
EXPONENTIAL SENSITIVITY AND TURNPIKE ANALYSIS FOR LINEAR
QUADRATIC OPTIMAL CONTROL OF GENERAL EVOLUTION EQUATIONS∗
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Abstract. We analyze the sensitivity of linear quadratic optimal control problems governed by general evolution
equations with bounded or admissible control operator. We show, that if the problem is stabilizable and detectable,
the solution of the extremal equation can be bounded by the right-hand side including initial data with the bound
being independent of the time horizon. Consequently, the influence of perturbations of the extremal equations decays
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for a Model Predictive Control scheme. Furthermore, a turnpike property for unbounded but admissible control of
general semigroups can be deduced.
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1. Introduction. In this paper we consider optimal control of linear evolution equations in
infinite dimensional spaces. It seems intuitively clear that perturbations of the data that occur
in the far future affect the optimal control at present time only slightly. This might serve as an
explanation, why closed-loop control techniques, which only take present information into account,
often work in a nearly optimal way, even in the long run. The aim of this work is to give a rigorous
and quantitative justification to this statement.

More specifically, we analyze the sensitivity of the solutions to linear quadratic optimal control
problems, characterized by the first order optimality conditions with respect to the problem data,
i.e., source terms and initial data of the state and adjoint equation. In the first part of our paper
we are concerned with the question on how the behavior of perturbations of the source terms over
time influences the solutions’ behavior over time. It turns out that if the dynamics are stabilizable
and detectable, the perturbations’ influence decays exponentially as the distance in time grows.

Our paper generalizes recent results in this direction from parabolic equations [14], which
enjoy very favorable smoothing properties, to general evolution equations with much less structure,
which in particular comprises hyperbolic equations. This makes the analysis much more delicate.
For example, in [14], the boundary control or boundary observation case could be dealt with in
a straightforward fashion, as the state and adjoint belong to a Sobolev space for a.a. times on
which boundary control or observation operators are bounded. This is no longer the case when
moving to general evolution equations. Instead the concept of unbounded, but admissible control
and observation operators as described e.g. in [26] has to be employed to cover the case of boundary
control. Many general results, such as Riccati theory, are not available in their full strength within
this broader scope.

The analysis in this work is based on analyzing the extremal equations of the optimal control
problem, avoiding the use of Riccati equations. Compared to [14] we use weaker assumptions and
thus obtain estimates in weaker norms, concerning spatial regularity, which is to be expected when
going from parabolic to e.g. hyperbolic equations. Concerning temporal regularity, we show uniform
estimates as well as L2-type estimates for perturbations in L2 and in L1.
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One important motivation for our sensitivity analysis is Model Predictive Control (MPC). MPC
is a control technique, where the solution of an optimal control problem on an indefinite or infinite
horizon is split into the successive solution of problems with short time horizons T . However,
only a first part up to a time τ , where τ � T is implemented and the process is repeated, with
the resulting state as initial condition. Consequently, only the first part of the control has to be
computed accurately. The fact that perturbations decay exponentially in time allows to discretize
and compute solutions with reduced accuracy towards the end of the time horizon, as discretization
errors are perturbations of the extremal equations. We refer to [13] for an in-depth introduction to
MPC and to [11] for an overview of its approximation properties.

As a second application of our technique we show an exponential turnpike property. This
property is important to understand the behavior of solutions to optimal control problems on large
time horizons, which remain close to a steady state solution, the so called turnpike, for the majority
of the time. There is a large literature on turnpike behavior, cf. [1, 7, 17, 27, 28, 12, 9, 16, 15]. A
particular kind of turnpike behavior is the so called exponential turnpike property, cf. [25, 24, 21,
22, 6, 5]. The proofs establishing the turnpike property in the recent works [5, 24, 14] are based on
a stabilizability and detectability assumption on the system. Turnpike theorems in Hilbert spaces
were given in [24] for general semigroups with bounded control and observation operators, and for
boundary controlled parabolic equations. The proofs in [24], however, make use of the Algebraic
Riccati Equation, a theory, which is well established for admissible boundary control of parabolic
equations, but not for general evolution equations. Here, we show a turnpike result for unbounded
but admissible control of non-parabolic equations which was not available up to now. This is
possible, since we avoid using Riccati theory in our approach. Our analysis also sheds light on the
close connection of exponential sensitivity analysis and the turnpike property, both emerging from
the boundedness of the operator corresponding to the extremal equations. This becomes clear by
comparing the abstract scaling results in Theorem 3.2 and Theorem 6.2.

This paper is structured as follows. First, in section 2 we present our theoretical framework,
the optimal control problem and its optimality conditions. In section 3, we derive a general result
on the error propagation over time in Theorem 3.2, under the assumption that various norms
of the extremal equations’ solution operator, which itself may indeed depend on the horizon T ,
can be bounded independently of T . Then, in section 4 we show that such a T -independent
bound on these operator norms holds, if the dynamics are exponentially stabilizable and detectable.
This assumption enters into the construction of special test functions, similar to [21] and [24],
that decay exponentially. In section 5, we will extend the results to unbounded but admissible
control operators and discuss the necessary modifications to the proofs. In section 6 we show our
turnpike result Theorem 6.2 for general evolution equations. Here, too, we allow for unbounded but
admissible control operators and general C0-semigroups. Last, we present two examples that fulfill
the assumptions of our analysis, namely the interior control of a heat equation, and the Dirichlet
boundary control of a wave equation.
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2. Setting and preliminaries. We consider linear quadratic optimal control problems in a
Hilbert space X of the following type.

Problem 2.1.

min
(y,u)

1

2

∫ T

0

‖C(y(t)− yd)‖2Y + ‖R(u(t)− ud)‖2U dt

y′ − Λy −Bu = f

y(0) = y0,
(2.1)

where Y and U are Hilbert spaces for the output and the control and T > 0 is the optimization
horizon. The dynamics are given by an evolution equation where Λ : D(Λ) ⊂ X → X is a (possibly
unbounded) generator of a C0-semigroup (T (t))t≥0 on X, f ∈ L1(0, T ;X) is a source term and
y0 ∈ X is the initial datum. Moreover, R ∈ L(U,U) is an elliptic operator, leading to convexity
of the problem. Finally, the control and observation operators are bounded, i.e., B ∈ L(U,X) and
C ∈ L(X,Y ).

Only in the first part of this paper we assume that B and C are bounded, in order not to hide
the main steps of our proof behind technical details. In section 5 we will generalize the result to
unbounded but admissible control operators.

Whenever we consider a solution to an evolution equation, we refer to the mild solution
y ∈ C(0, T ;X), which for (2.1) can be defined by

y(t) = T (t)y0 +

∫ t

0

T (t− s)(Bu(s) + f(s)) ds.

