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1. INTRODUCTION

Driven by the application in random linear network coding, the field of subspace coding
received a lot of interest recently. Various upper bounds on the size of a subspace code
have been developed. In the special case of the constant dimension codes, the Johnson
bound stands out as in many cases it leads to the sharpest known bounds. In this article we
will investigate the Johnson bound for applicability in the case of general mixed dimension
subspace codes.

Let Fq be the finite field with q elements, where q > 1 is a prime power. For v ≥ 1 we
denote by Fv

q the v-dimensional standard vector space over Fq. The set of all subspaces of
Fv

q, ordered by the incidence relation ⊆, is called (v−1)-dimensional projective geometry
over Fq and denoted by PG(v−1,Fq) or PG(Fv

q). It forms a finite modular geometric lat-
tice with meet X ∧Y = X ∩Y , join X ∨Y = X +Y , and rank function X 7→ dim(X). We will
use the term k-subspace to denote a k-dimensional subspace of Fv

q. Using geometric ter-
minology we also speak of points, lines, planes, and solids for 1-, 2-, 3-, and 4-subspaces,
respectively; (v− 1)-subspaces are also called hyperplanes. The set of all k-subspaces of
V =Fv

q will be denoted by
[

V
k

]
. Its cardinality is given by the Gaussian binomial coefficient[

v
k

]
q

:=

{
(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1) if 0≤ k ≤ v;

0 otherwise.

For applications in network coding the relevant metric is given by the subspace dis-
tance dS(X ,Y ) := dim(X +Y )−dim(X ∩Y ) = 2 ·dim(X +Y )−dim(X)−dim(Y ), which
can also be seen as the graph-theoretic distance in the Hasse diagram of PG(v−1,Fq). A
set C of subspaces of Fv

q is called a subspace code. The minimum (subspace) distance of
C is given by d = min{dS(X ,Y ) : X ,Y ∈ C ,X 6= Y}. If all elements of C have the same
dimension, we call C a constant dimension code. By Aq(v,d) we denote the maximum
possible cardinality of a subspace code in Fv

q with minimum distance at least d. Anal-
ogously, Aq(v,d;k) denotes the maximum cardinality of a constant dimension code with
codewords of dimension k. Like in the classical case of codes in the Hamming metric,
the determination of the exact value or bounds for Aq(v,d) and Aq(v,d;k) is an impor-
tant problem. In this paper we will present some improved upper bounds. For a broader
background we refer to [6, 8] and for the latest numerical bounds to the online tables at
http://subspacecodes.uni-bayreuth.de [12].

Constant dimension codes with d = 2k are called partial k-spreads. A vector space
partition P of Fv

q is a set of nonzero subspaces such that each point of Fv
q is contained in

exactly one element of P . If P consists of mi subspaces of dimension i for 1≤ i≤ v, then
we say that P has type 1m12m2 . . .vmv .
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The remaining part of this paper is organized as follows. In Section 2 we review known
upper bounds for subspace codes. Johnson type bounds for constant dimension codes are
presented in Section 3 before the underlying concept is generalized to the mixed dimension
case in Section 4. Analytic upper bounds for Aq(v,v−4) and Aq(8,3) are then determined
in Section 5. We draw a brief conclusion in Section 6.

2. KNOWN UPPER BOUNDS FOR MIXED DIMENSION CODES

As mentioned in the introduction, our main focus is on the determination of Aq(v,d). In
that process we will often encounter codes with a restricted set K ⊆ {0,1, . . . ,v} of possi-
ble dimensions, so that we will also consider upper bounds for Aq(v,d;K), the maximum
cardinality of a subspace code in Fv

q with minimum distance at least d and all codeword
dimensions contained in K. Especially, Aq(v,d;{k}) = Aq(v,d;k). The most obvious facts
about the numbers Aq(v,d;K) are summarized in [18, Lemma 2.3]: Clearly we have mono-
tonicity in d and K, i.e., Aq(v,d;K) ≥ Aq(v,d′;K) for 1 ≤ d ≤ d′ ≤ v and Aq(v,d;K) ≤
Aq(v,d;K′) for K ⊆ K′ ⊆ {0, . . . ,v}. By decomposing codes we obtain Aq(v,d;K ∪K′) ≤
Aq(v,d;K)+Aq(v,d;K′). Considering the dual subspace code C⊥ = {X⊥;X ∈ C } of C
gives Aq(v,d,K) = Aq(v,d,v−K) with v−K = {v− k : k ∈ K}. Subspace distance d = 1
permits to choose all subspaces, i.e., Aq(v,1;K) = ∑i∈K [ v

i ]q. For subspace distance d = 2
the optimal codes in the unrestricted mixed dimension case are classified in [18, Theorem
3.4] with cardinalities

Aq(v,2) = ∑
i≡bv/2c (mod 2)

[ v
i ]q

if v is even and
Aq(v,2) = ∑

i≡0 (mod 2)
[ v

i ]q = ∑
i≡1 (mod 2)

[ v
i ]q

if v is odd. For subspace distance d = v we have Aq(v,v) = 2 if v is odd and Aq(v,v) =
Aq(v,v;k) = qk + 1 if v is even, see [18, Theorem 3.1]. Also subspace distance v− 1 has
been resolved completely, see [18, Theorem 3.2]. If v = 2m is even then Aq(v,v− 1) =
Aq(v,v;m) = qm + 1, and if v = 2m+ 1 ≥ 5 is odd then Aq(v,v− 1) = Aq(v,v− 1;m) =

qm+1 + 1. Note that Aq(3,2) = q2 + q+ 2 > q2 + 1. So, in the following we can always
assume v≥ 5 and 3≤ d ≤ v−2. For subspace distance d = v−2 there is so far only partial
information, see [18, Theorem 3.3]. If v= 2m≥ 8 is even, then Aq(v,v−2)=Aq(v,v−2;m)

with q2m +1≤ Aq(v,v−2;m)≤ (qm +1)2. Moreover, Aq(4,2) = q4 +q3 +2q2 +q+3 for
all q, A2(6,4) = A2(6,4;3) = 77, q6 + 2q2 + 2q+ 1 ≤ Aq(6,4) ≤ (q3 + 1)2 for q ≥ 3, see
[16], and A2(8,6) = A2(8,6;4) = 257 [9]. The 8 isomorphism types of all latter optimal
codes have been classified in [15]. If v = 2m+1≥ 5 is odd, then Aq(v,v−2) ∈ {2qm+1 +

1,2qm+1 +2}. Moreover, Aq(5,3) = 2q3 +2 for all q and A2(7,5) = 2 ·24 +2 = 34. The
20 isomorphism types of all latter optimal codes have been classified in [17].

Next we consider upper bounds for mixed dimension codes that are applicable for all
parameters. Since the minimum subspace distance in a constant dimension code is even,

decomposing the code into constant dimension codes gives Aq(v,d)≤
v
∑

i=0
Aq(v,2dd/2e ; i).

