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Summary 

 

This work represents a comprehensive study on the applicability of novel ORMOCER® 

(inorganic-organic hybrid polymer) resins for the fabrication of free-standing mixed matrix 

membranes. Such mixed matrix membranes comprise molecular sieve entities integrated in 

ORMOCER® matrix. Mixed matrix membranes have the potential to combine the 

processability of ORMOCER® materials with the superior transport and ion exchange 

properties of molecular sieves. The versatility of ORMOCER® materials is a decisive factor 

in achieving the desired separation properties of a novel mixed matrix membrane material. 

The glycerine-1,3-dimethacrylateurethanetriethoxysilane (GUS)-based ORMOCER® and 

dimethylsiloxane modified GUS-ORMOCER® resins were used for the fabrication of free-

standing mixed matrix membranes. The zeolite Beta was used as a dispersed phase and its 

amount was varied between 10 to 40 wt.%. The effect of different type of zeolites was also 

studied using zeolite 3Å, 4Å, and 5Å. The membranes were prepared by conventional 

solution casting method followed by UV-curing. The ORMOCER® resins and cured 

membranes were analysed using FT-IR, liquid-state 29Si NMR, TG, DSC, SEM, N2 sorption 

and single-gas permeation measurements. The permeation performance of the membranes 

was examined using H2, He, CO2, O2 and N2 as a test gases at room temperature, the 

upstream pressure was varied between 1.3 to 2.5 atm. The effect of the amount of 

dimethylsiloxane moiety, zeolite content, different zeolite type and annealing temperature 

were systematically investigated in relation to the gas permeation performance of the 

membranes. The addition of dimethylsiloxane moiety in GUS-based ORMOCER® 

membrane appears to result in a significant increase in gas permeability, with a 

correspondingly large decrease in selectivity. The mixed matrix membranes show improved 

gas permeation performance in comparison to pure ORMOCER® membranes. This study 

was shown important role of zeolite particles in inorganic-organic hybrid (ORMOCER®) 

system. The potential usefulness of ORMOCER®-zeolite mixed matrix membranes as gas 

separation membranes is discussed. 
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Zusammenfassung 

 
 
Die vorliegende Arbeit beschreibt erstmals die erfolgreiche Verwendung neuartiger ORMOCER®-

Harze (anorganisch-organische Hybridpolymere) für die Herstellung freistehender Membranen, 

dadurch dass in einer Matrix aus ORMOCER®  Partikel von Molekularsieben dispergiert werden. So 

wird es möglich, die gute Verarbeitbarkeit von ORMOCER®en mit den hervorragenden 

Transporteigenschaften von Molekularsieben zu kombinieren.  

Die Vielseitigkeit der ORMOCER®e spielt eine entscheidende Rolle für das Einstellen bestimmter 

Trenneigenschaften in diesen neuartigen Membranmaterialien. Glycerin-dimethacrylat-urethan-

triethoxysilan (GUS) basierte und mit Dimethyl-diethoxysilan modifizierte GUS-ORMOCER®e 

wurden eingesetzt zur Herstellung freistehender Membranen. Als dispergierte Phase diente Zeolith β 

mit variiertem Mengenanteil von 10 bis 40 Masse-%. Die Wirksamkeit der Zeolith-Typen 3Å, 4Å 

und 5Å wurde ebenfalls untersucht. Die Membranen wurden konventionell aus einer Gießlösung 

hergestellt und anschließend UV gehärtet.  

ORMOCER®-Harze und Membranen wurden mittels FT-IR, 29Si NMR-Spektroskopie in Lösung, 

TG, DSC, SEM, N2-Adsorptionsmessungen sowie Einzelgaspermeation (H2, He, CO2, O2, N2) bei 

Raumtemperatur charakterisiert. Der Anströmdruck wurde zwischen 1,3 und 2,5 atm variiert. 

Systematisch untersucht wurden ferner die Einflüsse variierender Dimethylsiloxan- und 

Zeolithgehalte, verschiedener Aufarbeitungstemperaturen sowie der Verwendung unterschiedlicher 

Zeolith-Typen auf die Permeationsleistungen der Membranen. Die Zugabe von Dimethylsiloxan-

Anteilen in GUS-basierten ORMOCER®-Membranen führt zu  einem signifikanten Anstieg der 

Gaspermeation, gekoppelt mit einer entsprechend sinkenden Selektivität.  

Membranen mit Zeolithen zeigen im Vergleich zu reinen ORMOCER®-Membranen eine verbesserte 

Gas permeations. Die vorliegende Arbeit dokumentiert damit die Bedeutung von Zeolith-Partikeln 

in hybrid-polymeren ORMOCER®-Systemen. Eine erfolgversprechende Entwicklung zu einer 

Gastrennmembran auf der Basis von Zeolithen in ORMOCER®-Matrix wird anhand der 

experimentellen Ergebnisse diskutiert.  
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Chapter 1. General Background  

 

1.1  Introduction to membranes and membrane processes  

 
Membranes are permselective barriers that allow the preferential transport of certain 

penetrants, thereby enabling the separation of mixtures of such components.Membranes 

and membrane-based separation processes, over the last four decades, have played an 

important role in the separation industry. They are often more energy efficient and 

compact than conventional separation processes and hence they find a wide range of 

application in various industries such as chemical, food, petrochemical, pharmaceutical 

and biotechnology to separate or concentrate liquid solutions, cellular suspensions or 

gaseous mixtures [1]. In principle, membrane separation methods include 

microfiltration, ultrafiltration, nanofiltration, reverse osmosis, electrolysis, dialysis, 

electrodialysis, gas separation, vapor permeation, pervaporation and membrane 

distillation [2]. In recent times, the use of membranes in gas separation is gaining 

popularity and is considered to be the most prominent emerging technology in gas 

separation. This is because of its advantages in separation, low capital cost, low energy 

consumption, ease of operation, cost effectiveness even at low gas volumes and good 

weight and space efficiency [3-5]. 

 

The performance and efficiency of the membrane can be characterized by two key 

process parameters: the permeability and permselectivity. The permeability or the 

permeability coefficient is defined as the thickness and pressure-normalized flux of the 

gas molecules through the membrane [6]. The permeability of the membranes is 

described by the Equation 1.1: 

 

 

 

where PA is the permeability of the gas A, NA is the steady state flux of the penetrating 

gas A at standard temperature and pressure [cm3(STP)/s cm2], ℓ is the thickness of the 

             NA × ℓ  
PA =                                                                                                                        (1.1) 
              ∆pA  
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membrane (cm) and ∆pA is the pressure difference across the membranes (cm Hg). 

Permeability of dense film materials is commonly expressed in Barrers, where  

 
                                    cm3(STP) × cm 
1 Barrer = 1 × 10-10                                                                                                      (1.2) 
                                    s × cm2 × cm Hg 
 

The permselectivity (which is also known as separation factor or ideal selectivity) is the 

ability of the membrane to reject or to prevent the passage of one or more species in the 

feed suspension.  The permselectivity is governed by the intrinsic nature of  the 

membrane material and is defined as the ratio of the permeability of gases. For example, 

a gas mixture containing A and B components, the permselectivity (αA/B) is given by: 

 
                PA 
αA/B =                                                                                                                           (1.3) 
                PB 
 

where PA is the permeability of the more permeable gas component A and PB is the 

permeability of the less permeable gas component B, across the membrane. 

 

Criteria for selecting membranes for a given application are complex; nonetheless, 

durability and the mechanical integrity at operating conditions, flux and selectivity are 

the most important requirements that must be balanced against the cost in all cases [7-  

8]. The relative importance of each of these requirements varies with the application. In 

principle, however, it can be stated that the higher the selectivity, the more efficient the 

process will be and the lower the partial pressure required to achieve separation which,  

in turn, lowers the operating cost of the membrane system. The higher the flux, the 

smaller the required membrane area will be which again lowers the cost of the  

membrane system. In the absence of defects, the selectivity is a function of the material  

at operating conditions. The flux is a function of material properties as well as the 

membrane thickness, and the smaller the thickness, the higher the flux will be.  
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1.2  Membrane types  
 
Synthetic membranes can be classified according to various properties such as the 

material base (e. g. polymer, inorganic and inorganic-organic) and according to their 

structure (porous and non-porous) [9]. The porous membranes enable transport through 

their pores, whereas non-porous membranes allow transport through the bulk of the 

material. The membrane transport theory will be discussed in detail in chapter 2.  

1.2.1 Polymeric membranes 
 

Polymers are the most widely used membrane materials. They are attractive because 

they offer low materials and processing cost, and they can be processed into hollow 

fibers with high surface areas. Moreover, they possess adequate mechanical andthermal 

stability for the membrane separation process [10].Generally, polymeric membranes are 

non-porous, and gas permeation through them is described by the solution-diffusion 

mechanism [11]. Despite their various advantages, standard polymeric membranesshow 

low productivity and selectivity resulting in economic viability only in small to medium 

scale processes or in specialized applications. Ideally, membranes should exhibit high 

selectivity and high permeability. For most membranes, however, the selectivity 

increases with decreasing permeability and vice versa. In 1991, Robeson analyzed the 

separation performance of a large number of polymer membranes known from the 

literature data and discussed their performance in terms of so-called “upper-bound” 

curves or trade-off lines [12]. These curves show the traditional trade-off line between 

permeability and selectivity for polymeric membranes. This has motivated materials 

scientists to develop new concepts to overcome the trade-off line. One concept is the 

integration of highly selective inorganic particles such as zeolites, or carbon molecular 

sieves into a continuous polymer matrix [11] 
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1.2.2  Inorganic membranes 
 

Inorganic membranes refer to membranes made of materials such as ceramics (Al2O3, 

ZrO2, TiO2, and SiO2), carbon, metals and zeolites [13-16]. Among others, molecular 

sieve (zeolite) membranes show promising properties due to their well defined pore 

structures that preferentially allow the smaller molecules to penetrate through the 

membrane faster, while mainly restricting the larger gas molecules from penetrating  

[16]. They possess excellent chemical, mechanical and thermal stability. They can 

separate molecules based on size, shape and polarity. The separation performance of 

these membranes can surpass that of polymeric membranes, including higher separation 

rates. However, such membranes are quite expensive due to their multilayered 

composition and not easy to handle and process. Because of these drawbacks, their 

application is restricted to only a small scale. In order to overcome this obstacle the use 

of hybrid materials has been proposed as an alternative solution [17-18]  

 

1.2.3  Mixed matrix membranes (MMMs) 
 
Mixed matrix membranes have been developed as a material alternative to overcome the 

conventional limitations of polymer and inorganic materials. They are composed of a 

dispersed inorganic phase in a continuous polymer matrix. The dispersed inorganic  

phase can be zeolite, carbon molecular sieves or other nanosized particles. The most 

commonly used dispersed inorganic phases are zeolites and carbon molecular sieves. 

They have interesting separation properties for desired molecules (i.e. by molecular 

sieving mechanism). Based on the precise molecular sieving ability of molecular sieves 

and flexibility and processibility of polymers, the performance of such mixed matrix 

membranes can be thought to be above the limiting tradeoff curve as shown in Fig 1.1. 

W. J. Koros and T. S. Chung and their coworkers have made a major contribution to the 

development and understanding of these materials [19-21].  Although these mixed  

matrix materials have shown some promising results, there are a few challenges   

involved in their formation. The most common challenge is the formation of defect free 

mixed matrix membrane. Usually, defects are generated at the interface due to the week 
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interaction between polymer and molecular sieve particles. These defects could lead to 

the formation of interfacial voids through which non-selective gas transport can take 

place [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This phenomenon is called “sieve-in-a-cage” morphology, and is shown in Fig.1.2.This 

morphology is undesirable since the void is much more permeable than the zeolite and 

the penetrants will bypass the zeolite. The formation of interfacial voids leads to higher 

permeability and lower selectivity. This and other processing challenges have hindered 

the commercial production of mixed matrix membranes. Current research focuses on 

overcoming these obstacles by developing new materials which will eliminate the 

causes. The surface modification of the molecular sieving phase and changes in the 

membrane casting conditions have been suggested to overcome the formation of 

interfacial voids in large scale mixed matrix membranes. However, these materials have 

not yet yielded the desired simultaneous increase in both permeability and selectivity, 

with the exception of a few reported cases. Therefore, this project is focused on the 

development of a new material for the fabrication of mixed matrix membranes. 

 

Sieving 
Material 

Mixed Matrix  
Membranes 

Polymers 

Permeability 

Se
le

ct
iv

ity
  

Figure 1.1: Relative positions of sieving materials and mixed matrix membrane with 

respect to permeability and selectivity trade-off curve for polymer. 
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1.3  ORMOCER
®
s (Inorganic-organic hybrid polymers)  

ORMOCER®s are inorganic-organic hybrid polymers created on basis of chemical 

nanotechnology, whose property 

profile can be varied almost at liberty. 

The synthesis of this material is based 

on a modified sol-gel process, i.e. they 

are manufactured from a molecular 

dispersion. First, inorganic structures 

are developed via controlled hydrolysis 

and condensation of organically 

modified Si alkoxides. Further, in a 

subsequent step, the polymerizable 

groups attached to the inorganic parts 

are interconnected via thermal or UV-

cross linking. Moreover, theorganically 

modified Si alkoxides which are not 

susceptible for organic polymerization 

can be used for the organic 

functionalization of inorganic network.  

They contain structural elements of 

Molecular sieve  

Interface void  

Polymer 

Figure 1.2: Formation of a sieve-in-a-cage morphology in mixed matrix membranes 

Figure 1.3 Basic structural elements and 

possible properties of ORMOCER
®

s 
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glass and ceramics, organic polymers and silicons. The basic structural elements and 

the possible properties of ORMOCER®s are shown in Fig. 1.3. They are highly cross-

linked, transparent materials that are derived from more than one species of monomer, 

each having a different role [glass-like (transparency, chemical, mechanical and 

thermal) and polymer-like (toughness, functionalization and low processing 

temperature)]. These characteristic features enable their use as functional coatings 

(scratch/abrasion resistant, antireflective, easy-to-clean, corrosion protection and 

barrier), dental composites and optical/photonic/micro-electronic (phot-opatternable 

dielectric and optical wave guide) devices. Due to the incorporation of special types of 

organic functional groups, the target properties can be accomplished for the intended 

application. The versatile nature of ORMOCER® materials can be further explored for 

their use as membrane matrix material.  

1.4  Research Objectives 
 

The overall objective of this thesis was to develop a new kind of mixed matrix 

membrane by combining promising ORMOCER® systems (inorganic-organic hybrid 

polymers) with molecular sieving materials and evaluate their gas permeation 

performance. The concept was to realize gas permeable hybrid membranes by filling a 

hybrid polymer matrix with porous particles. Throughout the thesis much attention was 

given to the preparation and in-depth characterization of mixed matrix membrane 

materials highlighted to understand the role of zeolite particles and to explore the 

molecular sieving properties in the ORMOCER® matrix. In order to work towardsthese 

goals the following objectives were developed: 

 

Objective 1: To fabricate free-standing mixed matrix membranes by combining the 

glycerine-1,3-dimethacrylateurethanetriethoxysilane (GUS)-based ORMOCER® 

(inorganic-organic hybrid polymer) and zeolite Beta (BEA) via solution casting   

followed by UV-curing. The zeolite Beta was chosen for its large pore size (0.55 - 0.76 

nm) which was expected to positively influence the overall flux of the GUS-based 

ORMOCER® membranes. 

The basic aim was to improve the flux of pure GUS-based ORMOCER® membranes. 