We refer to [20, Section 4.2] for an introduction to inhomogeneous abstract Cauchy problems. In
the following, ‖ · ‖ resp. 〈·, ·〉 denote the norm resp. the scalar product in the Hilbert spaces X, U
and Y . The space C(0, T ;X) with norm ‖x‖C(0,T ;X) := maxt∈[0,T ] ‖x(t)‖ will be denoted by C(X)

and Lp(0, T ;X) with norm ‖x‖pLp(0,T ;X) :=
∫ T

0
‖x(t)‖p dt will be denoted by Lp(X) for p ∈ {1, 2}

and L∞(0, T ;X) with norm ‖x‖L∞(0,T ;X) := ess supt∈[0,T ] ‖x(t)‖ by L∞(X). We will assume that
there exists at least one minimizer of Problem 2.1. For the existence of minimizers, we refer to [19,
Chapter 3]. Let (y, u) ∈ C(X) × L2(U) be a minimizer of Problem 2.1. Then, by the Pontryagin
Maximum Principle, see [19, Chapter 4], there exists λ ∈ C(X) such that

C∗Cy − λ′ − Λ∗λ = C∗Cyd

R∗Ru−B∗λ = R∗Rud

y′ − Λy −Bu = f

(2.2)

in a mild sense along [0, T ] with initial resp. terminal conditions y(0) = y0 and λ(T ) = 0. We
denote by Λ∗ the adjoint operator associated with Λ with domain D(Λ∗). Defining Q := R∗R and
eliminating the control via the second equation with u = Q−1B∗λ + ud leads to the linear system
of equations 

C∗C − d
dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0


︸ ︷︷ ︸

=:M

(
y
λ

)
=


C∗Cyd

0
Bud + f

y0

 ,(2.3)
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where E0y := y(0) and ETλ := λ(T ). The operator M corresponds to the two abstract inhomo-
geneous evolution equations, i.e., the adjoint equation in the first two rows and the state equation
in the last two rows and allows for a brief notation of those. The solution operator of this system,
which we denote by M−1, maps initial values and source terms for the state and the adjoint equa-
tion to the solution. This mapping is well defined as a mapping from (L1(X)×X)2 to C(X)2, as
for right-hand sides with this regularity, the state and adjoint equations have a unique solution in
C(X) each. A central question in the following will be the dependence of this inverse operator’s
norm on the time T .

3. A sensitivity result. In this section, we present a first sensitivity result which extends
the result of [14, Theorem 3.1]. For this, we will refer to the solution (y, λ) ∈ C(X)2 of (2.3) as the
exact solution. We will now assume that there is a second pair of variables (yp, λp) ∈ C(X)2 that
satisfies the perturbed system

C∗C − d
dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(ypλp
)

=


C∗Cyd

0
Bud + f

y0

+


ε1

0
ε2

0


for (ε1, ε2) ∈ L1(X)2. This solution will be referred to as the perturbed solution. The terms ε1 and
ε2 are perturbations of the dynamics which could stem from discretization errors in time or space. In
this subsection we will give an estimate for the norm of the difference of (yp, λp) and (y, λ). It follows
by linearity that the difference between exact and perturbed solution (δy, δλ) := (yp − y, λp − λ)
solves 

C∗C − d
dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(δyδλ
)

=


ε1

0
ε2

0

 .(3.1)

The question we want to answer is the following. How does the behavior of the perturbations ε1

and ε2 over time influence the behavior of δy and δλ? Theorem 3.2 gives an answer towards that
direction. We will prove a scaling result for evolution equations first. It is a well-known result that,
if a semigroup (T (t))t≥0 has generator Λ, the scaled semigroup (e−µtT (t))t≥0 has generator Λ−µI
[8, p.60] with the same domain as Λ, as the domain does not change under bounded perturbations,
cf. [8, Chapter III]. In our context, we want to put emphasis on the impact of scaling on the source
terms ε1 and ε2.

Lemma 3.1. Assume δy, δλ ∈ C(X) solve the abstract Cauchy problems

δy′ − Λδy = ε1

−δλ′ − Λ∗δλ = ε2

with initial resp. terminal conditions δy(0) = δy0, δλ(T ) = δλT . Then δ̃y(t) = e−µtδy(t) and

δ̃λ(t) = e−µtδλ(t) solve

δ̃y
′
− (Λ− µI)δ̃y = e−µtε1

−δ̃λ
′
− (Λ + µI)∗δ̃λ = e−µtε2

(3.2)

with δ̃y(0) = δy0 and δ̃λ(T ) = e−µT δλT .
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Proof. Using the equivalence of the concept of weak and mild solution, see [19, Section 5.1] and
[2], we will use the weak formulation in this case, which is for ϕ ∈ D(Λ∗) given by

d

dt
〈δy(t), ϕ〉 − 〈δy(t),Λ∗ϕ〉 = 〈ε1(t), ϕ〉

for a.e. t ∈ [0, T ]. Inserting δy = eµtδ̃y and applying the chain rule yields the result for the state
equation. The equation for the scaled adjoint variable follows analogously.

The following theorem gives a preliminary result on the propagation of perturbations. It gives
an estimate on the scaled difference of exact and perturbed solution under the assumption that
different solution operator norms can be bounded independently of T .

Theorem 3.2. Assume (δy, δλ) ∈ C(X)2 solves (3.1), where ε1, ε2 ∈ L1(X). Assume the
solution operator’s norms

‖M−1‖(L1(X)×X)2→C(X)2 , ‖M−1‖(L2(X)×X)2→C(X)2 ,

‖M−1‖(L1(X)×X)2→L2(X)2 , ‖M−1‖(L2(X)×X)2→L2(X)2
(3.3)

can be bounded independently of T . Then there is a constant c ≥ 0 and a scaling factor 0 < µ, both
independent of T , such that defining

ρ := ‖e−µtε1(t)‖E + ‖e−µtε2(t)‖E

for E := L1(X) or E := L2(X), we have

‖e−µtδy‖L2(X) + ‖e−µtδλ‖L2(X) ≤ cρ,
‖e−µtδu‖L2(U) ≤ cρ

(3.4)

and

‖e−µtδy‖C(X) + ‖e−µtδλ‖C(X) ≤ cρ,
‖e−µtδu‖L∞(U) ≤ cρ.

(3.5)

Proof. For µ > 0 we introduce scaled variables δ̃y(t) := e−µtδy(t), δ̃λ(t) := e−µtδλ(t), ε̃1(t) :=
e−µtε1(t) and ε̃2(t) := e−µtε2(t) and apply Lemma 3.1. This yields

(3.1) ⇐⇒



C∗C − d

dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

+ µ


0 −I
0 0
I 0
0 0


︸ ︷︷ ︸

=:P


(
δ̃y

δ̃λ

)
=


ε̃1

0
ε̃2

0

 .

Introducing z̃ := (δ̃y, δ̃λ), ε̃ := (ε̃1, 0, ε̃2, 0) we compute formally

(M + µP )z̃ = ε̃ ⇒ (I + µPM−1)Mz̃ = ε̃ ⇒ z̃ = M−1(I + µPM−1)−1ε̃.(3.6)

Next we expand (I + µPM−1)−1 into a Neumann series, cf. [18, Theorem 2.14]. In the following
denote W = (L2(X) × X)2. We choose µ > 0, such that β := µ‖M−1‖W→L2(X)2 < 1. By
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assumption ‖M−1‖W→L2(X)2 is bounded independently of T , so we can choose µ > 0 independently
of T .

Since ‖P‖L2(X)2→W ≤ 1, it follows ‖µPM−1‖W→W ≤ β < 1. Neumann series expansion of
(I + µPM−1)−1 yields

‖(I + µPM−1)−1‖W→W ≤
∞∑
i=0

‖(µPM−1)i‖W→W ≤
∞∑
i=0

βi =
1

1− β
.(3.7)

This argumentation already yields the desired result in the L2 case:

‖z̃‖2L2(X) ≤ ‖M
−1‖W→L2(X)2‖(I + µPM−1)−1‖W→W ‖ε̃‖W .

