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ABSTRACT. We investigate the problem of dispatching arc welding robots in car body
manufacturing. Such arc welding robots receive their energy from expensive laser sources.
Laser sources can be shared among the robots. However, this requires that the robots are
scheduled because each laser source can only be used by one robot at a time. We want to
compute the minimal number of laser sources necessary to perform all welding tasks in a
given processing time. To this end, we introduce the Laser Sharing Problem (LSP): for a
given number of laser sources, find collision-free scheduled tours for all robots through all
welding jobs so that the makespan is minimized. We propose a branch-and-bound algorithm
for the LSP using bounds that stem from optimal solutions to carefully selected NP-hard
combinatorial subproblems. This is the first algorithm for the LSP that is able to solve
industrially relevant problem scales.

1. INTRODUCTION

The investigations in this paper were directly motivated by a real-world problem in car
body manufacturing [5]: find a way to dispatch a set of laser welding robots so that the
expensive laser sources can be used for more than one robot without exceeding the fixed
total processing time (details will follow). Since any laser source can serve only one robot
at a time, this poses a job-scheduling-dependent resource constraint on an otherwise routing
based optimization problem, and the interesting objective is not the distance traveled or the
weighted sum of delays but the makespan.

And this makes the problem mathematically extremely interesting. We do not know of
any application context where an exact algorithm was proposed for a problem of this type.
In this paper, we propose an exact algorithm that solves the so-called laser sharing problem
(formally defined below) to proven optimality or provably close to it for industry-relevant
problem scales (≈ 30 welding jobs, ≤ 4 welding robots, ≤ 4 laser sources).

Now let us state in more detail (though still informally) what the laser sharing problem
is about. Some car manufacturers use laser welding technology for the assembly of car
bodies. The advantage is the possibility to weld along lines not only at single spots. We do
not want to discuss the engineering pros and cons of this technique. We directy proceed to
the set-up of a welding cell: In a welding cell there are two to six, usually four, industry
robots simultaneously working on the around 30 welding jobs in a fixed process cycle
time of around 30 s, given by the construction department. Traditionally, these robots are
heuristically dispatched minimizing empty moves. If each robot has its own energy source
for welding, a laser source, then it suffices to specify the assignment and order of jobs
for each robot. However, in practice this leads to large idle-times of the laser sources,
namely during all the non-welding moves of the robots (the welding jobs are far from being
connected).
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A straight-forward idea is to let one laser source supply more than one robot with energy,
but only one at a time. Since the total time spent in non-welding moves is large, this is
possible if the robots weld alternatingly. But this means: their movements are coupled by
time-dependent resource requirements. A dispatch minimizing empty moves may be either
infeasible in the presence of laser source sharing or it may exceed the processing time when
waiting is used to respect all resource constraints. The resource constraints must be taken
into account when assigning jobs to robots and planning the tours. Moreover, the orders
of jobs in tours in not sufficient anymore to encode a solution, since it must be explicitely
decided which robot welds when.

The overall goal is: find the minimal number of laser sources so that there exists a
feasible dispatch. That is, an assignment of jobs to robots, an assignment of robots to laser
sources, tours for all robots through their assigned jobs, and a scheduling of all departure
times satisfying the laser resource constraint so that the makespan does not exceed the
given total processing time. This task can be accomplished by finding a makespan-minimal
dispatch for any number of laser sources. And this, finally, is the laser sharing problem
(LSP) (collision avoidance is ignored for the moment).

The resource constraints and the makespan objective make the LSP hard and interesting
at the same time. In this paper, we show how to solve industry-scale instances of it with
performance guarantees. To this end, we propose a branch-and-bound method, which is
based on bounds coming from the solutions of NP-hard subproblems. These are solved to
optimality by means of state-of-the-art MILP techniques. The investigation of the relations
between various subproblems of the laser sharing problem plays a key role in the design of
the dual bounds.

Why do we deliberately choose to solve NP-hard subproblems? Branch-and-bound is a
divide-and-conquer approach; thus, one has to balance the difficulty of the subproblems
with the difficulty of the tree exploration. Only if the subproblems capture at least one part
of the problem structure faithfully, the remaining parts of the problem can be hunted down
in the enumeration. The LP-relaxations of global models that we investigated either leave
too much work for the enumeration or are not polynomial either.

Why do we succeed in solving these subproblems fast enough? The important observation
is that a large-scale instance of LSP requires only small-scale instances for the NP-hard
subproblems – given state-of-the art MILP techniques.

Our algorithm is able to cope with another side constraint without which the solution
method would not be convincing: collision avoidance. We tried hard to find a generally
accepted input data concept for collisions among industry robots, and we could not find
anything but simulation by means of commercial tools. This, however, can not be used as a
model in an exact solver. Thus, we suggest a collision model based on a classification of
collisions into line-line-collisions and line-point-collisions that have to be avoided in the
most conservative fashion. Meanwhile, this model has partly been adopted in [15, 16].

