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ZUSAMMENFASSUNG 

Ergebnisse großer Grünland-Biodiversitätsexperimente legen einen positiven Zusammenhang 

zwischen Artenvielfalt und Ökosystemfunktionen (z.B. Produktivität, Ressourcennutzung, 

Stabilität der Gemeinschaften) nahe. Der durch Klima- und Landnutzungswandel andauernde 

Artenverlust bedroht die Bereitstellung dieser Funktionen. Und obschon die Zusammenhänge 

zwischen Artenreichtum und Ökosystemfunktionen, die man auf Gemeinschaftsebene beob-

achten kann, abhängig von Interaktionen zwischen Individuen und Arten sind, sind Informa-

tionen über diese Mechanismen rar. 

Die vorliegende Dissertation stellt fünf Projekte vor, die sich mit Mechanismen der Pflanze-

Pflanze-Interaktion am Beispiel von Grünlandarten der gemäßigten Breiten befassen, speziell 

mit der Leguminose-Nachbar-Interaktion. Auf der Ebene von Individuen und Populationen 

wurden Veränderungen der Interaktionen untersucht: entlang von biotischen Gradienten 

(Vielfalt, Zusammensetzung und Identität der Arten einer Gemeinschaft), entlang von 

abiotischen Gradienten (Extremwetterereignisse, Stickstoffverfügbarkeit) und in Einheiten 

verschiedener räumlicher Abmessungen. Drei Leitfragestellungen motivierten die Projekte: Ist 

das Testen ökologische Theorien, die von großräumigen Beobachtungen abgeleitet wurden, 

auch in kleinräumigen Einheiten möglich? Gibt es eine Grenze, an der positive Leguminosen-

Effekte (N-facilitation) auf den Stickstoffhaushalt der Nachbarn (receiver), in Konkurrenz um 

andere Ressourcen umschlagen? Wie wirken sich Anzahl und Identitäten der Arten einer 

Gemeinschaft auf artspezifische Interaktionen aus? Zur Beantwortung dieser Fragen habe ich 

traditionelle, invasive und nicht-invasive Methoden benutzt. 

Die in der Dissertation vorgestellten Studien belegen die Möglichkeit, „Feld-Effekte“ auch in 

kleineren räumlichen Einheiten zu untersuchen, da zahlreiche Übereinstimmungen zwischen 

Untersuchungen im Feld und in Mikrokosmen auftraten. So konnten wir die Abnahme der 

δ15N Werte mit abnehmender N-Versorgung und zunehmender Artenzahl, die unserem 

Wissen nach bisher ausschließlich in Feldversuchen nachgewiesen wurde, in Mikrokosmen 

feststellen. Ebenso konnten wir zum Feld vergleichbare positive Effekte zunehmender Arten-

zahlen und vorhandener N2-Fixierer auf Interaktionen zwischen Pflanzen in ungestörten 

Gemeinschaften nachweisen. N-facilitation finden über N-Transfer von N2-Fixierern zu 

receivers und über Ressourcenumverteilung des Boden-N (N-sparing) statt. Kurzfristig bot N-

sparing den größeren Vorteil für receiver; wir haben aber ebenso kurzfristigen N-Transfer 

zwischen Arten verschiedener Identitäten nachgewiesen. Die Artidentität spielt für die Nutz-

ung des durch Leguminosen bereitgestellten Extra-N aus N-facilitation eine wesentliche 
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Rolle: Gräser nutzten Extra-N aus N-sparing und N-Transfer effektiver als krautige Arten, so-

wohl im Feld als auch in Mikrokosmen. Darüber hinaus haben wir neue Muster des Einflusses 

der Artenzahl auf artspezifische N-Dynamiken in gestörten Gemeinschaften entdeckt. In 

Mikrokosmen mit einer Gras-, Kraut- und Leguminosen-Art stiegt in Folge simulierter Be-

weidung der N-Transfer zwischen Individuen in Monokulturen unabhängig von der Art-

identität an, nahm in Mischungen hingegen ab. Eine völlig andere applizierte Störung 

(Trockenstress statt Beweidung) resultierte in einem ähnlichen Muster bezüglich der N-Para-

meter eines Grases in unterschiedlichen Artgemeinschaften im EVENT-Experiment. Die Ab-

nahme von N-facilitation nach Störungen könnte eine Erklärung für die verminderte Leistung 

des Grases in artenreicheren Gemeinschaften sein, auch wenn mit nicht-invasiven (und in-

vasiven) Methoden auf Ebene der Gemeinschaft keine gravierenden negativen Effekte fest-

stellbar waren. Diese Konstanz auf einer höheren Organisationsebene legt nahe, dass die 

verwendeten nicht-invasive Methoden neue Möglichkeit eröffnen, ökologische Theorien auf 

der Ebene von Artengemeinschafts (z.B. insurance hypothesis, „Versicherungshypothese“) in 

unterschiedlichen räumlichen Einheiten zu untersuchen. 

Die Ergebnisse lassen den Rückschluss zu, dass Versuche unter kontrollierten Umwelt-

bedingungen in kleineren räumlichen Einheiten ein geeignetes Mittel sind, um Effekte und In-

teraktionen von Faktoren (Vielfalt, Zusammensetzung, Identität der Arten einer Gemein-

schaft) detailliert zu untersuchen. Insbesondere die vergleichbare N-Dynamik in Feld- und 

Mikrokosmosversuchen scheint das Testen mancher ökologischer Theorien, z.B. der stress 

gradient hypothesis, in kleinräumigen Einheiten zu ermöglichen. Darüber hinaus wird im 

Rahmen der Dissertationsschrift die Nutzbarkeit verschiedener invasiver und nicht-invasiver 

Methoden zur Untersuchung von Pflanze-Pflanze-Interaktionen dargestellt. Diese Ergebnisse 

bilden das Fundament für weiterführende Projekte, die dazu beitragen sollen, Zusammen-

hänge zwischen Biodiversitätseffekten und Ökosystemfunktionen zu erhellen und damit z.B. 

eine kosteneffektive Renaturierung degradierter Standorte zu erleichtern. 
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SUMMARY 

Biodiversity and the functioning of communities, habitats or even ecosystems are closely 

connected as worldwide large-scale biodiversity grassland experiments reveal. Current 

climate and land use changes are often related to a loss of plant species diversity from natural 

grassland habitats and as a consequence, the delivery of “ecosystem functions” (e.g. pro-

ductivity, stability against disturbance or total nutrient use) is endangered. But information 

about the underlying mechanisms, which drive relationships between biodiversity and these 

functions, is still missing, although all processes observable at community scale depend on 

processes between species or individuals within communities. The study of plant-plant inter-

actions, with a special focus on legume-neighbour interactions, within grassland habitats of 

the temperate region is the main focus of this thesis. 

I investigated legume-neighbour interactions on individual and population level (i) along 

biotic gradients of community composition (species richness and species identity), (ii) along 

abiotic gradients (extreme weather events, nitrogen availability) and (iii) at different spatial 

scales (from the climate chamber to the field). Three main research questions linked 

individual projects: Is it possible to test ecological theories, which are derived from large-

scale observations, on a much smaller scale? Is it possible to identify a threshold, where 

positive effects of nitrogen-fixing legume species (N-facilitation) shift to competition for 

above- or belowground resources? How does community diversity modulate species-specific 

plant-plant interactions? To answer these questions I used different invasive and non-invasive 

methods like the analyses of the isotopic composition of N or chlorophyll a fluorescence in 

different species as well as traditional ecological census techniques. 

Results from the five studies presented within this thesis (manuscripts 1-4 and Supplementary 

Material) provide strong evidence that it is indeed possible to simulate field-effects at a much 

smaller scale because multiple similarities occurred between field studies and studies at 

smaller scales. In micro- and mesocosm studies, we were able to confirm the decrease in δ15N 

natural abundance values with decreasing N-availability in the substrate and with increasing 

species richness, as it has been reported, to our knowledge, exclusively from field studies. We 

found positive effects of increasing species richness on plant-plant interactions and positive 

effects of legume presence (N-facilitation either by N-sparing or by N-transfer) on N-availa-

bility for neighbouring receiver species in undisturbed communities, which are comparable to 

field observations. In the short-term, receivers profited mostly from N-sparing but in addition 

a bidirectional N-transfer between functionally different individuals occurred. We were also 
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able to simulate differences in the use of extra N from N-facilitation in relation to the identity 

of receiver species, which are known from field studies: grass species in microcosms showed 

a better use of extra N from N-facilitation (both N-sparing and N-transfer) compared to non-

fixing forb species. Furthermore, we found a totally novel pattern of the modulating effect of 

species diversity on species-specific N-dynamics after disturbance: whereas N-transfer 

increased in monocultures, it decreased in mixtures after simulated grazing in microcosm 

communities. Although treated with a totally different disturbance (extreme drought event), 

N-parameters of a common grass species in different diversity levels in the EVENT-

Experiment indicate a similar pattern. This is a possible explanation for a non-invasively 

detected performance reduction (via measurements of chlorophyll a fluorescence) of this 

species, although at community level no negative effects of increased species richness were 

observed. Relative constant community fluorescence signals provide first evidence, that it is 

possible to use fluorescence measurements as a non-invasive method to test the insurance 

hypothesis. 

These findings imply that studies on smaller scales under controlled environmental conditions 

are very useful to test effects of species richness and identity as well as ecological theories. 

Patterns of N-dynamics in microcosms resemble those observed in field experiments and thus, 

some theories (e.g. the stress gradient hypothesis) are indeed testable on a much smaller scale. 

I provide novel insights on changes in plant-plant interactions within different abiotic and 

biotic environments and to what extent different invasive and non-invasive methods are useful 

to elucidate interaction processes. Further research on plant-plant interactions is needed, e.g. 

with regard to the cost-effective restoration of degraded grassland habitats.  
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INTRODUCTION 

BACKGROUND OF THE THESIS 

BIODIVERSITY EFFECTS ON ECOSYSTEM FUNCTIONING 

Large-scale biodiversity experiments like the Jena Experiment in Germany (Roscher et al. 

2004; Roscher et al. 2005), the Paneuropean BIODEPTH experiments (Hector et al. 1999; 

Hector et al. 2007) or the Cedar Creek Experiment in the USA (Tilman 1987; Zavaleta et al. 

2010) contribute considerably to our understanding of grassland ecosystems. The experiments 

reveal positive relationships between plant species/functional diversity and ecosystem 

functions such as (i) productivity, (ii) stability and resistance against (alien) species invasion 

or environmental disturbances, (iii) recovery after disturbances and (iv) total resource use. 

And although a diversity of four to ten species is often enough to maintain a single function, 

e.g. productivity or stability (Schwartz et al. 2000; Guo et al. 2006; van Ruijven and Berendse 

2009), much higher diversity may be required to sustain multifunctionality, e.g. productivity 

and stability (Hector and Bagchi 2007; Zavaleta et al. 2010). Additionally, recent investi-

gations highlight the importance of genetic diversity for ecosystem functioning (Hughes et al. 

2008; Agashe 2009; Vellend et al. 2010) and the importance of plant diversity for subsequent 

trophic levels like soil organisms, pollinators, herbivores or predators of herbivores (De Deyn 

and van der Putten 2005; Duffy et al. 2007; Evans 2008) and also for human well-being (Diaz 

et al. 2006; Fuller et al. 2007). Positive biodiversity-ecosystem functioning relationships are 

summarized in influential ecological theories like the insurance hypothesis (McNaughton 

1977; Naeem et al. 1994; Yachi and Loreau 1999) or the niche complementary theory 

(Berendse 1979; Tilman 1997; Loreau and Hector 2001). 

The insurance hypothesis predicts that functioning of an ecosystem under disturbance will be 

better maintained in more diverse communities, with a higher potential for trait redundancy, 

than in less diverse communities. For example, if species A and B get extinct from a species-

rich community (because they suffer from climate change induced drought stress), species C, 

D, E and F can buffer ecosystem productivity against negative effects whereas communities 

consisting only of species A and B will totally collapse. The niche complementarity theory 

predicts that more diverse communities, consisting of species with different spatial and 

temporal acquisition strategies, will exploit available resources (e.g. belowground water and 

nutrients, aboveground light) more complete and more effective than less diverse 

communities. An important issue for the niche complementarity theory is the interplay 

between plants; the equilibrium between positive interactions (facilitation) and negative 
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interactions (competition). Facilitation, sensu Connell & Slatyer (1977), is the ability of one 

species to modify the environment beneficially for another species, whereby one species has a 

positive effect on neighbouring or subsequent species; although there is an ongoing discussion 

about the exact definition of facilitation (Brooker and Callaway 2009). Legume-neighbour 

interactions provide an comprehensive example for the equilibrium of interactions: under 

nitrogen (N) limited conditions, legume species have a positive effect on neighbours by 

providing extra nitrogen from biological nitrogen fixation (BNF) (facilitation for N-nutrition) 

but on N-saturated soils they can have negative effects on neighbours due to their fast growth 

and high biomass production (competition for light). Critical voices often state that positive 

relationships observed in biodiversity experiments are mainly due to the species pool chosen, 

which often includes an artificially high presence of key species (highly productive species or 

species otherwise responsible for the ecosystem service under observation) and that those 

species are the driver of positive diversity effects and not the diversity per se, a theory 

summarized as “sampling effect” (or selection effect) (Aarssen 1997; Huston 1997). Recent 

research indicate, that the importance of the sampling effect for the delivery of a certain eco-

system function (productivity) might be high in young communities, but that, in the long-

term, the effect size of complementarity increases whereas the effect size of sampling effects 

decreases (Marquard et al. 2009a). 

Although lots of energy has been spent during the last 20 years to elucidate details of 

biodiversity-ecosystem functioning relationships, we are still lacking knowledge about the 

underlying mechanisms, which cause these positive effects. Most studies on facilitation, 

which provide a more detailed insight into interaction processes, were inspired by economic-

agricultural questions and thus were performed with low species diversity; investigations with 

two species in (more or less) eutrophic environments are most common. During my PhD, I 

investigated plant-plant interactions, with a special focus on legume-neighbour interactions, 

and how they affect productivity and resource use efficiency (light: manuscript 1, manu-

script 2, nitrogen: manuscript 3, manuscript 4) along biotic gradients (diversity/species 

composition: manuscript 1, manuscript 2, manuscript 4, supplementary material) and 

abiotic gradients (resource availability: manuscript 3, supplementary material; disturbance: 

manuscript 1, manuscript 2, manuscript 4). My aim was to provide a link between 

previous results from large-scale field experiments and more mechanistic, physiologically 

detailed studies under controlled conditions and to test the applicability of ecological theories 

at different scales. 
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LEGUME EFFECTS ON N-DYNAMICS AND PERFORMANCE OF NEIGHBOURS 

In 1888, Hellriegel and Wilfarth were the first authors who described the symbiosis between 

N2-fixing bacteria and legume species, which is responsible for biological nitrogen fixation 

(BNF) of atmospheric N2 in legumes (Marschner 2002). Positive legume effects play a key 

role for agricultural yield production since ancient times and are still an important topic in 

modern sustainable agriculture. Much effort was spent on the study of legume-neighbour 

interactions, mainly in agricultural research, to understand and optimize BNF and N-

facilitation. Effects on productivity and N-availability have been reported for agricultural 

pasture (McNeill and Wood 1990b; Elgersma et al. 2000) and crop cultivation (Fujita et al. 

1992; Varvel and Wilhelm 2003; Li et al. 2007) including context-dependent information 

about the relationship between the amount of N-facilitation and climatic or edaphic conditions 

(Giller and Cadisch 1995, see manuscript 3). The ability to perform BNF classifies legume 

species as ecosystem engineers sensu Jones et al. (1994) because they alter their abiotic 

environment by shifting N form the atmosphere to the soil; an effect, which reaches far 

beyond agricultural questions. 

In every ecosystem, the presence of legume species affects the total amount of niches 

positively and thus often facilitates increasing population, community or even ecosystem 

processes. Legume species (acting as N-donors) can affect N-availability in the soil for 

neighbouring or subsequent species (N-receivers) directly via the exudation of N-rich 

compounds (Ayers and Thornton 1968; Paynel and Cliquet 2003), decomposition of their own 

(mostly N-rich) tissue and enhanced total decomposition (Russell and Fillery 1996; Fillery 

2001; Scherer-Lorenzen 2008). They also can increase N-availability for neighbours 

indirectly by not using soil resources, an effect known as N-sparing (e.g. McNeill and Wood 

1990a). Furthermore, legume species often interact with other trophic levels like soil 

microorganisms (Habekost et al. 2008; Kreyling et al. 2008b), mycorrhizal fungi (Jackson et 

al. 2008) or earthworms (Eisenhauer et al. 2009) enhancing their own effects on neighbours 

and ecosystems even further.  

In biodiversity experiments, legume species often count as key species because of their ability 

to sustain their own N-demand by BNF and their often superior productivity; but positive 

biodiversity-productivity relationships have also been observed without legume species 

(summarized in van Ruijven and Berendse 2009). Productivity had long been the only 

response parameter to measure positive legume effects but since the 1970’s the establishment 

of more elaborated analysis methods provides tools to track the flow of nitrogen through a 
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system or different trophic levels, e.g. the analysis of the isotopic composition of nitrogen in a 

sample (see Shearer and Kohl 1986 and references within). Biodiversity experiments in mesic 

grasslands provide evidence that positive legume effects (N-facilitation), reflected in the N-

status and often in the isotopic composition of non-fixing receiver species, contribute to 

positive biodiversity effects on community productivity and nutrient cycling (Carlsson et al. 

2009; Mulder et al. 2002; Spehn et al. 2002; Temperton et al. 2007). Temperton et al. (2007) 

found strong facilitative interactions between three different mesic grassland species 

(receivers) and neighbouring legume species (donors) along a gradient of plant species 

diversity in a field experiment. They found that donor presence (but interestingly not 

abundance) affects N-concentration and N-content as well as the isotopic composition of N in 

receivers, but also that an increasing number of surrounding species decreased N-con-

centration and the relative amount of 15N. Important information is still missing on the 

mechanisms of legume-neighbour interactions and how they change along biotic and abiotic 

gradients. I contribute information to the field of legume-neighbour interactions under 

different conditions of N-availability in a restoration project (manuscript 3) and a microcosm 

study (supplementary material) and how changes in species composition and management 

regime (simulation of grazing) under stable abiotic conditions affect N-facilitation for func-

tionally different receivers (manuscript 4). 

 

PLANT-PLANT INTERACTIONS ALONG ENVIRONMENTAL GRADIENTS 

Species’ performance and inter-specific interactions depend strongly on the broader 

environmental context in which they are measured (Michalet et al. 2006; Cardinale et al. 

2009; Ma et al. 2010). Within a defined abiotic environment, plant species can interact via 

competition or facilitation (Pugnaire and Luque 2001; Brooker et al. 2008). Since publication 

of Darwin’s “The Origin of Species” in 1859, competition between species had been used as 

the main factor explaining community structure – although facilitation had been identified as 

potentially important in succession theory in the early 20th century (reviewed in Connell and 

Slatyer 1977). In 1994, Bertness and Callaway formulated the stress gradient hypothesis 

(SGH) (Bertness and Callaway 1994) which, for the first time, includes facilitation as an 

aspect affecting community structure along environmental gradients. Today this is a widely 

accepted concept (Bruno et al. 2003; Michalet et al. 2006; Brooker et al. 2008; Bulleri 2009) 

although competition is still widely considered to be the main driver of community structure. 

The SGH predicts equilibrium between positive and negative interactions along 
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environmental gradients: whereas negative interactions prevail at the mesic/favourable end of 

an environmental gradient, positive interactions gain in influence with increasing 

environmental severity. To revisit an earlier example: under N-saturated conditions, 

vigorously growing legume species can have significant negative effects on neighbouring 

species due to space and light competition but under N-limited conditions, the same 

neighbouring species may profit from a legume species due to N-facilitation. During the last 

decades, the SGH has experienced support (Pugnaire and Luque 2001; Arredondo-Nunez et 

al. 2009) as well as criticism (Maestre et al. 2006). Recently, a consensus has been achieved: 

the SGH generally holds true if pair-wise species-specific investigations are evaluated but 

might not allow for general predictions of the frequency and kind of interactions (Maestre et 

al. 2009; le Roux and McGeoch 2010). 

Most studies which tested the SGH use facilitation in terms of nurse plant effects (a resident 

plant enables seedlings of a different species to establish and flourish underneath it by 

providing shelter or increased resource availability) in climatically extreme arid or alpine eco-

systems. Only few studies investigate N-facilitation by legume species and changes in 

legume-neighbour interactions along abiotic or biotic gradients in communities of varying 

species richness in benign ecosystems, although these systems dominate the temperate regions 

of Europe. Fertiliser studies in European mesic pastures often report productivity preservation 

if legume species are present despite severely reduced N-addition or N-removal by harvest 

without subsequent fertilisation (e.g. Ledgard et al. 2001; Marquard et al. 2009a; Weigelt et 

al. 2009). A theoretical link between SGH and fertiliser studies suggests that N-facilitation 

should increase with increasing N-limitation even in less extreme habitats. These changes in 

legume-neighbour interactions should be detectable via the analysis of the isotopic 

composition of nitrogen in non-legume receiver species as described in detail in manuscript 

3. Only few studies strike this path and investigate N-facilitation under (semi-)natural 

conditions within the temperate regions. Beyschlag et al. (2009) investigated N-facilitation of 

legume species on receivers in German dry acidic grassland communities and Temperton et 

al. (2007) investigated N-facilitation along a biotic gradient of species richness in mesic 

grassland communities within the Jena Experiment – but both studies lack an abiotic gradient 

in e.g. N-availability in the substrate. I aim to reduce the lack of information on changes in 

plant-plant interactions with changing environmental conditions with the studies presented 

within this thesis; effects of extreme weather events (manuscript 1, manuscript 2) and 

effects of the N-availability, ranging from severely N-limited to mesic (manuscript 3, 

supplementary material) were investigated.  
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Furthermore, only few studies explicitly tested the interplay between the SGH and the 

insurance hypothesis. In combination, these hypotheses predict higher stability of more 

diverse communities in the face of disturbance due to functional redundancy of species with 

additional effects of higher facilitation under environmental stress. The combination of both 

ecological theories raises the questions how an increase in environmental stress (e.g. due to 

ongoing climate change) will affect legume-neighbour interactions within the temperate 

regions and how community composition and species diversity will modulate these interaction 

processes on individual and population level. Investigations of interactive biodiversity and 

legume effects make considerably requirements on the experimental design and only few set 

ups meet the demands. The working groups around R. Ceulemans and H. J. de Boeck in 

Belgium (e.g. De Boeck et al. 2006; Lemmens et al. 2006; De Boeck et al. 2007) and around 

A. Jentsch and C. Beierkuhnlein at the EVENT-Experiments in Germany (e.g. Jentsch et al. 

2007; Kreyling et al. 2008b; Kreyling et al. 2008c) investigate, amongst others, the effect of 

legume species on ecosystem processes. In manuscript 1 and manuscript 2, I report about 

studies which investigated effects of community composition and legume presence on the 

performance of a common grass species under differently severe environmental conditions.  

Another aspect of disturbance per se is the land use regime (grazing, mowing or habitat 

restoration) applied to semi-natural grasslands. Again, very little information is available 

about changes in legume-neighbour interactions with changes in the management. 

Performance of receiver species within differently treated areas in a large-scale restoration 

project should provide support for the SGH in terms of N-facilitation (manuscript 3). Effects 

of diversity level and species composition on appearance and changes in small-scale donor-

receiver interactions are highlighted in a study under controlled environmental conditions 

disturbed by simulated grazing (manuscript 4). 

 

PLANT-PLANT INTERACTIONS ALONG SPATIAL GRADIENTS 

“Scale is fundamental in ecology because it determines how we perceive patterns and 

processes, and therefore affects our ability to explain and predict” (in Sandel and Smith 2009 

from Wiens 1989). Since the late 1980’s, scale-dependency of processes received increasing 

attention in ecological studies, especially with the aim to scale up from smaller experimental 

units to larger, ecosystem relevant units (reviewed by Sandel and Smith 2009). Problems in 

comparing small-scale studies with studies from a larger scale had been identified soon (first-
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time reviewed by Wiens 1989). Balvanera et al. (2006) state that effects of plant diversity on 

ecosystem processes strongly depend on the observation level and on the degree of 

manipulation in an experimental set-up. On ecosystem level manipulations often have only 

minor effects but biodiversity itself has strong positive effects, whereas on population, species 

or even individual level manipulations often have strong effects and biodiversity can have 

negative effects. Using the example of productivity, most studies on larger spatial levels (e.g. 

communities of a certain habitat) found a prevailing positive effect of biodiversity and just a 

subordinate negative effect of a manipulation (e.g. a drought treatment) on productivity 

(Tilman and Downing 1994; Grime et al. 2008). Whereas on a smaller spatial level (e.g. a 

certain species within a community), the surrounding plant diversity might affect species-

specific biomass production negatively (van Ruijven and Berendse 2003; Roscher et al. 2007; 

Marquard et al. 2009b) and the effect of a manipulation depends strongly on plant-plant inter-

actions and the competitive strength of the species under investigation (see manuscript 1, 

manuscript 2). Thus, investigations at two different spatial scales may result in contrasting 

findings and a scientist should always be aware of the scale-dependency of response 

parameters.  

But nevertheless, it is possible to simulate habitat-related processes in experimental plots of 

severely reduced size in the field (e.g. for mesic grasslands see Roscher et al. 2005; Hector et 

al. 2007; Kreyling et al. 2008c; Marquard et al. 2009a) or even in greenhouse experiments 

(Lanta and Leps 2006), although it is widely accepted that positive biodiversity effects 

increase with biotope space (Dimitrakopoulos and Schmid 2004). Biological mechanisms 

investigated in small-scale studies often have indicative character for processes at larger 

scales (van der Heijden et al. 2006), although the spatial and temporal scale of investigations 

and the researcher’s control over experimental conditions (species pool, density of comm-

unity, type of substrate, nutrient supply, duration of study etc.) often determines observable 

patterns and processes (Wiens 1989; Mikola et al. 2002; Hobbs and Norton 2004; Ejrnaes et 

al. 2006).  

Biological mechanisms of plant-plant interactions are very hard to identify directly in nature 

or in (semi-)natural, large-scale experiments (which either mimics regional grassland habitats 

in relation to species pool and composition or use experimental plots in naturally grown 

communities). The determination of small-scale interaction processes, which often form the 

basis for observation of large-scale patterns, requires a high degree of researcher’s control 

over the system, which is only possible in micro- and mesocosm studies. Thus, I conducted 
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studies under different environmental conditions and at different spatial scales to test the 

potential to transfer ecological theories derived from ecosystem level to smaller units like 

community, population or individual level (combination of insurance and stress gradient 

hypothesis: manuscript 1, manuscript 2, stress gradient hypothesis: manuscript 3, 

manuscript 4, supplementary material). The confirmation of ecological theories in micro- 

and mesocosm experiments could open the gates to test the outcome of large-scale 

manipulations (e.g. for restoration projects or the production of biofuels in natural habitats) on 

a much smaller scale with positive effects on cost-benefit calculations. 

 

METHODS TO INVESTIGATE PLANT-PLANT INTERACTIONS 

Shearer & Kohl (1986) reviewed methods to study the degree of biological nitrogen fixation 

(BNF) of atmospheric N2 in legume species under natural conditions. The approximate range 

of BNF quantifies the potential of a legume species to act as N-donor for neighbouring 

receiver species. In a nutshell, four methods are available: (i) the nitrogen accumulation 

method, a method based on a comparison of N-accumulation in yield between N-fixing and 

non-fixing crops, (ii) the acetylene reduction essay, a method which uses nodulated roots to 

detect the presence of nitrogenase activity (the enzyme which is responsible for BNF) and 

measures the reduction of acetylene to ethylene per unit time per unit mass of nodule, (iii) 

methods based on the use of 15N enriched materials (tracer/label studies), which use 15N 

enriched N2-gas, fertilisers, biological materials or solutions which are applied to the atmo-

sphere (closed system), the soil (isotope dilution method) or directly to the plant (leaf/plant 

label methods; details see manuscript 4) and (iv) the δ15N natural abundance method, which 

uses the ratio of the heavier over the lighter N-isotope (15N/14N) in a sample and a standard 

(air) to gain information about the N-source of a species (details see manuscript 3).  

All methods provide advantages and disadvantages but especially the isotope dilution method, 

which has the potential to highlight the fate of a 15N-tracer through a whole system, found 

wide-spread application to study legume effects and N-transfer in agricultural settings (Chalk 

1991; Hogh-Jensen and Schjoerring 1997; Gardner and Drinkwater 2009). Tracers are also 

used in grassland systems to study N-dynamics under natural conditions (Buchmann et al. 

1992; Kahmen et al. 2006; Kahmen et al. 2008; Robson et al. 2010) or in relation to 

disturbance (see manuscript 4). The δ15N natural abundance value of a sample is per se a 

function of the δ15N values of its N-sources (Handley and Raven 1992) and acts as an 
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integrator of N-dynamics in a system (Robinson 2001). The method is less often used in 

agricultural studies (Bolger et al. 1995; Eriksen and Hogh-Jensen 1998; Moyer-Henry et al. 

2006) but has some advantages for ecological investigations. It does not require any 

experimental treatments and it can provide information about the tightness of the N-cycle – 

and thus N-limitation (see manuscript 3 and Schulze et al. 1994; Nadelhoffer et al. 1996; 

Amundson et al. 2003; Pardo et al. 2006). Furthermore, δ15N values can provide evidence for 

symbiotic relationships with different types of mycorrhizal fungi or N-fixing organisms as 

reviewed by Högberg (1997) and Dawson (2002). The δ15N signal can provide information 

about N-transfer from donor to receiver species in biodiversity grassland experiments (Mulder 

et al. 2002; Spehn et al. 2002; Temperton et al. 2007; Carlsson et al. 2009) and in natural 

settings (Bai et al. 2009), but heterogeneity of natural plant communities with often high 

legume species presence and lack of adequate control plants, sets some limits to its applica-

bility to study N-transfer in the field (see manuscript 3 and Handley and Scrimgeour 1997; 

Beyschlag et al. 2009). 

Analyses of 15N (15N-tracer or δ15N natural abundance) in plant and soil samples, although 

powerful tools to highlight interaction processes between legume donor and non-legume 

receiver species, have one major disadvantage: they require destructive sampling. Thus, every 

sampling disturbs the system to a certain degree; e.g. the cutting of leaves or even whole 

individuals can alter plant-plant interactions (effects of simulated grazing on N-transfer 

between different species: see manuscript 4). The sampling of root and soil material can alter 

substrate structures or facilitate subsequent invasion by creation of empty space (Buckland et 

al. 2001; Buckley et al. 2007). Therefore the use of non-invasive methods to study ecosystem 

processes is desirable, e.g. measurements of the leaf area index (LAI) to extrapolate 

(stratified) community productivity can substitute biomass harvest (Daßler et al. 2008; 

Vojtech et al. 2008). Information about individual or species response to environmental 

stresses can be derived from the measurement of chlorophyll a fluorescence of plant leaves 

and thus can partly substitute e.g. laborious pigment content analyses. The quantification of 

chlorophyll a fluorescence of photosystem II by PAM-fluorometers (pulse-amplitude 

modulated photosynthesis yield analyzers by H. Walz GmbH, Effeltrich, Germany) is a quick 

and non-invasive way of measuring the efficiency of light reactions in situ (Schreiber et al. 

1986; Maxwell and Johnson 2000). Fluorescence measurements can indicate photosynthetic 

constrains due to drought stress (Rascher et al. 2004) or flooding (Pociecha et al. 2008). Still 

unsolved are the questions (i) if it provides a useful tool to detect changes in plant-plant 

interactions in the context of varying species richness along environmental gradients and (ii) 



Introduction 

14 
 

if it might provide a tool to predict productivity reductions due to environmental stresses. The 

studies presented in manuscript 1 and manuscript 2 address questions concerning the 

changes in response parameters (chlorophyll a fluorescence, individual biomass production 

and others) of a common European grass species in relation to community composition and 

legume presence under extreme weather stress. 
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OBJECTIVE OF THE THESIS 

The objective of this doctoral project was to elucidate mechanisms involved in positive plant-

plant interactions (facilitation) in relation to diversity and identity of species in communities 

and to test ecological theories (stress gradient hypothesis, biodiversity-productivity relation-

ship, insurance hypothesis) at different spatial scales. The guiding questions for all studies 

conducted during this PhD were: How do interactions change along biotic gradients (species 

and functional diversity)? How do they change along abiotic gradients (nutrient status, 

disturbances like weather stress or simulated grazing)? And how do they change with the 

spatial scale (controlled greenhouse or climate chamber compared to (semi-)natural field 

experiments)? I performed basic ecological research; results could be useful for the field of 

applied ecology, e.g. for restoration of degraded habitats or sustainable biofuel production. 

Results should help to bridge the gap between theory and practice; knowing of this gap and 

aiming to reduce its width is a major challenge in modern ecology (Temperton et al. 2004).  

I focused on interaction processes between grassland species, especially between legume 

species (as N-donors) and neighbouring non-legume species (as N-receivers). Species from 

the functional group of N2-fixing legumes often have strong positive effects on neighbouring 

or subsequent species by providing extra-nitrogen (N-facilitation), although mechanisms of 

N-facilitation are mostly unclear. Nitrogen is a limiting factor in most terrestrial ecosystems 

(Chapin 1991; Vitousek and Farrington 1997; Marschner 2002), thus interaction processes 

between N-donor and N-receiver species play a key role for N-dynamics and productivity in 

(semi-)natural habitats (e.g. Spehn et al. 2002; van der Heijden et al. 2006; Temperton et al. 

2007; Haultier et al. 2009) and in agricultural ecosystems (e.g. Giller and Cadisch 1995; 

Ledgard et al. 2001; Hogh-Jensen 2006; Moyer-Henry et al. 2006). N-facilitation is most 

important under N-limited conditions (Ledgard et al. 2001; Weigelt et al. 2009), but legume 

presence can easily shift to competitive pressure if other resources are limiting (Pugnaire and 

Luque 2001; Kikvidze et al. 2006; Haultier et al. 2009). Thus, the identification of a threshold 

where facilitation changes to competition and vice versa is of high interest. Although a vast 

amount of information about interaction processes between legume and non-legume species is 

already available, most studies on N-facilitation for receiver species have been conducted in 

species-poor, relatively eutrophic agricultural settings. Resulting main research questions, 

linking individual projects within this PhD, were: 

(i) Is it possible to investigate, by the use of short-term, small-scale experiments 

under more controlled conditions, the mechanisms behind positive plant-plant 
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interactions which are observed in long-term, large-scale studies under (semi-) 

natural conditions? Is it possible to simulate nature and to test ecological theories 

at (temporal and spatial) small scales and thus provide a tool to enhance the 

predictability of large-scale changes (due to land use or climate change)?  

(ii)  Is it possible to identify a threshold where facilitation shifts to competition (testing 

the stress gradient hypothesis)? 

(iii)  How do plant-plant interaction processes change in more diverse systems 

compared to species-poor systems at different scales (testing biodiversity-

ecosystem functioning relationships) and how do changes in biodiversity affect 

species-specific responses of non-legume receiver species? 

I used classical ecological census techniques (cover, biomass determination) but also more 

elaborated methods such as chlorophyll a fluorescence measurements and 15N-analyses to 

investigate legume effect on neighbouring receiver species under different environmental 

(both biotic and abiotic) conditions. 
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SYNOPSIS 

OUTLINE OF MANUSCRIPTS 

Main topic of this thesis was to elucidate mechanisms of positive and negative plant-plant 

interactions between grassland species at different spatial scales. In particular, I am interested 

in legume-neighbour interactions and how they change with diversity, species composition 

and identity along gradients of environmental stress and with the spatial scale of the study. I 

worked in small-scale microcosm experiments and in field settings to evaluate positive 

legume effects (N-facilitation) and to test the reproducibility of ecological theories across 

spatial scales. I used different invasive and non-invasive methods to investigate presence and 

strength of N-facilitation. The research had a pronounced focus on neighbours as N-receivers 

and not on the legumes themselves, acting as N-donors. The first two manuscripts describe 

studies that link the fields of biodiversity and climate change research; investigating which 

differences occur between monocultures and more diverse communities under the threat of 

altered climatic conditions. The second two manuscripts describe studies about legume-

neighbour interactions that link the fields of restoration ecology and agriculture; considering 

how land-use changes may affect the interplay between species. 