To prove the general case we use the following alternative representation, which can be verified by
premultiplication with (I + µPM−1):

(I + µPM−1)−1 = I − (I + µPM−1)−1µPM−1.

Now we estimate the operator norm for S = C(X)2 or S = L2(X)2 via

‖M−1(I + µPM−1)−1‖(E×X)2→S = ‖M−1 −M−1(I + µPM−1)−1µPM−1‖(E×X)2→S

≤ ‖M−1‖(E×X)2→S + ‖M−1‖W→S‖(I + µPM−1)−1‖W→W ‖µPM−1‖(E×X)2→W

≤ ‖M−1‖(E×X)2→S +
µ‖M−1‖W→S‖M−1‖(E×X)2→L2(X)2

1− β

using ‖P‖L2(X)2→W ≤ 1 and (3.7). Thus, it follows by (3.6) with taking norms, that

‖z̃‖L2(X)2 ≤
(
‖M−1‖(E×X)2→L2(X)2 +

µ‖M−1‖W→L2(X)2‖M−1‖(E×X)2→L2(X)2

1− β

)
‖ε̃‖E2 ,

‖z̃‖C(X)2 ≤
(
‖M−1‖(E×X)2→C(X)2 +

µ‖M−1‖W→C(X)2‖M−1‖(E×X)2→L2(X)2

1− β

)
‖ε̃‖E2 .

(3.8)

Using the assumption on the T -independent bound on the operator norms and the definition ρ :=
‖ε̃‖E2 , we obtain the result for the state and the adjoint by going back to the original variables via
z̃ = (e−µtδy, e−µtδλ). For the control we conclude

‖e−µtδ̃u‖L2(U) = ‖e−µtQ−1B∗δ̃λ‖L2(U) ≤ ‖Q−1B∗‖X→U‖‖δ̃λ‖L2(X) ≤ cρ,

‖e−µtδ̃u(t)‖ = ‖e−µtQ−1B∗δ̃λ(t)‖ ≤ ‖Q−1B∗‖X→U‖δλ(t)‖ ≤ cρ
(3.9)

for a.a. t ∈ [0, T ], where we used the bound on ‖e−µtδλ‖L2(X) and ‖e−µtδλ‖C(X) and the fact that
B and Q do not involve time derivatives. This yields (3.4) and (3.5).

Remark 3.3. We will briefly comment on the Neumann series occurring in (3.7). The operator
(I+µPM−1)−1 can be represented by its Neumann series, i.e., (I+µPM−1)−1 =

∑∞
i=0(−µPM−1)k,

see [18, Theorem 2.14]. We provide an illustration for the summand for k = 2, i.e., (µPM−1)2 =
µPM−1µPM−1. The application of this operator can be interpreted as the following. M−1

solves the corresponding Cauchy problems with right-hand side including initial and terminal
condition. Afterwards, the operator µP maps the solutions to source terms scaled by µ, i.e.,
µP (δy, δλ) = (−µδλ, 0, µδy, 0). This right-hand side then enters M−1 again, the Cauchy problems
are solved with zero initial data and source terms −µδλ and µδy and the process is repeated.
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The crucial assumption in Theorem 3.2 is that the operator norms in (3.3) can be bounded in-
dependently of T . In section 4, we will show, that this is indeed the case, if the dynamics are
exponentially stabilizable and detectable. It will turn out that all bounds in (3.3) can be shown
simultaneously.

Before we head to the next part, we recall an integration by parts result for solutions expressed
via semigroups.

Lemma 3.4. Consider the abstract Cauchy problems

x′1 = Λx1 + f1, x1(0) = x10,

−x′2 = Λ∗x2 + f2, x2(0) = x20,

where x10, x20 ∈ X and f1, f2 ∈ L1(X). Λ : D(Λ)→ X is the generator of a C0-semigroup (T (t))t≥0

on X. Consider the associated mild solutions x1, x2 ∈ C(0, T ;X) given by

x1(t) = T (t)x10 +

∫ t

0

T (t− s)f1(s) ds ∀t ∈ [0, T ],

x2(t) = T ∗(T − t)x20 +

∫ T

t

T ∗(s− t)f2(s) ds ∀t ∈ [0, T ].

Then, for all 0 ≤ s ≤ t ≤ T ,

〈x1(t), x2(t)〉 − 〈x1(s), x2(s)〉 =

∫ t

s

(〈x2, f1〉 − 〈x1, f2〉) ds.

Proof. For a proof of this property, we refer to [19, Proposition 5.7, p.69].

4. T -independent bounds for the solution operator. In this section we will derive T -
independent bounds on the norm of the solution operator M−1, which is a central assumption in the
abstract scaling result of Theorem 3.2. Since [0, T ] is bounded, we have the continuous embeddings

C(0, T ;X) ↪→ L2(0, T ;X) ↪→ L1(0, T ;X).

Hence, we may equip L1(0, T ;X) with the equivalent norm

‖v‖1∨2 := min{‖v‖L1(X), ‖v‖L2(X)}

(setting ‖v‖L2(X) =∞ if v 6∈ L2(0, T ;X)), which satisfies

min

{
1,

1√
T

}
‖v‖L1(X) ≤ ‖v‖1∨2 ≤ ‖v‖L1(X).

Likewise, we equip C(0, T ;X) with the equivalent norm

‖v‖2∧∞ := max{‖v‖L2(X), ‖v‖C(X)},

satisfying

‖v‖C(X) ≤ ‖v‖2∧∞ ≤ max
{

1,
√
T
}
‖v‖C(X).

Obviously, the equivalence of norms deteriorates for T →∞. We have the following Hölder-like
inequality for these norms:
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Lemma 4.1. Let v ∈ C(X) and w ∈ L1(X). Then,∫ T

0

〈v(s), w(s)〉 ds ≤ ‖v‖2∧∞‖w‖1∨2.

Proof.∫ T

0

〈v(s), w(s)〉 ds ≤ min{‖v‖C(X)‖w‖L1(X), ‖v‖L2(X)‖w‖L2(X)}

≤ min{‖v‖2∧∞‖w‖L1(X), ‖v‖2∧∞‖w‖L2(X)} ≤ ‖v‖2∧∞‖w‖1∨2.

The main result of this section will be a T -independent bound for

‖M−1‖((L1(X),‖·‖1∨2)×X)2→(C(X),‖·‖2∧∞)2 .

This implies all desired T -independent bounds in (3.3), required by Theorem 3.2. To this end,
consider mild solutions (y, λ) of the system

C∗C − d
dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(yλ
)

=


l1
λT
l2
y0

(4.1)

in [0, T ], where l1, l2 ∈ L1(X) and y0, λT ∈ X are given. In short we may write again z = M−1r
with z = (y, λ) and r = (l1, λT , l2, y0).

Next, we introduce our main assumption. A semigroup (T (t))t≥0 is called exponentially stable,
if there exist M,µ > 0, such that ‖T (t)‖L(X,X) ≤Me−µt for all t > 0.

Assumption 4.2.
A.1 (Λ, C) is exponentially detectable, i.e., there exists KC ∈ L(Y,X) such that the semigroup

generated by Λ∗ + C∗K∗C is exponentially stable.
A.2 (Λ, B) is exponentially stabilizable, i.e., there exists KB ∈ L(X,U) such that the semigroup

generated by Λ +BKB is exponentially stable.