Short, preliminary versions of the algorithm for the laser sharing problem without
collision avoidance have already been presented together with preliminary computational
results in [11]. The incorporation of collision avoidance required the extension of the
Tuchscherer model from [5]. The resulting algorithm is yet cleaner and more powerful than
the older version. A preliminary version with collision avoidance together with preliminary
computational results was presented in [13] and formally introduced in [12].

1.1. Related Work. In the vehicle routing literature, the term scheduling usually refers
to capacity or time window constraints [14, 3]. These have been generalized by resource
extended functions (REFS) [8]. Using REFS one can measure the resource consumption
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along a vehicle paths. This is especially useful in resource constraint shortest path problems.
Hempsch and Irnich [6] also extended this concept to global resources, i.e., resources that
affect more than one vehicle. However, these are non renewable while for laser source
sharing and collision avoidance we need renewable resources. For this REFS cannot be
used.

Recently Welz and Skutella [16] studied point welding robots. They purpose was to
find collision free robot tours. For this they proposed a column generation based approach
where they integrated the cycle time as a hard constraint and the objective is to minimize
operating costs instead of the makespan. The important difference to arc welding robots is
the absence of laser source sharing. Determining the minimum number of required laser
sources makes an infeasibility proof mandatory in LSP.

In her PhD thesis, Knust [10] analyzed shop scheduling problems with transportation
robots. In this situation the robots are used to transfer the jobs between the machines. A
transportation move can be modeled as an additional task to be processed on some robot
machine. After assigning robots to the transportation operations we obtain a shop scheduling
problem where the robot moves are modeled as disjunction which are weighted with the
robot driving times.

None of the exact approaches known to us can handle sharing of renewable resources
and a makespan objective at the same time.

1.2. Our contribution. In this paper, our comprehensive study of the laser sharing problem
goes beyond the conference presentations in [11, 12] in the following aspects: We present

• a unified framework for shared resources which generalized laser sources as well
as collision avoidance,

• a report on comprehensive computational results for our algorithm applied to the
laser sharing problem with laser sharing and collision avoidance, where the data is
based on an industry-standard simulation tool and a geometrically plausible (yet
artificial) set of welding jobs.

The result most relevant for practice can be summarized as follows: our LSP-algorithm is
the first one that can solve a large part of our industrial-scale benchmark instances of the
laser sharing problem to proven optimality. Bounds obtained by the exact solution of the
NP-hard subproblems (combinatorial relaxations) are significantly tighter and at the same
time much faster to compute than bounds based on LP-relaxations of reasonable MILP
models.

1.3. Overview of this paper. The paper is organized as follows: In Section 2 we formally
introduce the laser sharing problem and our new concept for collision avoidance. Moreover,
our abstract framework for resource constrained routing and scheduling problems RSP is
presented. Next, in Section 3 we describe the ideas, the building blocks, and the overall
design of the new algorithm CBB. In Section 4.3 we present computational results based on
data obtained by a professional robot simulation tool by KuKa. We compare the quality of
bounds generated by the new algorithm with seemingly more straight-forward approaches.
Finally, we draw conclusions in Section 5.

2. PROBLEM STATEMENT

An instance of the Laser Sharing Problem LSP consists of a set S of robots (the servers),
a set J of jobs, a set Js ⊆ J of feasible jobs for every s ∈ S, a set L of laser sources, a set Cll
of line-line collisions, a set Clp of line-point collisions, and a distance table δ .
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Each Robot s ∈ S has a depot position ds where the tour has to start and to end. Each
job j ∈ J has two job positions ja, jb. For every Server s let Gs = (V s,As) be the complete
directed graph with node set V s := {ds}∪ { ja, jb | j ∈ Js}. Processing a job means to
traverse either arc ( ja, jb) or ( jb, ja).

For (p,q) ∈ As let δ s(p,q)≥ 0 denote the time that Robot s needs to get from p to q. If
p and q are end positions of the same welding job, then the move (p,q) is done in welding
mode, which means that Robot s is processing the corresponding job; otherwise it is done
in driving mode. Our distances are assumed to satisfy the triangle inequality. When Laser
Source l switches robots, then there is a delay of τ l ≥ 0.

A line-line collision is a pair (a,a′) ∈ Cll of arcs a ∈ As,a′ ∈ As′ with s,s′ ∈ S. The
meaning of this data is that the moves of s along a and of s′ along a′ must not overlap in
time. The motivation is as follows: Whenever there are positions qs on a and qs′ on a′ for
which the geometries of the robots s and s′ are not disjoint, a collision cannot be excluded.
The restriction to seperate such movements completely in time is the most conservative
modelling decision.

Similarly, a line-point collision (a,v′) ∈Clp means: Robot s′ residing at Node v′ will
collide with Robot s moving along Arc a. Here, we do not allow Robot s′ to visit v′ while s
is processing a. Note that v′ is also an intermediate point for every arc (v,v′),(v′,v) ∈ As′ .
Thus line-point collisions always induces line-line collisions.

