assess the relation in 

herbaceous species, we compiled published data on πo-P-V and πtlp-P-V from traditional P-V 

curves (Bartlett et al., 2012b; Gotsch et al., 2015; Ocheltree et al., 2016; Farrell et al., 2017), 

and correlated πo-P-V with πtlp-P-V. We used Standardized Major Axis (SMA) tests to test if the 

slopes and intercepts differed between forbs and grasses, and between the species in our study 

and previously published data. The regression equation between πo-osmo and πtlp-P-V from the 14 

species in our study was subsequently used to calculate turgor loss point for all species based 

on osmometer measurements (πtlp-osmo).  

 We tested differences of midday leaf water potentials under drought (ΨMD) and turgor 

loss points (πtlp) among species and between life forms (forbs and grasses) using one-way 

ANOVAs for species and t-tests for life forms. Significance of the difference of whole-plant 

drought resistance (see below) between forbs and grasses was tested using a generalized linear 

model with binomial distributions (GLM). 

To assess the association of turgor loss point with desiccation avoidance, the relation between 

ΨMD and πtlp-osmo was analyzed with a Pearson correlation, and we tested for a difference of this 

relation between forbs and grasses with a SMA test.  

We analyzed the effects of ΨMD and πtlp-osmo on whole-plant drought resistance based on three 

different parameters: (a) drought survival as alive or dead (binary data), (b) percent survival in 

the drought treatment relative to the number of individuals at the start of the drought (% 

survival), and (c) the ratio of % survival in dry treatment plots relative to % survival in well-

watered plots (survival ratio). We analyzed the effects of ΨMD or πtlp-osmo on drought survival 

(alive/dead), using a generalized linear model with binomial distributions (GLM) with drought 

survival as a response variable and ΨMD or πtlp-osmo as independent variable, and tested it with 
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a likelihood ratio test (Chi-square test). We included the effects of life form (forb and grass) 

and its interactions with ΨMD or πtlp-osmo as additional factors to test whether the effects of ΨMD 

and πtlp-osmo on whole-plant drought resistance differed between forbs and grasses. We also 

tested the effects of ΨMD and πtlp-osmo on % survival and survival ratio with Pearson’s 

correlations. All models yielded qualitatively the same results (Table S4, except the relations 

of % survival with ΨMD and πtlp-osmo within forbs were marginally significant (P < 0.1)). The 

binary drought survival data (alive/dead) represents the basic and untransformed dataset and 

the distribution is accepted as non-normal, usually analyzed using GLM with binomial 

distribution (McCullagh, 1984). We therefore present the results for drought survival in the 

main text and provide the results for %survival and the ratio of %survival in the Table S4. 

However, to make figures easily visually understandable, we plotted %survival as responses 

and fitted the models with Pearson’s correlations in the figures.  

We further used a mediation test (Muthén et al., 2016) to evaluate if the effects of turgor loss 

point on whole-plant drought resistance were indirectly mediated through midday leaf water 

potential, i.e. high turgor loss point allowing plants to maintain high midday leaf water potential 

during drought, leading to high drought survival (hypothesis 2), or if there was a direct effect 

of turgor loss point on whole-plant drought resistance. We assessed the mediation of ΨMD 

between πtlp-osmo and drought survival using Mplus with bootstrap = 10000 (Muthén et al., 

2016).  

Standardized Major Axis tests were done using smatr3 packages in R (Warton et al., 2012). 

The remaining analyses were performed in R using R base package (R Core Team, 2017).  

Results 

Validation of the osmometer method to assess turgor loss point in herbaceous species 

Across 14 species including both forbs and grasses, turgor loss point assessed using P-V curves 

(πtlp-P-V) was significantly and tightly correlated with osmotic potential at full turgor assessed 

from P-V curves (πo-P-V, Fig. 1a). This relation was also significant within forbs or grasses (Fig. 

1a). Consistently, a significant positive correlation between osmotic potential at full turgor and 

water potential at turgor loss assessed with P-V curves was found for data on 35 herbaceous 

species gathered from the literature (r2 = 0.79, Fig. 1a, Bartlett et al., 2012b; Gotsch et al., 

2015; Ocheltree et al., 2016; Farrell et al., 2017). Turgor loss point assessed with traditional P-
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V curves was also significantly positively related to osmotic water potential at full turgor 

assessed with an osmometer (πo-osmo, Fig. 1b). Again, relations remained significant within 

forbs and grasses separately (Fig. 1b). Slopes and intercepts did not differ between life forms 

(Standardized Major Axis tests, all P values > 0.88, Table S2). Turgor loss points were 

therefore consequently modelled from the osmometer measurements of osmotic potential at 

full turgor (πtlp-osmo) based on the regression equation from our 14 species: 

πtlp-osmo = 0.645 ∙ πo-osmo - 0.942 Eqn 1 

Species midday leaf water potential, turgor loss point and drought survival 

Midday leaf water potentials under drought (ΨMD) and turgor loss points (πtlp-osmo) varied 

significantly across the 41 focal species (Table S3). Turgor loss points ranged from -2.30 ± 

0.12 MPa to -1.49 ± 0.02 MPa (mean ± se) in our study and were well within the published 

data for herbaceous species under irrigated conditions, i.e. -2.96 MPa to -0.43 MPa (Fig. 1a, 

Bartlett et al., 2012b; Farrell et al., 2017). Forbs had significantly higher ΨMD and πtlp-osmo than 

grasses (t-test, P < 0.001, Fig. 2 a, Table S3). Between 42% and 100% of the individuals of 

focal species survived the experimental drought, with drought survival (alive/dead) being 

higher in forbs than in grasses (GLM, P < 0.05, Fig. 2c).  

Midday leaf water potential under drought (ΨMD), indicating the species’ integrated desiccation 

avoidance, was significantly positively related to the turgor loss point across all 41 species (πtlp-

osmo; r
2 = 0.36, P < 0.001, Fig. 3a; also see Table S4). Thus, species that lost turgor at high 

water potentials maintained high leaf water potentials under drought (effectively avoided 

desiccation). Turgor loss point had a strong effect on species drought survival (alive/dead), 

with species with higher turgor loss point exhibiting higher survival across all 41 species (χ2 = 

52.6, P < 0.001, Table S4; also see Fig. 3b). Midday leaf water potential under drought (ΨMD) 

also had a strong positive effect on species drought survival (alive/dead) across all 41 species 

(χ2 = 82.6, P < 0.001, Table S4; also see Fig. 3c). All effects remained significant when forbs 

and grasses were analyzed separately (Table S4), and the effects did not differ significantly 

between forbs and grasses (Table S5).  

The mediation test showed that effects of turgor loss point on drought survival (alive/dead) 

were predominantly indirect, i.e. through maintenance of high midday leaf water potential (P 
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< 0.001, Fig. 4). The total indirect effect size of high turgor loss point on species drought 

survival under drought was 7.66 and the nonsignificant direct effect size was 1.17.  
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Fig. 1 Turgor loss point measured with the traditional P-V curve methods (πtlp-P-V) was 

significantly related to osmotic water potential at full turgor (a) assessed with traditional 

P-V curves (πo-P-V) across all pooled 14 grassland species in our study (r2 = 0.71, P < 0.001)

and within forbs (r2 = 0.87, P < 0.01) and grasses (r2 = 0.61, P < 0.05), and across 35 herbaceous 

species compiled from published data (r2 = 0.79, P < 0.001; Bartlett et al., 2012b; Gotsch et 
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al., 2015; Ocheltree et al., 2016; Farrell et al., 2017), and (b) assessed with an osmometer (πo-

osmo) across all pooled 14 grassland species in our study (r2 = 0.86, P < 0.001) and within forbs 

(r2 = 0.77, P < 0.01) and grasses (r2 = 0.69, P < 0.05). In (b), for comparison we additionally 

included the relation across 30 woody species from Bartlett et al. (2012a). Data are species 

mean values ± standard errors with n = 3 individuals per species for 14 grassland species in our 

study, and species means for the data from published literature. In (b) the regression line for 

woody species (Bartlett et al., 2012a, grey line) did not significantly differ from the one for all 

pooled 14 grassland species (black line) in our study. The joint regression equation is: πtlp-osmo 

= 0.786 ∙ πo-osmo - 0.705, n = 44 species. 
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Fig. 2 Comparisons between forbs and grasses of (a) midday leaf water potentials under 

drought (ΨMD), (b) turgor loss points (πtlp-osmo) and (c) species survival under drought. 

The figure shows % survival for visual understandability, while the test of the difference of 

drought survival (alive/dead) between forbs and grasses presented in the text is based on GLM 

with binomial distribution. n = 20 for forbs and n = 21 for grasses. Significance of differences 

is given as *** P < 0.001, * P < 0.05. 
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Fig. 3 Turgor loss point (πtlp-osmo) was positively related to (a) midday leaf water potential 

under drought (ΨMD), and (b) species survival under drought. Higher ΨMD also was 

positively related to species survival under drought (c). Data points are averages ± standard 

errors for all 41 species. All relations were also significant within forbs or grasses, and relations 

stayed significant when the outlier (arrow) was excluded (for details see Table S4). The figure 

shows % survival fitted with Pearson’s correlations for visual understandability, while the 

relations of πtlp-osmo and ΨMD with drought survival (alive/dead) presented in the text are based 

on GLM with binomial distribution. Significance is given as *** P< 0.001, ** P < 0.01.
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Fig. 4 Schematic representation of the results of the mediation test for the direct and 

indirect effect of turgor loss point on drought survival (alive/dead). Numbers adjacent to 

arrows indicate the effect size and the associated P value. ***: P value < 0.001, n.s.: P value > 

0.05.  
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Discussion 

Turgor loss point, desiccation avoidance and drought survival in grassland species 

The positive relation between turgor loss point and drought survival we clearly showed that in 

grassland species a high turgor loss point promotes high drought survival. A high turgor loss 

point may promote drought survival through enabling plants to lose turgor and close stomata 

earlier during drought, and to maintain high water content (i.e. avoid desiccation). We also 

showed that the midday leaf water potential mediated the positive effect of turgor loss point on 

drought survival, indicating that desiccation avoidance mechanisms are driving differential 

whole-plant drought resistance of grassland species rather than desiccation tolerance 

mechanisms. Both forbs and grasses exhibited a strategy of desiccation avoidance, as indicated 

by the consistent positive relations among turgor loss point, midday leaf water potential and 

drought survival in both life forms. Forbs had higher turgor loss points and maintained higher 

midday leaf potentials under drought compared to grasses, implying forbs being more effective 

in avoiding desiccation, and thereby had higher drought survival than grasses (Fig. 2, Fig. 3). 

Although this mechanism has been recognized, it has received little attention (Bartlett et al., 

2012b, references within). A meta-analysis focusing on woody species across biomes found no 

support for a high turgor loss point or a high leaf water content leading to plant drought 

resistance (Bartlett et al., 2012b), contrary to our results for grassland species.  

Turgor loss at high leaf water potentials can allow plants to avoid desiccation through several 

mechanisms that minimize leaf water loss under decreasing water availability. Firstly, turgor 

loss triggers the biosynthesis of the phytohormone abscisic acid (ABA), which leads to 

stomatal closure even at high water potentials (McAdam & Brodribb, 2016). A mechanistic 

linkage between turgor loss point and stomatal closure is supported by a positive relation across 

7 herbaceous species (reanalysed from Farrell et al., 2017), i.e. species with high turgor loss 

point close stomata early under decreasing leaf water potentials. Secondly, in many species 

turgor loss induces leaf rolling or folding and vertical leaf orientation (Turner & Begg, 1981), 

which maximizes boundary layer resistance and minimizes leaf-to-air water vapor deficit. 

Additionally, turgor loss leads to the shrinking of cuticle waxes, which reduces cuticular 

conductance (i.e. cuticle permeability to water vapor), the main path of plant water loss after 

stomatal closure (Boyer, 2015). These mechanisms may individually or in combination 

contribute that a high turgor loss point minimizes leaf water loss, and thus allows grassland 

species to maintain high leaf water potentials and to high survival under drought. Pairwise 
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comparisons of drought responses in herbaceous species with different turgor loss points are 

consistent with our finding that high turgor loss point leads to high drought survival in 

herbaceous grassland species (Barnes, 1985; Torrecillas et al., 1995; Braatne & Bliss, 1999; 

Holloway-Phillips & Brodribb, 2011).  

Additional mechanisms of desiccation avoidance have consistently been found to be important 

for the drought performance of grassland species or for their distribution. Low stomatal 

conductance under non-stressed conditions and stomatal closure at high water potentials (i.e. 

'earlier' in a drought) were related to maintenance of productivity or occurrence in dry habitats 

in some studies, supporting the role of minimizing water loss (Thomas, 1986; Belluau & 

Shipley, 2017; Konings et al., 2017). In contrary, two other studies showed a trend towards 

species with high water potentials at stomatal closure occuring in wetter sites (Tucker et al., 

2011; Craine et al., 2013), although relevant data supporting desiccation tolerance mechanisms 

for grassland species remain scare. Xylem embolism resistance, one of the most important 

desiccation tolerance traits in woody plants (Anderegg et al., 2016; O'Brian et al., 2017) and 

pit membrane thickness were unrelated to species drought survival in our study (data analyzed 

from Lens et al., 2016 for 13 and 5 species, respectively). Consistently, xylem embolism 

resistance was not related to habitat water availability across 8 C4 grasses (Ocheltree et al., 

2016). In conclusion, a decisive role of mechanisms of desiccation avoidance for differential 

drought resistance of grassland species is strongly supported by our own as well as previous 

results, while a relevance of mechanisms of desiccation tolerance is not supported.  

Contrasting mechanisms of drought resistance in grassland and woody species 

The trend we found in herbaceous grassland species, i.e. a high turgor loss point promoting 

drought survival, was opposite to studies on woody species (Lenz et al., 2006; Mitchell et al., 

2008; Bartlett et al., 2012b; Maréchaux et al., 2015; Zhu et al., 2017). These results imply 

fundamentally different strategies of drought resistance in herbaceous and woody species.  

In woody species, a low (more negative) turgor loss point confers high drought resistance as a 

mechanism of desiccation tolerance by allowing the leaf to remain turgid despite of decreasing 

leaf water potentials (Ψleaf), and therefore maintain key physiological functions such as cell 

expansion during growth (Cheung et al., 1975; Frensch & Hsiao, 1994; Velazquez-Marquez et 

al., 2015), stomatal openness for photosynthetic CO2 assimilation (Brodribb et al., 2003), and 

whole leaf hydraulic conductivity (Bartlett et al., 2012b; Scoffoni et al., 2017).  
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Mechanisms of desiccation tolerance generally dominate in woody species: high resistance to 

xylem embolism in leaves, stems and roots, low lethal leaf water potentials and low water 

potentials at stomatal closure have previously been linked to drought survival across woody 

species  (Kursar et al., 2009; Urli et al., 2013; Anderegg et al., 2015; Anderegg et al., 2016; 

Zhu et al., 2017; Johnson et al., 2018). In turn, a low turgor loss point has been shown to be 

associated with these physiological mechanisms of desiccation tolerance (Bartlett et al., 2016). 

On the other hand, maximum rooting depth, a prominent trait of drought avoidance, was 

unrelated to drought mortality across woody species (Anderegg et al., 2016). In summary, for 

woody species there is plenty of evidence - including from assessments of turgor loss points - 

that mechanisms of desiccation tolerance are important for drought survival, while a decisive 

role of mechanisms of desiccation avoidance is not supported. This is in stark contrast to our 

and other findings for grassland species (see above).  

The distinct strategies of drought resistance in grassland and woody species are likely due to 

their fundamental differences in biomass allocation patterns and their morphological and 

physiological traits. Temperate grassland species overall have much higher root:shoot ratios 

(about 10 fold for comparion of temperate grasslands with temperate, subtropical and tropical 

woodlands; Mokany et al., 2006) and smaller leaf areas than woody species (Nolf et al., 2016). 

This leads to higher water uptake capacity relative to water demand for transpiration in 

grassland species, which benefits desiccation avoidance. Second, adults of temperate grassland 

species are much smaller than the vast majority of woody species (shrubs and trees) and 

therefore have a shorter water transport path. This renders the gravitational component of water 

potential negligible, and strongly reduces the length dependent hydraulic resistance of the 

xylem in grassland species, while these components can considerably lower leaf water 

potentials in tall trees (Tyree, 2007).  Lastly, stomatal closure under low humidity or water 

availability is more sensitive to ABA in herbaceous species than woody species (McAdam & 

Brodribb, 2015). The stomata of herbaceous species are therefore more responsive to 

decreasing water potentials, which contributes to avoiding water loss. The mechanisms above 

facilitate in grassland species the maintenance of high leaf water potentials, i.e. desiccation 

avoidance, and may release selection pressure for tissue tolerance of low water potentials, i.e. 

desiccation tolerance, relative to woody species. 
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Conclusions 

Our study indicated that turgor loss point is driving differential drought resistance of temperate 

grassland species through functioning as a mechanism of desiccation avoidance, which was 

contrary to woody species, a result that underlines the differences of strategies to cope with 

drought between temperate grassland species and woody species. Our results highlight the need 

to directly link functional traits with whole-plant drought survival for characterizing drought 

resistance strategies in different plant life forms, and for predicting plant drought responses 

based on trait assessments. Turgor loss point, which can be efficiently assessed with the 

'osmometer method', was shown to be a promising trait to advance projections of drought 

survival in temperate grassland species. Nevertheless, the relation was relatively weak and the 

predictive power therefore remains limited. Identifying additional traits relevant for drought 

survival in grassland species has the potential to improve predictions of which species will lose 

or win, and how community composition and ecosystem functions will be affected by altered 

drought regimes under global climate change. 
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Supporting information 

Text S1 Discussion on turgor loss point assessment 

We validated for herbaceous species the 'osmometer method' (Bartlett et al., 2012a) to assess 

the turgor loss point from measurements of osmotic water potential at full turgor (Fig. 1). The 

'osmometer method' which allows to rapidly assess turgor loss points thus can be extended 

from woody to non-woody species. The relations did not differ between forbs and grasses, or 

between herbaceous and woody species (this study vs. Bartlett et al., 2012a, and all herbaceous 

species in this study and previous studies vs. all woody species in Bartlett et al., 2012b; Table 

S2), suggesting that despite the fundamental differences in the strategy to cope with drought a 

common equation is suitable for woody and herbaceous species, including for new taxa, to 

assess turgor loss point from measurements of osmotic potential at full turgor with an 

osmometer. The data from the 14 herbaceous species in our study and the 30 woody species 

from Bartlett et al. (2012a) could therefore be included in a joint regression (see Fig. 1 for 

equation). The 'osmometer method' will greatly facilitate rapid quantification of drought 

resistance in grasslands, similar to woody species (Bartlett et al., 2012a). 
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determination of comparative drought tolerance traits: using an osmometer to predict 

turgor loss point. Methods in Ecology and Evolution 3(5), 880-888. 

Bartlett M.K., Scoffoni C., & Sack L. (2012b). The determinants of leaf turgor loss point 

and prediction of drought tolerance of species and biomes: a global meta-analysis. 

Ecology Letters 15(5), 393-405. 
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Table S1 List of the 43 temperate grassland species in our study with family and life form. 

Species Family Life form 

Achillea millefolium L. Asteraceae Forb 

Agrostis capillaris L. Poaceae Grass 

Agrostis stolonifera L. Poaceae Grass 

Alopecurus pratensis L. Poaceae Grass 

Anthoxanthum odoratum L. Poaceae Grass 

Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Poaceae Grass 

Brachypodium pinnatum (L.) P.Beauv. Poaceae Grass 

Briza media L. Poaceae Grass 

Bromus hordeaceus L. Poaceae Grass 

Centaurea jacea L. Asteraceae Forb 

Cerastium holosteoides Fr. Caryophyllaceae Forb 

Cirsium oleraceum (L.) Scop. Asteraceae Forb 

Crepis biennis Lapeyr. Asteraceae Forb 

Dactylis glomerata L. Poaceae Grass 

Daucus carota L. Apiaceae Forb 

Elymus repens (L.) Gould Poaceae Grass 

Festuca guestfalica Boenn. ex Rchb. Poaceae Grass 

Festuca ovina L. Poaceae Grass 

Festuca pratensis Huds. Poaceae Grass 

Festuca rubra L. Poaceae Grass 

Galium mollugo L. Rubiaceae Forb 

Helictotrichon pubescens (Huds.) Schult. & Schult.f. Poaceae Grass 

Holcus lanatus L. Poaceae Grass 

Lathyrus pratensis L. Fabaceae Forb 

Leontodon autumnalis L. Asteraceae Forb 

Leucanthemum vulgare (Vaill.) Lam. Asteraceae Forb 

Lolium perenne L. Poaceae Grass 

Lotus corniculatus L. Fabaceae Forb 

Medicago lupulina L. Fabaceae Forb 

Phleum pretense L. Poaceae Grass 
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Plantago lanceolata L. Plantaginaceae Forb 

Poa pratensis L. Poaceae Grass 

Poa trivialis L. Poaceae Grass 

Prunella vulgaris L. Lamiaceae Forb 

Ranunculus acris L. Ranunculaceae Forb 

Ranunculus bulbosus L. Ranunculaceae Forb 

Ranunculus repens L. Ranunculaceae Forb 

Rumex acetosa L. Polygonaceae Forb 

Rumex crispus L. Polygonaceae Forb 

Taraxacum officinale (L.) Weber ex F.H.Wigg. Asteraceae Forb 

Trifolium repens L. Fabaceae Forb 

Trisetum flavescents (L.) P. Beauv. Poaceae Grass 

Vicia cracca L. Fabaceae Forb 

 

  



Manuscript 2 

113 

Table S2 Results of Standard Major Axis (SMA) tests for differences of relations in testing the 

'osmometer method' (Figure 1). A. comparison between grasses and forbs in this study, B. 

comparison between 14 grassland species in this study and 30 woody species in Bartlett et al. 

(2012a), C. comparison between herbaceous species (14 grassland species in this study and 

published data for 35 herbaceous species, Bartlett et al., 2012b; Gotsch et al., 2015; Ocheltree 

et al., 2016; Farrell et al., 2017) and predominant woody species (221 species, Bartlett et al., 

2012b). Results are for the relations of (a) turgor loss point vs. osmotic potential at full turgor 

measured with the traditional P-V curve method (πtlp-P-V vs πo-P-V, respectively, Tyree & 

Hammel, 1972), (b) turgor loss point from pressure volume curves vs. osmotic potential at full 

turgor assessed with an osmometer (πo-osmo, Bartlett et al., 2012a), and (c) osmotic potential at 

full turgor assessed from pressure volume curves vs. with an osmometer.  

Given are P values for differences of slopes and intercepts between the respective different 

groups. Note that none of the groups differ significantly from each other. 

Parameter relations A. grasses vs.  

forbs 

B. grassland vs. 

woody 

C. herbaceous vs.

woody 

slope intercept slope intercept slope intercept 

(a) πtlp-P-V ~ πo-P-V 0.92 0.98 0.37 0.90 0.11 0.67 

(b) πtlp-P-V ~ πo-osmo 0.88 0.89 0.42 0.24 

(c) πo-P-V ~ πo-osmo 0.95 0.84 0.06 0.30 
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Table S3 Differences among species or between life forms in midday leaf water potential under 

drought (ΨMD), turgor loss point (πtlp-osmo) and drought survival (alive/dead, compare Fig. 2) 

for datasets (a) including or (b) excluding outlier Poa trivialis L., or (c) including all 43 initial 

species (i.e. including Medicago lupulina L. and Trifolium repens L. which had < 70% survival 

even under well-watered conditions, compare table S4 and methods).  

Given are F values (one-way ANOVA for species differences), t values (t-tests for life form 

differences, grasses vs. forbs) or χ2 values (GLM with binomial distribution for life form 

differences in drought survival (alive/dead)), and associated degrees of freedom in parentheses. 

The change for drought survival between significant vs. non-significant results among datasets 

is given in italics. (*), P < 0.1 (marginally significant); *, P < 0.05; ***, P < 0.001; ns, P > 0.1 

(not significant). 