The mixed matrix membrane concept is investigated, zeolite Beta is chosen as a 

molecular sieve because it possesses a large pore diameter which should positively  
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influence the overall flux of the GUS-based ORMOCER® membranes.    As observed  

 from first measurements, these mixed matrix membranes have an enhanced gas 

permeation performance only for small gas molecules such as He, H2. The insight 

provided by these results was then used to develop a new mixed matrix membrane with   

a modified GUS-based OMROCER
®

 matrix, thereby defining the second objective of 

research.   

 

Objective 2: To enhance the performance of mixed matrix membranes, the work defined       

in objective 1 was further extended to using modified GUS-based ORMOCER
®

 systems 

to tailor the mixed matrix membranes. 

Dimethyldiethoxysilane was used as a siloxane network modifier in ORMOCER
®

s.The 

zeolite Beta and LTA (zeolite 3Å, zeolite 4Å and zeolite 5Å) type zeolites are chosen, 

since these zeolites differ in pore size. The effects of zeolite loading and pore size on 

the gas separation performance are investigated. The single gas permeabilities for CO2, 

N2 and O2 are evaluated at various pressures. 

 

In addition, the effects of processing parameters on the material properties of 

glycerinedimethacrylateurethanetriethoxysilane (GUS)-based ORMOCER
®

 systems are 

systematically evaluated. 

1.5  Overview of the thesis  
 

The thesis is organized in the following manner. Chapter 1 presents a general 

introduction on membranes and membrane processes and membrane types. The scope 

and objective of the present work has also been outlined at the end of this chapter.  

Chapter 2 provides the fundamentals of the transport of gases in polymers   and 

molecular sieves along with some models describing the same. Chapter 3 includes the 

synthesis and characterization of glycerine-1,3-dimethacrylateurethanetriethoxysilane 

(GUS)-based ORMOCER® (Inorganic-organic hybrid polymer) resin and its  

applicability for the fabrication of free-standing ORMOCER®-zeolite Beta (BEA)    

mixed matrix membranes for gas separation. The resin sample was characterized by FT-

IR, 29Si NMR, and the mixed membranes were characterized by SEM, TG and DTG, N2 
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adsorption and desorption measurements. The gas permeation performance of these 

membranes was investigated in detail. Chapter 4 describes the tailoring of GUS-based 

ORMOCER
®

 systems using dimethyldiethoxysilane (DMDES) as silicone component 

and the preparation and characterization of their corresponding mixed matrix  

membranes. The samples were characterized by FT-IR, 29Si-NMR, SEM, TG and single 

gas permeation measurements. The detail study on the transport properties and their 

correlation towards the membrane structure is the main topic of this chapter. Chapter 5 

describes the influence of technological processing parameters on the material   

properties of glycerinedimethacrylateurethanetriethoxysilane (GUS)-based  

ORMOCER
®

 systems. The samples are characterized by 29Si NMR and FT-IR 

spectroscopy, the optical properties are determined using a prism coupling method. The 

influence of the photoinitiator concentration on the degree of photopolymerization of 

novel GUS-based ORMOCER
®

 system is systematically discussed in detail. 

 

Chapters 3 to 5 are based on the following publications: 

 

Chapter 3: 

S. M. Kumbar, T. Selvam, C. Gellermann, W. Storch, T. Ballweg, J. Breu, G. Sextl, 

ORMOCER®s (organic-inorganic hybrid copolymers)-zeolite Beta (BEA) 

nanocomposite membranes for gas separation applications, J. Membr. Sci. 347 (2010) 

132. 

 

Chapter 4: 

S. M. Kumbar, T. Selvam, C. Gellermann, W. Storch, T. Ballweg, J. Breu, G. Sextl, 

Fabrication of ORMOCER®-zeolite Beta mixed matrix membranes using 

dimethyldiethoxysilane (DMDES) as a siloxane modifier of networks, J. Membr. Sci. 

(submitted) 

 

Chapter 5: 

S. M. Kumbar, C. Gellermann, T. Ballweg, H. Wolter. G. Sextl, The influence of 

technological processing parameters on the material properties of glycerine-1,3-

dimethacrylateurethanetriethoxysilane (GUS)-based ORMOCER® systems.  
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Chapter 2. Membrane Transport Theory 
 

2.1  General gas transport theory 

 
The ability of the penetrant to move in a polymeric membrane is determined by its 

transport properties, namely permeability and selectivity. As described in chapter 1, gas 

transport for a penetrant A in membrane materials is characterized by the permeability 

(the thickness and pressure normalized flux). If the transport mechanism is by solution-

diffusion then the permeability coefficient, PA, of penetrant A can be quantified as the 

product of the average diffusion coefficient, DA, (cm2), and the solubility coefficient, 

SA, [cm3(STP)/cm3(polymer) cmHg] [1]  

 

PA = DA × SA                                                                                                             (2.1) 

 

The permeability (PA) of the penetrant A can be increased by either increasing the 

sorption coefficient (SA) or diffusion coefficient (DA) through the membrane. 

 

The ideal selectivity reflects the efficiency of a membrane to separate one component 

from another. For a gas separation, where the condition of negligible downstream 

pressure exists for an A, B gas pair, the ideal selectivity (αA/B) using equation 2.1 can be 

written as the product of diffusivity selectivity and solubility selectivity of the gas pair    

is given as:  

 

               PA               DA × SA 
αA/B =                 =                                                                                                     (2.2) 
               PB                DB × SB 

 

In order to increase the permselectivity of the membrane, it is required to adjust the 

diffusivity and the solubility of the penetrants. The solubility selectivity is dependent on 

the relative condensability of the gas penetrant and penetrant-membrane medium 
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interaction, whereas diffusivity selectivity is dependent on the relative difference on the 

diffusion coefficients of penetrants through the membrane materials [2].  

 

2.2  Gas transport in polymeric and molecular sieve 

membranes 
 

Gas transport through polymers and molecular sieves is commonly described by the 

solution-diffusion principle. However, diffusion in each material takes place via 

different mechanisms. Each mechanism is discussed below.  

 

2.2.1  Diffusion in polymers and molecular sieves  

 

The diffusion coefficient is defined as a quantity that measures the mobility of the 

penetrants in the membrane. For a polymer, the penetrants initially are sorbed into the 

polymer matrix and diffuse across the membranes.  The penetrant moves through the 

thickness of the membrane by making jumps within the polymer. In order to do this, the 

gap between the polymer chains must be greater than the kinetic diameter of the  

penetrant molecules. Thermally induced motion of the polymer chains is responsible for 

the generation and destruction of the transient “gaps” within the polymer matrix through 

which diffusive jumps of the penetrant can occur followed by subsequent collapse of the 

sorbed cage that was previously occupied by the penetrant [2-3]. As shown in Fig. 2.1, 

the diffusive jumps of the penetrants in polymer can occur only when the gaps are  

greater than penetrant size, whereas diffusion of penetrants in molecular sieves occurs 

through the fixed pores of determined size [2]. Therefore, in polymers, the rate of 

diffusion depends on the concentration of the gaps that are sufficiently large to accept  

the diffusing molecules [4]. Separation of gas through the molecular sieves mainly 

depends on the molecular size of the penetrants as described in the preceding section. 

These materials are believed to possess large cavities with rigid narrow    

interconnections. Penetrant molecules sorb in the cavities at equilibrium and diffuse  

from one sorption cavity to another by activated jumps through the narrow cavity 

(Fig.2.1). These narrow cavities are interconnected to each other; hence a large 

permeability can also be realized from the molecular sieving process. The primary  
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barrier to diffusion is the repulsive forces between the penetrant and the constricted 

pores [5]. These materials can show infinity selectivity for a certain gas pairs if the size 

difference is such that one of the penetrant can enter the narrow cavity and other cannot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is believed that a major contribution to selectivity is made by entropic factors in 

molecular sieves, which is known as entropic selectivity. This results from the 

molecular sieving materials’ ability to limit the degree of rotational freedom for one 

penetrant as compared to another.  

 

Diffusion in these materials is a thermally activated process, thus, the temperature 

dependence of the diffusion coefficient (DA) can be represented as: 

 

                                   Ed       
DA  =  D0    exp   −                                                                                                    (2.3) 
                                  RT           
 

where D0 is the pre-exponential factor, Ed is the activation energy for the diffusion, R is 

the universal gas constant and T is the absolute temperature. Since Ed is positive, the 

Figure 2.1: Transport of penetrant in polymer and molecular sieve materials [4]. 

Sorbed penetrant  Creation of a gap in 
polymeric material 
and jump of the 
penetrant  

Collapse of the gap  

Molecular sieving material Cavities 

Narrow 
constrictions 
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diffusion coefficient increases with temperature. In rigid molecular sieves, the 

diffusivity largely depends on both the penetrant size and pore size [5]. In the polymeric 

materials, the diffusivity is largely dependent on the size and shape of the penetrant and 

also on the thermal motion of the polymer chains [3].  

 

The thermodynamic sorption coefficient (SA) decreases with temperature according to 

the Van’t Hoff equation: 

 

                        − Hs 
SA = S0 exp                                                                                                                  (2.4) 
                          RT 
 
Where SA is the sorption coefficient of the component A, S0 is the pre-exponential 

factor, Hs is the apparent heat of sorption of the penetrant, R is the universal gas 

constant and T is the absolute temperature. Hs is negative for most materials; thus, the 

sorption decreases with increasing temperature. For gas mixtures, sorption selectivity 

depends on the condensability of the two penetrants.  

 

The temperature has a stronger influence on the diffusion coefficient than on the 

sorption coefficient.  The increase in diffusion coefficient with temperature is more than 

the decrease in the sorption coefficient. Thus, the overall permeability increases with 

increasing temperature. The equation 2.1 can be written as: 

 

 
                         − Ep       
PA = P0 exp                                                                                                                  (2.5) 
                          RT                
 

where  

P0 = D0 × S0 and Ep = Ed + Hs  
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2.2.2  Sorption in polymers and molecular sieves 

 

The sorption coefficient is defined as the amount of penetrant sorbed at a given external 

partial pressure. The sorption coefficient of the penetrant in a polymer is described in 

Equation 2.6. 

 

        C 
S =                                                                                                                                (2.6)  
        p 
 

Where S is the sorption coefficient, C is the concentration of the dissolved penetrant in 

the polymer and p is the pressure of the penetrant in the continuous penetrant phase.  

The sorption of the penetrant through the rubbery polymer follows the Henry’s law at 

low concentration, while for higher concentrations a more complex explanation is 

needed. Sorption that follows the Henry’s law is characterized by Equation 2.7; 

 

CDA = kDA × pA                                                                                                            (2.7) 

 

Where CDA is the concentration of the dissolved penetrant A in the polymer, kDA and pA 

represent the Henry’s sorption coefficient and partial pressure of the penetrant A 

respectively. 

For glassy polymers, this quantity is modelled by the so-called dual-mode sorption 

model. It can be written analytically for a penetrant indicated by the subscript A, in 

terms of the sum of a Henry’s laws of expression for CDA and Langmuir expression for 

C`HA; 

 

                                                C`HA bA pA  
CA = CDA + C`HA = kDA pA +                                                                                        (2.8) 
                                                   1 + bAp 
 

Where kDA (cm3 (STP)/ cm3 (polymer) atm) is the Henry’s law of coefficient sorption of 

the penetrant into the densified equilibrium matrix of the glassy polymer, C`HA is the 

Langmuir sorption capacity, which characterizes the sorption into the non-equilibrium  
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excess volume associated with the glassy state, and b (1/atm) is the Langmuir affinity 

parameter and pA is the partial pressure of the penetrant A.  

 

Sorption in molecular sieving materials is similar to that of rigid pores in glassy 

polymers. During the sorption process, the penetrant enters through the narrow cavities 

and is sorbed in the large cavities. The sorption in molecular sieves can be modelled by 

the dual-mode sorption with only a Langmuir sorption term, and with Henry’s law of 

coefficient equal to zero for these systems since they do not possess a “dissolved” mode 

[6]. Most zeolites will behave according to strict Langmuir sorption term, although 

some instances can induce multi-layer sorption, where different sorption sites have 

different energies of adsorption. In this situation, more complex characterizations are 

needed such as the BET characterization method [7]. 

 

2.3  Model for performance prediction of mixed 

matrix membranes  

 

Several theoretical models have been used to predict the permeation performance of 

mixed matrix membranes as a function of the permeabilities of the continuous and 

disperse phase [8-9].  The most useful and widely employed model is the Maxwell 

model which was derived from the J. C. Maxwell in 1867 to analyze the steady-state 

dielectric properties in a conducting dilute suspension of identical spheres [10]. The 

equations used by Maxwell governing the electrical potential of spheres in solution and 

the principles governing flux through a mixed matrix membrane are analogous, so 

Maxwell’s work can be applied to this field [11-12]. The two phase equation is shown 

below, which predicts the permeability of the polymer matrix embedded spherical 

particles: 

 

 
                         PD + 2PM − 2ΦD (PM −PD) 
PMMM  = PM                                                                                                             (2.9) 
                         PD + 2PM + ΦD (PM − PD) 
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In this equation, P is the permeability, Φ is the volume fraction of each component, the 

subscript MMM refers to the mixed matrix membranes, M refers to continuous matrix 

and the D refers to dispersed sieving phase.  

Several other models have been studied for permeability prediction in mixed matrix 

membranes and give reasonable results [13-15]. These models are more complicated in 

nature and do not present significant improvement over the Maxwell Model, so the 

basic Maxwell Model is used as the theoretical basis for predicting crosslinked mixed 

matrix permeation properties. 
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Execute summary 
 

The work presented in this thesis focuses on the preparation and characterization of a 

new kind of mixed matrix membrane (MMM) combining inorganic-organic hybrid 

polymer ORMOCER® resins with porous particles. Briefly, after an introductory part, 

this thesis includes three publications/manuscripts, which are presented in individual 

chapters. 

 

In the first manuscript (chapter 3), the applicability of glycerine-1,3-

dimethacrylateurethanetriethoxysilane(GUS)-based ORMOCER® resin was explored    

for the fabrication of free-standing MMMs. The basic aim was to improve the 

permeation performance of GUS-based ORMOCER® membranes by incorporating 

zeolite Beta particles. Since zeolite Beta has a large pore size (0.55 - 0.76 nm) which 

was expected to positively influence the overall flux of the GUS-based ORMOCER® 

membranes.  

 

In order to prove the above concept, a series of GUS-based ORMOCER®-zeolite Beta 

mixed matrix membranes (MMMs) with different zeolite loadings (20 to 40 wt.-%) were 

prepared by solution casting followed by UV curing and characterized by SEM, TG-

DSC, N2 sorption and single gas permeation measurements. MMMs with a zoelite 

loading higher than 40 wt.-% were prepared but they are of a very fragile nature and not 

easy to handle for gas permeation measurements. Therefore, these membranes could not 

be used for gas permeation measurements. 

 

SEM images reveal that GUS-based ORMOCER®-zeolite Beta MMMs are free of 

visual defects or interfacial voids. The zeolite Beta particles are homogeneously 

distributed within the GUS-based ORMOCER® matrix. This is suggested to be due to a 

strong interaction between the zeolite Beta particles and the GUS-based ORMOCER® 

matrix through hydrogen bonding. The effect of zeolite Beta particles on the thermal 

degradation of GUS-based ORMOCER® was studied under N2 atmosphere resulting in 

a significant increase in the thermal stability of MMMs.  

 

 



Executive summary  
________________________________________________________________________________ 

____________________________________________________________________________ 

- 21 -

The gas (H2, He and N2) permeabilites of MMMs were systematically investigated as a 

function of the zeolites Beta content. It was found that the gas (H2, He and N2) 

permeabilites of MMMs increase with increasing zeolite Beta loading within the studied 

range of 20 - 40wt.-%. Especially, the MMMs with 40 wt.-% of zeolites Beta exhibited   

a nearly 16 times increase in H2 and He permeabilities in comparison to the pure 

ORMOCER® membrane. However, all the membranes showed negligible N2 

permeability, proving the highly condensed and/or cross-linked nature of the GUS-  

based ORMOCER® matrix. These results indicate that GUS-based ORMOCER®-zeolite 

Beta MMMs could be useful in the separation of H2 and He from H2/He/N2 gas mixtues.  