Observing Aq(v,d;{0,1, . . . ,dd/2e−1}) = Aq(v,d;{v−dd/2e+1, . . . ,v−1,v}) = 1, this

was slightly tightened to Aq(v,d)≤ 2+
v−dd/2e

∑
i=dd/2e

Aq(v,2dd/2e ; i) in [18, Theorem 2.5]. There

is yet another tiny improvement, which seems to have been unnoticed so far:

Lemma 1. If dd/2e divides v, then Aq(v,d)≤
v−dd/2e

∑
i=dd/2e

Aq(v,2dd/2e ; i).

Proof. The constant dimension codes attaining Aq(v,2dd/2e ;dd/2e) are spreads, which
cover each point exactly once and hence have distance < d to all subspaces of dimension
k ∈ {0,1, . . . ,dd/2e−1} (and similarly for i = v−dd/2e). �
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Let us remark that this lemma gives A2(6,3) ≤ 119. By extending the known five iso-
morphism types of constant dimension codes attaining A2(6,4;3) = 77 one can reduce this
bound by 1 to A2(6,3)≤ 118, see [18, Section 4.2]. For the best known bounds on A2(v,d)
with v≤ 8 we refer the reader to [15].

According to [2] the, so far, only successful generalization of the classical bounds to
projective space was given by Etzion and Vardy in [7, Theorem 10]. The approach gen-
eralizes the sphere-packing bound for constant dimension codes facing the fact that the
spheres have different sizes. To that end let B(U,e) denote the ball with center U and radius
e. Those balls around codewords are pairwise disjoint for subspace distance d = 2e+ 1.
Denoting the number of k-dimensional subspaces contained in B(U,e) with dim(U) = i by
c(i,k,e), we have

c(i,k,e) =
min{k,i}

∑
j=d i+k−e

2 e

[ i
j
]

q

[
v−i
k− j

]
q

q(i− j)(k− j).

Thus, Aq(v,2e+1) is at most as large as the target value of the ILP:

max
v

∑
i=0

ai subject to (1)

ai ≤ Aq(v,2e+2; i) ∀0≤ i≤ v
v

∑
i=0

c(i,k,e) ·ai ≤ [ v
k ]q ∀0≤ k ≤ v

ai ∈ N ∀0≤ i≤ v

Here, the ai denote the number of codewords of dimension i. As for each ILP one can
consider the LP relaxation, i.e., replacing the integer variables by non-negative real vari-
ables, in order to decrease computation times. For this ILP it turns out that the gap be-
tween the target value of the ILP and the corresponding LP is quite often smaller than
1. Note that the described sphere-packing approach for even distances is obtained via
Aq(v,2e + 2) ≤ Aq(v,2e + 1), which nevertheless turns out to be the best known upper
bound in some cases, see e.g. the bounds for A2(10,6) and A2(10,5) in [12].

As the problem of the determination of Aq(v,d) can be naturally formulated as a maxi-
mum clique problem, and the Lovász theta bound from semidefinite programming can be
applied. Since the problem size is linear in terms of the graph parameters, they are expo-
nential in v. However, one can take the acting symmetry group into account in order to
drastically decrease the problem size, see [1] for general reduction techniques for invariant
semidefinite programs. Obtaining parametric formulas for the reduced SDP formulations
is a highly non-trivial task in general, and was achieved for ϑ ′ of the graph corresponding
to Aq(v,d) in [2]. The authors report several numerical results for q = 2 and odd distances.
Where they are computed, this gives the best known upper bound in many cases. Using
improved upper bounds for constant dimension codes, especially partial spreads, in [10]
the authors compute numerical results, also for q > 2 and even distances.

3. JOHNSON TYPE BOUNDS FOR CONSTANT DIMENSION CODES

One approach to obtain upper bounds for constant dimension codes is to try to general-
ize upper bounds for binary error-correcting constant weight codes in the Hamming metric,
which corresponds to the case q = 1. Several of the latter have been obtained by Johnson
in 1962. The bound [20, Theorem 3], see also [27], has been generalized by Xia and Fu
to [28, Theorem 2]. However, the formulation of the bound can be simplified consider-
ably, see [13, Proposition 1], and only applies to partial spreads, i.e., d = 2k. While the
generalization of [20, Theorem 3] is rather weak, generalizing [20, Inequality (5)] yields a
considerably stronger upper bound:
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Theorem 1. (Johnson type bound II) [28, Theorem 3], [7, Theorems 4 and 5]

Aq(v,d;k) ≤
⌊

qv−1
qk−1

Aq(v−1,d;k−1)
⌋

(2)

Aq(v,d;k) ≤
⌊

qv−1
qv−k−1

Aq(v−1,d;k)
⌋

(3)

For the proof of Inequality (2) one considers all codewords containing an arbitrary but
fixed point. Since there are at most Aq(v− 1,d;k− 1) such codewords and the number
of points in the ambient space and in a codeword is [ v

1 ]q and
[

k
1

]
q, respectively, the upper

bound follows. Inequality (3) is obtained if one considers codewords contained in a given
hyperplane instead. We remark that Inequality (2) and Inequality (3) are equivalent using
duality, i.e., Aq(v,d;k) = Aq(v,d;v− k).

Of course, the bounds in Theorem 1 can be applied iteratively. For binary error-correcting
constant weight codes in the Hamming metric the optimal choice of the corresponding in-
equalities is unclear, see e.g. [24, Research Problem 17.1], while we have:

Proposition 1. [13, Proposition 2]
For k ≤ v/2 we have⌊

qv−1
qk−1

Aq(v−1,d;k−1)
⌋
≤
⌊

qv−1
qv−k−1

Aq(v−1,d;k)
⌋
,

where equality holds iff v = 2k.

So, initially assuming k ≤ v/2, the optimal choice is to iteratively apply Inequality (2),
which results in:

Corollary 1. (Implication of the Johnson type bound II)

Aq(v,d;k)≤

⌊
qv−1
qk−1

⌊
qv−1−1
qk−1−1

⌊
. . .

⌊
qv−k+d/2+1−1

qd/2+1−1
Aq(v−k+d/2,d;d/2)

⌋
. . .

⌋⌋⌋
.