Traits Groups (a) 41 species

used in this 

study 

(b) 40 species

excluding

outlier 

(c) 43 all initial

species

midday leaf water 

potential 

Species 

(F value) 

10.74*** 

(40, 256) 

8.90*** 

(39, 260) 

10.45*** 

(42, 270) 

Life form 

(t value) 

-3.98***

(34.28) 

3.90*** 

(35.90) 

-4.11***

(33.10) 

turgor loss point Species 

(F value) 

8.37*** 

(40, 217) 

13.89*** 

(39, 207) 

9.22*** 

(42, 238) 

Life form 

(t value) 

2.13* 

(37.15) 

1.86(*) 

(36.12) 

2.28* 

(37.10) 

drought survival Life form 

(χ2 value) 

5.24* 

(1) 

0.92 ns 

(1) 

1.18 ns 

(1)
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Table S5 Differences between grasses and forbs in relations of midday leaf water potential 

under drought (ΨMD), turgor loss point (πtlp-osmo) and three different parameters for drought 

resistance (drought survival, % survival and survival ratio, compare Fig. 3).  

Given are the P values for differences of slopes and intercepts tested with GLM with binomial 

distribution for relations regarding drought survival (alive/dead) and SMA for the remaining 

relations.  

Relations 41 species used in this study 

slope intercept 

midday leaf water potential ~ turgor loss point 0.56 0.07 

drought survival ~ midday leaf water potential 0.18 0.79 

% survival ~ midday leaf water potential 0.40 0.001 

survival ratio ~ midday leaf water potential 0.31 0.002 

drought survival ~ turgor loss point 0.25 0.24 

% survival ~ turgor loss point 0.84 0.22 

survival ratio ~ turgor loss point 0.73 0.24 
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Abstract  

1. Drought induces plants mortality, reduces productivity and influences biodiversity in 

grasslands worldwide. Various traits that maximize water uptake and minimize water 

loss are hypothesized or known to influence species drought resistance. However, 

rigorous evaluations of their importance and predictive capacities for drought resistance 

are missing, especially for grassland species. This impedes our understanding of 

mechanisms of drought resistance and predictions of grassland dynamics under climate 

change.  

2. We measured 15 root traits regarding morphology, allocation and phenotypic plasticity 

in response to drought as well as turgor loss point for 41 common temperate grassland 

species including 20 forbs and 21 grasses. We directly linked traits to species 

comparatively assessed midday leaf water potentials under drought, characterizing 

desiccation avoidance, and whole-plant drought resistance in terms of survival. We 

evaluated trait importance and the predictive power of various trait combinations for 

drought resistance.  

3. Root traits and turgor loss point were related to whole-plant drought resistance, while 

they differed in their trait importance. Root traits were more important for drought 

resistance than turgor loss point across all species as well as within forbs and within 

grasses, underlining the importance of maximizing water uptake in grassland species. 

Among all root traits, rooting depth and root mass had overall the highest importance 

for drought resistance for both forbs and grasses, while root diameter only for forbs and 

phenotypic plasticity of root traits with minor importance. Forbs and grasses differed 

in their functional traits and trait importance for drought resistance, supporting the 

treatment of forbs and grasses as different functional groups. Combinations of relatively 

easily assessed traits under irrigated conditions had high predictive power for drought 

resistance for both groups (r2 ≥ 56%), i.e. root morphological traits (root diameter, root 

tissue density and specific root length) for forbs and root allocation traits (root mass, 

rooting depth and root depth distribution) for grasses.  

4. Our results highlighted the importance of root systems for promoting drought resistance 

in grassland species. The combinations of important root traits may contribute to 

improving projections of the dynamics of temperate grasslands under global climate 

change.  
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Introduction 

Grasslands are one of the most widespread ecosystems covering one-fifth of the land surface 

and store one-third of terrestrial carbon (Scurlock & Hall 1998). They also provide important 

goods and are crucial for the maintenance of biodiversity (Gibson 2009). However, extreme 

climate events such as drought induce plants mortality and species loss, lead to decrease in 

grassland productivity and influence species composition globally (Weaver 1968; Tilman & El 

Haddi 1992; Debinski et al. 2010; Tucker, Craine & Nippert 2011; Yang et al. 2011). Under 

climate change scenarios drought intensity and frequency are projected to increase (IPCC 

2014), even during the growing season (Orth, Zscheischler & Seneviratne 2016; Schlaepfer et 

al. 2017) enhancing drought effects on grasslands. Drought resistance in grassland species 

varies across species (Buckland et al. 1997; Tucker, Craine & Nippert 2011; Craine et al. 2012; 

Lens et al. 2016; Manuscript 1), and the effects of drought on grasslands, therefore, depend on 

species composition (Pfisterer & Schmid 2002; Isbell et al. 2015; Wagg et al. 2017). A 

thorough understanding of mechanisms underlying differential species drought resistance is 

necessary for the projections of dynamics of grassland under climate change.  

Plants can resist drought stress by avoiding low leaf water potentials through maximizing water 

uptake and water storage and minimizing water loss, i.e. desiccation avoidance, or by tolerating 

low water potentials and maintaining water transport and photosynthesis despite of low water 

potentials, i.e. desiccation tolerance (Levitt 1972; Vilagrosa et al. 2012; Comita & Engelbrecht 

2014). The effectiveness of plants to avoid desiccation can be assessed as the midday leaf water 

potentials under drought (MWP), which integrates the various mechanisms at the root, stem 

and leaf level (Levitt 1972; Vilagrosa et al. 2012; Comita & Engelbrecht 2014; Choat et al. 

2018). Across temperate grassland species, the effectiveness of desiccation avoidance varies 

strongly, and midday water potentials under drought were positively related to comparative 

whole-plant drought resistance across 41 species (Manuscript 2). These findings, which were 

consistent with several previous studies (Garwood & Sinclair 1979; Buckland et al. 1997; 

Perez-Ramos et al. 2013; Zwicke et al. 2015; Belluau & Shipley 2017; Konings, Williams & 

Gentine 2017), provided conclusive evidence that differences in desiccation avoidance are 

important in driving the differential drought resistance of temperate grassland plants. 

Turgor loss point (TLP), the leaf water potential at which leaf cells lose turgor, is a crucial 

mechanism of desiccation avoidance involved in controlling leaf level water loss. A high turgor 
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loss point can minimize water loss and contribute to high midday leaf water potentials under 

drought through several mechanisms, including triggering the biosynthesis of ABA and 

stomatal closure (Brodribb & Holbrook 2003; McAdam & Brodribb 2016), leaf rolling or 

folding and vertical leaf orientation (Turner & Begg 1981) and shrinking of cuticle waxes 

which reduces cuticular conductance (Boyer 2015). Turgor loss point was positively related to 

desiccation avoidance and whole-plant drought resistance in grassland species (Manuscript 2), 

indicating that it is a key trait. However, turgor loss point only explained part of the large 

variation across species in midday leaf water potentials under drought (36%) and whole-plant 

drought resistance (20%, Manuscript 2). Additional mechanisms, therefore, must also 

contribute to the observed variation of drought resistance. Water uptake through roots 

influences plant desiccation avoidance and therefore may also contribute to drought resistance 

in grassland species.  

Roots vary in morphology, allocation and phenotypic plasticity among grassland species 

(Canadell et al. 1996; Jackson et al. 1996; Bardgett, Mommer & De Vries 2014; Barkaoui, 

Roumet & Volaire 2016; Larson & Funk 2016; Guderle et al. 2018). Various root traits have 

been hypothesized or shown to be important for maintenance of high leaf water potentials under 

drought and/or promoting plants drought resistance by maximizing soil water uptake 

(Ekanayake et al. 1985; Canadell et al. 1996; Barkaoui, Roumet & Volaire 2016; Freschet & 

Roumet 2017; Guderle et al. 2018). For example, high specific root length (SRL), indicating 

thin roots and/or low root tissue density, should lead to greater absorptive root length per unit 

biomass and may enable plants to efficiently increase root volume and surface to explore soil 

water (Bardgett, Mommer & De Vries 2014). High root mass ratio, indicating high biomass 

allocation to roots that take up water relative to transpirational leaf area should improve 

survival under drought (Comas et al. 2013). High rooting depth and high biomass allocation to 

deep roots allowed plants to use deep soil water and thus to maintain high leaf water potentials 

or water contents when surface soil dried out under drought (Buckland et al. 1997; Perez-

Ramos et al. 2013; Barkaoui, Roumet & Volaire 2016; Guderle et al. 2018). Additionally, roots 

are phenotypically plastic in response to water availability with respect to root allocation and 

morphology, enabling plants to increase their water uptake during temporal drought stress 

(Hoeppner & Dukes 2012; Larson & Funk 2016). These root traits may all influence species 

drought resistance but to different degrees.  
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Several studies have tested importance of either turgor loss point or root traits for species 

differential drought resistance, and the use of either to predict drought resistance (Molyneux & 

Davies 1983; Tucker, Craine & Nippert 2011; Ocheltree, Nippert & Prasad 2016; Farrell, Szota 

& Arndt 2017; Belluau & Shipley 2018) because experimental assessments of species drought 

resistance need tremendous time and labor while the measurement of traits are relative easier 

(Manuscript 1). By relating traits to habitat water availability or to shoot growth or 

aboveground biomass production under drought conditions, these studies found that 

associations of either turgor loss point or root traits with drought resistance were weak and 

their predictive power was generally low (Molyneux & Davies 1983; Tucker, Craine & Nippert 

2011; Ocheltree, Nippert & Prasad 2016; Farrell, Szota & Arndt 2017; Belluau & Shipley 

2018). One reason for this may be that the linkages of species growth under drought and 

distribution along soil water availability with drought resistance are loose. Reduced growth or 

leaf mortality has been shown to be positively related to high whole-plant drought resistance, 

i.e. negative relations between growth under drought and drought resistance, suggesting that it

may promote drought resistance by reducing transpirational area (Volaire, Thomas & Lelievre 

1998; Volaire & Norton 2006; Manuscript 1), while it was also been reported to precede 

drought mortality, i.e. positive relations (Rivero et al. 2007; Zwicke et al. 2015). Other factors 

may additionally shape species distribution along moisture gradients besides drought, such as 

grazing, nutrient, light and biotic interactions (Proulx & Mazumder 1998; Hacker et al. 2006; 

Maron & Crone 2006; Borer et al. 2014; Breitschwerdt, Jandt & Bruelheide 2018). 

Supportively, in Manuscript 1 we found that although drought sensitive species were excluded 

from dry habitat, drought resistance species were associated with a wide range of moisture 

gradients. Therefore, to rigorously evaluate the importance of traits and their predictive power 

for species drought resistance, we need to directly relate traits to comparative assessments of 

whole-plant drought resistance (e.g. Manuscript 2). Assessment of whole-plant drought 

resistance under experimental drought conditions allow us to comparatively quantify the effects 

of drought on multiple species by inducing only drought stress while eliminating effects of 

other confounding factors, such as light, nutrients, interactions among plants or pot effects that 

may influence performances of individual species (e.g. Engelbrecht and Kursar 2003). 

However, such assessment remained scarce. The few studies in grassland species tested only a 

limited number of species (4-7 species; Volaire 2008; Perez-Ramos et al. 2013; Zwicke et al. 

2015). In manuscript 1, we experimentally assessed drought resistance in 41 grassland species 

which now allows to directly relate traits to species comparative drought resistance and to 

assess their importance and predictive power.  
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Further, the importance of turgor loss point and root traits for drought resistance likely differs. 

Buckland et al. (1997) found that species with deep roots maintained leaf turgor and higher 

water content than those with low rooting depth, which suggests that root access to deep soil 

was more important than decreasing water loss at the leaf level. Meanwhile, strong control of 

water status through avoiding leaf level water loss is suggested by findings that species with 

shallow roots can still maintain high leaf water potential and water content under drought 

(Garwood & Sinclair 1979; Buckland et al. 1997). The role of different mechanisms of 

desiccation avoidance can also differ among life forms (Skelton, West & Dawson 2015), even 

within grassland species (Manuscript 2). For example, forbs lost turgor and closed stomata 

earlier than grasses as leaf water potentials declined (Tucker, Craine & Nippert 2011; 

Manuscript 2). Grasses increased root biomass allocation to deep soils under drought whereas 

forbs did not respond in their root depth distributions (Skinner & Comas 2010). However, a 

quantification of the relative importance of turgor loss point and root traits for desiccation 

avoidance and drought resistance across grassland species, and a comparison between forbs 

and grasses are still missing. This largely hinders our understanding of mechanisms of drought 

resistance and diminishes our predictive power of the consequences of climate change in shifts 

of grassland life form composition and ecosystem functions and services.  

In this study, we analyzed turgor loss point and 15 root traits of 41 common temperate 

grassland species including both forbs and grasses, and linked them directly to species 

comparative midday leaf water potentials under drought, indicative of the effectiveness of their 

desiccation avoidance (Manuscript 2), and whole-plant drought resistance assessed in a 

common garden drought experiment (Manuscript 1). All traits are known or hypothesized to 

influence plant water relations, and the respective expected relations to desiccation avoidance 

and whole-plant drought resistance are indicated in Table 1. We aimed to elucidate (1) the 

relative importance of turgor loss point and individual root traits for the differential desiccation 

avoidance and drought resistance of grassland species; (2) how their importance varies between 

forbs and grasses; and (3) the predictive power of various trait combinations for drought 

resistance. 

Materials and Methods 

41 common temperate grassland species (20 forbs and 21 grasses, Table S1) were chosen 

according to (1) their high abundance and frequency in 150 long-term grassland plots (4m × 
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4m) in Biodiversity Exploratories in three areas across Germany (Schorfheide-Chorin, 

Hainich-Dün and Schwäbische Alb; Fischer et al. 2010), (2) their associations with a wide 

range of soil moisture (Ellenberg indicator values for soil moisture from 3 to 7, Ellenberg et al. 

1991), and (3) being perennial and C3, the dominant life history strategy and photosynthetic 

pathway in European temperate grasslands (Ellenberg et al. 1991; Collatz, Berry & Clark 

1998). Seeds were purchased from commercial seed suppliers (Rieger-Hofmann GmbH and 

Saaten Zeller, Germany) and were germinated in a greenhouse in mid-March 2015. After three 

months of growth, plants were transplanted to a greenhouse and a common garden.  

In the greenhouse experiment, plants were growing in deep pots (7 cm diameter × 36 cm depth). 

Plants were well-watered every day and fertilized with a full fertilizer (Wuxal Super, Aglukon, 

Germany). We measured turgor loss point, root morphological traits (specific root length, root 

diameter and root tissue density) and root mass ratio under well-watered conditions.  

The common garden experiment was carried out at the Ecological Botanical Garden of the 

University of Bayreuth, Germany (Manuscript 1). 72 plots (1 m x 2 m) were dug, filled with 

sand and covered with transparent rainout shelters. One individual per species was randomly 

planted in each plot and in a 20 cm grid with spacing chosen to avoid competition. Plants were 

initially fertilized and watered for two months to allow for acclimation. 32 of the plots were 

then exposed to a drought treatment for 10 weeks (3 August – 9 October 2015) by discontinuing 

irrigation. Soil water potentials in these drought treatment plots declined strongly and reached 

-1.5 MPa, the permanent wilting point in agricultural plants (Veihmeyer & Hendrickson 1928),

within 18 days of ceasing irrigation (Manuscript 1). At the end of the drought treatment, rainout 

shelters were removed, all plots were irrigated again, and then plants were left under natural 

conditions until the next spring (for further details on the experiment see Manuscript 1). We 

measured root allocation (rooting depth, root mass, total root length and again root mass ratio) 

under irrigated and drought conditions, and their phenotypic plasticity in response to drought. 

Midday leaf water potentials under drought conditions and whole-plant drought resistance were 

assessed in the same common garden experiment (Manuscript 1; Manuscript 2). Root mass 

ratios were significantly correlated in the greenhouse and the common garden experiment 

(under irrigated conditions; r = 0.49, P < 0.01), suggesting that any pot effects on root 

development were limited and that datasets from the greenhouse and the common garden 

experiment could be usefully combined. 

Turgor loss point 



Manuscript 3 

127 

Turgor loss point (TLP) was assessed on six healthy individuals for each species based on the 

osmotic water potential at full turgor (πo, Manuscript 2). We followed the method in Bartlett et 

al. (2012), for details see Manuscript 2. In short, plants were rehydrated overnight in the dark, 

and the osmotic water potential of one leaf disk from each individual was measured in a 

VAPRO 5500 vapor pressure osmometer (Vapor Model 5600, Wescor, Logan, Utah, USA). 

The osmotic water potential at full turgor was converted to turgor loss point based on the 

equation TLP = 0.645 ∙ πo - 0.942 (Manuscript 2).  

Root morphological traits 

Root diameter (RDia), specific root length (SRL) and root tissue density (RDen) were assessed 

on three individuals for each species. Plants in the vegetative growth phase were harvested in 

March 2016. Roots were washed and the whole root excluding the tap root or rhizome, or a 

representative subsample of the root (more than half of the whole root system) was scanned at 

400 dpi (Epson Perfection V700 Photo Scanner, Japan) and analyzed for root diameter (RDia), 

root length and root volume with WinRhizo (Regent Instruments Inc., Quebec, Canada). Root 

samples, the remaining roots and aboveground biomass were separately oven-dried at 70℃ for 

48 hours. Specific root length (SRL, root length/root mass), root tissue density (RDen, root 

mass/root volume) and root mass ratio (root mass/plant mass) were calculated.  

Root allocation and phenotypic plasticity 

Rooting depth, root mass, total root length, root mass ratio, and their phenotypic plasticity were 

assessed in April 2016. Plants in eight irrigated and eight drought treatment plots were carefully 

dug out. Rooting depth (RDep) was measured for each individual in situ as the depth from the 

soil surface to the deepest root. Roots and shoots were oven-dried. Root mass (RM), root mass 

ratio (RMR, root mass/plant mass) and total root length (TRL, root mass*specific root length 

(see above)) were assessed. Although root mass ratios in the greenhouse and in the common 

garden experiment were highly correlated (see above), only root mass ratios in the common 

garden experiment were used in analyses. Phenotypic plasticity of rooting depth (PRDep), root 

mass (PRM), root mass ratio (PRMR), and total root length (PTRL) were assessed as the 

respective relative distance plasticity index (RDPI, Valladares, Sanchez-Gomez & Zavala 

2006) based on the relative trait difference of all pairs of individuals within a species growing 

in different conditions (the drought and irrigated treatments), allowing us to test the differences 

in plasticity among species (RDPI, Valladares, Sanchez-Gomez & Zavala 2006). The 
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phenotypic plasticity of root total length is the same as for root mass and thus was not analyzed 

separately.  

Root depth distribution 

Root depth distribution (RDis) was assessed for 35 species from detailed drawings of whole 

root profiles (Kutschera 1960; Kutschera, Lichtenegger & Sobotik 1982) for plants growing 

under natural conditions or on farmlands, where one ‘representative’ individual was drawn for 

each species. Root profile figures were scanned and the root fractions along continuous soil 

profiles were analyzed using ImageJ (Schneider, Rasband & Eliceiri 2012). Root depth 

distribution (RDis) was calculated by fitting the asymptotic equation (Gale & Grigal 1987): 

𝑌 = 1 − 𝑅𝐷𝑖𝑠𝑑 where Y is the cumulative fraction of roots from the soil surface to depth d

(cm). High values of RDis indicate a larger proportion of roots in deeper soil layers. We 

validated that the root depth distribution assessed with this method captured species 

characteristic root depth distribution patterns, by relating it to the assessment with actual root 

biomass per soil layer (up to 40 cm) in nine species, using plants growing in monocultures 

exposed to natural conditions (r = 0.71, P < 0.05; data from Oram et al. 2018).  

Midday leaf water potentials under drought 

Midday leaf water potentials under drought (MWP) were assessed in eight randomly selected 

drought treatment plots one week after discontinuing irrigation when most plants lost turgor 

and started wilting (Manuscript 2). Measurements were taken with leaf cutter psychrometers 

(Merrill Specialty Equipment, Logan, Utah, USA) and a PSYPRO™ water potential system 

(Wescor, Inc., Logan, Utah, USA) on eight continuous days (August 8th – 15th 2015) with all 

species in one plot sampled in one day from 11:30h to 12:30h to avoid any bias introduced by 

sampling date and ensure comparability across species. For details, see Manuscript 2.  

Whole-plant drought resistance 

Whole-plant drought resistance (DR) was assessed as the response ratio of survival in drought 

treatment relative to irrigated treatment, i.e. DR = % Sdry/% Sirr, where % S is alive/initial 

number in the drought and the irrigated treatment, respectively (Engelbrecht & Kursar 2003; 

Manuscript 1). Plant survival was assessed based on above-ground organs at the end of the 
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drought experiment in 2015, corrected for resprouting based on a census in April 2016 (for 

details see Manuscript 1). 

Statistics: 

We initially tested if all traits and midday leaf water potentials under drought differed among 

all species and separately among forbs and grasses with one-way ANOVAs. We then tested if 

they as well as whole-plant drought resistance differed between forbs and grasses using t-tests. 

Correlations among traits were assessed with Pearson’s correlations and relations of all traits 

with midday water potentials under drought and whole-plant drought resistance were assessed 

using univariate regressions. Normality was inspected graphically and tested using Shapiro-

Wilk test. Data were log transformed to increase normality when needed (Table 2). 

To assess the relative importance of traits for desiccation avoidance and whole-plant drought 

resistance, we calculated the trait importance values with a random forest algorithm, which 

specifically evaluates the contribution of each trait to the changes of prediction accuracy of the 

response when the values of the trait is randomly permuted (Genuer, Poggi & Tuleau-Malot 

2010). It is a fully non-parametric statistical method, and therefore avoids the constraints of 

linear models (Breiman 2001; Genuer, Poggi & Tuleau-Malot 2010; Hapfelmeier & Ulm 

2013). Namely, the analysis of the importance value for each trait with linear regressions is 

problematic if a large number of traits are highly correlated as in our study (Table S2). Removal 

of traits that are highly correlated with other traits based on variance inflation factor (VIF) 

values or correlation coefficients (O'Brien 2007; Dormann et al. 2013) can overestimate the 

importance of remaining traits and underestimate the eliminated ones, especially when all traits 

are included in the experiment due to their hypothesized or known ecological and physiological 

importance (McDonald 2014).   

We additionally used principal components analysis (PCA) to assess trait associations and 

evaluated trait importance for desiccation avoidance and whole-plant drought resistance by 

relating species coordinates on principal components axes to species midday leaf water 

potentials under drought and to whole-plant drought resistance with univariate regressions. 

For the prediction purpose, our aim was to provide the most parsimonious models and test the 

predictive power of a priori selected combinations of traits. Multiple regressions were used to 

select the most parsimonious models based on the Bayesian information criterion (BIC) to 



Manuscript 3 

130 

predict drought resistance. Here, we included midday leaf water potentials under drought as a 

trait to predict species whole-plant drought resistance and removed SRL and total root length 

in the drought treatment which were highly correlated with other traits (all |rs| ≥ 0.7, Table S2; 

Dormann et al. 2013). The performance of the final model was evaluated based on explanatory 

power, i.e. the explained variance of the response variable. The significance of variables in the 

final models was assessed with multiple regressions by comparing the estimate of the 

coefficient of each variable with zero using t-test. We quantified the contribution of each 

individual variable to the explained variance of the best models based on sequential R2s with 

weighted averages over orderings which takes care of the dependence of orderings of the traits 

in the models (Gromping 2006).  

To facilitate pragmatic decisions for trait selection to predict species drought resistance, we 

additionally tested the predictive performances of combinations of 2-3 traits that either had the 

high explanatory power in the best models (Table 4) or that can be assessed with reasonable 

experimental and measurement efforts (e.g. allocation under irrigation or root morphological 

traits).  

All analyses were done across all species as well as separately within forbs and grasses to assess 

differences in the trait importance and in the best predictive models of drought resistance 

between forbs and grasses.  