 

Within the study presented in manuscript 1, we investigated how a single target species 

(Holcus lanatus) performed under two environmental stresses (extreme drought and heavy 

rain events) in the context of varying diversity of the surrounding plant communities (G1-: 

monocultures, G2-: 2-species-mixtures, G4-: 4-species-mixtures without a legume species, 

G4+: 4-species-mixtures with the legume species Lotus corniculatus). In 2007, we measured 

photochemical efficiency (chlorophyll a fluorescence) and individual biomass production 

(NPind) of H. lanatus within the EVENT-Experiment I, located in the Ecological-Botanical 

Garden at the University of Bayreuth. We found, that chlorophyll a fluorescence of H. lanatus 

was only a poor predictor for NPind although it was a useful tool to detect drought stress in the 

target species whereas it failed to detect constraints related to the heavy rain treatment, which 

led to reductions in NPind (but not in the photochemical efficiency). Contrary to our 

expectations, drought effects on photochemical efficiency and NPind of H. lanatus were not 

detectable for monocultures but increased with increasing functional diversity in mixtures. At 

community level, negative effects on the target species were ameliorated by the performance 

of neighbouring species as reported in manuscript 1 for the photochemical response and in 

Kreyling et al. (2008a) for total biomass production of communities. Especially the legume 
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species Lotus corniculatus, which used the available light resources very efficiently, affected 

the photochemical community response in G4+ and added significantly to the stability of the 

community. In manuscript 1 we conclude, that negative effects of extreme drought on NPind 

and photochemical efficiency were mainly related to a decrease in competitive strength of H. 

lanatus (for soil water resources) in more diverse communities which led to an earlier 

senescence of the target species. Based on these findings, we performed a second study 

(presented in manuscript 2) to investigate the physiological response of H. lanatus to 

extreme drought stress in more detail. 

 

The study presented in manuscript 2 took place in the EVENT-Experiment I in 2008. We 

focused on the same target species but investigated its performance not only in terms of NPind 

and light- as well as dark-adapted photochemical efficiency but also by measurements of leaf 

water potential (LWP), N-parameters (N-concentration and δ15N natural abundance) and 

photosynthetic pigment contents of Holcus lanatus leaves within and after the drought 

treatment period. It was possible to confirm the negative effects of increasing functional 

diversity (and especially of legume presence) on photochemical efficiency and NPind in H. 

lanatus, which points towards a general mechanism behind the findings. LWP of the target 

species was lowest in 4-species-communities with a legume species (G4+) under drought 

stress confirming a reduction of competitive strength in H. lanatus for limited soil water 

resources. On the other hand, it was not possible to show earlier senescence (accompanied by 

photosynthetic pigment degradation) due to drought stress as concluded from the fist study. 

No significant differences in total photosynthetic pigment content occurred for H. lanatus 

along the diversity gradient or between control and drought treatments although a trend to 

decreased total pigment content was observed in both four species communities under drought 

stress. Most impressive was the fast and total recovery (within one week) of formerly drought 

stressed H. lanatus plants in G4+ in the post-drought phase: photosynthetic efficiency of 

light- and dark-adapted leaves showed a fast and complete recovery whereas monocultures, 

which were more stable during drought, still showed significant reductions in photosynthetic 

efficiency. The high degree of recovery compared to all other communities was considered as 

a clear sign of facilitation from the legume species L. corniculatus, measured by changes in 

N-concentration and δ15N values, and provides evidence for higher stability and resilience in 

communities with higher functional diversity and thus the insurance hypothesis. 
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The study presented in manuscript 3 was conducted to detect potential facilitative legume 

effects on the nitrogen metabolism of neighbouring non-legume species (receivers). We used 

an environmental N-gradient, provided by a large-scale calcareous grassland restoration 

project, to follow changes in donor-receiver interactions. The restoration site with its different 

treatments provided an ideal testing ground for the stress gradient hypothesis (related to N-

facilitation): the differently treated areas are very distinct in terms of N-availability and N-

forms in the soil solution, thus providing an N-gradient, but nevertheless in direct vicinity to 

each other, thus reducing confounding effects of e.g. climate. We aimed to show positive 

legume effects and increasing N-facilitation with increasing N-limitation in a (semi-)natural 

field site (according to the stress gradient hypothesis) using the δ15N natural abundance 

method. The δ15N signal in plants acts as an integrator of N-dynamics in a system but has also 

been successfully used to resolve N-facilitation of legume species for non-legume neighbours 

(Mulder et al. 2002; Temperton et al. 2007; Bai et al. 2009). We collected plant pairs and 

control plants along the N-gradient: donor-receiver pairs (legume species and non-legume 

neighbours) and control plants of the receiver species. Analyses of δ15N values showed that 

all legume species had a constant δ15N value along the N-gradient. Thus, legume species 

acted as potential N-donors and we expected highest N-facilitation at the most severe end of 

the N-gradient. Non-legume species showed a significant increase in δ15N with decreasing 

environmental severity (from ~ -7.5‰ to ~ 0‰) with species-specific differences due to life 

form and mycorrhizal symbiosis of the species. In general, we found that δ15N values were 

mostly under (abiotic and biotic) environmental control and provide only weak evidence for 

N-transfer from legumes to neighbours. Although the integrated signal from soil N-dynamics 

seemed to override any facilitative N-donor signal, the study revealed the potential of the δ15N 

natural abundance method to indicate restoration success. 

 

Manuscript 3 showed that the δ15N natural abundance method might not always result in a 

detectable signal of N-facilitation by legumes. Thus, we performed a microcosm study to 

investigate, if it is possible to resolve small-scale differences in N-transfer with a 15N-

enriched tracer (manuscript 4). Aim of the study was (i) to compare short-term N-transfer 

within differently composed communities and (ii) to test the effect of a common management 

regime (grazing) on plant-plant interactions. We used communities of different compositions 

(one legume, grass and forb species in three diversity levels) and investigated effects of 

simulated grazing (cutting of aboveground biomass of the 15N-labelled donor individual) on 
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15N-transfer (measured as [%] of 15N-tracer transferred from 15N-labelled donor to non-

labelled receiver individuals). We found a positive effect of species richness on 15N-transfer: 

it increased significantly from monocultures to 3-species-mixtures, irrespective of community 

composition. A potential legume effect on 15N-transfer was superimposed by a strong 

confounding effect of donor species biomass production. A significant positive legume effect, 

but no diversity effect per se, occurred on net biomass production per individual (NPind), N-

concentration [%] and N-content (= NPind x N [%]). Interestingly, the grass species received 

significantly more 15N from a legume donor than the forb species in 2-species-mixtures 

whereas in the 3-species-mixtures the amount of 15N transferred from the legume was homo-

geneously distributed between grass and forb. Despite the same 15N-enrichment in the grass 

and the forb species in 3-species-mixtures, the grass accumulated more NPind and had a higher 

total N-content than the forb, which indicated better nitrogen use efficiency of the grass 

species. Additionally, we found a highly interesting interaction between simulated grazing 

and species richness on 15N-transfer: simulated grazing stimulated intra-specific N-transfer in 

monocultures whereas it reduced inter-specific N-transfer in mixtures. Contrary to our ex-

pectations, simulated grazing had (as a trend) an overall negative effect on 15N-transfer and 

mainly increased internal N-cycling for regrowth of the cut individual. Thus, individuals 

seemed to “decide” how to organize their N-dynamics when grazed depending on the 

surrounding community; a finding that support recent publications about kin recognition and 

plant behaviour (sensu Karban 2008) and provide novel insights about the importance of 

community composition for plant behaviour. 
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SUMMARIZING CONCLUSIONS AND EMERGING RESEARCH QUESTIONS 

The main strengths of this PhD research were twofold: firstly, the investigation of N-

facilitation between legume donor and non-legume receiver species was extended from the 

traditional-agricultural two-species-interactions to a gradient of plant diversity, where the 

diversity of communities and the identity of the interacting species are crucial points for 

facilitative plant-plant interactions. Secondly, individual projects were conducted across a 

range of spatial scales and across (both diversity and) environmental gradients. This is 

important since main criticism of large-scale biodiversity field experiments has been that 

positive biodiversity effects, which have been found in such settings, may not be transferrable 

to other habitats and ecosystems or even to other grasslands (e.g. Kahmen et al. 2005, Guo 

2007). We do not know to what extent effects found in semi-natural grassland experiments 

also apply at other scales; i.e. smaller or natural landscape scales (but see Kahmen et al. 2005, 

Kahmen et al. 2006 for rare landscape-scale studies). To find out more about the existence of 

biodiversity effects – and especially about positive legume effects (N-facilitation) – across 

scales and habitats, it is necessary to conduct research addressing the same questions in 

different habitats with varying environmental conditions and at different scales. Hence, I used 

systems from microcosms (pot experiments) up to macrocosms (field studies) to elucidate 

mechanisms of plant-plant interactions (mainly N-dynamics), and changes in these inter-

actions in relation to the identity of species within differently composed communities. The 

combination of individual studies within my PhD project made it possible to compare effects 

of species composition and identity, legume presence and (to some extent) species richness 

between experiments, that represented a large variety of environmental conditions. Import-

antly, this allows for one to address the common criticism of large-scale biodiversity 

experiments (being only one example or one habitat), as well as addressing how biodiversity 

effects may differ when investigated at various scales and across gradients (although therefore 

this approach does not, of course, allow for detailed study of multiple aspects of each 

experimental system; see publications of the Jena Experiment and the EVENT-Experiments in 

Germany or the Cedar Creek Experiment in the USA for details hereof).  

Results from this thesis provide novel insights into the ecology of temperate grassland 

systems. They are of interest for the field of biodiversity research (which has mainly been 

investigated by large-scale experimental set ups), for the field of facilitation research (which 

has mainly been investigated in natural and very extreme habitats and not in mesic habitats or 

experimental set ups) and for the fields of plant physiology and plant behaviour (which has 

mainly been investigated using single individuals and single species (i.e. autecology) with 
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little relevance for natural grassland systems). In the following, I outline and discuss the main 

findings of this PhD project in relation to the three main questions posed at the end of the 

Introduction. 

 

TESTABILITY OF ECOLOGICAL THEORIES AT DIFFERENT SCALES 

Ecological theories are derived from observations, which normally include effects of the 

biotic and the abiotic environment as well as interaction effects between organisms. Thus, 

testing the applicability of ecological theories, e.g. of the stress gradient hypothesis (SGH) for 

N-facilitation or of the insurance hypothesis, at different scales is not an easy task but well-

designed studies have the potential to identify general patterns. Within this thesis I present 

studies, which showed that some of the mechanisms affecting plant population and comm-

unity performance at field scale, also apply at the microcosm scale and thus, that it is indeed 

possible to test ecological theories at smaller scales. 

Results presented within manuscript 4 and supplementary material provide evidence for 

the testability of ecological theories within microcosms: we were able to confirm the environ-

mental control over total community productivity (Cardinale et al. 2009; Huston et al. 2000) 

and the decrease of δ15N values with increasing N-limitation and environmental severity, 

which were found in the field (e.g. Amundson et al. 2003; Pardo et al. 2006 and manuscript 

3) as well as in a greenhouse experiment (with different diverse plant communities grown in 

substrates of low, medium and high N-availabilities; see supplementary material). Lower or 

even negative δ15N values are related to a better N-conservation and N-recycling in colder, 

wetter and stronger N-limited systems, thus to a more closed N-cycle (e.g. Amundson et al. 

2003; Pardo et al. 2006). We were able to show that these effects occur irrespective of the 

spatial scale of the studies (at least for the studies conducted within this PhD project).  

This finding include that it is allowed to test the SGH at different scales within the temperate 

regions. There is evidence from either highly fertilised or unfertilised mesic (semi-)natural 

grassland habitats (Ledgard et al. 2001; Marquard et al. 2009a; Weigelt et al. 2009), that the 

importance of N-facilitation increases with N-limitation, as predicted by the SGH. Marquard 

et al. (2009a) show that positive biodiversity effects such as complementarity effects increas-

ed over time whereas sampling effects became less important during six years of the Jena 

Experiment. This is possibly due to the regular hay (and thus nutrient) removal after mowing 

accompanied by increasing N-limitation, which could also relate to an increase in facilitation 



Synopsis 

23 
 

over time. However, we do not yet know how positive biodiversity effects interact with an 

environmental gradient of N-availability. To our knowledge, experiments with an N-gradient 

(from mesic to N-stressed conditions) in field or microcosm studies are generally rare.  

The study presented in supplementary material suggests increasing N-facilitation with 

increasing N-limitation in the substrate and thus provides some support for increasing positive 

plant-plant interactions, according to the SGH, also at small scales. Here, N-facilitation 

occurred mainly by N-sparing and not by short-term N-transfer from donor to receiver 

species, indicated by higher N-concentrations in leaves of receiver species without 

homogeneous changes in δ15N values. This finding is in accordance with effects found in the 

field: N-facilitation by N-sparing prevails in the short-term whereas N-transfer gets more 

important in the long-term (Hogh-Jensen and Schjoerring 2000, Temperton et al. 2007). The 

study presented in manuscript 3, conducted in a restored calcareous grassland (with four 

areas, which differ in their environmental N-availability), aimed to deliver some evidence for 

the SGH in terms of N-facilitation in a field setting within the temperate regions – but it 

seems that the integrative character of the δ15N natural abundance method for the overall N-

cycle excludes a detection of facilitative donor-receiver interactions under this natural 

conditions. On the other hand, increasing N-facilitation due to higher environmental stress 

might have had happened for donor-receiver pairs along N-gradients at large and small spatial 

scales (manuscript 3, supplementary material) and during extreme weather stress on an 

intermediate scale (manuscript 1, manuscript 2) but we were not able to detect it. Here, the 

application of multiple or simple stable isotope tracers may provide a more powerful tool than 

the δ15N natural abundance method to investigate changes in N-facilitation along abiotic or 

biotic stress gradients. The study presented in manuscript 4 provides evidence that 15N-

enriched substances have the potential to highlight changes in plant-plant interactions due to 

species diversity and species composition. Additionally, this study provides novel insights, 

elucidated by a 15N-tracer, on interactions between community compositional and disturbance 

effects for the young field of plant behaviour and kin recognition (sensu Karban 2008). 

Concerning the testability of the insurance hypothesis by microcosm studies, the set up of an 

adequate design is even more crucial than for tests of the SGH, because the SGH mainly 

predicts the outcome of pair-wise interactions (Maestre et al. 2009) whereas the insurance 

hypothesis predicts the outcome of whole communities – although the community response 

depends on species responses (Yachi and Loreau 1999). Thus, the extrapolation from species 

responses to higher organisation levels (e.g. communities) must be done with extreme caution 
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because the same factor often affects different scales and organisation levels very differently 

(Balvanera et al. 2006). The studies on the stress response of Holcus lanatus under semi-

natural field conditions (manuscript 1, manuscript 2) clearly showed, that species- and 

community-specific responses can differ significantly: whereas the applied stresses had 

significantly negative effects on species level, the effects on community level were only 

marginal. We were able to show, to our knowledge for the first time, that a non-invasive 

method to measure the physiological performance (chlorophyll a fluorescence) of individuals 

from different grassland species also provides a promising tool to investigate community 

responses (manuscript 1). The question arises, if it might be possible to use a mixture of non-

invasive methods (fluorescence and leaf area index (LAI) measurements) to substitute 

invasive methods (harvest, element analyses in tissues) for the investigation of community 

responses to environmental stresses, e.g. to test the insurance hypothesis in natural 

communities. The use of non-invasive methods provides the possibility to study community 

responses to a treatment repeatedly and without confounding treatment effects by additional 

disturbances of the system due to e.g. harvest. 

 

TESTABILITY OF BIODIVERSITY AND LEGUME EFFECTS AT DIFFERENT SCALES 

Asking the question, if it is possible to simulate plant-plant interaction effects, which have 

been observed in nature or in large-scale, long-term ecological experiments (field-effects), at 

smaller scales (and also vice versa!), no absolute positive or negative answer can be provided 

because both seems to be true. Spatial scale is an indisputable factor for the outcome of an 

observation (Balvanera et al. 2006; Dimitrakopoulos and Schmid 2004; Sandel and Smith 

2009) but this fact does not exclude the use of smaller units (e.g. populations) to predict 

biodiversity or legume effects in larger units (e.g. habitats). The studies presented within this 

thesis led to the conclusion, that the use of experiments on a relative small spatial scale under 

more controlled conditions can provide important information for the prediction of species 

interactions due to large-scale manipulations. Thus, we provide additional support for the 

view, that small-scale experiments indeed have an indicative character for processes 

observable at larger scales as stated by van der Heijden et al. (2006), especially related to N-

dynamics. This finding opens a new application spectrum for studies within controlled envir-

onments (greenhouse, climate chamber) for the research of N-dynamics under changing 

abiotic (N-availability, disturbance, management regime) and biotic (species diversity, com-

position and identity) conditions. Especially the investigation of interactions between abiotic 
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and biotic factors, and their changes with changing environmental severity or management 

regime, is possible in greenhouse studies, whereas both factors are nearly impossible to 

separate in the field. Additionally, a separation of real “biodiversity effects” and “com-

positional/sampling effects” is much easier if highly replicated micro- or mesocosm studies 

could be used. For example, patterns of legume-neighbour interactions on N-dynamics can be 

elucidates, if performed under comparable environmental (both abiotic and biotic) conditions 

- at least for early successional communities or for plant-plant interactions after disturbance. 

Investigations of biodiversity or compositional effects at small scales must be clearly focussed 

on a certain function or process (e.g. changes in N-cycling) and generalizations to other 

functions or processes (e.g. community biomass production) should be avoided. 

We found positive per se biodiversity effects on N-parameters in a microcosm study (manu-

script 4, supplementary material; stronger under mesic than under low N-conditions) and in 

a mesocosm study (manuscript 2; stronger under drought than under ambient conditions). 

Individual N-concentrations and δ15N values decreased with increasing species richness of the 

surrounding community as it has been observed in large-scale field experiments (Mulder et al. 

2002; Temperton et al. 2007), providing first experimental evidence, that biodiversity effects 

on N-dynamics are comparable between small- and large-scale experiments, opening the 

opportunity to study the mechanisms behind this phenomena under controlled conditions. On 

the other hand, we also could confirm the occasionally strong occurrence of key species 

effects within microcosm studies; e.g. the sampling effect of legume species presence on 

community biomass production (manuscript 4 and Mikola et al. 2002; Spaekova and Leps 

2001). Higher probability for the occurrence of sampling effects are related to the fact that 

experimental and natural systems generally differ strongly in their community assembly 

(Ejrnaes et al. 2006; Hobbs and Norton 2004) and that potential founder effects can affect the 

outcome of a study significantly (Körner et al. 2008; Šmilauerová and Šmilauer 2010). 

Additionally, higher asymmetric competition occurs between species under controlled than 

under field conditions (Ejrnaes et al. 2006; Hobbs and Norton 2004). Due to an increased 

importance of the sampling effect in smaller experimental units, a positive effect of 

biodiversity per se on community productivity, which is evident in field experiments (Roscher 

et al. 2005; Marquard et al. 2009a; van Ruijven and Berendse 2009), could be simulated only 

on some occasions in the greenhouse (Lanta and Leps 2006 and supplementary material). A 

kind of sampling effect was also evident for the photosynthetic efficiency (and biomass 

production) of Lotus corniculatus within the EVENT-Experiment I (manuscript 1). A highly 

interesting future research would be, to identify the contribution of L. corniculatus to comm-
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unity’s biomass production, photosynthetic efficiency and its potential to act as an N-donor in 

microcosms, the EVENT-Experiment II (which comprises of naturally grown grassland 

natural communities) and in natural meadows. 

Positive effects of legume presence on N-availability for neighbouring non-legume species 

have been found in (semi-)natural grassland habitats as well as in micro- and mesocosm ex-

periments (Ledgard et al. 2001; Mulder et al. 2002; Temperton et al. 2007 and manuscript 2, 

manuscript 4, supplementary material). Especially grass species benefited from an N-

donor in the community both in field and in microcosm experiments. Although N-sparing is 

more important than N-transfer in the short-term (manuscript 4, supplementary material 

and Temperton et al. 2007), N-transfer does occurs during a 20-30 days period (manuscript 4 

and Gylfadottir et al. 2007). Grasses received more N by direct N-transfer and competed 

effectively with forb species for limited soil N-resources during two three-month microcosm 

studies (manuscript 4, supplementary material). This short-term observations reflect 

processes which occur in (semi-)natural communities (Mulder et al. 2002; Jumpponen et al. 

2005; Oelmann et al. 2007; Temperton et al. 2007), providing further evidence for the 

testability of biodiversity and legume effects on non-legume receiver species at small scales. 

Different studies already show that patterns of N-uptake vary between different functional 

groups and species (Weigelt et al. 2005; Kahmen et al. 2006; von Felten et al. 2008) but it 

would be very interesting to elucidate the mechanisms behind this findings, especially 

embedded within a biodiversity context, and if mechanisms are the same on different spatial 

scales. Furthermore, it would be interesting to study the N-acquisition strategy of stress-

adapted species and if such grasses exhibit the same advantage in N-acquisition over forbs 

when growing together with a legume neighbour as mesic-adapted grass species. Until now, 

most studies use species, which are adapted to mesic or eutrophic conditions due to their 

relevance for pasture production. 

We also could confirm N-transfer from non-legume species to neighbours within microcosms 

with a natural substrate (manuscript 4); this bi-directional N-transfer has been described for 

the field as well as for highly artificial lab settings (Hogh-Jensen 2006; Hogh-Jensen and 

Schjoerring 2000; Paynel and Cliquet 2003). A next step to test biodiversity, compositional 

and legume effect in microcosm should be to increase the diversity and test more species pairs 

and more community compositions for the generalisation of finding; not only across spatial 

but also across temporal and environmental gradients. The temporal gradient is highly inter-
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esting because e.g. Marquard et al. (2009a) find increasing importance for complementarity 

and decreasing importance of sampling effects over six years.  

 

BIODIVERSITY AND LEGUME EFFECTS ALONG ENVIRONMENTAL GRADIENTS 

Asking the question if it is possible to identify a threshold in legume-neighbour interactions 

where facilitation shifts to competition along an abiotic gradient and how the surrounding 

species richness modulates the interaction processes, no clear answers could be provided. In 

general, legume effects are less pronounced under high N conditions but they can replace high 

fertiliser application rates in mesic habitats (Ledgard et al. 2001; Weigelt et al. 2009). Leg-

umes are considered to be relatively poor competitors for soil N-resources because of a less 

extensive root system (e.g. Craine et al. 2002) and in combination with the fact, that nearly all 

natural habitats are N-limited (differing mostly in the degree of N-limitation) legume species 

are often forced to rely on biological nitrogen fixation (BNF) to sustain their N-demand. 

Thus, legume species are generally a potential N-source for neighbouring species. We were 

able to identify some interesting patterns in relation to thresholds under mesic conditions: 

firstly, that the diversity of surrounding non-legume species seemed to determine the 

legume’s use of soil N-resources and secondly, that the benefits for receiver species from N-

facilitation were stronger than short-term effects of space competition.  

Along biotic gradients, more niches are occupied at the more diverse end of the gradient and 

total N-exploitation of a community increases (Oelmann et al. 2007; Palmborg et al. 2005); an 

effect which is reflected in decreasing δ15N values with increasing species richness 

irrespectively of legume presence in the field as well as under low and medium N-availability 

in a greenhouse study (Mulder et al. 2002; Temperton et al. 2007 and supplementary 

material). Positive legume effects should increase in more diverse communities because of a 

more closed N-cycle. We found some support for a changed N-acquisition strategy in legume 

species under medium N-availability with increasing diversity of the surrounding community 

(supplementary material). Whereas legumes’ δ15N values were positive (acquisition of N 

from soil) when it grew with two neighbours, δ15N values switched to negative (acquisition of 

N from BNF) when legumes grew with three neighbours. The change may reflect increasing 

competition for N-resources with increasing species richness and also a kind of start-off state 

for N-facilitation for neighbouring non-legume species. Additionally, results from a second 

microcosm experiment (manuscript 4) pointed in the direction of interacting effects of 
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diversity and legume presence for N-facilitation along a biotic gradient. We did not observed 

higher competition for rooting space or light between non-legume and legume species despite 

the vigorous growth of the legume species. On the contrary, vigorously growing legume 

donors enhanced biomass and N-accumulation in receivers compared to smaller non-legume 

donors and thus we detected an increase in N-facilitation with diversity but no changes in 

competition within this microcosm study in medium N-supplied substrate. This very 

interesting interplay between species richness and potential N-facilitation within a constant 

mesic environment still requires more research, especially because Haultier et al. (2009) iden-

tified space as the main limiting resource under mesic to eutrophic conditions. Further work 

under controlled and field conditions, with more diverse communities and within systems 

which mirror real habitats, e.g. in need of restoration, should help to fully understand 

changing donor-receiver interactions along biotic gradients. 

Concerning abiotic gradients, we could show that the δ15N natural abundance method was a 

better indicator for soil N-dynamics than for N-facilitation (manuscript 3). Low δ15N signals 

in potential receivers indicate a more closed N-cycle (and thus a potential higher requirement 

for N-facilitation). Although we found that the δ15N natural abundance method was not 

appropriate to investigate N-facilitation in very nutrient depleted calcareous grasslands we did 

find highly interesting, that there is the strong potential to use the δ15N signal in non-legume 

grassland species to assess N-dynamics in the soil (e.g. in ecological restoration projects). 

Thus, the δ15N signal in plants may substitute laborious soil N analyses, whose results are 

strongly affected by season and climate. Recent work e.g. by Kahmen at al. (2008) cor-

roborate the indicative character of the δ15N natural abundance method for soil N-processes. 

Plans for further work imply a “screening” of natural systems with different degrees of N-

limitation and the addition of 15N-enriched tracers, which may highlight increasing N-facili-

tation with increasing N-limitation. Here, collaborations with specialists in the field of 

mycorrhizal fungi, microbiology or soil chemistry could contribute to separate effects of the 

abiotic environment from effects related to interactions between lower and higher biological 

organisation forms.  

Along abiotic gradients, the identification of thresholds where N-facilitation switches to 

competition is also important if a second resource besides N limits plant growth. Legume 

species often compete with other species for available resources (water, phosphorus, light, 

space) and thus, can have negative effects on neighbouring species – but when and how a 

switch occurs is, to our knowledge, still mainly unknown. Results from the studies presented 
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in manuscript 1 and manuscript 2 indicate that under drought stress, the legume Lotus 

corniculatus was very effective in competing for soil water resources with neighbouring 

species. This affected photosynthetic performance and water potential of the neighbouring 

grass species Holcus lanatus significantly negative during an extreme drought event. Inter-

estingly, in the rewetting phase after drought, legume presence had a positive effect on the 

recovery of H. lanatus. On the other hand, under persistent undisturbed (ambient) conditions 

we found no explicit facilitative effect of legume species presence or higher diversity on 

photosynthetic efficiency or pigment content in leaves of H. lanatus although higher N-con-

centrations and δ15N natural abundance values indicate N-facilitation under ambient con-

ditions (manuscript 2). Thus, we provide first evidence for a switch from N-facilitation to 

competition for soil water resources under short-term extreme drought events within a mesic 

grassland habitat. This phenomenon is worth a more detailed investigation, especially in 

combination with the higher recovery potential of H. lanatus in the post-drought phase with 

than without a legume neighbour. Additionally, the study of other species in such a detail 

would result in valuable information about the general mechanism behind this (mediated) 

stress response. Again, the additional application of stable isotope tracers to plants or soils 

would certainly yield results which help to explain the described patterns.  

 

CONCLUSION 

In conclusion, I am confident that the findings presented within this thesis help to expand 

scientific knowledge on plant-plant interactions and how they relate to species identity and 

plant diversity. I provide novel insights (i) on the potential to use non-invasive methods for 

describing individual and community response to stresses, (ii) on the potential to use 

established methods like the δ15N natural abundance method under a new point of view 

(namely as an indicator than as an integrator) and (iii) about plant-plant interactions and plant 

behaviour (sensu Karban 2008) and performance within differently composed communities 

under undisturbed or disturbed conditions. Results about underlying mechanisms and changes 

in these mechanisms with changing community diversity (mainly focussed on N-dynamics, 

especially between N2-fixing legume species and non-fixing neighbours) gained by small-

scale, short-term or medium-term greenhouse studies, can have considerable implications at 

larger spatial and temporal scales and can help to explain patterns described by ecological 

theories. I am convinced that the study of plant-plant interactions and the knowledge of how 

such interactions change under different abiotic and biotic environmental conditions can help 
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to solve problems in a number of fields such as sustainable extensive agriculture (where 

legumes as fertilisers will play a larger role with increasing mineral fertiliser prices), biofuel 

production or the successful restoration of degraded habitats. 
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LIST OF MANUSCRIPTS AND DECLARATION OF OWN 
CONTRIBUTION 

OWN CONTRIBUTION 

Different sections of “own contribution” describe the process from initialisation of the study 

until the completion of the final version of each manuscript. I present only my own 

contributions because listing of every author’s contribution for multi-author manuscripts 

would go far beyond the scope of a short description. 

 

Single sections comprise:  

concept = idea for the study and development of the experimental design  

data acquisition = taking care and responsibility for survival of microcosms and for measure-

ments in the field  

data analysis = translation of raw data in digital tables, statistical analyses  

literature research = acquisition of background information for introductions and 

discussions  

writing  = translating all the words concerning a study from the brain to the computer by the 

use of my hands and a computer  

discussion =  integration of results in the context of the latest scientific state-off-the-art  

editing = rewriting after discussion and implementation of improving comments for final 

versions of manuscripts 
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MANUSCRIPT 1 

Title: Holcus lanatus under climate change stress – impacts of plant diversity and simulated 

extreme weather events on photosynthetic performance and productivity 

 

Authors: Lea L.A. Märtin, Vicky M. Temperton, Kerstin Grant, Julia Walter, Jürgen Krey-

ling, Carl Beierkuhnlein, Ulrich Schurr, Uwe Rascher, Anke Jentsch 

Corresponding author: Uwe Rascher, Vicky Temperton 

Status: submitted 

Journal: Oecologia 

Own contribution: concept (10 %), data acquisition (100 %), data analyses (70 %), literature 

research (70 %), writing (70 %), discussion (60 %) and editing (60 %) 

 

MANUSCRIPT 2 

Title: Presence of a legume species reduces the ecophysiological performance of Holcus 

lanatus during a drought, but speeds up recovery after drought stress 

 

Authors: Julia Walter, Uwe Rascher, Lea L.A. Märtin, André Moersch, Maik Veste, Carl 

Beierkuhnlein, Matthias Gehre, Anke Jentsch 

Corresponding author: Julia Walter 

Status: submitted 

Journal: Environmental and Experimental Botany 

Own contribution: concept (20 %), data acquisition (0 %), data analyses (20 %), literature 

research (5 %), writing (10 %), discussion (20 %) and editing (30 %) 
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MANUSCRIPT 3 

Title: The use of the δ15N natural abundance method to assess facilitation and restoration 

success in calcareous grassland 

 

Authors: Lea L.A. Märtin, Kathrin Kiehl, Daniela Röder, Andreas Lücke, Vicky M. Temper-

ton 

Corresponding author: Lea Märtin 

Status: in preparation for re-submission 

Journal: Restoration Ecology 

Own contribution: concept (50 %), data acquisition (100 %), data analyses (95 %), literature 

research (95 %), writing (95 %), discussion (70 %) and editing (90 %) 

 

MANUSCRIPT 4 

Title: N-transfer between grassland species: effects of community composition, species 

identity and simulated grazing 

 

Authors: Lea L.A. Märtin, Uwe Rascher, Ulrich Schurr, Vicky M. Temperton 

Corresponding author: Lea Märtin 

Status: submitted 

Journal: Functional Ecology 

Own contribution: concept (75 %), data acquisition (100 %), data analyses (100 %), literature 

research (100 %), writing (90 %), discussion (70 %) and editing (80 %) 
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CONFERENCES AND TRAININGS 

 

When Where Theme Talk presentation 
time [min] 

Poster Titel 

05.-
09.02.
2007 

Wageningen, 
NL 

summer school in                          
Soil Ecology: 
Crossing the frontier 
between below- and 
above-ground 

x 10 + 5   Positive and negative dynamics 
of plant-plant interaction and 
their functional role in regulation 
ecosystem processes - with 
respect to the soil carrying the 
population 

15.-
19.09.
2008 

Leipzig, D GfÖ-EURECO-
conference 2008: 
Biodiversity in an 
Ecosystem Context 

    x Positive biodiversity and legume 
effects - how relevant are they 
along a gradient of nutrient 
availability? (about FCE-
experiments in pots, greenhouse) 

05.12.
2008 

Bayreuth, D Biogeographie-
Lehrstuhlkolloquium 

x 30 + 15   Positive and negative dynamics 
of plant-plant interactions and 
their functional role in regulating 
ecosystem processes (Vorstellung 
meines Promotionsthemas) 

02.04.
2009 

Bayreuth, D BayCEER Workshop 
2009 

    x Plant-plant interactions along 
biotic and abiotic gradients 

20.-
22.04.
2009 

Aberdeen, 
UK 

BES Symposium 
2009:       
Facilitation in Plant 
Communities 

    x The use of stable isotope natural 
abundance to assess facilitation 
and restoration success in a 
calcareous grassland (about 
Garchinger Heide 15N-data) 

29.06.
-
03.07.
2009 

Münster, D SER summer school:                   
Species introduction 
and management of 
biodiversity in 
restoration projects 

x 7 + 3   Vorstellung meines 
Promotionsthemas: positive and 
negative dynamics of plant-plant 
interactions and their functional 
role in regulating ecosystem 
processes - mainly Garchinger 
Heide study 

14.-
18.09.
2009 

Bayreuth, D GfÖ-conference 
2009:                   
Dimensions of 
ecology - From 
global change to 
molecular ecology 

x 10 + 2   The use of d15N natural 
abundance to assess facilitation 
and restoration success in a 
calcareous grassland 

27.11.
2009 

Düsseldorf, 
D 

“Von der Idee zum 
Projekt – 
Finanzierung von 
Forschungsprojekten 
durch Drittmittel” 

        

15.04.
2010 

Bayreuth, D BayCEER Workshop 
2010 

x 10 + 2    N-transfer between species: 
effects of legume presence and 
simulated grazing 
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ABSTRACT 

An increase in extreme precipitation events and loss of biodiversity associated with global 

change demand deeper insights into species performance under such disturbances. We 

investigated effects of extreme weather events on Holcus lanatus in the context of varying 

diversity in a field experiment. 

We investigated the performance of H. lanatus in four diversity levels under extreme drought, 

heavy rain and in an ambient control by measuring non-invasive chlorophyll a fluorescence 

and compared the results with an invasive biomass harvest. Photosynthetic responses were 

also measured for neighbouring species in more diverse communities. 

On species level (H. lanatus), we found strong negative effects of drought on maximum 

electron transport rate (ETRmax) and biomass production per individual (NPind) as well as a 

decrease in NPind in the heavy rain treatment. On community level (all species) ETRmax were 

not affected by weather treatments but strongly by legume presence. Effects on H. lanatus 

were most pronounced in more diverse communities indicating competitive stress and 

resource limitation for the target species. Community responses support our conclusions. 