We prefer not to insert Aq(v−k+d/2,d;d/2) ≤
⌊

qv−k+d/2−1
qd/2−1

⌋
, since currently much

better bounds for partial spreads are available, which we will discuss next.
In the case d = 2k, any two codewords of C intersect trivially, meaning that each point

of PG(Fv
q) is covered by at most a single codeword. These codes are better known as

partial k-spreads. If all the points are covered, we have #C =
[v

1

]
q/
[k

1

]
q and C is called a

k-spread. From the work of Segre in 1964 [26, §VI] we know that k-spreads exist if and
only if k divides v. Upper bounds for the size of a partial k-spreads are due to Beutelspacher
[3] and Drake & Freeman [5] and date back to 1975 and 1979, respectively. Starting with
[22], several recent improvements have been obtained. Currently the tightest upper bounds,
besides k-spreads, are given by a list of 21 sporadic 1-parametric series and the following
two theorems stated in [23]:

Theorem 2. For integers r≥ 1, t ≥ 2, u≥ 0, and 0≤ z≤
[r

1

]
q/2 with k =

[r
1

]
q+1−z+u>

r we have Aq(v,2k;k)≤ lqk +1+ z(q−1), where l = qv−k−qr

qk−1 and v = kt + r.

Theorem 3. For integers r ≥ 1, t ≥ 2, y ≥ max{r,2}, z ≥ 0 with λ = qy, y ≤ k, k =[r
1

]
q +1− z > r, v = kt + r, and l = qv−k−qr

qk−1 , we have Aq(v,2k;k)≤

lqk +

⌈
λ − 1

2
− 1

2

√
1+4λ (λ − (z+ y−1)(q−1)−1)

⌉
.

The special case z = 0 in Theorem 2 covers the breakthrough Aq(kt + r,2k;k) = 1+
∑

t−1
s=1 qsk+r for 0 < r < k and k >

[r
1

]
q by Năstase and Sissokho [25] from 2016, which

itself covers the result of Beutelspacher. The special case y = k in Theorem 3 covers the
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result by Drake & Freeman. A contemporary survey of the best known upper bounds for
partial spreads can be found in [19].

All currently known upper bounds for partial spreads can be deduced from the non-
existence of certain divisible codes, see [19]. The set N of all points of the ambient space
not contained in any k-space of a partial spread corresponds to a projective linear code
over Fq of length n = #N with all codeword Hamming weights divisible by qk−1. Recently
this idea was generalized to constant dimension codes with d < 2k in [21]. If C is a set
of subspaces with dimensions at least r and such that every point P is contained in at
most j subspaces X ∈ C , then the multiset N of points defined by P 7→ j−#{X ∈ C ;P ∈
X} corresponds to a possibly non-projective linear code over Fq of length #N with all

codeword Hamming weights divisible by qr−1. Let
{

a/
[k

1

]
q

}
k

denote the maximal b ∈ N

permitting a qk−1-divisible code of length a−b ·
[k

1

]
q over Fq. With this, Inequality (2) can

be tightened (obviously we have
{

a/
[k

1

]
q

}
k
≤
⌊

a/
[k

1

]
q

⌋
) to

Aq(v,d;k)≤

{[
v
1

]
q
·Aq(v−1,d;k−1)/

[
k
1

]
q

}
k

.

Using the abbreviation v′ = v− k+d/2, the iterated application yields Aq(v,d;k)

≤


[v

1

]
q[k

1

]
q

·


[v−1

1

]
q[k−1

1

]
q

·

· · · ·

[v′+1

1

]
q[d/2+1

1

]
q

·Aq(v′,d;d/2)


d/2+1

. . .


k−2


k−1


k

, (4)

which is the tightened version of Corollary 1.
While the question whether a projective qr-divisible linear code over Fq of length n

exists, is unsolved in general, this problem has been solved in the non-projective case via
an efficient algorithm, see [21, Theorem 4] and [21, Algorithm 1], i.e.,

{
a/
[k

1

]
q

}
k

can
be computed efficiently. Results from the theory of qr-divisible linear codes over Fq are
exemplarily applied in Lemma 3.

We remark that Inequality (4) combined with the best known upper bounds for par-
tial spreads yields the best known upper bounds for constant dimension codes except for
A2(6,4;3) = 77 < 81 [16] and A2(8,6;4) = 257≤ 272 < 289 [9, 14]. The mentioned im-
provements are based on extensive integer linear programming computations. In contrast
to that, the improvements in this article are based on self-contained theoretical arguments
and do not need any huge computations.

4. JOHNSON TYPE BOUNDS FOR MIXED DIMENSION CODES

Since Theorem 1 (and its refinement based on qr-divisible codes) is that competitive for
constant dimension codes, it seems quite natural to investigate the underlying idea also in
the mixed dimension case. As the number of points in subspaces of different dimensions
is different, we have to take the precise dimension distribution of those codewords that
contain a specific point into account. To that end let Fq(v,d) be the set of (v+1)-tuples b =

(b0, . . . ,bv) ∈ Nv+1 such that there exists a mixed dimension code C in Fv
q with minimum

distance at least d and dimension distribution b. Note that our numbering starts from 0.
Transferring the idea of the Johnson bound we end up with the following integer linear
programming (ILP) formulation
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Proposition 2. For all v≥ 2 and 1≤ d ≤ v we have

Aq(v,d)≤max
v

∑
i=0

ai subject to (5)

∑
b∈Fq(v−1,d)

bi−1xb =
[

i
1

]
q ai ∀1≤ i≤ v

∑
b∈Fq(v−1,d)

xb = [ v
1 ]q

a0 ≤ 1

Aq(v,d; i)a0 +ai ≤ Aq(v,d; i) ∀1≤ i≤ d−1

xb ∈ N ∀b ∈ Fq(v−1,d)

ai ∈ N ∀1≤ i≤ v

Proof. Let C be a subspace code in Fv
q with minimum subspace distance at least d whose

cardinality attains Aq(v,d). By ai ∈ N we denote the number of i-dimensional codewords
for 0 ≤ i ≤ v, i.e., vector a is the dimension distribution of C . For every point P of Fv

q let
CP be {C ∈ C : P≤C} modulo P and bP ∈ Nv be the dimension distribution of CP. Thus
bP ∈ Fq(v−1,d). By xb ∈N we count the number of points p such that b = bP. Since each
i-dimensional codeword of C contains

[ i
1

]
q points we have ∑b∈Fq(v−1,d) bi−1xb =

[
i
1

]
q ai

for all 1 ≤ i ≤ v. Since every bP is counted exactly once, we have ∑b∈Fq(v−1,d) xb = [ v
1 ]q.

Of course C can contain at most one 0-dimensional codeword. Since a0 is not coupled
with the xb-variables, we use the fact that C can not contain both a 0- and an i-dimensional
codeword for 1 ≤ i ≤ d−1. This can be modeled as Aq(v,d; i)a0 +ai ≤ Aq(v,d; i), i.e., if
a0 = 1 then the inequality reads ai ≤ 0 and if a0 = 0 then the inequality is equivalent to
ai ≤ Aq(v,d; i), which is also valid. �

We remark that the hard-to-compute values Aq(v,d; i), occurring as coefficients of in-
equalities in the above ILP, may be replaced by any upper bound on Aq(v,d; i) and the set
Fq(v−1,d) may be also replaced by any superset, which of course may weaken the result-
ing upper bound. Of course, further inequalities like e.g. ∑i∈K ai ≤ Aq(v,d;K) for some
K ⊆ {0, . . . ,v} may be added.

