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Abstract
Pattern formation and selection are fundamental, omnipresent principles in nature—from small cells
up to geological scales. InE. coli bacteria, for example, self-organized pole-to-pole oscillations ofMin
proteins—resembling a short standingwave—ensure correct positioning of the cell division site. The
same biochemical reaction leads to traveling proteinwaves on extendedmembranes in in vitro
experiments. Are these seemingly contradictory observations of system-spanning importance?We
show that a transition of nonlinear travelingwave patterns to reflection-induced standingwaves in
short systems is a generic and robust phenomenon. It results from a competition between two basic
phenomena in pattern formation theory.We confirm the genericfindings for the cell-biologicalMin
reaction and for a chemical reaction–diffusion system. These standingwaves showbistability and
adapt to varying system lengths similar as pole-to-pole oscillations in growing E. coli.Our generic
results highlight key functions of universal principles for pattern formation in nature.

1. Introduction

Avariety of fascinating patterns emerges spontaneously in awealth of living or inanimate driven systems [1–13].
The esthetic appeal of these patterns is immediately apparent to all observers [1]. But universal principles of
patterns and their importance in nature also attract researchers frommany disciplines. They explore, for
instance, the important functions patterns fulfill: self-organized patterns in biology guide size sensing [6],
positioning of protein clusters [7], self-drivenmorphogenesis [8] and communication between species [10].
They furthermore enhance heat transport influid systems [3, 11] and are the basis of successful survival
strategies for vegetation inwater-limited systems [12–14].

Patterns include both stationary spatial structures such as stripes or hexagons, and dynamic structures like
travelingwaves [1–4]. Travelingwaves occur in such different and prominent systems as thermally driven fluid
convection [3, 15–18], electroconvection in nematic liquid crystals [19, 20] or the biochemicalMin protein
reaction on extendedmembranes [21, 22]. As these examples show, patterns emerge in diverse systems and are
driven by very differentmechanisms.Nevertheless, once stripes, hexagons or travelingwaves have evolved, they
often have certain universal properties described by pattern formation theory [2–4, 12].

In nature, patterns often evolve in the presence of domain boundaries—be it thewalls of a convection cell,
thefinite size of a petri dish or themembrane enclosing the cytosol of a biological cell. These boundaries have a
strong influence on the process of pattern formation. Stripe patterns, e.g., respond to systemboundaries by
adjusting their stripe orientation or selecting specificwavelengths [3, 23–25]. Systemboundaries in general
break symmetries. Spatially varying parameters break them, too, and thus have similar effects [26–28]. The
response of stationary periodic patterns to such symmetry breaking effects is broadly similiar in different
systems, i.e. independent of systemdetails [3, 23, 25]. Travelingwaves near boundaries show similar fascinating
spatio-temporal behavior [15, 16, 29, 30]. However, the effects of strong confinement on nonlinear wave
patterns have not yet been thoroughly examined.

OPEN ACCESS

RECEIVED

19 June 2018

REVISED

5 July 2018

ACCEPTED FOR PUBLICATION

18 July 2018

PUBLISHED

27 July 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aad457
mailto:walter.zimmermann@uni-bayreuth.de
https://doi.org/10.1088/1367-2630/aad457
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad457&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aad457&domain=pdf&date_stamp=2018-07-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this work, we show that nonlinear travelingwaves inevitably change into reflection-induced standing
waves in sufficiently short, confined systems. Since this generic phenomenon relies on basic universal principles
of pattern formation, we explore it atfirst within aminimalmodel for nonlinear travelingwaves. The resulting
system-spanning properties can then be transferred to related phenomena in nature: in theMin system, e.g.,
travelingwaves formby coordinated attachment and detachment ofMin proteins from themembrane. This
protein systemoriginates fromE. coli bacteria where it plays an important role in the cell division process
[31–33]: inside the rod-shaped E. coli bacteria, oscillating proteins shuttle between the two cell poles. Thereby,
they ensure the positioning of the cell division site at the cell center. In in vitro experiments on the other hand,
the same biochemical reaction leads to travelingwaves on large extendedmembranes [21, 22]. A deeper
understanding of generic properties of nonlinear waves in confinement will help to reconcile these seemingly
contradictory observations.