ETRmax and NPind of H. lanatus were not simply correlated but were influenced differently by 

biodiversity and weather manipulations. Our results do not support hypotheses of positive 

effects of increasing species richness on the performance of a single species (H. lanatus as a 

beneficiary); H. lanatus performed worse in higher diversity plots under environmental stress; 

also the overall community response was not affected. Results suggest that more species-

specific investigations on interactive effects of diversity and climate change are needed. 

 

Keywords 

chlorophyll a fluorescence, disturbance, drought, EVENT-Experiment, photosynthesis 

 

Abbreviation list 

C   = ambient control for weather manipulations 

R   = heavy rain weather manipulation 

D   = extreme drought weather manipulation 

G1-   = monoculture of Holcus lanatus 

G2-   = 2 species mixture (2 grasses) 

G4-   = 4 species mixture without a legume species (2 grasses, 2 forbs) 
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G4+   = 4 species mixture with a legume species (2 grasses, 1 forb, 1 legume) 

PS II   = photosystem II 

PFD [µmol m-2 s-1] = photon flux density; used here for light with a photosynthetic active 
wavelength range of λ = 380–710 nm 

∆F/Fm’    = effective quantum efficiency (yield) of PS II in light-adapted leaves 

Fv/Fmexpo = extrapolated potential quantum efficiency (yield) of PS II of light-
adapted leaves 

ETR   = apparent rate of photosynthetic electron transport of PS II 

ETRmax  = maximum ETR 

NPind   = net biomass production of H. lanatus individuals [g/tussock] 
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INTRODUCTION  

We are living in a world of accelerated global change, including climate change and 

biodiversity loss, such that it is becoming increasingly important to understand the interaction 

between effects of diversity loss and climate change on the performance of organisms. The 

frequency and magnitude of extreme weather events is predicted to increase during global 

climate change (IPCC 2007). Extremeness of events rather than the mean changes in tem-

perature and precipitation are (in some cases) expected to have the largest effects on 

ecosystem functioning (Meehl et al. 2000). Extreme weather events, however, have not yet 

received much attention in vegetation-related climate change research (Jentsch et al. 2007). 

Furthermore, the few existing experimental studies on extreme weather events often lack 

details on the magnitude or extremeness of the applied manipulations relative to local mean 

conditions (Jentsch 2006) although recent studies in semi-natural grasslands have shown that 

indeed local conditions are important for the performance of plant communities under en-

vironmental stress (e.g. Gilgen and Buchmann 2009). 

Drought and heavy rainfall are generally expected to affect plants via modification of soil 

moisture which affects nutrient availability and thus plant growth. Water shortage leads to a 

decline in water potential and to water stress. An excess of water in soil pores creates oxygen 

deficits and produces a chemically reducing environment in the soil (Marschner 2002). The 

lack of oxygen can cause substantial short-term fine root mortality, even though species 

reactions differ considerably (Crawford and Braendle 1996). Both drought and heavy rainfall 

can harm individual species or whole communities and the effects can vary from productivity 

reduction up to a complete collapse of local vegetation and its accompanying ecosystem 

services when exceeding critical magnitudes (Marschner 2002; IPCC 2007).  

Effects of extreme weather events should theoretically be modulated by the diversity of plant 

communities (McNaughton 1977). We know that species rich communities are often more 

productive than less diverse communities, especially in experimental grasslands (e.g. Hector 

et al. 1999; Balvanera et al. 2006). Furthermore, according to the insurance hypothesis, in the 

face of disturbance, high diversity buffers ecosystems against species loss and concomitant 

decline in ecosystem functioning: a large number of species (each perhaps redundant under 

one set of environmental conditions yet critical for functioning under altered conditions) 

improves the chances that overall ecosystem functioning will be maintained under fluctuating 

environmental conditions (McNaughton 1977; Naeem et al. 1994; Naeem and Li 1997; Yachi 

and Loreau 1999). Thus, under disturbance, the species-rich community will be better 
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equipped to resist or be resilient to changes than the species-poor community (Tilman and 

Downing 1994; Yachi and Loreau 1999). 

Two main sets of hypotheses are usually put forward to explain the positive relationship 

between biodiversity and ecosystem functioning: niche complementarity and facilitation or 

sampling/selection effects. Complementarity through niche partitioning is considered as a 

mechanism whereby the sum of all species in species-rich communities with a high variety of 

traits are more effectively able to use resources in the system than fewer species in less 

diverse communities (Berendse 1979; Tilman 1997). Facilitation, the ability of one species to 

modify the environment beneficially for another species (Connell and Slatyer 1977), is often 

seen as a sub-category of niche complementarity: one species has a positive effect on a second 

(neighbouring or subsequent) species by enhancing the realised niche of the second species 

(Bruno et al. 2003). The classic facilitation example in biodiversity grassland experiments is 

the beneficial effect of nitrogen-fixing legume species on the nitrogen dynamics of non-fixing 

neighbours with knock-on effects on the productivity of the whole community (e.g. Spehn et 

al. 2002; Temperton et al. 2007). Sampling or selection effects are artefacts of biodiversity 

experiments choosing species mixtures at random (with replacement) and describe the 

increasing likelihood of including very productive or keystone species (or functional groups) 

with increasing diversity of mixtures (Huston 1997). 

Increased disturbance and physical stress level are thought to reduce the intensity of 

competition and to increase the importance of facilitation (e.g. Holmgren et al. 1997; Brooker 

and Callaghan 1998) as summarized in the stress gradient hypothesis (SGH, Bertness and 

Callaway 1994). Most research on the SGH has been done in intertidal marine or extreme arid 

or alpine terrestrial habitats (Brooker et al. 2008). Studies focussing on mesic grassland habi-

tats within the temperate regions of Europe are scarce although even under benign environ-

mental conditions extreme weather events might increase the dependence of individual 

species on facilitation.  Callaway and Walker (1997) reviewed earlier literature on the balance 

between competition and facilitation as driver of community structure and recent studies 

support the conclusion that the importance of facilitation increases with decreasing availa-

bility of the limiting resource within European subalpine grasslands (Kikvidze et al. 2006; 

Gross et al. 2009). In addition, complementary resource use among different species or 

functional groups can ameliorate the stress experienced by plants under harsh conditions 

(Pugnaire and Luque 2001; Gross et al. 2007).  The facilitative effect of a legume shrub on the 

performance of other species under its canopy was stronger at the more stressful end of an 

environmental gradient compared to the more moderate end (Pugnaire and Luque 2001) but 
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little is known about how changes in environmental stress affect legume-neighbour inter-

actions for herbaceous species within mesic grasslands. 

Effects of plant diversity are often different at the community level compared to effects on 

plant population (see Balvanera et al. 2006) or individual level (Daßler et al. 2008; Kreyling 

et al. 2008c). Thus, we need to investigate effects of diversity and disturbance on individual, 

population as well as on community level, preferable by an easy-to-use, quick and non-

invasive method. In the present study, we focus on the species-specific response of one 

species, Holcus lanatus L. (Yorkshire fog, Poaceae) within a field experiment. We investigate 

how i) the simulation of extreme weather events (drought or heavy rain) and ii) the composit-

ion of surrounding plant communities modulates an instant measure (non-invasive chlorophyll 

a fluorescence) and an integrated measure (harvest of individual biomass) of H. lanatus. 

Additionally, we evaluate the response of the surrounding species to extreme weather events 

non-invasively to gain a community response and to compare the use of the instant measure 

on population vs. community level.  The target species H. lanatus is common in mesic 

grasslands on a wide variety of soils across Europe and a good competitor in benign 

environments (Beddows 1961; Veresoglou and Fitter 1984; Coll et al. 2003; Wurst and van 

Beersum 2008). The species is known to be sensitive to severe drought conditions (Pedrol et 

al. 2000) and to flooding (Liem 1980) but is well adapted to mild physical disturbance (gap 

creation, Buckland et al. 2001). H. lanatus is able to utilize mineral N-forms as well as amino 

acids for its N-nutrition (Weigelt et al. 2003; Weigelt et al. 2005) and can buffer water stress 

by utilising moisture from fog (Corbin et al. 2005). Thus, H. lanatus should be an ideal 

candidate to test species interactions in relation to the stress gradient hypothesis (and partly 

the insurance hypothesis), because the “facilitative outcome appears to be a function of a 

species having both a low tolerance to a particular abiotic stress and a strong competitive 

response ability” (Liancourt et al. 2005). We are not aware of any other studies on mesic 

grassland species which investigate population and community responses within an outdoor, 

yet well-directly manipulated, semi-natural field experiment. Most results on this topic were 

either gained under more controlled greenhouse conditions (e.g. De Boeck et al. 2006; 

Zavalloni et al. 2009) or under natural conditions without any explicit weather treatments (e.g. 

Verheyen et al. 2008). Thus our study can provide an important link between research under 

controlled conditions on the one hand and natural conditions on the other hand. 

We propose two hypotheses for the instant and integrated response of H. lanatus to extreme 

weather events and one for the overall community response, evaluated by a non-invasive 

instant measure: 
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i. Severe weather stress (drought and heavy rain) effects on the target species Holcus 

lanatus will be detectable by an instant measure of the photosynthetic efficiency 

(chlorophyll a fluorescence), and reduced photosynthetic efficiency will lead to 

reduced productivity per individual (integrated measure) under extreme weather 

conditions. 

ii.  The expected negative response of Holcus lanatus individuals to extreme drought, the 

major threat for this species, will be ameliorated in more diverse communities. 

iii.  On community level, negative effects of drought and heavy rain on the photosynthetic 

response of Holcus lanatus will be ameliorated by increased performance of 

neighbouring species in functionally more diverse communities as predicted by the 

insurance hypothesis. 
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MATERIALS AND METHODS 

The study was conducted in summer of 2007 in the grassland plots of the EVENT-Experiment 

at the University of Bayreuth, Germany (EVENT-Experiment 2005). Holcus lanatus was 

chosen as target species, because of its importance in European grasslands and its availability 

in nearly all factorial combinations in the experiment. The EVENT-Experiment is a field 

experiment carried out with a two-factorial design manipulating (1) weather events (drought, 

heavy rain, ambient control) and (2) functional plant diversity (Jentsch et al. 2007). It was set 

up in 2005 at the Ecological-Botanical Gardens of the University Bayreuth, Germany 

(49°55’19’’N, 11°34’55’’E, 365 m asl). Mean annual temperature is 7.8°C; mean annual 

precipitation is 709 mm, usually distributed bi-modally with the major peak in June/July and a 

second peak in December/January (Data: Deutscher Wetterdienst). To prevent confounding 

effects by soil properties, a homogenized substrate, made of loamy sand (82% sand, 13% silt, 

5% clay), pH = 4.5 and 6.2 ( measured (1M KCl) in upper and lower soil layer), was added to 

the site during the set up of the experiment. The weather manipulations, each replicated five 

times, were applied in a randomly distributed block design over the total area of the 

experiment with the experimental plant communities randomly embedded within these blocks 

(see Jentsch et al. 2007 for details). The grassland plots consist of five species typical of 

mesic Molinio-Arrhenatheretea-meadow communities (Pott 1995) grown at four diversity 

levels (monocultures (G1-), two species mixtures (G2-) and four species mixtures without 

(G4-) and with (G4+) a legume species). The sizes of the plots were 1x1 m for the mono-

cultures and 2x2 m for the other diversity levels. 

 

Factor 1: extreme weather events 

Manipulations consisted of extreme drought, heavy rain and an ambient control. Magnitude of 

manipulations was chosen according to the local 100-year extreme event in each category. 

Reference periods were the vegetation periods of the local climate data set from 1961 to 2000 

(March to September for each year; Data: Deutscher Wetterdienst). For this time period, 

Gumbel I distributions were fitted to the annual extremes, and 100-year recurrence events 

were calculated (Gumbel 1958). Maximum values in the historical data set were 33 days 

without rain (June and July 1976) and 152 mm rain within a period of 14 days (June 1977). 

Accordingly, a drought event of 32 days (drought manipulation = D) and a heavy rainfall 

event of 170 mm within a period of 14 days (heavy rain manipulation = R) were applied in the 
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experiment during the peak growing season in June from 2005 to 2007 (Fig. 1). A control 

(ambient natural conditions = C) was used to evaluate
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(ambient natural conditions = C) was used to evaluate manipulation effects.

 

Figure 1 Soil moisture and precipitation in the 
EVENT-Experiment during manipulation and 
recovery after extreme drought and heavy rainfall 
events. 48 h mean values of hourly measurements 
by FD-sensors between -5 and 
= 5 per weather manipulation). Upper dot
line indicates field capacity (pF = 1.8), lower dot
dashed line indicates permanent wilting point (pF = 
4.2) of the soil substrate (AG Boden 1996, 
Bodenkundliche Kartieranleitung). Grey bars show 
weekly precipitation for the weather manipulations 
in comparison with ambient conditions (control). 
Timing and duration of the weather manipulations 
is indicated by black vertical bar.

Drought (D: 32 days without any precipitation) was simulated using rain

out shelters were constructed with a steel frame and covered with transparent foil that 

permitted nearly 90% penetration of photosynthetically active radiation. Potential warming 

effects of shelters were lessened by building the roof at 80 cm height, allowing for wind 

surface air temperature was not significantly different below than 

outside of the shelters (pairwise t-test with Bonferroni correction: p = 0.27).

Heavy rain manipulation (R: total precipitation of 170 mm within a period of 14 days) was 

realized using a manually operated moveable irrigation system. Drop size and rainfall inten

sity resembled natural heavy rainfall events through application by Veejet 80100 nozzles, 

commonly used in erosion research (Kehl et al. 2005). The application of water was carried 

out twice every day to ensure constantly high soil water content (SWC) (~ 12.2 mm/d; half of 

it in the morning and the other half in the evening). If natural precipitation events occurred, 
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test with Bonferroni correction: p = 0.27). 

m within a period of 14 days) was 

realized using a manually operated moveable irrigation system. Drop size and rainfall inten-

sity resembled natural heavy rainfall events through application by Veejet 80100 nozzles, 

et al. 2005). The application of water was carried 

out twice every day to ensure constantly high soil water content (SWC) (~ 12.2 mm/d; half of 

it in the morning and the other half in the evening). If natural precipitation events occurred, 
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the amount of natural rain was subtracted from the respective daily dose of simulated rain 

thus, in sum, 170 mm rain in 14 days were not exceeded. Small plastic sheet pilings around 

each plot and around the manipulation blocks were installed to avoid leaching and lateral 

surface flow of water from the heavy rain treatment (simulated high SWC) to the drought 

treatment (simulated low SWC) or the ambient control (natural SWC). 

SWC (as a proxy for effectiveness of weather treatments; Fig. 1) was measured at 5-10 cm 

depth with an ECH2O-5 sensor (Decagon, USA), which conducted hourly readings in five 

replications in the G4- plots. Due to technical problems, measurements of SWC started only 

five days after the start of the heavy rain treatment. Nevertheless we gained information about 

the most important time period at the end of the weather manipulations where greatest 

differences in soil moisture (due to treatments) were expected and observed. 

 

Factor 2: functional diversity 

Plant communities contain up to four species chosen from a five species pool: Holcus lanatus 

L., Arrhenatherum elatius (L.) P.B. ex J. et K. Presl, Plantago lanceolata L., Lotus 

corniculatus-group and Geranium pratense L. (Oberdorfer 2001). Species were chosen by 

their functional group (grass, forb, legume), their life-span (perennial), their overall import-

ance in nearby and central European grassland systems, and their adaptation to the substrate. 

In April 2005, 2x2 m plots were planted with 100 individuals in a systematic hexagonal grid 

with 20 cm distance between neighbours. In autumn 2006, 1x1 m plots with 25 individuals 

were planted in the same pattern for monocultures of the two grass species. Original species 

combination was maintained by periodical weeding of non-planted species but spreading and 

succession of the planted species was freely allowed and resulted in an averaged cover per 

plot of nearly 75% on 26-Jun-2007 (Fig.  2). Mixtures containing L. corniculatus had an 

average cover of 95% whereas the other communities achieved nearly 70% cover (data not 

shown). The number of functional groups had a significant impact on total cover of the 

communities (one way ANOVA, p < 0.001), but no interaction effect between number of 

functional groups and weather manipulation was detectable (p = 0.942). 

Four different diversity levels were realized in the experiment: monocultures of the grasses 

(G1-), two species mixtures (G2-) and four species mixtures without and with the legume 

species L. corniculatus (G4- and G4+, respectively). Community composition was: 

G1-: 1x1 m plots; monocultures of Holcus lanatus (or Arrhenatherum elatius), 
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G2-: 2x2 m plots; two species (

group (grass), 

G4-: 2x2 m plots; four species

Geranium pratense), two functional groups (grass, forb),

G4+: 2x2 m plots; four species (

Lotus corniculatus), three functional groups (grass, forb, legume).

 

Figure 2 Photographs of four representative plots across the diversity gradient in the EVENT
Jun-2007): Holcus lanatus in monoculture (G1
elatius (G2-: B) and both four species mixtures with 
pratense as a fourth species (G4-: C

 

Light reactions of photosynthesis using the chlorophyll 

The quantification of chlorophyll 

way of measuring the efficiency of light reactions 

Johnson 2000). Light intensity (PFD [

with a photosynthetic active wavelength range of 

in reaction to diurnal cycles and canopy structure, thus leaves are exposed to varying light 

intensities.  

In the field, we measured the fluorescence signal with two PAM

amplitude modulated photosynthesis yield analyzer; PAM

 Materials and Methods

: 2x2 m plots; two species (Holcus lanatus and Arrhenatherum elatius

: 2x2 m plots; four species (Holcus lanatus, Arrhenatherum elatius, Plantago

), two functional groups (grass, forb), 

: 2x2 m plots; four species (Holcus lanatus, Arrhenatherum elatius, Plantago

), three functional groups (grass, forb, legume). 

our representative plots across the diversity gradient in the EVENT
in monoculture (G1-: A), a two species mixture with H. lanatus

) and both four species mixtures with H. lanatus, A. elatius, Plantago lanceolata
C) or Lotus corniculatus as a fourth species (G4+: D). 

Light reactions of photosynthesis using the chlorophyll a fluorescence method

The quantification of chlorophyll a fluorescence of photosystem II (PS II) is a non

way of measuring the efficiency of light reactions in situ (Schreiber et al. 1986; Maxwell and 

Johnson 2000). Light intensity (PFD [µmol m-2 s-1] = photon flux density; used here for light 

hetic active wavelength range of λ = 380–710 nm) changes within the canopy 

in reaction to diurnal cycles and canopy structure, thus leaves are exposed to varying light 

In the field, we measured the fluorescence signal with two PAM-fluorometer

amplitude modulated photosynthesis yield analyzer; PAM-2100 and MINI

Materials and Methods 

55 

elatius), one functional 

Plantago lanceolata, 

Plantago lanceolata, 

 

our representative plots across the diversity gradient in the EVENT-Experiment (20-
H. lanatus and Arrhenatherum 

Plantago lanceolata and Geranium 

fluorescence method 

scence of photosystem II (PS II) is a non-invasive 

(Schreiber et al. 1986; Maxwell and 

] = photon flux density; used here for light 

710 nm) changes within the canopy 

in reaction to diurnal cycles and canopy structure, thus leaves are exposed to varying light 

fluorometers (PAM = pulse-

2100 and MINI-PAM by H. Walz 



Materials and Methods  Manuscript 1 

56 
 

GmbH, Effeltrich, Germany) with leaf clip holders described by Bilger et al. (1995). We 

measured the fluorescence signal of Holcus lanatus, Plantago lanceolata, Geranium pratense 

and Lotus corniculatus. Arrhenatherum elatius was not measured because its leaf lamina was 

too narrow for PAM-measurements. Both fluorometers were calibrated against each other via 

light intensity and randomly chosen leaf samples prior to measurements. The light intensity 

was taken automatically as spot measurements by a microquantum sensor integrated in the 

leaf clip holders of both PAM devices. The fluorescence measurements per plot were 

conducted as follows: First we measured a fluorescence standard provided by H. Walz GmbH 

(for correction of absolute values) and then two leaves of five representative individuals per 

species (= 10 measurements per species and plot). We selected one individual in every corner 

of the inner square meter and one randomly chosen individual for measurements to obtain 

non-clustered results. We chose only fully developed leaves in the upper half of each plant 

and measured them between half-way across and the upper third of the leaf (in the direction of 

the leaf tip). During the measurements special care was taken not to change the ambient 

conditions, such as the angle of the leaf or its exposure to sun or shading. All measurements 

were conducted around solar noon (10:00 to 14:30). Measurements with two fluorometers 

were performed in opposite directions along the plots to ensure maximum randomization of 

measured parameters during the diurnal light course. We conducted fluorescence 

measurements on three days at the end of the treatment period (drought was applied for nearly 

one month and heavy rain for nearly two weeks) to reveal extreme weather effects on plant 

performance. We present data from the 20-Jun-2007 in the manuscript because this was the 

last day of weather manipulations and thus the one with the most extreme environmental 

impact. We provide data from a study in 2006 as Supplementary material. 

As a direct response from the fluorometers, the effective quantum yield of light adapted 

leaves (∆F/Fm’ , eq. 1), was obtained for every single leaf measured.  
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Where F is fluorescence yield of the light-adapted leaf and Fm’ is the maximum light-adapted 

fluorescence yield when a saturating light pulse (PFD > 2000 µmol m-2 s-1, duration: 0.8 s) 

was superimposed on the prevailing ambient light levels (Genty et al. 1989; Schreiber and 

Bilger 1993). The effective quantum yield provides information on an individual measure-

ment at ambient light conditions and (because values change with changing light intensity) is 

a non-comparable parameter under fluctuating, natural conditions. Potential quantum yield of 
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dark-adapted leaves (Fv/Fm), a comparable one-value-parameter, could not be measured 

experimentally in this study due to technical problems. Thus, we developed an alternative 

approach and extrapolated the effective quantum yield of light-adapted leaves to estimate the 

potential quantum yield; this parameter will be denoted as extrapolated potential quantum 

yield of PS II (Fv/Fmexpo, eq. 2) in the following. For this, light response curves of ∆F/Fm’  

were fitted against PFD using a three-parametric, exponential decay regression. 
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Fv/Fmexpo is calculated for x = 0, i.e. for extrapolating the fitted function for PFD = 0. 

 

To gain the maximum electron transport rate (ETRmax), a further cardinal point of photo-

synthesis (Rascher et al. 2000; Peek et al. 2002; Rascher et al. 2004), we used a novel 

mathematical approach (eq. 3). It is based on the functions to calculate the apparent rate of 

electron transport from the effective quantum yield (ETR = ∆F/Fm’*x*0.5*absorption factor) 

and the regression equation to calculate ETRmax from ETR vs. PFD light response curves 

(ETR = a*(1-e(-b*x))) as described in Rascher et al. (2000).  
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Here, x is the photosynthetically active radiation (PFD, λ = 380–710 nm). Under high-light 

conditions (x → ∞), the exponential term e(-b*x) becomes zero and the a-value directly reports 

the value for ETRmax. The mathematical calculation of ETRmax directly from light response 

curves of ∆F/Fm’ considers the need for homoscedasticity of the data (which might be 

violated for light response curves of ETR vs. PFD). The factor 0.5 represents the assumption 

of equal excitation of both PS II and PS I and the factor 0.77 is the absorption factor, 

measured by an LI-1800-12 integrating sphere (LI-COR, Lincoln, NE, USA) on harvested 

leaves. The absorption factor reflected the averaged absorption of H. lanatus and P. 

lanceolata leaves over all three weather manipulations because there were no significant 

differences between treatments and leaves of different species. The factor was used for the 

calculations of ETR for all species measured. We used SigmaPlot 10.0 for the regression 

analyses and the calculation of cardinal points of photosynthesis. 
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Photosynthetic community response 

We used the PAM-measurements of different species (H. lanatus, P. lanceolata, G. pratense 

and L. corniculatus) and calculated an averaged value from species-specific effective quan-

tum yield measurements (∆F/Fm’) as a photosynthetic community response. We calculated 

the maximum electron transport rate of the whole community (community ETRmax) from 

community ∆F/Fm’ using equation 3. This parameter (community ETRmax) might allow for 

the comparison between invasive harvest and non-invasive measurements at the community 

level. 

 

Aboveground net biomass production of Holcus lanatus individuals 

At the end of the weather treatment in July 2007, four individual plants (tussocks) of H. 

lanatus were harvested separately in every plot (to determine net biomass production of one 

individual = NPind), resulting in 20 individuals per weather manipulation and species richness 

level. They were dried for 72 hours at 70°C and weighed. 

 

Statistical analysis 

Data subsets 

Due to the missing of monocultures in the heavy rain treatment, we used two subsets of data 

for the analyses of covariance (ANCOVA) of fluorescence data and for the analyses of 

variance (ANOVA) of individual biomass of H. lanatus. Subset 1 consisted of all weather 

treatments but excluded the diversity level monoculture (subset 1: G2-, G4-, G4+ in C, D and 

R). Subset 2 consisted only of the weather treatment drought and control but included all 

diversity levels (subset 2: G1-, G2-, G4-, G4+ in C and D). 

 

Chlorophyll a fluorescence 

We applied general linear models to our data and tested effects of different factors on 

photosynthetic response on species level (for H. lanatus) with different data sets. We used 

ANCOVA with light intensity (PFD) as covariable and the effective quantum yield (∆F/Fm’ ) 

as dependent variable. First, we tested all available data for species-specific differences in 

∆F/Fm’  measurements (species as factor). Second, we tested effects of weather treatment and 
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diversity level (factors) on ∆F/Fm’  measurements of the target species H. lanatus in subset 1 

and 2.  

We transformed ∆F/Fm’  data exponentially to meet assumptions of normality and of homo-

geneity of variances required by ANCOVA. We used SPSS 11.5 for Windows (SPSS Inc., 

USA) for ANCOVA. The level of significance was set to p = 0.05. 

We conducted pair-wise comparisons for significant differences in Chi-square-distribution 

(χ²) with Wald-tests (see eq. 7 and Rascher et al. 2004) to specify differences (indicated by 

ANCOVA-results for ∆F/Fm’ ) for the extrapolated potential quantum yield of PS II 

(Fv/Fmexpo) and maximum electron transport rate (ETRmax) of H. lanatus and for community 

ETRmax under different abiotic and biotic conditions using Microsoft Office Excel 2003 

(Microsoft Cooperation, USA).  

)]()([

)(

2
2

1
2

21

aSEaSE

aa
W

+

−
=          (7) 

The Wald-test compared two values with standard error: a1 and a2 (values for Fv/Fmexpo or 

ETRmax) are the parameters tested against each other and SE is the standard error of the mean 

of each parameter. Every factorial combination of weather treatment and diversity level was 

tested against each other to obtain information about statistical significant differences. The 

level of significance was set to α = 0.05. 

 

Individual biomass 

For the statistical analysis of biomass of H. lanatus individuals (NPind) data were separated 

into subset 1 and 2. ANOVA combined with linear models were applied to test NPind for 

significant differences of weather treatment and diversity level (factors) while accounting for 

the fact that the diversity levels were nested within the weather treatment. The NPind data were 

tested for normality and heterogeneity of variances by examining normal qq-plots of the 

linear model as well as pp-qq-plots and residuals versus fitted plots. For subset 1 conditions of 

normality of data were not met, thus data were log transformed before analysis. The level of 

significance was set to p = 0.05. 

To specify differences (indicated by ANOVA-results) in NPind of H. lanatus, we used Tukey’s 

HSD post-hoc-comparisons. All statistical analyses related to NPind were performed using R 

2.4.1 (R-Development-Core-Team 2006). 
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RESULTS 

Species identity had a significant effect on the effective quantum yield (∆F/Fm’ ; ANCOVA 

over all data: F3,1350 = 36.212, p < 0.001) at the last day of the extreme weather manipulations 

(20-June-2007) as also species-specific fits in Figure 6 show. Thus all further results on 

species level report only about the target species H. lanatus which was available in nearly all 

diversity levels in three weather treatments and we used measurements on the other species 

only for the calculation of the community response. 

Diversity level and weather treatment had significant effects on the effective quantum yield in 

leaves of H. lanatus (Fig. 3) along the gradient of light availability in both subsets of data and 

strong interactions between diversity and weather treatments occurred (Table 1 A, B). 

 

 

Figure 3 Effects of the different weather and diversity treatments on the effective quantum yield of photosystem 
II (∆F/Fm’ of PS II) of Holcus lanatus plotted against photon flux density (PFD) in the photosynthetic active 
range (wavelength: λ = 380–710 nm) on the last day of the manipulation period (20-Jun-2007). Each solid line 
indicates regressions fitted as described in equation 3. Weather treatments are shown row-wise, diversity levels 
are shown column-wise from monocultures (G1-) on the left side to the two-grass-species-communities (G2-) 
and the four species mixtures with two functional groups (G4-) up to the functionally most diverse communities 
with Lotus corniculatus included (G4+) on the right side of the panel. 

 

Subsequent Wald-tests specified significant differences between diversity levels within a 

weather treatment for the two derived cardinal points of photosynthesis. Wald-tests revealed 
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differences in the maximum electron transport rate (ETRmax) (Table 2 A) but not in the 

extrapolated potential quantum yield of PS II (Fv/Fmexpo) (Table 2 B). 

 

Table 1 Effect of light intensity (PFD as covariable) and factors weather treatment (WT) and diversity level 
(DL) on effective quantum yield (∆F/Fm’ ) of Holcus lanatus tested with ANCOVA in two subsets of data: (A) 
subset 1 consisted of data for 2-species-mixtures (G2-), 4-species-mixtures without (G4-) and with (G4+) Lotus 
corniculatus grown in ambient control (C), drought (D) and heavy rain (R) treatment and (B) subset 2 consisted 
of data for all diversity levels (monoculture = G1-, G2-, G4-, G4+) grown in control and drought treatments. 

(A) Subset 1   ∆F/Fm’   (B) Subset 2  ∆F/Fm’  

factor d.f. MSQ F P  d.f. MSQ F P 

Weather treatment 1 20.850 1059.884 < 0.001  1 19.790 1181.199 < 0.001 
Diversity level 2 0.109 5.554 0.004  1 0.411 24.560 < 0.001 
WT x DL 2 0.112 5.685 0.004  3 0.187 11.146 < 0.001 
Residuals 450 0.020    399 0.017   

 

Under ambient conditions (C), diversity level had no significant effect on ETRmax. Lowest 

ETRmax values occurred under the impact of drought in both four species communities, 

significant differences are given below for the two data subsets.  

Although ANCOVA showed significant effects of both experimental factors on the effective 

quantum yield (∆F/Fm’ ; Table 1), diversity and weather treatments had no clear effect on the 

extrapolated potential quantum yield of PS II (Fv/Fmexpo; Table 2 B) if compared with Wald-

tests. Fv/Fmexpo ranged from a minimum of 0.727 to a maximum of 0.836 and thus indicating 

good to maximum light quantum utilization (theoretically maximum value for potential 

quantum yield = 0.84). Although the standard errors were high at lower light intensity (< 600 

µmol m-2 s-1 PFD; due to curve fitting, see eq. 2), we tested the two most extreme Fv/Fmexpo 

 

Table 2 (A) Maximum electron transport rate (ETRmax ) and (B) extrapolated potential quantum yield of PS II 
(Fv/Fmexpo) in leaves of Holcus lanatus from different diversity levels (columns) and weather treatments (rows) 
at the end of the treatment period. Both cardinal points of photosynthesis were calculated from ∆F/Fm’ (see eq. 
2, 3) and are given with standard error of the mean (SE), n = 50. 

(A) G1- S.E. G2- S.E. G4- S.E. G4+ S.E. 
C 91.51 6.32 85.34 4.48 76.75 5.13 98.94 10.72 
D 86.61 3.92 89.33 8.57 54.54 3.58 49.84 4.38 
R n.a.  78.26 5.41 81.11 5.77 83.76 6.41 

 
(B) G1- S.E. G2- S.E. G4- S.E. G4+ S.E. 
C 0.822 0.102 0.757 0.153 0.813 0.103 0.727 0.182 
D 0.759 0.069 0.748 15.083 0.745 2.119 0.785 0.078 
R n.a.  0.751 0.105 0.758 0.070 0.751 0.055 

Weather treatments: C = ambient control, R = heavy rain, D = drought,  
Diversity levels: G1- = Holcus lanatus monoculture, G2- = H. lanatus + Arrhenatherum elatius, G4- = H. 
lanatus, A. elatius, Plantago lanceolata and Geranium pratense, G4+ = H. lanatus, A. elatius, P. lanceolata and 
Lotus corniculatus , n.a. = not available 
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values against each other using the Wald-test to check if significant differences between treat-

ments may have occurred in case of low standard errors, but found no significant effect. 

Diversity level and weather treatment both had significant effects on aboveground net 

biomass production of H. lanatus individuals (NPind) (Table 3 A, B; Fig. 4, 5). Lowest NPind 

was observed in plots exposed to heavy rain. Highest NPind was achieved in the two species 

mixture (G2-) irrespective of weather manipulation. 

 

Table 3 Effect of weather treatment and diversity level on individual biomass production of Holcus lanatus 
plants (NPind) tested with  ANOVA  in two subsets of data: (A) first subset consisting of data for 2-species-
mixtures (G2-), 4-species-mixtures without (G4-) and with (G4+) Lotus corniculatus grown in ambient control 
(C), drought (D) and heavy rain (R) treatment and (B) the second subset consisting of data for all diversity levels 
(monoculture = G1- and G2-, G4-, G4+) grown in control and drought treatment. 

(A) Subset 1   NPind   (B) Subset 2  NPind  

factor d.f. MSQ F p  d.f. MSQ F p 

Weather treatment 2 5.93 8.072 <0.001  1 34.34 9.570 0.002 
Diversity level 2 8.02 10.917 <0.001  3 33.82 9.424 < 0.001 
WT x DL 4 2.71 3.684 0.007  3 10.22 2.849 0.040 

 

Link between photosynthetic energy conversion and biomass production for H. lanatus 

Considering subset 1 to investigate effects of all weather treatments in three out of four 

diversity levels (G2-, G4- and G4+, without monocultures), we found a severe reduction in 

ETRmax for H. lanatus in both four species communities compared to G2- communities under 

drought stress. The difference was significant between G2- and G4+ (χ² = 4.10, α ≤ 0.05) but 

not between G2- and G4- (χ² = 3.75, α = 0.1) (Table 2 A). Comparing within a diversity level 

under environmental stress, we found that ETRmax was severely reduced in both four species 

communities under drought compared to the same species composition under ambient 

conditions - also a significant reduction occurred only in the four species community with a 

legume species (G4+: χ² = 4.24 α = 0.05 but G4-: χ² = 3.55 α = 0.1). Contrary to the ETRmax 

response to drought, an excess of water due to the heavy rain treatment had no such effect on 

ETRmax (χ² = -0.56 to 1.22, α > 0.05) either within the rain treatment (G2- vs. G4- vs. G4+) or 

within a given diversity level (C vs. R in G2-, G4-, G4+). 

In contrast to ETRmax, heavy rain decreased averaged productivity of H. lanatus individuals 

significantly (NPind, Fig. 4) whereas drought stress did not (averaged values within weather 

treatments: C vs. R, D vs. R: both p ≤ 0.016). Significantly higher averaged NPind occurred at 

the lowest species richness level of subset 1 (averaged values within diversity levels: G4- vs. 

G2-, G4+ vs. G2-: both p < 0.001). In the four species communities, NPind of H. lanatus was 
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Diversity levels affected biomass accumulation 

(Fig. 4). Under ambient conditions individuals grown in G2

than those grown in the four species communities without a legume species (G4

response was not found under drought. Under drought stress,
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Within the drought treatment, the integrated (biomass) and the non
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negative effects of drought on 

 

not affected by community composition: no significant differences occurred between the 

presence (G4+) or absence (G4-) of the legume species L. corniculatus 

 

Figure 4 Subset 1: Net biomass production of 
Holcus lanatus individuals (NP
species mixtures (G2-), 4-species
(G4-) and 4-species-mixtures with (G4+) the 
legume Lotus corniculatus
treatments (A) ambient control, 
heavy rain. Data are mean  ±
mean (n = 5), different letters indicate horizontal 
differences (within a weather treatment), different 
symbols indicate vertical differences (
diversity level) from post-hoc tests (p < 0.05)

Diversity levels affected biomass accumulation within the weather treatme

(Fig. 4). Under ambient conditions individuals grown in G2- had significantly higher biomass 

than those grown in the four species communities without a legume species (G4

response was not found under drought. Under drought stress, individuals grown in G2

than individuals in G4- (p = 0.09) but significantly higher NP

than individuals grown in G4+. Within the heavy rain treatment, NPind was always very low 

and the diversity level had no effect on the individual biomass. 