In the following, bars on symbols indicate decisions. The task in the LSP is to compute
a scheduled dispatch D̄ := (T̄ s, t̄s, r̄s)s∈S, i.e., to assign to each robot s ∈ S a set of jobs J̄s to
process, a tour T̄ s = (ds = v1, . . . ,vns = ds) in Gs, a laser source r̄s ∈ L used for welding,
and a schedule t̄s that assigns a departure time t̄s(v) to each visited node v in the tour T̄ s

such that
• each job j is processed in exactly one tour T̄ s;
• jobs assigned to robots s,s′ sharing a laser source r̄s = r̄s′ do not overlap in time

with respect to the corresponding schedulings t̄s and t̄s′ ;
• all robot moves are collision free in the sense described above with respect to the

corresponding schedulings.
The completion time of each robot is the time it arrives back at ds according to the schedule
of its tour. The goal is to minimize the makespan, which is the maximum over the completion
times of the robots.

Remark 1. We do not allow preemption. This means: whenever a robot starts driving or
welding from one position to another, then the whole move is done at once. Therefore,
waiting is only possible at the depot position or at one of the job positions.

As special cases we introduce
• LSP-J where we assume that an assignment J̄ : S→ 2J of jobs to robots is fixed.
• LSP-T where in addition to LSP-J also a tour T̄ s for every robot s is given and thus

only an optimal schedule has to be found.
• LSP-s where only a single robot is present, so resource-sharing is void.

We will now propose a general model for shared resources. It covers the laser source
sharing as well as collision avoidance, which can be seen as some kind of sharing a space
resource.

In vehicle routing, resources traditionally mean capacity restrictions or time windows
[14]. These have been generalized by resource extended functions [9]. However, in the
LSP we are faced with renewable resources. Such resources are common, e.g., in project
scheduling (see for instance [2]). Therefore, our approach encompasses completely new
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situations that have been investigated neither in the vehicle routing nor in the scheduling
literature so far.

The key idea for a unified model for laser source sharing and collision avoidance is to
distinguish between resource types and resources. A resource type R is a set of resources
R= {r1, . . . ,rh}. For example, laser source is a resource type, consisting of all the individual
laser sources available to the robots. The individual laser sources are resources.

To every arc a and every node v, there is a set ρ(a) and ρ(v), resp., of required resource
types. Before a robot can traverse a or reside at v, a specific resource has to be selected
from each required resource type. This will be called resource selection. All selections are
applied globally, i.e. two arcs or nodes of the robot’s tour wich require the same resource
type will be processed with same resource, e.g. switching a laser source along a path is not
allowed.

An ordinary resource such as a line-line collision can be modeled as a resource type
containing only a single resource. In such cases the resource selection is trivial.

The time for a resource r ∈ R to switch to a different robot will be denoted by τr. For
the resource “laser source”, this is the delay to switch to another robot, for the collision
resources this can be used to seperate movements with potential collisions in an even more
conservative fashion.

3. A COMBINATORIAL BRANCH AND BOUND ALGORITHM

Our algorithm is a two-phase branch-and-bound approach: The first phase will reduce
LSP to a usually small set of LSP-J instances. In the second phase, each of these instances
is solved to optimality. Throughout the algorithm we will make use of subproblems of type
LSP-s and of type LSP-T. The main observation is that, although both subproblems are
NP-hard, they can be solved to optimality very fast for the relevant problem scales. This
provides us with strong lower bounds, which are the key in solving industrial scale instances
of LSP to optimality. In the section on computational results, we will compare these bounds
in both evaluation time and quality to an integer programming model for LSP based on a
time-space network. These models are known to provide good lower bounds, and some
readers might suspect that a model of that type should be able to solve the LSP, too.

We start with a mixed integer programming formulation that we use to solve the
LSP-s and LSP-T subproblems. Then we describe the phase-two algorithm for LSP-J.
In the last subsection we cover the phase-one method and the top level algorithm.

We will use `(T̄ s) to denote the length of a tour, i.e., the sum over the distances of all
used arcs. For a scheduled dispatch D̄ := (T̄ s, t̄s, r̄s)s∈S, we write `(D̄) for its makespan.
This is the time when the last server is back to its home position after all requests have been
served.