2. Transition to reflection-induced standingwaves in short systems

Wefirst analyze the transition fromnonlinear travelingwaves in extended systems to reflection-induced
standingwaves in strongly confined systems using a genericmodel. ‘Strong confinement’ refers to short system
lengths in the order of the preferredwavelength of the travelingwave. Themodel we use is the complex Swift–
Hohenberg (CSH)model [4, 34–36],

u x t a u b q u f u c u u, i 1 i i 1 i , 1t x x0
2

0
2 2 2 2 2e x g¶ = + - + + ¶ + ¶ - +( ) ( ) ( )( ) ( )∣ ∣ ( )

for the complex scalar field u(x, t) in one spatial dimension. In extended systems and for ε>0, thismodel shows
travelingwaveswith a preferred wavelengthλ0=2π/q0 over a wide range of parameters.Wemeasure the
system length L in units ofλ0 since it represents an intrinsic length scale of the problem.

Simulations of equation (1)with no-flux boundary conditions (see appendix A for details) for three different
system lengths lead to the results shown infigure 1: depending on the system length, we get three significantly
different wave solutions.

Inmoderately short systems (L=3λ0, top), wefind a travelingwave pattern in the center (bulk) of the
system. This resembles the travelingwave patterns that occur for theCSHmodel in large, quasi-unconfined
systems. Two travelingwave directions, described by uR(x−ωt) (traveling to the right) and uL(x+ωt)
(traveling to the left), are equally likely in extended pattern forming systems. In contrast to, e.g., light or sound
waves, however, travelingwaves in pattern forming systems are nonlinear.While light or soundwaves are thus
superimposable, two counter-propagating nonlinear waves compete with each other: one of the travelingwave
directions is spontaneously selected, while the other is suppressed [3, 29]. But their confinement infinite systems
introduces an additional effect: travelingwaves are reflected at the boundaries of afinite system. The boundary
conditions apply to thewholefield u(x, t) in equation (1), i.e. the incoming and reflectedwaves together.

Figure 1. Strong confinement leads to significantly different wave solutions depending on the system length. (Top)Modulated
travelingwave (TW) for L=3λ0, (Middle) two-node standingwave (SW) for L=λ0, (Bottom) one-node standingwave for
L=λ0/2. Simulations of equation (1)with no-flux boundaries, represented in space-time plots. Shown is the real part of the complex
field u(x, t) for the parameters ε=0.5, a=−0.8, ξ0=1, b=0, q0=1,f=0.5, γ=1, c=0.5.
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Therefore, the sum uR+uL, has tomatch them at the systemborders. This boundary coupling forces the
incoming and reflectedwaves into coexistence in afinite neighborhood of the boundary. The resulting
superposition of bothwave directions leads to standingwave patterns. Further away in the bulk the nonlinear
competition between bothwave directions dominates and the reflectedwave is damped by the predominant
incoming travelingwave. The largest system infigure 1 (top) shows the interplay between both bulk and
boundary effects. Reflection effects dominate very close to the top and bottomboundaries of the system. There,
the incoming and reflectedwave form a local standingwave. The extent of this standingwave depends on the
distance ε from threshold and increases by decreasing ε. In the bulk region, however, wave competition prevails
—the pattern resembles a travelingwave. By decreasing the system length L, the boundariesmove closer
together, i.e. the fraction of the systemwith significant superposition of incoming and reflectedwaves increases.
Therefore, the boundary-induced reflection becomesmore andmore important. For sufficiently short systems
—shorter than a critical length Lc—the reflection effect predominates the nonlinear competition in thewhole
system. As a result, standingwaves become inevitable. Note that these standingwaves are reflection-induced. In
principle, standingwave solutions can be inherently stable.However, this is not the case here: in theCSHmodel,
standingwaves in extended systems are always unstable. Thus, the standingwaveswefindhere are a direct
consequence of the confinement.While this novel, reflection-induced transition from traveling to standing
waves is generic, the critical length Lc depends on the chosen parameters and is specific to each system. The
middle and bottompanel infigure 1 show simulations for L=λ0 and L=λ0/2, respectively. Both system
lengths are below Lc leading to standingwave patterns. In the standingwave regime, the system length influences
the number of standingwave nodes. For L=λ0 (figure 1,middle) and similar lengths, wefind a two-node
standingwave. If only about half of the preferredwavelength fits into the system (e.g. L=λ0/2,figure 1
bottom), the standingwave has a single node in the system center.