The variable importance value was assessed using randomForest package (Liaw & Wiener 

2002). glmulti package was used for model selection (Calcagno & de Mazancourt 2010). The 

contribution of each variable in the final models was calculated using relaimpo package with 

‘pmvd’ method (Gromping 2006). The remaining analyses were done using base R packages. 

All the analyses were done using R (R Core Team 2018).  

Results 

All traits including turgor loss point as well as midday leaf water potentials under drought 

varied significantly across all species, as well as within forbs and grasses, respectively (Table 

1).  



T
a
b

le 1
 T

h
e traits, th

eir h
y
p

o
th

esized
 relatio

n
s to

 w
h
o
le-p

lan
t d

ro
u

g
h
t resistan

ce an
d
 d

esiccatio
n
 av

o
id

an
ce, i.e. m

id
d
ay

 leaf w
ater p

o
ten

tials u
n
d
er 

d
ro

u
g
h
t, ab

b
rev

iatio
n
s, u

n
its an

d
 su

m
m

ary
 statistics.  

T
raits 

H
y
p

o
th

ese
s 

A
b

b
rev

iatio
n

 
U

n
it 

(a)
all sp

ecies
(b

)
sp

ecies

effec
t

(c)
fo

rb
s

(d
)

g
rasses

(e)
life fo

rm

effec
t

P
erfo

rm
a
n
ce u

n
d

er d
ro

u
g
h
t 

w
h

o
le-p

la
n
t d

ro
u
g

h
t resista

n
c
e 

D
R

 
0

.9
1

 ±
 0

.0
2

 

(0
.4

6
, 1

.0
3

) 

0
.9

3
 ±

 0
.0

3
 

0
.9

0
 ±

 0
.0

3
 

n
.s.

m
id

d
a
y
 lea

f w
ater p

o
ten

tial 
+

M
W

P
M

P
a 

-2
.4

2
 ±

 0
.1

6

 (-5
.6

8
, -1

.1
0

) 

0
.6

2
*
*
*

 
-1

.8
6

 ±
 0

.1
5

(0
.6

4
*
*
*
)

>
-2

.9
5

 ±
 0

.2
3

(0
.5

0
*
*
*
)

*
*

*
 

W
ater lo

ss co
n
tro

l 

tu
rg

o
r lo

ss p
o

in
t 

+
T

L
P

M
P

a 
-1

.7
9

 ±
 0

.0
3

(-2
.3

0
, -1

.4
9
) 

0
.6

1
*
*
*

 
-1

.7
3

 ±
 0

.0
3

(0
.6

8
*
*
*
)

>
-1

.8
5

 ±
 0

.0
4

(0
.5

4
*
*
*
)

*
 

R
o

o
t m

o
rp

h
o

lo
g

y
 

ro
o

t d
iam

eter 
-

R
D

ia
m

m
 

0
.3

8
 ±

 0
.0

6
 

(0
.2

6
, 0

.5
9

) 

0
.9

3
*
*
*

 
0

.4
2

 ±
 0

.0
0

4
 

(0
.7

1
*
*
*
) 

>
0

.3
4

 ±
 0

.0
0

4

(0
.5

3
*
*
*
)

*
*

 

sp
ecific ro

o
t len

g
th

 
+

S
R

L
m

/g
 

1
7

3
 ±

 4
.2

8
 

(1
6

.8
7

, 

9
8

3
.9

6
) 

0
.9

3
*
*
*

 
1

0
4

 ±
 4

.3
3

 

(0
.6

8
*
*
*
) 

<
 

2
3

9
 ±

 1
0

.1

(0
.5

6
) 

*
 

ro
o

t tissu
e d

en
sity

 
-

R
D

en
g
/c

m
3 

0
.1

1
 ±

 0
.0

2
 

(0
.0

2
, 0

.2
7

) 

0
.8

6
*
*
*

 
0

.1
4

 ±
 0

.0
0

4
 

(0
.6

4
*
*
*
) 

>
0

.0
8

 ±
 0

.0
0

2

(0
.5

7
*
*
*
)

*
*

 

R
o

o
t allo

catio
n

 

ro
o

tin
g
 d

ep
th

 d
ry

 
+

R
D

ep
d
ry

c
m

 
4

3
.7

7
 ±

 1
.5

4
 

(2
9

.0
0

, 7
4

.1
7

) 

0
.3

9
*
*
*

 
4

6
.9

3
 ±

 2
.6

0
 

(0
.4

3
*
*
*
) 

>
4

0
.7

5
 ±

 1
.4

8

(0
.2

6
*
*
*
)

*
 

ro
o

tin
g
 d

ep
th

 irrig
ated

 
+

R
D

ep
irr

c
m

 
3

3
.7

1
 ±

 0
.7

8
 

(2
0

.6
7

, 4
5

.1
7

) 

0
.2

9
*
*
*

 
3

2
.9

6
 ±

 1
.2

8
 

(0
.3

0
*
*
*
) 

3
4

.4
2
 ±

 0
.9

3

(0
.2

6
*
*
*
) 

n
.s.

ro
o

t m
ass d

ry
 

+
R

M
d
ry

g
 

6
.2

5
 ±

 0
.8

9
 

0
.4

5
*
*
*

 
6

.4
6

 ±
 1

.3
6

 
6

.0
4

 ±
 1

.2
0

 
n
.s.

Manuscript 3

131 



(0
.5

7
, 2

5
.8

5
) 

(0
.3

8
*
*
*
) 

(0
.5

8
*
*
*
) 

ro
o

t m
ass irrig

ated
 

+
R

M
irr

g
 

7
.3

2
 ±

 1
.2

0
 

(1
.1

0
, 4

5
.0

0
) 

0
.6

0
*
*
*

 
4

.7
2

 ±
 0

.9
9

 

(0
.5

1
*
*
*
) 

<
 

9
.7

8
 ±

 2
.0

2
 

(0
.6

0
*
*
*
) 

*
 

to
tal ro

o
t len

g
th

 d
ry

 
+

T
R

L
d
ry

m
 

1
7

8
3

 ±
 2

7
8

 

(1
3

.1
5

, 2
1

9
0
2

) 

0
.7

3
*
*
*

 
1

0
9

8
 ±

 7
0

.8
 

(0
.5

1
*
*
*
) 

2
4

3
6

 ±
 2

1
9

 

(0
.7

6
*
*
*
) 

n
.s.

to
tal ro

o
t len

g
th

 irrig
ated

 
+

T
R

L
irr

m
 

2
1

7
7

 ±
 3

4
0

 

(5
2

.9
9

, 1
4

7
7
4

) 

0
.6

7
*
*
*

 
8

3
6

 ±
 6

0
.0

 

(0
.5

3
*
*
*
) 

<
 

3
4

5
6

 ±
 2

0
1

 

(0
.5

7
*
*
*
) 

*
 

ro
o

t m
ass ratio

 d
ry

 
+

R
M

R
d
ry

g
/g

 
0

.6
6

 ±
 0

.0
2

 

(0
.3

7
, 0

.9
4

) 

0
.4

2
*
*
*

 
0

.6
4

 ±
 0

.0
4

 

(0
.5

7
*
*
*
) 

0
.6

8
 ±

 0
.0

2
 

(0
.1

9
*
*
*
) 

n
.s.

ro
o

t m
ass ratio

 irrig
ated

 
+

R
M

R
irr

g
/g

 
0

.6
9

 ±
 0

.0
3

 

(0
.2

1
, 0

.9
7

) 

0
.6

7
*
*
*

 
0

.6
7

 ±
 0

.0
5

 

(0
.7

1
*
*
*
) 

0
.7

0
 ±

 0
.0

3
 

(0
.5

8
*
*
*
) 

n
.s.

ro
o

t d
ep

th
 d

istrib
u
tio

n
 

+
R

D
is

0
.9

4
 ±

 0
.0

1
 

(0
.8

6
, 0

.9
9

) 

0
.9

4
 ±

 0
.0

1
 

0
.9

4
 ±

 0
.0

0
5

 
n
.s.

R
o

o
t p

h
en

o
ty

p
ic p

lasticity
 

p
h
en

o
ty

p
ic p

lasticity
 o

f ro
o

tin
g
 d

ep
th

 
+

P
R

D
ep

c
m

/c
m

 
0

.1
8

 ±
 0

.0
1

 

(0
.1

0
, 0

.3
2

) 

0
.1

8
*
*
*

 
0

.2
1

 ±
 0

.0
1

 

(0
.1

9
*
*
*
) 

>
0

.1
6

 ±
 0

.0
1

(0
.2

1
*
*
*
)

*
*

*
 

p
h
en

o
ty

p
ic p

lasticity
 o

f ro
o

t m
ass 

+
P

R
M

g
/g

 
0

.4
5

 ±
 0

.0
2

 

(0
.2

5
, 0

.7
9

) 

0
.1

3
*
*
*

 
0

.4
5

 ±
 0

.0
3

 

(0
.2

3
*
*
*
) 

0
.4

5
 ±

 0
.0

2

(0
.2

6
*
*
*
)

n
.s.

p
h
en

o
ty

p
ic p

lasticity
 o

f ro
o

t m
ass ratio

 
+

P
R

M
R

(g
/g

)/( 

g
/g

) 

0
.1

7
 ±

 0
.0

1
 

(0
.0

6
, 0

.4
7

) 

0
.2

5
*
*
*

 
0

.1
9

 ±
 0

.0
2

 

(0
.3

8
*
*
*
) 

0
.1

4
 ±

 0
.0

1

(0
.2

7
*
*
*
)

n
.s.

G
iv

en
 are (a) th

e m
ean

 ±
 stan

d
ard

 erro
r acro

ss all 4
1
 sp

ecies (w
ith

 m
in

im
u
m

 an
d
 m

ax
im

u
m

 sp
ecies av

erag
es g

iv
en

 in
 p

aren
th

esis) an
d
 (b

) th
e 

sp
ecies effect size (o

n
e
-w

a
y
 A

N
O

V
A

) as w
ell as th

e m
ean

 ±
 stan

d
ard

 erro
r w

ith
in

 (c) fo
rb

s an
d
 (d

) g
rasses (w

ith
 resp

ectiv
e sp

e
cies effect size 

g
iv

en
 in

 p
aren

th
esis) an

d
 (e) th

e sig
n
ifican

ce o
f th

e d
ifferen

ces b
etw

een
 fo

rb
s an

d
 g

rasses (t-tests). S
ig

n
ifican

ce is g
iv

en
 as *

*
*
 p

 <
 0

.0
0
1
, *

*
 p

 <
 

0
.0

1
, *

 p
 <

 0
.0

5
, n

.s. p
 >

 0
.0

5
. D

irectio
n
s o

f relatio
n
s are in

d
icated

 b
y
 +

 an
d
 –

 as p
o
sitiv

e an
d
 n

eg
ativ

e relatio
n
, resp

ectiv
ely

. F
o
r d

etails o
n
 trait 

m
easu

rem
en

ts an
d
 calcu

latio
n
s see m

eth
o
d
s. W

h
o
le-p

lan
t d

ro
u

g
h
t resistan

ce an
d
 ro

o
t d

ep
th

 d
istrib

u
tio

n
 is o

n
ly

 o
n

e v
alu

e p
er sp

ecies.

Manuscript 3

132 



T
a
b

le 2
 H

y
p
o
th

esized
 an

d
 tested

 relatio
n
s o

f in
d
iv

id
u
al traits w

ith
 w

h
o
le-p

lan
t d

ro
u
g
h
t resistan

ce (D
R

) an
d
 d

esiccatio
n
 av

o
id

an
ce, i.e. m

id
d
ay

 

leaf w
ater p

o
ten

tials u
n
d

er d
ro

u
g
h
t co

n
d
itio

n
s (M

W
P

).  all sp
ecies 

fo
rb

s 
g
rasses 

T
raits 

H
y
p

o
th

esis 
D

R
 

M
W

P
 

D
R

 
M

W
P

 
D

R
 

M
W

P
 

M
W

P
 

(+
) 

+
0
.3

8
 *

*
*

+
0
.2

0
*

+
0

.5
8

*
*

*

W
ater lo

ss co
n
tro

l 

T
L

P
 

(+
) 

+
0
.2

0
*
*

+
0
.3

6
*
*
*

+
0
.2

0
*

+
0

.2
1

*
0

.1
8

 n
.s. 

+
0

.3
4

*
*

R
o
o
t m

o
rp

h
o

lo
g
y
 

lo
g
 R

d
ia 

(-) 
<

 0
.0

1
 n

.s. 
0
.0

4
 n

.s. 
-

0
.4

0
*
*

0
.0

4
 n

.s. 
0

.0
8

 n
.s. 

<
 0

.0
1

 n
.s. 

lo
g
 S

R
L

 
(+

) 
0
.0

3
 n

.s. 
-

0
.1

3
*

0
.0

4
 n

.s.
<

 0
.0

1
 n

.s. 
0

.1
6

 n
.s. 

0
.0

3
 n

.s. 

lo
g
 R

D
 

(-) 
0
.0

6
 n

.s. 
+

0
.1

5
*

0
.0

9
 n

.s.
0

.0
7

 n
.s. 

0
.0

2
 n

.s. 
0

.0
3

 n
.s. 

R
o
o
t allo

catio
n
 

lo
g
 R

D
ep

 d
ry  

(+
) 

+
0
.2

1
*
*

+
0
.1

4
*

+
0
.2

1
*

0
.1

1
 n

.s. 
+

0
.2

1
*

0
.0

5
 n

.s. 

lo
g
 R

D
ep

 irr  
(+

) 
+

0
.1

5
*

+
0
.1

0
*

0
.0

7
 n

.s.
0

.0
7

 n
.s. 

+
0

.3
6

*
*

+
0

.5
4

*
*

*

lo
g
 R

M
 d

ry  
(+

) 
+

0
.2

7
*
*
*

+
0
.1

2
*

+
0
.4

0
*
*

+
0

.2
0

*
+

0
.1

9
*

+
0

.1
9

*

lo
g
 R

M
 irr  

(+
) 

0
.0

4
 n

.s.
<

 0
.0

1
 n

.s.
0
.1

1
 n

.s. 
+

 
0

.3
1

*
0

.0
9

 n
.s.

0
.1

0
 n

.s.

lo
g
 T

R
L

 d
ry  

(+
) 

0
.0

5
 n

.s
<

 0
.0

1
 n

.s.
+

0
.2

8
*

0
.0

8
 n

.s. 
<

 0
.0

1
 n

.s.
0

.0
4

 n
.s.

lo
g
 T

R
L

 irr  
(+

) 
<

 0
.0

1
 n

.s.
0
.0

4
 n

.s.
0
.1

2
 n

.s.
0

.1
3

 n
.s. 

<
 0

.0
1

 n
.s.

0
.0

1
 n

.s.

 R
M

R
 d

ry  
(+

) 
-

0
.1

2
*

0
.0

5
 n

.s.
0
.1

1
 n

.s.
0

.0
3

 n
.s. 

0
.1

8
 n

.s.
0

.0
6

 n
.s.

 R
M

R
 irr  

(+
) 

0
.0

3
 n

.s.
0
.0

4
 n

.s.
0
.0

3
 n

.s.
0

.0
1

 n
.s. 

-
0

.3
5

*
*

-
0

.2
6

*

 R
D

is 
(+

) 
+

0
.2

3
*
*

+
0
.1

5
*

0
.1

9
 n

.s.
0

.1
0

 n
.s. 

+
0

.4
2

*
*

+
0

.5
5

*
*

*

R
o
o
t p

h
en

o
ty

p
ic p

lasticity
 

lo
g
 P

R
D

ep
 

(+
) 

0
.0

4
 n

.s. 
0
.0

3
 n

.s. 
0
.1

3
 n

.s. 
<

 0
.0

1
 n

.s. 
0

.0
1

 n
.s. 

0
.0

4
 n

.s. 

lo
g
 P

R
M

 
(+

) 
+

0
.1

3
*

+
0
.1

0
*

0
.1

8
 n

.s. 
<

 0
.0

1
 n

.s. 
0

.0
7

 n
.s. 

0
.0

6
 n

.s. 

lo
g
 P

R
M

R
 

(+
) 

0
.0

1
 n

.s.
<

 0
.0

1
 n

.s.
0
.0

7
 n

.s. 
0

.0
1

 n
.s. 

0
.1

7
 n

.s. 
+

0
.1

9
*

Manuscript 3

133 



Manuscript 3 

134 

Directions of relations are given as + or - (positive and negative, respectively). R2 values from 

univariate regression analyses are given and significance is indicated as * P < 0.05, ** P< 0.01, 

*** P< 0.001, n.s. P > 0.1. Traits log-transformed to increase normality are indicated. See Table 

1 for trait abbreviations. 
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Fig. 1 Differential importance of all 15 root traits and turgor loss point for whole-plant drought 

resistance (DR; A, B, C) and desiccation avoidance, i.e. midday leaf water potentials under 

drought (MWP; D, E, F) across all species (A, D) and within forbs (B, E) and within grasses 

(C, F). Given are variable importance values based on random forest models. Traits are ordered 

by their importance across all species for whole-plant drought resistance (A) and for 

desiccation avoidance (D), respectively. The most important traits are highlighted in bold. Note 

that comparison of trait importance values is useful to compare relative trait contributions 

within each dataset, but not to evaluate the absolute trait contributions across datasets. 
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Traits did not vary independently, but several were highly coordinated (Table S2, Fig. S1). 

Across all species, midday water potentials under drought, indicative of desiccation avoidance, 

turgor loss point and various root traits were significantly related to whole-plant drought 

resistance (Table 2).  Turgor loss point and root traits were also related to midday water 

potentials under drought (Table 2). Overall these significant relations of individual traits were 

consistent with our hypotheses (Table 2). However, some deviations emerged, i.e. for specific 

root length, root tissue density and root mass ratio, relations were opposite to expected for 

either drought resistance or midday water potentials under drought (Table 2). 

Trait importance for whole-plant drought resistance and desiccation avoidance 

Traits differentially contributed to whole-plant drought resistance and desiccation avoidance 

(i.e. midday leaf water potentials under drought). Consistently, across all species, as well as 

across forbs and grasses separately, root traits were more important for drought resistance, 

whereas turgor loss point had relatively minor importance (Fig. 1A, B, C). In contrast, turgor 

loss point was consistently included among the traits with the highest importance for midday 

leaf water potentials under drought (Fig. 1D, E, F).  

Across all species, for drought resistance, rooting depth in drought treatment was the most 

important trait following by root mass in the drought treatment (Fig. 1A). For desiccation 

avoidance, turgor loss point was the most important followed by root tissue density and rooting 

depth in the irrigated treatment (Fig. 1D). Phenotypic plasticity of root traits in response to 

drought was not important. The traits with high importance values generally were also the ones 

that individually showed significant correlations to drought resistance and midday leaf water 

potentials under drought, while traits with low importance were unrelated to them (Table 2). 

Overall, similar results were found in the PCA analysis (Fig. 2). Drought resistance and midday 

leaf water potentials under drought were both highly correlated with PC2 (r = -0.68 and r = -

0.60, respectively, both p< 0.001) which had higher positive loadings for rooting depth and 

root mass in drought treatment (Table 3), but not with any other PCA axes (all |r| < 0.26, P > 

0.10).  
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Fig. 2 Results of a principal component analysis of all 15 root traits and turgor loss point. Forbs 

are given in open and grasses in closed. Circles present the 95% confidence intervals of mean 

values for forbs and grasses, respectively, on PCA axis 1 (PC1) and axis 2 (PC2). The relative 

positions of whole-plant drought resistance (DR) and desiccation avoidance, i.e. midday leaf 

water potentials under drought (MWP) are highlighted with red arrows. For trait abbreviations 

and trait loadings on PC1 and PC2 see Table 1 and Table 3, respectively. 

Differences between forbs and grasses in traits and trait importance for drought resistance 

Turgor loss point as well as various but not all root traits pertaining to morphology, allocation 

and phenotypic plasticity differed between forbs and grasses (Table 1). Specifically, forbs had 

higher root diameter, root tissue density, rooting depth in drought treatment, phenotypic 

plasticity of rooting depth and turgor loss point, and lower specific root length and root mass 

and total root length in irrigated treatment than grasses (Table 1). These differences lead to a 

separation of the two life forms in the principal component analysis along PC1 and PC2 (Fig. 

2). Forbs also maintained higher midday leaf water potentials under drought than grasses 

(Table 1). Drought resistance did not significantly differ between forbs and grasses (Table 1).  
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Table 3 Trait loadings on the two main components of the principal component analysis. 

PC1 PC2 

log RDep dry 0.05 0.77 

log RM dry 0.54 0.73 

log PRDep -0.27 0.62 

log RDen -0.51 0.58 

log PRMR 0.02 -0.53

 TLP -0.16 0.38

log RDep irr -0.11 0.36

 RMRdry 0.37 0.33

log PRM 0.87 -0.32

log SRL -0.07 -0.28

log RMirr 0.91 0.24

log TRLdry 0.74 0.22

 RMRirr 0.00 0.18

log RDia -0.73 0.07

log TRL irr 0.97 -0.07

Traits were sorted by their loadings on PC2, which was highly correlated with both whole-

plant drought resistance and desiccation avoidance (midday leaf water potentials under 

drought). Compare the main text and figure 3.   

Traits also differed in their importance for desiccation avoidance and drought resistance 

between forbs and grasses (Fig. 1 B, C, E, F). Similar to the trend across all species, rooting 

depth in drought and/or irrigated treatment was the most important for desiccation avoidance 

and drought resistance in grasses and was among the traits with the high importance for 

desiccation avoidance but not for drought resistance in forbs. In forbs, total root length in 

irrigated treatment had the highest importance for desiccation avoidance, and root diameter and 

root mass in drought treatment were more important than others for drought resistance.  

Prediction of whole-plant drought resistance from traits 

Across all species, the best model included only two traits, midday leaf water potentials under 

drought and root mass in drought treatment and could explain 48% of the variance of drought 

resistance (Table 4). For forbs and grasses, even 84% and 98% variance of drought resistance, 

respectively, could be explained by the traits in the best models, with substantially different 

trait combinations in each life forms (Table 4). However, the best models for predicting drought 

resistance within forbs and grasses selected based on BIC, were inefficient, i.e. six and 13 traits 
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were included in the final models for forbs and for grasses, respectively. The best models for 

predicting desiccation avoidance were also analyzed and are presented in Table S3, but not 

considered further.  