 

In the second manuscript (chapter 4), the work defined in the previous section was 

further extended to the use of modified GUS-ORMOCER® systems in order to enhance 

the performance of the MMMs, especially for large gas molecules (kinetic diameter > 

0.289 nm), such as e.g. N2, O2, and CO2. 

 

The dimethyldiethoxysilane (DMDES) was used to incorporate silicone moieties into the 

inorganic network of the GUS-based ORMOCER® membranes. As a result, the   

DMDES modified GUS-based ORMOCER® (denoted as S-ORMOCER®) membranes 

showed a significant increase in gas permeability, with a correspondingly large decrease 

in selectivity.  

 

In order to prove the concept, MMMs were prepared by combining the S-ORMOCER®  

with zeolite Beta (10 - 40 wt.-%) under similar conditions as described in the previous 

section. The fabricated MMMs were characterized by SEM and single gas permeation 

measurements.  

 

Cross-sectional SEM images of the S-ORMOCER®-zeolite Beta (10 - 40 wt.%) MMMs 

showed that the zeolite Beta crystallites are homogeneously distributed throughout the       

S-ORMOCER® matrix, and the MMMs are completely free from visible voids. 

 

The O2, N2 and CO2 permeabilities of S-ORMOCER®-zeolite Beta MMMs decreased as the 

loading of zeolite Beta increased (from 10 - 30 wt-%). Moreover, the O2/N2 and CO2/N2 

permselectivities of S-ORMOCER®-zeolite Beta (10 - 30 wt.-%) MMMs were             

found to be relatively higher than that of the S-ORMOCER® membrane. Notably,  
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S-ORMOCER®-zeolite Beta (30 wt.-%) exhibits two-times higher permselectivities     

(O2/N2 = 4.8 and CO2/N2 = 29.8) than the S-ORMOCER® membrane (O2/N2 = 2.5 and 

CO2/N2 = 15.9). Such an enhancement of permselectivity could be either due to the   

intrinsic molecular sieving effect of zeolite Beta or to the polymer chain rigidification 

followed by pore blockage within the S-ORMOCER®-zeolite Beta MMMs. The O2, N2   

and CO2 permeabilities of the S-ORMOCER®-zeolite Beta (40 wt.-%) MMM are 

significantly higher than for the S-ORMOCER® membrane, albeit with lower O2/N2      

(3.6) and CO2/N2 (17.7) permselectivities. This is most probably due to the fact that the 

percolation threshold is reached for the S-ORMOCER®-zeolite Beta (40 wt.%) MMM. 

 

In addition, the effect of different zeolite pore sizes on the gas permeation performance       

of the S-ORMOCER®-zeolite A (3 Å, 4 Å and 5 Å; 30 wt.-%) MMMs was studied. The 

gas (O2, N2 and CO2) permeabilities of S-ORMOCER®-zeolite A (3 Å, 4 Å and 5 Å; 30 

wt.-%) increased as the pore size of zeolite A increased (from 3 Å to 5 Å).  However, S-

ORMOCER®-zeolite A (3 Å, 4 Å and 5 Å; 30 wt.-%) MMMs exhibit an overall    

decrease in O2, N2 and CO2 permeabilities and O2/N2 and CO2/N2 permselectivities in 

comparison with S-ORMOCER®-zeolite Beta (30 wt.-%) MMMs. 

 

In the last part of the thesis (chapter 5), the effect of technological processing parameters 

on the cross linking and material properties of GUS-based ORMOCER® systems         

was investigated. The samples were characterized by 29Si NMR and FT-IR    

spectroscopy, the optical properties were determined using a prism coupling method.  

The influence of the photoinitiator concentration on the degree of conversion of C=C 

bonds and its correlation towards the optical properties of the novel GUS-based 

ORMOCER® system was investigated in detail. It was found that the maximum 

conversion of C=C bonds is obtained at a photoinitiator concentration of 2.0 wt.-%, 

whereas further increase in the photoinitiator concentration does not result in any 

significant change in the C=C bond conversion any more. The observed refractive   

indices of GUS-based ORMOCER® materials are in agreement with the degree of 

conversion of C=C bonds. These results provide a better understanding of the influences 

of technological processing parameters on the GUS-based ORMOCER® material 

properties. 
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All in all, a new kind of mixed matrix membrane (MMM) was successfully prepared    

and characterized. These MMMs have shown improved gas permeation performance in 

comparison to pure ORMOCER® membranes. This study has also demonstrated the 

essential effect of zeolite particles on the inorganic-organic hybrid (ORMOCER®) 

system. The results represent a first step towards the applicability in gas separation 

technology. However, further research will have to be done to increase the gas flux.  
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Individual contribution to publications/manuscripts 

 

The publications/manuscripts that form part of this thesis, were completed in cooperation 

with co-workers at the Fraunhofer ISC and at the University of Bayreuth.                       

My contribution to each publication/manuscript is specified below.  

 

Manuscript 1 – Chapter 3: 

 

This work has been published under the title “ORMOCER
®
s (organic-inorganic hybrid 

copolymers)-zeolite Beta (BEA) nanocomposite membranes for gas separation 

applications”. Listed authors are S. M. Kumbar, T. Selvam, C. Gellermann,                   

W. Storch, T. Ballweg, J. Breu and G. Sextl. It was published  in J. Membr. Sci. 347 

(2010) 132. 

 

� I have performed all the composite synthesis experiments and characterization. 

� ORMOCER® (inorganic-organic hybrid polymer) was obtained from Fraunhofer      

ISC. 

� T. Selvam, C. Gellermann, T Ballweg, W. Storch, J. Breu, and G. Sextl have 

contributed to the discussion. 

 

Manuscript 2 – Chapter 4: 

This work was submitted under title “Fabrication of ORMOCER
®

-zeolite Beta mixed 

matrix membranes using dimethyldiethoxysilane (DMDES) as ORMOCER
®

 

siloxane network modifier” to Journal of Membrane Science. Listed authors are S. M. 

Kumbar, T. Selvam, C. Gellermann, W. Storch, T. Ballweg, J. Breu, and G. Sextl. 

 

� I have performed all the composite synthesis experiments and characterization. 

� ORMOCER® (inorganic-organic hybrid polymer) was obtained from Fraunhofer 

ISC. 
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� T. Selvam, C. Gellermann, T Ballweg, W. Storch, J. Breu, and G. Sextl have 

contributed to the discussion. 

 

 

Manuscript 3 – Chapter 5: 

 

This work titled “The influence of technological processing parameters on the 

material properties of glycerine-1,3-dimethacrylateurethanetriethoxysilane (GUS)-

based ORMOCER
®

 systems” is to be submitted to J. Sol-Gel Sci. &Techn by S. M. 

Kumbar, T. Selvam, C. Gellermann, T. Ballweg, H. Wolter and G. Sextl. 

 

�  I have performed all the sample preparations and characterization. 

� ORMOCER® (inorganic-organic hybrid polymer) was obtained from Fraunhofer 

ISC. 

� H Wolter, C. Gellermann, T Ballweg and G. Sextl have contributed to the 

discussion. 
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Chapter 3 

 

ORMOCERs (inorganic-organic hybrid polymer)-zeolite 

Beta (BEA) nanocomposite membranes for gas 

separation applications 

 

3.1  Abstract 

 

The applicability of glycerinedimethacrylaturethanetriethoxysilane (GUS)-based 

ORMOCER (organic-inorganic hybrid copolymers) resin for the fabrication of free-

standing ORMOCER-zeolite Beta (BEA) nanocomposite membrane was studied in 

detail. A series of ORMOCER/zeolite Beta nanocomposite membranes having different 

zeolite loadings (20 to 40 wt.%) were prepared by solution casting method followed by 

UV curing, and characterized by thermal analysis (TG/DSC), scanning electron 

microscopy (SEM) and N2 sorption and single-gas (H2, He and N2) permeation 

measurements. The SEM studies revealed that zeolite Beta crystallites were 

homogeneously distributed within the ORMOCER matrix. There were no visible voids  

or defects between the ORMOCER matrix and the zeolite Beta crystallites, even at a  

very high zeolite loading (40 wt.%), as revealed by the high resolution SEM images.   

The ORMOCER-zeolite Beta nanocomposite membrane with 40 wt.% zeolite loading 

showed a nearly 16-times increase in H2 and He permeabilities in comparison to the     

pure ORMOCER membrane. 

 

 

3.2  Introduction 

The past decade has witnessed an intense research effort on hybrid organic-

inorganic membranes (Mixed Matrix Membranes; MMMs) owing to their wide range of 

potential applications such as gas separation [1-5], pervaporation [6-8], polymer
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electrolyte membrane fuel cells (PEMFC) [9, 10] and direct methanol fuel cells   

(DMFC) [11, 12] applications. In particular, zeolite-based MMMs have become an 

important class of hybrid membranes given that they combine the inherent characteristics 

of both zeolites (molecular sieving capabilities and                      

hydrophobicity/hydrophilicity etc.) and polymers (low capital investment and easy 

processing capabilities). Although, the fabrication of MMMs using various    

combinations of zeolites and polymers is well documented in the literature,    the 

scientific community still faces ongoing challenges such as processibility, flux, selective 

gas separation and durability of the MMMs [13]. The reduction or elimination of voids 

within MMMs could be achieved through (a) chemical modification of the surface of 

zeolite crystals using desired silanes [14, 15] and polymers [16, 17]; or (b) introduction of 

a combatibilizer (2-4-6-triaminopyrimidine) [18, 19]. Recently, layered silicates with 

nanoporous layers such as MCM-22 (P) [20] and AMH-3 [21, 22], which are showing 

excellent intercalation and delamination/exfoliation properties, have also been used as 

precursors for the fabrication of nanocomposite membranes. This approach especially 

leads to MMMs with excellent H2/CO2 separation performance [21, 22] owing to their 

unique combination of mechanical strength (polymer-layered silicate) and molecular 

sieving (zeolite-like) properties. Indeed, zeolite-filled microporous mixed matrix 

(ZeoTIPS) membranes [23], in which zeolite particles are supported in a microporous 

polymer matrix by thermally induced phase separation (TIPS) process, offer significant 

benefits for the separation of gas (O2/N2) mixtures in comparison to dense MMMs.  

The use of hollow fiber MMMs has seen tremendous growth in gas and vapour 

separation processes because of their excellent performances (high permeation area per 

volume ratio). An enhancement in the selectivity for gas separation (He/N2 and O2/N2 etc) 

by hollow fiber membranes incorporated with zeolites such as zeolite Beta [24, 25]         

and SSZ-13 [26] is known. Li et al [24] suggested that high processing temperature       

close to glass transition temperature (Tg) of the polymeric materials allows the fabrication 

of void-free hollow fiber MMMs. During the last two decades, ORMOCERs [27-29], 

which are a class of highly cross-linked, transparent and hybrid inorganic-organic 

copolymers that are derived from more than one species of monomer, each having a 

different role [glass-like (transparency, chemical, mechanical and thermal) and polymer-
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like (toughness, functionalization and low processing temperature)], have been extensively 

studied in the Fraunhofer ISC (Institut für Silicatforschung). The versatility of ORMOCER 

is evident from their widespread use as functional coatings (scratch/abrasion resistant, 

antireflective, easy-to-clean, corrosion protection and barrier), dental composites and 

optical/photonic/microelectronic (photopatternable dielectric and optical wave guide) 

devices.  

 Recently, a new class of proton-conducting polymer electrolyte membranes based on 

ORMOCERs exhibiting high thermal stability (~180 °C) has also been developed [30, 31]. In 

addition, the unique properties of ORMOCERs have been exploited for the fabrication of non-

porous hollow fibers [32] having good mechanical properties (tensile strength: ~ 110 MPa and 

Young’s modulus: ~2 GPa) and desired oxygen permeation characteristics (20 to 130 000 

cm3/m2 d bar) [29, 33]. Furthermore, microporous inorganic hollow fiber membranes are novel 

composites that have been fabricated by pyrolysis of ORMOCER-based hollow fibers [34, 

35]. While the incorporation of zeolites such as KNaA (LTA) and NaX (FAU) into 

ORMOCER matrices is known [36, 37], however, the fabrication of a zeolite incorporated 

free-standing ORMOCER-based nanocomposite membrane for gas separation applications has 

not been attempted so far. We present herein, the synthesis and characterization of 

glycerinedimethacrylaturethanetriethoxysilane (GUS)-based ORMOCER resin and the 

fabrication of free-standing ORMOCER-zeolite Beta (BEA) nanocomposite membranes. The 

aim of the present work is to investigate the effect of zeolite Beta loadings on the structural 

and textural properties of the ORMOCER-zeolite Beta (BEA) nanocomposites by various 

characterization techniques and the applicability of the resulting membranes for gas separation 

applications. 

 

3.3  Experimental 

 

3.3.1  Materials 

 

Glycerine-1,3-dimethacrylate (98%) and 3-isocyanatopropyltriethoxysilane (IPTES, 99%) were 

obtained from Momentive Performance Materials. Dibutyl tin dilaurate (DBTDL, 95%) and ethyl 
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acetate (97%) were purchased from Aldrich. Dodecanediol-1,12-dimethacrylate (97%) and 

irgacure-184 (1-Hydroxy-cyclohexyl-phenyl-ketone) were purchased from Rohm & Haas and 

CIBA Specialty Chemicals, respectively. All chemicals were used as received without further 

purification. High-silica zeolite Beta (SiO2/Al2O3 = 350) was obtained from Zeolyst International. 

The particle sizes of zeolite beta were in the range of 200 nm to 1 µm as revealed by scanning 

electron microscopy (SEM). 

 

 

3.3.2  Synthesis of glycerinedimethacrylaturethanetri-ethoxysilane 

(GUS) based ORMOCER resin
 

 

The GUS-based ORMOCER resin was synthesized according to the previous literature 

[38]. The synthesis scheme of GUS-based ORMOCER resin is shown in Fig. 3.1. In a typical 

synthesis procedure, the addition reaction between glycerol-1,3-dimethacrylate (C11H16O5) 

and 3-isocyanatopropyltriethoxysilane (C10H21NO4Si) was carried out at room temperature in 

the presence of a catalyst (dibutyl tin dilaurate; (C4H9)2Sn(OOC(CH2)10CH3)2, 95%, Aldrich), 

then the resultant silane was subjected to hydrolysis and polycondensation to construct the 

inorganic network. The molar composition of GUS-based ORMOCER resin used in the 

present study was C10H21NO4Si : C11H16O5 : 0.2 C20H34O4 : 0.0016 

(C4H9)2Sn(OOC(CH2)10CH3)2. Note that no attempt has been made to remove the 

homogeneous catalyst (dibutyl tin dilaurate,) from the GUS-based resin since the amount of 

catalyst employed was very negligible. 