Having Proposition 1 at hand, it is obvious that ILP formulation (5) can be further
improved by also taking Inequality (3) into account. However, instead of considering sub-
codes in hyperplanes we use duality in order to assume ∑

bv/2c
i=0 ai ≥ ∑

v
dv/2e ai, which also

allows us to eliminate variables. As a shortcut, we use m = bv/2c in the following and
denote by Fq(v− 1,d) the set of m-tuples b = (b0, . . . ,bm−1) ∈ Nm such that there ex-
ists a subspace code C in Fv−1

q with minimum subspace distance, at least, d, codewords
with dimensions in {0, . . . ,m−1}, and dimension distribution b. With this we can directly
reformulate Proposition 2 to:

Proposition 3. For all v≥ 2 and 1≤ d ≤ v we have

Aq(v,d)≤max t(a) subject to (6)

∑
b∈Fq(v−1,d)

bi−1xb =
[

i
1

]
q ai ∀1≤ i≤ m

∑
b∈Fq(v−1,d)

xb = [ v
1 ]q

a0 ≤ 1

Aq(v,d; i)a0 +ai ≤ Aq(v,d; i) ∀1≤ i≤min{d−1,m}
xb ∈ N ∀b ∈ Fq(v−1,d)

ai ∈ N ∀0≤ i≤ m,
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where m = bv/2c and t(a) = 2
m
∑

i=0
ai if v−1 is even and by t(a) = am +2

m−1
∑

i=0
ai otherwise.

Now let us compute the contribution of a point P with dimension distribution bP of the
corresponding code CP. For b = bP ∈ Nm and m = bv/2c we set

Γv(b) =


2

m−1
∑

i=0

bi

[i+1
1 ]q

: v≡ 1 (mod 2),

bm−1

[m1]q
+2

m−2
∑

i=0

bi

[i+1
1 ]q

: v≡ 0 (mod 2).
(7)

and call Γv(b) score of b. With this we have

t(a) = ∑
b

xbΓv(b)≤
[

v
1

]
q
·max

b
Γv(b) (8)

In other words, we express the target function in terms of the xb and ignore all constraints
on the ai, giving an easy upper bound.

Even for small parameters v and d the sets Fq(v−1,d) can become quite large, so that
we introduce another ILP variant. To that end let us write c′ ≤ c for two vectors c′,c ∈ Rn

iff c′i ≤ ci for all 1 ≤ i ≤ n, where the integer n will be always clear from the context. Of
course we have Γv(c′)≤ Γv(c). Let Fq(v−1,d)⊂F for some set F . We call an element
f of F maximal if there does not exist an element f ′ ∈F with f ′ ≥ f and f ′ 6= f . If F
contains all maximal elements from F then we can restrict to b ∈F in Proposition 3 if
we replace ∑b∈F bi−1xb =

[
i
1

]
q ai by ∑b∈F bi−1xb ≥

[
i
1

]
q ai.

Combining both ideas gives:

Proposition 4. Let v≥ 2 and 1≤ d ≤ v be integers, ω ∈Rge0, and m = bv/2c. If F ⊆Nm

such that for all f ′ ∈ Fq(v− 1,d) either there exists an element f ∈ F with f ≥ f ′ or
Γv( f ′)≤ ω , then we have

Aq(v,d)≤max ωz+ t(v) subject to (9)

∑
b∈F

bi−1xb ≥
[

i
1

]
q ai ∀1≤ i≤ m

z+ ∑
b∈F

xb = [ v
1 ]q

Aq(v,d; i)a0 +ai ≤ Aq(v,d; i) ∀1≤ i≤min{d−1,m}
ai ≤ Aq(v,d; i) ∀min{d−1,m}+1≤ i≤ m

xb ∈ N ∀b ∈F

z ∈ N,

where t(a) is defined as in Proposition 3.

Proof. We extend the ILP model from Proposition 3 by counting bP either in xb where
bP ≤ b and b ∈F or in the new auxiliary variable z (then Γv(bP)≤ ω). The interpretation
of the ai changes slightly if z > 0 since some contributions of the bP are hidden in z. �

Note that we can add the restrictions ai ∈ N if z = 0, i.e., the ai keep their meaning as
the dimension distribution of the code C .

In the following we will mostly use the ILP formulation (9) in order to compute im-
proved upper bounds for Aq(v,d). It remains to provide an algorithm to compute a feasible
set F . For all b ∈ Fq(v− 1,d) we obviously have 0 ≤ bi ≤ Aq(v− 1,d; i), so that there
is only a finite number of possibilities. In order to check whether b ∈ Fq(v− 1,d) we
slightly modify the ILP formulation (9) by setting z = 0, replacing v by v− 1, adding the
constraints ai ≥ bi for all i 6= j, and replacing the target function by a j, where j can be
chosen freely. If there is no solution, then b /∈ Fq(v−1,d). Otherwise the solution vector
a can be added to F and all b′ ≤ a do not need to be considered any more. Moreover, all
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vectors where a j is replaced by a larger number in a cannot be contained in Fq(v− 1,d).
This gives a recursive algorithm, which works in principle. For larger parameters, it will
become computationally infeasible. However, by a mixture between theoretical reasoning
and (I)LP computations we will be able to determine suitable sets F for many parameters.
In the determination of F we will speak of maximal patterns.

We give a concrete numerical example:

Lemma 2. A2(10,5)≤ 48104

Proof. Let C be a subspace code of F10
2 with minimum subspace distance d = 5, and let

ai denote the number of i-dimensional codewords. W.l.o.g. we assume a0 +a1 +a2 +a3 +
a4 ≥ a6 +a7 +a8 +a9 +a10, so that #C ≤ a5 +2∑

4
i=0 ai. If a0 +a1 ≥ 1, then a0 +a1 = 1

and #C ≤ 2+ 2a4 + a5 ≤ 2+ 2 · 4977+ 38148 = 48104 due to A2(10,5;4) ≤ 4977 and
A2(10,5;5)≤ 38148. Thus, we assume a0 = a1 = 0 in the following.

Next we consider the possible maximal patterns of codewords through a point, i.e., in
F9

2 we consider sets of codewords with dimension in {1,2,3,4} and minimum distance
at least 5. Since A2(9,6;3) = 73 and A2(9,6;4) ≤ 1156 the maximal patterns are below
1141156, 37341156, or patterns of the form 213x34x4 . So, let us determine bounds for x3 and
x4. In F8

2 is suffices to consider the patterns 11 and 21334 since A2(8,5;1) = A2(8,5;2) = 1
and A2(8,5;3) = 34. Only pattern 21334 contributes to x3 or x4. Since a line is present, we
need at least 3 times pattern 11, so that at most

[9
1

]
2−3 = 508 points in F9

2 can have pattern

21334. Thus we have x3 ≤
⌊

508/
[3

1

]
2

⌋
= 72 and x4 ≤

⌊
508 ·34/

[4
1

]
2

⌋
= 1151.