3. Length adaptability and bistability of nonlinear standingwaves

The discovered reflection-induced standingwaves in strongly confined systems are further characterized by
exploring their linear stability. For stationary stripe patterns it is well known that they are stable for different
wavenumbers in afinite bandwidth. The basis of thismultistability is the so-called Eckhaus stability band
[37, 38]. Both fluid experiments [39, 40] and numerical analysis of different systems [27, 41] confirmed
multistability for stationary patterns (e.g. stripes) in extended systems. The Eckhaus stability band also exists for
travelingwaves in unconfined systems [4, 17, 42, 43]. Do the standingwaveswe find in strongly confined systems
also showmultistable behavior? Does the confinement influence the stability band compared to spatially
extended systems?

An analytical approximation of a standingwave solution of equation (1) is given by

u x t F F qx, e e e 2 e cos , 2t qx qx ti i i i= + =- W - - W( ) [ ] ( ) ( )
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Due to the no-flux boundaries, thewavenumber q is connected to the system length L via q=nπ/L, where
n=1, 2, 3 ... is the number of nodes. This standingwave solution in equation (2) theoretically exists for F2>0,
i.e. for q q0

2
0
2 2 2e x> -( ) . In nature, e.g. in (bio)chemical reactions, the control parameter value, corresponding

to ε in ourmodel, is oftenfixed above the threshold of pattern formation. Then, standingwaves only fulfill the
aforementioned existence conditionwithin afinite range of system lengths. Therefore standingwaves with n
nodes only exist in a certain length regime (existence band), located around L=nλ0/2. In addition, existence
ranges of standingwaves with different numbers of nodesmay overlap. Thus, for certain system lengths,
multiple standingwave solutions (with different numbers of nodes) exist simultaneously. However, parameter
rangeswhere patterns theoretically exist are not equivalent to the parameter rangeswhere they are stable. In fact,
patterns are usually not stable throughout their whole existence range [3, 17, 27, 39–42]. By also analyzing the
stability of standingwaves, we thus identify the range inwhich to expect these solutions, especially in
experiments (see SM is available online at stacks.iop.org/NJP/20/072001/mmedia formore details on the
linear stability analysis).

Figure 2(a) shows the stability regions of standingwave solutions as a function of both system length L and
the control parameter ε. For a given system length, standingwaveswith n nodes only exist for sufficiently large

q n L0
2

0
2 2 2e x p> -( ( ) ) . Below this threshold (black line infigure 2(a)) , the homogeneous solution u=0 is