The approach in Lemmas 4.3 and 4.4 is inspired by the stability estimate in [24, Lemma 2] and
[21, Lemma 3.5].

Lemma 4.3. Let ϕ ∈ C(0, t;X) solve

−ϕ′ = (Λ∗ + C∗K∗C)ϕ on [0, t]

ϕ(t) = y(t)
(4.2)

where K∗C is a stabilizing feedback for (Λ∗, C∗). Then, there are constants Mϕ, kϕ > 0 such that for
test functions v ∈ L2(0, t;X)∫ t

0

|〈v(s), ϕ(s)〉| ds ≤ ‖y(t)‖ Mϕ√
kϕ

√∫ t

0

‖v(s)‖2e−kϕ(t−s) ds.(4.3)

Let ψ ∈ C(t, T ;X) solve

ψ′ = (Λ +BKB)ψ on [t, T ]

ψ(t) = λ(t)
(4.4)
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where KB is a stabilizing feedback for (Λ, B). Then, for test functions v ∈ L2(t, T ;X)∫ T

t

|〈v(s), ψ(s)〉| ds ≤ ‖λ(t)‖ Mψ√
kψ

√∫ T

t

‖v(s)‖2e−kψ(s−t) ds.(4.5)

Proof. We will first prove (4.3). By exponential stability of the semigroup, there exist Mϕ, kϕ >
0, such that

‖ϕ(s)‖ ≤Mϕe
−kϕ(t−s)‖y(t)‖ 0 ≤ s ≤ t.

Using this exponential stability, we get for v ∈ L2(0, t;X),∫ t

0

|〈v(s), ϕ(s)〉| ds ≤
∫ t

0

‖v(s)‖‖ϕ(s)‖ ds ≤ ‖y(t)‖
∫ t

0

‖v(s)‖Mϕe
−kϕ(t−s) ds.

The last term can be estimated via:∫ t

0

‖v(s)‖Mϕe
−kϕ(t−s) ds =

∫ t

0

‖v(s)‖Mϕe
− kϕ2 (t−s) · e−

kϕ
2 (t−s) ds

≤

√∫ t

0

‖v(s)‖2M2
ϕe
−kϕ(t−s) ds ·

√∫ t

0

e−kϕ(t−s) ds︸ ︷︷ ︸
< 1√

kϕ

.

The estimate (4.5) follows analogously.

By using ϕ and ψ from (4.2) and (4.4), respectively, as test functions for (4.1), we obtain the
following pointwise in time identities:

Lemma 4.4. Let (y, λ) solve (4.1). If ϕ solves (4.2), then

‖y(t)‖2 =

∫ t

0

−〈KCCy(s), ϕ(s)〉+ 〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉+ 〈l2(s), ϕ(s)〉 ds+ 〈y0, ϕ(0)〉(4.6)

for all 0 ≤ t ≤ T . If ψ solves (4.4), then

‖λ(t)‖2 =

∫ T

t

−〈K∗BB∗λ(s), ψ(s)〉 − 〈Cy(s), Cψ(s)〉+ 〈l1(s), ψ(s)〉 ds+ 〈λT , ψ(T )〉(4.7)

for all 0 ≤ t ≤ T .

Proof. We begin with the proof of (4.6). Testing the state equation with ϕ(s) solving (4.2),
integration on [0, t] and integration by parts in the sense of Lemma 3.4 on [0, t] with x1 = y,
f1 = BQ−1B∗λ+ l2, x2 = ϕ, f2 = C∗K∗Cϕ yields

〈y(t), ϕ(t)〉 − 〈y(0), ϕ(0)〉 =

∫ t

0

〈ϕ(s), BQ−1B∗λ(s) + l2(s)〉 − 〈y(s), C∗K∗Cϕ(s)〉 ds.

Rearranging the terms, using the terminal condition ϕ(t) = y(t) and Q−1 = (R∗R)−1 = R−1R−∗,
we get

‖y(t)‖2 =

∫ t

0

−〈KCCy(s), ϕ(s)〉+ 〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉+ 〈l2(s), ϕ(s)〉 ds+ 〈y0, ϕ(0)〉.

The formula (4.7) follows analogous by testing the adjoint equation with ψ solving (4.4).
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Based on (4.6) and (4.7) we will derive norm estimates for M−1 as a mapping into L2(X)2

and C(X)2. While the latter turns out to be rather straightforward (see below), the L2-estimate
requires to integrate (4.6) and (4.7) over [0, T ]. The crucial observation is that the integrals on the
right hand side of (4.6) and (4.7) can be converted into convolutions with exponentially decaying
functions. This will allow us to derive an L2-estimate without any constants depending on the time
T with the help of the following general lemma:

Lemma 4.5. For w ∈ L1(0, T ; 0,∞]), consider

h1(t) :=

∫ t

0

w(s)e−kϕ(t−s) ds, where kϕ > 0,

h2(t) :=

∫ T

t

w(s)e−kψ(s−t) ds, where kψ > 0.

Then, there is a constant c ≥ 0 independent of T , such that

‖hi‖Lp(0,T ) ≤ c‖w‖L1(0,T ) for i = 1, 2 and 1 ≤ p ≤ ∞

Proof. Extending w by 0 from [0, T ] to R and defining g1(x) := e−kϕx for x ≥ 0 and g1(x) = 0
otherwise, we can write h1 as a convolution:

h1(t) = (g1 ∗ w)(t) =

∫
R
g1(t− s)w(s) ds,

and apply Young’s inequality:

‖h1‖Lp(0,T ) = ‖g1 ∗ w‖Lp(R) ≤ ‖g1‖Lp(R)‖w‖L1(R) ≤ c‖w‖L1(0,T )

because ‖g1‖Lp(R) = ‖e−kϕt‖Lp(R+) ≤ c(kϕ).

For h2 the estimate follows in the same way, setting g2(x) = ekψx to x ≤ 0 and 0 otherwise.

In the following, we will denote a generic constant by c and rename it accordingly over the course of
a proof. However, the constants in the proofs will never depend on the horizon T . Also, we tacitly
use equivalence of norms in R2: max{|a|, |b|} ≈

√
|a|2 + |b|2 ≈ |a|+ |b|.

Lemma 4.6. Let (y, λ) solve (4.1) and let Assumption 4.2 A.1 and A.2 hold. Then there exists
a constant c ≥ 0 independent of T , such that

‖y‖22∧∞ + ‖λ‖22∧∞ ≤ c
(
‖Cy‖2L2(Y ) + ‖R−∗B∗λ‖2L2(U) + ‖r‖21∨2

)
.(4.8)

where ‖r‖21∨2 := ‖l1‖21∨2 + ‖l2‖21∨2 + ‖y0‖2 + ‖λT ‖2.

