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ABSTRACT. Motivated by the laser sharing problem (LSP) in car body manufacturing, we
define the new general routing and scheduling problem (RSP). In the RSP, multiple servers
have to visit and process jobs; renewable resources are shared among them. The goal is to
find a makespan-minimal scheduled dispatch. We present complexity results as well as a
branch-and-bound algorithm for the RSP. This is the first algorithm that is able to solve the
LSP for industrially relevant problem scales.

1. INTRODUCTION

The investigations in this paper were directly motivated by a real-world problem in car
body manufacturing [12]: find a way to dispatch a set of laser welding robots so that the
expensive laser sources can be used for more than one robot without exceeding the fixed
total processing time (details will follow). Since any laser source can serve only one robot
at a time, this poses a job-scheduling-dependent resource constraint on an otherwise routing
based optimization problem, and the interesting objective is not the distance traveled or the
weighted sum of delays but the makespan.

And this makes the problem mathematically extremely interesting. We do not know
of any application context where an exact algorithm was proposed for a problem of this
type. In this paper, we propose an algorithm for the general routing & scheduling problem
(RSP); our application is a special case of it. The key is a carefully balanced mixture of
branch-and-bound and polyhedral methods.

More specifically, our main result is an exact algorithm that solves the so-called laser
sharing problem (formally defined below) to proven optimality or provably close to it
for industry-relevant problem scales (≈ 30 welding jobs, ≤ 4 welding robots, ≤ 4 laser
sources).

Now let us state in more detail (though still informally) what the laser sharing problem is
about. Some car manufacturers use laser welding technology for the assembly of car bodies.
The advantage is the possibility to weld along lines not only at single spots. We do not want
to discuss the engineering pros and cons of this technique. Important for us is the following:
In a welding cell there are two to six, usually four, industry robots simultaneously working
on the around 30 welding jobs in a fixed process cycle time of around 30 s, given by the
construction department. Traditionally, these robots are heuristically dispatched minimizing
empty moves. If each robot has its own energy source for welding, a laser source, then it is
enough to specify the assignment and order of jobs for each robot. However, in practice
this leads to fairly large idle-times of the laser sources, namely during all the non-welding
moves of the robots (the welding jobs are far from being connected).

A straight-forward idea is to let one laser source supply more than one robot with energy,
but only one at a time. Since the total time spent in non-welding moves is fairly large, this
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is possible if the robots weld alternatingly. But this means: their movements are coupled by
time-dependent resource requirements. A dispatch minimizing empty moves may be either
infeasible in the presence of laser source sharing or it may exceed the processing time when
waiting is used to respect all resource constraints. The resource constraints must be taken
into account when assigning jobs to robots and planning the tours. Moreover, the orders
of jobs in tours in not sufficient anymore to encode a solution, since it must be explicitely
decided which robot welds when.

The overall goal is: find the minimal number of laser sources so that there exists a feasible
dispatch, i.e., an assignment of jobs to robots, an assignment of robots to laser sources, tours
for all robots through their assigned jobs, and a scheduling of all departure times satisfying
the laser resource constraint so that the makespan does not exceed the given total processing
time. Of course, this task can be accomplished by finding a makespan-minimal dispatch
for any number of laser sources. And this, finally, is the laser sharing problem (collision
avoidance is ignored for the moment).

Let us elaborate on three specific features of the laser sharing problem that – with or
without collision avoidance – distinguish it from many usually studied problems:

(1) Robots must be routed and explicitely scheduled under shared resources;
(2) the makespan must be minimized in a multi-server system;
(3) to answer the question after the minimal number of necessary laser sources given

the processing time, the optimal makespan must be computed and proved in the
worst case.

First: The combination of the terms routing and scheduling appears in the literature very
often. As early as 1965, there is a paper by S. Lin titled The Vehicle Routing and Scheduling
Problem (unfortunately not available to us). However, as becomes clear in the following
abundant literature (e.g., the often cited [21] and the survey [7]), we are faced with sched-
uling restrictions that depend only on restrictions at the customers (jobs in our case) by
time windows. This may explain why the notion scheduling vanished again, and the vehicle
routing and scheduling problem with time windows ended up as the vehicle routing problem
with time windows.

In the terminology of Hempsch and Irnich [13], the time window constraints are all
intra-tour resource constraints: whether or not a tour of a vehicle (a robot in our case) is
feasible depends only on the scheduling of this tour alone. Moreover, often a mere ordering
of customers in a tour already determines a unique cheapest scheduled tour (mostly by
departuring as early as possible), so that an explicit scheduling (i.e., assigning departure
times to the depot and all customers) can be avoided.

In our case, resource constraints are imposed by a resource shared among robots: the
laser source. The feasibility of an individual tour of a robot is not well-defined anymore: we
are facing an inter-tour resource constraint. Although in [13], the authors present a fairly
general framework for inter-tour resource constraints such as global capacity restrictions
and the like, their giant tour method will not straight-fowardly cope with global resources
that can not be used more than once at a time – the laser source is a renewable resource.
But most importantly, the giant tour representation seems to fail to encompass makespan
optimization problems; at least, exact models based on this concept (let alone exact solution
methods) did not come to our minds.

This brings us to the second point: makespan minimization – a common objective in
scheduling theory – seems to be rarely studied in the integer linear programming (ILP) com-
munity, where the most successful exact algorithms for routing come from. It seems, there
is an agreement that resource-constrained scheduling problems with makespan objectives
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are better handled in the scheduling world by special algorithms or direct branch-and-bound
[6], whereas routing problems with linear objectives can be tackled very well by large-scale
integer linear programming, mainly by column generation techniques along the lines of [7].
This works well even in real-time situations (see [14]), and apparently also for robot routing
(see [22, 23]).

On the one hand, our preliminary tests on column generation methods for the laser sharing
problem with makespan minimization were discouraging at best. There is a mathematical
reason for this: although the makespan objective has a linear formulation in the LP-world
(minimize an auxiliary variable bounded from below by all the individual tour lengths), the
integrality gaps of ILPs based on this linear representation of the makespan are large in our
experience, even for problems that are otherwise integral. And since the makespan objective
depends on all tours in a solution, in any column generation approach we will encounter
this large integrality gap in the Master Problem, which will give us – besides a lot of
branch-and-bound nodes in the Master ILP – misleading dual values for the pricing problem.
We will elaborate on the quality of bounds in Section 5. Of course, one could restrict the
tour length in a column generation approach to the given processing time and not care about
the optimization objective. But column generation methods usually require reasonably good
feasible solutions right from the start; we have yet to see a column-generation algorithm
that can prove infeasibility fast.

On the other hand, lower bounds in branch-and-bound algorithms in resource constrained
scheduling are often generated by precendence constraints on the processing orders of jobs
(project scheduling, see [5]). In our case, there is no other scheduling constraint other than
that the resources can not be used more than once at a time. Reasonable lower bounds that
are good enough to prove optimality without full enumeration must incorporate routing
delays – mainly absent in results on makespan minimization in (project) scheduling.

And this touches already the third point: proven optimality is required in order to
conclusively decide whether or not we can finish with a given number of laser sources
within the processing time. In many applications like airline crew scheduling this is neither
possible nor desirable: the data is not exact anyway. In our case, the data about the times
the laser source is used is quite reliable, and optimality is at least in principal substantial
for the minimization of the number of laser sources necessary. Thus, we want to achieve
proven optimality in as many cases as possible, and otherwise optimality gaps that are as
small as possible. Since the laser sharing problem is a strategic planning task, computation
times of a day or so are acceptable.

In this paper we will show how a combination of the strengths of all mentioned ap-
proaches can indeed provide us with an algorithm that can solve industrial-scale instances
of the laser sharing problem. We use an outer branch-and-bound based on bounds coming
from the solutions of NP-hard subproblems, solved by means of ILP techniques. The
investigation of the relations between various subproblems of the laser sharing problem
plays a key role in the design of bounding computations.

Why do we deliberately choose to solve NP-hard subproblems? Branch-and-bound
is kind of a divide-and-conquer approach; thus, one has to balance the difficulty of the
subproblems with the difficulty of the tree exploration. Only if the subproblems capture at
least one part of the problem structure faithfully, the remaining parts of the problem can be
hunted down in the enumeration. The LP-relaxations of global models that we investigated
either leave too much work for the enumeration or are not polynomial either.
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Why do we succeed in solving these subproblems fast enough? The important observation
is that a scale that is large for our main problem will pose instances of comparably small
scale for the NP-hard subproblems – given the state-of-the art ILP techniques.

Our algorithm is able to cope with another side constraint without which the solution
method would not be convincing: collision avoidance. We tried hard to find a generally
accepted input data concept for collisions between industry robots, and we could not find
anything but simulation by means of commercial tools. This, however, can not be used as a
model in an exact solver. Thus, we suggest a collision model based on a classification of
collisions into line-line-collisions and line-point-collisions that have to be avoided in the
most conservative fashion. Meanwhile, this model has partly been adopted in [22, 23].

Short, preliminary versions of the algorithm for the laser sharing problem without
collision avoidance have already been presented together with preliminary computational
results in [17]. The incorporation of collision avoidance required the extension of the
Tuchscherer model from [12]. The resulting algorithm is yet cleaner and more powerful
than the older version. A preliminary version with collision avoidance together with
preliminary computational results was presented in [20] and formally introduced in [18].

In this paper, our comprehensive study of the laser sharing problem goes beyond the
conference presentations in [17, 18] in the following aspects: We present

• how the laser sharing problem with collision avoidance fits into a new abstract
framework for resource constrained routing and scheduling problems (RSP) with
the objective to minimize the makespan;

• new complexity results for the RSP and natural subproblems; in particular, a pseudo-
polynomial algorithm for the solution of RSP-T, i.e., the RSP with fixed tours,
where the number of servers and resources is constant but the number of jobs is
variable;
• a generic algorithm for the general RSP, based on the exact solution of NP-hard

subproblems inside a combinatorial branch-and-bound scheme;
• comprehensive computational results for our algorithm applied to the laser sharing

problem with laser and space resources; moreover, comparisons to the direct MILP-
solution of alternative models that follow various common modelling principles; the
data is based on an industry-standard simulation tool and a geometrically plausible
(yet artificial) set of welding jobs.

The practically most relevant result can be summarized as follows: our RSP-algorithm is the
first one that can solve a large part of our industrial-scale benchmark instances of the laser
sharing problem to proven optimality. Bounds obtained by the exact solution of the NP-hard
subproblems (combinatorial relaxations) are significantly tighter and at the same time much
faster to compute than bounds based on LP-relaxations of reasonable MILP models.

A disclaimer is in place here: although our algorithm is formulated in the abstract setting
of the RSP, we can not expect such a good performance for the general RSP. Our algorithm
exploits the specific properties of relevant laser sharing instances. Its mechanism heavily
relies on the fact that in the laser sharing problem the laser sources are never the bottleneck
– otherwise there would be no incentive to reduce the number of laser sources in the first
place. We believe that taylor-made RSP algorithms tuned for other special applications
can take profit of a careful bottleneck analysis as well; this seems to be the key to find the
combinatorial relaxations that provide the best bounds.