3.1. The Single Server Problem: LSP-s. The single server problem LSP-s is a pure
routing problem on the complete directed graph G = (V,A) with vertex set V := {ds}∪
{ ja, jb | j ∈ J̄(s)}. It can be modelled as an asymmetric traveling salesman problem with
the additional constraint that for every job j ∈ J̄(s) one of the two arcs ( ja, jb) or ( jb, ja)
must be part of the solution. We use the following integer programming formulation:

Problem 1 (LSP-s).

min ∑
(v,w)∈A

δ
s(v,w)xv,w
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subject to

∑
(v,w)∈A

xv,w = 1 ∀ v ∈V(1)

∑
(v,w)∈A

xv,w = 1 ∀ w ∈V(2)

∑
(v,w)∈A∩(U×U)

xv,w ≤ |U |−1 U ⊂V,2≤ |U | ≤ |V |−2(3)

x ja, jb + x jb, ja = 1 ∀ j ∈ J̄(s)(4)

xv,w ∈ {0,1} ∀ (v,w) ∈ A(5)

Note that this is just the standard ATSP model (see for instance [4]) with additional
constraints (4). These additional constraints guarantee that all jobs are processed. Since the
convex hull of all LSP-s-solutions is contained in the ATSP polytope, every valid inequality
from the ATSP literature can be used as a cutting plane for the LSP-s as well. We denote by
TLSP-s

s(J,v) an optimal tour for the LSP-s for Server s starting at some node v, processing
all jobs in J and ending at ds.

3.2. The Fixed Dispatch problem: LSP-T. In the LSP-T every robot has a prescribed
tour T̄ s = (v1, . . . ,vns). Let ρs(T̄ s) denote the set of all required resource types by arcs
and nodes of the tour. The goal is to find a resource selection r̄s and a makespan minimal
schedule (t̄s)s∈S without resource conflicts.

Our mixed integer programming model is based on a model that was proposed by
Grötschel, Hinrichs, Schroer, and Tuchscherer [5] for the LSP-T without collision avoidance.
We have to determine a schedule t̄s and a resource selection r̄s. We will measure the
departure times t̄s

i by the continuous variables xs
i ≥ 0. These times will be bounded from

below along the tour by
xs

i +δ
s(vi,vi+1)≤ xs

i+1 .

Measuring the makespan using the artificial variable z≥ 0 can be done by

xs
ns ≤ z, ∀ s ∈ S .

The resource selection will be described by the binary variables us,r. We assign each server
to exactly one resource of each needed type:

∑
r∈R

us,r = 1, ∀ s ∈ S,R ∈ ρ
s(T̄ s) .

When two servers are using the same resource for an arc, we have to decide which one is
allowed to use it first and which one has to wait. This will be modeled using binary linear
ordering variables yvi,w j where vi,w j are the tails of the arcs. Here, yvi,w j = 1 means, that arc
(vi,vi+1) is processed by Server s before s′ is allowed to use (wi,wi+1). With M sufficiently
large we demand for all resource types R shared by these arcs and all r ∈ R

xs
i +δ

s(vi,vi+1)+ τ
r− xs′

j ≤M(3−us,r−us′,r− yvi,w j) .

Because a server blocks all local resources while residing at a node, node resources must
be handled differently. Recall that the resource demand of vi is also part of (vi,vi+1) and
(vi−1,vi). Thus, if the arc (w j,w j+1) shares a resource with vi we only traverse this arc
before (vi−1,vi) is started or after (vi,vi+1) has been completed:

yvi−1,w j = yvi,w j whenever vi and (w j,w j+1) are in conflict .
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This can be written as

yvi−1,w j − yvi,w j ≤ 2−us,r−us′,r

yvi,w j − yvi−1,w j ≤ us,r +us′,r−2 .

If a conflict for a node resource occurs at a depot, i.e., i = 1 or i = n, then the move
(w j,w j+1) has to happen after the move (v1,v2) and before the move (vn−1,vn):

1− yv1,w j ≤ 2−us,r−us′,r

1− yw j ,vn−1 ≤ 2−us,r−us′,r .

We now summarize the whole model:

Problem 2 (LSP-T).

min z(6)

subject to

xs
ns ≤ z ∀ s ∈ S(7)

xs
i +δ

s(vi,vi+1)≤ xs
i+1 ∀ s ∈ S, i = 1, . . . ,ns−1(8)

xs
i +δ

s(vi,vi+1)(9)

+ τ
r− xs′

j ≤M(3−us,r

−us′,r− yvi,w j) ∀ s,s′ ∈ S,s 6= s′,

i = 1, . . . ,ns−1,

j = 1, . . . ,ns′ −1,

R ∈ ρ
s(vi,vi+1)∩ρ

s′(w j,w j+1),

r ∈ R

yvi−1,w j − yvi,w j ≤ 2−us,r−us′,r ∀ s,s′ ∈ S,s 6= s′(10)

i = 2, . . . ,ns−1,

j = 1, . . . ,ns′ −1

R ∈ ρ
s(vi)∩ρ

s′(w j,w j+1),

r ∈ R

yvi,w j − yvi−1,w j ≤ 2−us,r−us′,r ∀ s,s′ ∈ S,s 6= s′(11)

i = 2, . . . ,ns−1,

j = 1, . . . ,ns′ −1

R ∈ ρ
s(vi)∩ρ

s′(w j,w j+1),

r ∈ R

1− yvi,w j ≤ 2−us,r−us′,r ∀ s,s′ ∈ S,s 6= s′(12)

i = 1, j = 1, . . . ,ns−1

R ∈ ρ
s(ds)∩ρ

s′(w j,w j+1),

r ∈ R

1− yv j ,wi ≤ 2−us,r−us′,r ∀ s,s′ ∈ S,s 6= s′(13)
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i = ns−1, j = 1, . . . ,ns′ −1