Proof. Our first step will be to derive an estimate for ‖y(t)‖ from (4.6). By Lemma 4.3 we
estimate the terms occurring in (4.6) as follows:∫ t

0

|〈KCCy(s), ϕ(s)〉|ds ≤ ‖y(t)‖Mϕ‖KC‖√
kϕ

√∫ t

0

‖Cy(s)‖2e−kϕ(t−s)ds,(4.9)

∫ t

0

|〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉| ds ≤ ‖y(t)‖Mϕ‖BR−1‖√
kϕ

√∫ t

0

‖R−∗B∗λ(s)‖2e−kϕ(t−s) ds,(4.10)

∫ t

0

〈l2(s), ϕ(s)〉 ds ≤ ‖y(t)‖ Mϕ√
kϕ

√∫ t

0

‖l2(s)‖2e−kϕ(t−s) ds,(4.11)
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or alternatively:

(4.12)

∫ t

0

〈l2(s), ϕ(s)〉 ds ≤
∫ t

0

‖l2(s)‖‖ϕ(s)‖ ds ≤ ‖y(t)‖Mϕ

∫ t

0

‖l2(s)‖e−kϕ(t−s) ds,

and finally:

〈y0, ϕ(0)〉 ≤ ‖y0‖‖y(t)‖Mϕe
−kϕt ≤ ‖y0‖‖y(t)‖Mϕ

√
e−kϕt.(4.13)

Now we substitute all estimates (4.9)-(4.13) into (4.6) while taking the minimum over (4.11) and
(4.12) and cancel ‖y(t)‖ on both sides. Taking squares on both side and using the simple inequality

a, b, c, d ≥ 0⇒ (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2)

we obtain the following pointwise estimate for y:

‖y(t)‖2 ≤ c
(∫ t

0

(‖Cy(s)‖2 + ‖R−∗Bλ(s)‖2)e−kϕ(t−s) dt+ ‖y0‖2e−kϕt
)

+ cmin

{∫ t

0

‖l2(s)‖2e−kϕ(t−s) ds,

(∫ t

0

‖l2(s)‖e−kϕ(t−s) ds

)2
}
.

(4.14)

To derive an estimate for ‖y‖2C(X) we replace all exponential functions by 1, extend the domains of

integration from [0, t] to [0, T ], and take the maximum over all t ∈ [0, T ]:

‖y‖2C(X) ≤ c(‖Cy‖
2
L2(Y ) + ‖R−∗B∗λ‖2L2(U) + min{‖l2‖2L2(X), ‖l2‖

2
L1(X)}+ ‖y0‖2).(4.15)

Similar via (4.7) we obtain:

‖λ‖2C(X) ≤ c(‖Cy‖
2
L2(Y ) + ‖R−∗B∗λ‖2L2(U) + min{‖l1‖2L2(X), ‖l1‖

2
L1(X)}+ ‖λT ‖2).(4.16)

To obtain an estimate for ‖y‖2L2(X) we have to integrate (4.14) over [0, T ] and apply Lemma 4.5 to

the integral terms in (4.14). Setting:

w(s) := ‖l2(s)‖2 ⇒ h1(t) =

∫ t

0

‖l2(s)‖2e−kϕ(t−s) ds,

we obtain with Lemma 4.5:∫ T

0

∫ t

0

‖l2(s)‖2e−kϕ(t−s) ds dt = ‖h1‖L1(0,T ) ≤ c‖w‖L1(0,T ) = c‖l2‖2L2(X)

and similarly:∫ T

0

∫ t

0

(‖Cy(s)‖2 + ‖R−∗B∗λ(s)‖2)e−kϕ(t−s)ds dt ≤ c(‖Cy(s)‖2L2(Y ) + ‖R−∗B∗λ(s)‖2L2(U)).

If we set

w(s) := ‖l2(s)‖ ⇒ h1(t) =

∫ t

0

‖l2(s)‖e−kϕ(t−s) ds,
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we obtain ∫ T

0

(∫ t

0

‖l2(s)‖e−kϕ(t−s)
)2

ds dt = ‖h1‖2L2(0,T ) ≤ c‖w‖
2
L1(0,T ) = c‖l2‖2L1(X).

This yields the desired L2-estimate:

‖y‖2L2(X) ≤ c(‖Cy(s)‖2L2(Y ) + ‖R−∗B∗λ(s)‖2L2(U) + min{‖l2‖2L2(X), ‖l2‖
2
L1(X)}+ ‖y0‖2).(4.17)

In the same way we we obtain

‖λ‖2L2(X) ≤ c(‖Cy(s)‖2L2(Y ) + ‖R−∗B∗λ(s)‖2L2(U) + min{‖l1‖2L2(X), ‖l1‖
2
L1(X)}+ ‖λT ‖2).(4.18)

Now we take the maximum of (4.15) and (4.17) and add it to the maximum of (4.16) and (4.18).
Using the definition of the norms

‖v‖22∧∞ = max{‖v‖2L2(X), ‖v‖
2
C(X)}, ‖w‖21∨2 = min{‖w‖2L1(X), ‖w‖

2
L2(X)}

our result follows.

The first two terms on the right-hand side of (4.8) still depend on the state and the adjoint. We
therefore present the following representation formula, motivated by [24, Proof of Theorem 1].

Lemma 4.7. Let (y, λ) solve (4.1). Then

‖Cy‖2L2(Y ) + ‖R−∗B∗λ‖2L2(U) = 〈λT , y(T )〉 − 〈y0, λ(0)〉+
∫ T

0

〈l2(s), λ(s)〉 − 〈l1(s), y(s)〉 ds

≤ c (‖λT ‖‖y(T )‖+ ‖y0‖‖λ(0)‖+ ‖l2‖1∨2‖λ‖2∧∞ + ‖l1‖1∨2‖y‖2∧∞) .

(4.19)

Proof. We apply Lemma 3.4 to the state and adjoint equation, which yields

〈λT , y(T )〉 − 〈y0, λ(0)〉 =

∫ T

0

〈l2(s), λ(s)〉 − 〈l1(s), y(s)〉 − ‖Cy(s)‖2 − ‖R−∗B∗λ(s)‖2ds

Rearranging the terms yields the result.

Theorem 4.8. Let Assumption 4.2 hold. Then there is c ≥ 0 independent of T such that

‖M−1‖((L1(X),‖·‖1∨2)×X)2→(C(X),‖·‖2∧∞)2 ≤ c.

Proof. Consider z := (y, λ) ∈ C(X)2 and r := (l1, λT , l2, y0) ∈ (L1(X) × X)2 which satisfy
(4.1). Thus, as shown in Lemma 4.6 the estimate (4.8) applies. We substitute (4.19) into (4.8) and
apply the Hölder-like inequality of Lemma 4.1 to the integral terms:

‖z‖22∧∞ := ‖y‖22∧∞ + ‖λ‖22∧∞
≤ c

(
‖λT ‖‖y(T )‖+ ‖y0‖‖λ(0)‖+ ‖l2‖1∨2‖λ‖2∧∞ + ‖l1‖1∨2‖y‖2∧∞ + ‖r‖21∨2

)
≤ c

(
(‖λT ‖+ ‖l1‖1∨2)‖y‖2∧∞ + (‖y0‖+ ‖l2‖1∨2)‖λ‖2∧∞ + ‖r‖21∨2

)
≤ c

(
‖r‖1∨2‖z‖2∧∞ + ‖r‖21∨2

)
.