The paper is organized as follows: In Section 2 we formally introduce the laser sharing
problem and our new concept for collision avoidance. Moreover, our abstract framework
for resource constrained routing and scheduling problems RSP is presented. Section 3 is
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devoted to complexity results like the new pseudo-polynomial algorithm for the RSP-T.
Next, in Section 4 we describe the ideas, the building blocks, and the overall design of the
new algorithm CBB. In Section 5 we present computational results based on data obtained
by a professional robot simulation tool by KuKa. We compare the quality of bounds
generated by the new algorithm with seemingly more straight-forward approaches. Finally,
we draw conclusions in Section 6.

2. PROBLEM STATEMENT

We start with a formulation of the laser sharing problem (LSP) before we give the
definition of the more general routing & scheduling problem (RSP).

2.1. The Laser Sharing Problem. An instance of the Laser Sharing Problem LSP consists
of a set S of robots (the servers), a set J of jobs, a set Js ⊆ J of feasible jobs for every s ∈ S,
a set L of laser sources, a set Cll of line-line collisions, a set Clp of line-point collisions, and
a distance table δ .

Each robot s ∈ S has a depot position ds where the tour has to start and to end. Each
job j ∈ J has two job positions ja, jb. Processing a job means to traverse ( ja, jb) or ( jb, ja).
For simplicity we define Q := {ds | s ∈ S}∪{ ja, jb | j ∈ J} to be the set of all positions.

The shortest time Server s needs to move from Position p to Position q is referred to
by δ s(p,q) ≥ 0. If p and q are end positions of the same welding job, then this move is
done in welding mode processing the corresponding job; otherwise it is done in driving
mode. Our distances are assumed to satisfy the triangle inequality. When Laser Source l
switches robots, then there is a delay of τ l ≥ 0.

An entry (s1, p1,q1,s2, p2,q2) ∈Cll ⊆ S×Q×Q×S×Q×Q is interpreted as follows.
There exists two start times t1, t2 with: if Robot si starts a move from pi to qi at ti, then a
collision between s1 and s2 will happen. Our conservative restriction is that in this case the
two moves (s1, p1,q1) and (s2, p2,q2) must not overlap in time.

Similarly, (s1, p1,q1,s2, p2) ∈ Clp ⊆ S×Q×Q× S×Q means Robot s2 residing at
Position p2 will collide with Robot s1 moving from p1 to q1. Here, we do not allow
Robot s2 to visit Position p2 while s1 is moving from Position p1 to Position q1.

In the following, bars on symbols indicate decisions. The task is to assign to each
robot s ∈ S a set of jobs J̄s to process, a tour T̄ s = (ds = qs

1, . . . ,q
s
ns = ds) through the

corresponding job positions, a laser source r̄s ∈ L used for welding, and a schedule t̄s that
assigns a departure time t̄s(q) to each visited position q in the tour T̄ s such that

• each robot s is assigned only feasible jobs, i.e., J̄s ⊆ Js;
• each job j is processed in exactly one tour T̄ s;
• jobs assigned to robots s1,s2 sharing a laser source r̄s1 = r̄s2 do not overlap in time

with respect to the corresponding schedulings t̄s1 and t̄s2 ;
• all robot moves are collision free in the sense described above with respect to the

corresponding schedulings.
The completion time of each robot is the time it arrives back at ds according to the schedule
of its tour. The goal is to minimize the makespan, which is the maximum over the completion
times of the robots.

We do not formalize this any further, since the LSP is a special case of the general routing
& scheduling problem (RSP) in the next subsection.

Remark 1. We do not allow preemption. This means: whenever a robot starts driving or
welding from one position to another, then the whole move is done at once. Therefore,
waiting is only possible at the depot position or at one of the job positions.
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Remark 2. Any line-point collision (s1, p1,q1,s2, p2)∈Clp induces for every q2 ∈Q the line-
line collisions (s1, p1,q1,s2, p2,q2)∈Cll (set t2 = 0 in the definition) and (s1, p1,q1,s2,q2, p2)∈
Cll (revealed by setting t2 := δ s(q2, p2)). Thus, line-point collisions always induce line-line
collisions.

As special cases we introduce
• LSP-J where we assume that an assignment J̄ : S→ 2J of jobs to robots is fixed.
• LSP-T where in addition to LSP-J also a tour T̄ s for every robot s is given and thus

only an optimal schedule has to be found.
• LSP-s where only a single robot is present, so resource-sharing is void.

2.2. The Routing & Scheduling Problem. In this section we propose a generic model
called Routing & Scheduling Problem (RSP) that encompasses the LSP as well as some
other very general routing/scheduling problems from the literature: for example, the windy
rural postman problem [2, 3], project scheduling with renewable resources (Sm,σ ,1| · |Cmax)
– see [4] for the notation –, and the machine scheduling problem (Rm |M j, si, j,k | Cmax) –
see [16] for notation.

Particularly interesting is the fact that in the LSP collision avoidance can be modeled by
resource sharing very similar to laser source sharing. We will again indicate all structures
modelling decisions with a bar on top of the symbol: the assignment of jobs to servers J̄s

specifies for each server all jobs assigned to it, the tour T̄ s determines along which route
Server s moves through its jobs; given the tour, the choice function r̄s determines which
resource of a certain type is selected by Server s for its tour; the scheduling function t̄s

determines at which time Server s leaves a position.
An instance of the RSP consists of the following data: Let S be the set of all servers, and

let J be the set of all jobs. Denote by Js ⊆ J the set of feasible jobs for a server s ∈ S, i.e.,
the subset of jobs for which Server s has the necessary capabilities. Each server has a depot
position ds. Each job j ∈ J is associated with two special job positions ja, jb. Its possible
request arcs are the pairs ( ja, jb) and ( jb, ja). A server s serves one of its feasible jobs j ∈ Js

if it traverses either Arc ( ja, jb) or Arc ( jb, ja). For each server s, let Gs = (V s,As) be its
graph of feasible moves, i.e., the complete directed graph consisting on all positions of
feasible jobs and the position ds of the depot.

Let δ s : As→ R+∪{∞} be the (in general asymmetric) distance function of Server s,
i.e., δ s(v,w) is the time Server s needs to move from v to w. For (v,w) = ( ja, jb) or
(v,w) = ( jb, ja) for some job j, the travel times are the corresponding job processing times.
The job processing time may depend on the direction, i.e., δ s( ja, jb) 6= δ s( jb, ja) is possible.

Let R be the set of all resource types, where each resource type R ∈R is a set of one or
more resource type instances r ∈ R, resources, for short. The type of Resource r is denoted
by R(r). Each resource can be used by only one server at a time. Before a resource r
currently used by Server s1 can be used by Server s2, a switching time of τ(r,s1,s2) has to
pass. We denote by R̂ :=

⋃
R∈R R to the set of all resources.

Let ρs : As∪V s→ 2R be the resource-demand function of Server s, i.e., ρs(v,w)⊆R is
the set of resource types required by Server s while traversing Arc (v,w), and ρs(v)⊆R
corresponds to the set of resource types that Server s needs while it resides at Node v.
We assume ρs(v) ⊆ ρs(a) for every node v and every arc a = (v,w) or a = (w,v).1 For a
subgraph Hs of Gs let ρs(Hs) be the set of resource types needed by the arcs and nodes
in Hs.

1Resources are demanded for an arc if they are needed somewhere on the arc, in particular, if they are needed
on one of the end nodes of the arcs.
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The task is to generate the following output data for each server s: A tour T̄ s (through a
subset of the jobs J̄s), together with a resource selection r̄s and a scheduling t̄s for it so that

• each job is processed in exactly one tour;
• no resource conflict occurs;
• the makespan is minimal.

This means, in more detail:
A job assignment specifies for each server s ∈ S a set of jobs J̄s. This is the set of jobs to

be processed by s. For a given job assignment J̄s of jobs to Server s, a routing is given by
sequencing the end positions of jobs in J̄s.

The result is a tour T̄ s = (ds = qs
1, . . . ,q

s
ns = ds) in V s starting and ending at the depot

of Server s connected by arcs in As. We occasionally consider such a tour as a subgraph(
V s(T̄ s),As(T̄ s)

)
of Gs. When a tour T̄ s is given, the induced set of visited jobs is denoted

by J̄s, if the tour is clear from the context, and otherwise as J(T̄ s).
A dispatch is a collection of tours (T̄ s)s∈S, one for each server. A dispatch (T̄ s)s∈S

partitions a set of jobs J if J is the disjoint union of all J(T̄ s) over all s ∈ S.
A resource selection for a tour T̄ s of Server s is a choice function r̄s : ρs(T̄ s)→ R̂, i.e.,

r̄s(R) ∈ R for all R ∈ ρs(T̄ s). In words: r̄s chooses a particular resource for each resource
type needed by Server s in its tour.2 Although the resource selection depends on the choice
of a tour, we ignore this in the notation of “r̄s” to avoid unnecessary clutter.

A scheduling for a tour T̄ s = (ds = qs
1, . . . ,q

s
ns = ds) of Server s specifies for all i =

1, . . . ,ns non-negative departure times t̄s
i with t̄s

i+1 ≥ t̄s
i +δ s(qs

i ,q
s
i+1) for all i = 1, . . . ,ns−1,

i.e., it chooses a routing-consistent departure time of the server in each position of its
tour. It is convenient to consider the “departure” time from the last (depot) position as the
completion time. Again, we leave out the dependence of the choice of a tour in the notation
of “t̄s”.

Resource selections {r̄s}s∈S and schedulings {t̄s}s∈S for a dispatch {T̄ s}s∈S incur a
resource conflict if there are two servers s1,s2 ∈ S using the same resource at the same time,
i.e., the following happens:

(1) There is an arc (pi, pi+1) of T̄s1 with one of the following:
(a) there is an R ∈ ρs1(pi, pi+1)∩ρs2(ds2) 6= /0, or
(b) there is an arc (q j,q j+1) of T̄ s2 and an R ∈ ρs1(pi, pi+1)∩ρs2(q j+1) 6= /0, or
(c) there is an arc (q j,q j+1) of T̄ s2 and an R ∈ ρs1(pi, pi+1)∩ρs2(q j,q j+1) 6= /0.

(2) r̄s1(R) = r̄s2(R);
(3) (a)

(
[0, t̄s1

1 ]∪ [t̄s1
ns1 ,∞)

)
∩ [t̄s2

j , t̄
s2
j +δ s2(q j,q j+1)] 6= /0, or

(b) [t̄s2
j +δ s2(q j,q j+1), t̄

s2
j+1]∩ [t̄

s1
i , t̄s1

i +δ s1(pi, pi+1)] 6= /0, or
(c) [t̄s1

i , t̄s1
i +δ s1(pi, pi+1)]∩ [t̄s2

j , t̄
s2
j +δ s2(q j,q j+1)] 6= /0, resp.

Resource selections and schedulings for a dispatch with no resource conflict are called
conflict-free.

Summarized, a feasible solution to the Routing & Scheduling Problem (RSP) consists of a
dispatch partitioning all jobs, together with conflict-free resource selections and schedulings.
We call the tupel D̄ = (T̄ s, r̄s, t̄s)s∈S a scheduled dispatch.