Within the drought treatment, the integrated (biomass) and the non-invasive instant (fluores

cence) method gave the same direction and significance of results. Within the diversity levels, 

negative effects of drought on H. lanatus compared to the same species under ambient 
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individuals grown in G2- had no 

(p = 0.09) but significantly higher NPind 

was always very low 

invasive instant (fluores-

cence) method gave the same direction and significance of results. Within the diversity levels, 

compared to the same species under ambient 
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conditions were detected with both methods, but whereas the non-invasive method showed 

significant differences, the invasive measurements only indicated trends. Heavy rain reduced 

NPind significantly in more diverse communities whereas it had no effect on ETRmax of H. 

lanatus. 

 

Buffering effect of surrounding species richness on H. lanatus under drought stress 

A comparison for ETRmax and NPind of H. lanatus across the whole diversity gradient of the 

experiment was possible for subset 2, comparing all diversity levels in drought treatment and 

control, but not between heavy rain and control. 

 

ETRmax values under ambient conditions (Table 2A) remained relatively stable and without 

any significant differences related to diversity levels (α > 0.05) if monocultures were included 

in the analysis. No difference in ETRmax was observed between the monocultures (G1-) and 

two species mixtures (G2-) under ambient or drought stressed conditions. Under drought 

stress both four species communities (G4- and G4+) showed significantly reduced ETRmax 

compared to monocultures (χ² > 6.00, α = 0.05). 

 

Comparing drought and control (subset 2, Fig. 5), averaged individual biomass production 

decreased significantly under extreme drought. H. lanatus showed lower average NPind when 

grown together with the A. elatius, P. lanceolata and G. pratense (G4-) in comparison to 

individuals which grew in monoculture (G1-) or together with A. elatius (G2-). NPind was 

about 1.5 g per individual lower in the four species mixtures with L. corniculatus (G4+) 

compared to the two species mixtures (G2-). Under drought stress, the species richness level 

significantly modified the biomass response. While under ambient conditions, individuals in 

monocultures had significantly higher biomass than those in the four species mixtures without 

a legume species (G4-) the effect vanished under drought stress. Furthermore, the significant 

difference in NPind between individuals in G2- and individuals in G4+ only occurred under 

drought. 
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No buffering effect of increasing species richness on the performance of 

individuals occurred under drought stress. Drought stress resulted in a severe decrease in 

ETRmax accompanied by a decre

unities whereas monocultures or pure grass mixtures did not show such a parallel decrease in 
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Photosynthetic community response to extreme weather events

Community ETRmax (which was 

species-specific  ∆F/Fm’ in leaves of 

culatus by using eq. 3) was relatively stable and showed only little response to the extreme 

weather treatments (Table 4). 

 

 

 

Figure 5 Subset 2: Net biomass production of 
Holcus lanatus individuals (NP
monocultures (G1-), 2-species mixtures (G2
species-mixtures without (G4
mixtures with (G4+) the legume 
under the weather treatments 
and (B) drought. Data are mean
of the mean (n = 5), different letters indicate 
horizontal differences (within
different symbols indicate vertical differences 
(within a diversity level) from post
0.05). 

 

 

 

No buffering effect of increasing species richness on the performance of 

individuals occurred under drought stress. Drought stress resulted in a severe decrease in 

accompanied by a decrease of NPind which was obvious in both four species comm

unities whereas monocultures or pure grass mixtures did not show such a parallel decrease in 

Photosynthetic community response to extreme weather events 

(which was derived from community ∆F/Fm’, Fig. 6, averaged from 

F/Fm’ in leaves of H. lanatus, P. lanceolata, G. pratense

by using eq. 3) was relatively stable and showed only little response to the extreme 

weather treatments (Table 4).  
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F/Fm’, Fig. 6, averaged from 

G. pratense and L. corni-

by using eq. 3) was relatively stable and showed only little response to the extreme 
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Figure 6 Effects of the different weather and diversity treatments on the effective quantum yield of communities 
(community ∆F/Fm’) plotted against photon flux density (PFD) in the photosynthetic active range (wavelength: 
λ = 380–710 nm) on the last day of the manipulation period (20-Jun-2007). Weather treatments are shown row-
wise, diversity levels are shown column-wise from monocultures of Holcus lanatus (G1-) on the left side to the 
2-species-communities (G2-; only H. lanatus was measured) and the four species mixtures with two functional 
groups (G4-) up to the functionally most diverse communities with Lotus corniculatus included (G4+) on the 
right side of the panel. Community ETRmax (Table 4) was derived from the regression curves mathematically 
using eq. 3. Black solid lines indicate community response whereas grey colour indicates a species-specific 
response within a mixture: grey-solid = H. lanatus, grey-dashed = Plantago lanceolata, grey-dotted = Geranium 
pratense and grey-dot-dashed = L. corniculatus. 

 

Pair-wise comparisons showed no significant differences except for community ETRmax in the 

four species communities with a legume species (G4+). Community ETRmax in G4+ in the 

control was significantly higher than in the other communities under ambient conditions and 

than community ETRmax of G4+ in the heavy rain treatment (χ² > 5.06, α ≤ 0.05). Community 

ETRmax of drought treated G4+ was not significantly different to G4+ in the control (χ² = 

2.57, α = 0.2). Negative effects of drought on ETRmax of H. lanatus were ameliorated by 

neighbouring species thus overall community performance was not harmed.  

 

Table 4 Maximum electron transport rates of communities (community ETRmax) calculated from community 
∆F/Fm’ (see eq. 3) with 1 standard error of the mean in different diversity levels (columns) and weather 
treatments (rows) at the end of the treatment period. 

 G1- S.E. G2- S.E. G4- S.E. G4+ S.E. 
C 91.51 6.32 85.34 4.48 85.40 3.76 158.95 12.82 
D 86.61 3.92 89.33 8.57 86.48 5.96 113.15 12.34 
R n.a.  78.26 5.41 86.18 4.66 85.96 5.46 
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DISCUSSION 

Effect of drought stress on photosynthetic efficiency and biomass production of H. lanatus 

Our first hypothesis asked whether we find reductions in photosynthetic performance under 

extreme weather stress in the target species H. lanatus when measuring the chlorophyll a 

fluorescence signal and consequently whether reduced photosynthetic efficiency (instant 

measure) results in reduced biomass per individual (integrative measure). Drought can have 

negative effects on leaf area and, as a feedback, can reduce CO2 assimilation and thus further 

biomass production (Hsiao 1973). CO2 assimilation is correlated to chlorophyll a fluorescence 

under lab conditions and although the relationship is weaker under field conditions, measure-

ments of fluorescence are often indicative for the rate of photosynthesis (Maxwell and 

Johnson 2000). Thus, we consider this an important question to address as fluorescence can 

be measured quickly and non-invasively (whereas the biomass harvest is highly invasive and 

laborious). Fluorescence measurements could provide an early screening indication of 

potential biomass reduction if the two parameters were found to be clearly correlated in the 

field.  

We found a weak relationship between ETRmax and NPind under drought stress and no link at 

all between these parameters in the heavy rain treatment. Despite the theoretical link (Hsiao 

1973; Maxwell and Johnson 2000), decreases in photosynthetic efficiency and biomass 

production seemed to be driven by different constraints, such that fluorescence would not 

form a good non-invasive surrogate for measuring productivity invasively. We detected signs 

of drought stress in H. lanatus under field conditions in most diverse communities (G4-, G4+) 

when measuring ETRmax but not for Fv/Fmexpo (Table 2 A, B). Negative effects of drought on 

electron transport rates were confirmed by reduced individual biomass production (NPind, Fig. 

5), although significantly only in four species communities with a legume species (G4+). The 

negative effect of severe drought on the photosynthetic performance (ETRmax) of H. lanatus 

in four species communities was consistent over two consecutive years (in 2006: Kreyling et 

al., Table S1; Fig. S1 in Supplementary material) and thus does not represent a single-year 

exception. Interestingly, it was not possible to detect drought stress via the fluorescence signal 

in species poor communities (G1-, G2-), containing only one functional group (grasses), 

although there was a trend to lower NPind in monocultures and two species mixtures, too (Fig. 

5).  

A possible explanation for reduced ETRmax could be an earlier senescence of H. lanatus. 

Senescent or older leaves usually have a lower photochemical efficiency (Figueroa et al. 
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1997; Waldhoff et al. 2002). Drought is known to induce early senescence in a wide variety of 

plant species, e.g. in Salvia officinalis L. (sage, forb) (Munne-Bosch et al. 2001), Triticum 

aestivum L. (wheat, grass) (Shah and Paulsen 2003) or Cicer arietinum L. (chickpea, legume) 

(Macar and Ekmekci 2008). Maize plants have been found to respond to an artificial drought 

(root detachment) with a significant reduction in ETRmax that is stronger in younger than in 

older leaves (Xu et al. 2008), indicating a stronger reaction to drought of not naturally 

senescent leaves. A study in the EVENT-Experiment on the response of flowering phenology 

to extreme weather events revealed earlier flowering and a reduction in flowering length in H. 

lanatus under drought stress (although no effect of diversity levels) (Jentsch et al. 2009). This 

phenological shift suggests that H. lanatus may have experienced early senescence in the 

EVENT-Experiment under drought stress. Data on photosynthetic pigment content, on the 

other hand, did not confirm an earlier senescence (personal communication Julia Walter). 

 

Effect of heavy rain events on photosynthetic efficiency and biomass production of H. lanatus 

Negative effects of heavy rain treatment on H. lanatus were not found for chlorophyll a 

fluorescence (Table 1, 2) albeit strong reductions in NPind (Fig. 4). Pociecha et al. (2008) 

found that an excess of soil water constrained both growth as well as the photosynthetic 

apparatus in field bean (Vicia faba L. minor, legume), but that the strength of impact 

depended strongly on leaf age. The heavy rain treatment in the EVENT-Experiment increased 

the soil water content and waterlogged the soil for more than one week (Fig. 1). Thus, we 

expected a reduction in the photosynthetic capacity but it was not observed in our study 

whereas we found a reduction in individual biomass of H. lanatus (NPind ) in the heavy rain 

treatment, in agreement with Pociecha et al. (2008). They related negative effects of flooding 

on biomass production to a disturbed hormonal equilibrium and restrictions of metabolic 

processes due to root anoxia. Shi et al. (2008) stated that it is mainly a lack of oxygen what 

leads to biomass reductions under root limited conditions in Lycopersion esculentum (tomato, 

forb). Thus, short-term root anoxia may have hampered NPind in H. lanatus but was possibly 

not severe enough to negatively affect the photosynthetic light use efficiency. 

 

Buffering effect of surrounding species richness on H. lanatus under drought stress  

Contrary to our expectations, H. lanatus performed worse under drought stress combined with 

higher surrounding species richness both in terms of reduced ETRmax (Table 2 A) and NPind 

(Fig. 4, 5). Thus, we cannot confirm our second hypothesis, which predicted a better 
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performance of H. lanatus in more diverse communities under severe drought stress. For 

temperate grass species, the process of facilitation is a function of a species having both a low 

tolerance to a particular abiotic stress and a strong competitive-response ability (Liancourt et 

al. 2005). H. lanatus was expected to fulfill these conditions, because it is severely affected 

by drought and a strong competitor in benign environments (Beddows 1961) . However, we 

found no sign that H. lanatus profited from facilitative effects linked to higher species 

richness or compositional changes. 

 

The negative effect of increasing diversity on ETRmax and the reductions in NPind in drought 

stressed H. lanatus may be related to an increase in belowground competition in species-rich 

communities. Aboveground biomass per plot (represented by a significantly higher cover per 

plot in G4+ communities; data not shown) did not seem to determine all of the stress response 

to drought, as a negative effect was found in both four species communities (not just in the 

four species communities with a legume species). Several studies have shown higher 

complementarity between species in more diverse communities and that this can lead to more 

efficient total resource use as published by Berendse (1979), Loreau & Hector (2001) and by 

De Boeck et al. (2006) for higher water use efficiency (WUE). Verheyen et al. (2008) found 

in the Swedish BIODEPTH biodiversity field experiment that more diverse communities 

showed a higher WUE under mild drought stress, but that they were more swiftly negatively 

affected when the drought stress increased. Complementarity under environmental stress is 

suggested to be most important, if species richness drops below a critical level of ten species 

for grasslands (Schwartz et al. 2000; Kahmen et al. 2005; De Boeck et al. 2007). Thus, the 

four-species-systems fall in the range of maximum resource complementarity at the 

community level (hence stronger belowground activity) and this might in turn affect single 

species performance negatively. Indeed data on belowground processes in grassland and heath 

communities in the EVENT-Experiment (Kreyling et al. 2008b) showed an increase in root 

accumulation and enzyme activity with increasing functional diversity irrespective of weather 

treatment, which indicates a better niche occupancy in the more diverse communities. 

Furthermore, H. lanatus is known to be drought sensitive and is an indicator of medium to 

high soil moisture with an Ellenberg F-value = 6, whereas the neighbouring species in the 

four species communities have lower Ellenberg F-values of 5, x = indifferent, 5 and 4 for 

Arrhenatherum elatius, Plantago lanceolata, Geranium pratense and Lotus corniculatus, 

respectively (FloraWeb, BfN 2008) (Ellenberg indicator values; ranging from 1 (= avoiding) 
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to 9 (= loving) for different environmental parameters as for soil moisture (F, from German 

“Feuchte”)). Overall our data suggest that the competitive strength of H. lanatus was reduced 

in the more diverse communities (G4- and G4+) where it suffered more than the other species 

from extreme drought (Fig. 6). 

 

Community response to extreme weather events 

As Balvanera et al. (2006) emphasise, biodiversity effects often depend on the level of 

abstraction focussed on: individual and population effects are often very different from effects 

at community level. According to the insurance hypothesis (Naeem and Li 1997; Yachi and 

Loreau 1999) - which predicts higher stability and resilience of more diverse communities in 

the face of disturbance - negative effects on one species can be ameliorated by an increased 

performance of another species in species (or genotypic) rich communities. This effect was 

indeed observed for the photosynthetic response of the community in our experiment: only 

the performance of H. lanatus was reduced under drought stress while the neighbouring 

species did not perform worse (Fig. 6). Thus, on community level, no negative effects of 

extreme weather events were observed (community ETRmax, Table 4), confirming our third 

hypothesis. Alike, the overall productivity in the plots was not reduced due to the weather 

manipulations in 2007 (Kreyling et al. 2008a) which indicates that other species profited from 

the photosynthetic limitations of H. lanatus under drought stress. Our results confirming those 

from a greenhouse study where the community response (averaged potential quantum yield of 

PS II, Fv/Fm) was also not affected by species richness or drought stress under ambient 

temperatures. The community’s effective quantum yield (∆F/Fm’ ≙ ΦPSII) decreased in the 

course of the drought period (24 d), although at the end no significant differences between 

monocultures and communities with ~4.5 species have been detected (Zavalloni et al. 2009). 

Results from that study and our own indicate that the measurement of chlorophyll a fluores-

cence provide a useful tool to evaluate community resistance to drought stress under 

controlled and semi-natural conditions. 

 

In conclusion we can state that the non-invasive measurement of chlorophyll a fluorescence 

under semi-natural field conditions is a helpful tool to assess reductions in performance of 

plant populations related to drought stress but not for reactions to waterlogged soil conditions. 

Thus, a correlation of effects detected by the instant (non-invasive chlorophyll a fluorescence) 

and the integrated (invasive biomass harvest) method was not possible for both environmental 
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stresses applied. Under severe drought stress, the maximum electron transport rate (ETRmax) 

reflected the worse performance of H. lanatus in the more diverse communities and low NPind 

confirmed this finding. We found no evidence for positive biodiversity effects on the 

performance of the target species H. lanatus, either under ambient or extreme weather 

conditions. Increasing diversity affected integrated and instant measures of H. lanatus 

negatively whereas no such effect was found for the instant community response. Functional 

diversity, acting as a buffer against disturbance on the community level, is important for 

insuring ecosystem stability at the community level (sensu insurance hypothesis,  

McNaughton 1977; Naeem and Li 1997; Yachi and Loreau 1999) but it had negative effects 

on the population of the grass species we investigated. The sensitivity of H. lanatus to 

extreme drought (as a result of climate change) may have substantial ecological effects on the 

distribution of this wide spread species in grassland communities in Germany and Europe and 

could affect grassland systems in a non-predictable way where this species is relatively 

abundant. 
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Table S1 Parameters of the instant light response curves of 
manipulation period in 2006, separated by diversity level for each weather manipul
significant difference between any diversity level was found within any weather manipulation. Michaelis
Menthen equations (ETR = a * PAR / (
a pair-wise permutation procedure with 1000 permutations

parameter   Drought

a G2- 160.4
 G4- 141.6
 G4+ 131.8
b G2- 524.8
 G4- 434.3
 G4+ 428.5

G2- = two species communities, G4
communities with a legume species 
 
 

 
Figure S1 Apparent electron transport rate (
diversity levels in 2006. The study was conducted by Kreyling et al. in 2006 in the EVENT
Drought resulted in significant reductions of ETR
characteristics (parameter b) described by the light response curves of 
control over all functional diversity levels (see Table S3).
Light response characteristics of Holcus lanatus
on the electron transport rate (ETR in µmol m
s-1): ETR = a * PAR / (b + PAR). Solid curves: fits over all communities, dashed curves: communities 
containing two species of one growth form (G2
growth forms (G4-), dot-dashed: communities containing four species of two gr

 

SUPPLEMENTARY MATERIAL 

Parameters of the instant light response curves of Holcus lanatus, measured at the end of the weather 
separated by diversity level for each weather manipul

significant difference between any diversity level was found within any weather manipulation. Michaelis
* PAR / (b + PAR)) were fitted using quantile regression. Significance obtained by 

on procedure with 1000 permutations (data kindly provided by Jürgen Kreyling)

Drought 
Roof 
Control 

p   
Heavy 
Rainfall 

Control 

160.4 219.5 0.024  109.9 135.5 
141.6 206.2 0.007  136.4 119.5 
131.8 NA   97.5 91.8 
524.8 747.9 0.025  336.5 410.1 
434.3 694.3 0.007  427.7 351.4 
428.5 NA     290 274.3 

= two species communities, G4- = four species communities without a legume species, G4+ = four species 
 

Apparent electron transport rate (ETR) in leaves of Holcus lanatus in different weather treatments and 
diversity levels in 2006. The study was conducted by Kreyling et al. in 2006 in the EVENT

nificant reductions of ETRmax (parameters a) and ascending slope of light response 
) described by the light response curves of Holcus lanatus compared to roof artefact 

control over all functional diversity levels (see Table S3). 
Holcus lanatus. Michaelis-Menthen equations are fitted by quantile regression 

on the electron transport rate (ETR in µmol m-2 s-1) against photosynthetically active radiation (PAR in µmol m
R). Solid curves: fits over all communities, dashed curves: communities 

containing two species of one growth form (G2-), dotted curves: communities containing four species of two 
dashed: communities containing four species of two growth forms, one legume (G4+). 
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, measured at the end of the weather 
separated by diversity level for each weather manipulations. Note that no 

significant difference between any diversity level was found within any weather manipulation. Michaelis-
+ PAR)) were fitted using quantile regression. Significance obtained by 

(data kindly provided by Jürgen Kreyling). 

p 

0.097 
0.125 
0.220 
0.176 
0.092 
0.287 

= four species communities without a legume species, G4+ = four species 

 

in different weather treatments and 
diversity levels in 2006. The study was conducted by Kreyling et al. in 2006 in the EVENT-Experiment. 

) and ascending slope of light response 
compared to roof artefact 

Menthen equations are fitted by quantile regression 
) against photosynthetically active radiation (PAR in µmol m-2 

R). Solid curves: fits over all communities, dashed curves: communities 
), dotted curves: communities containing four species of two 

owth forms, one legume (G4+). 
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ABSTRACT 

Current climate change increases the likelihood of extreme weather events and consequently 

the abiotic stress exerted on plants in many regions of the world. An increase in stress levels 

can induce shifts in plant-plant interactions resulting in more facilitation and less competition. 

Studying facilitation in communities with different diversity levels under extreme conditions 

is an emerging topic in ecology. We investigated productivity and the ecophysiological 

performance of the grass Holcus lanatus growing in communities with different diversity 

levels through a period of extreme drought and in the recovery phase after drought. We 

measured leaf water potential, chlorophyll a fluorescence, leaf pigment content, total protein 

and nitrogen concentrations, δ15N, the productivity of H. lanatus individuals and community 

productivity in all diversity levels. Drought treatment significantly reduced the water 

availability for H. lanatus in every plant community, with the greatest reduction occurring in 

communities that included a legume species. Communities with a legume species were most 

productive, irrespective of weather manipulation. Protein content, N-concentrations and δ
15N 

values in leaves of H. lanatus under ambient conditions indicated a facilitative effect of the 

legume species on N-supply of the grass species. This facilitative effect did not show up in 

drought stressed legume communities. H. lanatus that grew in communities with a legume 

species showed the significantly lowest maximum quantum efficiency (Fv/Fm) during the 

drought period, but, by contrast, also showed a quicker recovery of Fv/Fm after the drought 

period compared to individuals that were growing in monocultures. H. lanatus growing in 

monocultures and two-species communities produced more biomass per individual than in 

both four-species communities. The biomass production in four-species communities with a 

legume species was higher than in four-species communities without a legume. The findings 

suggest that the presence of a legume species reduces the performance of neighbouring 

species under extreme drought conditions. High productivity in these communities might 

enhance inter-specific competition due to increasing resource limitation. In the recovery phase 

after drought, presence of the legume species speeds up recovery, an effect that might be 

related to higher nitrogen availability in these communities. The increase in facilitation in the 

recovery phase could be one reason for improved resilience and recovery in functionally more 

diverse communities.  
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Abbreviation list 

C   = ambient control 

D   = drought treatment  

Doy   = day of the year 

Fm   = maximum fluorescence yield of the dark adapted leaf 

Fm´   = maximum fluorescence yield of the light adapted leaf 

F0   = steady state fluorescence yield of the dark adapted leaf 

Ft   = steady state fluorescence yield of the light adapted leaf 

Fv   = variable fluorescence yield of the dark adapted leaf  

Fv/Fm   = potential maximum quantum yield of photosystem II 

LWP [MPa]  = leaf water potential 

NPind   = aboveground net biomass production of individuals [g/tussock] 

PPFD [µmol m-2s-1] = photosynthetically active photon flux density 

W   = weekly average precipitation 
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INTRODUCTION 

Extreme weather events such as drought are likely to increase in frequency and magnitude in 

the near future in many parts of the world due to global climate change (Trenberth et al., 

2003; Schär et al., 2004). Drought is one of the major limitations for plant growth, affecting 

vegetation structure, plant productivity and interactions between plants (Chaves et al., 2004). 

Plants can interact via competition (negative) or facilitation (positive) and it has been ob-

served, that facilitation becomes the dominating mode of plant interaction under adverse 

conditions, while competition is the more important driver of community organization under 

more favourable conditions. The balance between competition and facilitation along an 

environmental gradient is summarized as the stress gradient hypothesis (SGH, Bertness and 

Callaway, 1994). The hypothesis has been supported by different studies (Eckstein, 2005; 

Kikvidze et al., 2006; Sthultz et al., 2007; Eranen et al., 2008; le Roux et al., 2008). However, 

recent studies have shown that the outcome of interactions is highly context-dependent (site 

condition, species, type of stressor) thereby questioning the generality of the stress gradient 

hypothesis (Armas et al., 2005; Weedon et al., 2008; Maestre et al., 2009). In many cases, an 

increase in stress by a reduction of the limiting factor, e.g. water in arid environments, has 

even been found to lead to increased competition instead of facilitation (Tielbörger et al., 

2000; Ludwig et al., 2004; Maestre et al. 2004).  

The study of plant-plant interactions is linked to “some of the most important current 

ecological issues, including the relationship between biodiversity and ecosystem function, and 

the impacts of global change” (Brooker et al., 2008). However, most studies focus on pair-

wise plant-plant interactions (Fotelli et al., 2001; Britton et al., 2003; Fernandez et al., 2007; 

Cavieres et al., 2008) and only a few studies investigate the effect of a varying number of 

neighbouring species or functional groups on the performance of an individual target species. 

Ecological theories such as the insurance hypothesis (Yachi and Loreau, 1999) state that 

higher diversity increases the probability of maintaining the functioning and stability of an 

ecosystem in a fluctuating environment. This is partly explained by a higher trait asynchrony 

and redundancy and partly by increased positive interactions in more diverse communities 

(Tilman and Downing, 1994; Yachi and Loreau, 1999). The positive relationship between 

ecosystem functioning and biodiversity is related to (i) niche complementarity (higher 

performance through facilitation or resource partitioning) and (ii) the selection effect (higher 

probability of including a good performer in more diverse communities) both of which are 

explained comprehensively by Loreau et al. (2001).  Legumes are often key species for 
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enhanced stability in plant communities, as they act as facilitators (enhance productivity and 

N-nutrition of neighbouring species) in plant communities under non-stress conditions (Spehn 

et al., 2002; Hector et al., 2007; Temperton et al., 2007; Dybzinski et al., 2008). However, 

their role on the performance of neighbours under abiotic stress conditions has rarely been 

studied. 

Cardinale et al. (2002) stated that “facilitation may be a key mechanism by which biodiversity 

enhances the performance of ecosystems” thus linking facilitation research to community 

ecology. Maestre et al. (2009) and Brooker et al. (2008) highlighted the need for extending 

research on plant interactions from the individual level up to the community level. In plant 

communities with higher diversity levels, non-linear effects and the indirect effects of 

facilitation also become apparent (Michalet, 2006). For instance, Mulder et al. (2001) found 

an increase in positive interactions in more diverse bryophyte communities during drought. 

Furthermore, both species- and genetic-diversity speed up the recovery of plant communities 

and therefore enhance resilience as has been found by the few existing studies investigating 

post-stress community recovery (Tilman et al., 1996; Reusch et al., 2005). 

This study addresses effects of neighbouring species richness and composition on productivity 

and on the ecophysiological performance of Holcus lanatus (Yorkshire fog, Poaceae) under 

extreme drought and in the post-drought recovery phase. H. lanatus is a widely distributed 

perennial grass with a wide ecological range, mainly occurring in moist habitats on relatively 

fertile and moderate acidic soils (pH 5-6) (Grime et al., 1988). Our aim was to link facilitation 

and biodiversity research by measuring the response of one species within differently 

composed communities varying in species and functional trait number. We measured 

physiological parameters (chlorophyll a fluorescence, leaf water potential, content of 

photosynthetic pigments) as well as biomass production per individual to quantify sensitivity 

to stress and the course of recovery. To investigate community response and a possible 

facilitative effect of legume presence, we assessed community productivity and nitrogen data. 

Our study was based on three hypotheses: 

(i) Community diversity buffers the negative effects of drought stress on H. lanatus 

due to an enhancement of facilitative effects, such as shading or hydraulic lift.  

(ii)  The presence of a legume species further enhances the buffering capacity of 

community diversity, as legumes are known to act facilitative under non-stress 

conditions.  
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(iii)   The recovery of H. lanatus after drought is speeded up in more diverse 

communities, due to a better overall performance and improved resilience of more 

diverse communities. 
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MATERIAL AND METHODS 

Experimental design  

Our study was conducted as part of the EVENT-experiments, which investigate the effects of 

simulated extreme weather events and species diversity on ecosystem functions (Jentsch et al., 

2007). The EVENT-experiments are located in the Ecological Botanical Garden of the Uni-

versity of Bayreuth, Germany (49°55´19´´N,11°3455``E, 365 m asl). The experimental design 

consists of two factors: 1) extreme weather manipulation: drought (D), weekly average 

precipitation amounts (W), and ambient conditions for control (C), and 2) community diver-

sity: Holcus lanatus (L.) monocultures (1-), H. lanatus growing together with one grass 

species (2-), with one grass species and two forbs (4-) or with one grass species and two forbs, 

with a legume species (4+) (Table 1). The setup consists of five replicates of each factorial 

combination. Communities were planted in 2 m x 2 m plots except for the monocultures that 

were grown in 1 m x 1 m plots. The factors were applied in a split-plot design, with 

community diversity nested within weather treatments. The species composition that had been 

planted was maintained by periodical weeding. Data acquisition was carried out within or 

close to the inner square meter of each plot to circumvent any edge effects. 

 

Factor 1: Extreme drought event 

Extreme drought (D) was induced using transparent rain-out shelters. Extreme greenhouse 

effects were avoided by starting the roof from a height of 80 cm, allowing air exchange near 

to the surface. The intensity of the drought was based on the local 1000-year extreme drought. 

Vegetation periods (March to September) from the years 1961-2000 acted as a reference 

period. Gumbel I distribution was fitted to the annual extreme, and a 1000-year recurrence 

was calculated (Gumbel, 1958). Drought was defined as the number of consecutive days with 

a daily amount of less than 1 mm precipitation. This resulted in a drought period with a length 

of 42 days that started on May 20th 2008 (day of the year (doy) 141 ) and ended on June 30th 

2008 (doy 182). To end the drought treatment, we irrigated one third of the long-term weekly 

average amount of precipitation (see below) on three days in the week after drought, starting 

directly on the day after drought if no natural precipitation occurred (rewetting period). 

The ambient control treatment (C) remained under natural conditions without any mani-

pulation. To obtain an additional comparison with long-term mean conditions, we installed 
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regularly watered plots (Weekly Average, W). Here, the long-term weekly average amount of 

precipitation (vegetation periods 1961-2000 as a reference) minus the naturally occurring 

precipitation during that particular week was irrigated once per week, to ensure continuous 

water availability. Figure 1 provides data on soil moisture, precipitation and temperature at 

the time that measurements were taken. 

 

 

Figure 1 Natural precipitation (a), midday temperature (a) and soil moisture (b) data within the EVENT-
experiment over the measuring period (last week of drought treatment and first week of post-drought recovery 
phase). Vertical black line shows the end of the drought treatment on the day of the year (doy) 182. Soil moisture 
was measured in four-species communities without legume species at a depth of 5 cm using FD-sensors, the 
means of hourly readings for each day are given. Ambient Control (C) sensors stopped on doy 183 (due to 
technical problems).  

 

Factor 2: Plant communities 

All mixed plant communities consist of 100 individuals per 2 m x 2 m plot. All individuals 

were planted in a regular grid 20 cm apart from neighbouring individuals. All plants were pre-

grown from seeds in autumn 2004 and planted outside in April 2005. Monocultures (1 m x 1 

m plots, 25 individuals) were installed in autumn 2006 with plants that were planted outside 
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since April 2005. Thus, individuals were three years old during the measurements. The target 

species H. lanatus grew in four community compositions, differing by the number of species 

(one to four) and the number of functional groups (one to three) (Table 1). 

 

Table 1 Community composition and diversity levels for communities with the target species Holcus lanatus. 

community name functional groups species 
monoculture 1- one grass Holcus lanatus 

 
Two-species community 2- two grasses Holcus lanatus 

Arrhenatherum elatius  
 

Four-species community 
without a legume 
 

4- two grasses 
two forbs 

Holcus lanatus  
Arrhenatherum elatius  
Plantago lanzeolata  
Geranium pratense 
 

Four-species community 
with a legume 
 

4+ two grasses 
one forb 
one legume 

Holcus lanatus. 
Arrhenatherum elatius  
Plantago lanzeolata. 
Lotus corniculatus  

 

 

Response parameters 

Leaf water potential 

Leaf water potential (LWP) was determined using a PMS 600 pressure bomb (PMS 

Instrument Company, Albany, USA). It was measured before dawn on June 28th, July 3rd and 

July 5th (doy 180, 185 and 187), treatment ended on June 30th (doy 182). We also performed 

midday measurements on June 25th (doy 177) and July 3rd (doy 185). Leaves were cut with a 

razor blade, transported to the pressure bomb in an aluminium foil bag and measured 

immediately. LWP was the negative applied pressure in MPa when xylem-sap was visible at 

the cut end of the leaf. 

 

Chlorophyll a fluorescence 

Non-invasive chlorophyll a fluorescence measurements were used to measure photosynthetic 

performance, namely the quantum efficiency of photosystem II as described by Rascher et al. 

(2000). We measured predawn fluorescence of dark-adapted leaves between 0130 hrs and 

0400 hrs during the last week of the drought treatment on June 26th (doy 178) and on three 



Materials and Methods   Manuscript 2 

88 
 

days during the recovery phase after drought (June 3rd (doy 185) three days after rewetting; 

June 5th (doy 187) five days after rewetting and June 7th (doy 189) 7 days after rewetting). 

The maximum quantum efficiency of photosystem II (Fv/Fm) was derived from the maximum 

fluorescence of the dark-adapted leaf after applying a saturating light pulse (Fm) and the 

variable fluorescence yield of the dark adapted leaf (Fv = Fm - F0) with F0 being the steady 

state fluorescence yield of the dark adapted leaf (Maxwell & Johnson, 2000). Chlorophyll a 

fluorescence was obtained using a pulse-amplitude-modulated photosynthesis yield analyzer 

(PAM 2000 by H. Walz GmbH, Effeltrich, Germany) with a leaf clip holder as described by 

Bilger et al. (1995). 

As we wanted to obtain the species response of H. lanatus within the community, measured 

individuals were chosen randomly on each day measured, thus representing the overall 

performance of the species within the community, and not the performance of one individual. 

A fluorescence standard was measured prior to each plot, which was then used to normalize 

the fluorescence values that were obtained. We measured only fully expanded leaves in the 

upper third of each plant individual and used the leaves of four plant individuals per plot. To 

determine Fv/Fm the median of all data within one plot was taken for analysis to avoid pseudo-

replication. We measured the chlorophyll a fluorescence of H. lanatus under drought con-

ditions in all communities. Under ambient conditions (C) we only conducted fluorescence 

measurements in monocultures (1-) and in communities with a legume species (4+). Under 

conditions with a weekly average precipitation (W) we carried out measurements in two-

species communities (2-) and four-species communities without a legume species (4-). 

(Neither monocultures nor four-species communities with a legume species were available).  

For statistical analysis, C (ambient conditions) and W (weekly average precipitation) were 

treated as two different manipulations. However, significant differences in Fv/Fm between the 

ambient control (C) and the long-term control (weekly average precipitation, W) only 

occurred on July 3rd (doy 185, 3 days after rewetting). On doy 185 individuals growing under 

ambient conditions in monocultures showed significantly higher Fv/Fm than for those growing 

in the controls of all other communities, and were even higher than in communities which 

regularly received weekly average amounts of precipitation. There were no further differences 

between the ambient control (C) and the long-term control (W) in different communities at 

any other time of measurement, therefore, both ambient conditions (C) and weekly average 

precipitation (W) are referred to as “control” in the following.  
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Pigment analysis 

Leaf samples for pigment analysis were taken on the last day of the drought treatment (June 

30th, doy 182). 3 cm² of leaf material from one leaf per plot were cut and stored immediately 

in liquid nitrogen until they could be transferred to -80°C. Leaf discs were ground in a mortar 

in liquid nitrogen with Krytobalit to improve cell lysis, and pigments were extracted using 

100% ice-cold acetone. The content of chlorophyll a, chlorophyll b and carotenoids were 

determined photometrically at three different wavelengths (470 nm, 645 nm, 662 nm) 

(Lichtenthaler, 1987). 