Application of the simple estimate c‖r‖1∨2‖z‖2∧∞ ≤ 1
2 (c2‖r‖21∨2 + ‖z‖22∨∞) yields

‖M−1r‖2∧∞ = ‖z‖2∧∞ ≤ c‖r‖1∨2

and thus the desired result.
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5. Extension to boundary control with admissible control operators. In this section,
we extend the results of sections 3 and 4 to the case of a control operator B which is unbounded as
mapping into X but admissible for the semigroup generated by Λ in the sense of [26, Chapter 4].
We refer to [26, Chapter 4] for an in-depth introduction to this topic. The case of an unbounded
operator often arises in the case of boundary control. As a consequence of this the operator norm
‖B‖U→X = ‖B∗‖X→U is no longer finite. Inspection of the proofs in sections 3 and 4 yields that
these operator norms are only used in inequality (4.10). In addition, the estimate of the control in
Theorem 3.2 is performed via R∗Ru = B∗λ using ‖B∗‖X→U in (3.9). All remaining estimates and
constants do not involve norms of B.

The goal of this section is to replace boundedness of B by a weaker assumption, which is known
as admissibility. Our strategy of proof will be to show surrogates for (4.10) and (3.9), which allow
us to generalize our main results to the case of admissible B. The remaining steps of the proofs
remain unchanged. The sensitivity results in Theorem 3.2 for the state and adjoint directly carry
over as stated in Theorem 5.4, whereas the estimate for the control in the proof of Theorem 3.2
involves the norm of the control operator. We therefore present a modification of this in the proof
of Theorem 5.4. However, one only obtains an integral estimate but no uniform estimate on the
control in Theorem 3.2. This is the only price to pay for going from bounded to unbounded but
admissible control operators.

5.1. Admissible control and observation operators. For ease of reading we recall the
definition of admissible control and observation operators. Let Λ : D(Λ) ⊂ X → X be the generator
of a semigroup (T (t))t≥0 on X. Moreover, let Λ∗ be the adjoint operator of Λ with domain D(Λ∗).
Let X1 be D(Λ) equipped with the norm ‖ · ‖1 = ‖(βI − Λ) · ‖ for β ∈ ρ(Λ), where ρ(Λ) := {β ∈
C |βI−Λ is invertible and (βI−Λ)−1 ∈ L(X,X)} is the resolvent set of Λ. Furthermore, again for
β ∈ ρ(Λ), we define X−1 to be the completion of X with respect to the norm ‖·‖−1 = ‖(βI−Λ)−1 ·‖.
We note that the norms ‖ · ‖1 for different β are equivalent, see [26, Proposition 2.10.1], and the
same also holds true for ‖ · ‖−1, see [26, Proposition 2.10.2]. Furthermore, by e.g. [26, Proposition
2.10.4], the semigroup (T (t))t≥0 can be extended to a semigroup on X−1.

Definition 5.1. ([26, Definition 4.2.1, Definition 4.3.1])
i) B ∈ L(U,X−1) is called an admissible control operator for the semigroup (T (t))t≥0, if for

some τ > 0, Ran Φτ ⊂ X, where for u ∈ L2(0,∞;U),

Φτu :=

∫ τ

0

T (τ − s)Bu(s) ds.

ii) C ∈ L(X1, Y ) is called an admissible observation operator for the semigroup (T (t))t≥0 if
for some τ > 0, Ψτ has a continuous extension to X, where for z0 ∈ X1,

(Ψτz0)(t) :=

{
CT (t)z0 for t ∈ [0, τ ]

0 for t > τ.

Note, that if i) and ii) in Definition 5.1 are satisfied for one τ ≥ 0, they hold for all τ ≥ 0, see [26,
Proposition 4.2.2, Proposition 4.3.2]. We briefly recall properties of admissible control operators,
which are important in the remainder of this section.

Proposition 5.2. Let B be an admissible control operator for the semigroup (T (t))t≥0. Then,
i) B∗ is an admissible observation operator for the adjoint semigroup (T ∗(t))t≥0.



14 L. GRÜNE, M. SCHALLER, AND A. SCHIELA

ii) For all t ≥ 0 and y(t) ∈ X there exists a constant Kt ≥ 0, such that∫ t

0

‖B∗T ∗(t− s)y(t)‖2 ds ≤ K2
t ‖y(t)‖2.(5.1)

iii) If (T ∗(t))t≥0 is exponentially stable, the constant Kt can be chosen independently of t.

Proof. i) follows by the duality result [26, Theorem 4.4.3]. For ii), see [26, Definition 4.3.1].
The fact that the bound can be chosen independently of t, as stated in iii), follows by [26, Remark
4.3.5].

In the following, we will assume throughout that B is an admissible control operator for the
semigroup generated by Λ and that Assumption 4.2 holds. It follows by i) that B∗ is an admissible
control operator for the semigroup generated by Λ∗. By a perturbation result, cf. [26, Theorem
5.4.2], B∗ is also admissible for the exponentially stable semigroup (T ∗(t))t≥0 generated by Λ∗ +
C∗K∗C , since KCC ∈ L(X,X). Hence, we may apply (5.1) to B∗ with Kt independent of t. This
will turn out as an appropriate replacement for the assumption ‖B∗‖ <∞.

5.2. Bounds for the solution operator. We will now use these properties to derive the
desired bound on the operator norm in the case of unbounded but admissible control operators.

Theorem 5.3. Consider Problem 2.1 except that B is only an admissible control operator for
the semigroup generated by Λ. Let Assumption 4.2 hold. Then there is c ≥ 0 independent of T ,
such that

‖M−1‖((L1(X),‖·‖1∨2)×X)2→(C(X),‖·‖2∧∞)2 ≤ c.

Proof. As already noted, the only step in the proof of Theorem 4.8 where the operator norm
of B∗ is needed, is the proof of (4.10). It is thus sufficient to show a modification of this inequality
which circumvents this operator norm estimate by using exponential stability of the test functions
and the fact that B is an admissible control operator.

Let ϕ solve (4.2), i.e., ϕ(s) = T ∗(t − s)y(t) where, as above, (T ∗(t))t≥0 is the semigroup
generated by (Λ∗ + C∗K∗C). We show that the critical estimate (4.10) still holds with different
constants which do not involve the operator norm of B. First, a simple calculation using the fact
that R−∗ is bounded from U to U and the Cauchy-Schwarz inequality twice yields∫ t

0

|〈R−∗B∗λ(s),R−∗B∗ϕ(s)〉| ds ≤ c
∫ t

0

e−
kϕ
2 (t−s)‖R−∗B∗λ(s)‖‖B∗e

kϕ
2 (t−s)ϕ(s)‖ ds

≤ c

√∫ t

0

e−kϕ(t−s)‖R−∗B∗λ(s)‖2 ds

√∫ t

0

‖B∗e
kϕ
2 (t−s)ϕ(s)‖2 ds.

(5.2)

Using the exponential stability ‖T ∗(t−s)‖ ≤Mϕe
−kϕ(t−s), the scaled semigroup (e

kϕ
2 (t−s)T ∗(t))t≥0

is still exponentially stable, and hence we employ Proposition 5.2 ii) and iii) and get√∫ t

0

‖B∗e
kϕ
2 (t−s)ϕ(s)‖2 ds =

√∫ t

0

‖B∗e
kϕ
2 (t−s)T ∗(t− s)y(t)‖2 ds ≤ K‖y(t)‖

with K independent of t. Inserting this into (5.2), we conclude∫ t

0

|〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉| ds ≤ c‖y(t)‖

√∫ t

0

e−kϕ(t−s)‖R−∗B∗λ(s)‖2 ds,
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which yields the desired replacement for (4.10) with a different constant independent of the norm
of B. As the remaining results in section 4, namely Lemmas 4.6 and 4.7 and Theorem 4.8 do not
use the boundedness of B, we can conclude the result analogously to the bounded case.