Finally, let

F = {(0,1,0,0,1156),(0,0,0,73,1156),(0,0,1,72,1151)}

and apply the ILP of Proposition 4 with z= 0. This gives #C ≤ 48104. An optimal solution
is given by a3 = 3, a4 = 4977 and b5 = 38144, where the second pattern is chosen 999 and
the third pattern is chosen 24 times. �

Note that the scores Γ10 of the three patterns in F are less than 37.95699, 47.023656,
and 47.014747, respectively, so that Inequality (8) would give #C ≤ b48105.3c = 48105,
i.e., the solution of the ILP slightly pays off.

Classification and existence results for qr-divisible codes can also be used to decrease
upper bounds in the context of subspace codes with mixed dimensions. A concrete numer-
ical example is the following:

Lemma 3. A3(9,5)≤ 123048

Proof. Let C be a subspace code of F9
3 with minimum subspace distance d = 5, and let ai

denote the number of i-dimensional codewords. W.l.o.g. we assume a0 + a1 + a2 + a3 +
a4 ≥ a5 + a6 + a7 + a8 + a9, so that #C ≤ 2∑

4
i=0 ai. If a0 + a1 ≥ 1, then a0 + a1 = 1 and

#C ≤ 2+2a4 ≤ 2+2A3(9,6;4)≤ 122022. In the following we assume a0 = a1 = 0.
Next we consider the possible maximal patterns of codewords through a point, i.e., in

F8
q we consider sets of codewords with a dimension in {1,2,3} and minimum subspace

distance at least 5: 11 and 2x23x3 , where x2 ≤ 1 and x3 ≤ A3(8,6;3). For the latter the tight-
est known bounds are 244≤ A3(8,6;3)≤ 248. If A3(8,6;3) = 248 then the corresponding
56 holes have to form a 32-divisible projective set for which the unique possibility is the
Hill cap, see e.g. [19], which does not contain a line. So, no vector space partition of type
152213248 exists in F8

3, which implies x2 + x3 ≤ 248.
Solving ILP (9) with the patterns 11, 213247, 3248 and a0 = a1 = 0, a2 ≤ 1, a3 ≤ 757,

a4 ≤ 61010 gives the unique solution a2 = 0, a3 = 757, a4 = 60768 with target value
123050.

Assume for a moment that a3 = 757. In that case the 757 planes form a spread, i.e.,
each point is covered exactly once. So each point can be contained in at most 247 solids.
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Thus, a4 ≤
{

247 ·
[9

1

]
3/
[4

1

]
3

}
4
= 60766. (We have a4 ≤ b247 ·

[9
1

]
3/
[4

1

]
3c = 60768. If

a4 = 60768 then there would be a 33-divisible linear code of length 7, If a4 = 60767 then
there would be a 33-divisible linear code of length 47, which both do not exist, see [21].)
Thus, #C ≤ 123048.

If we add a3 ≤ 756 to our ILP formulation we also get a target value of 123048. �

We remark that this is a numerical improvement of the more general Lemma 4. In the
next section we apply the underlying general idea of the Johnson bound, as outlined above,
to Aq(v,v−4) and Aq(8,3).

5. ANALYTICAL RESULTS

Lemma 4. For odd v≥ 7 we have

Aq(v,v−4) ≤ max
{

2Aq(v,v−3;m−1)+2Aq(v,v−3;m),

2+2

⌊([
2m+1

1

]
q
−
[

m−2
1

]
q

)
/

[
m−1

1

]
q

⌋

+2

⌊([
2m+1

1

]
q
−
[

m−2
1

]
q

)
·Aq(2m,2m−2;m−1)/

[
m
1

]
q

⌋}
,

where m = (v−1)/2.

Proof. Let C be a subspace code of Fv
q with minimum subspace distance d = v− 4,

m = v−1
2 ≥ 3, and ai denote the number of i-dimensional codewords. W.l.o.g. we as-

sume ∑
m
i=0 ai ≥ ∑

v
i=m+1 ai, so that #C ≤ 2∑

m
i=0 ai. Since d = 2m−3 we have ∑

m−2
i=0 ai ≤ 1.

If there exists an index 0 ≤ i ≤ m− 3 with ai > 0, then #C ≤ 2+ 2Aq(v,v− 3;m). If
∑

m−2
i=0 ai = 0, then #C ≤ 2Aq(v,v− 3;m− 1)+ 2Aq(v,v− 3;m), which is at least as large

as 2+ 2Aq(v,v− 3;m). It remains to consider the case am−2 = 1. Here we consider the
possible maximal patterns of codewords through a point, i.e., in F2m

q we consider sets of
codewords with a dimension in {m− 3,m− 2,m− 1} and minimum subspace distance at
least 2m− 3: (m− 3)1 and (m− 2)1(m− 1)Aq(2m,2m−2;m−1). The first pattern is attained[m−2

1

]
q times so that

am−1 ≤

⌊([
2m+1

1

]
q
−
[

m−2
1

]
q

)
/

[
m−1

1

]
q

⌋
and

am ≤

⌊([
2m+1

1

]
q
−
[

m−2
1

]
q

)
·Aq(2m,2m−2;m−1)/

[
m
1

]
q

⌋
.

�

We remark that
⌊([2m+1

1

]
q−
[m−2

1

]
q

)
/
[m−1

1

]
q

⌋
can be simplified to q5 +q3 +q for m =

3, q6 +q3 for m = 4, q7 +q3 for m = 5, and qm+2 +q3−1 for m≥ 6. The upper bound can
be improved if there is no vector space partition of type 1?(m−2)1(m−1)Aq(2m,2m−2;m−1)

of F2m
q . This happens e.g. for m = 3 and arbitrary q. Since Aq(6,4;2) = q4 + q2 + 1

and Aq(7,4;2) = q5 + q3 + 1 the upper bound of upper bound of Lemma 4 evaluates to
Aq(7,3) ≤ 2(q8 + q6 + 2q5 + q4 + 2q3 + q2 + 2) using the Anticode bound Aq(7,4;3) ≤[7

1

]
q · (q

2− q+ 1), which is the tightest known bound for these parameters. This can be
further improved to:

Lemma 5. Aq(7,3)≤ 2(q8 +q6 +2q5 +2q3 +q2−q+2)
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Proof. Let C be a subspace code of F7
q with minimum subspace distance d = 3, and let ai

denote the number of i-dimensional codewords. W.l.o.g. we assume a0 + a1 + a2 + a3 ≥
a4 + a5 + a6 + a7, so that #C ≤ 2∑