A scheduling t̄s determines the completion time of a tour T̄ s, which equals t̄s
ns , i.e.,

the “departure time” at the final (depot) position of the tour, which was declared to be the
completion time of the tour. The makespan of a dispatch {T̄ s}s∈S with respect to schedulings

2Note that the resource assignment is not time-dependent. This could be changed at the cost of further
notational complications. Since we will not use it, we stick to time-independent resource assignements.
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{t̄s}s∈S equals maxs∈S t̄s
ns , i.e., the maximum over all completion times. The objective is to

find a feasible solution with minimal makespan.

Remark 3. The reader may ask why not all node resources can be modeled in terms of arc
resources by splitting nodes into two with an arc inbetween. Indeed, resources required at
a (geometric) position for a certain task taking a specified amount of time (reload winter-
gritting truck, maintain aircraft, . . . ) should be modeled as arc resources that way. The
reason why we need node resources comes from the fact that waiting for resources is only
possible at nodes, and this waiting option for an unspecified time may need resources as
well, but for a time depending on the solution, i.e., that is not specified in advance (parking
spot for trucks, space for robots . . . ). We rule out all other options to delay a tour, like a
lower speed on arcs or detours. In models based on discrete times and a time-expanded
network, hold-over arcs could model these waiting options at nodes. But we did not want to
fix a model requiring discrete times in the problem statement.

Example 1 (LSP without collision avoidance). The LSP with collisions ignored can easily
be modeled as an RSP: There is one resource type, namely “laser source”, with as many
resources as we have laser sources installed. The resource selection models that robots
cannot switch among the laser sources. The rest is straight-forward.

Example 2 (LSP with Collision Avoidance). In the context of RSP, we can model collisions
as additional resources: For every line-line collision Cs1,p1,q1,s2,p2,q2 ∈ Cll we introduce
a resource type R = Rs1,p1,q1,s2,p2,q2 consisting of one resource r = rs1,p1,q1,s2,p2,q2 with
τ(r,s1,s2) = 0. Then we add r to ρsi(pi,qi). Line-point collisions are handled analogously.
The resources can be viewed as parts of space that can only be used by a single (moving)
server at a time.

Example 3 (The Windy Rural Postman Problem). Given an undirected graph G = (V,E),
two edge costs functions c1,c2 : E→ R∪{∞}, a set ER ⊆ E of required edges, the windy
rural postman problem (WRP) asks for a minimum cost closed walk in G using all required
edges at least once. The cost of an edge e in the walk is either c1

e or c2
e depending on the

direction e is traversed. We now show how to model WRP as a “routing-only” RSP: Set
S := {s},R := /0, interpret every edge e = (v,w) ∈ ER as a job j with the two job positions
v and w. Set ds to an arbitrary node incident with some edge e ∈ ER. For all v,w ∈V , we
set δ s(v,w) to the length of a shortest v-w-path in G. An optimal solution to the WRP can
be derived from an optimal solution to the RSP by expanding all arcs in the server tour of
the RSP solution to shortest paths again.

Example 4. Consider the following project scheduling problem (PSm,σ ,1| · |Cmax) given
in the Graham notation [11] as extended to project scheduling in [4]. Here we have m
renewable resources each with amount σ and every job needs at most one of them. This
problem can be modeled as a “scheduling-only” RSP as follows: Assign to each job j
two artificial positions ja, jb. Introduce a server s for every job j with ds := ja and set
Js = { j}. Set δ s(ds, ja) := 0,δ s( ja, jb) := p j,δ

s( jb,ds) := 0 for this server, where p j
denotes the processing time of Job j. Set all other distances to ∞. Set R := {R1, . . . ,Rm}
with Ri := {Ri,1, . . . ,Ri,σ} and set ρ according to the resource requirements of the jobs.
Then, the minimum makespan solution of RSP corresponds to a minimum makespan
solution of (PSm,σ ,1| · |Cmax).

Remark 4. In our definition, a tour of a server visits only the end positions of the jobs
assigned to it, and each of them exactly once. No position can be used twice, and no other
position can be used for the routing of the server. When there are no resource conflicts, then
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visiting an additional position can not improve the makespan anyway. However, when a
resource conflict on a move between jobs needs to be resolved, visiting additional positions
(“moving around”) can be useful: the additional time for a conflict-free detour may by
smaller than the time required to wait for the availability of a resource. That is, the triangle
inequality for the marginal increase of the makespan does not hold. The problem can be
captured by adding Steiner positions to the problem. These are positions where a visit
is optional. But introducing Steiner positions makes the problem much harder to solve.
Therefore, we do not allow detours through additional positions.

The generalization of the special cases of LSP-J, LSP-T, LSP-s will be denoted by RSP-J
(fixed partition of jobs among servers), RSP-T (fixed server tours), and RSP-s (single-server
problem).

3. COMPLEXITY RESULTS

In this section, we partly clarify the complexity of the LSP and the RSP, resp., and some
corresponding subproblems.

Proposition 1. The single-server laser-sharing problem LSP-s is NP-hard in the strong
sense.

Proof. We will reduce the asymmetric traveling salesman problem (ATSP) to LSP-s: Let
G = (V,A) be a directed graph with costs c : A→ R+. The ATSP asks for a minimal tour
in G visiting all cities in V exactly once. In order to create an instance of LSP-s we set
J := V with artificial positions ja, jb and distances δ s( ja, jb) := δ s( jb, ja) := 0. For two
distinct jobs i, j ∈ J we set δ s(ie, js) := ci, j for s,e ∈ {a,b}. An optimal solution for this
LSP-s problem coincides with an optimal ATSP tour. Furthermore, this transformation is
clearly pseudo polynomial. � �

If for all jobs processing times δ s( ja, jb) = δ s( jb, ja) holds then we can shrink ja, jb
to one node obtaining a standard ATSP. If in addition the distances are of type δ s(p,q) =
|ap−bq| with two parameters av,bv associated with each node v then LSP-s can be solved
in O(n2) (see [16] chapter 4.4 for the algorithm) where n is the number of ATSP nodes,
i.e., |J|+1. An example of such a situation is the case where Server s corresponds to some
painting machine, and av,bv are cleanup and refill time of the colors. However, in general
this is not the case for industrial robots.

When |L|= 1 and τ l = 0 then the LSP-T problem reduces to a single machine scheduling
problem with precedence constraints and minimal time lags. The precedence constraints
form chains – one per robot – and the time lag between two jobs is due to the driving time
of the robot. In the Grapham notation [11], this is called (1 | chains(li, j) |Cmax). Wikum et
al. (see [25, Proposition 3.4]) proved this problem to be NP-hard in the strong sense, if each
chain contains at least two jobs. Because our robots have to go home after their last job, we
can sharpen this result to one welding job per robot:

Proposition 2. The LSP-T is NP-hard in the strong sense, even when every robot welds
only one job.

Proof. We will reduce SEQUENCING WITH RELEASE TIMES AND DEADLINES, which is
NP-hard in the strong sense (see Garey and Johnson [10]), to the decision version of LSP-T.
An instance of this problem consists of a set J′ of jobs. Each job j ∈ J′ has an associated
processing time p j, a deadline d j, and a release time r j. The question is whether there exists
a single machine schedule in which all jobs are scheduled in time, i.e., an assignment j 7→ x j
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of jobs to start times x j so that x j ≥ r j, x j + p j ≤ d j for all j, and all intervals [x j,x j + p j]
are pairwise disjoint.

Given such an instance, we can construct an instance of the decision version of LSP-T as
follows: An upper bound for the makespan objectiv is given by µ := max j∈J′ d j. For each
job j ∈ J′ we introduce a robot s with an artificial depot position ds and a welding job j
with two artificial end positions ja, jb. We set the distances δ s( ja, jb) := p j, δ s(ds, ja) := r j
and δ s( jb,ds) := T −d j. The tour of robot s contains only Job j, i.e., Ts := (ds, ja, jb,ds).
Collisions are not needed, Cll :=Clp := /0. Because we model a single machine scheduling
problem, we only introduce one laser source L := {l} with τ l := 0.

Then, there exists an solution for LSP-T with makespan not greater than µ if and only if
there exist a feasible schedule for SEQUENCING WITH RELEASE TIMES AND DEADLINES.
Clearly, this transformation is pseudo-polynomial in time and input size. � �

We remark that there is a polynomially solvable special case (1 | chains(l), p j = p |Cmax)
with constant driving time l and constant processing time p [15].

Because LSP-s and LSP-T are NP-hard in the strong sense, this is also true for LSP-J
and LSP and the corresponding RSP versions, since all of them contain the first two as
special cases.

Corollary 1. The decision versions of LSP-J, LSP, RSP, RSP-s, RSP-T, and RSP-J are all
NP-hard in the strong sense. �

In the proof of Proposition 2 we used one robot for each job. But in practice the situation
is exactly the opposite: few robots have to process many jobs. This raises the question
whether the complexity changes if the number of robots is fixed and the number of jobs is
not.

For the special case (1 | 2−n1n2chains(li, j) | Cmax), Wikum [24] proposed a dynamic
programming algorithm that runs in O(n1n2

2(1+max{L2− p1,0}), where L2 = max j l2, j
and p1 = mini p1,i. Here, li, j is the minimal delay between the j-th and the j+ 1-th job
of Chain i, and pi, j denotes the processing time the j-th job in Chain i. Wikum used the
following solution representation, on which he built his algorithm: Fix Chain 2, and for
each consecutive pair of jobs J2, j,J2, j+1, decide how many jobs of Chain 1 are processed
in between. The disadvantage of this representation is that it cannot be extended to handle
more than two chains.

In the sequel, we get to one of our main results: we describe a pseudo-polynomial
dynamic programming algorithm for (1 | k−n1, . . . ,nkchains(li, j) | Cmax) with any fixed
number of chains. Moreover, the algorithm is stated for the more general RSP-T with any
fixed number of resources: In constrast to the one machine scheduling problem, RSP-T
faces multiple resources. If there is only a fixed number of resources, then all possible
resource assignments can be enumerated. In the context of LSP-T this assumption reflects
the situation where there are only few laser sources and few possible collisions compared to
the number of jobs, which is typical in practice.

In the following, we first assume that the resource assignments r̄s are fixed. The general
algorithm then runs the fixed-resource-assignement algorithm for every possible resource
assignment and chooses the best solution. As usual in scheduling, we will assume all data
to be integer.

In order to provide a solid notational environment for a dynamic programming algorithm,
we will now formulate RSP-T as a discrete-time dynamic control problem (see [8] for
a textbook about dynamic control problems). Let (T̄ s)s∈S be the given tour set with
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T̄ s = (qs
1, . . . ,q

s
ns). Here qs

1 = qs
ns = ds and qs

i , i = 2, . . . ,ns−1 are alternating job start and
job end positions.