As a consequence of Theorem 5.3, the estimates in Theorem 3.2 also hold true in the case of
unbounded control operators with constants independent of the horizon T , except for the uniform
estimate for the control. This is the statement of the following theorem.

Theorem 5.4. Consider Problem 2.1 except that B is an unbounded but admissible control
operator for the semigroup generated by Λ. Let Assumption 4.2 hold. Assume (δy, δλ) ∈ C(X)2

solves (3.1) with ε1, ε2 ∈ L1(X). Then there is a constant c ≥ 0 and a scaling factor µ > 0, both
independent of T , such that defining

ρ := ‖e−µtε1(t)‖E + ‖e−µtε2(t)‖E

for E := L1(X) or E := L2(X), we have

‖e−µtδy‖L2(X) + ‖e−µtδu‖L2(U) + ‖e−µtδλ‖L2(X) ≤ cρ,
‖e−µtδy‖C(X) + ‖e−µtδλ‖C(X) ≤ cρ.

Proof. First, choosing µ, such that µ‖M−1‖(L2(X)×X)2→L2(X)2<1, we conclude by the same
reasoning as in the proof of Theorem 3.2 the estimates for the state and adjoint

‖e−µtδy‖L2(X) + ‖e−µtδλ‖L2(X) ≤ cρ,
‖e−µtδy‖C(X) + ‖e−µtδλ‖C(X) ≤ cρ,

(5.3)

with c ≥ 0 independent of T as the occurring operator norms can be bounded by a constant c ≥ 0

independently of T by Theorem 5.3. To estimate the control, we compute, setting δ̃y(t) := e−µtδy(t),

δ̃λ(t) := e−µtδλ(t) and δ̃u(t) := e−µtδu, that

‖δ̃u‖2L2(U) =

∫ T

0

‖Q−1B∗δ̃λ(t)‖2 dt ≤ c
∫ T

0

‖Cδ̃y(t)‖2 + ‖R−∗B∗δ̃λ(t)‖2 dt.

Similar to Lemma 4.7, now for the scaled system (3.2), using Lemma 3.4 for the state and adjoint
equation, we obtain with ε̃i(t) = e−µtεi(t), i = 1, 2 using the Hölder inequality of Lemma 4.1∫ T

0

‖Cδ̃y(t)‖2 + ‖R−∗B∗δ̃λ(t)‖2 dt =

∫ T

0

−〈ε̃1(t), δ̃y(t)〉+ 〈ε̃2(t), δ̃λ(t)〉 − 2µ〈δ̃y(t), δ̃λ(t)〉 dt

≤ (‖ε̃1‖1∨2 + ‖ε̃2‖1∨2)(‖δ̃y‖2∧∞ + ‖δ̃λ‖2∧∞) + 2µ‖δ̃y‖L2(X)‖δ̃λ‖L2(X)

≤ cρ2

where in the last estimate we used the assumption on ε̃i, i = 1, 2 and the estimate on the state and
the adjoint (5.3). Taking the square root yields the result for the control.

Remark 5.5. In a similar fashion, one could allow for an admissible observation operator which
is unbounded on X and bounded control operators B ∈ L(U,X) in this section. The case where
both C and B are unbounded but admissible cannot be included in all generality. This is due to the
non-existence of perturbation results for this case, i.e., not every admissible observation operator
for Λ is admissible for Λ + BK, where B is an admissible control operator and K is a bounded
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feedback operator. Mixed perturbation results of this kind are a very delicate matter and we refer
to [26, Proposition 5.5.2, Example 5.5.3, Proposition 10.1.10] and the discussion after [26, Corollary
5.5.1] for results on that subject. Moreover, we refer to the example in [26, Section 10.8] where
such a perturbation result holds.

Remark 5.6. If we have additional structure, the results of Theorem 4.8 and Theorem 5.3 can
be refined by bootstrapping arguments. For instance, in the parabolic case there is an additional,
more regular space with the continuous dense embedding V ↪→ X, such that Λ can be extended to
an operator Λ̄ ∈ L(V, V ∗) and we have a G̊arding inequality for y ∈ L2(0, T ;V ):

∃ω ∈ R, α > 0 : α‖y‖2L2(V ) ≤
∫ T

0

−〈Λ̄y(t), y(t)〉V ∗×V dt+ ω‖y‖2L2(X).(5.4)

In this particular case, the state equation yields the regularity y ∈ L2(0, T ;V ), y′ ∈ L2(0, T ;V ∗)
and we compute, using integration by parts on 〈y′, y〉V ∗×V , (4.19), and assuming boundedness of
‖B∗‖V→U (which is weaker than boundedness of ‖B∗‖X→U ):∫ T

0

−〈Λ̄y(t), y(t)〉V ∗×V dt =

∫ T

0

−〈y′(t), y(t)〉V ∗×V + 〈l2(t) +B(R∗R)−1B∗λ(t), y(t)〉X dt

≤ 1

2

(
‖y(0)‖2 − ‖y(T )‖2

)
+ ‖l2‖1∨2‖y‖2∧∞ + ‖R−∗B∗λ‖L2(U)‖R−∗B∗y‖L2(U)

≤ 1

2
‖y0‖2 + ‖r‖1∨2‖z‖2∧∞ + c(‖r‖1∨2 + ‖z‖2∧∞)‖R−∗B∗‖V→U‖y‖L2(V ).

By Theorem 5.4 we may estimate ‖z‖2∧∞ by ‖r‖1∨2 and substitute the result into (5.4). A short
computation yields ‖y‖L2(V ) ≤ c‖r‖1∨2 and similarly ‖λ‖L2(V ) ≤ c‖r‖1∨2. Hence, there is a T -
independent bound:

‖M−1‖(L1(X),‖·‖1∨2×X)2→L2(V )2 ≤ c.

By further bootstrapping via:

y′ = Λ̄y +B(R∗R)−1B∗λ+ l2 in L2(V ∗)

we obtain ‖y′‖L2(V ∗) ≤ c(‖r‖1∨2+‖l2‖L2(X)) and similarly an estimate for ‖λ′‖L2(V ∗). Thus, also for
the parabolic space W ([0, T ]), which is equipped with the norm ‖v‖W ([0,T ]) = ‖v‖L2(V )+‖v′‖L2(V ∗),
we get the T -independent bound:

‖M−1‖(L2(X)×X)2→W ([0,T ])2 ≤ c.

These additional estimates can be used to obtain results in Theorem 3.2 and Theorem 5.4, and also
in Theorem 6.2 below in the respective additional norms.

6. An exponential turnpike result. In this section, we extend the scaling approach em-
ployed in Theorem 3.2 to deduce a turnpike result. It is an adaption of existing results for parabolic
equations in [14, Theorem 5.2, Corollary 5.3] and [5, Lemma 15]. In the case of optimal control
problems governed by general evolution equations in Hilbert spaces, turnpike theorems were given
in [24] for C0-semigroups with bounded control and observation operators, and for boundary con-
trolled parabolic equations. Here we extend these results to the boundary control of non-parabolic
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equations with admissible control operators. First, we introduce the solution of a steady state
optimization problem, namely (ȳ, λ̄) ∈ X2 being a minimizer of

min
ȳ,ū

1

2
‖C(ȳ − yd)‖2Y +

1

2
‖R(ū− ud)‖2U

s.t. − Λȳ −Bū = 0,

(6.1)

or, equivalently, as the problem is convex, by coercivity of R, (ȳ, λ̄) solve the corresponding first
order conditions (

C∗C −Λ∗

−Λ −BQ−1B∗

)(
ȳ
λ̄

)
=

(
C∗Cyd
Bud

)
,(6.2)

where Q = R∗R and we eliminated the control via ū = Q−1B∗λ̄+ ud.