stable and no pattern occurs. The stability range of standingwaveswith nnodes is located around L=nλ0/2 at
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moderate values of ε. For L=nλ0/2, thewavelength of the standingwave corresponds to the preferred
wavelengthλ0 of the CSHmodel. For these ‘optimal’ system lengths, standingwaves are stable over a large range
of control parameter values. Nevertheless, we can deviate from these optimal lengthswhile stillmaintaining
stable standingwaves. This creates regions of stability in the ε-L-plane. These stability regions constitute the
Eckhaus stability band for different number of nodes.We can now compare thewidth of the Eckhaus band to the
width of the existence band for the standingwaves. In extended systems, thewaves are only stable in a subrange
of their existence band. In contrast, in our confined systems close to the onset of pattern formation, the Eckhaus
band spans thewhole existence range (see figure 1 in SI). Additionally, adjacent stability regionsmay be large
enough to overlap. In these cases, standingwaveswith both n and n+1 nodes are stable. These overlapping
stability regions therefore constitute areas ofmultistability. For large values of ε (above the dashed line in
figure 2(a)), standingwaves eventually lose stability. Simulations then show a transition to travelingwave
patterns such as infigure 1 (top). The details of the stability regions also depend on the other parameters of the
CSHmodel. Parameter f, e.g., which is connected to the group velocity of thewaves, qualitatively changes the
exact shape of the stability regions (figure 2(b)). As a result, the overlap between adjacent stability regions
increases with increasing f. Other systemparameters such as b or c onlymarginally change the stability of
standingwaves (figures S2 and S3) in confined systems. Importantly, however, the generic principle of a
transition from traveling to standingwaves in short systems remains qualitatively independent from system
details.

Note that due to the shape of the stability regions, different scenarios are possible upon observing systems
with increasing length: if we choose ε such that stability regions overlap, we expect direct transitions between
standingwaveswith an increasing number of nodes (as seen infigure 1). Inside the overlap, there is bistability of
standingwaveswith different numbers of nodes. Therefore, both types of standingwaves are possible and the
resulting pattern depends on initial conditions (see figure 3(a)). Notably, this provides the possibility for
hysteresis. The transition fromone to two nodes in a growing system, e.g., takes place at a different system length
than the reverse transition in a shrinking system. For other values of ε, the different standingwave solutions are
intersected by either the homogeneous solution (for small ε) or by travelingwave patterns (for larger ε,
figures 3(b), (A)–(C)). In all cases, standingwaves eventually lose stability for sufficiently large systems (after
crossing the dashed line infigure 2(a)). For afixed system length L, standingwaves also loose their stability for
sufficiently large ε (figures 3(b), (D)–(E)). These transitions tomodulated travelingwaves—both as a function of
L and ε—take place in the formof supercritical (continuous) bifurcations (figure 3(c), see SM for details on how
this was calculated).

4. Reflection-induced standingwaves inmodels for a chemical reaction and theMin
protein system

Minimalmodels such as theCSHmodel we study here for travelingwaves are powerful tools to study system-
spanning properties of self-organized patterns. System-specificmodels describing travelingwaves are usually
more complex than theCSHmodel. They are, e.g., often composed of several coupled nonlinear equations and/
or include higher order nonlinearities (see e.g. [3, 21, 22, 44–49]).Moreover, travelingwaves can occur far from
the onset of pattern formation. Possible intricacies in these cases include secondary instabilities or anharmonic

Figure 2. Stability and length adaptability of standingwaves. (a) Stability regions of standingwaves as a function of system length L and
control parameter ε. Shaded regions indicate stable standingwaves with n=1, 2, 3, 4 nodes. Homogeneous solution is stable below
solid black line and travelingwave patterns in the bulk above dashed lines. Parameters in equation (1): a=0, ξ0=1, b=0, q0=1,
f=0.5, γ=1, c=0.5. (b) Influence of the group velocity parameter f on the stability of standingwaves solution in the CSH system.
Parameters: f=0.0 (I), 0.2 (II), 0.5 (III), 0.7 (IV), other parameters as in (a).
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wave profiles. Such effects can potentially overshadow the generic behavior of travelingwaves under constraints
discussed so far. Apart from these exceptions, however, evenmore complex scenarios often qualitatively follow
generic principles extracted fromminimalmodels. Thus, our results obtained from the generic CSHmodel help
us to understandwave patterns inmore complex systems.