3
i=0 ai. If a0 ≥ 1, then a0 = 1 and #C ≤ 2+ 2a3 ≤

2(q8+q6+q5+q4+q3+q2+2)≤ 2(q8+q6+2q5+2q3+q2−q+2). Next we consider
the possible maximal patterns of codewords through a point, i.e., in F6

q we consider sets of
codewords with a dimension in {0,1,2} and minimum subspace distance at least 3: 01 and
1x12x2 , where x1 ≤ 1 and x2 ≤ Aq(6,4;2) = q4 +q2 +1. Since x2 = Aq(6,4;2) can only be
attained in case of a line spread, we have x1 + x2 ≤ q4 + q2 + 1, which gives the possible
maximal patterns 112q4+q2

and 2q4+q2+1. We start with the case a1 = 0 and denote the
multiplicities of the patterns 112q4+q2

and 2q4+q2+1 by m1 and m2, respectively. With this
we have a2 ≤

⌊
m1/

[2
1

]
q

⌋
and a3 ≤

⌊([7
1

]
q · (q

4 +q2 +1)−m1

)
/
[3

1

]
q

⌋
, so that

#C ≤ 2

(
m1/

[
2
1

]
q
+

([
7
1

]
q
· (q4 +q2 +1)−m1

)
/

[
3
1

]
q

)

= 2m1 ·
q2

(q+1)(q2 +q+1)
+2
[

7
1

]
q
· (q2−q+1) =: f (m1),

which is increasing in m1. Next we invoke #C ≤ 2a2 + 2a3 and a2 ≤ Aq(7,4;2) = q5 +

q3 +1. If m1 ≥
[2

1

]
q · (q

5 +q3 +1), then a2 ≤ q5 +q3 +1 and

a3 ≤

⌊([
7
1

]
q
· (q4 +q2 +1)−

[
2
1

]
q
· (q5 +q3 +1)

)
/

[
3
1

]
q

⌋

=

[
7
1

]
q
· (q2−q+1)−

⌈
(q+1) · (q5 +q3 +1)

q2 +q+1

⌉
=

[
7
1

]
q
· (q2−q+1)−q4−q+

⌊
q2−1

q2 +q+1

⌋
= q8 +q6 +q5 +q3 +q2−q+1,

so that #C ≤ 2(q8 + q6 + 2q5 + 2q3 + q2− q+ 2). If
[2

1

]
q · (q

5 + q3) ≤ m1 <
[2

1

]
q · (q

5 +

q3 +1), then a2 ≤ A2(7,4;2)−1 = q5 +q3 so that

#C ≤ f ((q+1) · (q5 +q3)) = 2
(

q8 +q6 +2q5 +2q3 +q2−q+2− 1
q2 +q+1

)
.

If a1 = 1, then

#C ≤ 2

(
1+m1/

[
2
1

]
q
+

([
7
1

]
q
· (q4 +q2 +1)−m1− (q4 +q2 +1)

)
/

[
3
1

]
q

)

= 2

(
m1 ·

q2

(q+1)(q2 +q+1)
+

[
7
1

]
q
· (q2−q+1)− (q2−q)

)
.

Since we can assume m1 ≤ (q+ 1)(q5 + q3 + 1) we have #C ≤ 2(q8 + q6 + 2q5 + 2q3 +
3). �

In the binary case Lemma 5 gives the upper bound A2(7,3)≤ 808 while the semidefinite
programming method from [2] gives A2(7,3) ≤ 776. Also for 3 ≤ q ≤ 7 the semidefinite
programming method gives tighter upper bounds, see [10].

Lemma 6. Let m≥ 4. If Aq(2m,2m−4)> 2+Aq(2m,2m−4;m), then we have

Aq(2m,2m−4)≤

[2m
1

]
q[m

1

]
q

·


([2m−1

1

]
q−
[m−3

1

]
q

)
·Aq(2m−2,2m−4;m−2)[m−1

1

]
q

+ 2
[2m

1

]
q[m−2

1

]
q
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if m = 4 or (m = 5 and q = 2) and

Aq(2m,2m−4)≤

⌊[2m
1

]
q[m

1

]
q

·

⌊[2m−1
1

]
q ·Aq(2m−2,2m−4;m−2)[m−1

1

]
q

⌋⌋
otherwise.

Proof. Let C be a subspace code of F2m
2 with minimum subspace distance d = 2m− 4,

and let ai denote the number of i-dimensional codewords, so that #C = ∑
2m
i=0 ai. Due

to duality we assume ∑
m−1
i=0 ai ≥ ∑

2m
i=m+1 ai, so that #C ≤ am + 2∑

m−1
i=0 ai. If ai ≥ 1 for

an index 0 ≤ i ≤ m− 4, then #C ≤ 2+ Aq(2m,2m− 4), so that we assume ai = 0 for
all 0 ≤ i ≤ m− 4 in the following. Next we consider the possible maximal patterns of
codewords through a point, i.e., in F2m−1

q we consider sets of codewords with a dimension
in {m−4,m−3,m−2,m−1} and minimum subspace distance at least 2m−4: (m−4)1,
(m− 3)1(m− 1)x, and (m− 2)a(m− 1)b, where we have to determine the possible values
for x, a, and b. To that end we consider the possible maximal patterns of codewords in
F2m−2

q with a dimension in {m−4,m−3,m−2} and minimum subspace distance at least
2m−4: (m−4)1, (m−3)1, and (m−2)τ , where τ := Aq(2m−2,2m−4;m−2). Thus, we
can choose

x =


([2m−1

1

]
q−
[m−3

1

]
q

)
· τ[m−1

1

]
q


and have

b≤


([2m−1

1

]
q−a

[m−2
1

]
q

)
· τ[m−1

1

]
q

 ,
where a ∈ N. Since

[m−2
1

]
q ≥ 2 and τ = Aq(2m−2,2m−4;m−2)≥ qm ≥

[m
1

]
q we have

2a[m−1
1

]
q

−
τ
[m−2

1

]
q ·a[m−1

1

]
q ·
[m

1

]
q

≤ 0

so that the score for pattern (m− 2)a(m− 1)b is decreasing in a. For a = 0 we obtain a
score of

s3 :=
1[m
1

]
q

·

⌊[2m−1
1

]
q · τ[m−1

1

]
q

⌋
.