In order to construct a discrete-time dynamic control problem we have to specify a finite
set I of stages. Moreover, we need to define for every stage i ∈ I a state space Xi containing
states xi, a control space Ui containing controls ui, a set of feasible controls Ui(xi) ⊆Ui
for every state xi, a system dynamics xi+1 = fi(xi,ui), a stage cost function gi

(
xi,ui

)
for

i = 0,1, . . . ,N−1, and a terminal cost gN(xN).
The task in the control problem is to find an optimal control policy, i.e., a sequence of

decision rules µ = (µ0,µ1, . . . ,µN−1) with µi : Xi→Ui such that for a given start state x0
the cost Vµ(x0) := gN(xN)+∑

N−1
i=0 gi

(
xi,µi(xi)

)
is minimal among all feasible policies.

In order to formulate the RSP-T as such a control problem, we use event-based stage
indices as follows: the number i of already left positions is taken as the stage index of the
dynamic control problem. Then, the horizon is N := ∑s∈S ns. Consequently, the set of stages
is I = {0, . . . ,N}. For each i ∈ I the set of feasible states is defined as

Xi := {(is,ws,or,dr,er)s∈S
r∈R̂
∈ X | i = ∑

s∈S
is} ,

where the state components (is,ws,or,dr,er) are defined in the sequel.
The index state component is ∈ {0, . . . ,ns} is the number of positions that Server s has

already left in its tour (ds = qs
1, . . . ,q

s
ns = ds). Here “is = 0” means that the server is waiting

for the availability of resources for its move from the depot to the first job position. The
value “is = ns” means that the server has already arrived back at the depot. Any other
value of is means that the server has left position qs

is . We will write δ s for δ s(qs
is ,q

s
is+1) for

is = 0, . . . ,ns−1 and δ s := 0 for is = ns.
The idea is to encode a feasible solution of RSP-T in the control problem as an order in

which the servers gain access to the resources they need. The control decision which server
is next in this order takes place whenever some server reaches the end position of its current
move. Be careful: this does not mean that Server u gains access to the resources immediately
but only after it is in the right position and all resources are available. Therefore, in order to
keep track of the marginal influence of this decision on the makespan we need additional
state components for time measurements. In order to find out when Server u can continue
to work, we need to know when the required resources are free.

To this end, for each resource r the delay state component dr ∈ {0, . . . ,M} indicates
when the Resource r will be available again. M can always be choosen as an upper bound
for the optimal makespan, e.g., M := ∑s∈S ∑

ns−1
i=1 δ s(qs

i ,q
s
i+1).

When dr is zero, we still have to keep track of the switching time: for this purpose,
the enabling state component er ∈ {0, . . . ,maxs1,s2∈S,s1 6=s2 τ(r,s1,s2)} denotes for how long
Resource r has been idle since its last use.

Futhermore, the owner state component or ∈ S∪{σ} denotes the last server that was
granted access to r (specified by a corresponding previous control). Here, the special symbol
σ denotes “nobody” for the case that a resource has not been reserved so far at all. We set
τ(r,σ ,s) := 0 for all s ∈ S.

Since a control decision will take place whenever some server reaches the end position
of its current move, we store in the will-arrive state component ws ∈ {0, . . . ,M} the time
Server s needs to reach its next position. This duration includes possible waiting times
underway for resources becoming available.

Our control descision µi(xi) selects the next server getting exclusive access to all needed
resources. We therefore set the set of possible controls to Ui :=U := S.
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When server s is selected to move from qis to qis+1, then any resource r ∈ ρs(qis+1), e.g.,
a resource of a line-point collision, blocks all other servers requiring r afterwards, until s is
choosen by µ again. Note that r is blocked already before s arrives at qis+1 because of our
general assumption ρs(qis+1)⊆ ρs(qis ,qis+1). Thus, we demand that µi(xi) ∈Ui(xi) with

Ui(xi) := {u ∈U | iu < nu−1∧ρ
u(qu

iu+1,q
u
iu+2)∩ρ

s(qis+1) = /0

∀ s ∈ S,s 6= u, is < ns}

Let us now investigate the influence of a control decision in a given state on the makespan.
Let xi be the current state and u the control, i.e., the selected server. Let Ru be the set of
resources needed by u to process the next task. Then the time w̃ when u has aquired all
needed resources is given by

w̃ := max
r∈Ru
{dr +max{τ(r,or,u)− er,0} ,

where τ(r,u,u) := 0.
The duration ∆ until the next control decision is the time when the next server reaches its

target position, i.e.,

∆ := ∆(xi,u) := min
{

min
s 6=u

ws,max{wu, w̃}+δ
u} .

So the immediate marginal influence of this decision on the makespan is

gi(xi,u) := ∆ .

Since in the terminal state every server s has left all positions including ns, i.e., all servers
are back at the depot according to our convention of “is = ns”, there is no terminal cost.

Let us now sort out the system dynamics. The next state will be determined by fi via

fi
(
(is,ws,or,dr,er)s∈S

r∈R̂
,u
)

:= (is′,ws
′,or

′,dr
′,er
′)s∈S

r∈R̂

with

is′ :=

{
is +1 s = u ,
is s 6= u ,

(1)

ws
′ :=

{
max{w̃,wu}+δ u−∆ s = u ,
max{ws−∆,0} s 6= u ,

(2)

or
′ :=

{
u r ∈ Ru ,

or r ∈ R̂\Ru ,
(3)

dr
′ :=

{
max{w̃,wu}+δ u−∆ r ∈ Ru ,

max{0,dr−∆} r ∈ R̂\Ru ,
(4)

er
′ :=

{
0 r ∈ Ru ,

min{τmax(or),er +max{∆−dr,0} r ∈ R̂\Ru .
(5)

These formulas follow from the fact that ∆ time units pass in this state transition. Thus, the
will-arrive times ws of all servers and the delays dr incurred by all resources will be reduced
by ∆, at most to zero. As soon as a resource is not in use any more, i.e., dr = 0, the enabling
component er starts to measure how much of a possible switching time has passed; it is
sufficient to increase it at most to the maximal possible switching time away from the owner
τmax(or). All resources required by u for its next task will be reserved for u. So, the next
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server who needs them has to wait until u will release them. This finishes the definition of
our control problem. The following holds by construction:

Lemma 1. An optimal control policy for the control problem described above specifies
an optimal solution of RSP-T by transcribing the tours and departure times of all servers
during the run of the controlled dynamical system. �

Now that we fully stated our dynamic control problem, it is straight-forward to formulate
the standard dynamic programming recursion for it. Let Vi : Xi→ R be the value function
of the ith stage. For each xi ∈ Xi the function Vi(xi) measures the minimal cost needed to
reach a terminal state. These are all states with is = qs

ns for every server s. Since there is no
terminal cost, we set

VN(xN) := 0 for all xN ∈ XN .

For all other stages i = 0,1, . . . ,N−1 we use the following standard recursion:

(6) Vi(xi) := min
u∈Ui(xi)

{gi(xi,u)+Vi+1
(

fi(xi,u)
)
}

and set µi(xi) to a corresponding minimizer.
Now we can obtain the minimal makespan by evaluating the value function V0(x0) with

x(0) := (0,0,σ ,0,0)s∈S
r∈R̂

.

Lemma 2. Let M be an upper bound for the makespan of an RSP-T-instance. Then the
number of states in the corresponding dynamic control problem is bounded by

∏
s∈S

ns ·
(
1+M

)|S|+|R̂| · (max
r∈R̂

max
s1,s2∈S,s1 6=s2

{1+ τ(r,s1,s2)}
)|R̂| · |S| ,

which is pseudo-polynomial in the input of RSP-T if both |S| and |R̂| are fixed. �

For a constant number of servers, one evaluation of the recursion formula requires only
a constant number of steps. Thus, our dynamic programming algorithm runs in pseudo-
polynomial time. This implies the following main result of this section, because the constant
number of resource assignments can be enumerated.

Theorem 1. For a fixed number of servers and a fixed total number of resources, RSP-T
can be solved in pseudo-polynomial time. �

It is an open problem whether or not RSP-T with a fixed number of servers and a fixed
total number of resources is NP-hard in the ordinary sense.

4. A BRANCH AND BOUND ALGORITHM

Our algorithm is a two stage branch-and-bound approach based on NP-hard subproblems
for lower bound computations. We first look at two special cases: the RSP-T where only
the scheduling part has to be done and the RSP-s which is a pure routing problem. Both
problems will then be used for lower bound calculations in a branch-and-bound algorithm
that solves the RSP-J (the subproblem where an assignment of jobs to servers is fixed).
known. This first stage will reduce the number of all possible server assignments to a small
set of candidates which contains an optimal one. Then we solve the RSP-J for all remaining
candidates.

We will use `(T̄ s) to denote the (undelayed) length of a tour, i.e., the sum over the
distances of all used arcs. For a solution (a scheduled dispatch) D̄ := (T̄ s, t̄s, r̄s)s∈S we write
`(D̄) for its makespan.
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4.1. The Scheduling Part: RSP-T. If we fix a tour T̄ s = (q1, . . . ,qns) for every server,
then we obtain a resource scheduling problem with sequence depended setup times. We call
this special case the RSP-T.

We will now propose a mixed integer model for the RSP-T, which is based on a model
original proposed by Tuchscherer et al. [12] for the laser sharing problem, where the laser
source was the only resource under consideration. For the given tour T̄ s = (q1, . . . ,qns) we
have to determine a schedule t̄s and a resource selection r̄s. We will measure the departure
times t̄s

i by the continuous variables xs
i ≥ 0. These times will be bounded from below along

the tour by
xs

i +δ
s(qs

i ,q
s
i+1)≤ xs

i+1 .

Measuring the makespan using the artificial variable z≥ 0 can be done by

xs
ns ≤ z, ∀ s ∈ S .

The resource selection will be described by the binary variables us,r. We assign each server
to exactly one resource of each needed type:

∑
r∈R

us,r = 1, ∀ s ∈ S,R ∈ ρ
s(T̄ s) .

When two servers are using the same resource for an arc, we have to decide which one is
allowed to use it first and which one has to wait. If two arcs (pi, pi+1) and (q j,q j+1) need a
resource type R, then these are in conflict if the corresponding servers are both assigned
to the same resource r. This will be modeled using binary linear ordering variables ypi,q j

for all nodes pi and q j visited by different servers s1 and s2 in their tours (p1, . . . , pn) and
(q1, . . . ,qm). Here, ypi,q j = 1 means that the move (pi, pi+1) of one server is scheduled to
end before the move (q j,q j+1) of another server that has chosen an identical resource starts.
In case of a conflict, the server moves are not allowed to overlap. With M sufficient large,
this can be written as

xs1
i +δ

s1(pi, pi+1)+ τ(r,s1,s2)− xs2
j ≤M(3−us1,r−us2,r− ypi,q j) .

Resource demands on nodes must be handled differently because waiting at a Node v means
blocking all assigned resources of ρs(v). So, if Server s1 resides at node pi and Server s2
needs a blocked resource to move from q j to q j+1, then there are only two ways to resolve
this conflict. Either s2 moves from q j to q j+1 before s1 has reached pi or after s1 has left
pi. Because, by our assumption on the resource demand function, Server s1 needs the
conflicting node resources on arcs adjacent to pi as well, the move of s1 from pi−1 to pi+1
over pi is not allowed to be interrupted by the move q j to q j+1 of s2:

ypi−1,q j = ypi,q j whenever pi and (q j,q j−1) are in conflict .