We support this view by investigating the behavior of nonlinear travelingwaves under confinement in two
specific systems far from equilibrium. Thefirstmodel describes the aforementionedMin protein oscillations in
E. coli bacteria [21]. The second example is an extended Brusselator—a chemical reaction–diffusionmodel that
forms travelingwaves [49] (see appendices B andC for details on bothmodels). Asfigures 4(a) and (b) show, the
qualitative behavior of nonlinear waves in both of thesemodels is very similar to the generic CSHmodel: in
sufficiently strong confinement, travelingwave patterns inevitably change into reflection-induced standing
waves. Depending on the system length, we alsofind standingwave patterns with different numbers of nodes.
Note that both sets of simulations take place far beyond threshold. In this highly nonlinear regime the spatial
dependence of thewaves cannot be described by a single harmonic as in equation (2). Instead, they include
higher harmonics—as seen in the Fourier spectra infigures 4(c) and (d).

Bothmodels have a similar growth dispersion relation for perturbations of the homogeneous basic state as
theCSHmodel—with amaximumat afinite wavenumber, while othermodes are damped. Furthermore, the
extended Brusselator shows a continuous bifurcation from the homogeneous state to travelingwave patterns—
again, similar to theCSHmodel. On the basis of these commonproperties, the similar behavior of nonlinear
waves in strong confinementwere to be expected. Travelingwaves in theMinmodel infigure 4(b) are even
further from threshold and thus in the strongly nonlinear regime.Nevertheless, we find the same scenarios for
theMin reaction as for theCSHmodel and the Brusselator. This further supports the generic nature of our
predictions on reflection-induced standingwaves.

Figure 3. Scenarios for transitions between standing and travelingwave patterns. (a)Bistability of standingwaves with 1 and 2 nodes
due to overlapping stability regions. Depending on initial conditions, both a standingwavewith one node (left) or two nodes (right) is
possible for L=0.79λ0 and ε=0.55. (b)Different scenarios are possible upon changing systemparameters. Forfixed ε=0.8, we
get 3 different solutions upon increasing the system length L: from a standingwavewith one node (A, L=0.5λ0) tomodulated
travelingwaves (B, L=0.8λ0) to 2-node standingwave (C, L=λ0). For a fixed system length L=1.5λ0, there is a transition from a
3-node standingwave (D, ε=0.4) to amodulated travelingwave (E, ε=0.8). (c)Transitions from standingwaves tomodulated
travelingwaves are supercritical bifurcations as both a function of the system length L (left) and the control parameter ε: the amplitude
of travelingwaves increases continuously above the critical length Lc or the critical control parameter εc, respectively (see SM formore
details). Additional systemparameters for all simulations in this panel: f=0.2, rest as given infigure 1.
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Furthermore, ourfindings are not limited to no-flux boundary conditions. The reflection-induced
transition to standingwaves prevails for different boundary conditions such asfixed boundaries
(u u 0x x L0 = == =∣ ∣ ). The only qualitative difference is the position of the standingwave nodes: they are shifted
to the boundaries due to the vanishing fields at these points (see figure S4).

Nonlinear travelingwaves in extended systemsmay be convectively unstable directly beyond threshold. This
is also known as Benjamin–Feir instability [3, 4]. For theCSHmodel, this is the case in the parameter range
b f q c4 10

2
0
2x+ > -( ) . In this Benjamin–Feir unstable regime, spatio-temporally chaotic solutions are possible

(above the transition to absolute instability). System sizematters for spatio-temporal chaos aswell: strong
confinement and the related boundary-induced reflection can reestablish ordered standingwaves (seefigure S5).

5.Discussion

In ourworkwe identified generic properties of nonlinear waves in very short systems, i.e. under strong spatial
confinement.We found a universal and robust reflection-induced transition from travelingwave patterns in
extended systems to standingwaves in sufficiently short systems. Stability analysis shows that these standing
waves can adapt to different system lengths. This corresponds to stability within afinite wavenumber band—a
feature they sharewith stationary spatially periodic patterns or travelingwaves [3, 17, 38–42]. They can also react
to larger length variations by changing their number of nodes.We alsofindmultistability of standingwaveswith
different numbers of nodes in a systemof the same length.