 

Nitrogen concentrations and δ15N natural abundance in 2007 and protein content in 2008 

To determine δ15N natural abundance [‰] and total nitrogen concentration [%] of leaves of 

H. lanatus, leaf material was sampled in 2007 at the end of the drought treatment. To 

determine isotope ratios and N concentrations, 1 ± 0.1 mg of dried and finely ground plant 

material was weighed into tin capsules and analysed using an elemental analyser (EA 3000, 

EuroVector, Italy). Resulting gases out of Dumas Combustion were dried and separated using 

a GC-column coupled online to a ConFlo III interface (Thermo Electron, Bremen, Germany) 

connected to an isotope-ratio mass spectrometer (MAT 253, Thermo Electron, Bremen, 

Germany) (Gehre et al. 1994).  

We used the ratio of 15N/14N in the sample and a standard (atmospheric N2) to determine the 

δ
15N natural abundance value of plant leaves (Mariotti, 1983, Shearer & Kohl, 1986). The 

δ
15N values were calculated as follows: 

δ
15N [‰] = (Rsample/Rstandard -1)*1000,  

where R represents the ratio of 15N/14N isotopes. The N concentration of samples was cal-

culated in comparison to a reference material with known N-concentration. The experimental 

design did not differ between 2007 and 2008, but in 2007 the treatments were applied 

according to the 100-year-extreme event, so drought lasted only for 32 days. 

In 2008, leaf material was sampled on the last day of drought treatment, to determine protein-

bound amino acids. Mixed samples of all plots were frozen in liquid nitrogen until transfer to 

-80°C and freeze-dried. Amino acids of the protein fraction were extracted. Amino acid con-

centrations were measured with an ion exchange chromatograph (Biotronik, amino acid 
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analyser LC 3000) and protein content was calculated by pooling the content of each amino 

acid in the protein fraction. Weiner et al. (2010) summarize the applied method in detail.  

 

Net productivity per individual and community productivity 

Four plant individuals in the inner square meter of the 2-, 4- and 4+ communities were 

marked at the beginning of the vegetation period. Complete aboveground biomass of these 

individuals was harvested one week after the drought treatment had ended, on July 10th to 

calculate the mean aboveground net productivity per individual (NPind [g/tussock]). In 

monocultures, all individuals were harvested and counted to calculate NPind. To determine 

community productivity, all plant material of the inner square meter of each plot was cut. 

Harvested plant material was dried for 48 hours at 70°C and weighed. 

 

Statistical analysis 

We examined residuals versus fitted plots and normal qq-plots prior to each analysis to test 

whether the assumptions for ANOVA, homogeneity of variances and normality could be met 

(Faraway, 2006). If this was not the case, data were power- or log-transformed.  

To test for significant differences in NPind and LWP, we performed a two-factorial ANOVA. 

We corrected for the split-plot-design by specifying the nesting of community composition 

within the treatment in the Error-Term of the mixed model. Fixed factors were community 

composition and weather manipulation. To more closely examine the community effects on 

H. lanatus individuals during drought, multiple comparisons were performed for linear mixed 

effect models with Tukey correction.  

Fluorescence data and pigment data were analyzed differently: Although control (C) and 

regular watering (W) did not show significant differences on four out of five days of 

measurements, the effect of weather manipulation and community composition were analyzed 

separately here. The effects of community composition within drought treatments were 

examined using multiple comparisons for linear mixed effect models with Tukey correction 

and the effects of weather manipulation within one community composition were analyzed in 

a multiple one-way ANOVA using linear models. 
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All statistical analyses were performed using R (R Development Core Team 2006). For mixed 

effect models we used the software package nlme (Pinheiro et al., 2008), and for multiple 

Tukey comparisons with mixed models we used the software package multcomp (Hothorn et 

al., 2008). 
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RESULTS 

 

PERFORMANCE OF H. LANATUS DURING THE DROUGHT 

 

Leaf water potential 

Both the midday leaf water potential (LWP), measured on June 25th (doy 177, Fig. 2a) after 

37 days without precipitation, and the predawn water potential, measured on June 28th (doy 

180, Fig. 2b) after 40 days without precipitation, showed highly significant differences bet-

ween drought treated and control plants (doy 177: P=0.0065; doy 180: P=0.0001). The 

drought effect was consistent for all plant communities (Fig. 2a, b).  

Community composition affected predawn LWP on doy 180 (Fig. 2b): H. lanatus growing in 

four-species communities with a legume species (4+) showed a significantly more negative 

LWP than H. lanatus growing in four-species communities without a legume species (4-) 

(Tukey test: P<0.001) and monocultures (Tukey test: P<0.001). LWP in H. lanatus was 

significantly lower in two-species communities than in monocultures (Tukey test: P<0.001) 

and marginally lower than in the four-species communities without a legume (Tukey test: 

P=0.055). 

 

Maximum quantum efficiency 

Species composition significantly affected the maximum quantum efficiency (Fv/Fm) of dark-

adapted leaves of H. lanatus after 38 days of simulated drought (doy 178: P<0.0001, Fig. 2c). 

Fv/Fm in four-species communities with a legume species (4+) was significantly lower than at 

the other three diversity levels (Tukey test, P<0.0001, Fig. 2c) whereas no differences 

occurred between all other communities without the legume species (1-, 2- and 4-). 

Accordingly, treatment effects were tested separately for every community with cor-

responding controls. H. lanatus individuals growing in monoculture (1-) and in four-species 

communities with and without a legume species (4- and 4+) showed significant drought 

effects on Fv/Fm compared to controls on doy 178 (1-: P=0.001; 2-: P=0.175; 4-: P=0.011; 4+: 

P= 0.007, Fig. 2c). 
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Leaf pigment content 

Visual inspection revealed severe signs of pigment and chlorophyll degradation in H. lanatus 

growing in the communities that included a legume species under drought stress, as leaves 

appeared yellowish and wilted. This could not be confirmed by a pigment analysis, as neither 

drought, nor community composition during drought had a significant effect on the content of 

chlorophyll a, chlorophyll b, the overall carotenoids or the total photosynthetic pigment 

content (Fig. 2d) in leaves of H. lanatus. Albeit a trend to lower total pigment content existed 

in leaves of H. lanatus growing in both four-species communities in the drought treatment 

(Fig. 2d), no statistically significant differences occurred. 

 

 

Figure 2 Performance of Holcus lanatus in control treatments (dark-grey bars) and drought treatments (light-
grey bars) characterized by four different parameters: (a) midday leaf water potential (LWP) (day of the year 
(doy) 177) and (b) predawn LWP (doy 180) – both of which showed a significant overall drought effect, (c) 
maximum quantum efficiency (Fv/Fm) and (d), total pigment content. Error bars indicate 1 standard error of the 
mean. Asterisks indicate significant differences between drought and the corresponding control (P<0.05). 
Different letters indicate significant differences between the species compositions within drought treatment 
(P<0.05). 
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Nitrogen concentration, δ15N and protein content  

In 2007, N concentration [%] was significantly decreased in drought plots compared to 

ambient control (P<0.0001) and H. lanatus from different communities revealed different N 

concentrations (P<0.0001). H. lanatus from monocultures and two-species communities had 

significantly higher N concentrations in its leaf tissue than H. lanatus from four-species 

communities without a legume species (Table 2). The isotopic composition of N (δ15N, Table 

2) did neither differ between treatments (ANOVA: P=0.9), nor between communities 

(ANOVA: P=0.1). 

Table 2 Nitrogen concentrations and δ15N values in leaves of Holcus lanatus at the end of the 100-year extreme 
drought in 2007 measured under ambient conditions (control = C) and in the drought treatment (D). Means  +/- 1 
standard error of the mean are given (n = 5). 

  community 
  1- 2- 4- 4+ 
N [%] C 2.1 +/- 0.027  2.0 +/- 0.001  1.7 +/- 0.009  1.8 +/- 0.000 
 D 1.6 +/- 0.003  1.6 +/- 0.006  1.2 +/- 0.001  1.3 +/- 0.003 

δ15N [‰] C  -2.09 +/- 0.24  -1.98 +/- 0.2  -2.69 +/- 0.41  -1.82 +/- 0.06 
 D  -2.03 +/- 0.04  -1.02 +/- 0.24  -2.52 +/- 0.50  -2.58 +/- 0.39 

  

Drought significantly decreased the protein content in 2008. Protein content was lowest in 

four-species communities without a legume species and highest in two-species-communities 

(Fig. 3). Protein content differed significantly for H. lanatus between plants from four-species 

communities without a legume species compared to plants from monocultures and two-spe-

cies communities (Tukey test: 4-vs.2-, P<0.001; 4-vs.1-, P=0.048) and between plants from 

four-species communities with a legume species and plants from two-species communities 

(P=0.003). 
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Figure 3 Total protein content in leaves of Holcus 
lanatus at the last day of drought period in the 
control (dark-grey bars) and drought treatment 
(light-grey bars). Error bars indicate 1 standard 
error of the mean. Asterisk indicate significant 
differences between drought and control (P<0.05), 
different letters indicate significant differences in 
overall community response. 
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RECOVERY OF H. LANATUS AFTER THE DROUGHT 

 

Leaf water potential 

On the third day of recovery after the drought (doy 185), predawn LWP of H. lanatus was still 

significantly reduced compared to the control (P=0.03, Fig. 4a).  LWP during recovery was 

generally not affected by species composition, but the magnitude of the LWP reduction still 

tended to be more negative in four-species communities with a legume species (4+) as well as 

in the two-species communities (2-) for predawn measurement on doy 185 (Fig. 4a). For 

midday measurements on doy 185 and 187 neither a treatment effect nor a composition effect 

occurred (Fig. 4b, c). 

 

 

Figure 4 Leaf water potential (LWP) of three 
measurements in the post-drought recovery phase in 
Holcus lanatus measured in the control (C, dark-
grey bars) and drought treatments (D, light-grey 
bars). (a) Predawn LWP three days after rewetting 
showed a significant overall drought effect. (b) 
Midday LWP three days after rewetting, and (c) 
predawn LWP five days after rewetting showed no 
more significant effects. Error bars indicate 1 
standard error of the mean. 
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Maximum quantum efficiency  

The drought treatment had a prolonged effect on Fv/Fm in leaves of H. lanatus individuals 

within monocultures in the first week of the recovery phase, taking into account treatment 

differences in the communities separately (1-: D versus C: July 3rd/doy 185: P=0.004; July 

5th/doy 187: P=0.025; July 7th/doy 189: P=0.043; Fig. 5a, b, c). In two-species communities 

(2-) as well as in both four-species communities (4- and 4+), we found significant drought 

effects on Fv/Fm in H. lanatus only up to five days after rewetting, which was applied at June 

30th/doy 182 (2-: D vs. W on July 3rd: P=0.040 and on July 5th: P=0.0113; 4-: D vs. W on July 

3rd P<0.001 and on July 5th P=0.003; 4+: D vs. C on July 3rd P=0.038 and on July 5th 

P=0.008; Fig. 5a, b). Thus, treatment effects disappeared in all communities except for in the 

monocultures one week after the drought treatment had ended (Fig. 5c). 

 

 

Figure 5 Maximum quantum efficiency (Fv/Fm) 
measured in the control (dark-grey bars) and 
drought treatments (light-grey bars) in the post-
drought recovery phase  three (a), five (b) and 
seven days (c) after rewetting. Error bars indicate 1 
standard error of the mean. Asterisks indicate 
significant differences between drought and the 
corresponding control (P<0.05). 
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Individual net productivity and community productivity 

Previous drought had no effect on biomass production per individual (NPind, Fig. 6a), but 

community composition affected NPind, independent of the treatment ( P<0.0001): Individuals 

of H. lanatus growing in monocultures (1-) and two-species communities (2-) showed signifi-

cantly larger NPind than individuals growing in both four-species communities (Tukey test 4- 

vs. 1- and vs. 2-: P<0.001; 4+ vs. 1-: P=0.021; 4+ vs. 2-: P=0.002). NPind of H. lanatus in 

four-species communities with a legume species (4+) was significantly larger than NPind of H. 

lanatus in four-species communities without a legume species  (4-) (Tukey test: 4- vs. 4+, 

P=0.0145).  

 

Figure 6 Biomass production (a) of Holcus lanatus 
individuals (NPind) in different communities and (b) 
of whole communities. Different letters indicate 
significant differences between communities which 
are monoculture (1-), two-species mixture (2-) and 
four-species mixtures without (4-) or with (4+) a 
legume species. 

 

Drought had no effect on community productivity (Fig. 6b), but community productivity 

differed significantly between the different compositions (P<0.0001). Most biomass was 

produced in four-species communities with a legume species, and least in four-species 

communities without a legume species. 
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DISCUSSION 

The stress gradient hypothesis (Bertness and Callaway 1994) states, that facilitation becomes 

more important during stress. Furthermore, ecological theories predict that facilitation is one 

of the key mechanisms that ensure ecosystem stability in more diverse communities. We 

attempted to integrate both approaches by linking species-specific performance and comm-

unity ecology. Therefore we investigated the vegetation response of one species growing in 

communities which differ in their composition and species number. We hypothesized that 

community diversity, the number of species and functional traits within a community, should 

have a positive effect on ecophysiological performance of the target species Holcus lanatus. 

Some studies have shown a facilitative effect of community diversity on single species 

performance (Callaway et al., 1997; Cardinale et al., 2002). 

 

Buffering capacity of diversity during extreme stress 

We observed reductions in predawn leaf water potential (LWP; Fig. 2b) in two-species 

communities and four-species communities with a legume species when compared to 

monocultures. The more negative the LWP is, the lower is the water availability a plant 

experiences (Larcher, 1994). Thus, predawn LWP results indicate that monocultures ex-

perienced the least water stress during the drought treatment which is also confirmed by the 

nearly unchanged midday LWP (Fig. 2a) for H. lanatus in monoculture. However, the 

maximum quantum efficiency of dark-adapted leaves (Fv/Fm; Fig. 2c) was reduced in mono-

cultures, indicating minor photoinhibition (Maxwell and Johnson, 2000).  

The highest performance reductions during the drought period, revealed by strong negative 

effects on predawn LWP and Fv/Fm (Fig. 2b, c), were found for H. lanatus growing in 

communities with a legume species (4+). The outstandingly low values for Fv/Fm are most 

likely due to wilting or early senescence of H. lanatus in 4+ communities although the 

pigment data (Fig. 2d) only show a trend towards lower chlorophyll content (and no 

significant differences). However, visual inspection provided signs of severe pigment and 

chlorophyll degradation. The discrepancy between visual appearance and results from 

pigment analyses might be related to the sampling: whereas we “see” the overall species 

performance, we sampled only one leaf per plot for the pigment analysis (n = 5), which 

nonetheless only provides a snapshot of the overall species performance. Therefore, Fv/Fm (n 

= 20) may provides a more representative measure. The validity of the non-invasive Fv/Fm is 
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further corroborated by chlorophyll a fluorescence measurements in light-adapted leaves of 

H. lanatus in 2008 (data not shown) and in two previous years. In 2006 and 2007, the 

maximum electron transport rate (ETRmax), a parameter derived from the quantum yield of 

light-adapted leaves, in H. lanatus in 4+ communities exposed to 100-year drought events 

were significantly lower than in plants from monocultures (manuscript 1; personal communi-

cation Lea Märtin). Overall, our ecophysiological results do not support the stress-gradient 

hypothesis: no increase in facilitation – but rather an increase in stress – occurred under an 

extreme drought event in the communities with a higher number of species and functional 

traits as it has been reported from studies in (semi-)arid habitats (see Maestre et al. 2004 and 

references within). 

 

The role of Lotus corniculatus for facilitation during stress  

The extreme drought effects on H. lanatus in 4+ communities with a legume species (Lotus 

corniculatus) are not in line with other studies that indicate a facilitative role of legumes for 

plant interactions in semi-natural mesic grassland habitats (Gosling, 2005; Palmborg et al., 

2005; Temperton et al., 2007; Fornara et al., 2009). This result is also not in accordance with 

a greenhouse pot experiment conducted by Wurst & van Beersum (2009), where H. lanatus 

has outcompeted L. corniculatus over a drought period. However, most studies showing the 

facilitative role of legumes focus on community productivity, a long-term parameter. Comm-

unity productivity is also facilitated by the presence of L. corniculatus in our study (Fig. 6b); 

mainly due to the highly productive legume itself (personal communication Kerstin Grant) but 

also due to higher individual biomass production of e.g. H. lanatus (Fig. 6a). The positive 

effect of legume presence on community biomass (Fig. 6b) is likely to lead to higher 

competition for water under extreme drought stress as reported for experimental grassland 

communities exposed to a naturally occurring drought event (Verheyen et al. 2008) and from 

controlled out-door heat/drought pot experiment with mesic grassland species (van Peer et al., 

2004; Zavalloni et al. 2009). The combination of low LWP for drought treated H. lanatus in 

communities with a legume species (Fig. 2a, b) and the high community productivity of these 

communities (Fig. 6b) suggests that this mechanism also determines plant interactions during 

drought within this well-controlled field experiment. Our findings support studies which also 

show an increase of competition instead of facilitation under extreme water shortage 

(Tielbörger and Kadmon 2000; Ludwig et al. 2004; Lortie and Turkington 2008). 
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Under non-stress conditions, on the other hand, the presence of the legume species may have 

a positive effect on the N availability for neighbouring species as trends towards higher pro-

tein content (Fig. 4), higher individual biomass (Fig. 6a), higher N concentration and δ15N 

values (Table 2) for H. lanatus plants in communities with a legume species (4+) compared to 

four-species communities without a legume species (4-) suggest. Low δ15N values often 

indicate low N availability for plants and changes in δ15N values of non-legume species 

towards zero can indicate facilitative interactions between a legume and a non-legume species 

by N transfer or N sparing (Högberg, 1997; Temperton et al. 2007). Drought stress does not 

only reduce water availability but can have profound negative effects on the N2-fixing ability 

of legumes (Serraj et al., 1999; Galvez et al., 2005). Thus, there might be additional negative 

effects in 4+ communities during drought. Additionally, data for protein contents in our study 

partly support these findings. Protein content of H. lanatus in all communities declined under 

drought (Fig. 4), but the drop in four-species communities with a legume species was larger 

(40%) then the decline in four-species communities without a legume species (20%). Further-

more, δ15N values (Table 2), which were 33% higher in communities with a legume species 

(4+) compared to four-species communities without a legume species (4-) under ambient 

conditions (control), were even more reduced for H. lanatus in 4+ compared to 4- under 

drought. This indicates a loss of facilitative interactions (N transfer or N sparing) between the 

legume species and neighbouring plants. The unexpected strong decline in Fv/Fm for H. 

lanatus in 4+ could thus possibly be due to the lack of N2-fixation under drought, which 

might have caused a shortage in N-supply, particular in nitrate. CO2 and nitrate are possible 

electron-acceptors for reduction equivalents from photochemistry. A sudden lack of nitrogen 

and nitrate availability together with a lack of CO2 (caused by closure of stomata in response 

to drought) could cause an over-energetization and photodamage to photosystem II in leaves 

of H. lanatus. A reduction in Fv/Fm can therefore be a sign of persistent photodamage, as 

individuals are severely stressed and not able to recover over night. Additionally, a lack of 

nitrogen can prevent the rapid repair of photosynthetic proteins. 

 

The role of species and functional diversity for post-drought recovery 

Not only the magnitude of the effect during the stress, but also the speed of recovery after the 

stress period determine resilience and stress response and are thus important for facilitation 

research. Here, despite of showing extreme signs of stress compared to other communities 

during the drought treatment (Fig. 2), H. lanatus growing in communities with a legume 
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species (4+) made an unexpected rapid recovery: whereas Fv/Fm of H. lanatus in 4+ was 

lowest at the end of the drought treatment, it fully recovered within the following week and 

deviated no longer from those in the other communities (Fig. 5). One week after rewetting 

only the monocultures still showed negative effects of the applied drought treatment on Fv/Fm 

(Fig. 5), although LWP was highest during the treatment period (Fig. 2b), which suggests the 

lowest level of recovery. Data from chlorophyll a fluorescence measurements in light-adapted 

leaves (data not shown) confirmed the results from dark-adapted leaves and corroborate the 

high potential for recovery of H. lanatus in communities with the highest diversity of 

functional traits. The effect could be partly attributed to resprouting and the quick growth of 

new leaves and partly to a higher potential for facilitation and niche complementarity which 

increase the recovery of existing plant material. The net productivity of individuals (NPind) 

also supported these findings: H. lanatus individuals in communities with a legume species 

(4+) were more productive (although being subjected to greater stress levels; Fig. 2b, c) than 

in four-species communities without a legume species (4-).  

Increased biodiversity often leads to an improvement in ecosystem productivity and resilience 

(e.g. Tilman and Downing, 1994; Isbell et al. 2009). In our study, species number had a 

positive effect on the recovery of individuals from a H. lanatus population (Fig. 5c), but 

effects of the presence of Lotus corniculatus in four-species communities were stronger than 

those of biodiversity. Van Ruijven et al. (2010) show in legume-free experimental grassland 

communities exposed to a naturally occurring extreme drought that diversity per se enhanced 

community recovery after drought, but not resistance. Our findings further emphasize the 

facilitative role that biodiversity, but in first order, legumes play under non-stress conditions 

in plant communities and also corroborate the role of nitrogen for complementarity effects 

(Fargione et al., 2007). Higher nitrogen availability through the presence of an N2-fixing 

legume species after the drought period can add to a more efficient recovery and performance 

of photosystem II, because nitrate can be used as well as CO2 for reduction through reduction 

equivalents out of the photosynthetic light reaction. 

 

CONCLUSIONS 

To summarize, our measurements during the drought treatment neither directly support the 

stress gradient hypothesis nor the insurance hypothesis: we did not found better performance 

and increased facilitation in more diverse communities or communities with a legume species 

during an extreme drought event. These findings support studies which also show an enhance-
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ment of competition instead of facilitation under extreme water shortage (Tielbörger et al., 

2000; Ludwig et al., 2004). However, presence of a legume species did facilitate recovery: H. 

lanatus growing in communities with a legume species showed a quick recovery after severe 

drought stress whereas H. lanatus growing in monocultures showed reduced photosynthetic 

efficiency for the longest time period.  

Our results indicate that functional diversity can enhance ecosystem stability and resilience 

and is more important for ecosystem functioning than diversity in terms of species richness 

(Scherer-Lorenzen, 2008). Our study therefore provides a link between community ecology 

and facilitation research: it is likely that better resilience and overall performance (due to 

legume presence and better resource availability) of the whole community helped to speed up 

recovery of the widespread grass species H. lanatus. Thus, our results also indicate that two 

prominent ecological hypotheses, namely the insurance hypothesis and the stress gradient 

hypothesis, albeit making predictions on different organisation levels (species vs. community 

performance), can be brought together. Therefore, more detailed studies that focus on 

isolating direct and indirect facilitation, and sampling or complementarity effects (Fridley, 

2001; Loreau et al., 2001) are needed to investigate the role of community diversity and in 

particular that of legume presence for facilitation.  
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ABSTRACT 

Facilitation, in the form of extra nitrogen input into ecosystems by nitrogen-fixing plants, has 

received very little attention in degraded systems in need of restoration. We investigated 

whether positive interactions between plants would increase with the severity of the abiotic 

environment in a calcareous grassland restoration project on ex-arable land. The restoration 

treatments consisted of topsoil removal and hay transfer (from a reference grassland site).   

We used the δ15N natural abundance method to assess facilitative interactions between pairs 

of species across an environmental nutrient and water availability gradient. Plant pairs, N2-

fixing legume species and their non-fixing neighbors, were either adapted to calcareous 

grasslands (target species) or mesic grasslands (non-target species). We found that restoration 

treatments were reflected in the δ
15N signal of the non-legume species: increasing restoration 

effort led to significantly decreasing δ15N values. Functional group identity as well as species 

identity affected the δ15N signal. We found only weak evidence for N-facilitation (using the 

δ15N method), with abiotic soil N dynamics overriding any potential facilitative signal from 

neighboring legume species. Although the δ15N method could not be used in this calcareous 

grassland to clearly assess facilitation, this work has highlighted the potential of using the 

integrative character of the δ15N signal in plants to provide a useful tool for evaluating 

restoration success (transformation from eutrophic to oligotrophic systems).  

 

Keywords  

chalk grassland, facilitation, legumes, positive plant-plant interactions, restoration, stable 

isotopes 

 

N-parameters  

δδδδ15N: ratio of the heavier (15N) over the lighter (14N) stable isotope of nitrogen in plant or soil 

samples (see eq. 1); ∆δ∆δ∆δ∆δ15N: foliar δ15N values standardized by background bulk soil δ15N 

values (see eq. 2); %Ndfa : percent nitrogen derived from atmosphere in N2-fixing species 

(see eq. 3), Nmin: mineralized N-forms in soil solution, both nitrate (NO3
-) and ammonium 

(NH4
+) together 
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INTRODUCTION 

Low-productive grasslands with a highly specialized set of species, such as calcareous or dry 

acidic grasslands, form important cultural landscapes of high conservation value in Europe 

(Riecken et al., 1997; Isselstein et al., 2005; Kiehl & Pfadenhauer, 2007). Due to agricultural 

intensification and land-use changes, the restoration of low-productive, species-rich 

calcareous (or species-poor acidic) grasslands has become an important tool in conservation 

and ecological restoration in Central Europe. So far, the role of facilitation in the successful 

restoration of semi-natural species-rich grasslands has rarely been studied in Europe (e.g. 

Ryser, 1993). Facilitation is defined as the ability of one species to modify the environment 

beneficially for another species (Connell & Slatyer, 1977), whereby one species has a positive 

effect on neighboring or subsequent species. The most prominent example for facilitation is 

that of nurse-plant effects on neighbors, whereby a resident plant (mostly a shrub or cushion 

plant) enables a seedling of a different species to establish underneath it, thereby providing 

shelter (against grazing or climatic effects), nutrients or water. Positive nurse-plant effects 

have generally been found in environmentally extreme ecosystems such as arid (Pugnaire et 

al., 1996) or alpine/arctic environments (Arredondo-Nunez et al., 2009), but also in more 

mesic habitats (Ryser, 1993; Smit et al., 2007). 

Equally important but less studied in either natural or semi-natural ecosystems, is facilitation 

by nitrogen-fixing legume species, which can have strong effects on nitrogen dynamics and 

productivity of non-fixing neighbors or subsequent species. For economic reasons two-species 

interactions (between N2-fixing and neighboring species) have often been studied in intensive 

agriculture. Enhanced productivity and N-availability has been reported for pasture farming 

(McNeill & Wood, 1990b; Elgersma et al., 2000), crop rotation (Varvel & Wilhelm, 2003) 

and intercropping systems (Fujita et al., 1992; Li et al., 2007), including information about the 

relationship between the amount of N transferred and the distance between species or climatic 

and edaphic conditions (e.g. Giller & Cadisch, 1995). Only little is known, however, about N-

dynamics and positive interactions between N-fixing and non-fixing species in more diverse 

plant communities. We know from biodiversity experiments in mesic grasslands that N-

facilitation often contributes to positive biodiversity effects on community productivity and 

nutrient cycling. This is reflected in the N-status and often in the δ15N value of non-fixing 

neighbors (Mulder et al., 2002; Spehn et al., 2002; Temperton et al., 2007; Carlsson et al., 

2009). Temperton et al. (2007) found strong facilitative interactions between three different 

mesic grassland species (phytometers) and legume neighbors along a gradient of plant species 



Introduction  Manuscript 3   

112 
 

diversity in a field experiment. They found that legume species presence (but interestingly not 

abundance) affected plant N-concentration, N-content as well as δ15N signals in neighbors, 

but also that an increasing number of surrounding species decreased N-concentration and the 

δ15N signal.  

The beneficial effect of legume species on neighbors is related to two overall mechanisms: 

transfer of nitrogen from legumes to neighbors (either via exudation, rhizodeposition and/or 

decomposition) and sharing of soil N-pools (an effect known as N-sparing (e.g. McNeill & 

Wood, 1990a): the legume species relies more on atmospheric N, thus increasing soil N-

availability for the neighbors). Separating these two mechanisms requires one to be able to 

trace the movement of fixed atmospheric N2 from the benefactor to beneficiary plant during 

facilitation and to assess soil N pools. The path of fixed nitrogen from benefactor to 

beneficiary plant can be followed using the stable 15N isotope of nitrogen, which is heavier 

than the much more abundant 14N isotope. The δ15N natural abundance signal in plants is per 

se a function of the δ15N values of the N-sources of the plant (Handley & Raven, 1992) and 

thus functions as an integrator of N-dynamics in a system (Robinson, 2001). 

Högberg (1997) reviewed the topic of δ15N natural abundance in plants and soils com-

prehensively and describes a variety of factors affecting the δ15N signal in soil-plant systems 

(e.g. species identity, mycorrhiza, soil moisture, pH, N-status etc.). The δ15N natural abun-

dance method (established by Amarger et al., 1979) can be used for estimating the percent of 

N derived from atmosphere (%Ndfa) in aboveground plant parts of N2-fixing species (Shearer 

& Kohl, 1986). Despite its effectiveness for assessing N derived from atmosphere, few studies 

so far have used the δ15N natural abundance method to study facilitative legume-neighbor 

interactions; most studies applied an enriched tracer to the system (called the isotope dilution 

method). The δ15N natural abundance method (compared to the isotope dilution method), 

however, enables species to be identified as N-fixers, (δ15N signal around zero) or non-fixers 

(δ15N significantly different to zero) using the natural δ15N signal (Virginia & Delwiche, 

1982; Högberg, 1997). Equally, legume presence in grassland plant communities can affect 

the δ15N signal of neighbors (Mulder et al., 2002; Spehn et al., 2002; Temperton et al., 2007; 

Carlsson et al., 2009) such that non-legume neighbors in the vicinity of legumes have lower 

δ15N signals (closer to zero) than plants of the same species growing without legume 

influence, allowing an estimate of N-transfer from legumes to neighbors.  
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Very few studies have investigated the role of N-facilitation by legumes in grassland 

environments with extreme conditions (e.g. low nutrient and water availability) and higher 

species diversity than in mesic grasslands (e.g. calcareous grasslands). The stress gradient 

hypothesis predicts an increase in positive interactions with increasing environmental stress 

(Bertness & Callaway, 1994). N-facilitation along a gradient of N-availability should 

therefore be strongest in a substrate, where N-supply is lowest and weaker than under more 

mesic conditions.  

Restoration of low productivity habitats (e.g. calcareous grassland in Europe) on ex-arable 

land often requires the removal of nutrient-rich topsoil to recreate the appropriate soil 

nutrient-dynamics for the target communities (Kiehl et al., 2006; Kiehl & Pfadenhauer, 2007) 

Restoration sites, which include a gradient of abiotic environments, for example on sites with 

and without topsoil removal, have the potential to provide an ideal testing ground (Bradshaw, 

1993) for the stress gradient hypothesis. In this study, we investigated the role of N-

facilitation by legumes on their neighbors in species-rich, calcareous grasslands across a 

gradient of N (and water) availability in a restoration experiment near Munich, including 

restoration fields with and without topsoil removal and sites with and without hay transfer for 

the introduction of target species. Our aim was to test the following hypotheses within a 

restoration setting: 

i. The δ15N natural abundance method can be used to show facilitation by legume 

species on non-fixing neighbors in a species-rich calcareous grassland (as is possible 

in experimental mesic grasslands). 

ii.  As predicted by the stress gradient hypothesis, positive interactions between legume 

and neighboring non-legume species (reflected by δ15N values and N-concentrations 

in leaves), will increase along a gradient of abiotic stress, i.e. with strongest 

facilitation found on topsoil removal sites with severe N-limitation. 

 

To test these hypotheses we sampled pairs (legumes and neighbors) of stress-tolerant target 

species as well as mesic non-target species in the four different restoration treatments and 

measured the N-concentration and the δ15N value in leaves of these species, as well as the soil 

nutrient availability and the δ15N signal in the bulk soil. 
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MATERIALS AND METHODS 

Restoration study area and experimental design 

The study area consists of ex-arable fields in the vicinity of the nature reserve “Garchinger 

Heide” (48°18’N, 11°39’E, 469 m asl) north of Munich, Germany, which were converted in 

1993 in the course of a large-scale restoration project to reestablish nutrient-poor, species-rich 

calcareous grasslands. It is located in the Munich gravel plain on pararendzina soil evolved 

from melt water sediments from the Würm glacial period, which had been used as arable 

fields since the beginning of the 20th century (Pfadenhauer et al., 2000; Kiehl & Pfadenhauer, 

2007). Water-holding capacity of the nutrient-poor soils is low. The climate is humid-

temperate with a mean annual temperature of 7.8°C, and total annual precipitation of ~865 

mm (data by Deutscher Wetterdienst for Oberschleißheim and Haimhausen-Ottershausen, 

time period 1961-1990, DWD, 2009). 

Restoration treatments (topsoil removal, hay transfer) were performed full-factorial on a large 

scale on two different restoration fields in 1993 (providing two experimental blocks: block 1 

= field 506/508 and block 2 = field 519/520). Topsoil removal, to achieve nutrient reduction 

of the substrate, consisted of removal of 40 cm agricultural topsoil down to the calcareous 

gravel. Topsoil removal resulted in a strong reduction of the total N-content and the content of 

exchangeable P and K in the soil (Table 1a), whereas the fertile humus layer stayed intact on 

sites without soil removal. Hay transfer (of diaspore-rich undried hay from the nearby nature 

reserve "Garchinger Heide") was performed to overcome dispersal limitation of calcareous 

grassland species (Kiehl et al., 2006). On sites without hay transfer the number and cover of 

calcareous grassland species (including many legume species) was much lower than on hay-

transfer sites, even 13 years after start of the restoration (Table 1b). 

 

Both restoration treatments (abiotic factor: topsoil removal, biotic factor: hay transfer) were 

applied in a full-factorial design giving four differently treated areas per block (sorted by 

decreasing restoration effort): topsoil removal areas with hay transfer (+r+h) and without hay 

transfer (+r-h); no topsoil removal areas with hay transfer (-r+h) and without hay transfer (-r-

h). The -r-h areas thus represent the natural succession from old field to grassland and hence 

form a restoration control (i.e. no restoration treatment carried out). Since 1995, the -r areas 

were either grazed by sheep or  mown annually in July/August and the +r areas were mown 

only occasionally to remove woody species as mowing was usually not possible due to low 
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biomass production (Pfadenhauer et al., 2000; Pfadenhauer & Kiehl, 2003). Different 

management types showed only minor effects on flora and fauna compared to the major 

treatments topsoil removal and hay transfer and thus can be neglected in this study as stated 

by Kiehl & Wagner (2006). The biotic environment experienced by plants sampled for this 

study is summarized in Table 1b. 

 

Table 1 Abiotic and biotic characteristics of the “Garchinger Heide” restoration project with (a) values for 
abiotic soil properties (0-10 cm, summarized from Pfadenhauer & Kiehl, 2003; Kiehl, 2005) and (b) species 
cover and species richness (assessed at two different scales: permanent plots and total area per restoration 
treatment; summarized from Hummitzsch, 2007). Values are means with standard deviations, n = 10-20 from 
permanent plots (4 m²) for all parameters except “species richness per restoration treatment” where n = 2 from 
the 2 blocks/restoration fields. 