R ∈ ρ
s(ds)∩ρ

s′(w j,w j+1),

r ∈ R

yv,w + yw,v = 1 ∀ s,s′ ∈ S,s 6= s′,(14)

v ∈V s(T̄ s),w ∈V s′(T̄ s′)

∑
r∈R

us,r = 1 ∀ s ∈ S,R ∈ ρ
s(T̄ s)(15)

xs
i ≥ 0 ∀ s ∈ S, i = 1, . . . ,ns(16)
z≥ 0(17)

yv,w ∈ {0,1} ∀ s,s′ ∈ S,s 6= s′,(18)

v ∈V s(T̄ s),w ∈V s′(T̄ s′)

us,r ∈ {0,1} ∀ s ∈ S,R ∈ ρ
s(T̄ s),r ∈ R(19)

3.3. Phase 2: Solving the LSP-J. Let J̄ : S→ 2J be a given assignment of jobs to servers.
This is equivalent to an ordinary LSP with Js = J̄(s), i.e., for each server only the jobs
assigned to it are feasible for it. Our branch-and-bound approach now works as follows:
Assume we are given a partial tour T̄ s = (v1, . . . ,vis) for each server. The sets of jobs visited
by Server s in T̄ s is denoted by J(T̄ s). Then, no tour starting with T̄ s visiting all remaining
jobs Ks := Js \ J(T̄ s) can finish earlier than the concatenation of T̄ s and TLSP-s

s(Ks,vis).
Hence,

(20) max
s∈S

(
`(T̄ s)+ `

(
TLSP-s

s(Ks,vis)
))

is a valid lower bound. In order to further improve this bound, we make use of the resource
demands of the partial tours. For this we use the following fact: Every tour for s starting
with T̄ s needs at least `(TLSP-s

s(Ks,vis)) time units to move from vis back to ds. Denote by
TLSP-T(T̄ , l) an optimal scheduled dispatch of the LSP-T problem for the tours T̄ but where
the distance from the last position to the home position δ s(vns ,ds) is replaced by ls. The
effect of this modification is that the new go-home time in LSP-T is now the minimal time
the server needs to serve the requests not handled in LSP-T and to go back to its home
position. As a consequence, no feasible scheduled dispatch starting with the given partial
tours can finish earlier than the makespan of the resulting scheduled dispatch.

Lemma 1. Let T̄ := (T̄ s)s∈S be a set of partial tours and D̄ be a feasible scheduled dispatch
whose tour set starts with T̄ . Let l := (ls)s∈S, ls := `(TLSP-s

s(Ks,vis)). Then we have

max
s∈S

(
`(T̄ s)+ ls)≤ `

(
TLSP-T(T̄ , l)

)
≤ `(D̄) . �

A node in our branch-and-bound tree corresponds to a partial tour for every server. In
the branching step we have to choose a server that has unserved jobs. We then create a
child node for every j ∈ Ks and every possible start vertex v ∈ { ja, jb}. A leaf consists
of a dispatch, i.e., a full tour for each server. Finally, we evaluate optimal schedules in
the leaves by solving the corresponding LSP-T problems. We will write N for a node
and T̄ (N) = (T̄ s)s∈S for the partial tours associated with N. Moreover, λ (N) is the lower
bound for Node N according to Lemma 1. Algorithm 1 summarizes the method. Note, if J̄
corresponds to the job-server assignment of an optimal solution to the LSP, then Algorithm 1
will find an optimal solution of the LSP.
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Algorithm 1 Combinatorial Branch-and-Bound for the LSP-J

Require: Data of the LSP-J
Ensure: (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S is an optimal solution to the LSP-J.

T̄ s(N)← (ds),s ∈ S
add N to set of nodes
while set of nodes not empty do

pick N from set of nodes
for all s ∈ S do

Ks← Js \ J(T̄ s(N))
vs← endpos(T̄ s(N))
evaluate TLSP-s

s(Ks,vs) and set ls to its length
end for
evaluate TLSP-T(T̄ (N), l) for l = (ls)s∈S
λ (N)← `

(
TLSP-T(T̄ (N), l)

)
if λ (N)< µ then

if J(T̄ s) = Js ∀ s ∈ S then
for all s ∈ S do

append ds to T̄ s(N)
T̄ s

OPT← T̄ s(N)
set r̄s

OPT, t̄
s
OPT according to TLSP-T(T̄ (N), l)

end for
else

select ŝ ∈ S with K ŝ 6= /0
for all j ∈ Kŝ do

create node N1 with ( ja, jb) added to T̄ ŝ(N)
create node N2 with ( jb, ja) added to T̄ ŝ(N)
add N1 and N2 to set of nodes

end for
end if

end if
end while
return (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S

Remark 2. Let T̄ s
concat be the concatenation of T̄ s and TLSP-s

s(Ks,vis). Solving the LSP-T
with a tour set T̄concat := (T̄ s

concat)s∈S yields a primal feasible solution to the LSP-J whenever
this LSP-T is feasible. This primal heuristic can be integrated into Algorithm 1 to obtain an
upper bound µ in every node.