Our results obtained in terms of basic pattern formation theory show striking similarities to oscillatingMin
protein patterns.We hypothesize that basic generic properties of nonlinear wave patterns have a key function in
theMin system. Theymay provide themissing link between pole-to-poleMin oscillations in short systems [31,
50–52] and traveling proteinwaves on extendedmembranes [21, 22]: the pole-to-pole oscillations inE. coli
behave like standingwaves originating from travelingwaves confined to short systems.We also suggest that
generic features of the reflection-induced standingwaves such as length adaptability further contribute to the

Figure 4.Waves in confinement in a Brusselator andMinmodel. (a)Effects of strong confinement onwave patterns in an extended
Brusselatormodel, equations (2.1a)–(2.1c): (Top)modulated travelingwave for L=15λc, (Middle) six-node standingwave for
L=3λc, (Bottom) one-node standingwave for L=λc/2. (Shown are space-time plots of the concentration field u(x, t).) (b)Effects of
strong confinement onwave patterns in simulations of theMinmodel, equations (3.1a)–(3.1d): (Top)Modulated travelingwave for
L=300 μm, (Middle) two-node standingwave for L=100 μm, (Bottom) one-node standingwave for L=50 μm. (Shown are
space-time plots of the totalMinD concentration.) (c)Power spectra for the simulations of the Brusselatormodel shown in (a) for
L=λc/2 (left) and L=15λc (right). Themode n=1 corresponds to the dominantmode in the Fourier spectrum, n=2, 3 to
multiples of the dominantmode. (d)Power spectra for the simulations of theMinmodel shown in (b) for L=50 μm (left) and
L=300 μm (right).
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regulation of cell division. This view is supported by experimental observations in theMin system: depending on
bacteria length, theMin proteins also form standingwaveswithmultiple nodes [31, 47, 53] or even traveling
waves [47].More importantly though, not only do living bacteria slightly differ in length, they also actively grow.
Tomaintain accurate cell division at the cell center, the pole-to-pole oscillationsmust be robust over a range of
cell sizes. The generic length adaptability of reflection-induced standingwaves enables pole-to-pole oscillations
in theMin system to adapt to the growing cell. In fact, E. colimaintain robust pole-to-pole oscillations even as
they almost double in length prior to cell division. Continued cell growth tofilamentous bacteria also allows for
transitions between standingwaveswith different numbers of nodes or to travelingwaves [33, 47, 53]. Even
multistability of different wave patterns has recently been found in living E. coli [51].

Due to their generic nature, we expect ourfindings to be independent of systemdetails. Our simulations of a
Min proteinmodel and an extended Brusselator substantiate this claim.While we analyzed one-dimensional
systems in this work, we believe the basic principles also apply to two or three spatial dimensions: in sufficiently
smallmultidimensional systems the boundary reflection of travelingwaves along the long axis will likely
overrule the bulk competition between counter-propagating travelingwaves. Thus, systemborders force them
into reflection-induced standingwaves—with slight system-specificmodifications. Fluid experiments [17, 30]
or oscillating chemical reactions guided by recentmodels as in [48, 49] are further suitable candidates to verify
our results. Pattern formation theory applied to stationary 2d patterns recently provided important insights into
pattern orientationwith respect to spatial inhomogeneities or confinement [28, 54]. A combination of these
approaches with our analysis of nonlinear travelingwaves in confined systems is very promising. Itmay reveal
further generic properties of nonlinear travelingwaves and, e.g., provide additional guidance for experiments in
2dMin systems [50, 52]. This is particularly interesting for designing bottom-up approaches in synthetic biology
to reconstitute cells [52]. In this context, our robust rules about nonlinear (protein)wavesmay present another
puzzle piece to understand hownature controls crucial steps of life.
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AppendixA. Simulationmethods