(a) With topsoil removal Without topsoil removal 
 
Skeletal content (fraction 
    >2 mm) [% dry weight] 

 
84.5 ± 5.8 

 
69.9 ± 0.3 

 
P2O5 [mg/100g] 4.1 ± 1.8 43.8 ± 5.7 
K2O [mg/100g] 9.1 ± 4.2 58.1 ± 7.6 
Ntotal [%] 0.2 ± 0.1 0.43 ± 0.04 
Corg [%] 0.9 ± 0.6 4.6 ± 0. 5 
C:N 10.1 10.6 
pH 7.2 ± 0.1 6.9 ± 0.1 

 

(b) 
With topsoil removal  Without topsoil removal 

With hay 
(+r+h) 

Without hay 
(+r-h) 

 With hay 
(-r+h) 

Without hay 
(-r-h) 

Vegetation height [cm] 11.4 ± 5.0 14.1 ± 5.2  52.5 ± 7.3 58.3 ± 9.0 
Cover [%]      
     Litter 2.8 ± 1.3 2.4 ± 1.2  43.8 ± 24.1 30.0 ± 9.7 
     Bare soil 24.2 ± 13.6 74.8 ± 11.0  1.1 ± 2.3 1.5 ± 1.3 
     Vascular plants 48.4 ± 12.0 20.0 ± 14.2  85.7 ± 9.2 84.8 ± 5.8 
     Sum of cover 50.8 ± 13.7 26.7 ± 11.5  131.5 ± 15.0 118.5 ± 12.3 
     Target GL species 50.0 ± 14.0 22.2 ± 12.9  95.9 ± 15.1 35.5 ± 23.6 
     Mesic GL species  0.5 ± 0.4 3.3 ± 4.2  34.3 ± 11.1 77.4 ± 26.5 
     Ruderal species 0.3 ± 0.5 1.3 ± 1.6  1.3 ± 1.3 5.6 ± 3.7 
     Legume species 18.5 ± 6.8 5.9 ± 8.1  19.4 ± 6.5 12.4 ± 10.1 
     Forb species 30.7 ± 9.6 17.9 ± 4.6  46.0 ± 12.8 40.7 ± 10.6 
     Grass species 1.6 ± 1.6 2.3 ± 1.9  66.2 ± 10.5 65.3 ± 11.4 
Species richness      
     Total  23.1 ± 4.2 20.3 ± 6.9  27.9 ± 5.1 24.0 ± 3.6 
     Target GL species  21.1 ± 3.8 15.2 ± 4.0  19.1 ± 5.1 9.5 ± 3.3 
     Mesic GL species  1.5 ± 1.6 2.7 ± 2.6  7.5 ± 1.4 11.6 ± 1.8 
     Ruderal species 0.6 ± 0.6 2.4 ± 2.6   1.2 ± 0.6 2.9 ± 1.0 
Species richness per 
restoration treatment 

    
 

     Total  69.5 ± 4.9 85.0 ± 12.1  71.3 ± 1.8 78.7 ± 2.8 
     Target GL species 52.5 ± 2.7 51.0 ± 2.2  43.7 ± 1.8 34.3 ± 3.9 
     Mesic GL species  6.5 ± 0.6 9.5 ± 3.8  17.7 ± 1.8 22.0 ± 1.5 
     Ruderal species 10.5 ± 2.7 23.5 ± 4.9  10.0 ± 2.6 22.7 ± 2.7 

Restoration treatments: with (+) or without (-) topsoil removal (r) and hay transfer (h) 
Target species = calcareous grassland species (class Festuco-Brometea), GL = grassland 
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Sampling design 

We collected samples in both restoration fields (block 1 and 2) which both contain all four 

restoration treatment combinations of topsoil removal and hay transfer (+r+h, +r-h, -r+h, -r-h). 

Plant and soil material were sampled along a 20 m long transect in the middle of each area to 

obtain representative samples for a given treatment.  

 

In August 2007, we sampled plant material (1-2 individuals) at eight measuring points 

(equally distributed along the 20 m transects) or within a distance of maximum 2 m 

perpendicular to the transect if species did not occurred close by the transect line. We used 

every individual plant sample as a replicate (Table 2, n = (2) 6-16 per species and restoration 

treatment). The study was conducted at landscape scale on large restoration fields of several 

hectares and thus, according to Oksanen (2001), replications per area can be considered as 

independent samples in statistical analyses and not as pseudoreplicates sensu Hurlbert (1984). 

Due to the large-scale restoration approach, micro-climate of restoration sites was undisturbed 

by edge-effects, which often occur on small plots and undesired between-treatment dispersal 

(Pakeman et al., 2002) of introduced plants could be avoided (Pfadenhauer & Kiehl 2007). 

 

Table 2 Overview of the number of plant pairs (non-legume species and their legume neighbor), control plants 
(non-legume species without legume neighbor) and legume species without non-legume neighbor sampled along 
transects in different restoration treatments. 

   Mesic grassland species   Target species 

Block Transect 
 
Treat-
ment 

tri 
+ 

gal 

lot 
+ 

gal 
gal 

 
lot 

 ant 
+ 

hel 

dor 
+ 

hel 
hel ant 

Block 1 

T1 -r-h 8 8 6      6 
T2 -r+h  9    9    
T3 +r+h      8 8 5  
T4 +r-h    8  8 2 8  

Block 2 

T5 -r-h 8 8 6       
T6 -r+h  8 8       
T7 +r+h      8 8 6  
T8 +r-h  8 8   8  8  

Restoration treatments: with (+) or without (-) topsoil removal (r) and hay transfer (h) 
Target species = calcareous grasslands species: ant = Anthyllis vulneraria (legume species), dor = Dorycnium 
germanicum (legume species), hel = Helianthemum nummularium (non-legume species) and mesic species: lot = 
Lotus corniculatus (legume species), tri = Trifolium pratense (legume species), gal = Galium mollugo (non-
legume species) 
 

We collected leaves of legume - non-legume pairs (<10 cm distance between each other) and 

control plants of the non-legume species (>30 cm distance to the next legume species) - so 
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non-legume species were obtained from different neighborhoods. As far as possible we 

collected pairs (legume/non-legume) of stress-tolerant target species (typical for calcareous 

grasslands of the class Festuco-Brometea) as well as pairs of non-target species (typical for 

mesic grasslands of the class Molinio-Arrhenatheretea) in the vicinity of the transect in all 

restoration treatments. The vegetation cover in the +r-h areas in both blocks was so low 

(Table 1b) that leaf samples had to be collected on the whole area and not along transects.  

In practice in the field, since legume species abundance was high, control plants with an 

adequate distance to any legume species were very hard to find and were mostly sampled in 

larger distance from the transect. If it was not possible to collect plant pairs because of a 

missing non-legume partner, we sampled the legume species alone (Table 2). 

Stress-tolerant target species sampled were: Anthyllis vulneraria L., Dorycnium germanicum 

(Gremli) Rikli (two legume species) and Helianthemum nummularium (L.) Mill. (small 

shrub); mesic, non-target species sampled were: Trifolium pratense L., Lotus corniculatus 

group (two legume species) and the forb Galium mollugo (Oberdorfer, 2001). Thus, both non-

legume species were sampled in three different neighborhoods: non-legume species as 

neighbor of “legume A”, as neighbor of “legume B” and as “control plant (without legume 

neighbor)”. Although collection of control plants unaffected by legume vicinity was difficult, 

we nonetheless sampled control plants of H. nummularium and G. mollugo (>30 cm distance 

to any legume individual) and analyzed them separately for effects of legume neighborhood 

on their N status (see Table 2 for neighborhood combinations of species). 

 

In November 2008, mixed soil samples from the upper 0-15 cm were taken at four positions 

along each transect for analysis of δ15N and other abiotic parameters in the bulk soil. At each 

position soil material from five corings within a 2 x 2 m square was used for one mixed soil 

sample. Together with the soil, we collected root samples randomly (without species 

identification) to obtain approximate δ15N and N [%] values for the belowground 

compartment of the vegetation and for mycorrhiza staining for estimation of mycorrhizal 

colonization (soil and root: n = 2 per restoration treatment). Legume roots, identified by 

detection of visible nodules, were present in every root sample. 
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Sample analysis 

Plant samples were oven dried for 60 hours at 60°C and ground to fine powder using a Retsch 

ball mill MM 301 (Retsch GmbH, Haan, Germany) with stainless steel devices. Soil samples 

were sieved with a Retsch sieve with a pore size of 2 mm to homogenize the substrate and 

exclude large organic compounds and stones. An aliquot of the sieved soil was oven dried at 

30°C for 72 hours and ground to fine powder with a Retsch ball mill using tungsten carbide 

devices. Ground samples were used for N-concentration and δ15N (both plant and soil) and for 

P-concentration analysis (soil only). An aliquot of fresh soil was used for analysis of 

mineralized soil N (Nmin: plant available NH4
+ and NO3

-). 

For analyses of δ15N natural abundance signal [‰] and N-concentration [%], ground plant or 

soil material was packed in tin capsules and measured using an element analyzer coupled with 

an isotope ratio mass spectrometer (EA-IRMS; EA = EURO-EA 3000 by HEKAtech GmbH, 

Wegberg, Germany, IRMS = IsoPrime by Micromass UK Limited, Manchester, UK). For 

analyses of P-concentration in soil, 50 mg material were dissolved for 30 minutes with 0.25 g 

of a lithium-boron-mixture at 1000°C than solubilized in 30 ml 5% HNO3 and filled to a 

volume of 50 ml with deionisized water. P-concentration [%] was determined with ICP-OES 

(inductively coupled plasma with optical emission spectroscopy, Thermo Fisher Scientific, 

Waltham, USA). Nmin [ppm] was analyzed in the soil solution of 5 g fresh soil, shaken with 

50 ml of 1 M KCl for 0.5 hours. Determination of ammonium (NH4
+) and nitrate (NO3

-); 

concentration was done with an IC system (ion chromatography: Dionex ICS 3000 SP with 

ICS 3000 DC conductivity detector, AD 25 UV-VIS detector, by Dionex Corporation, 

Sunnyvale, USA).  

 

δ
15N-methods 

We used the δ15N natural abundance method (Amarger et al., 1979) to study positive effects 

of N2 fixed by legumes on neighboring plants, which was adapted from the method of Shearer 

& Kohl (1986) for estimating percent N derived from atmosphere (%Ndfa) in N2-fixing 

species. The δ15N natural abundance signal denotes the ratio of the heavier over the lighter 

stable isotope of nitrogen (15N over 14N) in a sample in relation to a standard (atmospheric N2 

for nitrogen as described by Mariotti (1983)): 
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δ
15N = [(Rsample/Rstandard) - 1] * 1000 [‰].       (1) 

Where Rsample or Rstandard is the ratio of 15N over 14N for sample or standard, respectively.  

 

To achieve a higher comparability between plant species growing in different soils, we also 

standardized plant δ15N values with the bulk soil signal as recommended by Amundson et al. 

(2003) and Kahmen et al. (2008). We subtracted the δ15N value of the bulk soil (δ15Nsoil) from 

the plant signal (δ15Nfoliar) to obtain a so-called big delta signal (∆δ
15N):   

∆δ
15N = δ15Nfoliar - δ

15Nsoil [‰].         (2) 

 

We estimated percentage of plant nitrogen derived from atmosphere (%Ndfa) in the legume 

species according to Shearer & Kohl (1986): 

%Ndfa = ((δ15Nref - δ15Nfix)/(δ15Nref - B))*100 [%].      (3) 

Where δ15Nref and δ15Nfix are the stable isotope ratios measured in the non-fixing reference 

(ref) and N2-fixing species (fix). B refers to the δ15N signal of the nodulated N2-fixing species 

growing in a media totally lacking in mineral N and thus solely dependent on N from 

atmosphere. Instead of using a legume, which solely depends on Ndfa, to gain the B value, we 

used the lowest value of the field-grown legume species as B (as recommended by  

Eriksen & Hogh-Jensen (1998)). To use %Ndfa-method, the δ15Nref should be higher (more 

positive) than the δ15Nfix (δ15Nref > δ15Nfix), thus we used the mean value from G. mollugo 

from the -r-h areas as the δ15Nref species to gain a rough estimate for %Ndfa for all sampled 

legume species in all restoration treatments (Table 3). 

 

Mycorrhizal fungi-staining 

For randomly chosen roots from every transect, we did a trypan blue root staining (Phillips & 

Hayman, 1970) to assess if an infection with mycorrhizal fungi (MF) had occurred. We 

checked for MF hyphae in- and outside the root cortex and for the formation of vesicles and 

arbuscules inside the tissue by microscopic observation but did not determine percentage of 

infected root length, as we did not know which species the roots belonged to. 
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Table 3 Estimation of the percent of nitrogen derived from atmosphere (%Ndfa) from N2-fixation in four legume 
species in four areas/restoration treatments with (a) results for percent N derived from atmosphere (%Ndfa) for 
the legume species and (b) B values (δ15N value [‰] of a legume that depends predominantly on N2-fixation for 
its N source, see eq. 3) which was the lowest δ15N values of each field-grown legume species in our study (sensu 
Eriksen & Hogh-Jensen (1998)). Galium mollugo from control areas (-r-h, δ15N = -0.94 ‰) was used as a 
reference plant (δ15Nref) for all calculations. 

(a) %Ndfa +r+h +r-h -r+h -r-h 
ant 76.38 73.31 75.77 85.72 
dor 155.01 85.37 n.a. n.a. 
lot n.a. 71.98 63.16 73.39 
tri n.a. n.a. n.a. 63.45 
(b) B value [‰]     
ant -2.80 -2.90 -2.60 -2.80 
dor -2.66 -2.70 n.a. n.a. 
lot n.a. -2.80 -3.00 -3.00 
tri n.a. n.a. n.a. -1.90 
Restoration treatments: with (+) or without (-) topsoil removal (r) and hay transfer (h) 
Target legume species: ant = Anthyllis vulneraria, dor = Dorycnium germanicum and mesic legume species: lot 
= Lotus corniculatus, tri = Trifolium pratense 
n.a. = species not available in this treatment 

 

Statistical analysis 

The restoration project has a two factor, full-factorial design: an abiotic factor, topsoil 

removal (r) with two levels (removal and no removal), and a biotic factor, hay transfer (h) 

with two levels (hay transfer and no hay transfer), giving four restoration treatments (+r+h, 

+r-h, -r+h and -r-h). The block effect was negligible for most subsets of data. We used all data 

together only for one analysis (for all species over all restoration treatments), all other 

analyses were performed using subsets of data separated either by functional identity (FI), 

species identity (SI), neighborhood (NH) or restoration treatment. 

Before statistical analyses, all data were tested for homogeneity of variance (Levene’s test) 

and normality (Kolmogorov-Smirnov test, Q-Q-Plots), and log transformed if assumptions 

were not met. An overall ANOVA (Type III Sum of - Table 4) was performed with topsoil 

removal (r), and hay transfer (h) as fixed factors. We performed one ANOVA for the whole 

dataset (all species in all restoration treatments together, n of all samples = 293, Table 4a), 

two separate ANOVA for effects of topsoil removal and hay transfer on legume species (n = 

126) and non-legume species (n = 167), respectively (Table 4b) and one separate ANOVA for 

each species (A. vulneraria: n = 46, D. germanicum: n = 18, H. nummularium: n = 85, L. 

corniculatus: n = 47, T. pratense: n = 15, G. mollugo: n = 82; Table 4c). 

Four separate ANOVA (sequential Type I Sum of Squares - to test effects of single factors 

which were interrelated with each other) were performed to test (within a single restoration 
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treatment) for effects of functional (FI) or species identity (SI) as well as the neighborhood 

effect (NH; only for non-legume species). We used FI, SI and NH as fixed factors in the 

analyses for each of the four restoration treatments (-r-h: n = 79, -r+h: n = 59, +r-h: n = 82, 

+r+h: n = 73; Table 5). We used least-significant-difference test (LSD) as a post-hoc test 

when significant differences were found between treatments. 

 

Soil and root data (unlike the single plant data), were pooled per transect (one transect of the 

same restoration treatment per block, giving n = 2). When significant differences between 

treatments were found, we used LSD post-hoc tests to distinguish where the differences were. 
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RESULTS 

Restoration treatment effects on soil  

Hay transfer had no effect on soil nutrient parameters (except for NH4
+:NO3

--ratios: p = 

0.014) but topsoil removal was very effective in reducing plant available nutrients (Table 1a, 

Fig. 1): topsoil removal reduced both mineral N-forms (Nmin: NH4
+ and NO3

-), total N- and P-

concentrations strongly by 60-70%, respectively (p ≤ 0.020). The Nmin:N [%]-ratios were 

relatively stable over the different treatments (p = 0.162; Fig. 1) but the ratio of ammonium to 

nitrate (NH4
+: NO3

-) was significantly higher in topsoil removal areas than in non-removal 

areas (p < 0.001) and this corresponded to extremely low nitrate concentrations after topsoil 

removal (Fig. 1). Topsoil removal reduced δ15N values in bulk soil on average by 1.28 ‰ 

compared to non-removal areas (+r: 3.23 ‰ < -r: 4.51 ‰, p = 0.005). 

 

Figure 1 Soil properties of the four restoration 
treatments in 2008 (see also Table 1a); parameters 
include Ntotal and Ptotal (concentrations [%] 
measured in bulk soil; fraction <2 mm) and mineral 
N-forms (ammonium (NH4

+), nitrate (NO3
-) and 

both together (Nmin) measured in soil solution). 
Values are means ± 1 standard deviation. 
Restoration treatments are: with topsoil removal 
and hay transfer (+r+h, white bars), with topsoil 
removal and without hay transfer (+r-h, white 
striped bars), without topsoil removal and with hay 
transfer (-r+h, gray bars), without topsoil removal 
and without hay transfer (-r-h, gray striped bars). 
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Restoration treatment effects on roots 

All unspecific root samples contained some nodulated legume roots. Root samples did not 

vary in their N-concentration between restoration treatments (p = 0.368; Fig. 2) but the 

δ15Nroot values were significantly lower (p = 0.016) in topsoil removal areas than in non-

removal areas. After standardizing δ15Nroot against bulk soil δ15Nsoil (∆δ15Nroot, right-hand 

column in Fig. 2), this significant difference disappeared (p = 0.069). All root samples were 

heavily infected with mycorrhizal fungi (50 - 95% of the root tissue per sample, data not 

shown). We found vesicles, arbuscules, internal and external hyphae, which are typical 

structures denoting vesicular-arbuscular mycorrhiza (VAM). Other kinds of fungal material 

were also visible; some of the significantly thicker, brownish stained material may have been 

ectomycorrhizial fungi components which often occur in symbiosis with Helianthemum 

nummularium (Harley & Harley, 1987). 

 

Restoration treatment effects on leaves  

Restoration treatments affected N-concentration as well as δ15N and ∆δ15N values very 

significantly in leaf tissues of the six plant species sampled (Table 4a, Figs. 2 & 3). A 

significant interaction of topsoil removal and hay transfer (r*h) was detected for N-

concentration and for ∆δ15N (standardized with δ15Nsoil) but not for δ15N values (Table 4a).   

When data were split into subsets based on functional identity (FI; legume or non-legume 

species) and then tested for effects of restoration treatments, we also found very significant 

effects of topsoil removal and hay transfer on N-dynamics (Table 4b), but no interaction 

(r*h).  

 

When data were split into subsets based on species identity (SI), topsoil removal and hay 

transfer affected N-parameters of most species significantly (Table 4c, Fig. 2). N-concen-

tration increased with decreasing restoration effort (≙ decreasing environmental severity; 

from topsoil removal with hay transfer areas (+r+h) to non-removal and no hay transfer areas 

(-r-h)) for Anthyllis vulneraria, H. nummularium and even stronger for the mesic forb Galium 

mollugo. In both non-legume species (H. nummularium, G. mollugo) the increase in N-

concentration was accompanied by an increase in δ15Nfoliar (values get less negative, Fig. 2). 

Changes in δ15Nnon-legumes were even more pronounced than changes in N-concentration and 
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reflected restoration effort very well. The difference in δ15N and N-concentration values bet-

ween +r and -r areas were bigger for G. mollugo than for H. nummularium. 

 

Figure 2 N-concentration [%], δ15N [‰] and ∆δ15N [‰] values in plant leaves of all six species (three target 
calcareous grassland and three mesic species) and in root samples (species not identified) in the four restoration 
treatments. Values are means ± 1 standard deviation (plant: n = 6 – 42, except for D. germanicum in +r-h 
treatment: n = 2; root: n = 2). Data (and thus bars) for some species in some treatments are missing, as the 
species was not growing in that treatment (see Table 2). Restoration treatments are: with topsoil removal and hay 
transfer (+r+h, white bars), with topsoil removal and without hay transfer (+r-h, white striped bars), without 
topsoil removal and with hay transfer (-r+h, gray bars), without topsoil removal and without hay transfer (-r-h, 
gray striped bars). Target species: ant = Anthyllis vulneraria, dor = Dorycnium germanicum, hel = 
Helianthemum nummularium (two legume and one non-legume species, respectively) and mesic species: lot = 
Lotus corniculatus, tri = Trifolium pratense and gal = Galium mollugo (two legume and one non-legume species, 
respectively).
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Table 4 ANOVA results (Type III Sum of Squares) for effects of topsoil removal (r), hay transfer (h) and their 
interaction effect (r*h) on N-parameters (N-concentration [%], δ15N and ∆δ15N [‰]) in plant leaves for (a) all 
data analyzed together, (b) data split into functional identities (legumes versus non-legumes) and then tested for 
restoration treatment effects and (c) data analyzed per species and tested for effects of restoration treatments. 

    N [%]  δ15N  ∆δ15N 
 Factor d.f.  F P  F P  F P 
(a) All species          
 r 1  65.025 < 0.001  194.035 < 0.001  66.938 < 0.001 
 h 1  61.378 < 0.001  17.477 < 0.001  25.295 < 0.001 
 r*h 1  15.664 < 0.001  0.018 0.892  6.105 0.014 
(b) Functional identity          
non- r 1  34.737 < 0.001  783.733 < 0.001  443.693 < 0.001 
leg. h 1  57.936 < 0.001  77.090 < 0.001  96.111 < 0.001 
 r*h 1  25.901 < 0.001  0.110 0.740  9.907 0.002 
leg. r 1  57.228 < 0.001  12.082 0.001  180.230 < 0.001 
 h 1  29.693 < 0.001  4.028 0.047  20.275 < 0.001 
 r*h 1  0.631 0.428  0.113 0.737  51.863 < 0.001 
(c) Species identity          
ant r 1  16.379 < 0.001  0.001 0.976  172.441 < 0.001 
 h 1  8.646 0.005  3.320 0.076  0.015 0.904 
 r*h 1  0.434 0.514  2.746 0.105  49.048 < 0.001 
dor r 0          
 h 1  0.391 0.541  0.383 0.544  7.133 0.017 
 r*h 0          
hel r 1  4.501 0.037  74.492 < 0.001  44.033 < 0.001 
 h 1  15.994 < 0.001  32.447 < 0.001  74.982 < 0.001 
 r*h 0          
lot r 1  2.192 0.146  1.944 0.170  250.837 < 0.001 
 h 1  0.800 0.376  2.974 0.092  19.570 < 0.001 
 r*h 0          

tri 
only in  
-r-h 

n.a. 
 

  
 

  
 

  

gal r 1  40.278 < 0.001  203.595 < 0.001  70.726 < 0.001 
 h 1  49.685 < 0.001  11.124 0.001  4.214 0.043 
 r*h 0          

Target species: ant = Anthyllis vulneraria, dor = Dorycnium germanicum, hel = Helianthemum nummularium 
and mesic species: lot = Lotus corniculatus, tri = Trifolium pratense (not tested because it only occurred in one 
treatment), gal = Galium mollugo 
 

Standardization of δ15Nfoliar with δ15Nsoil (∆δ15Nfoliar) for single species (Fig. 2, right-hand 

column) revealed a pronounced increase in ∆δ15N (values got less negative) with decreasing 

restoration effort for the non-legume species whereas the ∆δ15N value decreased (got more 

negative) for all legume species. Mean ∆δ15N values were in the same range for all 

herbaceous species (-5 to -7.5 ‰) whereas H. nummularium, a small shrub, showed higher 

deviations from δ15Nsoil.  
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When data were tested for effects of functional identity (FI) or species identity (SI) within 

each restoration treatment (data split into four subsets; see Table 5) both FI and SI affected all 

foliar N-parameters. Effects were stronger in the topsoil removal areas than in non-removal 

areas. 

 

Table 5: ANOVA (sequential Type I) results for effects of functional (FI) and species identity (SI) as well as 
effect of neighborhood (NH; legume-neighbor or not for non-legume species) on N-parameters for each 
restoration treatment separately (with (+) or without (-) topsoil removal (r) and hay transfer (h)). 

 

 

Nitrogen-fixation in legumes and N-facilitation along an environmental stress gradient 

The legume species derived on average approximately 82% of their N from atmosphere 

(Ndfa, Table 3), which corresponds well with their constant δ15N values in all restoration 

treatments (around -2‰, Fig. 2 & 3). These values indicate high levels of N2-fixation with 

low amounts of N derived from the soil, thus the legume species studied would be able to 

provide a source of atmospherically fixed N for non-legume neighbors. In our study, δ15N 

values in both non-legume species growing in topsoil removal treatments were much more 

negative than the δ15N signals of the legumes. 

 

    N [%]  δ15N  ∆δ15N 
 Factor d.f.  F P  F P  F P 
-r-h FI  1  14.944 < 0.001  52.241 < 0.001  52.241 < 0.001 

 SI 2  8.169 0.001  7.556 0.001  7.556 0.001 
 NH 2  0.200 0.819  1.416 0.249  1.416 0.249 

-r+h FI  1  80.073 < 0.001  1.257 0.267  1.257 0.267 
 SI 2  2.542 0.088  27.872 < 0.001  27.872 < 0.001 
 NH 1  5.755 0.020  0.484 0.490  0.484 0.490 

+r-h FI  1  79.097 < 0.001  465.050 < 0.001  465.050 < 0.001 
 SI 3  8.431 < 0.001  6.559 0.001  6.559 0.001 
 NH 4  4.745 0.002  2.334 0.064  2.334 0.064 

+r+h FI  1  37.154 < 0.001  687.014 < 0.001  687.014 < 0.001 
 SI 1  5.650 0.020  0.954 0.332  0.954 0.332 
 NH 2  8.225 0.001  2.497 0.090  2.497 0.090 
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Figure 3 The relationship between 
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significant differences occurred. It was possible to compare legume neighbor effects on 

mollugo (but not on H. nummularium)

control areas (-r-h) no differences occurred between 

neighbor of L. corniculatus whereas in topsoil removal areas (+r

L. corniculatus had higher δ15

plants (Fig. 4). The N-concentration was not a

 

The relationship between δ15N values and N-concentration [%] in leaves of the six plant species 
separated into panels for each restoration treatment. Restoration treatments are: with topsoil removal and hay 
transfer (+r+h), with topsoil removal and without hay transfer (+r-h), without topsoil removal and with hay 

r+h), without topsoil removal and without hay transfer (-r-h). Legume species have
legume species have open symbols; target species have black symbols: Anthyllis vulneraria

Helianthemum nummularium (black-open: ○) and mesic, non
 (●), Trifolium pratense (▼) and Galium mollugo 

symbol represents one replicate per species and restoration treatment (for mean values per species see Fig. 2). 
Neighborhood effects of legumes on non-legume species are shown in Figure 4. 

legume control plants seldom differed from the legume-neighbor plants in 

ently in N-concentration values but never in both N

simultaneously (Table 5, Fig. 4). The N-concentration was higher in control plants if 

significant differences occurred. It was possible to compare legume neighbor effects on 

H. nummularium) between topsoil removal and non

h) no differences occurred between G. mollugo as control plant or as 

whereas in topsoil removal areas (+r-h) G. mollugo
15N values (closer to that of the legume species) than control 

concentration was not affected by the legume neighbor.

 Results 

127 

 

concentration [%] in leaves of the six plant species 
storation treatments are: with topsoil removal and hay 

h), without topsoil removal and with hay 
h). Legume species have closed symbols, 

Anthyllis vulneraria (●) and 
) and mesic, non-target species have 

 (gray-open: ○). Every 
and restoration treatment (for mean values per species see Fig. 2). 

neighbor plants in δ15N and a 

concentration values but never in both N-parameters 

concentration was higher in control plants if 

significant differences occurred. It was possible to compare legume neighbor effects on G. 

between topsoil removal and non-removal areas. In 

as control plant or as 

G. mollugo as neighbor of 

N values (closer to that of the legume species) than control 

ffected by the legume neighbor. 



Results  Manuscript 3   

128 
 

 

Figure 4 The relationship between δ15N and N-concentration [%] in leaves of the two non-legume species (hel: 
Helianthemum nummularium and gal: Galium mollugo) as affected by the presence of two different legume 
species in the neighborhood. The restoration treatment panels are the same as in Figure 4; values are means with 
standard error of the mean. H. nummularium (black type and symbols) was collected as a neighbor of the 
legumes Anthyllis vulneraria (●) or Dorycnium germanicum (▼) and as a control (○) without legume neighbors.  
Similarly, G. mollugo (gray type and symbols) was collected as a neighbor of the legumes Lotus corniculatus (●) 
or Trifolium pratense (▼) and as control (○) without legume neighbors. The number of samples per species (see 
Table 2) varied with species and treatment but in general n = 8 - 16, (only H. nummularium as neighbor of D. 
germanicum in +r-h had n = 2). Significant effects of legume neighborhood on δ15N and N-concentration within 
each restoration treatment are shown as p < 0.05 = *, p < 0.001 = **, n.s. = not significant, p-values from LSD-
tests. 

 

Relationship between environmental factors and foliar 15N-parameters 

There were strong relationships between 15N-parameters in leaves of non-legume species 

(δ15Nnon-legumes and ∆δ15Nnon-legumes) and biotic (see Table 1b) and abiotic (see Fig. 1) 

parameters from the restoration sites (Fig. 5). Mean values of 15N-paramters for G. mollugo 

and H. nummularium showed a close link to target species richness (richness of species 

adapted to calcareous grasslands) but not with total species richness per restoration treatment.  

Also, 15N-paramters showed close links to soil NH4
+:NO3

--ratios whereas the δ15N signal of 

the soil was well reflected only in 15N-parameters of G. mollugo but not in those of H. 

nummularium. Standardization of δ15Nfoliar with δ15Nsoil (∆δ15N) did not ameliorate the 

differences in δ15N values of non-legume species along the environmental nutrient gradient. 
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Figure 5 Relationship between foliar δ15N (left-hand column) and ∆δ15N (δ15Nfoliar minus δ15Nsoil; right-hand 
column) values and biotic and abiotic parameters of the restoration areas. Biotic parameters include total species 
richness and total target species richness (adapted to calcareous grasslands) per restoration treatment; abiotic 
parameters (bulk soil) include N-concentration, δ15Nsoil values and NH4

+:NO3
--ratios for all four restoration 

treatments. Values are means ± 1 standard deviation, black symbols (●) represent H. nummularium, gray 
symbols (●) G. mollugo; each symbol is for the foliar δ15N and ∆δ15N value of a species (without separation in 
different neighborhoods) in a given biotic or abiotic environment in one restoration treatment. 
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DISCUSSION 

Applicability of the δ15N natural abundance method to study N-facilitation in nutrient-poor 

grasslands 

Although the δ15N natural abundance method has been successfully used to assess facilitation 

between legumes and their neighbors in mesic temperate experimental grasslands (Mulder et 

al., 2002; Temperton et al., 2007), it has been barely tested in nutrient-poor grasslands, such 

as calcareous grasslands in Central Europe.  

Facilitation studies that have successfully used the δ15N method generally also had legume-

free control communities, but such conditions are very hard to find in semi-natural grasslands. 

However, Jacot et al. (2005) found that neighboring legume species generally affected the 

δ15N signals of non-legume neighbors in different semi-natural grasslands in the Alps. Bai et 

al. (2009) found clear convergence of δ15N signals of non-legume shrubs towards that of 

neighboring N2-fixing species with decreasing distance between non-fixing and fixing species 

in natural subtropical savannah communities.  

All these studies have in common, that the δ15N values of non-legume species are higher than 

those of their legume neighbors, whereas in our study, we generally found that δ15N signals in 

the non-legumes were much more depleted in 15N (had more negative values) than in the 

legumes. Decreases in foliar N-parameters are often related to decreasing N-availability in the 

substrate, lower nitrification and mineralization rates and thus an overall more closed N-cycle 

(e.g. Pardo et al., 2006; Kahmen et al., 2008). Interestingly, δ15N values of the non-fixing 

target species at our calcareous grassland restoration site corresponded well with values found 

for non-legume species in other (acidic) low-nutrient ecosystems: Helianthemum 

nummularium ranged from -9.6 to -3.2‰, which corresponds well with negative δ15N values 

found in Dutch sand dunes (van der Heijden et al., 2006). 

Beyschlag et al. (2009) studied N-facilitation in two different successional states (as surroga-

tes for environmental severity) of an acidic dry grassland and found no clear positive legume 

effects on neighboring non-legume species (with negative δ15N values), either in natural 

communities or in an additional legume removal experiment (although data showed a trend 

for positive legume effects on biomass and δ15N values). The δ15N method (although not 

explicitly so-stated by Shearer & Kohl (1986) or Robinson (2001)), may require that the δ15N 

signal of the non-legume neighbor be more positive than that of the N2-fixing legume (with 
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control plants having the most positive 15N signals). Our work indicates that further work on 

N-facilitation by legumes is needed to assess, under what range of soil nutrient conditions the 

δ15N natural abundance method can be effectively used to study this kind of plant-plant 

interaction in N-limited systems. 

 

Testing the stress gradient hypothesis: Facilitation along an environmental stress gradient as 

provided by four different restoration treatments  

In accordance with Schulze et al. (1994), who found that differences in δ15N values between 

different plant life forms disappear with increasing N-availability in the substrate, we found a 

gradual convergence of δ15N signals in non-legume and legume species when moving from 

the most restoration intensive sites (topsoil removal and hay transfer, +r+h) to control sites (-

r-h, Fig. 3). Decreasing δ15N values with increasing environmental severity have also been 

found in grasslands in the Alps where the δ15N value in plants decreased with increasing 

altitude (Huber et al. (2007) and Jacot et al. (2005)). Jacot et al. (2005) found an increase in 

the difference between δ15N values of legume species and non-legume species with increasing 

altitude and thus evidence for the applicability of the δ15N natural abundance method to test 

the stress gradient hypothesis in this habitat (Bertness & Callaway, 1994). In our lowland 

calcareous grassland restoration site and in a dry acidic grassland (Beyschlag et al. 2009), 

however, abiotic conditions, as well as species’ identity, seem to have had a much stronger 

effect on N-characteristics of the plant species than the biotic interactions with neighboring 

legumes. 

It was not possible to clearly assess the strength of facilitative interactions at our site maybe 

due to very depleted (negative) δ15N values in non-legume species but also due to the general 

lack of control non-legume plants at a large enough distance (>1 m) from a legume species at 

this restoration site. For this reason, the only clear evidence for legume facilitation was found 

in G. mollugo, which had an increased amount of leaf nitrogen originating from neighboring 

Lotus corniculatus (identified using the δ15N signal) when N-limitation in the substrate 

increased (areas without hay transfer in Fig. 4). There was no clear evidence for N derived 

from legume neighbors, however, in the other non-legume species H. nummularium, which 

possibly profited more from N-sources provided by mycorrhizal fungi (see below for 

discussion).  
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Impact of edaphic and biotic factors on δ15Nfoliar 

Soil N-availability, mycorrhizal status, plant species identity and the surrounding species 

richness, N-source as well as the life-form of the species under investigation strongly affect 

N-concentration and δ15N signal in non-fixing plant species (e.g. Schulze et al., 1994; 

Högberg, 1997; Pardo et al., 2006; Temperton et al., 2007). These factors seem to have been 

more important for determining the δ15N signal of non-legume plants than effects of 

neighboring legume species in our calcareous grassland site. Differentiating mechanistically 

between the exact role of different factors in affecting the δ15N signal of plants is usually not 

possible in natural communities, and requires studies either under controlled conditions (e.g. 

Paynel & Cliquet, 2003) or with enriched stable isotope tracers in the field (Hogh-Jensen, 

2006; Gylfadottir et al., 2007; Kahmen et al., 2008). A number of studies using the δ15N 

natural abundance method (alone or combined with enriched tracers), however, provide some 

key pointers which help to interpret how our results (δ15N signals on calcareous grassland 

restoration sites) correlated with soil nutrient status. 