To facilitate pragmatic decisions for selecting traits to predict drought resistance of grassland 

species, we additionally tested the predictive power of combinations of 2-3 traits. These trait 

sets either consisted of traits with the high explanatory power in the best models (see above, 

Table 4) or included traits that require limited experimental effort to assess (e.g. allocation 

under irrigation or root morphological traits). Midday leaf water potentials under drought and 

root mass in drought treatment, the two traits that were most efficient to predict drought 

resistance across all species, also performed well in predicting drought resistance within forbs 

and grasses, explaining 46% and 59% of the variance, respectively (Table 5). Root 

morphological traits alone predicted drought resistance well within forbs (56%, Table 5), but 

performed poorly across all species and within grasses. Within grasses, root mass combined 

with rooting depth in irrigated treatment and root depth distribution explained a large 

proportion of variance in whole-plant drought resistance (60%, Table 5). 
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Table 4 The best predictive models for whole-plant drought resistance across all species, 

within forbs and within grasses based on multiple regressions.  

parameters estimate R2 R2 
scaled 

all species 0.48 

intercept 0.97 

MWP 0.06 0.32*** 67% 

log RM dry 0.13 0.16** 33% 

forbs 0.84 

 intercept 0.81 

log RDia -0.72 0.34** 40% 

log RDen 0.30 0.14** 17% 

log PRM 0.18 0.11** 13% 

log RDep dry 0.23 0.11 n.s. 13% 

 RMR dry -0.18 0.08(*) 9% 

 RMR irr -0.24 0.07* 8% 

grasses 0.98 

 intercept -16.92

 MWP -0.15 0.32(*) 33% 

 RMR irr -3.12 0.14 n.s. 14% 

log RDep irr 2.30 0.10* 10% 

 RDis 9.78 0.10* 10% 

log RM dry 0.53 0.08* 8% 

 RMR dry 3.28 0.04* 4% 

 TLP -0.98 0.04* 4% 

log RDep dry 0.65 0.04 n.s. 4% 

log PRM -1.35 0.04* 4% 

log RDen -0.44 0.03* 3% 

log TRL irr -0.10 0.02 n.s. 2% 

log PRDep -1.10 0.02(*) 2% 

log PRMR -2.75 0.02 n.s. 2% 

The respective model parameters and the total variance explained by the model are given in 

bold. Additionally given are the estimates of the model parameters, variances explained by 

each variable, its corresponding variable significance, and the relative proportion of model 

accounted variance explained by each variable scaled to 100% indicated by R2 
scaled. Model 

selections were based on BIC and the significance of variables in the best models was assessed 

with multiple regressions by comparing the estimate of the coefficient of each variable with 

zero using t-test. Note SRL and TRL dry were not included in the predictive model analyses due 

to their high correlation with other traits. * P < 0.05, ** P < 0.01, *** P < 0.001, (*) P < 0.1, 

n.s. P > 0.1.
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Discussion 

Importance of traits for whole-plant drought resistance and desiccation avoidance 

To our knowledge, this is the first study that directly evaluated the relative importance of both 

turgor loss point and root traits for comparative whole-plant drought resistance across multiple 

grassland species. Across all species as well as within forbs and grasses, various root traits, 

such as high rooting depth and root mass, had the highest importance for both midday leaf 

water potentials under drought (i.e. desiccation avoidance) and whole-plant drought resistance, 

while turgor loss point had only high importance for midday leaf water potentials under drought 

(Fig. 1). These results suggested that root traits that maximize water uptake were more 

important for grassland species to resist drought than turgor loss point decreasing water loss at 

leaf level. The assessments of the relative importance of turgor loss point and root traits for 

drought resistance are rare. Consistent with our results, Buckland et al. (1997) found that high 

rooting depth enabled species to maintain high water content and high abundance under 

drought while leaf keeping turgid, supporting the high importance of root traits for promoting 

drought resistance in grassland species. Minimizing water loss at leaf level through high turgor 

loss point (i.e. early loss of leaf turgor) has trade-offs with carbon gain by inducing stomatal 

closure and can lead to carbon-starvation induced drought mortality (McDowell et al. 2008). 

Further, loss of turgor impedes turgor pressure dependent processes that are associated with 

growth, including cell formation, expansion and metabolism (Boyer 1968; Hsiao et al. 1976). 

Maximizing water uptake through root traits can allow leaf to maintain turgor and 

photosynthesis under drought, and therefore free plants from these constraints. Although this 

may lead to a trade-off in biomass allocation between root and leaf, low root diameter and root 

tissue density can weaken this trade-off by enabling plants to grow longer roots with less 

biomass (i.e. high specific root length; Comas et al. 2013; Ma et al. 2018). Other leaf traits, 

such as low specific leaf area, low leaf cuticle conductance and high leaf water potentials under 

stomatal closure are also important mechanisms that reduce water loss through leaves (Choat 

et al. 2018). For example, low specific leaf area was significantly related to high midday leaf 

water potentials under drought (Perez-Ramos et al. 2013), confirming the importance of 

minimizing water loss at leaf level for desiccation avoidance. High water potentials at stomatal 

closure (i.e. more efficient at water loss control) enabled plants to maintain high productivity 

under drought (Konings, Williams & Gentine 2017). However, the importance of these 

mechanisms at leaf level in promoting drought resistance may be limited in grassland species. 
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Many of grassland species showed rapid leaf death under drought and can resprout without any 

living aboveground biomass when soil water stress alleviated (Volaire, Thomas & Lelievre 

1998; Manuscript 1). Consistent with our results (but on much fewer species), Perez-Ramos et 

al. (2013) and Zwicke et al. (2015) found that root traits that maximize water uptake such as 

rooting depth were significantly related to whole-plant drought resistance while leaf traits that 

minimize water loss such as leaf area and specific leaf area were unrelated to it. These results 

collectively highlighted the importance of root traits in promoting drought resistance in 

grassland species.  

In grasslands, half of the root biomass is located in the top 10 cm of soil and 80-90% are in top 

30 cm (Garwood & Sinclair 1979; Jackson et al. 1996; Ma et al. 2008). Water in the surface 

soil layers is quickly exhausted during drought (De Kauwe et al. 2015), suggesting that root 

traits that increase species access to deep soil water which remains available longer under 

drought may have higher importance for maximizing water uptake under drought and for 

promoting drought resistance. We found that rooting depth and root mass had the highest 

importance for whole-plant drought resistance across all species as well as in forbs and grasses 

(Fig. 1A, B, C). Consistently, previous studies found that high rooting depth increased the 

amount of available soil water (Barkaoui, Roumet & Volaire 2016), allowed plants to maintain 

high leaf water potentials under drought (Guderle et al. 2018), and promoted species drought 

survival at individual (Volaire 2008; Perez-Ramos et al. 2013; Zwicke et al. 2015) and 

community levels (Barkaoui, Roumet & Volaire 2016), supporting that a root system allowing 

plants to access deeper soil layers is of paramount importance for high drought resistance in 

grassland species. 

Root morphological traits also contributed to desiccation avoidance and drought resistance, 

such as root tissue density and root diameter (Fig. 1). The positive effect of root tissue density 

on midday leaf water potentials under drought was opposite to our expectation that low root 

tissue density enables plants to build up long root per unit biomass and thus to maintain high 

leaf water potentials under drought. Alternatively, high root tissue density can reflect a high 

number of small and highly lignified xylem vessels that lead to high resistance to embolism 

and permit efficient and continuous water transport in roots even under drought (Wahl & Ryser 

2000). This may underly the significant correlation between root tissue density and midday leaf 

water potentials under drought we observed. The highest importance of low root diameter for 

promoting whole-plant drought resistance was only found in forbs. Forbs generally have tap 
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roots (Weaver 1958) which confer them the ability to penetrate hard and dry soils and to reach 

deep soils layers (Materechera et al. 1992) but accounting a large part of root mass (Weaver 

1958) and serving little functions in water uptake (Freschet & Roumet 2017). Low root 

diameter in forbs can enable plants to build more fine roots per biomass allocated to increase 

root surface area for the soil exploration and water uptake (Ma et al. 2018). Grasses with thin 

fibrous roots may less benefit from it as suggested by our result that root diameter had low 

importance for whole-plant drought resistance in grasses (Fig. 1C).  

High phenotypic plasticity of root structure and allocation in response to drought can allow 

plants to gain access to deep soil layers under water stress (Hoeppner & Dukes 2012; Larson 

& Funk 2016). However, the significant correlations between root traits under irrigated and 

drought conditions suggested that species water uptake capacity was largely determined by 

inherent root characteristics and the importance of the plasticity of root traits may be minor. 

Indeed, an important role of phenotypic plasticity of root traits for drought resistance and 

desiccation avoidance was not supported in our study (Fig. 1). This is contrast to results from 

previous studies that high phenotypic plasticity of root length and rooting depth enabled plants 

to inhabit dry habitats (Ma et al. 2008) or to maintain high productivity under drought 

(Hoekstra et al. 2014), while others showed that responses of root traits to drought were 

species-specific and no consistent patterns emerged (Larson & Funk 2016). Further studies that 

directly relate phenotypic plasticity of traits to comparative whole-plant drought resistance are 

needed to fully understand the role of phenotypic plasticity of traits for drought resistance. 

Differences between forbs and grasses 

Forbs and grasses have been treated as two functional groups to simplify and explore ecological 

questions such as changes in ecosystem services under land use and climate change (Dı́az & 

Cabido 2001), due to their detected broad differences in root and leaf traits (Weaver 1968; 

Craine et al. 2001; Reich et al. 2003; Nippert & Knapp 2007; Tucker, Craine & Nippert 2011). 

However, if and how these differences can lead to a difference in performances under drought 

between two functional groups are still unclear. Here we found that they differed in root traits 

and turgor loss point, allowing forbs to maintain higher midday leaf water potentials under 

drought (Table 1). This aligns with previous studies documenting that higher rooting depth, 

root tissue density and leaf water potentials at stomatal closure in forbs than grasses (Weaver 

1968; Tucker, Craine & Nippert 2011). Despite these group differences, large variations existed 

within each group and explained by species identity, resulting in the similar whole-plant 
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drought resistance between two groups (Table 1). Different species compositions used in 

previous studies thus could explain why forbs were found to have higher (Tilman & El Haddi 

1992; Skinner & Comas 2010), lower (Hoover, Knapp & Smith 2014), and similar drought 

resistance than grasses (Fay et al. 2002). Nevertheless, the differences between forbs and 

grasses support the functional and ecological relevance of categorizing species based on their 

life forms and may provide explanations to the shifts in grassland functional composition and 

ecosystem services under drought (Hoover, Knapp & Smith 2014). 

Predictions of species drought resistance from trait values 

The comparative assessments of species drought resistance are experimental demanding 

(Manuscript 1) or require spatially extensive sampling and long-term monitoring species 

performances under nature drought (Shipley et al. 2017). A trait-based method can be used to 

predict species drought resistance and forecast community dynamics under drought (McGill et 

al. 2006; Shipley et al. 2016). Several studies have tested associations of functional traits, such 

as physiological traits governing leaf gas exchange or morphological traits of leaves and roots, 

with species distributions along soil water gradients (Tucker, Craine & Nippert 2011; Craine 

et al. 2012; Ocheltree, Nippert & Prasad 2016; Belluau & Shipley 2017; Shipley et al. 2017; 

Belluau & Shipley 2018). However, their models are difficult to be translated for predicting 

species capacity to survive drought due to the weak relation between drought resistance and 

distribution (see introduction). By directly relating key traits to whole-plant drought resistance 

across multiple species, we found that only two traits, midday leaf water potentials under 

drought and root mass under drought, can provide high predictive power for whole-plant 

drought resistance across all grassland species, as well as within forbs and within grasses (Table 

5). To comparatively assess them, however, an extensive experimental effort is required. Traits 

under irrigated conditions are relatively easy to assess and can be used as proxies of trait values 

under drought conditions (Table S2). Combinations of these traits did not consistently explain 

high variance of whole-plant drought resistance across all species, as well as within forbs and 

within grasses. However, when forbs and grasses were treated separately, the combination of 

root morphological traits provided high predictive power for forbs, and of root mass and rooting 

depth under irrigated conditions and root depth distribution for grasses (Table 5). The highest 

importance of root morphological traits for whole-plant drought resistance in forbs and root 

allocation traits in grasses support the use of different predictive models for each group (Fig. 

1B, C). Admittedly, these models predict the survival of individual species under drought 
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conditions, without competition and/or facilitation among species. However, previous studies 

showed that species performances under drought were species-specific, suggesting that the role 

of biotic interactions may be minor under drought (Pfisterer & Schmid 2002). Nevertheless, 

the next step will be to assess the predictive power of our models for the observed changes of 

grasslands that were induced by drought at community level, such as in Biodiversity 

Exploratories (Fischer et al. 2010). 

Conclusions 

Our study highlighted the importance of root traits, especially the ones increasing species 

access to more reliable water in deep soils, for maintaining high leaf water potentials under 

drought and promoting drought resistance. The inclusion of key root traits with the higher 

importance and removal of uninformative traits conferred us the parsimonious models with 

high predictive power for species differential drought resistance. These results provided a 

practical guide for trait selection schemes. The differentiated drought resistance and traits 

within forbs as well as within grasses may lead to big changes of species and functional 

compositions in grasslands under climate change.  
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Supporting information  

Table S1 List of the 41 temperate grassland species in our study with family and life form. 

Species Family Life form 

Achillea millefolium L. Asteraceae Forb 

Agrostis capillaris L. Poaceae Grass 

Agrostis stolonifera L. Poaceae Grass 

Alopecurus pratensis L. Poaceae Grass 

Anthoxanthum odoratum L. Poaceae Grass 

Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Poaceae Grass 

Brachypodium pinnatum (L.) P.Beauv. Poaceae Grass 

Briza media L. Poaceae Grass 

Bromus hordeaceus L. Poaceae Grass 

Centaurea jacea L. Asteraceae Forb 

Cerastium holosteoides Fr. Caryophyllaceae Forb 

Cirsium oleraceum (L.) Scop. Asteraceae Forb 

Crepis biennis Lapeyr. Asteraceae Forb 

Dactylis glomerata L. Poaceae Grass 

Daucus carota L. Apiaceae Forb 

Elymus repens (L.) Gould Poaceae Grass 

Festuca guestfalica Boenn. ex Rchb. Poaceae Grass 

Festuca ovina L. Poaceae Grass 

Festuca pratensis Huds. Poaceae Grass 

Festuca rubra L. Poaceae Grass 

Galium mollugo L. Rubiaceae Forb 

Helictotrichon pubescens (Huds.) Schult. & Schult.f. Poaceae Grass 

Holcus lanatus L. Poaceae Grass 

Lathyrus pratensis L. Fabaceae Forb 

Leontodon autumnalis L. Asteraceae Forb 

Leucanthemum vulgare (Vaill.) Lam. Asteraceae Forb 

Lolium perenne L. Poaceae Grass 

Lotus corniculatus L. Fabaceae Forb 

Phleum pretense L. Poaceae Grass 

Plantago lanceolata L. Plantaginaceae Forb 

Poa pratensis L. Poaceae Grass 

Poa trivialis L. Poaceae Grass 

Prunella vulgaris L. Lamiaceae Forb 

Ranunculus acris L. Ranunculaceae Forb 

Ranunculus bulbosus L. Ranunculaceae Forb 

Ranunculus repens L. Ranunculaceae Forb 

Rumex acetosa L. Polygonaceae Forb 

Rumex crispus L. Polygonaceae Forb 

Taraxacum officinale (L.) Weber ex F.H.Wigg. Asteraceae Forb 

Trisetum flavescents (L.) P. Beauv. Poaceae Grass 

Vicia cracca L. Fabaceae Forb 
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Fig. S1 Examples of correlations between traits, i.e. between root morphology (A)-(B), 

between root allocation (C)-(G), between root morphology, allocation and phenotypic 

plasticity (H)-(J), and between root traits and turgor loss point (K). Given are Pearson’s 

correlation coefficients and corresponding significance. See Table 1 for trait abbreviations and 

Table S2 for the full list of correlations among traits. *** P < 0.001, ** P < 0.01. 
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Table S3 The best multivariable regression models for desiccation avoidance, i.e. midday leaf 

water potentials under drought across all species, within forbs and within grasses based on 

multiple regressions.  

  parameters estimate  R2  R2 
scaled 

all species    0.54   

 intercept -2.45     

 TLP 2.63  0.32***  59% 

log RDia 3.29  0.09*  16% 

 RDis 6.01  0.07 n.s.  13% 

log RM dry 0.72  0.06(*)  12% 

forbs     0.83   

 intercept -14.67     

log RDep dry 10.01  0.14**  16% 

log RDia -8.05  0.12*  15% 

log RM dry 1.89  0.10*  12% 

log PRDep -5.58  0.10**  12% 

log RDep irr -9.94  0.09**  10% 

 RDis 5.53  0.09 n.s.  10% 

log TRL irr -0.79  0.07(*)  8% 

log PRM -2.18  0.06*  8% 

log PRMR 3.46  0.06*  8% 

     0.98   

 intercept -63.65     

log RDep irr 8.58  0.72**  74% 

 RDis 36.78  0.12**  12% 

 TLP -2.39  0.04(*)  4% 

log PRM -2.27  0.02**  3% 

log PRMR 16.55  0.02*  2% 

log RDia 3.98  0.02*  2% 

log PRDep -4.38  0.01*  1% 

log TRL irr 1.21  0.01*  1% 

log RM dry -0.80  0.01n.s.  1% 

log RDep dry 2.06  0.00n.s.  0% 

The respective model parameters and the total variance explained by the model are given in 

bold. Additionally given are the estimates of the model parameters, variances explained by 

each variable, its corresponding variable significance, and the relative proportion of model 

accounted variance explained by each variable scaled to 100% indicated by R2 
scaled. Model 

selections were based on BIC and the significance of variables in the best models was assessed 

with multiple regressions by comparing the estimate of the coefficient of each variable with 

zero using t-test. Note SRL and TRL dry were not included in the predictive model analyses due 

to their high correlation with other traits. * P < 0.05, ** P < 0.01, *** P < 0.001, (*) P < 0.1, 

n.s. P > 0.1. 
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Abstract  

Drought intensity and frequency are forecasted to increase under climate change. This will 

strengthen the effects of drought on grasslands. Understanding the traits underlying differential 

species drought resistance are urgently needed. Numerous traits are involved in drought 

resistance with their importance likely to differ. Yet, assessments including a comprehensive 

set of traits, their coordination and relative importance for drought resistance are lacking in 

grassland species. This largely impedes our understanding of mechanisms of drought resistance 

and the prediction of effects of drought on grasslands. In this study, we assessed 38 

physiological, morphological and anatomical traits that are known or hypothesized to 

determine drought resistance in 41 temperate grassland species (20 forbs and 21 grasses). We 

assessed the relations among them and evaluated their importance for differential species 

drought resistance by linking them to four drought performance parameters, i.e. whole-plant 

drought resistance of both survival and growth, midday leaf water potential under moderate 

drought and species association to habitat dryness. We found that many traits were coordinated, 

traded-off or were independent, and no main axes of trait variation emerged. Further, trait 

importance and their ranks differed within and across each drought performance parameter. 

Forbs and grasses had overall similar drought resistance but differed in their traits and in the 

ranks of trait importance for each drought performance parameter. Collectively, our results 

suggest that many trait combinations exist and lead to the whole range of drought resistance. It 

is difficult to generalize traits underlying drought resistance from one drought parameter or 

functional group to others. Nevertheless, our study can provide practical guides for trait 

selection by highlighting few traits of high importance for each drought performance 

parameter. 
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Introduction  

Grasslands cover one-third of the land surface, have high biodiversity and provide important 

ecosystem services (Scurlock & Hall, 1998; Gibson, 2009). They experience periods of drought 

(Tilman & El Haddi, 1992; Grime et al., 2008; Gibson, 2009). Drought resistance differs 

among grassland species (Perez-Ramos et al., 2013; Zwicke et al., 2015; Manuscript 1). This 

leads to species loss under drought, and influences species abundance and distribution and 

grassland composition (Weaver, 1968; Tilman & El Haddi, 1992; Buckland et al., 1997; Grime 

et al., 2008). Under climate change scenario, drought frequency and intensity are predicted to 

increase (IPCC, 2014). This is likely to strengthen the impacts of drought on grasslands. 

Therefore, understandings of the traits underlying differential species drought resistance, their 

coordination and importance are urgently needed.  

Various traits have been hypothesized to be important for drought resistance (Table 1). The 

importance of these traits for grassland species have been tested in many studies, such as root 

traits (Tucker et al., 2011; Zwicke et al., 2015), gas exchange traits (Tucker et al., 2011; 

Belluau & Shipley, 2018), or leaf water potentials at stomatal closure (Tucker et al., 2011; 

Craine et al., 2013) and turgor loss point (Ocheltree et al., 2016; Manuscript 2) or specific leaf 

area (SLA; Zwicke et al., 2015; Shipley et al., 2017; Belluau & Shipley, 2018). However, a 

conclusion about traits underlying drought resistance is difficult because different sets of traits 

were used in each study. Drought resistance may involve multiple traits pertaining to many 

processes, such as water uptake, water transport, water storage, water loss, membrane 

vulnerability and carbon gain, with their importance likely to differ (Choat et al., 2018). 

Lacking evaluation of the relative importance of traits pertaining to the same and different 

processes impedes our understanding of mechanisms of species drought resistance and the 

prediction of it (but see Medeiros et al., 2018 for woody species). Further, trait relations are 

complicated, and they may coordinate or have trade-offs with other traits, or independently to 

influence drought resistance. For example, maximizing water uptake through root traits may 

reduce the aboveground biomass allocation to increase carbon gain and membrane stability 

under drought, while low root diameter alone or with low root density can weaken this trade-

off by enabling high root length per biomass allocated, i.e. high specific root length (Ma et al., 

2018). Stomatal closure and species resistance to xylem embolism are suggested to tightly 

coordinated to maximize carbon gain under drought, however, this coordination was only 

found in a limited number of species, and with increasing resistance to embolism their 
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coordination gets looser (Martin-StPaul et al., 2017). Yet, trait covariations may be captured 

by main axes, such as leaf economics spectrum (LES) simplifying trait relations by 

categorizing them as ‘fast’ or ‘slow’ growth traits (Wright et al., 2004). Reich (2014) suggested 

that the ‘fast to slow’ economics spectrum may exist at whole-plant level across leaves, stems 

and roots, and be related to drought resistance by integrating important traits that are associated 

with water uptake, water storage, water transport, water loss and carbon gain. This spectrum, 

if existed, would greatly reduce the complexity of trait coordination and facilitate the prediction 

of the consequences of drought.  

Previous studies have used different drought performance parameters to assess the associations 

between traits and drought resistance with the assumption that the trait importance for drought 

resistance should be consistent regardless of the parameter that is used, such as whole-plant 

drought resistance of survival (Volaire, 2008; Perez-Ramos et al., 2013; Zwicke et al., 2015), 

whole-plant drought resistance of growth (Weißhuhn et al., 2011; Perez-Ramos et al., 2013; 

Zwicke et al., 2015), and species association to habitat dryness (Cingolani et al., 2007; Tucker 

et al., 2011; Craine et al., 2013; Marteinsdottir & Eriksson, 2014; Lens et al., 2016; Ocheltree 

et al., 2016; Shipley et al., 2017; Belluau & Shipley, 2018). However, the relations between 

these parameters are actually complex and weak in grassland species. For example, both 

positive and negative relations between whole-plant drought resistance of survival and growth 

were found in previous studies (Volaire et al., 1998; Volaire & Norton, 2006; Rivero et al., 

2007; Perez-Ramos et al., 2013; Zwicke et al., 2015), and whole-plant drought resistance of 

both survival and growth were weakly related to species distribution along moisture gradients 

(Manuscript 1). These results suggest that maybe different trait or set of traits influence 

different drought performance parameters. Further, the maintenance of plant water status under 

drought, i.e. midday leaf water potentials under drought, is another important drought 

performance parameter. It reflects plants efficiency of avoiding desiccation by integrating 

several key plant structural and physiological traits such as rooting depth, leaf water potentials 

at turgor loss point and at stomatal closure. It also determines the probability of hydraulic 

dysfunction and thus plants mortality (Choat et al., 2018). Traits that are important for 

maintenance of high midday leaf water potentials under drought were found to contribute to 

high whole-plant drought resistance of survival (Perez-Ramos et al., 2013; Zwicke et al., 2015; 

Manuscript 2), supporting that differences in maintenance of high midday leaf water potentials 

under drought are important in driving the differential drought resistance in grassland plants. 

However, if the trait importance for midday leaf water potentials under drought and whole-
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plant drought resistance of survival still holds for whole-plant drought resistance of growth and 

species association to habitat dryness is unknown. An evaluation of trait importance for all 

these drought performance parameters can help us to better understand the traits underlying 

drought resistance.  

Forbs and grasses have been used as two functional groups under the assumptions that they 

have certain key traits that are different (Skarpe, 1996) and thus show differential responses to 

environmental conditions (Diaz & Cabido, 1997). Regarding to drought resistance, many traits 

were found to significantly differ between these two groups. For instance, forbs were found to 

lose turgor (Manuscript 2) and close stomata at higher leaf water potentials (Tucker et al., 

2011), had deeper root systems (Weaver, 1968), but lower biomass fraction allocated to root 

(Reich et al., 2003) and higher root diameter (Craine et al., 2001) than grasses. If these trait 

differences can result in differences in drought performance between two groups not only 

depends on the magnitude of the differences but also on the importance of traits that are 

different. Trait importance for drought performance may differ between forbs and grasses as 

suggested by findings that forbs reduced stomatal conductance under drought (Fay et al., 2002), 

while grasses allocated more biomass to deep roots (Skinner & Comas, 2010). The direct 

assessment of trait importance for each group allows to test if trait importance differs between 

forbs and grasses.  