We solve theCSHmodel aswell as themodels for theMin oscillations and the chemical reactions below
numerically by using a pseudo-spectralmethodwith a semi-implicit time step (implicit Euler for the linear part
of the equation, explicit Euler for the nonlinearities) (66).We calculate all spatial derivatives by transformation
to a suitable function space depending on the boundary conditions.We use Fourier representations of the fields
for periodic boundaries (i.e. in case of theCSHmodel u ux x L0 == =∣ ∣ ), a cosine transform for no-flux
boundaries ( u 0x x L0,¶ ==∣ ) and a sine transform for vanishing fields at the boundary (u 0x L0, ==∣ ), where L is
the system length.

Appendix B.Oscillating chemical reaction

As amodel for a pattern forming chemical reaction, we use an extended Brusselatormodel as proposed by Yang
et al [49]. The Brusselator is awell-known prototype for reaction–diffusion systems. Typically, this system is a
two-component activator-inhibitormodel with a bifurcation to Turing patterns or homogenousHopf
oscillations. Themodel by Yang et al extends the Brusselator by a third component. The dynamics of the three
concentration fields u, v and w are given by:

u D u a b u u v cu dw a1 , 2.1t u x
2 2¶ = ¶ + - + + - +( ) ( )

v D v bu u v b, 2.1t v x
2 2¶ = ¶ + - ( )

w D w cu dw c. 2.1t w x
2¶ = ¶ + - ( )

Wechoose a=0.8, c=2, d=1,Du=0.01,Dv=0 andDw=1.We consider b the control parameter of the
system. The homogeneous solution (uh=a, vh=b/a,wh=ac/d) becomes unstable towards travelingwaves at
the critical value bc=3.076. The intrinsic wavelength of the travelingwave pattern above threshold isλc≈9.5.
We performour simulations close to pattern onset, for b=bc(1+ε)where ε=0.005. The onset of the Turing
instability (i.e. of stationary periodic patterns) tends to infinity for D 0v  . By choosingDv=0, we thereby
eliminate any competition between travelingwaves andTuring structures.
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AppendixC.Min oscillationmodel

As a representativemodel for theMin oscillations shown infigure 4, we consider themodel given by
equations (3.1a)–(3.1d) as proposed by Loose et al [22] (see also equations [1]–[4] in their supplementary
information). Thismodel describes the dynamics of bothMinD andMinE in the cytosol (cD and cE,
respectively), theMinD concentration on themembrane cd and the concentration ofMinD/MinE complexes on
themembrane cde:

c D c c c c a, 3.1t D D x D de de D D dD d
2 w w w¶ = ¶ + - +( ) ( )

c D c c c c c b, 3.1t E E x E de de E d E eE de
2 2w w w¶ = ¶ + - +( ) ( )

c D c c c c c c c, 3.1t d d x d D D dD d E d E eE de
2 2w w w w¶ = ¶ + + - +( ) ( ) ( )

c D c c c c c d. 3.1t de de x de E d E eE de de de
2 2w w w¶ = ¶ + + -( ) ( )

For the simulation shown in figure 4we choose the parameters as suggested in [22]:DD=DE= 60 μm2 s–1,
Dd= 1.2 μm2 s–1,Dde= 0.4 μm2 s–1,ωde= 0.029 s−1, 2.9 10 sD

4 1w = - -· , 4.8 10 m sdD
8 2 1w m= - -· ,

1.9 10 m sE
9 2 1w m= - -· , 2.1 10 m seE

20 6 1w m= - -· .We choose a totalMinD concentration of
c c c c 3.6 10 mD D d de,tot

6 2m= + + = -· , and a totalMinE concentration of
c c c c 5.8 10 mE E e de,tot

6 2m= + + = -· . In large, quasi-unconfined systems this leads to travelingwaveswith a
typical wavelengthλmin≈ 71 μm.
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