Low foliar δ15N values generally correspond to low N-availability (e.g. Pardo et al., 2006; 

Kahmen et al., 2008). Our results confirm this general relationship: we found lowest mean 

δ15N values in H. nummularium (-7.7 ‰) and G. mollugo (-5.3 ‰, Fig. 2 & 3) in topsoil 

removal areas and significantly higher values in non-removal areas. The most depleted δ15N 

values were in the same range as in nutrient-poor acidic grasslands on sea or inland dunes 

(van der Heijden et al., 2006; Beyschlag et al., 2009) but significantly lower than results 

reported from mesic (natural and experimental) grassland systems which normally report 

positive δ15N values (+2 to +6 ‰) for non-legume herbaceous species (Mulder et al., 2002; 

Spehn et al., 2002; Temperton et al., 2007; Kahmen et al., 2008). Kahmen et al. (2008) 

investigated plant ∆δ15N (i.e. plant values standardized by soil 15N background values) in 

relation to N-uptake preferences from the soil and found decreasing ∆δ15Nfoliar values with 

increasing proportion of NH4
+ uptake (i.e. high NH4

+: NO3
--ratios). Our results confirmed this 

trend for the two non-legume species studied, and in our case relationships between 

NH4
+:NO3

- and foliar δ15N values were even stronger than with the standardized ∆δ15N values 

in both species (Fig. 5)). The opposite relationship, however, was found by Miller and 

Bowman (2002) - probably because the analysis of soil Nmin provides only a snapshot of soil 

N-dynamics such that correlations between δ15Nfoliar and soil Nmin need testing over longer 

periods of the growing season. 
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Decreasing δ15Nfoliar in G. mollugo reflected increasing NH4
+:NO3

--ratios in the soil at the 

restoration sites (and to a lesser extent in H. nummularium, too; Fig. 5), which suggests that 

these species either preferably took up larger proportions of severely 15N-depleted ammonium 

or that, with a decreasing amount of nitrate in the substrate (Fig. 1), other N-acquisition 

strategies (e.g. via mycorrhizal symbiosis) became more important. Weak links between 

abiotic/biotic parameters and 15N-parameters (Fig. 5) as well as lower ∆δ15N values (Fig. 2) in 

H. nummularium than in all other species suggest effects of other factors additional to the 

impact of the abiotic soil environment. We hypothesize that the differences found between the 

two non-legume species may be attributable to their different mycorrhizal symbioses and life-

histories. H. nummularium has two features normally connected to low δ15N values: (a) it is a 

perennial shrub with woody parts and (b) forms a symbiosis with ectomycorrhizal fungi 

(ECM); whereas the forb Galium mollugo is associated with arbuscular mycorrhiza fungi 

(AM) (Harley & Harley, 1987). It is known that δ15N values of non-fixing plants decline with 

longevity and woodiness of the species (Virginia & Delwiche, 1982), and that ECM normally 

decreases δ15Nfoliar values more strongly than AM (Michelsen et al., 1998; Spriggs et al., 

2003). 

 

Conclusions: The potential for using δ15N signals in plants as indicators of restoration 

success in nutrient-poor grassland systems 

Both 15N-parameters (δ15N and ∆δ15N values) in leaves of calcareous grassland species at our 

restoration site did not provide clear information on the strength of facilitation but rather 

seemed to provide important integrative information about the N-dynamics in the soil (as well 

as potential effects of mycorrhizal symbioses). The most depleted values were found in the 

topsoil removal treatments and the most enriched values in the control treatments without soil 

removal and hay transfer, thus δ15N values became more depleted with increasing 

environmental severity and higher restoration effort. Other studies in a range of habitats have 

also shown that δ15N in plants can be a useful overall integrator of changing N-dynamics in 

the soil, and in our restoration experiment it seems that the 15N signal derived from soil N-

dynamics was much stronger than that for N-facilitation from legume neighbors. This finding 

can be useful for the assessment of restoration success in formerly eutrophic habitats in need 

of nutrient reduction (with high/positive δ15N values) to restore them to high-diversity, low 

nutrient systems (with low/negative δ15N values). Thus using δ15N signals of plants that 
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integrate N-dynamics over time in combination with traditional soil nutrient analyses could 

provide a relatively simple indicator of N-dynamics of the system. The congruence between 

target species richness and δ15N values in non-legume species corroborate this conclusion. 

High atmospheric N deposition and overloading of soils with N and P fertilisers are common 

problems related to degradation and species loss in Central and Northern European habitats 

(Verhagen et al., 2001; Walker et al., 2004; Verhagen & van Diggelen, 2006). As such, 

analyzing δ15N in plants (in combination with assessing vegetation changes after restoration), 

could provide a relatively simple tool to assess restoration success (reducing soil N) in 

systems that are stuck in an undesirable alternative stable state (Hobbs & Norton, 2004). 

 

“IMPLICATIONS FOR PRACTICE”-BOX 

• Increasing restoration effort (and thus environmental severity) in this calcareous 

grassland restoration project resulted in increased calcareous grassland species 

richness, which corresponded to decreasing δ15N values of different non-legume 

species. 

• Negative foliar δ15N values of non-legume species provided evidence for increasing 

N-limitation with increasing restoration effort in our study and hence can be used for 

the evaluation of restoration success during the creation of low-productive grasslands. 

Generally, higher N-limitation is related to a more closed N-cycle which corresponds 

to more negative δ15N values. 

• Foliar δ15N values of non-legume species (in combination with vegetation relevés) 

could be used as an indicator of relative restoration success: foliar δ15N values in such 

calcareous grasslands could provide integrated information about the N-status of the 

soil, and hence, in this case, restoration success (when restoring a system back from a 

“high N with medium diversity system” to a “low N with high diversity system”). 
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ABSTRACT 

Long-term biodiversity field experiments and studies in mesic pastures have revealed positive 

effects of species richness on productivity and resource use efficiency but detailed 

information about mechanisms of interaction processes are rare. Thus, we performed a 15N-

enriched tracer study (three months in a climate chamber) to investigate N-dynamics between 

individuals within differently composed communities of mesic grassland species. We 

investigated how species richness and identity (a grass, forb and legume species) affect N-

dynamics and if it is possible to simulate field-effects within a microcosm study. We treated 

half of the microcosms with “simulated grazing” to investigate how grazing, a common grass-

land management regime, affects plant-plant interactions. 

Higher species richness, but not legume presence, increased short-term N-transfer form 15N-

labelled donor to non-labelled receiver individuals. Legume presence increased productivity 

(NPind) and nitrogen use efficiency (NUE) of receiver individuals. Results indicate N-

facilitation via N-sparing but also the occurrence of short-term bi-directional N-transfer. 

Species identity had significant effects on the outcome of interactions: the grass profited more 

from a legume neighbour (higher NPind, NUE) than the forb, confirming a superior N-

acquisition strategy of grasses, which has been found in field experiments. Simulated grazing 

affected N-transfer differently depending on community composition: N-transfer between 

individuals increased in monocultures but decreased in mixtures. 

In conclusion, we were able to reproduce field-effects in short-term microcosm experiments, 

which are thus useful to investigate and predict early-successional plant-plant interactions in 

grassland habitats. Effects of simulated grazing on N-dynamics within the communities were 

unexpected and are worth further investigations for the emerging field of plant behaviour and 

kin recognition. 

 

Keywords 

Biodiversity, species composition, herbivory, 15N enriched tracer, mesic grassland, Trifolium 

pratense, Achillea millefolium, Phleum pratense 
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INTRODUCTION 

Diversity of primary producers plays a major role for ecosystem functions like stability, 

productivity or resource use efficiency (also of higher trophic levels) (Hooper et al. 2005; 

Balvanera et al. 2006; van Ruijven and Berendse 2009). However, we are still lacking 

knowledge about the mechanisms how plants interact under different biotic (species richness, 

composition and assembly) or abiotic (edaphic and climatic conditions, management effects) 

conditions. Large-scale grassland biodiversity experiments revealed positive relationships bet-

ween species richness and productivity, resource use efficiency and stability (Tilman et al. 

1996; Hector et al. 1999; Roscher et al. 2005; Isbell et al. 2009) although the strength of 

relationships depends on the abiotic conditions (Grime 1998; Tylianakis et al. 2008; Ma et al. 

2010). The insurance hypothesis (McNaughton 1977; Naeem et al. 1994; Yachi and Loreau 

1999) summarizes effects of species diversity on stability against disturbances or species 

invasion and the niche complementarity theory (Berendse 1979; Tilman 1997; Loreau and 

Hector 2001) summarizes the major explanations for the relationships between biodiversity 

and ecosystem functioning. Higher spatial and temporal resource complementarity between 

species for belowground or aboveground resources leads to more effective exploitation and 

thus higher productivity and stability of more diverse communities. Additionally, facilitation 

(positive plant-plant interactions) can have strong effects on community performance under 

resource limited conditions by expanding the realized niche of each species, thus enhancing 

biodiversity effects even farther (Bruno et al. 2003; Michalet et al. 2006; Brooker et al. 2008). 

But critical voices also exist, which question positive effects of biodiversity per se.  They 

relate the occurrence of such relationships to the inclusion of ecosystem drivers, such as 

highly productive species, within artificially assembled species pools in experiments; an 

effect, which is called sampling (or selection) effect (Aarssen 1997; Huston 1997; Leps et al. 

2001). Importance of manipulation treatments, including the sampling effect, often increases 

with decreasing spatial scale (Balvanera et al. 2006). The presence of legume species is often 

considered as a major component of the sampling effect because legumes can satisfy their 

own N-demand by biological nitrogen fixation of atmospheric N2 (BNF) and they often 

exhibit early, fast and tall growth with high biomass accumulation. On the other hand, legume 

species can act facilitative on productivity and nitrogen accumulation of neighbouring or 

subsequent species (N-facilitation) if nitrogen is the main limiting resource. N-facilitation can 

occur as N-sparing (McNeill and Wood 1990), N-transfer or rhizodeposition of N-rich 

compounds (Mulder et al. 2002; Spehn et al. 2002; Paynel and Cliquet 2003; Temperton et al. 

2007), decomposition of N-rich legume litter (Wang and Bakken 1997; Varvel and Wilhelm 
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2003) or, as if the legume acts a nurse plant, by providing a better microclimate for saplings 

of other species (Pugnaire and Luque 2001). But it is important to remark that N-transfer is a 

bidirectional process which can occur from an N2-fixing donor to a non-fixing receiver and, to 

a much lower extent, also in the opposite direction from a non-fixing donor to an N2-fixing 

receiver (Hogh-Jensen and Schjoerring 2000; Gylfadottir et al. 2007). Although the transfer 

from a non-fixing donor might be strongly reduced or is even totally absent under severe N-

limitation (Paynel and Cliquet 2003). 

Mulder et al. (2002) and Temperton et al. (2007) successfully used the δ15N natural 

abundance method to highlight effects of legume species on neighbouring non-legume 

species. The δ15N natural abundance method uses the ratio of the heavier over the lighter 

stable isotope of nitrogen (15N/14N) of a sample and a standard (air) to gain information about 

the N-source of a plant and the N-dynamics in a system (Shearer and Kohl 1986; Handley and 

Raven 1992). The δ15N natural abundance signal acts as an integrator of the N-dynamics in a 

system (Robinson 2001) and because of its integrative character, a separation of different 

nitrogen sources is nearly impossible (except from biological nitrogen fixation of atmospheric 

N2). 
15N-tracer studies, which use an external, 15N-enriched nitrogen component to follow the 

path of nitrogen through a system (McNeill et al. 1997; Hertenberger and Wanek 2004), allow 

assessing different N contributions to the N-status of a plant species. The use of 15N-tracers, 

applied to the soil, reveal uptake preferences (of N-forms) in different grassland species 

(Weigelt et al. 2005; Kahmen et al. 2008) or agricultural species (Nasholm et al. 2000). 15N-

tracers, applied directly to the plant, provide evidence for N-transfer between species (Hogh-

Jensen and Schjoerring 2000; Gylfadottir et al. 2007). However, little information is available 

about interaction processes, N-transfer and the competitive outcome between legume (N-

donor) and different non-legume species (N-receiver) in systems with more than two species 

and under different management regimes. In respect to the management regime, we know that 

defoliation, e.g. via grazing, can enhance total biomass production and N-concentration in 

different grassland species (Sanford et al. 1995; Ayres et al. 2007), change the competitive 

outcome between species (Barbosa et al. 2009; Rose et al. 2009) and affect community 

assembly (Olofsson and Shams 2007). 

With this study, we aim to resolve effects of community composition (species richness and 

species identity) on plant-plant interactions, especially on belowground N-transfer between 

individuals, and how these interactions are affected by a common grassland management 

(simulated grazing). In addition, we explore the potential to scale up from microcosms to field 
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experiments. To do this, we conducted a three months microcosm experiment with three 

different species richness levels, different community compositions and a simulated grazing 

treatment under controlled environmental conditions in a climate chamber. We used a pulse-

chase stable isotope label approach, whereby a 15N-enriched tracer (the pulse) was added to 

one individual in the system, which was then tracked (chased) in neighbouring individuals. 

This enabled us to investigate N-transfer from a donor to one or more receiver species, with 

either a legume, a non-legume forb or a grass species as donor, and varying receiver species 

composition. We investigated the effects of the different treatments mainly on individual level 

to answer the following hypotheses: 

(i) N-transfer will be higher from an N-fixing donor to a non-fixing receiver than 

between a non-fixing donor-receiver pair. 

(ii)  N-transfer will be higher in mixtures than in monocultures because of higher niche 

complementarity between different species (as observed in the field). 

(iii)  Species-specific uptake of transferred N will be modulated by the species 

composition of the community. 

(iv) N-transfer will increase in response to simulated grazing because of enhanced 

rhizodeposition following simulated grazing. 
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MATERIALS AND METHODS 

Experimental design  

The experiment was conducted from June to August 2008 in a climate chamber under 

simulated Central European summer conditions and lasted three month (Fig. 1). Light regime 

was 16/8 hours (light/dark) with twilight-phases of 30 minutes each in the morning and 

evening. Mean light intensity (measured as photosynthetically active photon flux density, 

PPFD) above the vegetation canopy was 676 ± 36 µmol/m²/s (± 1 SE); recorded once with a 

LI-1400 Datalogger and light sensor (LI-COR Bioscience, Lincoln, USA). Temperature 

regime of 25/15°C (day/night) and air humidity (~ 60%) were constant during the course of 

the experiment. 

As substrate, we used a mixture of washed sand and agricultural soil from a nearby field (1:1, 

v/v), sieved with a Retsch sieve (pore size of < 2 mm) to homogenize the substrate and ex-

clude large organic compounds and stones (Retsch GmbH, Haan, Germany). The substrate 

had pore sizes < 2 mm and total element concentrations of N [%] 0.064 % ± 0.002, C [%] 

0.547 ± 0.034 (mean values ± 1 SE) and thus a C:N-ratio of ~ 8.6. We used 1.5 l square pots 

for experimental plant communities (= microcosms). Microcosms were placed in a random 

distribution on six movable tables – microcosms (on tables) and tables (in the chamber) were 

rotated weekly to prevent confounding block/chamber or edge effects. Plants were watered 

manually with a mixture of rain and tap water every second day. 

Main focus of the experiment was to follow the path of nitrogen from donor to receiver 

individuals and how species composition, species identity and an applied treatment (simulated 

grazing) affect N-transfer from donor to receiver individuals. For the experimental plant 

communities, we used three species from three functional groups and grew them in three 

species richness level (Fig. 1). Species used were: Trifolium pratense L. (tri; N2-fixing forb, 

hereafter: legume), Achillea millefolium L. (ach; non-fixing forb, hereafter: forb) and Phleum 

pratense L. (phl; grass) (Oberdorfer 2001); to avoid confusion between the legume and the 

grass species, we will refer to the genus name in the following. Species richness levels were: 

monocultures (mono), 2-species-mixtures (2-mix) and 3-species-mixtures (3-mix); Figure 1 

gives some examples of community compositions. 2-species-mixtures were available with and 

without the legume species as donor; whereas 3-species-mixtures always contained the 

legume species as donor. For each community we transplanted 5-6 seedlings of approximately 

2-4 cm height at the beginning of the experiment in a star-like fashion: 1 individual in the 
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centre of the microcosm (15N labelled donor) and 4-5 individuals (unlabelled neighbouring 

receivers) at the same distance to the central individual and to every neighbour around the 

donor individual (Fig. 1).  

 

 

Figure 1 Experimental design of the microcosm study; indicated are examples for community compositions in 
three species richness levels (monoculture, 2-species-mixture without and with a legume donor and 3-species-
mixture with a legume donor), species identity of donor and receiver individuals in the communities (Trifolium 
pratense L. (tri; legume), Achillea millefolium L. (ach; forb) and Phleum pratense L. (phl; grass)) with the 
number of replications and the time schedule for the experiment. It started in early June (03.06.2008) and ended 
with the harvest in the end of August (26.08.2008); 15N-labelling procedure on donor individuals (D) took place 
during the 6th weeks (09.-16.07.2008), followed by 3 weeks of tracer distribution from donor to receiver 
individuals (R) until application of simulated grazing of donor individuals in the 9th week (01.08.2008; with 
simulated grazing/cutting = +C, without = -C) and again a three-weeks time span to allow for an impact of 
simulated grazing on 15N-transfer. 

 

To identify N-transfer from donor to receiver individuals, we applied 1 ml of a 15N enriched 

label-solution (0.5 % (v/v) of 99 atom% 15N-enriched urea (Campro Scientific GmbH, Berlin, 

Germany) diluted in 2 ml Eppendorf vials® in deionised water) via the leaf to the donor 

individual based on the method described by McNeill et al. (1998). Leaf labelling was done 

during the 6th week of the experiment (Fig. 1). To facilitate uptake of the label-solution into 
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leaves of the donor, leaf tips (of one leaf for Trifolium and Achillea and of two leaves for 

Phleum) were cut and the upper 2-3 cm of the leaf/leaves were submerged for one week in the 

solution. Loss of the enriched solution by evaporation or transfer to non-target compartments 

(receivers, substrate) as well as dilution by irrigation water was prevented by carefully sealing 

the opening with the leaf/leaves in with a putty-like pressure-sensitive adhesive substance 

(Blue tack®). Receiver individuals were not labelled. Remains of the label-solution together 

with the labelled leaves were removed after one week. 

We applied the simulated grazing treatment in the 9th week (Fig. 1) by cutting the whole shoot 

biomass of the donor individual 0.5-1 cm above the substrate. Simulated grazing was applied 

to half of the microcosms; this treatment will be denoted ‘+C’ in the following. The remaining 

pots were not cut (control) and will be denoted ‘-C’. 

 

Response parameters 

To gain information on individual productivity, all harvesting activities were done separately 

for every individual per species per pot. Donor individuals from the simulated grazing 

treatment (+C) were cut and then oven-dried (at 60°C for 60 h) during the 9th week. Regrowth 

of the cut donor individuals was followed by measuring length and ground cover of regrown 

parts weekly, which were then removed and oven-dried. All parts of donor individuals were 

stored until final harvest, which took place at the end of August 2008 (Fig. 1). During the 

final harvest, remaining donor individuals from control communities (-C) and all receiver 

individuals were cut above the substrate and oven-dried. At the final harvest, we took an 

unspecific root sample (and oven-dried it) from every microcosm, because separation of roots 

on species level was not possible. Dry weight per individual was determined to gain 

aboveground net production of individuals (NPind [g]). NPind of the donor (including regrown 

parts for +C communities) and normally harvested receiver individuals was summed up for 

total community biomass per microcosm. 

For determination of N-dynamics between donors and receivers, the measurement of N-

parameters in samples was done separately for the unspecific root sample, the donor species 

and for each receiver species per microcosm. Receiver individuals were pooled per species 

per microcosm to obtain one samples per receiver species; we validated this way to conduct 

analyses of N-parameters by measuring individuals from a subset of microcosms separately 

(Table 1). 
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Table 1 Within species variation of separately measured receiver individuals per microcosm in a subset of 
communities; we measured these unpooled individuals to validate the use of pooled receiver individuals to gain 
information about N-dynamics in populations. Indicated are N-concentration [%], enrichment of 15N 
[atom%excess] and transfer of 15N from donor to receivers [%] (15N-transfer) for species richness levels 
monoculture, 2-species-mixture and 3-species-mixture of the species Trifolium pratense, Achillea millefolium 
and Phleum pratense. Values are means (from n individuals per microcosm per mixture) ± 1 standard deviation 
of the mean (SD). 

 receiver 
species 

n N [%] SD 15N 
[atom% 
excess] 

SD 15N-
transfer 
[%] 

SD 

monoculture         
 Trifolium 5 2.83 0.35 0.0025 0.0006 3.08 0.76 
 Achillea 5 1.04 0.15 0.1010 0.0034 3.03 1.01 
 Phleum 5 0.57 0.06 0.0181 0.0014 0.57 0.04 
2-species-mixture 
 Trifolium 1 2.74  0.0021  0.50  
 Achillea 4 0.90 0.09 0.0110 0.0012 2.66 0.29 
 Trifolium 1 2.81  0.0022  0.55  
 Phleum 4 0.93 0.10 0.0256 0.0146 6.42 3.67 
 Achillea 1 0.95  0.1451  0.47  
 Phleum 4 0.77 0.04 0.0733 0.0267 0.24 0.09 
 Phleum 1 1.07  0.0799  2.52  
 Achillea  0.92 0.02 0.0354 0.0153 1.12 0.48 
3-species-mixture 
 Trifolium 1 2.80  0.0029  1.25  
 Achillea 2 1.03 0.27 0.0144 0.0005 6.27 0.21 
 Phleum 2 1.31 0.07 0.0266 0.0042 11.63 1.85 
 Trifolium 1 2.99  0.0173  0.97  
 Phleum 2 1.21 0.08 0.0267 0.0071 1.50 0.40 
 Achillea 2 1.06 0.02 0.0130 0.0053 0.73 0.30 

 

For measurement of N-parameters, shoot and root samples were ground to fine powder using 

a Retsch ball mill MM 301 (Retsch GmbH, Haan, Germany) with stainless steel devices.  

Analyses of N-concentration [%] and of 15N-enrichment [atom % excess] was done with an 

ANCA-SL 2020 EA-IRMS (element analyser – isotope ratio mass spectrometer; SerCon Ltd. 

(formerly Europa & PDZ Ltd.), Crewe, UK). 15N-enrichment [atom % excess] was calculated 

from the isotopic composition (15N and 14N) in a sample: the occurrence of 15N-isotopes [atom 

%] in a sample minus the natural occurrence of 15N-isotopes [atom %] in the atmosphere, 

which is 0.3663 %, resulted in the value for 15N-enrichment [atom % excess]. For readability 

of results, we will use the shortened [at%ex] as unit for 15N-enrichment. We calculated the 

amount of 15N-transfer [%] from donors to receivers using the total 15N-enrichment [at%ex] of 

the donor (as 100 %) and the 15N-enrichment [at%ex] of receivers (as x % of enrichment of 

the donor) at the time of harvest. The 15N transfer [%] value was used to determine how much 

of 15N from label was transferred to receivers during the course of the experiment.  
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We inserted a decomposition standard near the edge of every pot to test if community 

composition or presence of a certain functional group had an effect on belowground 

decomposition. The standard consisted of a strip (1 x 5 cm, made from normal laboratory 

cellulose filter paper) which was fixed in a stainless steel grid to facilitate recovery at the end 

of the experiment. We estimated degradation of the decomposition standard [%] as a rough 

estimate for belowground turnover.  

We stained a subsample of randomly chosen fresh roots from 18 microcosms (6 from mono, 8 

from 2-mix and 4 from 3-mix) with a trypan blue root staining (Phillips and Hayman 1970) to 

assess the infection with mycorrhizal fungi (MF). We checked for MF hyphae in- and outside 

the root cortex and for the formation of vesicles and arbuscules inside the tissue by 

microscopic observation but did not determine percentage of infected root length, as root 

subsamples could not be ascribed to species. 

 

Statistics 

We analysed the data on community level and on species, separated in donors and receivers, 

to gain information about the overall functioning of communities as well as about the 

interactions between different individuals within a community. Prior to statistical analyses, all 

data and data subsets were tested for homogeneity of variance (Levene’s test) and normality 

(Kolmogorov-Smirnov test, Q-Q-Plots) and transformed, if assumptions were not met. Then, 

data were analysed by the use of general linear models. Generally, we used ANCOVA (type I 

sum of squares); only for the analysis of total community biomass, we used an ANOVA 

without a covariable. ANCOVA (type I sum of squares) was conducted with biomass of donor 

individual (NPdonor) as covariable, different response parameters (N-concentration, N-content, 
15N-transfer) as dependent variable and experimental treatments as fixed factors (Table 2). 

The fitting order of factors was changed to identify which factor had most impact on response 

parameters. We conducted ANCOVA for all data together (over all species richness levels) 

and for every species richness level separately. We used least-significant-difference test 

(LSD) as a post-hoc test when significant differences were found between treatments. All 

statistical analyses were conducted in SPSS 11 by SPSS Inc., USA. 

We tested for effects of the experimental treatments (factors) species richness level (SR: 3 

levels; mono, 2-mix, 3-mix), legume presence (L: 2 levels; without and with Trifolium) and 

simulated grazing (C: 2 levels; without and with cutting of donor individual) and additionally 
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species identity of donor and receiver individuals (SI: 3 levels, one for each species). 

Individual response parameters (dependent variables) were: dry weight for net biomass 

production of individuals (NPind [g], square root transformation), N-concentration [%] 

(data+1, logarithmic transformation, lg10), N-content [mg] (NPind x N [%], data+1, 

logarithmic transformation, lg10) and 15N-transfer from donor to receiver individuals [%] 

(data+5, inverse transformation). Community response parameters (dependent variables) 

were: degradation of decomposition standards [%] (arcsine transformation), dry weight for net 

biomass production of communities [g] (no transformation) and total N-content [mg] (square 

root transformation). Data of mycorrhizal fungi infection of communities were not analyzed 

statistically because it was a pure descriptive parameter. 
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RESULTS 

Individual and population response 

Donors 

Biomass production (NPdonor) and N-concentration of donor individuals were mostly not 

significantly different from receiver individuals although donors were generally slightly 

smaller and had a higher N-concentration in their tissue than receivers (data not shown). Total 
15N-enrichment of donor individuals varied strongly from 0.0089 to 36.6155 [at%ex]. Enrich-

ment was 16.81 ± 2.02 15N at%ex for Achillea (0.2306 to 36.6155 at%ex, n = 28) and 4.75 ± 

0.78 15N at%ex for Phleum (0.7697 to 20.7490 at%ex, n = 28). Enrichment of Trifolium donor 

individuals was 0.75 ± 0.11 15N at%ex (0.0089 to 4.7726 at%ex, n = 84). Species-specific 

values for enrichment were mean values ± 1 standard error of the mean and, in brackets, the 

minima and maxima per species with indication of the number of donors over all species 

richness levels. A kind of dilution effect occurred and lower 15N-enrichment [at%ex] in donor 

individuals correlated with higher individual biomass (NPdonor) (Pearson correlation coeffi-

cient rho ρ = 0.612, p < 0.001), which could be described with an inverse (exponential decay) 

regression (r² = 0.705, p < 0.001; variables were square root transformed for both analyses).  

 

Receivers 

Effects of legume presence and species composition 

H1: N-transfer will be higher from an N-fixing donor to a non-fixing receiver than between a 

non-fixing donor-receiver pair. 

Direct comparison between 15N-transfer from a legume vs. a non-legume donor individual 

was possible for different species compositions in 2-species-mixtures. We used ANCOVA 

models (type I sum of squares) to investigate the effect of species identity (forb, grass or 

legume species) of the donor individual (SIdonor) and of receiver individuals (SIreceiver), fitted 

with the effect of donor individual’s biomass (NPdonor) as covariable (Table 2a). We found 

that effects of receiver species identity were as strong as effects of NPdonor for 15N-transfer and 

for the other response parameters whereas effects of species identity of donor individuals 

were less strong (lower F-values). Species identity of donor individuals affected biomass 

production of receivers (NPind), N [%] and N-content significantly but not 15N-transfer. In 
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general, 15N-transfer was highest from Trifolium as a donor and lowest from Achillea as a 

donor but this trend was not statistically significant (LSD Trifolium > Phleum p = 0.843 and 

Phleum > Achillea p = 0.495). 

 

H2: N-transfer will be higher in mixtures than in monocultures because of higher niche 

complementarity between different species (as observed in the field). 

Transfer of 15N from donors to receivers increased from monocultures to 3-species-mixtures 

(Fig. 2) whereas net biomass production of receiver individuals (NPind), N [%] and N-content 

[mg] were higher in monocultures and 3-species-mixtures than in 2-species mixtures (data not 

shown).  

 

 

Figure 2 Effect of species richness level and 
legume presence (N2-fixing donor species) on 15N-
transfer* to receivers, averaged over all species in 
the species richness levels monocultures (1), 2-
species-mixtures (2) and 3-species-mixtures (3) 
without (○/open circles) or with (●/closed circles) 
presence of Trifolium pratense as donor species. 
Due to the experimental design, 3-species-mixtures 
always contained Trifolium as donor species.  

* 15N-transfer [%] was measured as 15N-enrichment 
[atom%excess] in non-labelled neighbouring 
receiver individuals in relation to 15N-enrichment 
[atom%excess] in 15N-labelled donor individual 
after the harvest.  

 

Analyses over all species richness levels together showed strong effects of net biomass 

production of donor individuals (NPdonor) on all four individual response parameters (Table 

2b). Most variation in 15N-transfer was explained by NPdonor and the species richness level 

(Table 2b, Fig. 2) whereas most variation in NPind, N [%] and N-content was explained by 

NPdonor and legume presence (higher F-values for NPdonor and L than for SR, Table 2b). 

Across all species richness levels, legume presence increased NPind, N [%] and N-content 

[mg] in receivers (data not shown) but not 15N-transfer from donors to receivers. Significant 

interactions between species richness level and legume presence showed that the effect of 

Trifolium increased with increasing diversity. Within species richness levels (Fig. 3), strong 

effects of donor individual biomass (NPdonor) on all four response parameters of receivers 
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remained but effects of receiver’s species identity were often even stronger (Table 2c). 

Especially 15N-transfer in monocultures and 2-species-mixtures depended more on the iden-

tity of the receiver than on NPdonor, whereas in the 3-species-mixtures no effect of NPdonor oc-

curred because Trifolium was always the donor, which produced comparable high NPdonor in 

all microcosms. Although figure 3 suggested a pronounced positive legume effect, especially 

on 15N-transfer from donor to receiver individuals, this legume effect was possibly cancelled 

out by the strong impact of NPdonor. 

 

 

Figure 3 Effect of species richness level and legume presence (N2-fixing donor species) on species-specific 
response parameters (15N-transfer, N [%], N [mg] and NPind) in receiver individuals in the species richness levels 
monocultures (1), 2-species-mixtures (2) and 3-species-mixtures (3) without (○/open circles) or with (●/closed 
circles) presence of Trifolium pratense as donor. Response parameters were 15N-transfer [%] from 15N-labelled 
donor to non-labelled receiver individuals*, N-concentration [%], N-content [mg] and net biomass production of 
receiver individuals (NPind) [g], dry weight. *details see Fig. 2 
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H3: Species-specific uptake of transferred N will be modulated by the species composition of 

the community. 

Species identity of receiver individuals had significant effects on response parameters in all 

species richness levels (Table 2c). Trifolium always received the least 15N, irrespectively of 

the species richness level (Fig. 3). In monocultures, most 15N was transferred between donor 

and receiver individuals of Achillea. In 2-species-mixtures, Phleum received significantly 

more 15N from donor individuals (no separation in legume and non-legume donors) than 

Achillea (LSD p = 0.038). In direct competition between forb and grass individuals in 3-

species-mixtures, Phleum received non-significantly more 15N from donor individuals than 

Achillea (LSD p = 0.449) but used this N more effectively for higher NPind, N [%] and N-

content (LSD p ≤ 0.038) (Fig. 3). 

 

  



Results  Manuscript 4 

156 
 

Effect of simulated grazing 

H4: N-transfer will increase in response to simulated grazing because of enhanced 

rhizodeposition following simulated grazing. 

Simulated grazing affected 15N-transfer from donor to receiver individuals within and across 

species richness levels. Analyses of regrown donor parts showed, that most 15N was used for 

internal N-remobilization to sustain regrowth of the cut donor individual, ca. 56 % of donor 

individual 15N at%ex was recycled internally (Fig. 4).  

 

 

Figure 4 Effect of species richness level and simulated grazing (cutting of donor) on overall 15N-transfer [%] 
from donor to receiver individuals (mean values over all species per diversity level) and internal remobilization 
of 15N to regrown parts of the cut donor individual in the species richness levels monocultures (1), 2-species-
mixtures (2) and 3-species-mixtures (3) without (○/open circles) or with (●/closed circles) cutting of donors. 

 

Simulated grazing stimulated 15N-transfer in monocultures but decreased the transfer in 

mixtures; an effect that was detected across all individuals (Fig. 4, LSD –C vs. +C: p = 0.038, 

0.662 and 0.035 in mono, 2-mix and 3-mix, respectively) and separately for the three species 

(Fig. 5). Across all species richness levels, the effect of simulated grazing on 15N-transfer was 

only minor (Table 2d) compared to effects of net biomass production of donor individuals 

(NPdonor), species identity of receivers (SIreceiver) and species richness levels per se (Table 2a-

c), as F-values of factors in relation to the fitting order of the factors in ANCOVA models 

(type I sum of squares) showed. This is reflected in the finding, that significant differences in 
15N-transfer occurred only for Achillea (LSD p < 0.05 in mono and 3-mix) but not for Phleum 

or Trifolium (Fig. 5). Generally, simulated grazing had no effect on NPind, N-concentration 
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and N-content, except for a significantly decreased NPind of Phleum receivers after cutting of 

donor individuals in 3-species-mixtures. 

 

 

Figure 5 Effect of species richness level and simulated grazing (cutting of donor) on species-specific response 
parameters (15N-transfer, N [%], N [mg] and NPind) in receiver individuals in the species richness levels 
monocultures (1), 2-species-mixtures (2) and 3-species-mixtures (3) without (○/open circles) or with (●/closed 
circles) cutting of donors. Response parameters were 15N-transfer [%] from 15N-labelled donor to non-labelled 
receiver individuals*, N-concentration [%], N-content [mg] and net biomass production of receiver individuals 
(NPind) [g], dry weight. *details see Fig. 2 
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Table 2 Results from ANCOVA (type I sum of squares) for response parameters of receiver individuals (net 
biomass production, NPind [g]; N-concentration [%], N-content [mg] and 15N-transfer from donors to receivers 
[%]) tested with net biomass production of donor individuals (NPdonor) as covariable and factors: species richness 
level (SR), legume presence (L), species identity of receiver individuals (SIreceiver) or of donor individuals 
(SIdonor) and simulated grazing/cutting (C). Fitting order within the model determined the degree of freedom and, 
for some factors, resulted in loss of testability (= not available, n.a.). We used separate subsets to test for the 
different hypotheses; hypotheses and the corresponding subset of data are indicated in the header of the table 
sections a-d. 

hypothesis: (i) N-transfer will be higher from legume than from non-legume donors 
                    (iii) species-specific uptake will vary with community composition 
a) test group: 2-species-mixtures 
  NPind N [%] N [mg] 15N-transfer 
factor d.f. F p F p F p F p 
NPdonor 1 120.39 < 0.001 427.21 < 0.001 307.90 < 0.001 27.13 < 0.001 
SIreceiver  2 169.73 < 0.001 466.38 < 0.001 301.254 < 0.001 29.99 < 0.001 
SIdonor 2 3.34 0.039 6.29 0.003 10.35 < 0.001 1.75 0.178 
SIreceiver x 
SIdonor 

2 1.43 0.244 11.44 < 0.001 4.28 0.016 3.32 0.039 

SIdonor 2 31.26 < 0.001 86.28 < 0.001 65.51 < 0.001 0.90 0.408 
SIreceiver 2 141.80 < 0.001 386.39 < 0.001 246.09 < 0.001 30.83 < 0.001 
SIreceiver x 
SIdonor 

2 1.43 0.244 11.44 < 0.001 4.28 0.016 3.32 0.039 

SIreceiver x 
SIdonor 

6 58.17 < 0.001 161.37 < 0.001 105.30 < 0.001 11.69 < 0.001 

SIreceiver and 
SIdonor 

0 n.a.        

 
hypothesis: (i) N-transfer will be higher from legume than from non-legume donors 
                    (ii) N-transfer will be higher in mixtures than in monocultures 
b) test group: all species richness levels together, all species together 
  NPind N [%] N [mg] 15N-transfer 
factor d.f. F p F p F p F p 
NPdonor 1 31.72 < 0.001 57.13 < 0.001 54.08 < 0.001 30.02 < 0.001 
SR 2 0.40 0.674 1.71 0.184 1.45 0.236 6.14 0.002 
L 1 30.57 < 0.001 67.18 < 0.001 49.62 < 0.001 0.09 0.769 
SR x L 1 0.08 0.772 10.61 0.001 1.28 0.259 3.56 0.060 
L 1 28.56 < 0.001 48.23 < 0.001 40.28 < 0.001 1.21 0.273 
SR 2 1.40 0.248 11.18 < 0.001 6.12 0.003 5.58 0.004 
SR x L 1 0.08 0.772 10.61 0.001 1.28 0.259 3.56 0.060 
SR x L  4 7.86 < 0.001 20.30 < 0.001 13.45 < 0.001 3.98 0.004 
L and SR 0 n.a.        
 
hypothesis: (ii) N-transfer will be higher in mixtures than in monocultures 
                    (iii) species-specific uptake will vary with community composition 
c) test group: within species richness levels, all species together 
monocultures: 
  NPind N [%] N [mg] 15N-transfer 
factor d.f. F p F p F p F p 
NPdonor 1 184.27 < 0.001 388.42 < 0.001 715.89 < 0.001 0.375 0.545 
SIreceiver 2 62.32 < 0.001 166.58 < 0.001 223.16 < 0.001 5.61 0.008 
L and L x 
SIreceiver 

0 n.a.        