 

3.3.3  Fabrication of GUS-based ORMOCER-zeolite Beta 

nanocomposite membranes 

  

A schematic representation of the preparation of ORMOCER-zeolite Beta (BEA) 

nanocomposite membranes is shown in Fig. 3.2. In a typical method, 2 g of ORMOCER resin 

was added into the solvent (0.5 g of ethyl acetate) in a 10 ml glass vial. Then, 0.02 g of 

Irgacure-184 was added into the above mixture and then the resulting mixture was mixed 
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thoroughly until a clear solution appeared. Finally, a known weight of vacuum dried (moisture 

free) zeolite Beta (BEA) was added into the above solution and mixed thoroughly by 

ultrasonication (∼30 min) at room temperature. The free-standing thin films of ORMOCER-

zeolite Beta (BEA) nanocomposite membranes were prepared by solution casting method 

followed by UV-curing for 180 sec. The membranes had a thickness of 100 µm and a 

diameter of 0.65 cm. The ORMOCER-zeolite Beta nanocomposite membranes containing 

different amounts (20, 30 and 40 wt.%) of zeolite Beta were prepared using the optimised 

conditions described above. In addition, pristine zeolite-free ORMOCER membranes were 

also prepared under similar conditions for comparison purposes. Prior to the permeation 

measurements, these membranes were dried at 120 °C for 24 h under vacuum, cooled to room 

temperature and stored under moisture free conditions. 

 

3.3.4  Characterization 

 

FT-IR spectra of the resin and its precursors were recorded using a Nicolet Magna-IR 

760 FT-IR spectrometer in the frequency range of 400 to 4000 cm-1. An ORMOCER resin 

sample, coated on a KBr pellet and cured under UV light, was removed from the UV oven 

sequentially over a period of time, and analyzed immediately by FT-IR. The chemical 

conversion of the methacrylate groups of the ORMOCER resin was determined by monitoring 

the disappearance of C=C bonds. Liquid 29Si-NMR measurements of the pristine ORMOCER 

resin were carried out on a Bruker Avance DPX 400 NMR spectrometer with a 9.4 T magnetic 

field and equipped with a quaternary nuclear probe head. All spectra were obtained with 

CDCl3 as solvent and tetramethylsilane as the internal standard. Simultaneous 

thermogravimetry and differential scanning calorimetry (TG/DSC) measurements were 

performed on a SETARAM thermal analyzer TAG 24 S. The measurements were conducted 

from ambient temperature to 900 °C at a heating rate of 10 °C min-1 under synthetic air 

atmosphere. The BET surface areas of the samples were determined by an automated nitrogen 

adsorption analyzer (Quantachrome Autosorb). The samples were vacuum dried at 110 °C for 

16 h prior to N2 adsorption measurements. Scanning electron microscopy (SEM) images of 

nanocomposite membranes were acquired using a Zeiss-supra model 25 variable pressure field 

emission scanning electron microscope at an acceleration voltage of 10 kV. 
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3.3.5  Permeation measurements 

  

 Single gas permeation measurements of the membranes were carried out at room 

temperature using a home-made constant volume-variable pressure system. Flat O-rings 

(Viton) were used for sealing the membranes in the stainless-steel permeation cell. High purity 

gases (H2, He and N2) were used in the present permeation study. Prior to each measurement, 

the entire system was degassed (pressure: 1 x 10-8 mbar) using a turbomolecular vacuum 

pump. Respective gases were dosed using mass flow controllers and argon was used as a 

sweep gas in the permeate side. The gas pressure in the feed side was varied from 0.5 to 2.0 

bar, respectively, for all the experiments. The pressures at both sides (feed and permeate) 

could be monitored by pressure transducers (MKS Instruments Deutschland GmbH) which 

were linked to a computer. The PC program was set in such a way to collect permeation data 

for 3 minute at each pressure. The permeability and permselectivity of the membranes were 

calculated according to the literature procedures [39].  Each membrane was analyzed 4-times 

and the average permeability results are reported in Barrer. It was also verified that the results 

were reproducible over a long period of time.  

 

 

3.4  Results and discussion 

 

Figure 3.3 shows the FT-IR spectra of glycerine-1,3dimethylacrylate (curve ‘a’)                 3-

isocyanatopropyltriethoxysilane (curve ‘b’), glycerinedimethacrylaturethane- triethoxysilane 

(curve ‘c’) and pure ORMOCER resin (curve ‘d’). The broad peak at 3570 cm-1 is attributed to 

O-H stretching mode; and the peaks at 2950 and 2860 cm-1 are due to the C-H stretching of 

methyl and methylene groups respectively [38, 40]. The sharp peak of C=O carbonyl group at 

1720 cm-1 and C=C of acrylate groups at 1638 cm-1 are also detected [41, 42]. The peak at 

2270 cm-1 is a characteristic peak of N=C=O group of 3-isocyanatopropyltriethoxysilane 

(curve ‘b’). Indeed, the peaks disappeared at 3570 cm-1 and 2270 cm-1 (curve ‘c’), and the new 

peak at 3370 cm-1 is also observed (curve ‘c’), which clearly shows that the reaction of 
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glycerine-1,3-dimethacrylate with 3-isocynatopropyltriethoxysilane is nearly completed. The 

characteristic peak at 3370 cm-1 (curve ‘c’) is assigned to N-H stretching vibrations of 

glycerine-1,3-dimethacrylaturethane-triethoxysilane. In addition, the FT-IR spectrum of the 

pure ORMOCER resin (curve ‘d’) exhibits peaks at 3370 cm-1, 2950 cm-1 and 2860 cm-1, 1720 

cm-1 and 1638 cm-1 which are due to the N-H stretching vibrations, C-H stretching of methyl 

and methylene groups, C=O carbonyl groups and C=C of acrylate groups, respectively. 

Moreover, a closer look at the IR spectrum of the pure ORMOCER resin reveals a peak at 

1020 cm-1, which corresponds to the Si-O-Si vibrations. The appearance of Si-O-Si vibration 

at 1020 cm-1, clearly suggests that the ORMOCER resin is inorganically condensed. 
29Si NMR spectroscopic measurement of ORMOCER resin was also carried out in 

order to study the nature of the silicon species present therein. The 29Si NMR spectrum of 

ORMOCER resin (Fig. 3.4) exhibits only one broad signal at -66 to -70 ppm. The signal at -66 

to -70 ppm is attributed to the T3 [RSi(OSi)3] units [43-45]. There were no signals 

corresponding to T1 [RSi(OSi)(OH)2] and T2 [RSi(OSi)2(OH)] units indicating that the 

glycerinedimethacrylaturethanetriethoxysilane (GUS)-based ORMOCER resin possesses a 

highly condensed inorganic network. The broad signal in the range of -80 ppm to -140 ppm is 

an artefact from the glass tube. 

 

Before carrying out the preparation of free-standing ORMOCER thin films, the change in the 

chemical structure of ORMOCER resin during UV-curing over a period of time was 

monitored by FT-IR absorption spectroscopy. Fig. 3.5 shows the FT-IR spectra of pure 

ORMOCER resin (curve ‘a’) and UV-cured ORMOCER samples over a period of time, 30 sec 

(curve ‘b’), 60 sec (curve ‘c’) and 180 sec (curve ‘d’). The peaks at 1638 cm-1 and 810 cm-1 

are attributed to the n(C=C) stretching vibrations of methacrylate groups and the alkene C-H 

stretching in the acrylate group of the ORMOCER resin, respectively. The intensity of the 

1638 cm-1 peak is gradually decreased with increasing the UV exposure time, as depicted in 

Fig. 3.5 (curve ‘b’ to ‘d’). The sharp decrease in the intensity of methacrylate n(C=C) peaks 

after UV curing over a period of time (30-180 sec) clearly suggests the maximum 

consumption of n(C=C) double bonds during the polymerisation process; while the integrated 

area of the n(C=O) peaks (1720 cm-1) remains constant. Whereas, the alkene C-H stretching 

(810 cm-1) in the acrylate group of ORMOCER resin became almost negligible after UV-
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curing for 180 sec [38, 40-42]. The above mentioned results clearly suggest that the UV-

curing process for a period of 180 sec is sufficient to fabricate highly polymerised free-

standing ORMOCER thin films. 

TG and DSC curves of the pure ORMOCER and the ORMOCER/zeolite Beta 

nanocomposites containing different amounts (20, 30, and 40 wt.%) of zeolite Beta crystallites 

(at a heating rate of 10 °C min-1) are shown in Fig 3.6 and Fig 3.7, respectively. Note that the 

following conclusions on the specific degradation mechanisms of ORMOCER and 

ORMOCER-zeolite Beta nanocomposites were drawn by the combination of results from TG 

(weight loss) and DSC (enthalpy change). As the trends  in the thermal decomposition of the 

pure ORMOCER and its nanocomposites are similar (Fig. 3.6), for simplicity, the discussion 

will be restricted to four different stages of  weight losses at < 300 °C, 300-440 °C, 440-540 

°C and 540-700 °C, respectively. All the samples exhibit a negligible weight loss (~ 7 wt.%) 

in the first stage (< 300 °C in Fig. 3.6 and a weak exothermic peak in Fig. 3.7) which might be 

due to the removal of residual solvent (ethyl acetate), water and C2H5OH molecules resulting 

from the polycondensation process of Si-OH and Si-OC2H5 groups from the ORMOCER 

matrix [46]. Such processes generally lead to the enhancement of Si-O-Si bonding within the 

ORMOCER matrix; and indeed it may lead to free volume (space) to a certain extent within 

the ORMOCER matrix (between organic and inorganic phase) which will be discussed in a 

subsequent paragraph. The second stage (300-440 °C in Fig. 3.6 and a broad exothermic peak 

in Fig. 3.7) exhibits a relatively high weight loss (~ 30-35 wt.%) which is attributed to the 

decomposition of random session of methacrylic groups (oxidative degradation of soft 

segments) of the ORMOCER backbone chains as described in the literature [47-48]. The 

release of CO2 generally occurs during the thermal decomposition of methacrylic groups 

(oxidation of soft segments) of the ORMOCERs. However, the anhydride formation 

dominates the minor decarboxylation reaction. The third stage (440-540 °C in Fig. 3.6  

and sharp exothermic peaks in Fig. 3.7) weight loss (~5-17 wt.%) may be due to the 

fragmentation of anhydride ring structures followed by release of CO2, CO, propene, 

isobutylene etc [49]. The fourth stage (540-700 °C in Fig. 3.6 and a broad exothermic peak in 

Fig. 3.7) weight loss (~11-24 wt.%) can be attributed to the thermo-oxidative degradation of 

urethane groups (hard segments) of the ORMOCER matrix. As can be seen from Fig. 3.6 

(curves ‘a’ to ‘d’) that the amount of inorganic residue increased with increasing the amount 
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of zeolite Beta (20 to 40 wt.%). The amounts of inorganic residue present in the pure 

ORMOCER and its nanocomposites are 15 wt.% (pure ORMOCER), 33 wt.% (20 wt.% 

zeolite Beta), 40 wt.% (30 wt.% zeolite Beta) and 45 wt.% (40 wt.% zeolite Beta), 

respectively. As expected, the ORMOCER-zeolite Beta nanocomposites (curves ‘b’, ‘c’ and 

‘d’ in Fig. 3.6) exhibit higher thermal decomposition temperatures as compared to the pure 

ORMOCER (curve ‘a’ in Fig. 3.6). These results indicate that the introduction of zeolite  Beta 

crystallites into the ORMOCER matrix enhances the thermal stability of the ORMOCER-

zeolite Beta (20-40 wt.%) nanocomposites. A significant shift in the decomposition 

temperatures (especially in the range of 300-440 °C and 440-540 °C; Fig. 3.6 and Fig. 3.7) 

and the exothermic peaks of the nanocomposites to the high temperature regions clearly 

suggest that the zeolite Beta crystallites act as fillers or cross linking agents within the 

ORMOCER matrix. Nevertheless, the decrease in exothermicity at 440-540 °C (Fig. 3.7) may 

be correlated to increasing stiffness and toughness of the zeolite Beta incorporated 

nanocomposites and slow release of adsorbed gas, respectively. However, no clear trend can 

be observed in the decomposition temperature range of 540-700 °C (Fig. 3.6 and Fig. 3.7). 

The peak decomposition temperatures (T1max, T2max, T3max and T4max) of pure 

ORMOCER and ORMOCER-zeolite Beta nanocomposites obtained from DSC curves  

(Fig. 3.7) are summarized in Table 3.1. It can be seen from Table 3.1 that the decomposition 

temperatures of pure ORMOCER exhibited a peak at 169 °C (T1max), 391 °C (T2max), 457 

(T3max) and 597 °C (T4max), respectively. As the zeolite Beta content in the ORMOCER system 

increased from 20 to 30 wt.%, the peak decomposition temperatures increased gradually from 

169 to 172 °C (T1max), 391 to 427 °C (T2max) and 457 to 493 °C (T3max), respectively. These 

results indicate that zeolite Beta crystallites act as inorganic filler within the ORMOCER 

matrix. Most probably, the interaction between the zeolite Beta crystallites with the 

ORMOCER matrix might be higher for 30 wt.% zeolite Beta containing ORMOCER system.  

However, further increase of the zeolite Beta content (40 wt.%) in the ORMOCER system led, 

in turn, to a slight decrease in the peak decomposition temperatures [T1max (170 °C), T2max 

(413 °C) and T4max (582 °C)]. This could be due to the less amount of ORMOCER matrix 

present in this system which contributes to the decrease in the peak decomposition 

temperatures. Further investigations are necessary (e.g., thermogravimetry coupled with mass 
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spectrometry; TG/MS) to understand the nature of decomposition of ORMOCER-zeolite Beta 

nanocomposites. 

The N2 adsorption-desorption isotherms of pure ORMOCER and the ORMOCER-

zeolite Beta nanocomposites containing different amounts of zeolite Beta (20, 30 and 40 

wt.%) are shown in Fig. 3.8. As can be seen from Fig. 3.8, there was no significant uptake of 

N2 in pure ORMOCER and the nanocomposites containing 20 and 30 wt.% of zeolite Beta at 

low relative pressures (P/P0 = 0.5-0.30). These results clearly indicate that the zeolitic pores of 

the nanocomposites are completely blocked by the ORMOCER matrices, and thereby 

rendering them inaccessible to N2-molecules. However, the nanocomposite containing 40 

wt.% of zeolite Beta exhibits higher N2 uptake than the other nanocomposite samples, 

indicating the presence of zeolite pores/crystallites that are accessible for N2-molecules. The 

BET plots (figure not shown) of the 20 and 30 wt.% zeolite loaded samples did not exhibit 

any linear regression lines within the P/P0 range of 0.05 to 0.30. Therefore, the BET plots of 

20 and 30 wt.% zeolite loaded samples were not considered for the calculation of their surface 

areas. Whereas, the BET plot (figure not shown) of 40 wt.% zeolite loaded sample exhibited a 

linear regression line in the above mentioned P/P0 range. The BET surface area of the 

nanocomposite containing 40 wt.% zeolite Beta was calculated to  

be 90 m2g-1. Thin films of ORMOCER-zeolite Beta nanocomposite membranes having 100 

µm thickness were also prepared in order to evaluate their performance for gas separation 

applications. Note that the ORMOCER-zeolite Beta nanocomposite membranes are 

mechanically stable enough for handling and performing permeation studies.   

Fig. 3.9 shows the SEM images of surface and polished cross-section views of pure 

ORMOCER and ORMOCER nanocomposites containing 20, 30 and 40 wt.% of zeolite Beta. 