3.4. Phase 1: Collecting Candidate Assignments. In phase one we collect a set of job to
server assignment candidates. The hope is that this set is small enough to solve an LSP-J for
each of them by Algorithm 1. This is indeed the case for our benchmark problems. For the
candidate selection we use a branch-and-bound algorithm employing similar ideas as the
Phase-2 algorithm for the LSP-J: Each node N corresponds to a partial assignment J̄s(N).
By the triangle inequality,

(21) max
s∈S

`(TLSP-s
s(J̄s(N),ds))

is a valid lower bound for every extension to a full assignment and, thus, for every extension
to a feasible solution. Whenever we reach a leaf we use Remark 2 to improve the current
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upper bound. Every leaf whose lower bound is below the current best upper bound will be
collected as a candidate. The method is given in Algorithm 2.

Algorithm 2 Candidate Selection for the LSP

Require: Data of the LSP
Ensure: The set Ω contains an optimal server assignment

(
J̄s
)

s∈S of the LSP.
µ ← ∞

Ω← /0
for all s ∈ S do

J̄s(N)← /0
end for
add N to set of nodes
while set of nodes not empty do

pick N from set of nodes
for all s ∈ S do

evaluate TLSP-s
s(J̄s(N),ds)

end for
λ (N)←maxs∈S `

(
TLSP-s

s(J̄s(N),ds)
)

if λ (N)< µ then
if ∪s∈SJ̄s(N) = J then

add (J̄s(N))s∈S to Ω

solve LSP-T for the LSP-s tours, adjust µ if appropriate
else

select j ∈ J \∪s∈SJ̄s(N)
for all s ∈ S do

if s ∈ Js then
create node N with j added to J̄s(N)
add N to set of nodes

end if
end for

end if
end if

end while
return Ω

Whenever the LSP is feasible, Ω returned by Algorithm 2 contains the server assignment
of an optimal solution.

3.5. Top Level: An Algorithm for the LSP. The top-level method solving the LSP is
shown in Algorithm 3: Check all candidates and pick the one with best LSP-J-solution.

4. COMPUTATIONAL RESULTS

In this section, we report on comprehensive computational results achieved by our
algorithm CBB for the LSP. We mainly compare the quality of dual bounds (rather than
running times) to the LP relaxation of an MILP model based on a time-space network (see
the appendix for details about the MILP model). Such a model is often used as a basis
for devising a column generation algorithm via Dantzig-Wolfe decomposition, a natural
competitor of our new method.
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Algorithm 3 Combinatorial Branch-and-Bound (CBB) for the LSP

Require: Data of the LSP
Ensure: (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S is an optimal solution to the LSP.

µ ← ∞

get Ω by Algorithm 2
for all J̄ ∈Ω do

get D̄ := (T̄ s, r̄s, t̄s)s∈S by Algorithm 1
if `(D̄)< µ then

for all s ∈ S do
T̄ s

OPT← T̄ s

r̄s
OPT← r̄s

t̄s
OPT← t̄s

end for
end if

end for
return (T̄ s

OPT, t̄
s
OPT, r̄

s
OPT)s∈S

FIGURE 1. Data files with two and four robots

All computations have been done on an Intel Xeon processor with 2.33 Ghz running
ubuntu linux 10.04 in 64 bit mode(kernel 2.6.32, gcc version 4.4.3). The system was
equipped with 64 gigabyte of memory. The LP relaxation of the time space network model
was solved using the primal simplex method of IBM ILOG cplex version 12.2 [7], which was
the fastest method for these models. Cplex was also used to solve the LSP-T subproblems in
CBB. For the LSP-s subproblems we implemented a branch-and-cut solver in the framework
Scip version 2.0 [1].

4.1. Data Generation. We created two simulation models. Figure 1 shows the instances
for two and four robots with 40 jobs. Smaller instances where obtained by dropping jobs
one by one. In this way any instance with n jobs includes all jobs of the instance with
n−1 jobs. The job end positions are marked with tiny spheres; the colors indicate which
positions belong to the same jobs.

How long Robot s needs to move from Position p to Position q depends on the angle
settings at the positions and on the path planning. A position is usually given by six
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coordinates (x,y,z,a,b,c), where (x,y,z) are the cartesian coordinates of the top of the
welding gun, and (a,b,c) specifies in which angle the welding beam hits the component.