In this study we addressed the following questions: (1) how are individual traits relevant for 

plant drought resistance coordinated and what are the trade-offs; (2) what is the importance of 

individual traits for various drought performance parameters; (3) do traits and their importance 

differ between forbs and grasses.  

We measured a comprehensive set of 38 physiological, morphological and anatomical traits 

pertaining to water uptake, water transport, water storage, water loss, membrane vulnerability 

and carbon gain in 41 common temperate grassland species including both forbs (20 species) 

and grasses (21 species). All traits were known or hypothesized to influence drought resistance 

(Table 1). We also assessed four drought performance parameters, i.e. whole-plant drought 

resistance of survival, whole-plant drought resistance of growth, midday leaf water potential 

under moderate drought and species association to habitat dryness (Table 1).  



Manuscript 4 

 

165 

Materials and Materials 

Plant material 

41 temperate grassland species (20 forbs and 21 grasses) common in Germany were included 

in our study (Table S1). Species were selected based on the following criteria: (1) high 

abundance and frequency in grassland plots in Biodiversity Exploratories in three areas across 

Germany (Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb; Schorfheide-Chorin, 

Hainich-Dün and Schwäbische Alb; Fischer et al., 2010), (2) association with a wide range of 

soil moisture availability (Ellenberg indicator values for soil moisture from 3 to 7, Ellenberg 

indicator values for soil moisture from 3 to 7, Ellenberg et al., 1991), and (3) representing the 

dominant life history strategy and photosynthetic pathway in European temperate grasslands, 

perennial and C3 (Ellenberg et al., 1991; Collatz et al., 1998). Seeds were bought from 

commercial seed suppliers (Rieger-Hofmann GmbH and Saaten Zeller, Germany) and 

germinated in a greenhouse in mid-March 2015. Plants were transplanted to pots in a 

greenhouse and to a common garden experiment. The same soil substrate (97% sand, 2% silt 

and 1% clay) was used in the greenhouse and common garden.  

Growing conditions 

In the greenhouse, plants were growing in pots (7 cm diameter × 35.6 cm depth), watered twice 

per day and frequently fertilized with a full fertilizer solution (Wuxal Super, Aglukon, 

Germany).  

The common garden drought experiment was carried out at the Ecological Botanical Garden 

of University of Bayreuth, Germany. One individual per species was randomly transplanted 

into 72 field experimental plots (1 m x 2 m) under transparent rainout shelters in the first week 

of June 2015. Plants were planted in a 20 cm grid in each plot to avoid competition among 

species, i.e. below and above ground organs did not overlap. All plots were initially irrigated 

daily and fertilized twice (Terra Plus N 12+4+6, Compo Expert, Germany) for two months to 

allow for plant establishment. Plots were then exposed to a dry and an irrigated treatment (32 

plots, respectively). In the dry treatment plots, irrigation was discontinued for 10 weeks (3rd 

August – 9th October 2015), while continuing in the irrigated treatment plots. Soil water 

potential in the dry treatment plots declined strongly and reached -1.5 MPa, the permanent 

wilting point in agricultural plants (Veihmeyer & Hendrickson, 1928), within 18 days of 
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ceasing irrigation (Manuscript 1). At the end of dry treatment, plots were irrigated again and 

all rainout shelters were removed. For details on the experiment see Manuscript 1. 

Trait and performance measurements 

In total, 38 traits and four drought performance parameters were assessed (Table 1). For each 

trait, we had a specific hypothesis for its relation to species comparative drought performance 

(Table 1), based on a broad range of literature and physiological knowledge. Most traits were 

assessed under well-watered conditions in the greenhouse, while drought performance, most 

root traits and their phenotypic plasticity in response to drought were assessed in the common 

garden experiment. Measurements were taken on various sets of plant in the greenhouse and 

in the common garden, i.e. different traits were measured on different individuals, but each 

trait was measured with the same set of plants to ensure comparability across species (see Table 

S2 for details), and only plants of similar size in the vegetative growth phase were used. Trait 

and performance measurements were taken on 3-36 individuals per species. For the details 

about plant sets and replicates for each trait see Table S2.  

Traits pertaining to water uptake 

Roots are the organ of water uptake from soil. We assessed various root traits in regard to root 

size, root depth distribution, phenotypic plasticity, and morphology that influence plant access 

to soil water and thus water uptake (see Table 1).  

Root size, i.e. maximum rooting depth, root mass, root total length and root mass ratio, and 

their phenotypic plasticity in response to drought were assessed in the common garden 

experiment. In the spring following the experimental drought (see above), plants in eight dry 

and eight irrigated treatment plots were carefully dug out. Maximum rooting depths (Rdep dry 

and Rdep irr) were measured in situ for each plant. Roots were carefully washed and plants were 

oven-dried to assess plant mass, root mass (Rmas dry and Rmas irr) and root mass ratio (RMR dry and 

RMR irr; root mass/plant mass). Total root lengths (RTL dry and RTL irr) were calculated by 

multiplying root mass (Rmas dry and Rmas irr) and root specific length (RSL, see below). Phenotypic 

plasticity in response to drought of rooting depth (PRdep), root mass (PRmas) and root mass ratio 

(PRMR) were assessed as the relative distance plasticity index (RDPI, RDPI, Valladares et al., 

2006), i.e. the relative trait difference of all pairs of individuals within a species growing in 

different conditions (the dry and irrigated treatments). This index allows to test the differences 
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among species (Valladares et al., 2006). The phenotypic plasticity of root total length was not 

analyzed separately because it is the same as for root mass (PRmas), see above.  

Root depth distribution (RDep Dis) was assessed in 35 species from detailed drawings of whole 

root profiles (Kutschera, 1960; Kutschera et al., 1982), where one 'representative' individual 

for each species growing under natural conditions or on farmlands was drawn. Root fractions 

along the continuous soil profiles were analyzed from the scanned figures using ImageJ 

(Schneider et al., 2012), and fitted with the asymptotic equation: 𝑌 = 1 −  𝑅𝐷𝑒𝑝 𝐷𝑖𝑠
𝑑

 where Y is the cumulative fraction of roots from the soil surface to depth d 

(Gale & Grigal, 1987). Higher values of root depth distribution thus indicate a larger proportion 

of roots in deeper soil layers. We tested the validity of this approach for assessing root depth 

distribution by relating them to actual measurements of root biomass per soil layer (up to 40 

cm) for plants growing in monocultures under natural conditions in nine species (data from 

data from Oram et al., 2018). The results of the two methods were significantly positively 

related (r = 0.71, p < 0.05). See Table S1 for the missing species from the measurement. 

Root morphological traits, i.e. root diameter (Rdia), root specific length (RSL) and root density 

(Rden), were assessed in the greenhouse. Roots were washed and whole roots excluding the tap 

roots or rhizomes, or a representative subsample of roots were dyed with astra blue and scanned 

at 400 dpi (Epson Perfection V700 Photo Scanner, Japan) and then oven-dried. Root diameter 

(Rdia), root length and root volume were measured using WinRhizo (Regent Instruments Inc., 

Canada). Root specific length (RSL) was assessed as the ratio of root length to root mass and 

root tissue density (Rden) as the ratio of root mass to root volume. 

Traits pertaining to water transport 

The continuation of water transport in leaves is important for maintaining stomatal conductance 

and photosynthesis under drought (Brodribb & Holbrook, 2003; Bartlett et al., 2016). We 

assessed leaf vein density and xylem conduit diameter that influence water transport in leaves 

(Table 1). 

Total (VDtotal), major (VDmajor) and minor (VDminor) leaf vein density were assessed following 

Pérez-Harguindeguy et al. (2013). One healthy mature leaf per individual was sampled and 

clarified in 5% w/v NaOH–H2O and then in a commercial bleach (EAU DE JAVEL, Floreal, 

Germany) until it was bleached. Leaf was then rinsed in distilled water, dehydrated in an 
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ethanol dilution series (i.e. 30%, 50%, 70% and 100%) and stained with 1% w/v safranin O 

(Sigma-Aldrich, USA) in ethanol. Whole leaves were scanned (Brother DCP-195C, Japan) at 

1200 dpi to assess major leaf vein density, and then the top, middle and bottom of each leaf 

were examined with a light microscope (Leitz Dialux 22 EB, Germany) at 5x magnification 

and pictures were taken (DinoCapture 2.0, Dino-Lite, USA) to assess minor leaf vein density. 

ImageJ (Schneider et al., 2012) was used for measurements of the leaf vein length and 

examined area. The first three leaf vein orders were categorized as major leaf veins and higher 

orders as minor leaf veins, with leaf vein order classification following Ellis et al. (1992). Leaf 

vein density (VDtotal, VDmajor, VDminor) was calculated as the leaf vein length per unit area 

(Pérez-Harguindeguy et al., 2013). Four grass species had very thin leaves, and total and minor 

leaf vein density in these species were not assessed (see Table S1).  

Major (LVdia major) and minor (LVdia minor) leaf vein xylem conduit diameter were assessed with 

leaf transverse sections from the middle of the leaves. One leaf per individual was sectioned 

by a hand microtome (Allmikro-Mikrotom, Haga, Germany) or by free hands using razor blades. 

Cross sections were counterstained with astra blue and safranin (Kraus et al., 1998). Images 

were taken using the light microscope at 40x magnification (see above) and analyzed with 

ImageJ (Schneider et al., 2012). Xylem conduit was treated as an ellipse. The long (a) and short 

axes (b) of each conduit in 1-2 major leaf veins and 2-3 minor leaf veins per leaf section were 

measured with ImageJ (Schneider et al., 2012). The diameter of the conduits was calculated as 

LVdia = 
√𝑎2+𝑏²

2
.  

Traits pertaining to water storage 

Water storage in plant organs can constitute a main water source when water uptake through 

roots is limited, and has been suggested to determine the time until lethal water potentials are 

reached in plants under drought (Blackman et al., 2016; Choat et al., 2018). We measured plant 

tissue water content to assess plants water storage.  

Total, shoot and root water content (TWC, SWC and RWC, respectively) of plants were 

assessed with fully saturated plants in the greenhouse. The fresh and dry above- and below-

ground biomass were weighted. Water contents were calculated as WC = (fresh mass – dry 

mass)/dry mass for each corresponding tissue. 
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Traits pertaining to water loss 

Plant water loss can influence the decline of plant water potentials under drought (Choat et al., 

2018). It occurs and is regulated mainly through the stomata and after stomatal closure through 

the cuticles, We assessed maximum stomatal conductance (gmax), stomatal conductance under 

moderate drought in the morning (gdrought), leaf water potentials at turgor loss point (Ψtlp) and 

at stomatal closure (Ψstclosure), minimum leaf conductance (gmin), stomatal density (STden), 

stomatal length (STlen), stomatal index (STind) and specific leaf area (SLA). These traits are all 

known or hypothesized to influence plant water loss (Table 1).  

Maximum stomatal conductance (gmax) was assessed with a portable open gas exchange 

measurement system equipped with a light source (Li-6400, Li-Cor, USA) in the morning 

(8:30-11:30 h). Leaves was enclosed into the leaf chamber and exposed to conditions with a 

photosynthetic photon flux density of 1000 mol m-2 s-1, 400 mol mol-1 CO2, an air 

temperature of 22 °C, and a relative humidity of 65%. If leaves smaller than the gas exchange 

chamber, the relevant leaf area was measured with a leaf area meter (Model 3100, Li-cor, 

USA), and stomatal conductance was calculated accordingly.  

To assess stomatal responses to drought, we measured stomatal conductance under moderate 

drought conditions (gdrought) in the common garden experiment in the morning (8:00-11:00h). 

Measurements were taken on the same plants and the same day as for the midday leaf water 

potential measurements (see below) using a leaf porometer (AP4 Leaf Porometer, Delta-T 

Devices Ltd, UK) calibrated each day.  

Leaf water potential at turgor loss point (Ψtlp) was assessed based on the osmotic water potential 

at full turgor with the ‘osmometer’ method (Bartlett et al., 2012a; Manuscript 2). A leaf disc 

(4-mm-diamter) from a rehydrated plant was frozen in liquid nitrogen for two minutes and then 

sealed in a VAPRO 5500 vapor pressure osmometer (Vapor Model 5600, Wescor, USA). 

Osmotic water potential at full turgor (πo) was converted to leaf water potential at turgor loss 

point (Ψtlp) with the equation: Ψtlp = 0.645 ∙ πo - 0.942 (Manuscript 2).  

Leaf water potential at stomatal closure (Ψstclosure) was assessed in a climate chamber under 

constant day time conditions (light intensity: 650 mol m-2 s-1, temperature: 24°C and relative 

humidity: 60%) on plants raised in the greenhouse. After an acclimation period under irrigated 

conditions, stomatal conductance was measured from 8:00 to 11:30h am using a Li-6400 with 
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the same leaf chamber conditions for maximum stomatal conductance measurement (see 

above). Watering was then discontinued and stomatal conductance measured daily during the 

dry treatment until it reached 20% of its optimal before the dry treatment, which was considered 

stomatal closure (compare Brodribb & Holbrook, 2003; Brodribb et al., 2003). Leaf water 

potentials were then measured on the same leaf with a pressure chamber (Model 1505D, PMS 

Instrument Company, USA).  

Minimum leaf conductance (gmin) was assessed based on leaf drying curves (Sack et al., 2011). 

Plants were fully hydrated overnight in the dark. Leaves were cut, the wound was sealed with 

colorless nail polish (essence, Germany). They were laid out for drying in the climate chamber. 

The same chamber conditions were used as for the leaf water potential at stomatal closure 

measurement (see above). The real-time mole fraction of vapor pressure deficiency (mfVPD) 

was measured using Licor 6400. Leaves were repeatedly weighted at 3-20 mins intervals. 

Average leaf area (LA) before and after the measurement was calculated. Leaf water loss (WL) 

was plotted against time (T), and the flat part of the curve after stomatal closure was used to 

assess minimum leaf conductance (gmin). Minimum leaf conductance was calculated as 

WL/(18*T*mfVPD*LA) following Sack et al. (2011), where 18 is molar mass of H2O.  

Stomatal length (STlen), stomatal density (STden), and a stomatal index (STind) were determined 

from nail polish imprints of the middle of the upper and lower leaf surfaces. Images of a 

selected field with no dirt and large leaf veins from each side were taken with the light 

microscope at 20X magnification (see above) and analyzed with ImageJ (Schneider et al., 

2012). Stomatal length (STlen) was assessed as the guard cell length. Stomatal density (STden) 

was assessed as the total number of stomata on both leaf sides per unit leaf area, and stomatal 

index (STind) was assessed as the total number of stomata relative to the total number of stomata 

and epidermal cells within the same area in both leaf sides (Salisbury, 1927). 

Specific leaf area (SLA) was assessed for three leaves per individual, based on the leaf area 

measured with a leaf area meter (Model 3100, Li-cor, USA) and leaf mass weighted after oven-

drying. Specific leaf area (SLA) was calculated as leaf area per unit leaf mass (Pérez-

Harguindeguy et al., 2013).  

Traits pertaining to leaf membrane vulnerability 
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Cell membrane integrity is critical to maintain plant functions such as protein synthesis, 

photosynthesis and respiration (Bewley, 1979), and plant tissue survival under drought 

(Guadagno et al., 2017). We measured the leaf electrolyte leakage in response to water stress 

to assess leaf membrane vulnerability to drought (Martin et al., 1987).  

The leaf electrolyte leakage in response to water stress was measured by bench drying fully 

rehydrated leaves to different water potentials (-0.3 MPa to -10 MPa; method adapted from -

0.3 MPa to -10 MPa; method adapted from Martin et al., 1987). Leaf water potentials were 

measured with a pressure chamber (Model 1505D, PMS Instrument Company, USA). Then, 

four leaf discs (4-mm diameter) were punched out from each leaf and submerged in 25mL 

distilled water. The electrical conductivity (EC) of the water was measured initially (EC0), after 

24 hours (EC24) and after boiling for 20 minutes (ECtotal) with an electrical conductivity meter 

(PM 2000 set, Carl Roth, Karlsruhe, Germany). Electrolyte leakage was calculated as (EC24-

EC0)/(ECtotal-EC0)×100. The relations between leaf water potential and electrolyte leakage 

were fitted by sigmoidal models. Leaf membrane vulnerability was calculated as leaf water 

potentials at which 50% (50%ML) and 80% (80%ML) electrolyte leakage occur. 50%ML and 

80%ML were highly correlated (r = 0.72, P < 0.001) with only few 80%ML values extrapolated 

from the models. Yet, 80%MLwas used in the analyses considering that high levels of 

membrane leakage are irreversible and have higher physiological impacts.  

Traits pertaining carbon gain 

Maintenance of carbon gain is considered important for plants metabolism and growth under 

drought (McDowell, 2011). We assessed maximum photosynthesis (Amax), intrinsic (WUEintr) 

and integrated (WUEinte) water use efficiency, leaf nitrogen content (Nmass) and leaf 

carbon/nitrogen ratio (C/N) that may influence plant carbon gain under drought (Table1).  

Leaf C/N ratio was assessed as Cmass/Nmass (see below). Maximum photosynthesis (Amax) and 

intrinsic water use efficiency (WUEintr) were assessed simultaneously with maximum stomatal 

conductance (gmax, see above for details). Intrinsic water use efficiency was assessed as 

Amax/gmax (Pérez-Harguindeguy et al., 2013).  

Integrated water use efficiency (WUEinte) was assessed based on isotope discrimination (Δ) 

against 13C due to preferential use of 12C during photosynthesis. The abundance of 13C  and 

total leaf carbon (Cmass) and nitrogen (Nmass) content were analyzed in BayCEER-Laboratory 
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of Isotope Biogeochemistry with an elemental analyzer (EA-IRMS coupling, Carlo Erba 1108, 

Milano, Italy) coupled to an isotope ratio mass spectrometer (delta S; Finnigan MAT, Bremen, 

Germany) via a ConFlo III open-split interface (Finnigan MAT, Bremen, Germany) 

(Bidartondo et al., 2004). The relative abundance of 13C of samples (13C/12C ratios) were 

expressed with reference to the international Pee Dee Belemnite (PDB) standard based on the 

equation:  

𝛿 𝐶13
𝑆𝑎𝑚𝑝𝑙𝑒 =  [

( 𝐶13 /12𝐶)
𝑆𝑎𝑚𝑝𝑙𝑒

( 𝐶13 /12𝐶)
𝑃𝐷𝐵

− 1] ∗ 1000.  

13C isotope discrimination was defined as  

  𝛥 =
𝛿 𝐶13

𝑎𝑖𝑟 – 𝛿 𝐶13
𝑝𝑙𝑎𝑛𝑡

1 + 
𝛿 𝐶13

𝑝𝑙𝑎𝑛𝑡

1000

,  

where 13Cair = -8‰ (Pérez-Harguindeguy et al., 2013). Following Farquhar and Richards 

(1984), the isotope discrimination Δ is proportional to the ratio of intercellular (Ci) to ambient 

(Ca) CO2 concentrations: 

𝛥 ≅ 𝑎 + (𝑏 − 𝑎)
𝐶𝑖

𝐶𝑎
 

where 𝑎 (4.4‰) is the fractionation during the diffusion of CO2 through the stomata, 𝑏 (27‰) 

is the fractionation associated with carboxylation (Farquhar & Richards, 1984), Ca was from 

direct measurements of atmospheric CO2 concentrations (Dlugokencky & Tans, 2017). The integrated 

water use efficiency, the ratio of net photosynthesis (A) to conductance for water vapour gw 

was estimated from Δ: 

WUEinte =
𝐴

𝑔𝑤
=

𝐶𝑎

1.6

(𝑏−Δ)

(𝑏−𝑎)
   (Seibt et al., 2008). 

Drought performance parameters 

Whole-plant drought resistance of both survival and growth, and midday leaf water potentials 

under drought were assessed experimentally based on the performances in the dry and irrigated 

treatments in the common garden drought experiment.  
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Species survival was assessed based on above-ground biomass in the spring after the 

experiment to allow for potential recovery. Survival in dry and irrigated plots (Sdry and Sirr, 

respectively) were calculated as S = Nend/Ninitial * 100, where Nend and Ninitial are the number of 

individuals at the beginning and the end of the experiment.  

Relative growth rates were assessed based on the projected leaf area in six drought (RGRdry) 

and six irrigated (RGRirr) treatment plots in the first week and sixth week of dry treatment as 

RGR = (LA1 – LA2) LA1
-1(T2 – T1)

-1, where LA1 and LA2 is projected green leaf area in the 

first week (T1) and the sixth week (T2) of the dry treatment.  

Whole-plant drought resistance of survival (DRsurvival) and growth (DRgrowth) were assessed as 

response ratios in the drought relative to irrigated treatment: DRsurvival = Sdry/Sirr and DRgrowth = 

RGRdry/RGRirr, where RGRdry and RGRirr were the median relative growth rates in the dry 

treatment plots and in the irrigated treatment plots, respectively (Manuscript 1).  

Midday leaf water potentials were assessed under moderate drought, i.e. when most plants had 

started wilting after eight days of the dry treatment. Leaf water potentials were measured in 

eight randomly selected dry treatment plots using leaf cutter psychrometers (Merrill Specialty 

Equipment, USA) and a PSYPRO™ water potential system (Wescor, Inc., USA). All species 

in one plot were sampled within one day from 11:30 to 12:30h to ensure comparability across 

species and avoid any bias introduced by sampling date. Psychrometer measurements were 

taken after five hours equilibration (Manuscript 2). 

Species association to habitat dryness (Dass) was based on Ellenberg’s soil moisture indicator 

values (Table S1; Ellenberg et al., 1991). Ellenberg’s indicator values categorize species based 

on extensive non-systematic field observations (Ellenberg et al., 1991). Previous studies have 

shown that M-values were highly correlated with actual quantification of habitat water 

availability in Europe and can be treated as continuous values (Diekmann, 2003; Schaffers & 

Sýkora, 2009; Bartelheimer & Poschlod, 2016). We multiplied Ellenberg’s soil moisture 

indicator values (M-values) with -1 so that higher values indicate higher association to drier 

habitats, consistent with the direction of values of whole-plant drought resistance of survival 

and growth (see above). 11 species without specific moisture requirements according to 

Ellenberg’s indicator values (M-value = x) were excluded from analyses concerning to habitat 

association.  
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Statistics: 

Normality of data distribution was tested with the Shapiro–Wilk tests and when needed, data 

were log-transformed to increase normality. One-way ANOVAs were used to test for species 

differences in each trait across all species, as well as within forbs and grasses, separately.  

To evaluate coordination and trade-offs among traits, we first tested pairwise correlations 

between all traits using Pearson’s correlations. We additionally used Principle components 

analysis (PCA) to evaluate the main axes of trait covariations. Three traits, i.e. root depth 

distribution (Rdep dis), and total and minor leaf vein density (VDtotal and VDminor), were excluded 

from the PCA analysis and the following analyses because of incomplete datasets (see above). 

To assess the importance of traits for drought performance parameters, i.e. whole-plant drought 

resistance of survival, whole-plant drought resistance of growth, midday leaf water potential 

under moderate drought and species association to habitat dryness, we used a permutation-

based random forest algorithm. It evaluates the contribution of each trait to the change in the 

prediction accuracy of the model when the trait values are randomly permuted (Genuer et al., 

2010; Hapfelmeier & Ulm, 2013). Unlike linear models, the evaluation of trait importance with 

random forest model does not specify a particular structure on the data, assesses both direct 

and indirect effects of traits on drought performance parameters (Jones & Linder, 2015), and 

can deal with traits that are highly correlated with each other (Strobl et al., 2008). The empirical 

distribution of trait importance under the universal null hypothesis (H0) that a trait made no 

contribution to improving model accuracy were assessed using a permutation approach 

(Hapfelmeier & Ulm, 2013). Significances of all trait importance were then evaluated at  = 

0.05 with Bonferroni adjustment to reduce type I error for multiple statistical tests (Hapfelmeier 

& Ulm, 2013). Bonferroni adjustment is advocated where multiple significances are tested 

under the same null hypothesis (H0; Hapfelmeier & Ulm, 2013; Armstrong, 2014). For other 

significance tests, we had specific individual hypotheses for each test. Their results and 

discussions thus are based on unadjusted values, but we additionally presented results with 

Bonferroni adjustment at  = 0.05. Spearman’s rank correlations were used to test if the rank 

of trait importance differed between different drought performance parameters. We 

additionally used Pearson’s coefficients to evaluate the directions and strength of relations 

between individual traits and drought performance parameters.  
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T-tests were used to test for differences between forbs and grasses in each individual trait and

in drought performance parameters. Differentiation of traits between forbs and grasses was 

additionally analyzed in multidimensional trait space based on PCA (see above). We analyzed 

the 95% confidence interval of the trait averages in forbs and grasses along PC1 and PC2. To 

test if the importance of traits varies across life forms, trait importance and its significance 

were assessed separately for forbs and grasses using the permutation-based random forest 

algorithms (see above). Spearman’s rank correlations were then used to test if the rank of trait 

importance differs between forbs and grasses within and across drought performance 

parameters.  