The surface and cross-section of the pure ORMOCER membranes are very smooth and 

continuous, as is evident from Fig. 3.9 ‘a’ and ‘b’. As the zeolite loadings increased the surface 

roughness of the membranes increased to some extent  

(Fig. 3.9 ‘c’, ‘e’ and ‘g’). Most importantly, the polished cross-sectional SEM images of the 

ORMOCER-zeolite Beta nanocomposite membranes (Fig. 3.9 ‘d’, ‘f’ and ‘h’) show that the 

zeolite Beta crystallites are well dispersed throughout the ORMOCER matrix, even at high 

amount of zeolite Beta loading (40 wt.%). In order to examine the presence of  visible voids or 

phase separation between the zeolite Beta crystallites and the ORMOCER matrix, high 
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magnification SEM images of the unpolished cross sectional views were taken and are shown 

in Fig. 3.10. Again, it can be seen that the pure ORMOCER membrane (Fig. 3.10 ‘a’) is very 

smooth and continuous. It is very clear from Fig. 3.10 (‘b’, ‘c’ and‘d’) that no defects or voids 

between the zeolite crystallites and the ORMCOER matrix were observed. These results 

suggest that the zeolite crystallites are well-adhered to the ORMOCER matrix. In addition, the 

crystallites’ negative footprints on the ORMOCER matrix reflect this fact. This could be due 

to the presence of strongest possible interaction between the zeolite Beta crystallites and the 

ORMOCER matrix via hydrogen bonding. The proposed mechanism for the formation of 

hydrogen bonds between the zeolite Beta crystallites and the ORMOCER matrix is shown in 

Fig. 3.11. It is pertinent to mention here that no primers or silane coupling agents were used 

for the fabrication of ORMOCER-zeolite Beta nanocomposites. Therefore, the above 

mentioned results indicate that the ORMOCER used in the present study is useful for the 

fabrication of continuous and defect free nanocomposite membranes with high zeolite 

crystallites dispersion. However, the average maximum crystallite size of zeolite Beta within 

the ORMOCER matrix is approximately 200 nm to 1 µm, indicating the homogeneous 

distribution of zeolite Beta crystallites within the ORMOCER matrix. 

To evaluate the applicability of the resulting membranes for gas separation 

applications, single gas (H2 and He) permeation measurements were carried out at room 

temperature on the ex-situ activated (pure ORMOCER) membranes at 120, 170, 200 and 250 

°C. These results are summarized in Table 3.2. Note that the activation temperatures were 

chosen on the basis of the TG and DSC results obtained for the pure ORMOCER. The 

thicknesses of the membranes used in this permeation study were approximately 100 µm. The 

ORMOCER membrane activated at 120 °C showed lower permeability for H2 and He gases 

than the membrane activated at 170 °C. Such an increase in the permeability of the pure 

ORMOCER membrane activated at 170 °C might be due to the movement of polymer 

groups/chain fractions within the ORMOCER matrix or enhancement in condensation of the 

Si-O-Si bonds followed by the removal of water molecules, leading to the creation of free 

space between the organic and inorganic network within the ORMOCER matrix. However, 

the ORMOCER membranes activated at high temperatures (200 and 250 °C) showed much 

lower permeability for H2 and He gases, indicating reduction in free volume space by polymer 

chain rigidification of the ORMOCER matrix. It is important to mention that the pure 
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ORMOCER membranes undergo colour changes from colourless transparent (120 °C) to 

brown (170 °C) and then  to dark-brown (200 and 250 °C) during the activation process. 

Therefore, 120 °C was chosen as the activation temperature for further studies. 

The single gas (H2, He and N2) permeabilities and permselectivities for the pure 

ORMOCER and the ORMOCER-zeolite Beta nanocomposite membranes with different 

zeolite loadings are tabulated in Table 3.3. Prior to the room temperature single gas 

permeation measurements, all the membranes were activated at 120 °C for 24 h. The pure 

ORMOCER membrane (Table 3.3) showed negligible permeability for H2, He and N2 gases. 

These results suggest that the ORMOCER matrix possesses a highly condensed and/or cross-

linked organic-inorganic network. It is evident from the Table 3.3 that increasing the zeolite 

loadings from 20 to 30 wt.% and eventually to 40 wt.% increased the H2, He and N2 

permeabilities of the corresponding nanocomposite membranes. Most importantly, the 

ORMOCER nanocomposite membrane loaded with 40 wt.% of zeolite Beta showed higher 

permeability for H2 (57.3 Barrer), He (69.3 Barrer) and N2 (0.77 Barrer) in comparison to the 

pure ORMOCER membrane. Such a significant increase in permeability indicates that a 

percolation threshold is most probably reached and hence the existence of connected paths 

through zeolite crystallites in the ORMOCER-zeolite Beta (40 wt%) nanocomposite 

membrane. It is pertinent to recall here that the ORMOCER-zeolite Beta (40 wt.%) exhibited 

a higher BET surface area (90 m2g-1) than the other nanocomposites. Among the 

nanocomposite membranes, the ORMOCER nanocomposite membrane loaded with 20 wt.% 

of zeolite Beta showed the best performance in terms of both H2/N2 and He/N2 

permselectivities (Table 3.3). Nevertheless, the permselectivity (H2/N2 and He/N2) decreased 

sharply with further increase in zeolite loadings from 30 to 40 wt%. Similar trends in 

permeability and permselectivity were reported for composite [polyimide-zeolite Beta and 

poly(ether sulfone)-zeolite Beta] membranes [39], where increasing the amount of zeolite 

loading was found to be coupled with increasing the gas peremeability and decreasing the 

permselectivity.  It seems that the percolation threshold is most probably reached for the 

ORMOCER-zeolite Beta (40 wt.%) membrane and hence a decrease in permselectivity. This 

is in accordance with the fact that the kinetic diameters of H2 (0.289 nm), He (0.26 nm) and 

N2 (0.364) are smaller than the pore diameters of zeolite of Beta (0.66 x 0.67 nm and 0.56 x 

0.56 nm). A detailed study concerning the separation of H2 from H2/N2 and natural gases 
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using GUS-based ORMOCER-zeolite nanocomposite membranes is currently ongoing. The 

results will soon be published elsewhere. 

 

 

3.5  Conclusions 

 

We have successfully fabricated a series of free-standing ORMOCER-zeolite Beta 

(BEA) nanocomposite membranes by incorporating zeolite Beta crystallites into GUS-based 

ORMOCER systems. SEM images of ORMOCER-zeolite Beta nanocomposite membrane 

cross sections show that the zeolite Beta crystallites, ranging from 200 nm to 1 µm, are 

homogeneously distributed within the ORMOCER matrix. ORMOCER-zeolite Beta 

membranes are free of visible defects or voids and the zeolite Beta crystallites are well-

adhered to the ORMOCER matrix as is evident from the high resolution SEM images. In 

particular, the ORMOCER-zeolite Beta nanocomposite membrane with 40 wt.% zeolite 

loading exhibited a nearly 16-times increase in H2 and He permeabilities in comparison to the 

pure ORMOCER membrane. However, all the membranes showed negligible N2 permeability, 

exemplifying the highly condensed and/or cross-linked nature of the GUS-based ORMOCER 

matrix. The addition of a sufficient amount of dimethyldiethoxysilane (DMDES), during the 

synthesis of GUS-based ORMOCER resin, might increase the free volume within the 

ORMOCER matrix, which may lead to the development of high-flux mixed matrix 

membranes for the separation of H2 and He from H2/He/N2 gas mixtures and natural gases. 
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3.7  Tables  

 

Table 3.1 Degradation temperatures of pure ORMOCER and ORMOCER-zeolite Beta  
nanocompositesa. 

 
 

Zeolite Beta 
loading (wt.%) 

T1max 

°C 
T2max 

°C 
T3max 

°C 
T4max 

°C 

     

0 169 391 457 597 

     
20 172 415 495 600 

     
30 172 427 493 585 

     

40 170 413 - 582 
     

 
aDSC analysis 
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Table 3.2 H2 and He permeabilities of the pure ORMOCER membranes activated (ex-situ) at 
different temperatures under vacuuma. 
 
 
 
 

 

 

 

 

 

 

 

aSingle gas permeation measurements were carried out at room temperature 
                      b1 Barrer = 1× 10-10 cm3 (STP) cm/ cm2 s cm Hg 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-activation Permeability (Barrer)b 

temperature (°C) H2 He 

   

120 3.4 4.5 

   

170 11.7 14.7 

   

200 3.6 4.2 

   

250 3.7 2.9 
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Table 3.3 Single gas (H2, He and N2) permeabilities and permselectivities of the pure ORMOCER 
and the ORMOCER-zeolite Beta nancocomposite membranesa. 
 

Zeolite Beta loading Permeability (Barrer)b Permselectivity 

(wt%) H2 He N2 H2/N2 He/N2 

      

0 3.4 4.5 0,02 170 225 

      

20 10.7 9.8 0.04 267 246 

      

30 11.9 8.4 0.12 99 70 

      

40 57.3 69.3 0.77 74 90 

      

 
aPrior to the room temperature single gas (H2, He and N2) permeation measurements, all the 
membranes were activated (ex-situ) at 120 °C for 24 h. 
b1 Barrer = 1× 10-10 cm3 (STP) cm/ cm2 s cm Hg 
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3.8  Figures 

 

Figure 3.1: Synthesis scheme of ORMOCER resin.  
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ORMOCER-zeolite Beta 
free standing thin films 

 
 

Figure 3.2: Flow chart of the preparation methodology of ORMOCER-zeolite Beta 

nanocomposite membranes  

 

addition of  solvent  stirring for 5 min. 

addition of Irgacure-184 

addition of zeolite Beta particles  
ultrasonication for 30 min. 
at room temperature  

UV-curing, 180 sec Casting a solution on a glass 
plate  

vacuum drying 120 oC for 24 h  
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Figure 3.3: FTIR spectra of precursors used in the preparation of ORMOCER resin: (a) 

glycerine-1,3-dimethacrylate, (b) 3-isocynatopropyltriethoxysilane, (c) glycerine-1,3-

dimethacrylaturethanetriethoxysilane and (d) ORMOCER resin 
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Figure 3.6: Thermo gravimetric analysis (TGA) curves of pure ORMOCER (a) and ORMOCER-

zeolite Beta nanocomposites with different zeolite loadings, 20 wt.% (b), 30 wt.% (c) and 40 wt.% 

(d), at a heating rate of 10 °C min-1 under air atmosphere 
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Figure 3.7: Differential scanning calorimetry (DSC) curves of pure ORMOCER (a) and 

ORMOCER-zeolite Beta nanocomposites with different zeolite loadings, 20 wt.% (b), 30 wt.% (c) 

and 40 wt.% (d), at a heating rate of 10 °C min-1 under air atmosphere . 
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Figure 3.8: N2 adsorption-desorption isotherms of pure ORMOCER (●) and ORMOCER-

zeolite Beta nanocomposites with different zeolite loadings, 20 wt.% (▼), 30 wt.% (◄) and 

40 wt.% (�) (Filled symbols: adsorption; Blank symbols: desorption). 
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4 µm 

(h) 

 

 
Figure 3.9: Surface and polished cross sectional views of the SEM images of the pure  

ORMOCER membranes (a and b); and the ORMOCER-zeolite Beta nanocomposite membranes 

with different zeolite loadings, 20 wt.% (c and d), 30 wt.% (e and f) and 40 wt.% (g and h). 
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Figure 3.10: Scanning electron microscopy (SEM) images of unpolished cross-sectional views of 

pure ORMOCER membrane (a); and the ORMOCER-zeolite Beta nanocomposite membranes 

with different zeolite loadings, 20 wt.% (b), 30 wt.% (c) and 40 wt.% (d). 
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Figure 3.11: Proposed mechanism of interaction of the zeolite Beta crystallites with the 
ORMOCER matrix 
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Chapter 4 

 

Fabrication of ORMOCER®-zeolite Beta mixed matrix 

membranes using dimethyldiethoxysilane (DMDES) as 

a siloxane modifier of networks  

 

4.1  Abstract 

 

Permeable, silicone-modified ORMOCER®-zeolite Beta (10-40 wt.%) mixed 

matrix membranes (MMMs) were fabricated, using a glycerine-1,3-dimethacrylate-

urethanetriethoxysilane (GUS)-ORMOCER® resin and dimethyldiethoxysilane 

(DMDES) as a siloxane modifier of ORMOCER® networks, by solution casting 

followed by UV-curing. All the MMMs were characterized by SEM and single gas (O2, 

N2 and CO2) permeation measurements. SEM images revealed that the zeolite Beta 

crystallites were uniformly distributed within the ORMOCER® matrix, and the MMMs 

were virtually free of interfacial voids, as indicated by high resolution SEM images. 

Among the MMMs studied, ORMOCER®-zeolite Beta (30 wt.%) MMM exhibited an 

increase in permeability of about 8, 7 and 12 times for O2, N2 and CO2, respectively, 

and high permselectivities (O2/N2 = 4.8 and CO2/N2 = 29.8) compared to the polyimide-

zeolite Beta (30 wt.%) composite membrane reported in the literature. In addition, 

ORMOCER®-zeolite A (3Å, 4Å and 5Å; 30 wt.%) MMMs were prepared and their 

permeation properties tested under similar conditions for comparison purposes. 

 

4.2  Introduction 

Mixed Matrix Membranes (MMMs) have recently emerged as an attractive 

technology for a variety of liquid and gas separation applications [1-4]. Such MMMs 

combine the advantages of both polymeric (low capital investment and easy processing 

capabilities) and inorganic (excellent diffusivity and molecular sieving capabilities) 
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membranes. MMMs are generally composed of continuous polymeric and discrete 

organic or inorganic matrices as fillers. The incorporation of inorganic matrices into 

polymeric matrices has a remarkable effect on the resulting MMMs. Significant 

improvement, for instance in separation efficiency, high flux and durability, has been 

achieved for the MMMs in comparison to their pristine counterparts. Several reports 

have recently appeared on the fabrication of MMMs using various types of porous 

inorganic matrices, such as nanoporous fumed silica [5], layered silicates [6], zeolites 

(A, L, KFI, H-ZK-5, MFI and SSZ-13) [7-10], aluminophosphates (AlPO-5 and AlPO-

14) [11, 12], silicoaluminophosphates (SAPO-5 and SAPO-34) [13, 14], and 

mesoporous silica (MCM-41 and MCM-48) [15, 16], zirconium phosphate [17] and 

titanium phosphate [17] materials. Very recently, Metal-Organic-Frameworks (MOFs) 

have also been used as fillers for the development of high performance MMMs [18, 19]. 

Among the zeolite-based MMMs, zeolite Beta (BEA)-containing MMM is of 

considerable interest due to its applicability in pervaporation [20], direct methanol fuel 

cells (DMFC) [21], proton exchange membrane fuel cells (PEMFC) [22] and gas 

(He/N2, O2/N2 and CO2/CH4) separation [23-28]. Recently, Huang et al. [29] 

synthesized a series of thin film poly(ether sulfone) (PES)- and polyimide (PI)-based 

MMMs having different zeolite Beta loadings (10-30 wt.%) by solution-casting. A 

finding of special interest was that the zeolite Beta-PES membranes exhibited a 

significant increase in gas permeability as well as in permselectivity. 

ORMOCER®s-based membranes [30-35] have received significant attention due 

to their excellent mechanical, thermal, chemical and gas permeation characteristics. In 

particular, the incorporation of zeolites, such as KNaA (LTA) and NaX (FAU), into 

ORMOCER® matrices resulted in a significant increase in the N2 sorption capacity [36, 

37]. Recently, we have reported the fabrication of void-free and free-standing GUS-

based ORMOCER®-zeolite Beta (BEA) nanocomposite membranes with 10-40 wt.% of 

zeolite Beta loadings [38]. These nanocomposite membranes showed permeability 

especially for small gas molecules (kinetic diameter < 0.289 nm), such as He and H2, 

but were nearly impermeable for N2 (0.364 nm). The relative impermeability of these 

membranes for N2 is mainly due to the highly condensed and/or cross-linked nature of 

the GUS-based ORMOCER® matrix. It should be possible to overcome this limitation 

and improve the membrane permeation performance especially for large gas molecules 



Chapter 4 
_____________________________________________________________________________ 

_____________________________________________________________________________  
- 61 -

(kinetic diameter > 0.289 nm), such as e.g. N2, O2, and CO2, by systematically tailoring 

the GUS-based ORMOCER siloxane network. 