To overcome the problem of non-unique distances, we fixed a unique, technically plausi-
ble angle setting for each position of a robot. For every measurement, we taught the robot
moves using these settings. We used linear path planning, which ensures that no collision
between the robots and the component will occur. More complex path planning may be
employed, but due the short distances, the speed up will usualy be neglectable.

We used KuKa’s built-in tool for collision checking. This works by specifiying two
sets of geometry components A and B and evaluating their intersection in the simulation
world. The tool will check only whether there are two components a ∈ A,b ∈ B colliding in
a particular position. In order to check a line-line collision (r, p1, p2,s,q1,q2), both lines
(p1, p2) and (q1,q2) were be discretized. Then we moved Robot r to every position p
and Robot s to every position q of their path discretization and checked for a collision.
Line-point collisions were checked in the same way.

4.2. Performance Metrics. The yard stick for all test runs was a primal bound generated
by our method with a time limit of one day. After one day the execution was stopped,
and the best found feasible solution and its cost were recorded. We call this the yard-stick
solution, and the corresponding assignment of jobs to robots is the yard-stick assignment.
There was not enough time to let the time space network model run for one day on all
instances, but checking just a few instances showed that CBB was the only method to
generate primal bounds for every instance in one day per instance. In the test computations
we wanted to reveal why CBB performs so well on our test data.

4.3. Results. First we prescribe the robot to job assignment of the yard-stick solution
resulting in a LSP-J instance. Figures 3 and 5 provide the dual bounds in the root nodes
of the respective branch-and-bound trees. The LSP-s relaxation used in CBB provides a
stronger bound than the linear programming relaxation of the time-space network model.
And it requires less computational efford to evaluate it, as can be seen in Figures 4 and 6. If
we do not prescribe a robot to job assignment, the situation looks similar. In Figures 7 and 9
we compare the value of the linear programming relaxation to the value of a routing optimal
solution, i.e., the minimal makespan of a solution when resource sharing is ignored. The
respective computation times are given in Figures 8 and 10. Note that whenever a value is
missing in the chart, this means that CPLEX refused to read the time-space network model
because it was too large.

The summarized findings of our extensive computational results on the LSP-J are col-
lected in Figure 11. One might conjecture that the good quality of the routing-based bound
of the LSP-s enables us to hierarchically decompose the problem by a route-first-schedule-
second approach and still achieve good solutions. Figure 12 shows the gaps of solutions
found by taking routing-optimal solutions (no resource sharing at all) and laser-sharing opti-
mal solutions (no collision avoidance), resp., and performing a collision-aware rescheduling
on them. In more than neglectably many of our instances this leads to substantial gaps. For
example, if the possible makespan with one instead of two laser sources is 30 s, a gap of
10 % means that only a solution with makespan 33 s can be found. If the process cycle time
is, say, 32 s, this is the difference between halving the investments for laser sources, i.e.,
tremendous savings, and nothing.

One more thing: Collision avoidance might appear nit-picking at first sight because
in many cases introducing collision avoidance does not increase the optimal makespan
by much. In order to illustrate how different the corresponding optimal solutions can be,
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we show in Figure 13 a snapshot of an optimal solution without collision avoidance and
two snapshots of an optimal solution with collision avoidance. The solution with collision
avoidance has a totally different routing. This routing leads to a solution where the robots are
never in the central area at the same time, whereas the solution without collision avoidance
allows both robots to meet in the center. A route-first-schedule-second approach would just
let one of the robots wait so that collisions are avoided; yet, their routings would still let
them come close in the center. It is very likely that the more conservative solution produced
by our concept of collision avoidance would be favored by most engineers.

5. CONCLUSIONS

We introduced the new laser sharing problem LSP arising in car body manufacturing:
find a scheduled dispatch with minimal makespan for welding robots that need to share
some laser sources and must avoid collisions in the welding cell. This problem combines the
challenges “vehicle routing”, “scheduling with shared renewable resources”, and “makespan
minimization”. We learned that standard MILP techniques do not work well. However,
they work well for the subproblems with only one server or prescribed tours, resp. Our
new algorithm CBB is a branch-and-bound algorithm that utilizes optimal solutions to
these NP-hard subproblems. State-of-the-art MILP methods can solve the subproblems
quite well because industrial-scale instances for the LSP lead to tractable instances for
the subproblems. The benefit of solving the diffcult subproblems as opposed to mere LP
relaxations is the quality of the resulting dual bounds. We have demonstrated this by solving
instances based on data that was generated by robot simulations of an industry-standard
tool: Our algorithm CBB is so far the only algorithm that can solve instances to proven
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optimality that consist of up to 40 welding jobs, four robots and three laser sources. We
believe that the key ingredients of CBB may also help to design successful algorithms for
other combined routing and scheduling problems. With our tool, the original application
problem can now be answered: the question how many laser sources are really needed in
a welding cell. Since the laser sources are much more expensive than the welding robots,
the correct answer to this can be worth big money in planning new production lines for car
body shops.
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APPENDIX A. A MIXED INTEGER LINEAR MODEL