This can be written as

ypi−1,q j − ypi,q j ≤ 2−us1,r−us2,r

ypi,q j − ypi−1,q j ≤ us1,r +us2,r−2 .

If a conflict for a node resource occurs at a depot, i.e., i = 1 or i = n, then the move (q j,q j+1)
has to be after the move (p1, p2) and before the move (pn−1, pn):

1− yp1,q j ≤ 2−us1,r−us2,r

1− yq j ,pn−1 ≤ 2−us1,r−us2,r .

We now summarize the whole model:
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Problem 1 (RSP-T).

minz(7)

subject to

xs
ns ≤ z ∀ s ∈ S(8)

xs
i +δ

s(qi,qi+1)≤ xs
i+1 ∀ s ∈ S, i = 1, . . . ,ns−1(9)

xs1
i +δ

s1(pi, pi+1)(10)

+ τ(r,s1,s2)− xs2, j ≤M(3−us1,r

−ur,s2 − ypi,q j) ∀ s1,s2 ∈ S,s1 6= s2,

i = 1, . . . ,ns1 −1,

j = 1, . . . ,ns2 −1,

R ∈ ρ
s1(pi, pi+1)∩ρ

s2(q j,q j+1),

r ∈ R

ypi−1,q j − ypi,q j ≤ 2−us1,r−us2,r ∀ s1,s2 ∈ S,s1 6= s2(11)

i = 2, . . . ,ns1 −1,

j = 1, . . . ,ns2 −1

R ∈ ρ
s1(pi)∩ρ

s2(q j,q j+1),

r ∈ R

ypi,q j − ypi−1,q j ≤ 2−us1,r−us2,r ∀ s1,s2 ∈ S,s1 6= s2(12)

i = 2, . . . ,ns1 −1,

j = 1, . . . ,ns2 −1

R ∈ ρ
s1(pi)∩ρ

s2(q j,q j+1),

r ∈ R

1− ypi,q j ≤ 2−us1,r−us2,r ∀ s1,s2 ∈ S,s1 6= s2(13)

i = 1, j = 1, . . . ,ns2 −1

R ∈ ρ
s1(ds1)∩ρ

s2(q j,q j+1),

r ∈ R

1− yq j ,pi ≤ 2−us1,r−us2,r ∀ s1,s2 ∈ S,s1 6= s2(14)

i = ns1 −1, j = 1, . . . ,ns2 −1

R ∈ ρ
s1(ds1)∩ρ

s2(q j,q j+1),

r ∈ R

yp,q + yq,p = 1 ∀ s1,s2 ∈ S,s1 6= s2,(15)

p ∈V s1(T̄ s1),q ∈V s2(T̄ s2)

∑
r∈R

ur,s = 1 ∀ s ∈ S,R ∈ ρ
s(T̄ s)(16)

xs
i ≥ 0 ∀ s ∈ S, i = 1, . . . ,ns(17)
z≥ 0(18)

yp,q ∈ {0,1} ∀ s1,s2 ∈ S,s1 6= s2,(19)

p ∈V s1(T̄ s1),q ∈V s2(T̄ s2)
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us,r ∈ {0,1} ∀ s ∈ S,R ∈ ρ
s(T̄ s),r ∈ R(20)

We will make use of an exact solver for the RSP-T in the following way: Given a partial
tour T̄ s for every Server s, i.e., a tour not ending in ds, and a lower bound ls for the time
needed to complete T̄ s, we can replace δ s(qns−1,ds) by ls in (9) and solve the RSP-T for
the partial tours. This way we end up with a lower bound for all feasible solutions to the
RSP-T that start with T̄ s.

We will write D̄RSP-T(T̄ , l) := RSP-T(T̄ , l) with T̄ := (T̄ s)s∈S for a call to an exact solver
solving Problem 1 that stores an optimal scheduled dispatch in D̄RSP-T(T̄ , l). If the problem
is infeasible, then D̄RSP-T(T̄ , l) := /0 with `( /0) := ∞.

4.2. The Routing Part: RSP-s. If there is only one server available, then no resource
constraint plays a role, and we end up with a pure routing problem. In this section we will
discuss this special case in more detail.

Server s has to find a route in G := Gs with minimal length. The tour first starts at
ds, then processes all jobs (either in direction ja→ jb or vise versa), and finally returns
home. Thus, Server s has to visit every position exactly once. This can be modeled as an
asymmetric traveling salesman problem with the additional constraint that for every job
j ∈ J one of the two arcs ( ja, jb) or ( jb, ja) must be part of the solution.

Therefore, we can model the RSP-s by the following ILP with cv,w := δ s(v,w):

Problem 2 (RSP-s).
min ∑

(v,w)∈A
cv,wxv,w

subject to

∑
(v,w)∈A

xv,w = 1 ∀ v ∈V(21)

∑
(v,w)∈A

xv,w = 1 ∀ w ∈V(22)

∑
(v,w)∈A∩(U×U)

xv,w ≤ |U |−1 U ⊂V,2≤ |U | ≤ |V |−2(23)

x ja, jb + x jb, ja = 1 ∀ j ∈ J(24)

xv,w ∈ {0,1} ∀ (v,w) ∈ A(25)

Constraints (21)–(22) are the degree constraints of the standard ATSP model, and (23)
are subtour elimination constraints. We added (24) to ensure that exactly one of the job arcs
is processed.

Lemma 3. Every valid inequality for the ATSP polytope is also valid for the RSP-s. �

Solving the RSP-s can be done by branch-and-cut, where every valid ATSP inequality
can be used as a cutting plane. See [9] for a polyhedral approach to solve a standard
ATSP. There is also a way to transform the RSP-s into a standard ATSP: For each j ∈ J
introduce another city jc between ja and jb with c ja, jc +c jc, jb = c ja, jb ,c jb, jc +c jc, ja = c jb, ja
and c jc,v := cv, jc := M for a large constant M otherwise. Now any ATSP solver can be used
to solve the RSP-s. It is also possible to transform the constructed ATSP to a symmetric
TSP and use Concorde [1]. Due to technical limitation of the Concorde code, e.g., all
costs have to be integer, we avoided this (in contrast to an earlier version of our algorithm).

We will use solutions to the RSP-s in the following way: Consider a set of jobs J̃ ⊆ J
and the current position p of Server s. Set cds,v := δ s(p,v) for all v ∈V . Then, a solution to
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the correponding RSP-s evaluates how long s needs at least to process all jobs of J̃ starting
from p. We write T̄ s

RSP-s(J̃, p) := RSP-ss(J̃, p) for a call to an exact algorithm solving the
corresponding RSP-s that stores the resulting optimal tour in T̄ s

RSP-s(J̃, p).

4.3. Combining routing and scheduling for fixed assignment of jobs : RSP-J. Let
J̄ : S→ 2J be a given assignment of jobs to servers. Then we can assume Js = J̄s, i.e., for
each server only the jobs assigned to it are feasible for it. In the absence of resource sharing,
the tours of all servers can be computed independently, and thus we only have to solve |S|
problems of type RSP-s. If resources have to be taken into account, then this still supplies
us with a lower bound:

Lemma 4. Let T̄ s
RSP-s(J

s,ds) be an optimal solution for the RSP-s for each server s and
D̄ := (T̄ s, t̄s, r̄s)s∈S be any feasible solution to the RSP-J, then we have

� max
s∈S

`
(
T̄ s

RSP-s(J
s,ds)

)
≤ `(D̄) .

Our branch-and-bound approach now works as follows: Assume we are given a partial
tour T̄ s = (q1, . . . ,qs) for each server. The sets of jobs visited by server s is denoted by
J(T̄ s). Then, no tour starting with T̄ s visiting all remaining jobs Ks := Js \ J(T̄ s) can finish
earlier than the concatenation of T̄ s and T̄ s

RSP-s(K
s,qs). Hence,

(26) max
s∈S

(
`(T̄ s)+ `

(
T̄ s

RSP-s(K
s,qs)

))
is a valid lower bound. In order to improve this bound further we make use of the resource
demands of the partial tours. This can be done by using the following fact: Every tour for s
starting with T̄ s needs at least `(T̄ s

RSP-s(K
s,qs)) time units to move from position qs back

to ds. With ls := `(T̄ s
RSP-s(K

s,qs)) we can improve our bound solving an RSP-T problem.
Recall that `

(
D̄RSP-T(T̄ , l)

)
is the minimal makespan of a scheduled dispatch starting with

partial tours T̄ = (T̄ s)s∈S, when the driving times from the last positions of T̄ to the depots
are given by l = (ls)s∈S.

Lemma 5. Let T̄ := (T̄ s)s∈S be a set of partial tours and D̄ be a feasible scheduled dispatch
whose tour set starts with T̄ . Let l := (ls)s∈S, ls := `(T̄ s

RSP-s(K
s,qs)), where qs is the last

position of T̄ s. Then we have

� max
s∈S

(
`(T̄ s)+ ls)≤ `

(
D̄RSP-T(T̄ , l)

)
≤ `(D̄) .

A node in our branch-and-bound tree corresponds to a partial tour for every server. In
the branching step we have to choose a server that has unserved jobs. We then create a child
node for every j ∈ Ks and every possible start position q ∈ { ja, jb}. A leaf corresponds of a
full tour for each server. Finally, we evaluate optimal schedulings in the leaves by solving
the corresponding RSP-T problems.

We will write N for a node and T̄ (N) = (T̄ s)s∈S for the partial tours associated with N.
Moreover, λ (N) is the lower bound for Node N according to Lemma 5. The set of jobs
served in a routing T̄ is denoted by J(T̄ ). Algorithm 1 summarizes the method.

Lemma 6. If J̄ : S→ 2J corresponds to the job-server assignment of an optimal solution to
the RSP, then Algorithm 1 will find an optimal solution of the RSP.

Remark 5. Let T̄ s
concat be the concatenation of T̄ s and T̄ s

RSP-s(K
s,qs). Solving the RSP-T

with a tour set T̄concat := (T̄ s
concat)s∈S yields a primal feasible solution to the RSP-J in case

that the RSP-T is not infeasible. This primal heuristic can be integrated into Algorithm 1 to
obtain an upper bound µ in every node.
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Algorithm 1 Combinatorial Branch-and-Bound for the RSP-J

Require: Data of the RSP-J
Ensure: (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S is an optimal solution to the RSP-J.