Organosilanes and siloxanes, such as dimethyldimethoxysilane (DMDMS), 

dimethyldiethoxysilane (DMDES), oligomeric dimethylsiloxane (ODMS) and 

polydimethylsiloxane (PDMS) have been used as polymer network modifiers in the 

preparation of various hybrid membranes [39-42].  It was demonstrated that the 

incorporation of DMDMS and DMDES in the polyurethane (PU)-based films enables a 

significant increase in O2 permeability due to the creation of flexible siloxane linkages 

(free volume) [39].  In addition, Zhang et al. [40] studied the effect of varying 

concentrations of DMDES to triethoxyfluorosilane (TEFS)-film. 

 

It was found that the incorporation of DMDES favours the formation of four-membered 

cyclic structures within TEFS and thereby increases the porosity. Park et al [41, 42] 

attempted to improve the gas (N2, O2 and CO2) permeabilities of 

poly(amideimide)siloxane and polyimide/silica membranes by adding ODMS and 

PDMS, respectively. 

In the present work, we have fabricated silicone-modified ORMOCER® 

(denoted as S-ORMOCER®)-zeolite Beta (10-40 wt.%) MMMs using GUS-

ORMOCER® resin and DMDES as a siloxane modifier of ORMOCER® networks. 

Further, we have studied their gas permeation performances especially for large gas 

molecules (O2, N2 and CO2) and compared with S-ORMOCER®-zeolite A (3Å, 4Å and 

5Å; 30 wt.%) MMMs. 

 

4.3  Experimental 

 

4.3.1  Materials 

 

3-isocyanatopropyltriethoxysilane (IPTES, 99%) and glycerine-1,3-

dimethacrylate (GDMA, 98%) were obtained from Momentive Performance Materials. 

Dibutyl tin dilaurate (DBTL, 95%), dimethydiethoxysilane (DMDES) and ethyl acetate 

                                                
  Registered trademark of Fraunhofer Gesellschaft zur Förderung der angewandten 
Forschung e.V., Germany 
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(97%) were purchased from Sigma-Aldrich. Irgacure 184 (1-hydroxy-cyclohexyl-

phenyl-ketone) was obtained from CIBA Specialty Chemicals. All chemicals were used 

as obtained without further purification. High-silica zeolite Beta (SiO2/Al2O3 = 350) and 

LTA-type zeolites (3A, 4A and 5A) were purchased from Zeolyst International and 

Zeochem AG, respectively. Before using, all the zeolite samples were activated at 250 

°C for 4 h and stored under dry conditions.   

 

4.3.2  Preparation of dimethyldiethoxysilane (DMDES)-

modified GUS-ORMOCER
®
 and corresponding MMMs 

 

At first, a series of DMDES-modified GUS-ORMOCER® resins was prepared 

according to a known method [43] by keeping the glycerine-1,3-dimethacrylate-

urethanetriethoxysilane (GUS) concentration constant (1 M) and varying the 

concentration of DMDES (0.0, 3.0 and 6.0 M). The proposed scheme for the formation 

of DMDES-modified GUS-ORMOCER resins is shown in Fig. 4.1. The GUS-

ORMOCER® resins modified with DMDES (0, 3 and 6 M) are hereafter referred to as 

GUS-ORMOCER®, GUS-3DMDES-ORMOCER® and GUS-6DMDES-ORMOCER® 

resins, respectively. Their corresponding membranes were prepared by the solution 

casting method followed by UV-curing as described previously [38], and their single-

gas permeability was tested for O2, N2 and CO2. It was found from the permeability 

data that the GUS-6DMDES-ORMOCER® membrane showed a higher permeability. 

Therefore, the GUS-6DMDES-ORMOCER® resin was used for further study. 

MMMs composed of zeolite Beta (10-40 wt.%) and LTA-type zeolites (3A, 4A 

and 5A; 30 wt.%) were prepared using GUS-6DMDES-ORMOCER® resin under 

similar conditions [38]. All the membranes were annealed at 120 °C (heating rate 5 

°C/min) under vacuum, dwelled (at 120 °C) for 24 h, cooled to room temperature and 

stored under moisture free conditions. The resulting dried MMMs had an approximate 

thickness of about 190 to 210 µm.  

 

4.3.3  Characterization 

An FT-IR spectrometer, Nicolet Magna-IR 760, was used to identify the 

functional groups present in the GUS-ORMOCER® and DMDES-modified GUS-

ORMOCER® resins. The FT-IR spectra were recorded in the range of 400 to 4000 cm-1 
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using solution cast thin films of those resins on KBr pellets. The spectra were scanned 

for 32 s with a resolution of 4 cm-1. Liquid-state 29Si-NMR measurements of GUS-

ORMOCER® and DMDES-modified GUS-ORMOCER® resins were carried out on a 

Bruker Avance DPX 400 NMR spectrometer at a resonance frequency of 79.49 MHz 

(29Si) in an external magnetic field of 9.4 Tesla. Measurements were carried out using 

CDCl3 as solvent and tetramethylsilane (TMS) as the internal standard. The morphology 

of the MMMs was examined using a Zeiss-supra model 25 variable pressure field 

emission scanning electron microscope at an acceleration voltage of 10 kV. 

 

 

4.3.4  Permeation measurements 

 Single gas (O2, N2, and CO2) permeabilities were measured at room temperature 

using a home-made constant volume-variable pressure gas permeation setup shown in   

Fig. 4.2. It relies on maintaining a constant pressure of a gas permeant on the upstream 

face of the membrane and measuring the flux across the membrane of known thickness 

and area on the downstream (or permeate) face of the membrane. The membrane was 

fixed in a stainless-steel permeation cell and was sealed by flat O-rings (Viton). The 

effective permeation area of each membrane was about 0.65 mm. The purity of the 

gases (O2, N2 and CO2; Linde AG) used in the present study was 99.999%. Prior to each 

measurement, the entire system was vacuum-degassed overnight (pressure: 1 x 10-8 

mbar) using a turbo molecular vacuum pump. The vacuum connection was then closed 

and respective gases were dosed using mass flow controllers and argon was used as a 

sweep gas in the permeate side. The gas pressure in the feed side was varied from 0.3 to 

1.3 bar. The pressures at both sides (feed and permeate) could be monitored by pressure 

transducers (MKS Instruments Deutschland GmbH) which were linked to a computer. 

The PC program was set in such a way as to collect permeation data after 3 min at each 

pressure. The gas permeation measurement of each single gas was repeated four times 

and the average permeability results are reported in Barrer [1 Barrer = 10-10 cm3 cm / 

cm2 s cm Hg]. The permeability coefficient (P) of a given gas in a membrane was 

calculated by using the equation (4.1) 

 

 

 

            273.15          V L            dp 
P =                                                                                                                         eq. (4.1) 
                 T              A P0          dt 
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V is the volume of the downstream chamber (cm3), (dp/dt) is the rate of the pressure 

increase in the down stream chamber (cm Hg/s), A is the effective area of the membrane 

(cm2), L is the thickness of the membrane (cm), P0 is the pressure in the upstream 

chamber and T is the absolute temperature of the gas (K), respectively. The 

permselectivity of the membrane was calculated using the equation (2). 

 

 

 

where PA and PB are the permeability of membrane to a gas A and gas B.  

 

 

4.4  Results and discussion  

The FT-IR spectra of GUS-ORMOCER®, GUS-3DMDES-ORMOCER® and 

GUS-6DMDES-ORMOCER® resins are shown in Fig. 4.3. The FT-IR spectrum of 

GUS-ORMOCER® (curve a) shows the presence of stretching vibrations of N-H (3367 

cm-1), C-H of methyl (2932 cm-1), carbonyl (1723 cm-1), vinyl of methacrylates (1638 

cm-1) and bending vibrations of the N-H (1530 cm-1) groups [38]. The other spectral 

features in the region 1200-1000 cm-1 arise primarily from the Si-O-Si asymmetric 

vibrations. In addition, the absorption band at 942 cm-1 is attributed to the presence of 

Si-OH groups due to incomplete condensation. The FTIR spectra of both GUS-

3DMDES-ORMOCER® (curve b) and GUS-6DMDES-ORMOCER® (curve c) resins 

show similar features to that of GUS-ORMOCER® but with two significant bands at 

around 1262 cm-1 and 812 cm-1. These two bands are assigned to symmetric bending 

and rocking vibrations of C-H groups in Si-CH3 [39]. Furthermore, the increase in 

intensity of the absorption band at 2932 cm-1 (C-H stretching of the methyl groups) 

provides additional evidence for the successful incorporation of DMDES into the 

ORMOCER® networks. The above mentioned results agree well with the FTIR spectra 

reported for DMDES-modified poylurethane ionomer [39]. The broadening of bands 

(1200-1000 cm-1) in the FTIR spectra of GUS-3DMDES-ORMOCER® (curve b) and 

GUS-6DMDES-ORMOCER® (curve c) may arise from the presence of cyclic/linear 

polysiloxanes and included a decreased number of hydrogen bonds between N-H group 

and silanols or carbonyl group in urethane moieties, respectively. These results are in 

accordance with the proposed scheme for the formation of DMDES-modified GUS-

ORMOCER® resins, as illustrated in Fig. 4.1. 

            PA 
α =                                                                                                                    eq. (4.2) 
            PB 
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Liquid-state 29Si NMR spectroscopy was used to assess the nature of 

hydrolyzed/condensed Si species present in GUS-ORMOCER®, GUS-3DMDES-

ORMOCER® and GUS-6DMDES-ORMOCER® resins; and their corresponding 29Si 

NMR spectra are presented in Fig. 4.4. The 29Si NMR spectrum of the GUS-

ORMOCER® resin exhibits signals in the −66 to −70 ppm (curve a) range, 

corresponding to T3 Si species [RSi(OSi)3] [38]. No signals corresponding to the T1 

[RSi(OSi)(OH)2] and T2 [RSi(OSi2)(OH)] Si species were observed in the region of −45 

to −60 ppm. The absence of T1 and T2 signals clearly indicates that the GUS-

ORMOCER® resin possesses a highly condensed inorganic network. On the other hand, 

in addition to the very weak T3 signals, the 29Si NMR spectra of both GUS-3DMDES-

ORMOCER® (curve b) and GUS-6DMDES-ORMOCER® (curve c) resins exhibit sharp 

signals in the range of −18.3 to −22.2 ppm and low intensity signals at around −10 to 

−14 ppm. These signals are attributed to D1 and D2 species [44], indicating the 

formation of polydimethylsiloxane networks [Dx, (CH3)2Si(OSi)x(OH)2-x] within the 

DMDES-modified GUS-ORMOCER®s (curves b and c). The absence of D0 signals 

around −4 ppm (in curves b and c) further suggests the complete polymerization of 

DMDES under the conditions employed in the present study. 

In order to assess the influence of DMDES on GUS-ORMOCER®s, single gas 

(O2, N2 and CO2) permeation measurements were carried out on GUS-ORMOCER®, 

GUS-3DMDES-ORMOCER® and GUS-6DMDES-ORMOCER® membranes, and their 

results are summarized in Table. 4.1. It can be seen from Table 4.1 that the GUS-

ORMOCER® membrane was nearly impermeable for all the gases (O2, N2 and CO2) 

owing to its highly condensed and/or cross-linked nature. As expected, the GUS-

3DMDES-ORMOCER® membrane showed measurable permeabilities for O2 (8.7 

Barrer), N2 (1.5 Barrer) and CO2 (39.9 Barrer) with reasonable O2/N2 (5.8) and CO2/N2 

(26.6) permselectivities. Indeed, the GUS-6DMDES-ORMOCER® membrane showed 

substantial improvement in O2 (34.3 Barrer), N2 (13.7 Barrer) and CO2 (219.0 Barrer) 

permeabilities with low O2/N2 (2.5) and CO2/N2 (15.9) permselectivities. The above 

mentioned results reveal the presence of intrinsic free volume within the DMDES-

modified GUS-ORMOCER® membranes. Essentially the same behavior resulted with 

the bis(γ-aminopropyl)-polydimethylsiloxane-modified polyimide (PI) membranes [45]. 

Note that further increase in the amount of DMDES (9.0 M) in GUS-ORMOCER® led 

to mechanically unstable membranes (GUS-9DMDES-ORMOCER®). Therefore, the 

GUS-6DMDES-ORMOCER® resin was chosen as the standard resin for the fabrication 
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of zeolite-based MMMs with improved permeation and permselectivity characteristics. 

For reasons of simplicity, the GUS-6DMDES-ORMOCER® resin will hereafter be 

referred to as silicone-modified ORMOCER® 

(S-ORMOCER®) resin. MMMs composed of zeolite Beta (10-40 wt.%) and LTA-type 

zeolites (3Å, 4Å and 5Å; 30 wt.%) were prepared under similar conditions using S-

ORMOCER® resin, and their SEM and permeation results are discussed in the 

subsequent paragraphs. 

Fig. 4.5 shows the unpolished cross-sectional SEM images of the pure S-

ORMOCER® membrane (a and b) and its corresponding MMMs containing 10 wt.% (c 

and d), 20 wt.% (e and f), 30 wt.% (g and h), and 40 wt.% (i and j) zeolite Beta loadings 

at different magnifications. As seen in Fig. 4.5a and b, the S-ORMOCER® membrane 

exhibits the fairly smooth surface characteristic of polymeric membranes, whereas, the 

S-ORMOCER®-zeolite Beta (10-40 wt.%) MMMs (Fig. 4.5c to j) show internal surface 

roughness with bumps and pits. It is observed in Fig. 4.5d, f, h and j that the internal 

surface roughness becomes more and more pronounced as the zeolite Beta content 

increases from 10 to 40 wt.%. It can be seen that the zeolite Beta crystallites are 

homogeneously distributed within the S-ORMOCER® matrix. The mean diameter of the 

zeolite Beta crystallites is in the range of  200 to 800 nm, and no agglomeration was 

observed under the incorporation conditions used even at a high amount of zeolite Beta 

loading (40 wt.%). High magnification SEM images (Fig. 4.5d, f, h and j) did not reveal 

the presence of voids between the zeolite Beta crystallites and the S-ORMOCER® 

matrix. It is well known that the performance of MMMs generally depends on how the 

zeolite crystallites are distributed and adhered to the matrix. Note that, as reported for 

our previous study [38], no primer or silane-coupling agent was used for the fabrication 

of S-ORMOCER®-zeolite Beta MMMs.  

Unpolished cross-sectional SEM images of S-ORMOCER®-zeolite A (3Å, 4Å 

and 5Å) MMMs containing 30 wt.% zeolite loadings were done at different 

magnifications and are displayed in Fig. 4.6. As can be seen from Fig. 4.6 (a, c, and e), 

the zeolite A crystallites  (~ 3-4 µm) are not as uniformly distributed as zeolite Beta 

crystallites (Fig. 4.5c to j) within the S-ORMOCER® matrix. In addition, high 

magnification SEM images (Fig. 4.6b, d and f) reveal the presence of voids in some 

regions between the zeolite A crystallites and the S-ORMOCER® matrix. This could be 

due either to the incompatibility between the hydrophilic zeolite A (SiO2/Al2O3 = 2) and 

the hydrophobic S-ORMOCER® matrix resulting in a bad wetting or to the large size (~ 



Chapter 4 
_____________________________________________________________________________ 

_____________________________________________________________________________  
- 67 -

3-4 µm) and irregular morphology of the zeolite A crystallites employed in the present 

study. However, at the moment one cannot exclude that the formation of such voids 

could also be due to stress formation within the curing steps, i.e. induced shrinkage of 

the S-ORMOCER® matrix. Nevertheless, these voids can be eliminated by chemical 

modification of the surface of zeolite A crystals using silanes. Li et al [7] demonstrated 

that the surface modification of zeolite A crystals using (3-aminopropyl)-

diethoxymethyl silane (APDEMS) provides void-free polyethersulfone (PES)-zeolite A 

MMMs with significant improvement in permeability and permselectivity. It must be 

emphasized that the zeolite Beta crystallites employed in the present study are relatively 

hydrophobic (SiO2/Al2O3 = 350), smaller in size (200-800 nm) and possess favorable 

spherical morphology – hence the formation of void-free S-ORMOCER®-zeolite Beta 

MMMs (Fig. 4.5c to j). 