All analyses were done using R (R Core Team, 2018). The permutation-based random forest 

algorithm was employed with extendedForest package (Smith et al., 2011) based on the code 

provided in Hapfelmeier and Ulm (2013).  
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Results 

Coordination and trade-offs among traits 

All traits significantly differed among species across all species, as well as within forbs and 

within grasses (Table 2). Many individual traits correlated within and across processes, i.e., 

water uptake, water transport, water storage, water loss, membrane vulnerability and carbon 

gain, showing that many coordination and trade-offs existed among traits. However, while 

traits clearly did not vary independently, overall the relations were weak and no clear main 

dimensions of trait variation emerged (Fig. 1, Fig. 2, Fig. 3).  

Within traits promoting water uptake, maximum rooting depth (Rdep dry and Rdep irr), root mass 

(Rmas dry and Rmas irr) and root total length (RTL dry and RTL irr) were positively coordinated in both 

dry and irrigated treatments, and species with high maximum rooting depth in dry treatment 

(Rdep dry) had a more pronounced distribution of roots to deep soil layers (Rdep dis, Fig. 1, Fig. 2 

A and B). At the same time high maximum rooting depth in dry treatment (Rdep dry) was 

coordinated with high phenotypic plasticity of rooting depth (PRDep) in response to drought, 

indicating that phenotypic plasticity was key for achieving deep roots under drought (Fig. 2 C). 

Root morphology was limited by strong trade-offs, where high root specific length (RSL, i.e. 

high length per biomass) was associated with low root diameter (Rdia) and low root tissue 

density (Rden, Fig. 2 D and E).  

Within traits related to water transport, species with high density of major leaf veins (VDmajor) 

had a low density of minor leaf veins (VDminor, Fig. 2 L) suggesting a trade-off in the 

construction of the leaf water transport system, while the vessel diameters of major (LVdia major) 

and minor leaf veins (LVdia minor) were positively correlated with each other (Fig. 2 K).  
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Table 2 Summary statistics of traits: (a) the mean ± standard error across all 41 species (with 

minimum and maximum species averages in parenthesis), (b) the species effect size (i.e. the 

explained variance by species identity; one-way ANOVA), the mean ± standard error within 

(c) forbs and (d) grasses (with respective species effect size in parenthesis) and (e) the

significance of the differences between forbs and grasses (t-tests), with the direction of

significant differences indicated by < and >.

Traits (a) mean all species (b) species effect (c) mean forbs (d) mean grasses (e) life form effect

Performance under drought 

DRsurvival 0.91 ± 0.02 

(0.46, 1.03) 

0.93 ± 0.03 0.90 ± 0.03 n.s. 

DRgrowth 0.65 ± 0.02 

(0.21, 1.03) 

0.65 ± 0.04 0.64 ± 0.01 n.s. 

MWP -2.42 ± 0.16 

 (-5.68, -1.10) 

0.62*** -1.86 ± 0.15 

(0.64***) 

> -2.95 ± 0.23 

(0.50***) 

***†

Dass 5.23 ± 0.22 

(3, 7) 

5.18 ± 0.30 5.31 ± 0.33 n.s. 

Water uptake 

Rdep dry 43.77 ± 1.54 

(29.00, 74.17) 

0.39*** 46.93 ± 2.60 

(0.43***) 

> 40.75 ± 1.48 

(0.26***) 

* 

Rdep irr 33.71 ± 0.78 

(20.67, 45.17) 

0.29*** 32.96 ± 1.28 

(0.30***) 

34.42 ± 0.93 

(0.26***) 

n.s. 

Rdep dis 0.94 ± 0.01 

(0.86, 0.99) 

0.94 ± 0.01 0.94 ± 0.005 n.s. 

Rmas dry 6.25 ± 0.89 

(0.57, 25.85) 

0.45*** 6.46 ± 1.36 

(0.38***) 

6.04 ± 1.20 

(0.58***) 

n.s. 

Rmas irr 7.32 ± 1.20 

(1.10, 45.00) 

0.60*** 4.72 ± 0.99 

(0.51***) 

< 9.78 ± 2.02 

(0.60***) 

* 

RTL dry 1783 ± 278 

(13.15, 21902) 

0.73*** 1098 ± 70.8 

(0.51***) 

2436 ± 219 

(0.76***) 

n.s. 

RTL irr 2177 ± 340 

(52.99, 14774) 

0.67*** 836 ± 60.0 

(0.53***) 

< 3456 ± 201 

(0.57***) 

* 

RMR dry 0.66 ± 0.02 

(0.37, 0.94) 

0.42*** 0.64 ± 0.04 

(0.57***) 

0.68 ± 0.02 

(0.19***) 

n.s. 

RMR irr 0.69 ± 0.03 

(0.21, 0.97) 

0.67*** 0.67 ± 0.05 

(0.71***) 

0.70 ± 0.03 

(0.58***) 

n.s. 

Rdia 0.38 ± 0.06 

(0.26, 0.59) 

0.93*** 0.42 ± 0.004 

(0.71***) 

> 0.34 ± 0.004 

(0.53***) 

** 

RSL 173 ± 4.28 

(16.87, 983.96) 

0.93*** 104 ± 4.33 

(0.68***) 

< 239 ± 10.1 

(0.56) 

* 

Rden 0.11 ± 0.02 

(0.02, 0.27) 

0.86*** 0.14 ± 0.004 

(0.64***) 

> 0.08 ± 0.002 

(0.57***) 

** 
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PRDep 0.18 ± 0.01 

(0.10, 0.32) 

0.18*** 0.21 ± 0.01 

(0.19***) 

> 0.16 ± 0.01 

(0.21***) 

*** 

PRMas 0.45 ± 0.02 

(0.25, 0.79) 

0.13*** 0.45 ± 0.03 

(0.23***) 

0.45 ± 0.02 

(0.26***) 

n.s. 

PRMR 0.17 ± 0.01 

(0.06, 0.47) 

0.25*** 0.19 ± 0.02 

(0.38***) 

0.14 ± 0.01 

(0.27***) 

n.s. 

Water transport 

VDtotal 3.28 ± 0.23 

(1.58, 7.72) 

0.95*** 2.70 ± 0.26 

(0.94***) 

< 3.97 ± 0.33 

(0.87***) 

** 

VDmajor 2.29 ± 0.23 

(0.48, 6.87) 

0.95*** 1.16 ± 0.14 

(0.94***) 

< 3.36 ± 0.26 

(0.87***) 

***†

VDminor 1.02 ± 0.15 

(0.19, 4.93) 

0.95*** 1.53 ± 0.22 

(0.94***) 

> 0.41 ± 0.05 

(0.87***) 

***†

LVdia major 141.10 ± 5.94 

(51.48, 222.81) 

0.82*** 122.43 ± 8.76 

(0.82***) 

< 158.88 ± 5.98 

(0.66***) 

** 

LVdia minor 5.09 ± 0.16 

(3.03, 7.38) 

0.64*** 4.50 ± 0.16 

(0.45***) 

< 5.66 ± 0.21 

(0.60***) 

***†

Water storage 

TWC 84.14 ± 0.55 

(75.36, 93.06) 

0.81*** 84.52 ± 0.91 

(0.65***) 

83.77 ± 0.64 

(0.65***) 

n.s. 

SWC 83.35 ± 0.66 

(74.68, 94.61) 

0.89*** 84.86 ± 0.85 

(0.86***) 

> 81.92 ± 0.91 

(0.89***) 

* 

RWC 85.39 ± 0.65 

(73.02, 96.16) 

0.70*** 84.78 ± 1.22 

(0.88***) 

85.97 ± 0.52 

(0.32 n.s.) 

n.s. 

Water loss 

gmax 492.8 ± 67.39 

(138.9, 1992.2) 

0.74*** 475.8 ± 106.1 

(0.79***) 

509.0 ± 86.73 

0.68*** 

n.s. 

gdrought 194.7 ± 24.26 

(29.45, 611.3) 

0.35*** 284.5 ± 38.12 

(0.26**) 

> 109.1 ± 15.27 

(0.29***) 

***†

gmin 5.03 ± 0.32 

(2.09, 10.35) 

0.58*** 6.13 ± 0.45 

(0.44***) 

> 3.99 ± 0.34 

(0.64***) 

***†

ψtlp -1.79 ± 0.03 

(-2.30, -1.49) 

0.61*** -1.73 ± 0.03 

(0.68***) 

> -1.85 ± 0.04 

(0.54***) 

* 

ψstclosure -2.59 ± 0.14 

(-5.10, -1.16) 

0.45* -2.16 ± 0.15 

(0.44 n.s.) 

> -3.00 ± 0.18 

(0.37 n.s.) 

***†

STden 150.8 ± 16.80 

(15.16, 438.48) 

0.82*** 185.5 ± 27.93 

(0.78***) 

> 117.7 ± 16.87 

(0.84***) 

* 

STind 15.52 ± 0.53 

(6.32, 23.83) 

0.54*** 16.11 ± 0.83 

(0.56***) 

14.96 ± 0.67 

(0.48***) 

n.s. 

STlen 34.43 ± 1.60 

(21.73, 64.80) 

0.77*** 35.59 ± 2.55 

(0.80***) 

33.32 ± 1.99 

(0.74***) 

n.s. 
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SLA 187.7 ± 10.10 

(80.61, 421.5) 

0.80*** 194.3 ± 16.70 

(0.85***) 

180.9 ± 12.03 

(0.72***) 

n.s. 

membrane vulnerability 

ψ80%ML -4.88 ± 0.44 

(-1.58, -17.88) 

-4.91 ± 0.84 -4.86 ± 0.32 n.s. 

carbon gain 

Amax 11.98 ± 0.44 

(5.60, 20.06) 

0.79*** 12.46 ± 0.76 

(0.84***) 

11.53 ± 0.47 

(0.62***) 

n.s. 

WUEintr 37.68 ± 2.55 

(6.55, 73.63) 

0.70*** 40.15 ± 3.52 

(0.62***) 

35.32 ± 3.69 

(0.73***) 

n.s. 

WUEinte 21.98 ± 0.22 

(19.19, 26.49) 

0.67*** 21.90 ± 0.26 

(0.73***) 

22.05 ± 0.36 

(0.64***) 

n.s. 

Nmass 1.90 ± 0.11 

(0.89, 4.31) 

0.73*** 2.04 ± 0.19 

(0.78***) 

1.73 ± 0.13 

(0.61***) 

n.s. 

C/N 27.76 ± 1.46 

(10.39, 52.09) 

0.70*** 25.72 ± 2.00 

(0.71***) 

29.70 ± 2.07 

(0.67***) 

n.s. 

Significances are given as *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. p > 0.05. Note † indicates 

that life form effects are still significant after Bonferroni adjustment at  = 0.05. For details on 

trait measurements and calculations see methods and Table S2. Root depth distribution has 

only one value available per species, and species association to dry habitats, whole-plant 

drought resistance of survival and growth, and membrane stability were assessed at species 

level, therefore species effects could not be analyzed for these variables. 
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Fig. 1 Correlations among traits. Green and red indicate positive and negative correlations, 

respectively, the color intensity indicates the strength of the correlations, i.e. Pearson’s 

coefficients. Shown are significant correlations at P < 0.05 before and after Bonferroni 

adjustment (marked with †). Traits are grouped into groups pertaining to water uptake, water 

transport, water storage, water loss, membrane vulnerability and carbon gain processes. Note 

that trait correlations occurred both within and across processes. For detailed results of 

correlation analyses see supplementary file 1 and see Fig. 2.  

Within traits pertaining to water loss, species losing leaf cell turgor at high leaf water potentials 

(tlp) also closed stomata at high leaf water potentials (stclosure), with turgor loss considerably 

preceding stomatal closure (Fig. 2 G). Unexpectedly, leaf water potentials at turgor loss point 

and at stomatal closure were positively correlated with stomatal conductance under drought 

(gdrought, Fig. 2 H and I), i.e. species that lost turgor and closed stomata early at high water 

potentials at the same time were able to maintain high stomatal conductance under moderate 

drought in the morning. Low specific leaf area (SLA), reflecting low transpirational area per 

leaf mass, was related to high stomatal conductance under moderate drought in the morning 

(gdrought, Fig. 1). High maximum stomatal conductance (gmax) was associated with high 

minimum leaf conductance (gmin, Fig. 2F), suggesting a trade-off between the potential for high 

transpiration rate under well-watered conditions and the capacity to minimize leaf water loss 

through stomatal closure. High gmax was also associated with low stomatal density (STden) but 

large stomatal pore length (STlen; Fig. 1).  

Within traits associated with carbon gain, species with high leaf nitrogen content (Nmass) had 

high integrated water use efficiency (WUEinte, Fig. 2 M) and a low leaf C/N ratio (Fig. 1).  

Coordination and trade-offs also existed across different processes and different plant organs 

(Fig. 1, Fig. 2). Species with high maximum rooting depth in dry conditions (Rdep dry) 

facilitating water uptake had high minor leaf vein density (VDminor) to transport and distribute 

water (Fig. 1) and closed stomata at high leaf water potentials (stclosure) to minimize water loss 

(Fig. 2 N) but unexpectedly maintained high leaf conductance under moderate drought in the 

morning (gdrought, Fig. 2 O). High total root length in dry conditions (RTL dry), high specific root 

length (RSL) and low root tissue density (Rden) were coordinated with high root water content 

(RWC; Fig. 1). High phenotypic plasticity of rooting depth (PRDep) and root mass (PRMas) were 

coordinated with shoot water content (SWC), suggesting that high water storage facilitated root 

growth under dry conditions (Fig. 1). High leaf water potential at turgor loss point (tlp) was  
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Fig. 2 Selected pairwise correlations among traits to exemplify the coordination and trade-offs. 

Shown are associations among traits pertaining to water uptake (A)-(E), to water loss (F)-(J), 

and to water transport or carbon gain processes (K)-(M). (N)-(Q) show coordination and trade-

offs among traits pertaining to different processes. Given are Pearson’s correlation coefficients 

and corresponding significant as * P < 0.05, ** P < 0.01, *** P < 0.001.  Note in (G) the 1:1 

dashed line was added. For units of the traits see Table 1.  

associated with high maximum photosynthesis (Amax, Fig. 2 Q) allowing high carbon gain 

before turgor loss. Leaf membrane vulnerability, i.e. leaf water potential at 80% membrane 

leakage ( 80%ML), was significantly related to root tissue density (Rden), phenotypic 

plasticity of rooting depth (PRDep) and minor leaf vein density (VDminor, Fig. 1).  

Despite the multitude of trait correlations, traits for some processes varied independently (Fig. 

1). For example, traits pertaining to water storage were not related to any water loss traits or to 

membrane vulnerability, and traits pertaining to water transport were unrelated to membrane 

vulnerability and carbon gain (Fig. 1). The independence of trait variations also existed for the 

‘fast to slow’ economics spectrum traits (Fig. 1). Only a few significant correlations were 

found, namely root specific length (RSL) was negatively correlated with root tissue density 

(RDen, see above). Leaf nitrogen content (Nmass) was significantly positively correlated with 

specific leaf area (SLA) and root tissue density (RDen), and negatively with root specific length 

but the directions with the latter two were opposite to the ‘fast to slow’ economics spectrum 

expectation. No further significant correlations among them including maximum 

photosynthesis (Amax) were supported with our data.  

Consistently, the PCA analysis showed that the variance explained by the first three axes was 

low (only 43%, Fig. 3, Table 2), although these axes captured some pronounced trait 

covariations within and across processes. Further, only traits pertaining to water uptake and 

water transport and stomatal traits had high loadings along the axes, other traits loadings were 

relatively low (Table 2). These results indicate that the variation of traits related to drought 

resistance is not coordinated along a few main axes, but that many orthogonal dimensions of 

trait variation exist – consistent with the many correlations and independence among individual 

traits (see above).  
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Table 2 Trait loadings on main PCA axes, i.e. PC1, 2 and 3, and variances captured by these 

axes.  

 traits PC1 (18%) PC2 (13%) PC3 (12%) 

 Water uptake 

log RDep dry -0.16 0.52 0.30 

log RDep irr 0.26 0.13 0.46 

log RMas dry 0.35 0.67 0.43 

log RMas irr 0.60 -0.06 0.50 

log RTL dry -0.01 -0.38 0.30 

log RTL irr -0.07 -0.01 0.33 

 RMR dry 0.78 0.48 0.11 

 RMR irr 0.88 0.03 0.15 

log RDia -0.67 -0.13 -0.01

log RSL 0.85 0.11 -0.24

log RDen -0.64 0.09 0.47

log PRDep -0.49 0.46 -0.05

log PRM -0.13 0.71 -0.07

log PRMR 0.18 -0.18 -0.12

 Water transport 

log VDmajor 0.52 -0.65 -0.13

 LVDia major 0.30 -0.09 0.60

 LVDia minor 0.52 -0.18 0.47

 Water storage 

 TWC 0.22 0.57 -0.23

 SWC -0.08 0.58 0.06

 RWC 0.49 0.43 -0.44

 Water loss 

log gmax 0.07 -0.38 0.49 

log gdrought -0.37 0.56 0.37 

log gmin -0.44 0.03 0.24 

 ψtlp -0.18 0.36 0.36 

 ψstclosure -0.46 0.24 0.32 

log STDen -0.18 0.26 -0.67

 STInd -0.12 -0.01 -0.70

log STLen 0.00 0.04 0.39

log SLA -0.34 -0.43 -0.01

 Membrane stability 

log ψ80%ML 0.24 -0.22 -0.17

 Carbon gain 

 Amax -0.12 0.22 0.26 

 WUEIntr -0.10 0.47 -0.44

 WUEInte -0.19 -0.17 0.03

log Nmass -0.59 -0.27 0.02

 C/N 0.55 0.17 -0.08

Highlighted are trait loadings ≥ 0.6 or ≤ -0.6, indicating that the PCA axis captures large 

variations in these traits.
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The importance of traits for drought performance parameters across all species 

Overall, various individual traits showed significant relations with species drought 

performances, i.e. whole-plant drought resistance of survival, whole-plant drought resistance 

of growth, midday leaf water potentials under moderate drought and species association to 

habitat dryness (Fig. 4), following hypothesized directions (Table1). However, for most traits 

the relations were not significant, and for few opposite to the hypotheses (Fig. 4). 

Consistently, the results from the random forest models showed that the importance of different 

traits varied tremendously within each drought performance parameter, and at the same time 

different traits were the most important for different drought performance parameters (Fig. 4). 

This was underlined by the general lack of significantly positive rank correlations of trait 

importance between the drought performance parameters (Fig. 5). Only for drought resistance 

of survival and midday leaf water potential under moderate drought there was a significantly 

positive correlation of the ranks of trait importance, showing that the trait importance was 

overall consistent for these two parameters (Spearman's rho = 0.34, p < 0.05, Fig. 5). 

For drought resistance of both survival and growth, root traits that maximize water uptake had 

the largest and significant importance, specifically high maximum rooting depth in dry 

treatment plots (Rdep dry) for survival and high root mass in dry treatment plots (Rmas dry) for 

growth (Fig. 4 A and B). For midday leaf water potentials under moderate drought, maintaining 

high leaf conductance under moderate drought (gdrought) was the most important (Fig. 4 C) with 

the effect direction opposite to the hypothesis (Table 1). High leaf water potential at turgor loss 

point (Ψtlp) which minimizes water loss under drought and low density of major leaf vein 

(VDmajor) were the second and third important traits for midday leaf water potentials under 

moderate drought, respectively, with the effect direction of major leaf vein density again 

opposite to the hypothesis (Fig. 4C, Table 1). For species association to habitat dryness, yet 

other traits, namely a high stomatal index (STind) and a small conduit diameter of minor leaf 

vein (LVdia minor) were more important, suggesting a key role of stomatal regulation of 

transpiration and maintaining leaf hydraulic conductance under drought (Fig. 4D). Traits 

associated with water storage, membrane vulnerability or carbon gain were not significant in 

their importance for any of the drought performance parameters. 
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Fig. 4 The importance of traits for each drought performance parameters: (A) whole-plant 

drought resistance of survival (DRsurvival), (B) whole-plant drought resistance of growth 

(DRgrowth), (C) midday leaf water potentials under moderate drought (MWP) and (D) species 

association to habitat dryness (Dass) across all species. Given are variable importance values 

assessed and tested using permutation-based random forest models (filled circles). Traits with 

significant importance ( = 0.05 after Bonferroni correction) are highlighted in black. 

Hypothesized directions of trait effects are shown as colored squares (green positive, red 

negative) and tested based on univariate regressions. Significance of correlation coefficients 

from univariate regression are given as *** P < 0.001, ** P < 0.01, * P < 0.05. See Table S3 

for details of univariate regressions. Note that comparisons of variable importance values are 

useful to compare relative trait contributions within each data set, but not to evaluate the 

absolute trait contributions across data sets. 

Differences between forbs and grasses in trait importance for drought performance parameters 

Many traits (19 out of 38) differed significantly between forbs and grasses (Table 1). These 

includes traits that emerged as important for whole-plant drought resistance of survival and 

midday leaf water potentials under moderate drought, e.g. forbs had higher maximum rooting 

depth under dry conditions (Rdep dry) and higher leaf conductance under moderate drought 

(gdrought) than grasses. The trait differences were strong enough to separate forbs and grasses 

along PC 1 and PC 2 (Fig. 3). Forbs also maintained significantly higher midday leaf water 

potentials under moderate drought than grasses, while whole-plant drought resistance of both 

survival and growth, and species association to habitat dryness did not differ between forbs 

and grasses (Table 1).  

Similar to the results across all species, within both forbs and grasses the trait importance also 

varied within each drought performance parameter and across them (Fig. 6). Only within 

grasses the ranks of trait importance of whole-plant drought resistance of survival were 

significantly positively related to midday leaf water potentials under moderate drought (Fig. 

5). Between forbs and grasses, trait importance differed for each drought performance 

parameter, as indicated by the lack of significant rank correlations (Fig. 5).  

Specifically, in forbs low minimum leaf conductance (gmin) and high leaf water potential at 

stomatal closure (Ψstclosure) both minimizing water loss under drought were the most important 

traits for whole-plant drought resistance of survival, followed by high root mass in dry 

treatment plots (Rmas dry) and thin roots (Rdia) that facilitate water uptake (Fig. 6A). In grasses 

high maximum rooting depth in dry treatment plots (Rdep dry) optimizing water uptake under  
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Fig. 5 Spearman rank correlations between trait importance for each drought performance 

parameters, i.e. whole-plant drought resistance of survival (DRsurvival) and growth (DRgrowth), 

midday leaf water potential under moderate drought (MWP) and species association to habitat 

dryness (Dass) across all species, forbs and grasses. Significance of the relations is given as ** 

P < 0.01, * P < 0.05, (*) P < 0.1 with positive relations given in green and negative ones in red. 