Our comparision model is a time space network model as often used in column generation
approaches. Our computational results were not obtained by column generation, though.
Therefore, it is possible that the solution times of the LP relaxations for this model can
be improved. However, the makespan objective alone causes large ingegrality gaps in the
master problem that can not be reduced by integral solutions to the pricing problem alone.
Moreover, all constraints like resource sharing involving more than one server must enter
the master problem as well, leading to even larger integrality gaps. Moreover, the time-space
network model time requires a discretizion of time, and the corresponding discretization
error is not neglectable: Rounding up all driving, waiting, and switching times in a dispatch
may add up to a substantial over-estimation of its length, mainly because all tours need
synchronization. In our tests, rounding errors w.r.t. a step-size of 0.1s sometimes add up to
10 % of the optimal makespan.

Nevertheless, we provide the model that we used. Let all distances be integer, and
let µ be an upper bound for the makespan. Then the time periods to be considered are
{0,1, . . . ,µ}. Let Gs,l = (V s,l ,As,l) be the network for Robot s and Laser Source l with
node set

V s,l := {(t,q) | 0≤ t ≤ µ, j ∈ Jr,q ∈ { ja, jb} or q = dr}
At node (t1,q1) Robot s has two possibilities: It can wait one time unit, represented as a
move to node (t1 + 1,q1) in the time-space network, or it can move from Position q1 to

1http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
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Position q2, represented by a move to node (t1 +δ s(q1,q2),q2) in the time-space network.
When both positions belong to the same job then this move is done in welding mode
otherwise in driving mode. Thus the arc set is

As,l := {(t1,q1, t2,q2) ∈V s,l×V s,l | q1 = q2∧ t2 = t1 +1

∨q1 6= q2∧ t2 = δ
r(q1,q2)}

∪{(µ,ds,0,ds)}

The tour T̄ s of Server s is modeled as a binary flow in As,l . For this, we use variables
ys,l

a ∈ {0,1}where l is the connected laser source. The first arc in the tour selects the network
and, thus, the laser source. Resource conflicts are prevented by a set-packing constraint over
all conflicting arcs for each time position t = 0, . . . ,µ and each resource. More specifically:
Define by Cl,t be the set of all welding arcs which cover time position t, i.e., (s, t1,q1, t2,q2)∈
Cl,t if (q1,q2) ∈ {( ja, jb),( jb, ja)}=: P j and t1 ≤ t ≤ t1 +δ s(q1,q2)+ τ l−1.

The resulting model is:

Problem 3 (Timespacenetwork).
minz

subject to

∑
l∈L

∑
a∈A

t2ys,l
a ≤ z ∀ s ∈ S,(22)

A := {(t1,q1, t2,dr) ∈ As,l | q1 6= ds}

∑
(v,w)∈As,l

ys,l
(v,w)− ∑

(w,v)∈As,l

ys,l
(w,v) = 0 ∀ s ∈ S, l ∈ L,v ∈V s,l(23)

∑
l∈L

∑
a∈A

ys,l
a ≤ 1 s ∈ S,A := {(0,ds, t2,q) ∈ As,l}(24)

∑
(s,a)∈Cl,t

ys,l
a ≤ 1 ∀ l ∈ L, t = 0, . . . ,µ(25)

∑
l∈L

∑
a∈As

ys,l
a +∑

l∈L
∑

a∈As

ys,l
a ≤ 1 ∀ (s,qs

1,q
s
2,s
′,qs′

1 ,q
s′
2 ) ∈Cll(26)

As := {(t1,qs
1, t2,q

s
2) ∈ As,l : t1 ≤ t ≤ t2}

As′ := {(t1,qs′
1 , t2,q

s′
2 ) ∈ As′,l : t1 ≤ t ≤ t2}

t = 0, . . . ,µ

∑
l∈L

∑
a∈A

ys,l
a +∑

l∈L
ys′,l
(t,qs′ ,t+1,qs′ )

≤ 1 ∀ (s,qs
1,q

s
2,s
′,qs′) ∈Clp,(27)

t = 0, . . . ,µ

A := {(t1,qs
1, t2,q

s
2) ∈ As,l : t1 ≤ t ≤ t2}

∑
l∈L

∑
s∈S: j∈Js

∑
a∈A

ys,l
a = 1 ∀ j ∈ J(28)

A := {(t1,q1, t2,q2) ∈ As,l : (q1,q2) ∈ P j}

∑
l∈L

∑
r∈R

∑
a∈A

ys,l
a ≤ 1 ∀ q1 ∈

⋃
s∈S

{ds}∪
⋃
j∈J

{ ja, jb}(29)

A := {(t1,q1, t2,q2) ∈ As,l : q1 6= q2}

ys,l
a ∈ {0,1} ∀ s ∈ S, l ∈ L,a ∈ As,l(30)
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z ∈ Z≥0(31)
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