The effect of zeolite Beta (10-40 wt.%) loading and zeolitic (LTA-types; 3Å, 4Å 

and 5Å; 30 wt.%) structures on single gas permeation properties of S-ORMOCER®-

based MMMs was systematically investigated at 25 °C, and the results are summarized 

in Table 4.2. It shows that the O2, N2 and CO2 permeabilities of S-ORMOCER®-zeolite 

Beta MMMs decreased as the loading of zeolite Beta increased (from 10-30 wt.%). 

Interestingly, the O2, N2 and CO2 permeabilities of the S-ORMOCER®-zeolite Beta (30 

wt.%) MMM are about  8-, 7- and 12-times higher, respectively, than that of the 

polyimide-zeolite Beta (30 wt.%) composite membrane prepared by Huang et al [29]. 

Moreover, the O2/N2 and CO2/N2 permselectivities of S-ORMOCER®-zeolite Beta (10-

30 wt.%) MMMs are relatively higher than that of the S-ORMOCER® membrane.  

Notably,  

S-ORMOCER®-zeolite Beta (30 wt.%) exhibits two-times higher permselectivities 

(O2/N2 = 4.8 and CO2/N2 = 29.8) than the S-ORMOCER® membrane (O2/N2 = 2.5 and 

CO2/N2 = 15.9). Such an enhancement of permselectivity could be either due to the 

intrinsic molecular sieving effect of zeolite Beta or to the polymer chain rigidification 

followed by pore blockage within the S-ORMOCER®-zeolite Beta MMMs. Table 4.2 

also shows that the O2, N2 and CO2 permeabilities of the S-ORMOCER®-zeolite Beta 

(40 wt.%) MMM are significantly higher than for the S-ORMOCER® membrane, albeit 

with lower O2/N2 (3.6) and CO2/N2 (17.7) permselectivities. This is most probably due 

to the fact that the percolation threshold is reached for the S-ORMOCER®-zeolite Beta 

(40 wt.%) MMM. 



Chapter 4 
_____________________________________________________________________________ 

_____________________________________________________________________________  
- 68 -

It is well known that the pore size of the zeolites greatly influences the gas 

permeabilities and permselectivities of MMMs. Although the SEM studies indicated the 

presence of voids (100-200 nm) in some regions between the zeolite A (3Å, 4Å and 5Å) 

crystallites and the S-ORMOCER® matrix (Fig. 4.6b, d and f), as desired, the overall O2 

and CO2 permeabilities of LTA-types of S-ORMOCER® (3Å, 4Å and 5Å; 30 wt.%) 

membranes are significantly lower than in the S-ORMOCER® and S-ORMOCER®-

zeolite Beta (10-40 wt.%) MMMs (Table 4.2). Most importantly, the O2/N2 and CO2/N2 

permselectivities of S-ORMOCER®-zeolite A (3Å, 4Å and 5Å; 30 wt.%) MMMs are 

nearly comparable to those of the S-ORMOCER® membrane. These results suggest that 

the voids (100-200 nm) present between the zeolite A crystallites and the S-

ORMOCER® matrix play a negligible role in gas permeation in comparison to the 

intrinsic molecular sieving effect of S-ORMOCER®-zeolite A (3A, 4A and 5A; 30 

wt.%) MMMs. As expected, LTA-types of S-ORMOCER® (3Å, 4Å and 5Å; 30 wt.%) 

MMMs exhibit an increase in O2, N2 and CO2 permeabilities as the pore size of zeolite 

A increased (from 3Å to 5Å). As shown in Table 4.2, N2 permeabilities of LTA-types of 

S-ORMOCER® (3A, 4A and 5A; 30 wt.%) MMMs are slightly higher than in the S-

ORMOCER®-zeolite Beta (30 wt.%) MMM. This could be due to the fact that both O2 

and CO2 have stronger affinity to the cations (K, Na and Ca) present in the LTA-type 

zeolites [46] and hence result in an increase in N2 permeabilities. Again, the gas 

permeabilities (O2 = 27.7, N2 = 10.6 and CO2 = 151.7 Barrer) of the S-ORMOCER®-

zeolite 4A (30 wt.%) membrane are significantly higher but with lower 

permselectivities (O2/N2 = 2.6 and CO2/N2 = 14.3) than those of the poly(ether sulfone)-

zeolite 4A (20 wt.%) composite  membrane (permeabilities: O2 = 0.58, N2 = 0.09 and 

CO2 = 2.32 Barrer; permselectivities: O2/N2 = 6.4 and CO2/N2 = 25.5) prepared by 

Huang et al [47]. 

 

4.5  Conclusions 

Permeable, silicone-modified, S-ORMOCER®-zeolite Beta (10-40 wt.%) and S-

ORMOCER®-zeolite A (3A, 4A and 5A; 30 wt.%) MMMs were fabricated, using GUS-

ORMOCER® resin and DMDES as a siloxane modifier of ORMOCER® networks, by 

the solution casting method followed by UV-curing. Cross-sectional SEM images of S-

ORMOCER®-zeolite Beta (10-40 wt.%) MMMs show that the zeolite Beta crystallites 

are homogeneously distributed throughout the S-ORMOCER® matrix, and the MMMs 

are completely free from visible voids. However, SEM images of S-ORMOCER®-
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zeolite A (3A, 4A and 5A; 30 wt.%) MMMs reveal the presence of voids (100-200 nm) 

in some regions between the zeolite A (3A, 4A and 5A) crystallites and the S-

ORMOCER® matrix. In particular, the S-ORMOCER®-zeolite Beta (30 wt.%) MMM 

exhibits high permeabilities (in Barrer) for O2 (34.1), N2 (7.1) and CO2 (212.1) and high 

permselectivities (O2/N2 = 4.8 and CO2/N2  = 29.8), whereas, S-ORMOCER®-zeolite A 

(3A, 4A and 5A; 30 wt.%) MMMs exhibit an overall decrease in O2, N2 and CO2 

permeabilities and O2/N2 and CO2/N2 permselectivities. 
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4.7  Tables  

 

Table 4.1 

Single gas permeation properties of the GUS-ORMOCER® and DMDES modified  

GUS-ORMOCER® membranes at 25 °C. 

 

Membranes Permeability (Barrer)a Permselectivity 

 O2 N2 CO2 O2/N2 CO2/N2 

GUS-ORMOCER® -b -b -b - - 

GUS-3DMDES-ORMOCER®c 8.7 1.5 39.9 5.8 26.6 

GUS-6DMDES-ORMOCER®d 34.3 13.7 219.0 2.5 15.9 

 

a Barrer = 1×10-10 cm3 (STP) cm/cm2 s cm Hg. 
b GUS-ORMOCER® was nearly impermeable to gases under the present conditions. 
c GUS-ORMOCER® modified with 3 moles of DMDES. 
d GUS-ORMOCER® modified with 6 moles of DMDES. 
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Table 4.2  

Single gas permeation properties of the S-ORMOCER®a and its corresponding MMMs at 25 °C. 

 

Permeability (Barrer)b Permselectivity Membranes 

O2 N2 CO2 O2/N2 CO2/N2 

S-ORMOCER® 34.3 13.7 219.0 2.5 15.9 

S-ORMOCER®-zeolite Beta (10 wt.%) 28.9 9.9 193.4 2.9 19.5 

S-ORMOCER®-zeolite Beta (20 wt.%) 24.8 6.2 173.6 4.0 28.0 

S-ORMOCER®-zeolite Beta (30 wt.%) 34.1 7.1 212.1 4.8 29.8 

S-ORMOCER®-zeolite Beta (40 wt.%) 56.3 15.6 277.2 3.6 17.7 

S-ORMOCER®-zeolite 3A (30 wt.%) 26.6 9.5 140.0 2.8 14.3 

S-ORMOCER®-zeolite 4A (30 wt.%) 27.7 10.6 151.7 2.6 14.3 

S-ORMOCER®-zeolite 5A (30 wt.%) 25.7 11.2 159.0 2.3 14.2 

 

a GUS-ORMOCER® modified with 6 moles of DMDES 
b1Barrer = 1×10-10 cm3 (STP) cm/cm2 s cm Hg 
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4.8  Figures 
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Figure 4.1: Schematic reaction route for the formation of DMDES-modified GUS-ORMOCER® resin. 
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Figure 4.2: Schematic diagram of the single gas permeation experimental set-up for the 
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Figure 4.3: FT-IR spectra of: (a) pure GUS-ORMOCER®, (b) GUS-3DMDES-

ORMOCER® and (c) GUS-6DMDES-ORMOCER® resins. 
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Figure 4.4: Liquid 29Si NMR spectra of: (a) pure GUS-ORMOCER®, (b) GUS-3DMDES-

ORMOCER® and (c) GUS-6DMDES-ORMOCER® resins. 
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Figure 4.5: Unpolished cross–sectional SEM images of the S-ORMOCER® (a and b) 

and its corresponding MMMs containing 10 wt.% (c and d), 20 wt.% (e and f), 30 wt.% 

(g and h), and 40 wt.% (i and j) of zeolite Beta at different magnifications. 
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Figure 4.6: Unpolished cross-sectional SEM images of the S-ORMOCER®-zeolite 3Å 

(a and b), S-ORMOCER®-zeolite 4Å (c and d) and S-ORMOCER®-zeolite 5Å (e and f) 

MMMs at different magnifications. All the membranes were prepared with 30 wt.% of 

their respective zeolites. 
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Chapter 5 

 
 

Influence of technological processing parameters on 

the photopolymerization of glycerine-1,3-

dimethacrylateurethanetriethoxysilane (GUS)-based 

ORMOCER®s 
 

 

5.1 Abstract 

 

Inorganic-organic hybrid polymers (ORMOCER®s) were prepared via the sol-

gel process followed by UV-curing using specially designed innovative photo-curable 

organoalkoxysilanes. When processing an ORMOCER® system, the resulting material 

properties are significantly influenced by the technological processing parameters such 

as photoinitiator concentration, duration of irradiation and UV light intensity. In order 

to investigate this relationship, the glycerine-1,3-dimethacrylateurethanetriethoxysilane 

(GUS)-based ORMOCER® material was chosen as model system. The effect of the 

photoinitiator concentration on the extent of C=C bond conversion and its correlation 

towards the optical properties of GUS-based ORMOCER® was studied in detail. The 

conversion of C=C bond was increased from 52 % to 82 % by increasing the 

photoinitiator concentration from 0.25 to 2.0 wt.-%. These observations are in good 

agreement with the results obtained from the refractive indices of the GUS-based 

ORMOCER® materials at selected wavelengths.  
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5.2   Introduction 
 

ORMOCER®s are hybrid polymers consisting of inorganic oxidic (Si, Al, Ti, 

and Zi, etc.) components and polymerized organic components (polyethylene oxides, 

polymethacrylates, polyethylene, etc.). They are prepared via sol-gel processing [1] in 

combination with organic cross-linking reactions for example from reactive 

functionalized organosilanes. A wide range of inherent properties can be achieved, 

including glass-like ones (transparency, chemical, mechanical and thermal behaviour) 

and polymer-like ones (toughness, functionalization ability, and low processing 

temperature) [2-4], leading to various applications, such as functional coatings [5-7], 

dental composites [8, 9], electrolytes for fuel cells/Li-batteries [10, 11], and 

optical/photonic/microelectronic devices [12-14]. ORMOCER® materials are very 

attractive for several reasons: They allow combinations of various inorganic precursors 

with special silanes bearing functional groups so that application adapted material 

properties can be obtained; and most importantly, they can be processed either by 

thermal- or photo-curing at ambient conditions. In general, photo-curing offers various 

advantages over traditional thermal curing, including high polymerization rates and low 

energy requirements. Therefore, there has been a growing demand for photo-curable 

ORMOCER® systems [15]. Among the photo-curable ORMOCER® systems, glycerine-

1,3-dimethacrylateurethanepropyltriethoxysilane (GUS)-based ORMOCER® systems 

are of great interest due to their facile photopolymerization, excellent film transparency, 

and highly cross-linked network structure. These copolymers have found successful 

application as dental composites with valuable properties (low shrinkage, high flexural 

strength, and high abrasion resistance) [16]. Furthermore, there has been considerable 

work on the applications of GUS-based ORMOCER® systems as semipermeable [17], 

blood oxygenator [18] and hollow fiber membranes [19, 20]. In view of the 

effectiveness of these systems, void-free and free-standing GUS-based ORMOCER®-

zeolite nanocomposite membranes with 20 - 40 wt.-% of zeolite Beta loadings(Ф = 200 

- 800 nm) have been recently fabricated [21]. These nanocomposite membranes have 
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been found to possess improved gas permeation characteristics. For instance, a 

nanocomposite membrane with 40 wt.-% zeolite Beta loading exhibits a nearly 16-times 

increase in H2 and He permeability in comparison to the pure GUS-based ORMOCER® 

membrane. 

 

The photoinitiator concentration is one of the most important processing 

parameters, which can influence the chemical and physical properties of the resulting 

hybrid materials. In particular, there has been ongoing interest to study the effects of 

technological processing parameters (photoinitiator concentration, duration of 

irradiation, and UV light intensity, etc.) on the optical and electrical properties of 

ORMOCER® systems [22-23]. Thus, it is highly desirable to understand the effects of 

these parameters on the structure (cross-linking behaviour) of hybrid materials. 

Although the application of GUS-based ORMOCER®s has been studied in detail [16-

20], the influence of the photoinitiator concentration on its photopolymerization was not 

systematically investigated so far. The incentive of the present study was to assess the 

influence of the photoinitiator concentration on the degree of conversion of C=C bonds 

of the methacrylic groups of GUS-based ORMOCER® coatings and their corresponding 

optical properties.  

 

5.3 Experimental 
 

 

5.3.1  Materials 

Glycerine-1,3-dimethacrylate (GDMA, 98 %) and 3-

isocyanatopropyltriethoxysilane (IPTES, 99 %) were obtained from Momentive 

Performance Materials. Dibutyltindilaurate (DBTDL, 95 %), ethylacetate (97 %) and 

propylacetate (99 %) were purchased from Aldrich. Dodecanediol-1,12-dimethacrylate 

(DDDMA, 97 %) and the photoinitiator, Irgacure 184 (1-hydroxy-cyclohexyl-phenyl-

ketone) were purchased from Rohm & Haas and CIBA Specialty Chemicals, 

respectively. All chemicals were used as received without further purification. 
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5.3.2  Synthesis of GUS-based ORMOCER
®
 resin 

The GUS-based ORMOCER® resin was synthesized via the sol-gel process in 

combination with organic cross-linkers having UV polymerizable organic 

functionalities according to previous literature [24]. In a typical procedure, the 3-

isocyanatopropyltriethoxysilane (IPTES) was covalently linked to glycerine-1,3-

dimethacrylate (GDMA) in presence of dibutyltindilaurate (DBTL) as catalyst followed 

by hydrolysis and condensation reactions. Dodecanediol-1,12-dimethacrylate 

(DDDMA) was added as diluent. Note that the role of dodecanediol-1,12-

dimethacrylate was mainly to maintain the spin-ability properties of the GUS-based 

ORMOCER® resin. The resultant transparent GUS-based ORMOCER® resin was 

dissolved in a mixture of solvent (ethylacetate) and water in order to remove the catalyst 

(ammonium fluoride). Therefore, both water and solvent were removed by solvent 

extraction and distillation methods under reduced pressure at maximum temperature of 

35 to 40 °C, respectively. The molar composition of the GUS-based ORMOCER® resin 

used in the present study was IPTES: GDMA : DBTL: DDDMA = 1 : 1 : 0.2 : 0.0016. 