A lack of significant relations indicates that the ranks of trait importance differ between drought 

performance parameters or between species groups, while significant relations indicate that the 

trait importance is related. Note that most relations are not significant. The comparisons of trait 

importance between forbs and grasses for different drought performance parameters are 

highlighted with black frames.  

drought was the only significantly important trait for whole-plant drought resistance of survival 

(Fig. 6A). For whole-plant drought resistance of growth, high maximum photosynthesis (Amax) 

was the most important in forbs, while in grasses a low leaf C/N ratio (Fig. 6B). For high 

midday leaf water potentials under moderate drought, in grasses again high maximum rooting 

depth in dry treatment plots was the most important, while in forbs maintenance of high 

stomatal conductance under moderate drought (gdrought) and high leaf water potentials at turgor 

loss point (Ψtlp) had the higher importance than others (Fig. 6C). For association to habitat 

dryness, a high stomatal index was consistently the most important in both forbs and grasses 

(Fig. 6 D), consistent with the result across all species (Fig. 4 D), although the ranks of 

importance of other traits were unrelated between life forms (Fig. 5).
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Discussion 

Coordination and trade-offs among traits 

A large number of coordination and trade-offs existed among traits pertaining to water uptake, 

water transport, water storage, water loss, membrane vulnerability and carbon gain processes 

(Fig. 1-3). This supports that multiple traits in coordination, not alone, determined species 

drought resistance in grasslands. Relations of subset of these traits have been shown in previous 

studies (Jackson et al., 1997; Craine et al., 2001; Tucker et al., 2011; Zwicke et al., 2015; 

Bartlett et al., 2016; Lawson & McElwain, 2016), but never involving such a large number of 

traits which allows to comprehensively evaluate the coordination and trade-offs among traits 

relevant for plant water relations and hypothesized to be important for drought resistance. Some 

of the correlations can be explained by direct physiological linkages or biophysical constrains. 

This is true for the positive correlations between leaf water potentials at turgor loss point and 

stomatal closure (McAdam & Brodribb, 2015) or between leaf nitrogen content and integrated 

water use efficiency (Sparks & Ehleringer, 1997), for the negative correlation between stomatal 

density and stomatal size (de Boer et al., 2016), or for the relations between specific root length, 

root diameter, root tissue density, root total length and root phenotypic plasticity in response 

to drought (Eissenstat, 1992; Reich et al., 1999; Comas et al., 2013). Other trait relations we 

found reflected the co-selection of different processes under drought resulting in their 

coordination (Westoby & Wright, 2006). For example, increased water uptake (i.e. through 

high maximum rooting depth) is most beneficial under drought conditions if coordinated with 

an efficient water transport system to transport and distribute water (i.e. through high density 

of minor leaf veins) and concurrent with sensitive stomata that close early under drought or 

high vapor pressure deficit conditions (i.e. through high leaf water potentials at stomatal 

closure, Fig. 1).  

At the same time, trait correlations were overall weak, many traits within the same process and 

across processes were unrelated to each other (Fig. 1) and no dominating axes of variation of 

the traits emerged (Fig. 1 and Fig. 3), suggesting that considerable freedom in combination of 

traits related to drought resistance existed in grassland species. Weak or non-significant 

correlations between traits relevant for drought resistance were also found in other grassland 

studies (Craine et al., 2001; Tucker et al., 2011; Zwicke et al., 2015; Belluau & Shipley, 2018). 
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Together, these results support that grassland plants exhibit a multitude of combinations of 

traits, which confer the overall high drought resistance of individual grassland species.  

At the global scale, trait coordination at leaf level both in herbaceous grassland species and in 

woody species can be simplified by the leaf economics spectrum (LES) into ‘fast’ or ‘slow’ 

growth traits (Wright et al., 2004). Later studies have extended the LES to leaf vein traits (Sack 

et al., 2013), to stem (Chave et al., 2009) and root traits (Craine et al., 2005), and to whole-

plant level (Reich, 2014). The LES was shown to be associated with species shade tolerance 

(Kitajima & Poorter, 2010; Poorter et al., 2010; Wright et al., 2010) and has been hypothesized 

to also be associated with drought resistance (Reich, 2014): traits associated with ‘slow’ growth 

such as high root tissue density, low specific root length, low specific leaf area, low leaf 

nitrogen content, and low maximum photosynthesis, should be coordinated and related to high 

drought resistance. However, although some pair-wise correlations among the proposed traits 

were found in our study and in other grassland communities (Craine et al., 2005; Tjoelker et 

al., 2005; Tucker et al., 2011; Maire et al., 2012), an overall coordination at whole-plant level 

along main axes did not emerge for these traits in our study. This is in line with results from 

studies at similar scales, i.e. at regional (Bergmann et al., 2017) or local scale (Craine et al., 

2001; Tjoelker et al., 2005; Tucker et al., 2011; Maire et al., 2012; Perez-Ramos et al., 2013; 

Zhou et al., 2018). The lack of pronounced trait coordination, which we had expected based on 

LES, may be, at least partly, due to  the much smaller trait variation at local and regional scales 

than the global scale of the LES, e.g. the global variance in Nmass of grassland species was 

1.16% (Wright et al., 2004) but only 0.50% for our species. However, Craine et al. (2005) 

found that for grassland species even though at global scale the LES existed for leaf traits or 

root traits, a coordination across plant organs was absent, and that high, rather than low, leaf 

nitrogen content enabled species to inhabit dry habitats, contrary to the slow growth ‘strategy’ 

(but see Table 1). Consistently, in our common garden experiment (Manuscript 1) and in 

previous studies (Fernandez & Reynolds, 2000), no support was found for the trade-off 

between optimal growth and drought resistance in grassland species. These results suggest that 

a coordination between ‘slow’ growth traits may not exist and a slow growth ‘strategy’ - or the 

traits associated to slow growth - therefore may be overall not important for the drought 

resistance of grassland species. The inability to simply trait relations suggest that we may need 

to combine several traits to improve our prediction of differential species drought resistance 

(Choat et al., 2018).  
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Differential importance of traits for drought performance parameters 

To our knowledge, our study is the first that evaluated the importance of such a comprehensive 

set of traits pertaining to all the processes (see above) for several drought performance 

parameters comparatively across multiple grassland species. Many traits in our study pertaining 

to different processes were significantly correlated with the drought performance parameters 

(Fig. 4), suggesting that multiple processes contribute to promoting species drought resistance 

and supporting our argument that the prediction of drought resistance may involve several traits 

(see above). However, although all traits have been hypothesized or shown to be important for 

drought resistance (Table 1), they differed strongly in their importance for species drought 

performances with few traits having high importance (Fig. 4). For whole-plant drought 

resistance of both survival and growth, traits maximizing water uptake through deep roots or 

high root biomass had the highest importance. This is consistent with previous studies focusing 

on fewer traits where contrasted with other traits, significant positive correlations between 

maximum rooting depth/root mass and whole-plant drought resistance of survival or growth 

were found (Perez-Ramos et al., 2013; Zwicke et al., 2015; Manuscript 3), supporting the 

crucial role of roots in promoting whole-plant drought resistance in grassland species. Many 

traits have been shown to be important in determining species distribution, such as gas 

exchange traits (Belluau & Shipley, 2017), leaf water potentials at stomatal closure (Tucker et 

al., 2011; Craine et al., 2013), or leaf or root morphological traits (Tucker et al., 2011; Shipley 

et al., 2017). Here, we found that compared with these traits, high stomatal index had the 

highest importance for species habitat dryness while its importance for other drought 

performance parameters is minor (Fig. 4). Opposite to our expectation, high, rather than low, 

stomatal conductance under moderate drought (gdrought) contributed mostly to high midday leaf 

water potentials under drought (Fig. 4). High gdrought also promoted high whole-plant drought 

resistance of survival (Fig. 4). These results are counterintuitive because (1) high gdrought allows 

water loss under drought, and, therefore, should lead to low leaf water potentials under drought 

and low whole-plant drought resistance of survival; (2) high leaf water potentials at turgor loss 

point and at stomatal closure which were important for both of these parameters should lead to 

low gdrought. A possible explanation resolving these apparent contradictions could be that 

species with gdrought also had high rooting depth (Fig. 2O). Previous study showed that high 

rooting depth could enable plants to maintain high stomatal conductance without decreases in 

leaf water potentials under drought (Tuzet et al., 2003). Further, gdrought was measured in the 

morning under moderate drought. High leaf water potentials at turgor loss point and at stomatal 
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closure can temporarily depress stomatal conductance at midday to minimize water loss when 

vapor pressure deficit and transpiration are high (Bartlett et al., 2012b). In the morning, the 

high leaf water potentials would in turn lead to high gdrought under moderate drought (Tuzet et 

al., 2003). But under severe or lasting drought, permanent wilting or stomatal closure may 

occur in the morning and result in low gdrought. Further studies are needed to validate these 

relations. A practical implication of the differential trait importance is that for predicting 

drought resistance, this would allow us to simplify the traits measurement routine by selecting 

these important traits. For example, in manuscript 3, we found that by including important root 

traits, only three traits can provide high predictive power of whole-plant drought resistance of 

survival for both forbs and grasses (r2 ≥ 56%), although different trait combinations were used 

for each group.  

We expected that the same trait combinations would allow plants to maintain high midday leaf 

water potentials under drought, confer high drought resistance of survival and growth and 

enable plants to inhabit dry habitats. However, as shown above, the traits with the highest 

importance for each drought performance parameter were different. Moreover, only for whole-

plant drought resistance of survival and midday leaf water potentials under drought, a 

significantly positive correlation between the trait importance ranks was found (Fig. 5), 

supporting that maintenance of high leaf water potentials is important for survival under 

drought stress in grassland species (Choat et al., 2018; Manuscript 2). For whole-plant drought 

resistance of growth and association to habitat dryness, different traits emerged as important. 

Indeed, the relation between growth and survival under drought is not straightforward. On one 

hand, whole-plant drought resistance of growth may exhibit a trade-off with whole-plant 

drought resistance of survival because reduced growth or leaf mortality can promote survival 

by decreasing transpiration area (Volaire et al., 1998; Volaire & Norton, 2006). On the other 

hand, whole-plant drought resistance of growth and survival can be positively related when 

leaf mortality precedes plant death (Rivero et al., 2007; Zwicke et al., 2015). The relation 

between whole-plant drought resistance experimentally assessed in our study and species 

association to habitat dryness was weak (Manuscript 1), suggesting that species whole-plant 

drought resistance may have only a limited role in determining distribution patterns. Other 

environmental factors such as grazing, nutrient and light, and biotic interactions among plants 

additionally influence plant performance in grasslands and interact in complex ways, 

contributing to shaping abundance and distribution patterns in grasslands (Proulx & 

Mazumder, 1998; Maron & Crone, 2006; Borer et al., 2014; Breitschwerdt et al., 2018). In 
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summary, the generalization of traits underlying drought resistance is impeded by the weak 

relations between different drought performance parameters. The selection of traits for the 

predictions of drought resistance, therefore, should also consider the drought performance 

parameters that are relevant for the research questions. 

Specific leaf area (SLA) has been extensively used in trait-based studies on drought responses 

based on the assumption that species with low SLA have low transpiration rate and thus high 

drought resistance, and because it is one of the most easily measured and widely available traits 

(Westoby et al., 2002; Diaz et al., 2004; Kattge et al., 2011; Díaz et al., 2015). The association 

of SLA with drought resistance has been tested in grassland species, however with inconsistent 

results: a low SLA although was found to be highly related to high leaf water potentials under 

drought (Perez-Ramos et al., 2013), but unrelated to whole-plant drought resistance of survival 

and growth (Weißhuhn et al., 2011; Perez-Ramos et al., 2013; Zwicke et al., 2015). SLA was 

unrelated or only weakly related to habitat dryness (Cingolani et al., 2007; Belluau & Shipley, 

2018) or with opposite direction to habitat dryness for forbs and grasses (Shipley et al., 2017). 

In our study, SLA had relative low importance for all drought performance parameters, was 

only weakly negatively related with whole-plant drought resistance of survival and growth, 

and unrelated to species association to dry habitats or midday leaf water potentials under 

drought (Fig. 4). The overall weak or insignificant relations and inconsistent results suggest 

that SLA may not be a suitable and widely applicable proxy for species drought resistance.   

Functional differences between forbs and grasses 

We found that many traits significantly differed between forbs and grasses, including the traits 

that were important for the drought performance parameters (Table 2, Fig. 3). The differences 

between forbs and grasses in their traits have been also validated in individual studies with 

subset of traits (Grime et al., 1997; Craine et al., 2001; Nippert & Knapp, 2007; Tucker et al., 

2011; Chen et al., 2017). Further, the ranks of trait importance between forbs and grasses for 

each drought performance parameters were unrelated (Fig. 5). Overall, these data support 

substantial functional differences between forbs and grasses. However, no significant 

differences in drought performances parameters were found between these two groups, except 

midday leaf water potentials under drought, suggesting that both groups may suffer from the 

projected drought. This is contrasted with previous studies showing that forbs had lower 

(Tilman & El Haddi, 1992; Skinner & Comas, 2010) or higher (Yang et al., 2011) drought 

resistance than grasses. Analyzing 20 forbs and 21 grasses in manuscript 1, we found that 
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species whole-plant drought resistance differed significantly within forbs as well as within 

grasses. Both life forms contained drought resistance and drought sensitive species. The 

different species compositions used in these studies (Tilman & El Haddi, 1992; Skinner & 

Comas, 2010; Yang et al., 2011) thus may cause the inconsistence. In summary, large 

functional differences between forbs and grasses were found. Thus, the relations between traits 

and drought resistance, and the trait importance should be assessed individually for different 

life forms and phylogenetic groups.  

Conclusions 

The relations between traits that are relevant for plant drought resistance are complex. Various 

trait combinations involving several processes existed for forbs and grasses to promote 

different drought performance parameters, and no single axis emerged to define the spectrum 

of drought resistance. These complexities make predictions of species responses to drought 

challenging. However, many traits showed low and insignificant importance which reduces the 

complexity and simplifies the prediction models. Our study involving a large number of traits 

and drought performance parameters across multiple species thus can provide practical guides 

for trait selection for the prediction of changes in grassland composition and ecosystem 

services under climate change.  

Acknowledgement 

We acknowledge the assistances from Burkhard Stumpf, Leonor Álvarez Cansino, Gehard 

Müller in setting up the experiments. Many students have participated in the measurements, 

specifically, Jasper Lendla for midday leaf water potential and stomatal conductance under 

moderate drought, Eike Hartmann for minimum leaf conductance, Marisa Klein for leaf vein 

density, Karsten Kreußel and Rena Wenzel for leaf vein xylem conduit diameter, Steve Lindner 

for leaf water potentials at stomatal closure and Julia Schmidt for maximum root depth, root 

mass, and stomatal density. We acknowledge Helge Bruelheide, Ute Jandt and their team for 

generously sharing plants for our preliminary tests and the BayCEER-Laboratory of Isotope 

Biogeochemistry for the leaf carbon isotope and nitrogen content analyses. We thank everyone 

who participated in setting up the Biodiversity Exploratories project. This research was partly 

funded by the DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories". 

Shanwen Sun acknowledges financial support from the China Scholarship Council. 



Manuscript 4 

202 

References 

Armstrong RA. 2014. When to use the Bonferroni correction. Ophthalmic Physiol Opt 34(5): 

502-508.

Bardgett RD, Mommer L, De Vries FT. 2014. Going underground: root traits as drivers of 

ecosystem processes. Trends Ecology & Evolution 29(12): 692-699. 

Barkaoui K, Roumet C, Volaire F. 2016. Mean root trait more than root trait diversity 

determines drought resilience in native and cultivated Mediterranean grass mixtures. 

Agriculture Ecosystems & Environment 231: 122-132. 

Bartelheimer M, Poschlod P. 2016. Functional characterizations of Ellenberg indicator values 

- a review on ecophysiological determinants. Functional Ecology 30(4): 506-516.

Bartlett MK, Klein T, Jansen S, Choat B, Sack L. 2016. The correlations and sequence of 

plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National 

Academy of Sciences 113(46): 13098-13103. 

Bartlett MK, Scoffoni C, Ardy R, Zhang Y, Sun SW, Cao KF, Sack L. 2012a. Rapid 

determination of comparative drought tolerance traits: using an osmometer to predict 

turgor loss point. Methods in Ecology and Evolution 3(5): 880-888. 

Bartlett MK, Scoffoni C, Sack L. 2012b. The determinants of leaf turgor loss point and 

prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology 

Letters 15(5): 393-405. 

Belluau M, Shipley B. 2017. Predicting habitat affinities of herbaceous dicots to soil wetness 

based on physiological traits of drought tolerance. Annals of Botany 119(6): 1073-1084. 

Belluau M, Shipley B. 2018. Linking hard and soft traits: Physiology, morphology and 

anatomy interact to determine habitat affinities to soil water availability in herbaceous 

dicots. PLoS ONE 13(3): e0193130. 

Bergmann J, Ryo M, Prati D, Hempel S, Rillig MC. 2017. Root traits are more than 

analogues of leaf traits: the case for diaspore mass. New Phytologist 216(4): 1130-1139. 

Bewley JD. 1979. Physiological Aspects of Desiccation Tolerance. Annual review of plant 

physiology 30(1): 195-238. 

Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ. 2004. Changing partners 

in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest 

orchids and trees. Proceedings of the Royal Society B-Biological Sciences 271(1550): 

1799-1806. 

Blackman CJ, Pfautsch S, Choat B, Delzon S, Gleason SM, Duursma RA. 2016. Toward 

an index of desiccation time to tree mortality under drought. Plant Cell & Environment 

39(10): 2342-2345. 



Manuscript 4 

203 

Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, 

Alberti J, Anderson TM, Bakker JD, et al. 2014. Herbivores and nutrients control 

grassland plant diversity via light limitation. Nature 508(7497): 517-520. 

Boyer JS. 2015. Turgor and the transport of CO2 and water across the cuticle (epidermis) of 

leaves. Journal of Experimental Botany 66(9): 2625-2633. 

Breitschwerdt E, Jandt U, Bruelheide H. 2018. Using co-occurrence information and trait 

composition to understand individual plant performance in grassland communities. 

Scientific Reports 8(1): 9076. 

Brodribb TJ, Holbrook NM. 2003. Stomatal closure during leaf dehydration, correlation with 

other leaf physiological traits. Plant Physiology 132(4): 2166-2173. 

Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV. 2003. Relations between 

stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. 

Plant Cell & Environment 26(3): 443-450. 

Brodribb TJ, McAdam SA, Jordan GJ, Martins SC. 2014. Conifer species adapt to low-

rainfall climates by following one of two divergent pathways. Proceedings of the 

National Academy of Sciences 111(40): 14489-14493. 

Buckland SM, Grime JP, Hodgson JG, Thompson K. 1997. A comparison of plant 

responses to the extreme drought of 1995 in northern England. Journal of Ecology 85(6): 

875-882.

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a 

worldwide wood economics spectrum. Ecology Letters 12(4): 351-366. 

Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt 

MR. 2017. Molecular Evolution of Grass Stomata. Trends in Plant Science 22(2): 124-

139. 

Choat B, Brodribb TJ, Brodersen CR, Duursma RA, Lopez R, Medlyn BE. 2018. Triggers 

of tree mortality under drought. Nature 558(7711): 531-539. 

Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S. 2007. Filtering processes in the 

assembly of plant communities: Are species presence and abundance driven by the 

same traits? Journal of Vegetation Science 18(6): 911-920. 

Collatz GJ, Berry JA, Clark JS. 1998. Effects of climate and atmospheric CO2 partial 

pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 

114(4): 441-454. 

Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA. 2013. Root traits contributing to 

plant productivity under drought. Frontiers in Plant Science 4: 442. 

Craine JM, Froehle J, Tilman GD, Wedin DA, Chapin FS. 2001. The relationships among 

root and leaf traits of 76 grassland species and relative abundance along fertility and 

disturbance gradients. Oikos 93(2): 274-285. 



Manuscript 4 

204 

Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC. 2005. Environmental constraints 

on a global relationship among leaf and root traits of grasses. Ecology 86(1): 12-19. 

Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione 

JE. 2013. Global diversity of drought tolerance and grassland climate-change resilience. 

Nature Climate Change 3(1): 63-67. 

Davis SD, Sperry JS, Hacke UG. 1999. The relationship between xylem conduit diameter 

and cavitation caused by freezing. American Journal of Botany 86(10): 1367-1372. 

de Boer HJ, Price CA, Wagner-Cremer F, Dekker SC, Franks PJ, Veneklaas EJ. 2016. 

Optimal allocation of leaf epidermal area for gas exchange. New Phytologist 210(4): 

1219-1228. 

Diaz S, Cabido M. 1997. Plant functional types and ecosystem function in relation to global 

change. Journal of Vegetation Science 8(4): 463-474. 

Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-

Martí G, Grime JP, Zarrinkamar F, Asri Y, et al. 2004. The plant traits that drive 

ecosystems: Evidence from three continents. Journal of Vegetation Science 15(3): 295-

304. 

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth 

C, Colin Prentice I, et al. 2015. The global spectrum of plant form and function. 

Nature 529: 167. 

Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology – 

a review. Basic and Applied Ecology 4(6): 493-506. 

Dlugokencky E, Tans P 2017. NOAA/ESRL. 

Eissenstat DM. 1992. Costs and Benefits of Constructing Roots of Small Diameter. Journal 

of Plant Nutrition 15(6-7): 763-782. 

Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D. 1991. Zeigerwerte von 

pflanzen in Mitteleuropa. Göttingen: Goltze. 

Ellis EC, Turgeon R, Spanswick RM. 1992. Quantitative Analysis of Photosynthate 

Unloading in Developing Seeds of Phaseolus vulgaris L. : II. Pathway and Turgor 

Sensitivity. Plant Physiology 99: 643--651. 

Farquhar GD, O'Leary MH, Berry JA. 1982. On the relationship between carbon isotope 

discrimination and the intercellular carbon dioxide concentration in leaves. Functional 

Plant Biology 9(2): 121-137. 

Farquhar GD, Richards RA. 1984. Isotopic Composition of Plant Carbon Correlates With 

Water-Use Efficiency of Wheat Genotypes. Functional Plant Biology 11(6): 539-552. 



Manuscript 4 

205 

Fay PA, Carlisle JD, Danner BT, Lett MS, McCarron JK, Stewart C, Knapp AK, Blair 

JM, Collins SL. 2002. Altered rainfall patterns, gas exchange, and growth in grasses 

and forbs. International Journal of Plant Sciences 163(4): 549-557. 

Fernandez RJ, Reynolds JF. 2000. Potential growth and drought tolerance of eight desert 

grasses: lack of a trade-off? Oecologia 123(1): 90-98. 

Fischer M, Bossdorf O, Gockel S, Hansel F, Hemp A, Hessenmoller D, Korte G, 

Nieschulze J, Pfeiffer S, Prati D, et al. 2010. Implementing large-scale and long-term 

functional biodiversity research: The Biodiversity Exploratories. Basic and Applied 

Ecology 11(6): 473-485. 

Fort F, Jouany C, Cruz P. 2013. Root and leaf functional trait relations in Poaceae species: 

implications of differing resource-acquisition strategies. Journal of Plant Ecology 6(3): 

211-219.

Franks PJ, Drake PL, Beerling DJ. 2009. Plasticity in maximum stomatal conductance 

constrained by negative correlation between stomatal size and density: an analysis 

using Eucalyptus globulus. Plant Cell & Environment 32(12): 1737-1748. 

Gale MR, Grigal DF. 1987. Vertical root distributions of northern tree species in relation to 

successional status. Canadian Journal of Forest Research-Revue Canadienne De 

Recherche Forestiere 17(8): 829-834. 

Genuer R, Poggi JM, Tuleau-Malot C. 2010. Variable selection using random forests. 

Pattern Recognition Letters 31(14): 2225-2236. 

Gibson DJ. 2009. Grasses and grassland ecology. Oxford, UK: Oxford University Press. 

Grime JP, Fridley JD, Askew AP, Thompson K, Hodgson JG, Bennett CR. 2008. Long-

term resistance to simulated climate change in an infertile grassland. Proceedings of 

the National Academy of Sciences 105(29): 10028-10032. 

Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry 

GAF, Ashenden TW, Askew AP, Band SR, et al. 1997. Integrated Screening 

Validates Primary Axes of Specialisation in Plants. Oikos 79(2): 259-281. 