T̄ s← (ds),s ∈ S
T̄ (N)← (T̄ s)s∈S
add N to set of nodes
while set of nodes not empty do

pick N from set of nodes
for all s ∈ S do

Ks← Js \ J(T̄ s)
qs← endpos(T̄ s)
T̄ s

RSP-s(K
s,qs)← RSP-ss(Ks,qs)

ls← `
(
T̄ s

RSP-s(K
s,qs)

)
end for
l← (ls)s∈S
D̄RSP-T(T̄ (N), l)← RSP-T(T̄ , l)
λ (N)← `

(
D̄RSP-T(T̄ (N), l)

)
if λ (N)< µ then

if J(T̄ s) = Js ∀ s ∈ S then
for all s ∈ S do

append ds to T̄ s

T̄ s
OPT← T̄ s

set r̄s
OPT, t̄

s
OPT according to D̄RSP-T(T̄ (N), l)

end for
else

select ŝ ∈ S with K ŝ 6= /0
for all j ∈ Kŝ do

create node N1 with ( ja, jb) added to T̄ ŝ

create node N2 with ( jb, ja) added to T̄ ŝ

add N1 and N2 to set of nodes
end for

end if
end if

end while
return (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S

4.4. Finding an optimal server assignment: Solving the RSP. Due to Lemma 6, we
only need to find out the server assignment J̄ of an optimal solution. Then we can apply
Algorithm 1 to obtain an optimal solution to the RSP. Simple enumeration would mean
∏ j∈J |{s | j ∈ Js}| calls of Algorithm 1.

In this subsection we will propose another branch-and-bound algorithm: it reduces this
large number to a usually small set of candidates. For this purpose we need an additional
assumption: The distances need to satisfy the triangle inequality.

For a given assignment J̄ : S→ 2J we can use Lemma 4 to produce a lower bound. In
order to be able to branch on incremental assignment decisions, we will now extend this
bound to partial assignments. Each possibly partial assignment is completely determined by
the sets J̄s of jobs assigned to Server s for s ∈ S.
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Algorithm 2 Candidate Selection for the RSP

Require: Data of the RSP
Ensure: The set Ω contains an optimal server assignment

(
J̄s
)

s∈S of the RSP.
µ ← ∞

Ω← /0
for all s ∈ S do

J̄s(N)← /0
end for
add N to set of nodes
while set of nodes not empty do

pick N from set of nodes
for all s ∈ S do

T̄ s
RSP-s(J̄

s(N),ds)← RSP-ss(J̄s(N),ds)
end for
λ (N)←maxs∈S `

(
T̄ s

RSP-s(J̄
s(N),ds)

)
if λ (N)< µ then

if ∪s∈SJ̄s(N) = J then
add (J̄s(N))s∈S to Ω

for all s ∈ S do
qs← endpos(T̄ s

RSP-s(J̄
s(N),ds))

ls← δ s(qs,ds)
end for
T ← (T̄ s

RSP-s(J̄
s(N),ds))s∈S

l← (ls)s∈S
D̄RSP-T(T, l)← RSP-T(T, l)
if `
(
D̄RSP-T(T, l)

)
< µ then

µ ← `
(
D̄RSP-T(T, l)

)
end if

else
select j ∈ J \∪s∈SJ̄s(N)
for all s ∈ S do

if s ∈ Js then
create node N with j added to J̄s(N)
add N to set of nodes

end if
end for

end if
end if

end while
return Ω

Proposition 3. Let J1 ⊆ J2 ⊆ J and T̄ s
i := T̄ s

RSP-s(Ji,ds), i = 1,2, be optimal solutions the
corresponding RSP-s. Then we have

`(T̄ s
1 )≤ `(T̄ s

2 ) .

Proof. Let T̄ s be obtained by deleting all j ∈ J2 \ J1 from T̄ s
2 short-cutting the tour. Then,

by the triangle inequality, we have `(T̄ s)≤ `(T̄ s
2 ). Since T̄ s is feasible for the RSP-s with

respect to J1, the optimality of T̄ s
1 yields `(T̄ s

1 )≤ T̄ s. � �
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Due to Proposition 3 and Lemma 4 we can use the following lower bound

(27) λ (J̄) := max
s∈S

`
(
T̄ s

RSP-s(J̄
s,ds)

)
.

A node in the branch-and-bound algorithm now corresponds to a partial assignment. We use
the idea of Remark 5 to get a primal solution whenever we reach a leaf; this may improve
our current upper bound. Every leaf whose lower bound is below the current best upper
bound is a candidate for an optimal assignment.

The method for candidate collection is shown in Algorithm 2. We will write J̄(N) for the
partial assignment of node N, encoded by the sets J̄s(N)⊆ Js, i.e., the sets of jobs assigned
to Server s in Node N for s ∈ S.

Lemma 7. When the RSP is feasible, then the set Ω returned by Algorithm 2 contains the
server assignment of an optimal solution.

The top-level method solving the RSP is shown in Algorithm 3.

Algorithm 3 Combinatorial Branch-and-Bound (CBB) for the RSP

Require: Data of the RSP
Ensure: (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S is an optimal solution to the RSP.

µ ← ∞

get Ω by Algorithm 2
for all J̄ ∈Ω do

get D̄ := (T̄ s, r̄s, t̄s)s∈S by Algorithm 1
if `(D̄)< µ then

for all s ∈ S do
T̄ s

OPT← T̄ s

r̄s
OPT← r̄s

t̄s
OPT← t̄s

end for
end if

end for
return (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S

5. COMPUTATIONAL RESULTS

In this section, we present comprehensive computational results achieved by our al-
gorithm CBB for the RSP with data from the LSP problem and compare them to other
reasonable approaches based on running cplex on global MILP models.

It is important to note that our algorithm – though formulated for the general RSP –
was designed with the special properties of industrial-type LSP instances in mind. This
means that the results in the sequel and their interpretation is only valid for RSPs with
similar characteristics. The most important one is: Since we are interested in increasing the
productivity of the most expensive resources (the laser sources) by using fewer of them, the
problem is only interesting if the productivity of this resource is not satisfactory. Moreover,
since the total processing time is fixed and the solution with unshared resources almost uses
this processing time completely, a gain by sharing the laser sources among robots is only
possible if sharing does not necessarily increase the makespan too much. But this means,
that the bound from routing with resource sharing ignored must already be quite tight.
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FIGURE 1. Data file with two robots

Since we know of no other algorithms for the LSP, we will compare our method to
standard MILP approaches. Historically, collisions where not part of the LSP [12, 19, 17].
All mixed integer models are therefore described without collision avoidance. For each
model, we will discuss whether it can be extended to contain collision avoidance. Our own
algorithm was tested with and without collision avoidance whereever sensible.

5.1. Data Generation. We created two simulation models. Figure 1 shows the instance for
two robots with 40 jobs and Figure 2 the one for four robots and 40 jobs. Smaller instances
where obtained by dropping jobs one by one. In this way any instance with n jobs includes
all jobs of the instance with n−1 jobs. The job end positions are marked with tiny spheres,
same color indicates same job.

How long Robot s needs to move from Position p to Position q depends on the angle
settings at the positions and on the path planning. A position is usually given by six
coordinates (x,y,z,a,b,c), where (x,y,z) are the cartesian coordinates of the top of the
welding gun, and (a,b,c) specifies in which angle the welding beam hits the component.

To overcome the problem of non-unique distances, we fixed a unique, technically plausi-
ble angle setting for each position of the robots. For every measurement, we taught the robot
moves using these settings. We used linear path planning, which ensures that no collision
between the robots and the component will occur. More complex path planning may be
employed, but due the short distances, the speed up will usualy be neglectable.

We used KuKa’s built-in tool for collision checking. This works by specifiying two
sets of geometry components A and B and evaluating their intersection in the simulation
world. The tool will check only whether there are two components a ∈ A,b ∈ B colliding in
a particular position. In order to check a line-line collision (r, p1, p2,s,q1,q2), both lines
(p1, p2) and (q1,q2) were be discretized. Then we moved Robot r to every position p
and Robot s to every position q of their path discretization and checked for a collision.
Line-point collisions were checked in the same way.
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FIGURE 2. Data file with four robots

5.2. Mixed Integer Linear Models. We will now describe the mixed integer linear models
we use for comparision. This is not so much meant as a competition between proposed
solution methods. We rather want to show that various types of global polyhedral models
may cause problems because the scheduling part and the makespan objective make LP
relaxations weak. Optimal solutions to combinatorial subproblems, however, yield much
tighter bounds in significantly less time.

Our first MILP model is a model based on linear ordering variables and represents
compact models with variables for atomic decisions and consequently more complicated
side constraints. The makespan objective is evaluated using a continuous variable z. For
every job j the continuos variable x j measures the start time of the welding task j. The
binary variables m j,p indicate whether processing j is started at position p ∈ { ja, jb}. We
will write q as the corresponding end position, i.e., if p = ja then q = jb, and vice versa.
The job-robot assignment is described by v j,s ∈ {0,1}, the robot-laser source assignment by
us,l . For every pair j1, j2 of jobs the linear order variable y j1, j2 ∈ {0,1} denotes whether j1
is processed before j2.

Problem 3 (Linear Ordering (lo)).
minz

subject to

z− x j−δ
s(p,q)−δ

s(q,ds)≥−M(2−m j,p− v j,s) ∀ s ∈ S, j ∈ J,

p ∈ { ja, jb}(28)

x j−δ
s(ds, p)≥−M(2−m j,p− v j,s) ∀ s ∈ S, j ∈ J,

p ∈ { ja, jb}(29)

x j1 − x j2 +δ
s(p1,q1)+δ

s(q1, p2)≤M(5−m j1,p1 −m j2,p2

− v j1,s− v j1,s− y j1, j2) ∀ s ∈ S,∀ j1, j2 ∈ J,

pi ∈ { jia, jib}, i = 1,2,(30)
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x j1 − x j2

+ ∑
p1∈{ j1a, j1b}

m j1,p1 δ
s(p1,q1)+ τ

l ≤M(5− v j1,s1 − v j2,s2

−ul,s1 −ul,s2 − y j1, j2) ∀ l ∈ L,∀ s1,s2 ∈ S,

s1 6= s2,

∀ j1, j2 ∈ J, j1 6= j2(31)

∑
l∈L

ul,s = 1 ∀ s ∈ S(32)

∑
s∈S: j∈Js

v j,s = 1 ∀ j ∈ J(33)

m j, ja +m j, jb = 1 ∀ j ∈ J(34)

y j1, j2 + y j2, j1 = 1 ∀ j1, j2 ∈ J, j1 6= j2(35)

y j1, j2 ∈ {0,1} ∀ j1, j2 ∈ J, j1 6= j2(36)

m j,p ∈ {0,1} ∀ j ∈ J, p ∈ { ja, jb}(37)

x j ≥ 0 ∀ j ∈ J(38)

z≥ 0(39)

Constraint (28) measures the makespan, (29) ensures that the first job is not processed
before the robot can reach it, (30) measures the start times along the welding paths, and (31)
ensures that every laser source is used for at most one job at a time.

Nearly all constraints are modeled by using big-Ms. This tends to give poor bounds
in the LP relaxation. If we aggregate the information of m j,p and v j,s into the variable
ws, j,p ∈ {0,1} we can get rid of th big-Ms in (28) and (29), resulting in the following variant
of the linear order model above.