The reaction mechanism for the formation of the resin is shown in Fig. 5.1. The specific 

inorganic structure is not completely known.  

 

 

5.3.3  Preparation of GUS-based ORMOCER
®
 coatings 

Fig. 5.2 shows the flow chart for the preparation methodology of cured GUS-based 

ORMOCER® coatings for refractive index measurements. These coatings were prepared 

by spinning a lacquer solution of GUS-based ORMOCER® on a glass substrate using 

CONVAC ST 146 spin-coater. Before spin coating, the resin was diluted with solvent 

(propylacetate) into 1:1 ratio, and then the resulting solution mixture was filtered 

through a 0.2 µm hydrophobic polypropylene (PTFE, Advantec MFS) filter in order to 

ensure the highest optical quality of the materials. The solution mixtures were then spin-

coated (3000 rpm, 15 s) on glass substrates and stored in an aluminium-foil covered 

plastic box in order to avoid sunlight. To harden the coatings, they were irradiated 

homogeneously by UV Hg lamp (UV intensity 2000-11000 mW/cm2, 110-230 V) under 
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nitrogen atmosphere for up to 3 min. The distance between sample and UV light source 

was adjusted to give an intensity of 65 mW/cm2 . A similar procedure was followed for 

all other samples containing different concentrations of photoinitiator. The proposed 

UV curing structural model of GUS-based ORMOCER® material is shown in Fig. 5.3. 

Before determining the refractive index, these samples were dried at 40 °C for about 2 h 

in order to remove the solvent. The thickness of the samples used in this study was 

about 5 to 6 µm. 

 

 

5.3.4  Characterization 

The infrared spectra of GUS-based ORMOCER® resins and their precursors were 

recorded on a Nicolet Magna-IR 760 FT-IR spectrometer in the range of 400 to 4000 

cm-1 (resolution of 4 cm-1, 32 scans per spectrum). The resin was blended on a KBr 

pellet and cured under UV light (UV intensity 64-65 mW/cm2, nitrogen atmosphere) 

and then it  was removed from the UV chamber sequentially over a period of time and 

analyzed immediately by FT-IR spectrometer. The chemical conversion of the 

methacrylate groups was determined by monitoring the decrease of C=C bands after UV 

irradiation. The 29Si-NMR measurements of the GUS-based ORMOCER® resins were 

carried out on a Bruker Avance DPX 400 NMR spectrometer with a 9.4 T magnetic 

field, equipped with a quaternary nuclear probe head. The spectrum was obtained with 

CDCl3 as solvent and tetramethylsilane as internal standard. The refractive index of the 

material was determined using a homebuilt prism-coupling method at wavelength λ = 

635 nm, as described in the literature [25]. 

 

 

5.4  Results and discussion 
 

FTIR is an effective analytical instrument for detecting functional groups and 

characterizing materials. The FT-IR spectra of 3-isocyanotopropyltriethoxysilane 

(spectrum ‘a’), glycerine-1,3-dimethacrylate (spectrum ‘b’), glycerine-1,3-

dimethacrylaturethane-triethoxysilane (spectrum ‘c’) and GUS-based ORMOCER® 

resin (spectrum ‘d’) are shown in Fig. 5.4. Spectrum ‘a’ shows the absorption bands at 

3000-2837, 2269 and 1082 cm-1, which are assigned to the stretching vibrations of C-H 
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(methyl, methylene groups), N=C=O, and ≡Si-OC2H5 groups. Spectrum ‘b’ shows 

absorption bands at 3507 (broad), 1720 and 1638 cm-1, which are assigned to the 

stretching vibrations of O-H, carbonyl and C=C bonds of methacrylate groups, 

respectively. The intensity of the N=C=O band at 2269 cm-1 and the intensity of the 

broad O-H band at 3507 cm-1 gradually decreased during the reaction of 

3-isocyanatopropyltriethoxysilane with glycerine-1,3-dimethacrylate, and the 

appearance of new vibration bands at 1527 and 3370 cm-1 (spectrum ‘c’) clearly 

suggests that the reaction of glycerine-1,3-dimethacrylate with 3-

isocyanatopropyltriethoxysilane is completed. The characteristic bands at 1527 and 

3370 cm-1 are assigned to ν(C-N, urethane) and ν(N-H,urethane) of glycerine-1,3-

dimethacrylateurethanetriethoxysilane. In addition, the FT-IR spectrum of GUS-based 

ORMOCER® resin (spectrum ‘d’) shows similar characteristic features as that of 

glycerine-1,3-dimethacrylateurethanetriethoxysilane (spectrum ‘c’) except for an 

intense broad band in the region of 1000-1200 cm-1, which corresponds to the Si-O-Si 

vibrations, respectively. The appearance of the Si-O-Si vibration band clearly suggests 

that the GUS-based ORMOCER® resin is inorganically condensed. 

Characterisation of the silicate network of the hybrid sol is of crucial importance 

to understand the mechanism involved in the photopolymerization process. Moreover, it 

is believed that the condensation state of the silicate network could significantly 

influence the photopolymerization process by restricting the mobility of the 

polymerizable groups. Therefore, the 29Si NMR spectroscopic measurement of GUS-

based ORMOCER® resin was carried out in order to investigate the nature of the silicon 

species present therein. The 29Si NMR spectrum of the GUS-based ORMOCER® resin 

is shown in Fig. 5.5. The spectrum exhibits only one broad signal at -63 to -70 ppm, 

which is attributed to the T3 [RSi(OSi)3] units [26]. The Tn notation is well know in 

silicon chemistry, where T denotes a silicon atom and superscript ‘n’ denotes the 

number of Si-O-Si bonds attached to silicon. There were no signals corresponding to T1 

[RSi(OSi)(OH)2] and T2 [RSi(OSi)2(OH)] units also indicating that the GUS-based 

ORMOCER® resin possesses a highly condensed inorganic network. The broad signal 

in the range of -80 to-140 ppm is an artefact from the glass tube.  

 The effect of the curing condition on the conversion of the C=C bonds of the 

GUS-based ORMOCER® resin was also studied in detail. The change in the chemical 

structure after UV-curing over a period of time at ambient temperature was monitored 

by FT-IR spectroscopy. Fig. 5.6 shows the FT-IR spectra of GUS-based ORMOCER® 
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resin (spectrum ‘a’) and UV-cured GUS-based ORMOCER® samples over a period of 

time, 30 sec (spectrum ‘b’), 60 sec (spectrum ‘c’) and 180 sec (spectrum ‘d’). The 

absorption band at 1638 cm-1 is attributed to the ν(C=C) of the methacrylate groups. The 

intensity of this band is gradually decreased by increasing the UV exposure time, 

indicating a progressing of photopolymerization [see Fig. 5.6 (spectrum ‘b’ to 

spectrum‘d’)]. The maximum decrease in the intensity of this band was observed at 180 

sec (see Fig. 5.6 spectrum‘d’), which clearly suggests maximum amount of C=C bonds 

of the methacrylate groups are consumed by photopolymerization. The above-

mentioned results indicate that a UV-curing process for a period of 180 sec is sufficient 

to fabricate highly polymerized GUS-based ORMOCER® thin coatings , which yielded 

a non-sticky coating. 

The influence of the photoinitiator concentration on the degree of conversion of C=C 

bonds (which is also called the degree of photopolymerization) before and after photo-

curing of GUS-based ORMOCER® resins was calculated using eq. 5.1 [23]  

 

                                       PI
C=C          PC=C              

                                       PI
C=O      PC=O 

 

where PI
C=C and PI

C=O are the integrated band areas of C=C and C=O bonds of the cured 

coatings, while PC=C and PC=O are the integrated band areas of uncured coatings.  

Fig. 5.7 shows the calculated degree of conversion of C=C bonds at 25 °C as a function 

of a photoinitiator concentration with light intensity of 64 mW/cm2 in nitrogen 

atmosphere. The photoinitiator concentration was varied from 0.25 to 3.0 wt.-%. As can 

be seen in Fig. 5.7, the degree of conversion of C=C bond increased with increasing 

concentration of the photoinitiator. The degree of conversion of C=C bonds were 52 % 

at 0.25 wt.-% and it increased up to 82 % at 2.0 wt.-%. When further increasing the 

photoinitiator concentration, no significant change in the degree of conversion of C=C 

bonds was observed. This could be due to severe limitation on the segmental motion of 

the macroreactive radicals within the GUS-based ORMOCER® system (i.e. chain 

propagation is blocked within the polymeric system due to vitrification of the network 

[27]). Consequently, the termination rate of the polymerization reaction in extremely 

high viscous resin was slower. Therefore, the remaining reactive macroradicals have 

less chance to come closer to complete the reaction [28]. Moreover, the high cross-

linking network of GUS-based ORMOCER® systems may also lead to the trapping of 

DP (%) = 100 ×       1-                                                                                                               (5.1) 
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reactive photoinitiator radicals. As the mobility of the reactive species slowly depletes, 

the polymerization reaction eventually stops. Therefore, it is assumed that the degree of 

conversion of C=C bonds remains nearly constant at a photoinitiator concentration of 

above 2.0 wt.-%. From these results it is confirmed that a 2.0 wt.-% photoinitiator 

concentration is sufficient to reach a nearly saturated degree of conversion of C=C 

bonds within the GUS-based ORMOCER® coatings. In order to gain better insight into 

the effects of the photoinitiator concentration on the degree of conversion of C=C bonds 

of inorganic-organic hybrid polymers (ORMOCER®s), the radical chain polymerization 

process will be considered [29]. It is assumed that the photoinitiator radicals are 

uniformly distributed throughout the GUS-based ORMOCER® resin. At a low 

concentration of photoinitiator, the photopolymerization begins where the radical is 

formed. In general, the free radical polymerization reaction includes initiation, 

propagation, and termination steps. In brief, these steps are contained in eqs. 5.2 to 5.6. 

The first step is initiator dissociation; [eq. (5.2), initiation] i.e., a reactive radical A• is 

formed and hence the photopolymerization process begins [eq. (5.3)–(5.5), 

propagation…termination (5.6)].  

 

A-A                  A• + A•                                                                                                (5.2) 

A• + B                    AB•,                                                                                               (5.3) 

AB• + B                    AB•
2,                                                                                           (5.4) 

 

 

 

AB•
x-1 + B                     AB•

x,                                                                                       (5.5) 

AB•
x +AB•

x                     (AB)2x,                                                                                  (5.6) 

 A• is a primary radical, AB• and AB2x represents growing radical and dead polymer 

molecule having 2x oligomeric units, respectively. At the onset of the polymerization 

reaction, a too-fast initiation produces a large number of radicals, which is generally 

referred to as autoacceleration. During this portion of the polymerization, the mobility 

of the macroradicals is slowly depleted due to vitrification of the polymer network and 

thus causes the reduction in the polymerization and termination rate. Thus it seems 

possible to assert that very low concentrations of photoinitiator within the GUS-based 

ORMOCER® resin lead to longer polymer chains while higher concentrations of 

photoinitiator lead to smaller polymeric structural units. It is known that the kinetic 

AB· + B  AB·                                                          

hγ 
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chain length (v) of the radical chain polymerization is inversely proportional to the 

square root of the initiator radical concentration [eq. (5.7)]  

 

     v = κ                                                                                                                        (5.7) 

 

where B is the  number of monomer molecules consumed by each radical and A• is the 

initiator radical and k is the rate constant. 

Therefore, we assume that the structural sizes generated at high concentrations of 

photoinitiator within GUS-based ORMOCER® systems are smaller in comparison to the 

larger sized structural units generated at low concentrations of photoinitiator during the 

photopolymerization process. The different sized structural units might cause a different 

packing density within the materials. This behaviour is a key feature, which directly 

influences the final polymer network structure and properties of GUS-based 

ORMOCER® materials and gives a structural insinuation. To support the above 

conclusion, we have investigated the refractive index of the GUS-based ORMOCER® 

system with various concentrations of photoinitiator during processing.  

The refractive index as a function of the photoinitiator concentration of the final 

processed GUS-based ORMOCER® coatings at a selected wavelength at 635 nm is 

shown in Fig. 5.8. As can be seen from Fig. 5.8, there is a significant increase in the 

refractive index with varying photoinitiator concentrations from 0.25 to 2.0 wt.-%. This 

could be attributed to increased reactivity of methacrylic groups (i.e. polymerisation). 

The refractive index is 1.492 at 0.25 wt.-% and it increases up to 1.4985 at 2.0 wt.-%. 

When further increasing the photoinitiator concentration up to 4.0 wt.-%, there is no 

significant change in the refractive index. It seems that the refractive index has reached 

a steady value at a photoinitiator concentration of approximately 2.0 wt.-%. Overall, the 

refractive index of the GUS-based ORMOCER® resin is lower than that of polymerized 

GUS-based ORMOCER®s. These results are concurrent with the degree of conversion 

of C=C double bonds (see Fig. 5.7). Besides the photointiator concentration, other 

parameters (such as processing temperature, UV-light intensity, etc.,) are under 

consideration to correlate the FT-IR measurements data (degree of conversion of C=C 

bonds) with refractive index data of the GUS-based ORMOCER®
 system. These results 

will be published elsewhere. 

 

 

   [B] 
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5.5  Conclusions  
 

The innovative GUS-based ORMOCER®s were prepared by using specially 

designed organoalkoxysilane via sol-gel process followed by UV-curing. The influences 

of the photoinitiator concentration on the degree of conversion of C=C bonds and its 

correlation towards the optical properties of the novel GUS-based ORMOCER® system 

have been investigated in detail. FT-IR results show that the degree of C=C bonds 

conversion of the methacrylic groups of the GUS-based ORMOCER® increased with 

increasing photoinitiator concentration. The maximum conversion of C=C bonds was 

obtained at a photoinitiator concentration of 2.0 wt.-%, whereas further increase in the 

photoinitiator concentration did not result in any significant change in the C=C bond 

conversion any more. The refractive indices of GUS-based ORMOCER® materials are 

in agreement with the degree of conversion of C=C bonds. These results provide a 

better understanding of the influences of technological processing parameters on the 

GUS-based ORMOCER® material properties  
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Figure 5.1: Reaction scheme for the preparation of GUS-based ORMOCER® resin. 
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Figure 5.2: Flow chart for preparation of GUS-based ORMOCER® coating on 

glass substrate for measurement of the refractive index. 
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Figure 5.5: 29Si NMR spectrum of GUS-based ORMOCER® resin. 
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Figure 5.6: FTIR spectra of GUS-based ORMOCER® resin (a) and after UV curing 

at room temperature, 30 sec (b), 60 sec (c) and 180 sec (d). 



 
_____________________________________________________________________________ 

_____________________________________________________________________________________  

- 99 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

20

40

60

80

100

D
e

g
re

e
 o

f 
c
o

n
v
e

rs
io

n
 o

f 
C

=
C

 b
o

n
d

s
 (

%
) 

Photoinitiator concentration (wt.-%)

Figure 5.7: Calculated degree of conversion of C=C double bond of the methacrylic 

groups in GUS-based ORMOCER® system at 25 °C as a function of photoinitiator 

concentration. 
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Figure 5.8: Variation of the refractive index of cured GUS-based ORMOCER® as a 

function of photoinitiator concentration determined at 635 nm. 
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