For pattern (m−3)1(m−1)x the score is given by

s2 :=
1[m
1

]
q

·


([2m−1

1

]
q−
[m−3

1

]
q

)
· τ[m−1

1

]
q

+ 2[m−2
1

]
q

and for (m−4)1 we have a score of s1 := 2
[m−3

1 ]q
. In order to compare the three scores we use

qm+1≤ τ = Aq(2m−2,2m−4;m−2)≤
[2m−2

1

]
q/
[m−2

1

]
q and qk−1+1≤

[k
1

]
q ≤ 2qk−1−1

for k ≥ 2. Obviously, we have s3 ≥ s1. If m = 4, then using
[1

1

]
q = 1 gives

s2− s3 ≥ − 1[m
1

]
q

·

[m−3
1

]
q · τ +1[m−1
1

]
q

+
2[m−2
1

]
q

≥ 1[m−2
1

]
q

·
(

2− 2q2m−3

qm−1qm−2

)
≥ 0.
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In the other direction we have

s2− s3 ≤ − 1[m
1

]
q

·

[m−3
1

]
q · τ−1[m−1
1

]
q

+
2[m−2
1

]
q

≤ 2
qm−3 −

1
2qm−1 ·

(
qm−4 ·qm

2qm−2 −1
)

≤ 2
qm−3 ·

(
1− 1

4q2 ·
(

qm−2

2
−1
))

,

which is negative if m≥ 7 or m = 6 and q≥ 3. For m = 6 and q = 2 we plug in the known
numerical values for the first inequality and obtain s2 − s3 < 0. It remains to consider
m = 5, where Aq(8,6,3)≥ q5 +1 and

s2− s3 ≤ − 1[5
1

]
q

·
⌊

(q+1)τ−1
q3 +q2 +q+1

⌋
+

2
q2 +q+1

≤ − q3−q
q4 +q3 +q2 +q+1

+
2

q2 +q+1
,

which is negative for q≥ 3. For m = 5 and q = 2 we can easily check have s2−s3 > 0. �

The next lemma shows that a specific configuration consisting of a point, some lines
and some planes does not exist in F7

q. This result will then be used to proof an upper bound
on Aq(8,3).

Lemma 7. There exists no subspace code C in F7
q with minimum subspace distance d = 3

and dimension distribution 112q4+q2+23q8+q6+q5+q3
.

Proof. Assume that C is a code in V = F7
q of minimum subspace distance 3 containing a

single point P and q8 + q6 + q5 + q3 planes. We denote the set of lines in C by C2 and
the set of planes in C by C3. As the subspace distance is at least 3, P is not contained in
any element of C2 and C3, no line in C2 is contained in a plane in C3, the lines in C2 are
pairwise disjoint and the pairwise intersection of the planes in C3 is at most a point. The
lines in the ambient space not covered by any plane in C3 will be called free. All lines in
C2 and all lines passing through P are free.

For a point Q, let C3(Q) be the set of all planes in C3 passing through Q. Clearly,
C3(P) = /0. For Q 6= P, #C (Q) ≤ q4 + q2, since otherwise all the points of the ambient
space, including P, would be covered by some element in C3(Q).1 We count the set X of
flags (Q,E) with Q ∈

[V
1

]
and E ∈ C3 in two ways. Since Q < E,

#X = #C3 ·
[

3
1

]
q
= q3(q2 +1)(q3 +1) · (q2 +q+1).

On the other hand,

#X = ∑
Q∈[V1]

#C3(Q)≤ (

[
7
1

]
q
−1) · (q4 +q2) = q(q3 +1)(q2 +q+1) ·q2(q2 +1).

Thus, we have in fact equality, which implies #C3(Q) = q4 +q2 for all Q 6= P.
Modulo Q, the q4 +q2 planes in C3(Q) form a partial line spread in V/Q. It is known

that every such partial spread is extendible to a spread.2 Therefore, the set of q+ 1 free
lines through Q spans a plane E(Q), and all lines in E(Q) passing through Q are free.

1For #C3(Q) = q4 +q2 +1, the image of C3(Q) modulo Q would be a line spread in V/Q∼= F6
q.

2For example, using that its set of q+ 1 uncovered points corresponds to a linear code of (effective) length
q+1 whose codewords have a weight that is divisible by q. Thus, all non-zero codewords have a weight of q and
the corresponding point set has to be a line.
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Let Q′ ∈ E(Q) \ {P}. For Q′ /∈ 〈P,Q〉, E(Q) contains the distinct free lines 〈Q′,P〉
and 〈Q′,Q〉, implying that E(Q′) = E(Q). For Q′ ∈ 〈P,Q〉, we pick an auxiliary point
Q′′ ∈ E(Q) with Q′′ /∈ 〈P,Q〉 = 〈P,Q′〉. By applying the previous case twice we get again
that E(Q′) = E(Q′′) = E(Q). Thus, the set S = {E(Q) | Q ∈

[V
1

]
\{P}} is of size[7

1

]
q−1[3

1

]
q−1

=
q7−q
q3−q

= q4 +q2 +1.3

Every line L ∈ C2 is free and therefore contained in a plane E(Q) (any point Q on L does
the job). Moreover, a plane E(Q) cannot contain more than one line from C2, as any two
lines in a plane intersect. Therefore #C2 ≤ #S = q4 +q2 +1. �

Remark 1. The proof of Lemma 7 shows that the free lines are precisely those contained
in the planes E(Q). Thus, C3 ∪ S covers each line in PG(V ) exactly once. Such a set of
planes is known as a q-analog of the Fano plane. The question for its existence is open
for every single value of q and arguably the most important open problem in the theory of
q-analogs of designs, see [4] for a survey.

Proposition 5. Aq(8,3)≤ q12+3q10+q9+3q8+3q7+3q6+5q5+3q4+q3+4q2+2q−1
for q≥ 3 and A2(8,3)≤ 9260.

Proof. Let C be a subspace code of F8
q with minimum subspace distance d = 3 and ai

denote the number of its codewords of dimension i. Due to duality we can assume #C ≤
2 · (a0 + a1 + a2 + a3) + a4. Of course we have ai ≤ Aq(8,4; i) for all 0 ≤ i ≤ 4, i.e.,
a0,a1 ≤ 1, a2 ≤ q6 +q4 +q2 +1,

a4 ≤
[

8
3

]
q /
[

4
3

]
q = (q2−q+1)(q4 +1)

[
7
1

]
q

= q12 +q10 +q9 +2q8 +q7 +2q6 +q5 +2q4 +q3 +q2 +1,

and

a3 ≤

⌊
Aq(7,4;2) ·

[
8
1

]
q[

3
1

]
q

⌋
=

⌊
(q5 +q3 +1) · (q8−1)

q3−1

⌋
= q10 +q8 +q7 +2q5 +q4 +q2 +q−1,

since
⌊

q+2
q2+q+1

⌋
= 0.

If a0 = 1, then a1 = a2 = 0, so that

#C ≤ q12 +3q10 +q9 +4q8 +3q7 +2q6 +5q5 +4q4 +q3 +3q2 +2q+1.