Problem 4 (Linear Ordering Variant (lov)).

minz

subject to

x j + ∑
s∈S

∑
p∈{ ja, jb}

(
δ

s(p,q)+δ
s(q,ds)

)
ws, j,p ≤ z ∀ s ∈ S, j ∈ J(40)

∑
s∈S

∑
p∈{ ja, jb}

δ
s(ds, p)ws, j,p ≤ x j ∀ s ∈ S, j ∈ J(41)

x j1 − x j2 +δ
s(p1,q1)+δ

s(q1, p2)≤M(3−ws, j1,p1

−ws, j2,p2 − y j1, j2) ∀ s ∈ S,∀ j1, j2 ∈ J,

pi ∈ { jia, jib}, i = 1,2(42)

x j1 − x j2

+ ∑
p1∈{ j1a, j1b}

(
δ

s1(p1,q1)+ τ
l)ws, j1,p1 ≤M(4−ws2, j2, j2a

−ws2, j2b

−ul,s1 −ul,s2 − yi, j) ∀ l ∈ L,∀ s1,s2 ∈ S,

s1 6= s2,

∀ j1, j2 ∈ J, j1 6= j2(43)

∑
s∈S: j∈Js

∑
p∈{ ja, jb}

ws, j,p = 1 ∀ j ∈ J(44)

y j1, j2 + y j2, j1 = 1 ∀ j1, j2 ∈ J, j1 6= j2(45)

y j1, j2 ∈ {0,1} ∀ j1, j2 ∈ J, j1 6= j2(46)

ws, j,p ∈ {0,1} ∀ s ∈ S, j ∈ J,
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p ∈ { ja, jb}(47)

x j ≥ 0 ∀ j ∈ J(48)

z≥ 0(49)

The following is straight-forward.

Lemma 8. Let µ be an upper bound for the makespan; moreover, let

d := max{ δ
s(p,q) | p,q ∈ Q with δ

s(p,q)< ∞,s ∈ S } .

Then M can be chosen as µ +2d +maxl∈L τ l . �

Remark 6. Both models need the triangle inequality for the actually needed times between
positions. While this is valid for our distance function (undelayed), care must be taken
in the presence of collision avoidance. A line-line collision can be resolved in two ways.
Either wait until the collision resource is available again or choose a different next position.
Choosing the detour may be faster because of less waiting time. This way the triangle
inequality may be violated.

A third model uses a large flow network for its decisions, modeling most of the logic in
its structure. It represents models using expanded graphs to reflect logical structures. The
model is based on the following idea. Instead of x j we use xl,i measuring the start time of the
i-th job processed using Laser Source l. Then we have xl,i ≤ xl,i+1 by construction, which
gives us the possibility to avoid big-Ms alltogether. For this purpose let Gs,l := G(V s,l ,As,l)
be a digraph with nodes

V s,l := {( j, p, i), j ∈ J, p ∈ { ja, jb}, i = 1, . . . , |J|}∪{ds} .

A tour of Robot s can now be viewed as a tour in Gs,l . Visiting Node ( j, p, i) is interpreted
as processing Job j starting at Position p as the i-th job on Laser Source l. Each robot can
choose one laser source to work with. This is modeled by choosing one graph Gs,l for each
robot.

The orders in which the robots process their jobs preserves the orders of the jobs on the
assigned laser sources. So, the arc sets are

As,l := {(v,w) ∈V s,l :v = ds∨w = ds

∨ v = ( j1, p1, i1),w = ( j2, p2, i2)∧ i1 < i2}

Besides the makespan variable z and the already mentioned time variables xl,i we have flow
variables ya ∈ {0,1},a ∈ Al,s. Let I := {1, . . . , |J|}.

Problem 5 (Flow Model (fm)).
minz

subject to

xl,i + ∑
s∈S

(( j,p,i),ds)∈As,l

(
δ

s(p,q)+δ
s(q,ds)

)
ys,l
(( j,p,i),ds)

≤ z ∀ l ∈ L, i ∈ I(50)

∑
s∈S

(ds,( j,p,i))∈As,l

δ
s(ds,( j, p, i))ys,l

(ds,( j,p,i)) ≤ xl,i ∀ l ∈ L, i ∈ I(51)

xl,i1 + ∑
s∈S

(( j1,p1,i1),( j2,p2,i2))∈As,l

(
δ

s(p1,q1)+δ
s(q1, p2)

)
ys,l
(( j1,p1,i1),( j2,p2,i2))

≤ xl,i2 ∀ l ∈ L,

i1, i2 ∈ I, i1 < i2(52)
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xl,i + ∑
s∈S

(( j1,p1,i1),( j2,p2,i2))∈As,l

i2>i1+1

(δ s(p1,q1)+ τ
l)yr,l

(( j1,p1,i1),( j2,p2,i2))

+ ∑
s∈S

(( j,p,i),ds)∈Ar,l

(δ s(p,q)+ τ
l)ys,l

(( j,p,i),ds)
≤ xl,i+1 ∀ l ∈ L, i ∈ I,

i < |J|(53)

∑
l∈L

∑
(ds,v)∈As,l

ys,l
(ds,v) ≤ 1 ∀ s ∈ S(54)

∑
(w,v)∈As,l

ys,l
(v,w)− ∑

(v,w)∈As,l

ys,l
(w,v) = 0 ∀ l ∈ L,s ∈ S,

v ∈V s,l(55)

∑
l∈L
s∈S

∑
(v,( j,p,i))∈Al,s

ys,l
(v,( j,p,i)) = 1 ∀ j ∈ J(56)

∑
s∈S

∑
(v,( j,p,i))∈As,l

ys,l
(v,( j,p,i)) ≤ 1 ∀ l ∈ L, i ∈ I(57)

ys,l
a ∈ {0,1} ∀ l ∈ L,s ∈ S,

a ∈ As,l(58)

xl,i ≥ 0 ∀ l ∈ L, i ∈ I(59)

z≥ 0(60)

The makespan is measured in (50), and (51) evaluates the start time of the first job of each
robot. Constraint (52) evaluates the start times along the robot paths; and (53) calculates
the waiting times for the laser sources. The assignment of robots to laser sources is done by
the robot packing constraint (54). The laser packing constraint (57) ensures that only one
job is welding at a time using laser source l. The partitioning constraint (56) guarantees
that every job is processed exactly once.

Remark 7. In this model we used the following assumption: as soon as all robots have been
assigned a laser source, specifing the order of the jobs on the laser sources fully describes
the solution. This is not true if collisions are taken into account. Here we cannot directly
check whether two robot moves overlap if they are connected to different laser sources.

Our last model is a time space network model as often used in column generation
approaches. Our computational results were not obtained by column generation, though.
Therefore, it is possible that the solution times of the LP relaxations for this model can
be improved. However, the problem that the integrality gap of the master problem will
remain fairly large because of the makespan objective cannot be cured by column generation
alone. Moreover, all constraints like resource sharing involving more than one server must
enter the master problem, leading to an even larger integrality gap in the master problem.
This model represents approaches that can be turned into column generation models by
Dantzig-Wolfe decomposition. Note that this model needs that time is discretized, and the
corresponding discretization error is not neglectable, since many small, rounded durations
in tours that must be synchronized finally add up to the makespan (in our tests, rounding
errors w.r.t. a step-size of 0.1s sometimes add up to 10 % of the optimal makespan!).

Let all distances be integer, and let µ be an upper bound for the makespan. Then the time
periods to be considered are {0,1, . . . ,µ}. Let Gs,l = (V s,l ,As,l), Gl := (V l ,Al) be directed



26 JÖRG RAMBAU AND CORNELIUS SCHWARZ

graph with node sets

V s,l := {( j, p, t), j ∈ J, p ∈ { ja, jb}, t = 0, . . . ,µ}∪{ds}(61)

V l := {(s, j, p, t),s ∈ S, j ∈ J, p ∈ { ja, jb}, t = 0, . . . ,µ}∪{dl}(62)

The interpretation of node ( j, p, t) ∈ V s,l is the same as above with the exception that t
encodes the start time of the job. The feasible solutions of the model can be interpreted as a
tour for every robot and a tour for every laser source. When Robot s starts welding at node
( j, p, t), then Laser Source l also has to start service at node ( j, p, t). This blocks the laser
source for all other robots until the processing of the job has finished.

There are three types of arcs in As,l . The first are starting and go-home arcs of the
form (ds,v) and (v,ds). The second type are processing and moving arcs leading from
( j1, p1, t1) to

(
j2, p2, t2,δ s(p1,q1)+δ s(q1, p2)

)
. The last type are waiting arcs of the form

( j, p, t, j, p, t + 1). Waiting is always done in front of the first job position of a job to be
processed. The arc set Al is very similar. The only difference is the duration of a weld-and-
move arc. If the source and the target node belong to the same robot, then the duration is
only δ s(p,q), otherwise the switching time τ l must be added.

Besides the makespan variable z, there are two type of binary flow variables xs,l
a ,a ∈ As,l

and yl
a,a ∈ Al . Collision avoidance in this model would require set packing on time slots: a

huge blow up with weak LP bounds.

Problem 6 (Time-Space Network (tsn)).
minz

subject to

∑
(( j,p,t),ds)∈As,l

(
t +δ

s(p,q)+δ
s(q,ds)

)
xs,l
(( j,p,t),ds)

≤ z ∀ l ∈ L,s ∈ S(63)

∑
l∈L
s∈S

(( j,p,t),( j′,p′,t ′))∈As,l

j 6= j2

xs,l
(( j,p,t),( j′,p′,t ′))+ ∑

(( j,p,t),ds)∈As,l

xs,l
(( j,p,t),ds)

= 1 ∀ j ∈ J(64)

∑
l∈L

∑
(ds,v)∈As,l

xs,l
(ds,v) ≤ 1 ∀ s ∈ S(65)

∑
(v,w)∈As,l

xs,l
(v,w)− ∑

(w,v)∈As,l

xs,l
(w,v) = 0 ∀ l ∈ L,s ∈ S,

v ∈V s,l \{ds}(66)

xs,l
(( j,p,t),ds)

+ ∑
(( j,p,t),( j′,p′,t ′))∈As,l

j 6= j′

xs,l
(( j,p,t),( j′,p′,t ′)

− yl
((s, j,p,t),dl)− ∑

((s, j,p,t),(s′, j′,p′,t ′))∈Al

j 6= j′

yl
((s, j,p,t),(s′, j′,p′,t ′)) = 0 ∀ l ∈ L,

(s, j, p, t) ∈Vl(67)

∑
(dl ,v)∈Al

yl
(dl ,v) ≤ 1 ∀ l ∈ L(68)

∑
(v,w)∈Al

yl
(v,w)− ∑

(w,v)∈Al

yl
(w,v) = 0 ∀ l ∈ L,v ∈V l \{dl}(69)

xs,l
a ∈ {0,1} ∀ l ∈ L,s ∈ S,a ∈ As,l(70)

yl
a ∈ {0,1} ∀ l ∈ L,a ∈ Al(71)

z≥ 0(72)

z ∈ Z(73)
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FIGURE 3. Two robots, one laser source: Known gaps after 1 h
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FIGURE 4. Four robots, three laser sources: Known gaps after 1 h

5.3. Performance Metrics. The yard stick for all test runs was a primal bound generated
by our method with a time limit of one day. To this end, we ran our algorithm in two
variants: CBB without collision avoidance and CBB(coll) with collision avoidance. After
one day the execution was stopped, and the best found feasible solution and its cost were
recorded. We call this the yard-stick solution, and the corresponding assignment of jobs to
robots is the yard-stick assignment. There was not enough time to let the other models run
for one day on all instances, but checking just a few instances showed CBB was the only
method to generate primal bounds for every instance in one day. In the test computations
we wanted to reveal why CBB performs so well on our test data.