2-species-mixtures: 
NPdonor 1 117.871 < 0.001 377.94 < 0.001 284.24 < 0.001 26.44 < 0.001 
L 1 57.95 < 0.001 151.85 < 0.001 112.17 < 0.001 0.91 0.342 
SIreceiver 2 138.83 < 0.001 341.83 < 0.001 227.14 < 0.001 30.05 < 0.001 
L x SIreceiver 1 1.59 0.210 5.20 0.024 5.55 0.020 2.31 0.131 
SIreceiver 2 166.18 < 0.001 412.59 < 0.001 278.10 < 0.001 29.23 < 0.001 
L 1 3.25 0.210 10.33 0.010 10.24 0.002 2.55 0.113 
L x SIreceiver 1 1.59 0.210 5.20 0.024 5.55 0.020 2.31 0.131 
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L x SIreceiver 4 84.30 < 0.001 210.18 < 0.001 143.00 < 0.001 15.83 < 0.001 
L and SIreceiver 0 n.a.        
3-species-mixtures: 
NPdonor 1 2.51 0.116 < 0.01 0.957 0.283 0.596 0.154 0.696 
SIreceiver 2 387.09 < 0.001 511.86 < 0.001 968.88 < 0.001 28.08 < 0.001 
L and  
SIreceiver x L 

0 n.a.        

 
hypothesis: (iv) Simulated grazing will enhance N-transfer 
d) test group: all species richness levels together, all species together  
(covariable: fitted first; interactions: fitted in the same order at the end of each model – both were only 
given once because of reasons of readability) 
  NPind N [%] N [mg] 15N-transfer 
factor d.f. F p F p F p F p 
NPdonor 1 156.50 < 0.001 433.59 < 0.001 455.52 < 0.001 43.69 < 0.001 
SR 2 1.95 0.144 12.94 < 0.001 12.22 < 0.001 8.93 < 0.001 
L  1 150.77 < 0.001 509.88 < 0.001 417.97 < 0.001 0.13 0.723 
SIreceiver 2 525.08 < 0.001 934.20 < 0.001 1015.13 < 0.001 62.82 < 0.001 
C 1 0.01 0.912 < 0.01 0.971 0.06 0.809 0.64 0.426 
C 1 8.39 0.004 20.38 < 0.001 17.13 < 0.001 0.08 0.784 
SIreceiver 2 581.78 < 0.001 1182.22 < 0.001 1216.57 < 0.001 59.48 < 0.001 
L 1 2.65 0.105 17.06 < 0.001 15.82 < 0.001 24.66 < 0.001 
SR 2 15.12 < 0.001 1.13 0.324 3.33 0.037 0.28 0.752 
L  1 140.86 < 0.001 366.03 < 0.001 339.29 < 0.001 1.75 0.187 
C 1 0.05 0.830 0.26 0.613 0.49 0.483 0.41 0.521 
SR  2 6.92 0.001 84.91 < 0.001 51.56 < 0.001 8.11 < 0.001 
SIreceiver 2 525.06 < 0.001 934.02 < 0.001 1014.91 < 0.001 62.94 < 0.001 
SIreceiver 2 585.83 < 0.001 1191.72 < 0.001 1224.85 < 0.001 59.41 < 0.001 
C 1 0.29 0.593 1.38 0.241 0.56 0.455 0.26 0.636 
SR 2 16.11 < 0.001 1.39 0.250 8.61 < 0.001 4.34 0.014 
L 1 0.67 0.412 16.54 < 0.001 5.25 0.023 16.53 < 0.001 
SR x L 1 45.64 < 0.001 1.03 0.311 25.58 < 0.001 0.07 0.790 
SR x SIreceiver  3 2.47 0.063 13.70 < 0.001 7.25 < 0.001 1.88 0.133 
SR x C 2 0.18 0.837 1.48 0.229 0.02 0.985 3.87 0.022 
L x SIreceiver 1 1.91 0.168 5.16 0.024 7.97 0.005 1.99 0.160 
L x C 1 < 0.01 0.964 1.92 0.167 0.11 0.737 0.14 0.710 
SIreceiver x C 2 0.12 0.887 1.97 0.141 0.33 0.723 0.91 0.402 
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Microcosms and communities 

Total biomass [g] and nitrogen content [mg] per pot increased with increasing species 

richness, which is mainly due to presence of Trifolium (Fig. 6). Individuals of Trifolium 

produced always most biomass and had highest N-concentrations (Fig. 3), thus, their relative 

contribution to community biomass and N-content was high. We analysed data with ANOVA 

models (type I sum of squares) and found that both species richness levels (SR) and legume 

presence (L) had highly significant effects (F1-2,134 > 100, p < 0.001) on community biomass 

and N-content, if fitted first in the model. But if legume presence (L: F1,134 = 1230.376, p < 

0.001) was fitted before SR, the effect of SR was not longer significant (F2,134 < 0.600, p > 

0.500). Simulated grazing (fitted in the model first or third) reduced total biomass of 

communities (C: F1,134 > 6, p < 0.02, data not shown).  

 

 

Figure 6 Effect of species richness level and 
legume presence in communities on (a) total 
biomass, dry weight [g] and (b) total N-content 
[mg] of communities per microcosm in different 
species richness levels (monocultures, 2-species- 
and 3-species-mixtures). White bars indicate values 
for whole communities (sum of all individuals, no 
separation in donor and receiver), grey bars indicate 
the relative contribution of highly productive 
Trifolium pratense individuals (donor and receiver 
individuals) within these communities for comm.-
unity responses. Values are means ± 1 standard 
error of the mean. 

 

We found vesicles, arbuscules, internal and external hyphae of mycorrhizal fungi (MF), which 

are typical structures denoting vesicular-arbuscular mycorrhiza (VAM), in 17 out of 18 root 

samples. We found infection with MF in 40.8 % ± 26.5 (SD) of stained roots per sample. 
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Species richness level, legume presence and simulated grazing had no effect on the 

degradation of decomposition standards across all species richness levels. Within species 

richness level, analyses showed a significantly higher degradation in monocultures of 

Trifolium pratense than in monocultures of the other two species (F1,36 = 4.9, p = 0.034) (Fig. 

7). No statistically significant interaction between legume presence and simulated grazing 

occurred. We thus assumed that below ground turnover rates were not affected by species 

richness levels and no correction for different turnover rates had to be applied. 

 

 

Figure 7 Effect of legume presence and simulated grazing on degradation of decomposition standard in 
communities along the species richness levels (monocultures, 2-species- and 3-species-mixtures), given are 
mean values (± 1 standard error of the mean, replicates are given in Fig. 1) for (a) degradation [%] in 
communities without (○/open circles) or with (●/closed circles) Trifolium pratense and (b) degradation [%] in 
untreated communities (○, open circles) and in communities treated with simulated grazing (●, closed circles) of 
donor individuals. 
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DISCUSSION 

Individual level 

Effects of legume presence and species composition 

H1: N-transfer will be higher from an N-fixing donor to a non-fixing receiver than between a 

non-fixing donor-receiver pair. 

The first hypothesis, that 15N-transfer will be higher from a legume than from a non-legume 

donor individual, was not found to be true because (apart from a pronounced positive legume 

effect in Figs 2, 3). Statistical analyses revealed only minor effects of donor individual’s 

species identity for 15N-transfer, because effects were overruled by effects of the biomass of 

donor individuals (effects of NPdonor and SIreceiver, see Table 2a). Although significant 

interactions, if fitted first in the type I sum of squares ANCOVA models, between species 

richness level and legume presence (SR x L; Table 2b), between receiver’s species identity 

and legume presence (L x SIreceiver; Table 2c) and between receiver’s and donor’s species 

identity (SIreceiver x SIdonor; Table 2a) suggested that the presence of the key species Trifolium 

pratense across and within the species richness levels altered N-transfer between species. 

Legume presence affected individual net biomass production (NPind), N-concentration and N-

content in receiver individuals positively; this showed an apparent short-term facilitative 

effect of legume presence. Positive legume effects on biomass and N-accumulation have been 

observed frequently in experimental grassland communities in the field (Lee et al. 2003; 

Temperton et al. 2007). Facilitative legume effects are related to two processes: (i) N-transfer 

from legume to neighbour and (ii) N-sparing (increased amount of soil-N for non-legumes if a 

resident legume species relies more on atmospheric-N2 than on soil N-resources). Legume 

effects often increase with time because of an accumulation of N-rich legume litter (Hogh-

Jensen and Schjoerring 1997; Mulder et al. 2002) or other factors, which increase 

complementarity effects (Marquard et al. 2009). Here, the facilitative legume effect is most 

likely related to short-term N-sparing and not driven by increased N-transfer as Temperton et 

al. (2007) also report from a study within a semi-natural grassland field experiment. We were 

able to show that N-transfer, from legume and non-legume donors, occurred during a 12 week 

pot experiment and that is not per se a slow process as stated by Ledgard & Steele (1992), but 

that N can be transferred between species of different functional identities within time periods 

of 20-30 days in accordance to the field-study from Gylfadottir et al. (2007). Short-term 

positive legume effects were not only related to N-sparing; we found a trend for higher 15N-
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transfer from legume donor individuals; but the difference in size of non-legume vs. legume 

donors did not allow for a comparison of differences in N-transfer between legume and non-

legume donors of approximately the same biomass within this study. 

 

H2: N-transfer will be higher in mixtures than in monocultures because of higher niche 

complementarity between different species (as observed in the field). 

We found higher 15N-transfer from donor to receiver individuals in more diverse communities 

(Table 2b) confirming the second hypothesis. This finding is in accordance with the 

hypothesis that an early species saturation (3-9 species) occurs, if only one function (here, the 

response parameter 15N-transfer) is investigated (Schwartz et al. 2000; De Boeck et al. 2007); 

although recent studies emphasise the importance of higher species richness for the 

maintenance of multifunctionality of communities and ecosystems (Hector and Bagchi 2007; 

Marquard et al. 2009; Zavaleta et al. 2010).  Higher species richness, although here in a very 

small range, probably led per se to higher niche complementarity as it has been found in 

large-scale, long-term field experiments (e.g. Tilman et al. 2001; Roscher et al. 2005; Hector 

et al. 2007; Marquard et al. 2009; van Ruijven and Berendse 2009). The beneficial effect of 

higher species richness was not overruled by the dilution effect of higher net biomass 

production of donor individuals (NPdonor) on 15N-enrichment [at%ex] in donors, which had a 

feedback on 15N-transfer [%] to receivers. Whereas effects of NPdonor overruled positive effect 

of legume donors, which only looked strong in graphical data presentation (Figs 2, 3) but were 

not statistically significant (Table 2b, c). 

 

H3: Species-specific uptake of transferred N will be modulated by the species composition of 

the community. 

Species composition had strong effects on interactions between different species (Fig. 3, 

Table 2a, c) as predicted by the third hypothesis. We were able to show, that the grass species 

Phleum competed more effectively for soil N-resources and for 15N released from donor 

individuals than Achillea. The effect was consistent in 2- and 3-species-mixtures. Grass 

species are more effective in capturing extra N compared to forb species as found in long-

term grassland field experiments (Oelmann et al. 2007; Temperton et al. 2007). This is in 

accordance with the finding that grasses have a finer, more dense root systems (Craine et al. 
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2002) and exploit resources faster and more effectively (Šmilauerová and Šmilauer 2010) 

than forb species. We showed that also in the short-term the grass species benefited more 

from Trifolium than the forb, if all three species grew together, which indicate a better 

nitrogen use efficiency (NUE; because with nearly the same amount of 15N [%] transferred, a 

stronger positive biomass and N accumulation [mg] effect was achieved).  

Although Achillea receivers competed successfully for released 15N with the grass species, 

they could not implement this surplus N into increased growth during the time span of this 

experiment. It should be noted that the overall growth of Achillea and Phleum was lower than 

that of Trifolium (Fig. 3). Nevertheless we found positive legume effects. Especially the forb 

produced very little biomass per individual compared to other studies (Kowal and Pic 1979; 

Johnston and Pickering 2007) and its normal productivity in nature where it grows up to 100 

cm (Oberdorfer 2001). 

 

Effect of simulated grazing 

H4: N-transfer will increase in response to simulated grazing because of enhanced 

rhizodeposition following simulated grazing. 

We could neither clearly confirm nor reject the fourth hypothesis which predicted higher N-

transfer after simulated grazing due to higher rhizodeposition from belowground parts of cut 

donor individuals. Simulated grazing resulted in higher 15N-transfer [%] from cut donors to 

neighbouring receivers in monocultures but to a decrease of transfer in mixtures compared to 

control communities (donors not cut; Figs 4, 5). Ayres et al. (2007) found a pronounced 

increase in 15N-transfer from clover to roots of ryegrass after defoliation (but no significant 

effect in shoots of the grass species) whereas Paterson et al. (2005) found decreased exudation 

of isotopic C-tracers from Festuca rubra roots 2-4 days after defoliation. Ayres et al. (2007) 

relate the immediate strong increase in N-transfer to higher N-releases from the defoliated 

clover plant via direct pathways (exudation, mycorrhiza) although they do not exclude higher 

indirect effects (decomposition) because they observed higher microbial biomass after 

defoliation. Although we did not investigate species-specific root samples or microbial 

biomass in this study, we found a contrary pattern of decreased inter-specific 15N-transfer 

after simulated grazing. Evidence for higher rhizodeposition with subsequent increased 

decomposition due to simulated grazing was rather weak or even negative (Fig. 7). We 

conclude that 15N- transfer during the last month of our experiment was mainly via exudation 



Manuscript 4    Discussion 

165 
 

of N-rich compounds or rhizodeposition and not related to decomposition of belowground 

donor roots (and thus under control of the labelled donor individual). 

The heterogeneous pattern of 15N-transfer between monocultures and mixtures indicate a kind 

of plant behaviour sensu Karban (2008). Especially 15N-transfer patterns of Achillea 

suggested self/non-self discrimination (Falik et al. 2003; Karban and Shiojiri 2009) or even 

kin recognition (Biedrzycki et al. 2010), with reduced belowground competition within the 

same species and enhanced resource competition between different species. In monocultures a 

kind of altruistic behaviour was observed: resources of a cut (and thus less fit) donor 

individual were distributed to neighbouring receiver individuals of the same species; maybe 

via enhanced root decomposition (although no connection was found to the degradation of 

decomposition standards). A contrary effect was observed in mixtures: 15N-transfer from cut 

donors to neighbouring receivers was reduced for all species in 2- and 3-species-mixtures, 

although effects were only sometimes significant. We suggest that in cut donor individuals, 

the available N-resources within roots were used to rebuild itself instead of strengthening 

neighbouring individuals. This is in accordance to the finding of stimulated biomass 

production after defoliation via grazing or clipping (Sanford et al. 1995; Ayres et al. 2007), 

which seems to enhance internal N-remobilization (Thornton and Millard 1993) and overall 

nitrogen use efficiency (NUE). We identified highly interesting patterns, especially the 

interacting effects of species composition and disturbance on N-dynamics between 

functionally different individuals, which still need more investigation e.g. in relation to the 

mediating effect of grazing animals, which affect N-cycling not only by grazing but also by 

trampling and dropping of excrements (Vinther 1998; Moller Hansen et al. 2002). 

Additionally, simulated and real herbivory can alter plant responses differently as has been 

shown for metabolic processes and root growth dynamics (Hummel et al. 2007; Henkes et al. 

2008). 

 

Microcosms and communities 

We found higher community productivity and nitrogen accumulation in mixtures with 

Trifolium which was driven by the legume itself (Fig. 6) and thus was due to the sampling 

effect (Huston 1997). Trifolium produced most biomass per individual in mixtures when it 

was released from intra-specific competition for above- or belowground space (which is a 

resource of itself, see Schenk et al. 1999) in mixtures (Fig. 3). Vigorous growth of the legume 
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species mainly proved an effective use of the small available soil volume and not as such an 

ecological response. Johnston & Pickering (2007) found a similar pattern for Achillea 

millefolium in a greenhouse experiment but no such effect on a Poa species. We neither 

observed high intra-specific competition for space in the forb nor in the grass species used in 

our study. Most communities were infected with vesicular-arbuscular mycorrhizal fungi 

(VAM), which indicated a high degree of belowground connectivity. Mycorrhizal fungi can 

have an important effect on overall plant-plant interactions (e.g. Hamel and Smith 1991; 

Moyer-Henry et al. 2006; van der Heijden and Horton 2009) and are capable of 

decomposition and transfer of organic compounds (Hodge et al. 2001). We cannot distinguish 

between transfer of 15N-labelled nitrogen compounds via excretion and transport through the 

soil solution and a transport via hyphae of VAM. The trend to higher degradation of 

decomposition standards in communities with Trifolium pratense (Fig. 7) indicated higher 

belowground activity, which also has been found by Kreyling et al. (2008) for communities 

with legume species within a field experiment. Belowground activity can have significant 

effects on biomass and nitrogen accumulation (van der Heijden et al. 2008) and can affect 

plant performance via multiple pathways (De Deyn et al. 2003; Sanon et al. 2009). 

 

CONCLUSION 

Within this short-term microcosm experiment we were able to confirm positive effects of 

increasing species richness and legume presence on donor-receiver interactions as has been 

found in long-term field experiments (Spehn et al. 2002; Hector et al. 2007; Temperton et al. 

2007; Marquard et al. 2009). We measured an increase in 15N-transfer from monocultures to 

mixtures which was probably related to higher niche complementarity in mixtures. 

Additionally, we were able to elucidate some of the mechanisms of the role of species identity 

vs. species richness on donor-receiver interactions. The outcome depended strongly on the 

competitive ability and the resource use efficiency of receiver species. Both non-legume 

receivers (Achillea millefolium, Phleum pratense) profited from a legume donor in terms of 

biomass and nitrogen accumulation but if they grew in direct competition, the grass took 

significantly more advantage from N released by Trifolium pratense donors than the forb; 

confirming the better N-acquisition of grasses, which has been reported from field studies. We 

analyzed the effect of simulated grazing within three species richness levels and found that, 

while grazing had (as a trend) a positive effect on intra-specific 15N-transfer from cut donors 

to shoots of receivers of the same species, it had (as a trend) a negative effect on inter-specific 
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transfer between cut donors and neighbouring receivers belonging to different species in 

mixtures. This is in line with the emerging knowledge about self/non-self and kin recognition 

in plants (Karban and Shiojiri 2009; Biedrzycki et al. 2010). The finding indicates a kind of 

intra-specific altruistic behaviour in response to grazing in monocultures whereas in mixtures, 

the available N-resources were remobilized internally to sustain the competitive strength of 

each species against the neighbouring other species. We now need more detailed 

investigations under (semi)-natural conditions, particularly related to the question how 

management regimes affect plant-plant interaction in an established sward. 
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HYPOTHESES 

1. The positive effect of legume presence on neighbouring species (N-facilitation for 

receivers) will increase with decreasing N-availability in the substrate as predicted by the 

stress gradient hypothesis. 

2. N-facilitation of legume species will change to competition because of reduced biological 

N2-fixation (BNF) under high N-availability conditions. 

3. Species from the functional group of grasses will profit more from N-facilitation than 

species from the functional group of forbs as is has been observed in (semi-)natural 

grassland habitats. 

 

CONCLUSIONS 

1. We found a slight increase in facilitation with decreasing N-availability in the substrate as 

predicted by the stress gradient hypothesis. The effect was most pronounced for the N-

concentration in leaves but not detectable via the δ15N natural abundance value, 

indicating, that N-facilitation occurred mainly via N-sparing in this short-term greenhouse 

study. 

2. Strength and direction of the legume effect depended on the response parameter under 

investigation but it seemed (concluded from the interpretation of differences in legume 

parameters between low, medium and high N-availability) that legume species indeed 

used more soil N-resources under medium and high N-supply which implied higher 

competition especially in more diverse communities. Especially under medium N this 

seemed to have a negative effect on the N-concentration in forbs and grasses and led to 

decreasing δ15N values. Lower δ15N values indicate a more closed N-cycle.
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3. Grasses profited more than forbs from a legume neighbour and increasing species 

richness, especially when soil N-resources were limited, reflecting superior N-capturing 

and N use efficiency as it has been observed in field experiments. 

 

RESULTS AND DISCUSSION 

 

ALL N-LEVELS TOGETHER 

• Most variation in productivity, N-concentration [%], δ15N and C:N ratios was 

explained by the number of individuals per community (Fig. 1, covariable: F1,169 = 

161-308, p < 0.001) and by N-availability in the substrate (Table 1, F2,169 = 11.56 

(NPind), 31-35 (N%, δ15N, C:N), p < 0.001). Effect of N-availability remained always 

highly significant irrespective of its fitting order in the model. Communities under 

medium N were most productive (Fig. 2). Biomass production under high N-avail-

ability might be limited because of low pH values due to fertiliser application (Table 

1). N-concentrations and δ15N values in plant leaves increased with increasing N-

supply (Fig. 3).  

� Species performance within habitats which differ significantly in the N-availability in the 

substrate is predominantly under environmental control and not determined by positive or 

negative species interactions (Cardinale et al. 2009; Ma et al. 2010; Michalet et al. 2006). The 

same effect was found within this microcosms study, confirming that this general mechanism 

holds true at very different spatial scales. 
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Figure 1 Effect of number per individuals on individual biomass (NPind) in N-level low (A), medium (B) or high 
(C). Most individuals grew in communities with low N-availability in the soil, whereas only few individuals 
grew (< 10) with high N-availability.  

 

Table 1 Soil properties from the analyses of subsamples for substrates in all three N-levels: A = low N, B = 
medium N, C = high N. Indicated are mean values (± 1 standard deviation of the mean) for the N-concentration 
of the total soil N-pool (mineral and organic N-forms together), the δ15N values for the same N-pool, pH values 
and the C:N ratios (both total soil C- and N-pools, mineral and organic forms together). 

  n N% SD δ15N SD pH SD C:N SD 
soil A_start 2 0,052 0,03 -4,8 0,73 6,8 0,06 31,6 6,46 
soil A_end 9 0,054 0,02 -2,8 0,64 6,4 0,59 31,0 6,38 

soil B/C_start without fert. 2 0,189 0,08 -1,4 0,58 6,5 0,02 33,1 2,76 
soil B_bare at end 2 0,229 0,07 1,1 3,05 4,6 0,05 17,9 12,85 
soil B_end 5 0,092 0,05 -2,3 0,97 5,0 0,46 26,0 8,13 

soil B/C_start without fert. 2 0,189 0,08 -1,4 0,58 6,5 0,02 33,1 2,76 
soil C_bare at end 2 0,493 0,48 2,0 2,76 4,5 0,33 9,5 8,84 
soil C_end 3 0,417 0,22 2,1 1,13 4,6 0,08 9,3 3,10 
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Figure 2 Effect of legume presence for community biomass (per pot) and mean values over all individuals per 
community for N-concentration and δ15N values in plant leaves. Open symbols indicate communities without 
legume presence with a dashed linear regression line along the three N-levels, filled circles indicate communities 
with legume presence with a solid linear regression line along the three N-level.  

 

• Effects of the other factors besides the N-availability in the substrate (species 

richness, functional group richness, functional identity and legume presence in 

communities) were mostly only significant (p ≤ 0.05) if they were fitted first after 

the covariable in the model (2nd order). Effects of legume presence (F1,169 16-84, p 

< 0.001) or functional identity (F2,169 = 6-58, p < 0.001) had more explanatory 

power than functional group richness (F2,169 = 3-15, p < 0.014) or species richness 

(F4,169 = 4-5, p < 0.005) on response parameters if fitted at 2nd order. The effect of 

functional identity vanished for N%, δ15N and C:N, but not for NPind, if it was 

fitted after legume presence. The same held true for the effect of species richness if 

it was fitted after functional group richness. Thus, further analyses were conducted 

separately for the three N-levels and functional group were displayed as separate 

entities.  
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• Within the three functional groups (forbs, grasses and legumes) number of 

individuals per community (Fig. 1) and N-supply (Fig. 3) had the strongest effects 

on all response parameters confirming results from analyses across all data to-

gether. All functional group-specific response parameters were mainly under 

environmental control but additional legume effects occurred. 

� Biodiversity experiments in the greenhouse are not very common and only few studies 

provide evidence of positive biodiversity effects per se on community biomass production 

(e.g. Lanta and Leps 2006). More often a predominant effect of legume species presence has 

been found (Mikola et al. 2002; Spaekova and Leps 2001). The importance of the sampling 

effect should increase with decreasing spatial scale (from field to greenhouse, Balvanera et al. 

2006), thus, it was not surprising that the presence of legume species had stronger effect on 

response parameters than functional identity, functional group or species richness if tested at 

2nd order over all N-levels. 

 

• Legume presence had in general positive effects on N-concentration and C:N 

ratios for forbs and grasses (Fig. 3). Significant differences due to legume presence 

occurred in the low N-level for N-concentrations in forbs (p = 0.022) and in 

grasses (p = 0.004) and for the C:N ratio in grasses (p = 0.001) (Fig. 3).  

• The increase in N-concentrations in leaf tissue (measured as per cent increase 

between forbs/grasses grew without and with legumes) is higher in the low N-level 

than in the medium N-level (low, medium (and high) N-levels: ~ 33 > 28 (> 6) and 

27 > 23 (> 20) % increase in forbs and grasses, respectively, Fig. 3).  

• Legume presence had no significant effect on δ15N values (mean over all species 

richness levels) in both forbs and grasses (Fig. 3). 

� N-facilitation increased slightly with increasing N-stress for receiver species, especially in 

terms of N-concentration in leaf tissue: whereas a positive legume effect was detectable under 

low N-availability, it vanished under medium or high N-availability. 
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Figure 3 Effect of legume presence along the N-gradient on response parameters (mean values over all species 
richness levels within an N-level for individual biomass: NPind, N-concentration, δ15N values and C:N ratios in 
leaf tissue) of the three functional groups forbs, grasses and legumes along. Open symbols represent mean over 
all individuals without a legume neighbour, closed symbols represent mean over all individuals with a legume 
neighbour, given are mean values of all species in all species richness levels per functional group ± 1 standard 
error of the mean, n = number of individuals within each group without/with legume as neighbour in 
communities). 

 

 

N-LEVELS SEPARATED 

• Along the gradient of species richness in three different N-levels (low = Fig. 4, 

medium = Fig. 5 and high = Fig. 6), response parameters changed differently with 

increasing N-supply in the substrate. 

• Under low N-availability (Fig. 4), species richness had a positive effect on N-concent-

ration (increased) and C:N ratios (decreased) in grasses whereas the effect was nega-

tive under medium N-supply (Fig. 5) and indifferent under high N-supply (Fig. 6). 

� Under low N-availability, higher species richness per se increased facilitation; maybe due 

to an increase in rhizodeposition and enhanced soil microorganism community with strongest 



Supplementary Material   Results and Discussion 

181 
 

effects on the best competitors (grasses). When soil N-resources increased (medium N-level), 

the effect of increasing species richness changed from facilitation to competition: an increase 

in diversity led to decreasing N-concentrations and δ15N values and increasing C:N ratios in 

forbs and grasses. The combination of these results indicates higher competition for N. In the 

four species mixtures, the legume species seemed to increase BNF due to higher resource 

competition: the increase in N-concentration with a decrease in C:N ratio was accompanied 

by a decrease in δ15N values. Under high N-availability, competition for N-resources seemed 

to play only a minor role although even the legume species used soil N as indicated by high 

δ15N values. 

 

 

Figure 4 Effect of legume presence in the low N-treatment on response parameters (individual biomass: NPind, 
N-concentration, δ15N values and C:N ratios in leaf tissue) of individuals of the three functional groups forbs, 
grasses and legumes along the species richness gradient. Open symbols represent individuals without a legume 
neighbour, closed symbols represent individuals with a legume neighbour, given are mean values of all species 
per functional group ± 1 standard error of the mean, n = number of individuals within each group without/with 
legume legume as neighbour in communities). 
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Figure 5 Effect of legume presence in the medium N-treatment on response parameters (individual biomass: 
NPind, N-concentration, δ15N values and C:N ratios in leaf tissue) of individuals of the three functional groups 
forbs, grasses and legumes along the species richness gradient. Open symbols represent individuals without a 
legume neighbour, closed symbols represent individuals with a legume neighbour, given are mean values of all 
species per functional group ± 1 standard error of the mean, n = number of individuals within each group 
without/with legume legume as neighbour in communities). 

 

• Legume presence enhanced N-concentration and lowered C:N ratios in leaves of forbs 

and grasses in all three N-levels (Figs 4-6) but effects were stronger in grasses than in 

forbs. It had no consistent effect on δ15N values. 

� The increase in N-concentration accompanied with decreasing C:N ratios (especially in 

grasses) indicated a higher nitrogen use efficiency (NUE) when legumes were present in the 

communities. 

� Better NUE without similar homogeneous changes in δ15N values showed, that the positive 

legume effect was mainly attributed to N-sparing and not to N-transfer from legumes (as 

N-donors) to neighbouring species (as N-receivers). N-sparing means, that soil N-resources 
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could be used more complete by non-fixing species if an N-fixing species does not use it 

because it sustained itself via biological nitrogen fixation (McNeill and Wood 1990a). Short-

term N-transfer occurs as a field study with a 15N-enriched tracer showed (Gylfadottir et al. 

2007) but the effect might not be strong enough to change δ15N values in receivers. A reason 

might be that the δ15N value is per se an integrator of the N-cycle (Robinson 2001) and only 

severe treatments like the application of cattle urine affect the δ15N natural abundance in the 

short term (Eriksen and Hogh-Jensen 1998). 

 

 

Figure 6 Effect of legume presence in the high N-treatment on response parameters (individual biomass: NPind, 
N-concentration, δ15N values and C:N ratios in leaf tissue) of individuals of the three functional groups forbs, 
grasses and legumes along the species richness gradient. Open symbols represent individuals without a legume 
neighbour, closed symbols represent individuals with a legume neighbour, given are mean values of all species 
per functional group ± 1 standard error of the mean, n = number of individuals within each group without/with 
legume legume as neighbour in communities). 
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• Grasses respond stronger than forbs to the presence of legume species within comm.-

unities. Especially N-concentrations and C:N ratios were consistently positive affected 

by a legume neighbour (Figs 4, 5).  

• The changes in N-concentrations and C:N ratios were not mirrored in homogeneous 

changes in δ15N values. 

� C:N ratios in grasses compared to forbs showed that grasses had a higher competitive 

strength for capturing available soil-N resources and exploit the soil volume quicker than 

forbs species especially in more diverse communities as it could be observed in field 

experiments. It is a kind of founder effect; a typical confounding factor for greenhouse 

experiments where the researcher determine time of species arrival and not e.g. phenology of 

different species. 



Supplementary Material   Materials and Methods 

185 
 

MATERIALS AND METHODS 

Biotic environment: 

• Monocultures and mixtures, grown from seeds in the microcosms, of species from the 

functional group of N-fixing legumes, grasses or forbs (without separation in small 

and tall forbs) in three N-availability levels in the soil 

• Communities grew ~90 days in the greenhouse during summer 2007 

• Species were: 2 legumes, 3 grasses and 8 forbs 

o Trifolium pratense L. 
o Lotus corniculatus agg. 
o Anthoxanthum odoratum agg. 
o Festuca pratensis Huds. s. l. 
o Phleum pratense agg. 
o Geranium pratense L. 
o Achillea millefolium L. 
o Matricaria inodora L. , nom. illeg. (nom. superfl.) = Tripleurospermum 

perforatum (Mérat) Lainz 
o Chrysanthemum leucanthemum L. = Leucanthemum vulgare Lam. s. str. 
o Prunella vulgaris L. 
o Hieracium pilosella L. 
o Leontodon autumnalis L. 
o Plantago lanceolata L. 

 
Abiotic environment: 

• N-level were low, medium or high (~0.007, ~0.066 and ~0.206 % Ntotal in the 

substrate), realized by the 1:1 (v/v) mixture of 0-Erde-Sand (low N), ED73-Sand with 

low or high addition of slow-release/long-term fertiliser (NH4NO3) in medium and 

high N-levels 

• We used 4 l pots, each N-level should contain 94 pots 

• Pots were randomized on tables once per week to prevent edge effects 

• Irrigation with tab water was performed automatically and manually if necessary  

• We determine individuals, cover, height of highest individual and biomass per species 

during the experiment and at the time point of harvest 

• Plant material were oven dried (60°C/> 60h), ground in stainless steel devices in a 

Retsch ball mill, packed in tin capsules and analyzed with an EA-IRMS (element 

analyzer-isotope ratio mass spectrometer) to determine N-concentration [%] and δ15N 

natural abundance [‰] per sample and with an EA to determine C-concentration per 

sample 
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Statistics: 

• We used ANCOVA (type I sum of squares) to determine effects of different factors, 

order of factors within the model were changed to find the most important factor for 

each response parameter, the covariable was always tested first  

o Covariable: number of individuals per community (= per pot), square root 

transformed 

o Independent variables (factor): N-level (N), species richness (SR), functional 

group richness (FG), legume presence in community (1/0; L), functional 

identity of species (FG-ID) 

o Dependent variables (response parameter): individual biomass (NPind) [g], N-

concentration [%], δ15N value [‰], C:N ratio 

o NPind and N [%] were square root transformed, C:N ratio log10-transformed 

and δ15N values were not transformed to met the assumptions of normality 

(Kologorov-Smirnov Test) and of homogeneity of variances (Levene’s Test) 

• We used ANCOVA (type III sum of squares) to test for significant effects of N-level 

and legume presence within the functional groups (compare to Fig. 3) 

 

Confounding effects: 

• germination rate of seeds were rather low � use of individuals/pot as covariate in all 

ANOVAs 

• additional planting of seedlings during the 2nd week of experiment was not successful 

• problems with the automatic irrigation caused drought stress and high seedling 

mortality especially in the high N-treatment (� no higher diversity level) 

• N-levels had different pH values due to fertiliser application: low: ~5.5, medium: 4.5-

5.0, high: 4.0-4.5 pH in substrate  
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