Thus, we can assume a0 = 0 in the following and consider the set of codewords containing
a point P. Modulo P the dimension distribution is given by 0b01b12b23b3 , where obviously
bi ≤ Aq(7,4; i) for 0 ≤ i ≤ 3, i.e., b0,b1 ≤ 1, b2 ≤ q5 + q3 + 1, and b3 ≤

[
7
2

]
q /
[

3
2

]
q =[

7
1

]
q ·(q

2−q+1)= q8+q6+q5+q4+q3+q2+1. To each possible dimension distribution
we assign a score

Γ8(b) =
b3[
4
1

]
q

+2 ·
2

∑
i=0

bi[
i+1

1

]
q

.

If the score of each dimension distribution that occurs at a point P in C is upper bounded
by ω , then we have #C ≤ ω ·

[
8
1

]
q. The score of a vector b ∈ N4 is of course at least as

large as the score of a vector b′ ∈ N4 if b ≥ b′ componentwise, so that we just have to
consider the feasible dimension distributions that are maximal with respect to this relation.
These are given by
(1) 013b3 , where b3 =

[
7
1

]
q · (q

2−q+1);

3The image of S modulo P is a line spread in V/P∼= F6
q.
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(2) 112b23b3 , where 0≤ b2 ≤ q5 +q3 +1, and b3 ≤

([
7
1

]
q
−1
)
·(q4+q2)

q2+q+1 ;

(3) 2b23b3 , where 0≤ b2 ≤ q5 +q3 +1, and b3 ≤

[
7
1

]
q
(q4+q2+1)−(q+1)b2

q2+q+1 .
If b0 = 1, then b1 = b2 = 0, which gives case (1). For the remaining cases we may again
consider the set of codewords modulo a common point, which then live in F6

q. Here the
possible maximal dimension distributions are
• 01;
• 112q4+q2

;
• 2q4+q2+1.

If b1 = 0 we can directly conclude the stated upper bound for b3 in case (3). If b1 = 1 we
observe that no q4 +q2 +1 planes can meet in a common point, cf. the proof of Lemma 7,
so that we obtain the stated upper bound for b3 in case (2). Of course we may round
down the, eventually fractional, upper bound for b3 to an integer. The scores for the three
unrounded cases are given by
(1) q5−q4 +q3 +q+1+ q2+2

q3+q2+q+1 ;

(2) 2
q+1 +(q2−q+1)q3 + 2b2

q2+q+1 ;

(3)

[
7
1

]
q
(q2−q+1)

(q+1)(q2+1) + 2q2+1
(q2+1)(q2+q+1) ·b2.

In cases (2) and (3) the scores are strictly increasing in b2 (which also remains valid if
be round the upper bound for b3 to an integer). Plugging in b2 = q5 + q3 + 1 gives the
following upper bounds for the scores
(1) q5−q4 +q3 +q+1+ q2+2

q3+q2+q+1 ;

(2) q5−q4 +3q3−2q2 +2q+ 2q+4
q3+2q2+2q+1 ;

(3) q5−q4 +3q3−2q2 +2q+ −q4+2q2+2
q5+2q4+3q3+3q2+2q+1 .

So, case (2) gives the largest upper bound for the score for all q so that we would obtain an
upper bound for Aq(8,3). For q = 2 we would obtain A2(8,3) ≤ b9277.142857c = 9277.
However, this bound can be slightly improved. The stated score for case (2) corresponds
to a subspace code in F7

q with dimension distribution 112q5+q3+13q8+q6+q3
, i.e., the code

excluded in Lemma 7. We can easily check that the second best score in case (2) is obtained
if a plane is removed. In case (3) we can perform the rounding for the upper bound for b3,
which gives b3 ≤ q8+q6+q5+q3+q2−q+1 for b2 = q5+q3+1, since

⌊
−q−2

q2+q+1

⌋
=−1.

(Decreasing b2 instead gives a lower score, even without rounding the corresponding upper
bound for b3.) Thus, we obtain the following improved upper bounds for the scores
(1) 013q8+q6+q5+q4+q3+q2+1: q5−q4 +q3 +q+1+ q2+2

q3+q2+q+1 ;

(2) 112q5+q3+13q8+q6+q5+q3−1: q5−q4+3q3−2q2+2q+

<1︷ ︸︸ ︷
2q3 +3q2 +q+3

q5 +2q4 +3q3 +3q2 +2q+1
;

(3) 2q5+q3+13q8+q6+q5+q3+q2−q+1: q5−q4 +3q3−2q2 +2q+ −q4+q2+3
q5+2q4+3q3+3q2+2q+1 .

Again case (2) obtains the best score, then case (3), and then case (1). For q = 2, we obtain
A2(8,3) ≤ b9260.142856c = 9260. Since

⌊
2q+4

q2+q+1

⌋
= 0 for q ≥ 3, we obtain an upper

bound of

Aq(8,3)≤ q12 +3q10 +q9 +3q8 +3q7 +3q6 +5q5 +3q4 +q3 +4q2 +2q−1.

�

We remark that the upper bound of Proposition 5 can almost surely be decreased by 1,
since the considered fractional solution violates a3 ≤ Aq(8,4;3) by 1− 3

q2+q+1 . However,
the corresponding analysis might get quite involved, i.e., one has to solve an ILP.
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Given the proof of Lemma 7, it seems more reasonable to also exclude cases where
the number of planes is strictly less than q8 + q6 + q5 + q3. For q = 2 the later number
is 360 while the largest known number of planes in F7

2 with subspace distance d = 3 is
333 [11]. We remark that the exclusion of dimension distribution 112q5+q3

3q8+q6+q5+q3
in

F7
q for subspace distance d = 3 would have been sufficient for the conclusion in the proof

of Proposition5. However, we think that Lemma 7 is interesting in its own right and the
presented tightening does not complicate the proof.

6. CONCLUSION

We have generalized the underlying idea of the Johnson bound for constant dimension
codes to mixed dimension subspace codes. As in the case of the Etzion-Vardy ILP we
also have to deal with integer linear programs. However, things get more complicated.
Nevertheless parametric improved upper bounds for Aq(v,v− 4) and Aq(8,3) have been
obtained. We illustrate our results with a small table of improvements for the binary case
and small parameters:

parameters improved cdc ILP E/V SDP johnson details bklb
A2(10,5) 48394 48336 49394 48104 Lemma 2 32940
A2(10,6) 48394 48336 - 38275 Lemma 6 32890
A2(11,7) 8844 9120? 8990 8842 Lemma 4 8067
A2(13,9) 34058 34591? 34306 34056 Lemma 4 32514

Here “improved cdc” refers to Lemma 1, “ILP E/V” to the ILP of Etzion and Vardy,
see Section 2, “SDP” to results based on semidefinite programming, see [2], “johnson” to
the results obtained in this paper, and “bklb” to the currently best known lower bound, see
[12]. If the entry of “ILP E/V” is written in italics, then the value for subspace distance
d−1 is taken. If the entry is marked with ? then the value of [2] is taken.
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