We first compared various aspects for all methods on instances of various sizes, where
the method for the MILP models of the previous subsection is to solve them by cplex with
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FIGURE 5. Two robots, one laser source: Value of relaxation
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FIGURE 6. Four robots, two laser sources: Value of relaxation

default parameters (except the LP solution method, where we took the fastest one for each
MILP):

• For every method, how large is the gap after one hour between the cost of its the
best solution and its best dual bound? This gives a hint about how useful a method
is, if it is the only one used.

• For every method, how large is the value of the corresponding relaxation (LP
relaxation for MILP; combinatorial routing relaxation for CBB)? This gives a hint
about how tight the model is and, therefore, how many branch-and-bound nodes
cplex will need to close the gap.

• For every method, how long does it take to compute the relaxation? This gives a hint
about how difficult the relaxation is and, therefore, how many branch-and-bound
nodes cplex will manage to process per time unit.
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FIGURE 7. Two robots, one laser source: Solving time of relaxation
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FIGURE 8. Four robots, three laser sources: Solving time of relaxation

To investigate further the outcome of these tests, we tested the methods when restricted
to a fixed assignment of jobs to robots (LSP-J). It is our impression that the core of the
problem lies in this subproblem. For all tests on LSP-J we fixed the variables according to
the yard-stick assignments.

• For every method, how large is the value of the corresponding relaxation (LP
relaxation for MILP; combinatorial LSP-s relaxation for CBB)?

• For every method, how long does it take to solve the corresponding relaxation?

All tests have been carried out on an Intel Xeon quad core processor with 2.33Ghz and
64 GB memory running ubuntu linux 8.04 in 64 bit mode. We used cplex 12.1 for all
mixed integer models, including the subroutine solving RSP-T in Algorithm 1. The RSP-s
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10 jobs 20 jobs
lo lov net tsn lo lov fm tsn

#vars 138 132 16052 105602 469 454 230022 514300
#cons 643 597 376 7937 2112 2032 1291 21059

#nz 4138 3334 92134 324965 13837 11232 1353628 1637552

30 jobs 40 jobs
lo lov fm tsn lo lov fm tsn

#vars 1001 978 1131992 1435406 1734 1704 3777002 3372946
#cons 4577 4459 2806 39839 8338 8178 4981 68835

#nz 30351 24864 6708656 4614926 55768 45694 22458970 10940231

TABLE 1. Selected problem sizes for LSP, two robots, one laser source

10 jobs 20 jobs
lo lov fm tsn lo lov fm tsn

#vars 148 142 26552 231122 479 464 421022 1206350
#cons 1077 1031 1106 19509 3510 3430 3831 55501

#nz 7764 7280 151122 676786 25487 23826 2473548 3703963

30 jobs 40 jobs
lo lov fm tsn lo lov fm tsn

#vars 1011 988 1903052 2835248 1744 1714 6051962 6610220
#cons 7831 7713 8356 90179 14356 14196 14861 156951

#nz 57521 54322 11267976 8719915 14356 100600 35966622 20497264

TABLE 2. Selected problem sizes for LSP with four robots, three laser sources

subproblems were solved by our own branch-and-cut solver implemented in the framework
SCIP 1.2. Here, cplex was used as the underlying LP solver.

5.4. Results. The first test ran all mixed integer models as well as our algorithms CBB and
CBB(coll) on all instances with time limit one hour. Figure 3 shows the known gap for one
laser source, two robots. Figure 4 shows the same for four robots and three laser sources.

Instances with two robots and up to eight jobs could be solved by any algorithm to
optimality, while in none of the MILP models cplex could obtain a primal feasible solution
for more then 25 jobs. With four robots, it seems to be easier for cplex to obtain a primal
bound for the MILP models, but the gaps are still huge for more than ten jobs. This is
getting worse when more laser sources are available, probably because the assignment of
robots to laser sources is now part of the optimization process. Our combinatorial branch-
and-bound algorithms CBB was able to solve all four-robots instances with three laser
sources to optimality and always found a primal solution with a small gap for the one-laser
source instances; this performance did not suffer, when collision avoidance was observed
by CBB(coll).

Of course, the time limit of one hour is arbitrary, and in a close call between various
methods corresponding results might be misleading. However, we tried to find time limits
more in favor of any of the other methods: we did not find any.

More systematic findings are revealed by the structural results on relaxation effectivity
and efficiency. Figures 5 and 6 show the dual bounds coming from the LP relaxation of the
instances. The time needed to solve these is given in 7 and 8. It is apparent that both LP
relaxations of the linear ordering models are fast to solve but not tight enough, whereas the
LP relaxation of the time-space network model is tighter but takes way too much time to
solve for a successful use in a branch-and-bound scheme. The flow model is somewhere in
the middle, but degrades in performance when four robots need to share three laser sources.
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FIGURE 9. Two robots, one laser source: Value of relaxation
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FIGURE 10. Four robots, two laser sources: Value of relaxation

The solution times for the LP relaxations can be understood by looking on the problem
sizes: The sizes of the mixed integer models of selected instances can be found in Tables
5.3 and 5.3. The time-space network model becomes very large when the number of jobs is
increasing. The larger instances could not be solved by the primal or dual simplex method;
the barrier had to be used instead.

So, why do CBB and CBB(coll) work better than cplex on the MILP-models? The main
reason lies in the approach to the subproblem LSP-J and dual bounds for it. Recall that CBB
receives the relevant lower bounds from the solution of instances of LSP-s, an NP-hard
single-server routing problem. The MILP methods use LP relaxations as dual bounds.

We therefore performed tests on LSP-J. The data is generated by prescribing the yard-
stick assignment – the best solution found by CBB or CBB(coll) after one day. By this
fixing, the size of the linear order based models changes only marginally, so we just specify
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FIGURE 11. Two robots, one laser source: Solving time of relaxation
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FIGURE 12. Four robots, three laser sources: Solving time of relaxation

the size of the flow model and the time-space network, see Tables 3 and 5. In order to
indicate the problem size of the LSP-s relaxation, we specify for it the number of nodes in
each robot routing graph; this is twice the number of jobs plus one for the depot position,
see Tables 4 and 6.

Figures 9 and 10 give the dual bound of the root relaxation for LSP-J. The computation
times are given in Figures 11 and 12. As we can see, the LSP-s relaxation provides the
strongest bound, and the computation times show that the solution of the LSP-s relaxation
scales very well with respect to the number of jobs. The time-space network approach
suffers from extremely long computation times, and using it as an often-called subproblem
in a solution process seems prohibitive. This even more so, since its bounds are still worse
than the ones from LSP-s, which can be obtained much faster by our polyhedral ATSP solver.
The aggregated picture of results in Figure 13 shows very well that the LSP-s bound is
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10 jobs 20 jobs 30 jobs 40 jobs
fm tsn fm tsn fm tsn fm tsn

#vars 7612 55670 139942 331316 734432 952750 2383882 2172360
#cons 296 5723 1091 16935 2386 32425 4181 55225

#nz 43478 1069312 822926 1049625 4351438 3058073 14173046 7034732

TABLE 3. Selected problem sizes for LSP-J with two robots, one lasersource

10 jobs 20 jobs 30 jobs 40 jobs

r1 11 19 31 43
r2 11 23 31 39

TABLE 4. Number of nodes in LSP-s relaxation for two robots

10 jobs 20 jobs 30 jobs 40 jobs
fm tsn fm tsn fm tsn fm tsn

#vars 12032 122474 278462 793358 1159292 1865378 3856922 4273994
#cons 866 14049 3231 44617 7096 733331 12461 125907

#nz 67794 354220 1634754 2436589 6859914 5708605 22915554 13241668

TABLE 5. Selected problem sizes for LSP-J with four robots, 3 laser source

10 jobs 20 jobs 30 jobs 40 jobs

r1 3 3 11 15
r2 9 19 21 27
r3 5 11 19 27
r4 7 11 13 15

TABLE 6. Number of nodes in LSP-s relaxation for four robots

always inside a rectangle of good effectivity and good efficiency, whereas the other methods
either are ineffective for many instances or inefficient. Note, that the scale is logarithmic.

One might conjecture that the good quality of the routing-based bound of the LSP-s en-
ables us to hierarchically decompose the problem by a route-first-schedule-second approach
and still achieve good solutions. Figure 14 shows the gaps of solutions found by taking
routing-optimal solutions (no resource sharing at all) and laser-sharing optimal solutions
(no collision avoidance), resp., and performing a collision-aware rescheduling on them. In
more than neglectably many of our instances this leads to substantial gaps. For example, if
the possible makespan with one instead of two laser sources is 30 s, a gap of 10 % means
that only a solution with makespan 33 s can be found. If the process cycle time is, say, 32 s,
this is the difference between halving the investments for laser sources, i.e., tremendous
savings, and nothing.

One more thing: Collision avoidance might appear nit-picking at first sight because in
many cases the makespan does not increase too much. In order to illustrate how different
the corresponding solutions can be, we show in Figure 15 a snapshot of an optimal solu-
tion without collision avoidance and two snapshots of an optimal solution with collision
avoidance. It is pretty clear that the solution with collision avoidance has a totally different
routing. This routing leads to a solution where the robots are never in the middle area at the
same time, whereas the solution without collision avoidance allows both robots to meet in
the middle. A route-first-schedule-second approach would just let one of the robots wait so
that collisions are avoided; yet, their routings would still let them come close in the middle.
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It is very likely that the more conservative solution produced by our concept of collision
avoidance would be favored by most engineers.
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FIGURE 15. Snapshots of an optimal collision-ignoring (left) and an
optimal collision-avoiding (middle and right) solution

6. CONCLUSIONS

We have introduced the laser sharing problem in the strategic planning of the welding
process in car body manufacturing. The application poses three structural problems that
make it particularly difficult and interesting: it combines routing and scheduling, the
makespan has to be minimized, and proven optimality is needed to decide the question
about how many laser sources are needed to process all welding tasks in the process cycle
time.

The laser sharing problem fits into a general framework that combines routing and
scheduling aspects at the same time. As a generic model, we presented the Routing &
Scheduling Problem (RSP), for which we designed and analyzed a combinatorial branch-
and-bound algorithm. In particular, we presented a pseudo-polynomial time dynamic-
programming algorithm for the important scheduling subproblem with given routings when
the number of resources is bounded.

The global algorithm heavily utilizes exact solutions to NP-hard combinatorial subprob-
lems for dual bounds. We showed that on instances with industry-type characteristics of
the laser sharing problem we started with, this algorithm is the first to solve instances of
industrial scale close to optimality with certificate.

We think that the combination of routing and scheduling via resource sharing plays a role
in many different contexts. The RSP provides a unified framework to investigate examples
and to formulate algorithms. It is most likely that the performance of algorithms will depend
on the characteristics of data in the respective application domain. Therefore, a lot has to be
done to clarify the global landscape of routing and scheduling.
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