Guadagno CR, Ewers BE, Speckman HN, Aston TL, Huhn BJ, DeVore SB, Ladwig JT, 

Strawn RN, Weinig C. 2017. Dead or alive? Using membrane failure and chlorophyll 

a fluorescence to predict plant mortality from drought. Plant Physiology 175(1): 223-

234. 

Hapfelmeier A, Ulm K. 2013. A new variable selection approach using Random Forests. 

Computational Statistics & Data Analysis 60: 50-69. 

IPCC. 2014. Climate change 2014 – Impacts, adaptation and vulnerability: Part A: Global 

and sectoral aspects: Working group II contribution to the IPCC fifth assessment report: 

Volume 1: Global and sectoral Aspects. Cambridge: Cambridge University Press. 



Manuscript 4 

 

206 

Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global 

analysis of root distributions for terrestrial biomes. Oecologia 108(3): 389-411. 

Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface 

area, and nutrient contents. Proceedings of the National Academy of Sciences 94(14): 

7362-7366. 

Jones Z, Linder F 2015. Exploratory data analysis using random forests. Prepared for the 

73rd annual MPSA conference. 

Kattge J, DÍAz S, Lavorel S, Prentice IC, Leadley P, BÖNisch G, Garnier E, Westoby M, 

Reich PB, Wright IJ, et al. 2011. TRY - a global database of plant traits. Global 

Change Biology 17(9): 2905-2935. 

Kitajima K, Poorter L. 2010. Tissue-level leaf toughness, but not lamina thickness, predicts 

sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist 

186(3): 708-721. 

Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species 

indicates a continuum between isohydric and anisohydric behaviours. Functional 

Ecology 28(6): 1313-1320. 

Kraus JE, de Sousa HC, Rezende MH, Castro NM, Vecchi C, Luque R. 1998. Astra blue 

and basic fuchsin double staining of plant materials. Biotech Histochem 73(5): 235-243. 

Kutschera L. 1960. Wurzelatlas mitteleuropaischer Ackerunkrauter und Kulturpflanzen. 

Frankfurt am Main: DLG Verlag. 

Kutschera L, Lichtenegger E, Sobotik M. 1982. Wurzelatlas mitteleuropäischer 

Grünlandpflanzen. I. Monocotyledoneae Stuttgart: Gustav Fischer. 

Lawson T, McElwain JC. 2016. Evolutionary trade-offs in stomatal spacing. New Phytologist 

210(4): 1149-1151. 

Lens F, Picon-Cochard C, Delmas CE, Signarbieux C, Buttler A, Cochard H, Jansen S, 

Chauvin T, Doria LC, Del Arco M, et al. 2016. Herbaceous angiosperms are not more 

vulnerable to drought-induced embolism than angiosperm trees. Plant Physiology 

172(2): 661-667. 

Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO. 

2018. Evolutionary history resolves global organization of root functional traits. Nature 

555: 94-97. 

Maire V, Gross N, Borger L, Proulx R, Wirth C, Pontes LDS, Soussana JF, Louault F. 

2012. Habitat filtering and niche differentiation jointly explain species relative 

abundance within grassland communities along fertility and disturbance gradients. New 

Phytologist 196(2): 497-509. 

Maron JL, Crone E. 2006. Herbivory: effects on plant abundance, distribution and population 

growth. Proceedings. Biological sciences 273(1601): 2575-2584. 



Manuscript 4 

207 

Marteinsdottir B, Eriksson O. 2014. Plant community assembly in semi-natural grasslands 

and ex-arable fields: a trait-based approach. Journal of Vegetation Science 25(1): 77-

87. 

Martin-StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely 

stomatal closure. Ecology Letters 20(11): 1437-1447. 

Martin U, Pallardy SG, Bahari ZA. 1987. Dehydration tolerance of leaf tissues of six woody 

angiosperm species. Physiologia Plantarum 69(1): 182-186. 

McAdam SA, Brodribb TJ. 2015. The evolution of mechanisms driving the stomatal response 

to vapor pressure deficit. Plant Physiology 167(3): 833-843. 

McDowell NG. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and 

vegetation mortality. Plant Physiology 155(3): 1051-1059. 

McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry 

J, West A, Williams DG, et al. 2008. Mechanisms of plant survival and mortality 

during drought: why do some plants survive while others succumb to drought? New 

Phytologist 178(4): 719-739. 

Medeiros CD, Scoffoni C, John GP, Bartlett MK, Inman-Narahari F, Ostertag R, Cordell 

S, Giardina C, Sack L. 2018. An extensive suite of functional traits distinguishes 

Hawaiian wet and dry forests and enables prediction of species vital rates. Functional 

Ecology. 

Nippert JB, Knapp AK. 2007. Soil water partitioning contributes to species coexistence in 

tallgrass prairie. Oikos 116(6): 1017-1029. 

Ocheltree TW, Nippert JB, Prasad PV. 2016. A safety vs efficiency trade-off identified in 

the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal 

conductance and precipitation. New Phytologist 210(1): 97-107. 

Oram NJ, Ravenek JM, Barry KE, Weigelt A, Chen HM, Gessler A, Gockele A, de Kroon 

H, van der Paauw JW, Scherer-Lorenzen M, et al. 2018. Below-ground 

complementarity effects in a grassland biodiversity experiment are related to deep-

rooting species. Journal of Ecology 106(1): 265-277. 

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-

Harte MS, Cornwell WK, Craine JM, Gurvich DE, et al. 2013. New handbook for 

standardised measurement of plant functional traits worldwide. Australian Journal of 

Botany 61(3): 167-234. 

Perez-Ramos IM, Volaire F, Fattet M, Blanchard A, Roumet C. 2013. Tradeoffs between 

functional strategies for resource-use and drought-survival in Mediterranean rangeland 

species. Environmental and Experimental Botany 87: 126-136. 

Pineda-Garcia F, Paz H, Meinzer FC. 2013. Drought resistance in early and late secondary 

successional species from a tropical dry forest: the interplay between xylem resistance 



Manuscript 4 

208 

to embolism, sapwood water storage and leaf shedding. Plant Cell & Environment 

36(2): 405-418. 

Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of 

variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182(3): 565-

588. 

Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, 

Villegas Z, Sass-Klaassen U. 2010. The importance of wood traits and hydraulic 

conductance for the performance and life history strategies of 42 rainforest tree species. 

New Phytologist 185(2): 481-492. 

Proulx M, Mazumder A. 1998. Reversal of grazing impact on plant species richness in 

nutrient-poor vs. nutrient-rich ecosystems. Ecology 79(8): 2581-2592. 

R Core Team 2018. R: A language and environment for statistical computing. Vienna, Austria: 

R Foundation for Statistical Computing. 

Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. 

Journal of Ecology 102(2): 275-301. 

Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL. 2003. 

Variation in growth rate and ecophysiology among 34 grassland and savanna species 

under contrasting N supply: a test of functional group differences. New Phytologist 

157(3): 617-631. 

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 

1999. Generality of leaf trait relationships: A test across six biomes. Ecology 80(6): 

1955-1969. 

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. 

2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. 

Proceedings of the National Academy of Sciences 104(49): 19631-19636. 

Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology 

and applications in the past, present and future. New Phytologist 198(4): 983-1000. 

Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA. 

2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and 

synthesis. Journal of Experimental Botany 64(13): 4053-4080. 

Sack L, Scoffoni C, PrometheusWiki contributors 2011. Minimum epidermal conductance 

(gmin, a.k.a. cuticular conductance): PrometheusWiki. 

Salisbury EJ. 1927. On the causes and ecological significance of stomatal frequency, with 

special reference to the woodland flora. Philosophical Transactions of the Royal 

Society B: Biological Sciences 216(431-439): 1-65. 



Manuscript 4 

209 

Schaffers AP, Sýkora KV. 2009. Reliability of Ellenberg indicator values for moisture, 

nitrogen and soil reaction: a comparison with field measurements. Journal of 

Vegetation Science 11(2): 225-244. 

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image 

analysis. Nat Methods 9(7): 671-675. 

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley 

TN, McElrone AJ, Sack L. 2017. Leaf vein xylem conduit diameter influences 

susceptibility to embolism and hydraulic decline. New Phytologist 213(3): 1076-1092. 

Scoffoni C, Vuong C, Diep S, Cochard H, Sack L. 2014. Leaf shrinkage with dehydration: 

coordination with hydraulic vulnerability and drought tolerance. Plant Physiology 

164(4): 1772-1788. 

Scurlock JMO, Hall DO. 1998. The global carbon sink: a grassland perspective. Global 

Change Biology 4(2): 229-233. 

Seibt U, Rajabi A, Griffiths H, Berry JA. 2008. Carbon isotopes and water use efficiency: 

sense and sensitivity. Oecologia 155(3): 441-454. 

Shipley B, Belluau M, Kuhn I, Soudzilovskaia NA, Bahn M, Penuelas J, Kattge J, Sack 

L, Cavender-Bares J, Ozinga WA, et al. 2017. Predicting habitat affinities of plant 

species using commonly measured functional traits. Journal of Vegetation Science 

28(5): 1082-1095. 

Skarpe C. 1996. Plant functional types and climate in a southern African savanna. Journal of 

Vegetation Science 7(3): 397-404. 

Skinner RH, Comas LH. 2010. Root distribution of temperate forage species subjected to 

water and nitrogen stress. Crop Science 50(5): 2178-2185. 

Smith SJ, Ellis N, Pitcher CR. 2011. Conditional variable importance in R package 

extendedForest. 

Sparks JP, Ehleringer JR. 1997. Leaf carbon isotope discrimination and nitrogen content for 

riparian trees along elevational transects. Oecologia 109(3): 362-367. 

Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable 

importance for random forests. Bmc Bioinformatics 9(1): 307. 

Tilman D, El Haddi A. 1992. Drought and biodiversity in Grasslands. Oecologia 89(2): 257-

264. 

Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D. 2005. Linking leaf and root trait 

syndromes among 39 grassland and savannah species. New Phytologist 167(2): 493-

508. 

Tucker SS, Craine JM, Nippert JB. 2011. Physiological drought tolerance and the structuring 

of tallgrass prairie assemblages. Ecosphere 2(4): 1-19. 



Manuscript 4 

210 

Tuzet A, Perrier A, Leuning R. 2003. A coupled model of stomatal conductance, 

photosynthesis and transpiration. Plant, Cell & Environment 26(7): 1097-1116. 

Valladares F, Sanchez-Gomez D, Zavala MA. 2006. Quantitative estimation of phenotypic 

plasticity: bridging the gap between the evolutionary concept and its ecological 

applications. Journal of Ecology 94(6): 1103-1116. 

Veihmeyer FJ, Hendrickson AH. 1928. Soil moisture at permanent wilting of plants. Plant 

Physiology 3(3): 355-357. 

Volaire F. 2008. Plant traits and functional types to characterise drought survival of pluri-

specific perennial herbaceous swards in Mediterranean areas. European Journal of 

Agronomy 29(2-3): 116-124. 

Volaire F, Norton M. 2006. Summer dormancy in perennial temperate grasses. Annals of 

Botany 98(5): 927-933. 

Volaire F, Thomas H, Lelievre F. 1998. Survival and recovery of perennial forage grasses 

under prolonged Mediterranean drought - I. Growth, death, water relations and solute 

content in herbage and stubble. New Phytologist 140(3): 439-449. 

Weaver JE. 1968. Prairie plants and their environment: A fifty-year study in the Midwest. 

Lincoln, USA: Univ of Nebraska Pr. 

Weißhuhn K, Auge H, Prati D. 2011. Geographic variation in the response to drought in nine 

grassland species. Basic and Applied Ecology 12(1): 21-28. 

Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: 

Some leading dimensions of variation between species. Annual Review of Ecology and 

Systematics 33: 125-159. 

Westoby M, Wright IJ. 2006. Land-plant ecology on the basis of functional traits. Trends in 

Ecology & Evolution 21(5): 261-268. 

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, 

Chapin T, Cornelissen JH, Diemer M, et al. 2004. The worldwide leaf economics 

spectrum. Nature 428(6985): 821-827. 

Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling 

JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade-

off in tropical trees. Ecology 91(12): 3664-3674. 

Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ. 2011. Plant community responses to 

nitrogen addition and increased precipitation: the importance of water availability and 

species traits. Global Change Biology 17(9): 2936-2944. 

Zhou M, Bai W, Zhang Y, Zhang W. 2018. Multi-dimensional patterns of variation in root 

traits among coexisting herbaceous species in temperate steppes. Journal of Ecology 

106(6): 2320-2331. 



Manuscript 4 

211 

Zwicke M, Picon-Cochard C, Morvan-Bertrand A, Prud'homme MP, Volaire F. 2015. 

What functional strategies drive drought survival and recovery of perennial species 

from upland grassland? Annals of Botany 116(6): 1001-1015. 



Manuscript 4 

212 

Supporting information 

Table S1 List of the 41 temperate grassland species in our study with family, life form and 

association to habitat dryness (Dass).  

Species Family Life form Dass 

Achillea millefolium L. Asteraceae Forb -4
aAgrostis capillaris L. Poaceae Grass x

Agrostis stolonifera L. Poaceae Grass -7

Alopecurus pratensis L. Poaceae Grass -6

Anthoxanthum odoratum L. Poaceae Grass x

Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl. Poaceae Grass x

Brachypodium pinnatum (L.) P.Beauv. Poaceae Grass -4

Briza media L. Poaceae Grass x

Bromus hordeaceus L. Poaceae Grass x

Centaurea jacea L. Asteraceae Forb x

Cerastium holosteoides Fr. Caryophyllaceae Forb -5

Cirsium oleraceum (L.) Scop. Asteraceae Forb -7

Crepis biennis Lapeyr. Asteraceae Forb -6

Dactylis glomerata L. Poaceae Grass -5

Daucus carota L. Apiaceae Forb -4
aElymus repens (L.) Gould Poaceae Grass x
abFestuca guestfalica Boenn. ex Rchb. Poaceae Grass -4
abFestuca ovina L. Poaceae Grass x

Festuca pratensis Huds. Poaceae Grass -6
bFestuca rubra L. Poaceae Grass -6
aGalium mollugo L. Rubiaceae Forb -4

Helictotrichon pubescens (Huds.) Schult. & Schult.f. Poaceae Grass -3

Holcus lanatus L. Poaceae Grass -6

Lathyrus pratensis L. Fabaceae Forb -6

Leontodon autumnalis L. Asteraceae Forb -5
aLeucanthemum vulgare (Vaill.) Lam. Asteraceae Forb -4

Lolium perenne L. Poaceae Grass -5

Lotus corniculatus L. Fabaceae Forb -4

Phleum pretense L. Poaceae Grass -5

Plantago lanceolata L. Plantaginaceae Forb x

Poa pratensis L. Poaceae Grass -5
bPoa trivialis L. Poaceae Grass -7

Prunella vulgaris L. Lamiaceae Forb -5

Ranunculus acris L. Ranunculaceae Forb -6

Ranunculus bulbosus L. Ranunculaceae Forb -3

Ranunculus repens L. Ranunculaceae Forb -7

Rumex acetosa L. Polygonaceae Forb x

Rumex crispus L. Polygonaceae Forb -7

Taraxacum officinale (L.) Weber ex F.H.Wigg. Asteraceae Forb -5

Trisetum flavescents (L.) P. Beauv. Poaceae Grass x

Vicia cracca L. Fabaceae Forb -6

Species association to habitat dryness (Dass) was based on Ellenberg’s soil moisture indicator 

values (Ellenberg et al., 1991) multiplied by -1 so that higher values indicate higher association 

to drier habitats, consistent with the direction of values of whole-plant drought resistance of 

survival and growth (see main text). x indicates that species without specific moisture 

requirements and these species (11 in total) were excluded from analyses concerning habitat 
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association. Note: a and b indicate that root depth distribution and total and minor leaf vein 

density were not assessed on these species, respectively (see Methods).  
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Table S2 Information about the plants that were used for the measurements, i.e. growing 

conditions (common garden or greenhouse), number of individuals per species measured for 

each trait and sets of plants on which traits were measured in the greenhouse (A-L).  

Traits Conditions Number of individuals Set of plants 

Performance under drought 

DRsurvival common garden 36 

DRgrowth common garden 6 

MWP common garden 8 

Dass published data 

Water uptake 

Rdep dry common garden 8 

Rdep irr common garden 8 

Rdep dis published data 1 

Rmas dry common garden 8 

Rmas irr common garden 8 

RTL dry common garden 8 

RTL irr common garden 8 

RMR dry common garden 8 

RMR irr common garden 8 

Rdia green house 3 A 

RSL green house 3 A 

Rden green house 3 A 

PRDep common garden 8 

PRM common garden 8 

PRMR common garden 8 

Water transport 

VDtotal green house 6 B 

VDmajor green house 6 B 

VDminor green house 6 B 

LVdia major green house 6 C 

LVdia minor green house 6 C 

Water storage 

TWC green house 3 D 

SWC green house 3 D 

RWC green house 3 D 

Water loss 

gmax green house 6 E 

gdrought common garden 8 

gmin green house F 

ψtlp green house 6 G 
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ψstclosure green house 6 H 

STden green house 6 I 

STind green house 6 I 

STlen green house 6 I 

SLA green house 6 J 

membrane vulnerability 

ψ80%ML green house 10-15 K 

carbon gain 

Amax green house 6 E 

WUEintr green house 6 E 

WUEinte green house 6 L 

Nmass green house 6 L 

C/N green house 6 L 

Trait measurements that used the same set of plants in the greenhouse were indicated by the 

same letter/letters. For details of trait measurements see Methods and Materials. For full trait 

names, units, the hypothesized relations to the drought resistance and summary statistics see 

Table 1 and Table 2.
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Table S3 Relations of traits with whole-plant drought resistance of survival (DRsurvival), whole-

plant drought resistance of growth (DRgrowth), midday leaf water potential under moderate 

drought (MWP) and species association to habitat dryness (Dass).  

all species forbs grasses 

 traits 
DRsurv

ival

DRgro

wth
MWP Dass 

DRsurv

ival

DRgro

wth

MW

P 
Dass 

DRsurv

ival

DRgro

wth
MWP Dass 

 Water uptake 

log RDep dry 
0.46*

* 0.11 0.37* 0.02 0.45* 0.15 0.33 0.02 0.46* 0.02 0.22 -0.05 

log RDep irr 
0.39* 0.15 0.32* -0.09 0.27 0.06 0.26 -0.14 

0.60*

* 0.46* 

0.74**

*† 0.04 

log RMas dry 
0.52*

*† 

0.46*

* 0.35* -0.12 

0.63*

* 0.50* 

0.45

* 0.07 0.44* 0.42 0.44* -0.39 

log RMas irr 0.20 0.06 0.03 -0.23 0.33 -0.02 
0.56

* -0.11 0.31 0.36 0.32 -0.45 

log RTL dry 
0.21 0.35* -0.02 -0.06 0.53* 0.49* 0.28 0.31 0.04 0.14 0.19 

-

0.65* 

log RTL irr 

0.02 0.10 -0.20 -0.12 0.35 0.18 0.36 0.23 -0.07 0.09 0.10 

-

0.73*

* 

 RMR dry 
-

0.35* -0.26 -0.23 -0.35 -0.33 -0.28 

-

0.16 

-

0.54* -0.43 -0.14 -0.25 0.18 

 RMR irr 

-0.18 0.10 -0.21 -0.39* 0.16 0.21 0.10 -0.34 

-
0.59*

* -0.29 -0.51* 

-

0.56* 

log RDia 

0.00 -0.19 0.20 0.16 

-
0.63*

* -0.35 

-

0.19 -0.30 0.28 -0.10 0.00 

0.70*

* 

log RSL 
-0.16 0.11 -0.36* 0.02 0.20 0.28 

-

0.01 0.44 -0.40 -0.22 -0.17 

-

0.56* 

log RDen 0.25 0.08 0.39* -0.28 0.30 -0.03 0.27 -0.47 0.14 0.40 0.17 -0.11 

log PRDep 
0.20 0.11 0.18 <0.01 0.36 0.22 

-

0.03 0.07 -0.10 -0.32 -0.21 -0.32 

log PRM 
0.35* 0.37* 0.32* 0.12 0.42 

0.57*

* 

-

0.03 0.19 0.26 0.01 0.24 -0.02 

log PRMR 
-0.11 -0.11 -0.05 -0.07 -0.26 -0.14 

-
0.08 -0.18 0.41 0.24 0.43* 

0.75*
* 

 Water transport 

log VDmajor 
-0.16 -0.13 

-

0.48** 0.12 -0.40 -0.39 

-

0.41 0.09 0.24 0.38 0.17 0.52 

 LVDia major 0.20 0.20 -0.02 -0.30 0.11 0.23 0.22 

-

0.50* 0.54* 0.25 0.46* 0.02 

 LVDia minor 0.10 0.00 -0.10 -0.40* -0.05 0.07 0.22 
-

0.49* 0.37 -0.07 0.34 -0.45 

 Water storage 

 TWC 0.05 0.23 -0.13 0.04 0.35 0.43 0.06 0.34 -0.31 -0.40 -0.48* -0.39 

 SWC 
-0.03 0.15 0.00 -0.26 0.43 0.50* 0.16 -0.17 

-
0.47* 

-
0.53* -0.46* -0.41 

 RWC 0.20 0.27 -0.05 0.43* 0.26 0.26 0.07 0.58* 0.22 0.35 -0.01 0.15 

Water 
loss 

log gmax 
0.06 0.02 0.07 -0.16 -0.32 -0.01 

-

0.02 -0.37 0.36 0.07 0.23 0.13 

log gdrought 
0.51*

*† 0.15 

0.69**

*† -0.07 0.53* 0.11 

0.64

** -0.14 

0.57*

* 0.37 0.54* -0.07 

log gmin 

-0.03 0.00 0.31 -0.21 

-
0.62*

* -0.13 

-

0.32 

-

0.50* 0.28 0.27 0.24 -0.03 

 ψtlp 
0.45*

* 0.20
0.60**

*† -0.07 0.45* 0.15 
0.45

* -0.34 0.43 0.39 0.58** 0.18 

 ψstclosure 0.37* -0.05 0.47** -0.15 0.39 -0.21 0.12 -0.43 0.33 0.19 0.36 0.05 

log STDen -0.08 0.26 -0.04 0.52** 0.07 0.37 

-

0.27 

0.64*

* -0.35 -0.08 -0.20 0.33 

 STInd -0.12 0.11 0.02 
0.64**

*† -0.10 0.14 
-

0.15 
0.75*

** -0.19 0.03 -0.04 0.52 

log STLen 0.16 0.00 0.23 0.02 -0.02 -0.01 0.23 -0.09 0.32 0.03 0.23 0.15 

log SLA 
-

0.37* 

-

0.36* -0.14 -0.21 

-

0.48* 

-

0.47* 

-

0.38 -0.15 -0.33 -0.24 -0.15 -0.33 

 Membrane stability 
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log ψ80%ML 0.19 0.31 -0.01 0.10  0.41 0.31 0.01 0.13  -0.17 0.29 -0.28 -0.01 

 
Carbon 

gain               
 Amax 0.09 0.23 0.20 -0.09  0.04 0.26 0.09 -0.22  0.11 0.11 0.20 0.16 

 WUEItrt 
0.00 0.18 -0.01 0.10  0.31 0.26 

-

0.06 0.27  -0.26 0.07 -0.13 -0.16 

 WUEInte 0.07 -0.12 -0.18 -0.06  -0.04 -0.11 

-

0.44 0.19  0.15 -0.21 -0.07 -0.38 

log Nmass 
-

0.34* -0.31 -0.16 -0.31  -0.26 -0.32 
-

0.01 -0.19  

-
0.48* -0.38 

-
0.56** 

-
0.61* 

 C/N 
0.25 0.23 0.11 0.32  0.10 0.22 

-

0.09 0.15  0.42 0.37 0.49* 0.64* 

Given are correlation coefficients from univariate regressions and corresponding significance. 

* P values < 0.05, ** P values < 0.01, *** P values < 0.001. Note † indicates that relations are 

still significant after Bonferroni adjustment at  = 0.05.  
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