Lemma 6.1. Let (y, u, λ) solve Problem 2.1 or, equivalently, (2.2) with f = 0, where B is
allowed to be an unbounded but admissible operator for the semigroup generated by Λ. Moreover, let
(ȳ, ū, λ̄) solve the corresponding steady state problem (6.1). Then (δy, δλ) := (y − ȳ, λ− λ̄) solves

C∗C − d
dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(δyδλ
)

=


0
−λ̄
0

y0 − ȳ

 ,(6.3)

where E0δy := δy(0) and ET δλ := δλ(T ) and δu := u− ū = Q−1B∗δλ.

Proof. Using (6.2) and d
dt ȳ = d

dt λ̄ = 0 yields that (ȳ, λ̄) satisfies
C∗C − d

dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(ȳλ̄
)

=


C∗Cyd
λ̄
Bud
ȳ

(6.4)

Considering the linear system for (y, u, p) solving (2.2) with f = 0, i.e.,
C∗C − d

dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0

(yλ
)

=


C∗Cyd

0
Bud
y0

(6.5)

we conclude the result by subtracting (6.4) from (6.5).

Theorem 6.2. Assume (y, u, λ) solves (2.2), where B is allowed to be an unbounded but ad-
missible control operator for the semigroup generated by Λ. Moreover, let (ȳ, ū, λ̄) solve the cor-
responding steady state problem (6.1). Let Assumption 4.2 A.1 and A.2 hold. Then, defining
(δy, δu, δλ) := (y − ȳ, u− ū, λ− λ̄), there exist µ > 0 and a constant c ≥ 0, both independent of T ,
such that

‖ 1

e−µt + e−µ(T−t) δy‖L2(X)+‖
1

e−µt + e−µ(T−t) δu‖L2(U)+(6.6)

+‖ 1

e−µt + e−µ(T−t) δλ‖L2(X) ≤ c
(
‖y0 − ȳ‖+ ‖λ̄‖

)
,

‖ 1

e−µt + e−µ(T−t) δy‖C(X) + ‖ 1

e−µt + e−µ(T−t) δλ‖C(X) ≤ c
(
‖y0 − ȳ‖+ ‖λ̄‖

)
.(6.7)
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Proof. By Lemma 6.1, (δy, δu, δλ) solves (6.3). By Theorem 5.4, ‖M−1‖(L2(X)×X)2→L2(X)2 can

be bounded independently of T . If we introduce a scaling factor 0 < µ < 1
‖M−1‖(L2(X)×X)2→L2(X)2

and scaled variables δ̃y := 1
e−µt+e−µ(T−t)

δy, δ̃u := 1
e−µt+e−µ(T−t)

δu and δ̃λ := 1
e−µt+e−µ(T−t)

δλ, we
can compute

(6.3) ⇐⇒



C∗C − d

dt − Λ∗

0 ET
d
dt − Λ −BQ−1B∗

E0 0


︸ ︷︷ ︸

=:M

+µ


0 F
0 0
−F 0
0 0


︸ ︷︷ ︸

=:P̃


(
δ̃y

δ̃λ

)
=

1

1 + e−µT


0
−λ̄
0

y0 − ȳ



where F := e−µ(T−t)−e−µt
e−µt+e−µ(T−t)

and the factor 1
1+e−µT

arises due to the scaling of the initial values.

The proof for the estimate of the state and the adjoint in (6.6) and (6.7) is similar to the one of

Theorem 3.2. Defining z̃ := (δ̃y, δ̃λ) and r̃ := 1
1+e−µT

(0,−λ̄, 0, y0 − ȳ), we get

(M + µP̃ )z̃ = r̃ ⇒ (I + µP̃M−1)Mz̃ = r̃ ⇒ z̃ = M−1(I + µP̃M−1)−1r̃.(6.8)

Again, as in the proof of Theorem 3.2 by a standard Neumann series argument, cf. [18, Theorem

2.14], as we chose µ such that β := µ‖M−1‖(L2(X)×X)2→L2(X)2 < 1, (I + µP̃M−1) is invertible as

‖F‖L2(X)→L2(X) ≤ 1 and thus ‖P̃‖L2(X)2→(L2(X)×X)2 ≤ 1. Therefore, using the Neumann series

representation of (I + µP̃M−1)−1 yields

‖(I + µP̃M−1)−1‖(L2(X)×X)2→(L2(X)×X)2

≤
∞∑
i=0

‖(µP̃M−1)i‖(L2(X)×X)2→(L2(X)×X)2 ≤
∞∑
i=0

βi =
1

1− β
.

(6.9)

Thus, we conclude with (6.8) and (6.9)

‖z̃‖L2(X)2 ≤
‖M−1‖(L2(X)×X)2→L2(X)2

1− β
‖r̃‖(L2(X)×X)2 ,

‖z̃‖C(X)2 ≤
‖M−1‖(L2(X)×X)2→C(X)2

1− β
‖r̃‖(L2(X)×X)2 .

(6.10)

Finally, ‖r̃‖(L2(X)×X)2 ≤ ‖y0 − ȳ‖ + ‖λ̄‖ and going back to the original variables yields the result
(6.7).

The remainder of this proof will now consist of estimating the control to conclude (6.6). To
this end, we recall the approach taken in the proof of Theorem 5.4 and compute

‖δ̃u‖2L2(U) =

∫ T

0

‖Q−1B∗δ̃λ(t)‖2 dt ≤ c
∫ T

0

‖Cδ̃y(t)‖2 + ‖R−∗B∗δ̃λ(t)‖2 dt.(6.11)

Similar to Lemma 4.7, using Lemma 3.4 for the scaled state and adjoint equation of system, we
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obtain∫ T

0

‖Cδ̃y(t)‖2 + ‖B∗δ̃λ(t)‖2 dt

= 〈δ̃y(T ), δ̃λ(T )〉 − 〈δ̃y(0), δ̃λ(0)〉+ µ

∫ T

0

〈F δ̃y(t), δ̃λ(t)〉+ 〈δ̃y(t), F δ̃λ(t)〉 dt

≤ ‖δ̃y(T )‖‖δ̃λ(T )‖+ ‖δ̃y(0)‖‖δ̃λ(0)‖+ 2µ‖δ̃y‖L2(X)‖δ̃λ‖L2(X)

≤ (‖δ̃y(T )‖+ ‖δ̃λ(0)‖)(‖δ̃y(0)‖+ ‖δ̃λ(T )‖) + µ(‖δ̃y‖2L2(X) + ‖δ̃λ‖2L2(X)),(6.12)

where we used ‖F‖L2(X)→L2(X) ≤ 1. In order to estimate the end time value of the state and the
initial value of the adjoint we compute:

‖δ̃y(T )‖+ ‖δ̃λ(0)‖ =
1

1 + e−µT
(‖δy(T )‖+ ‖δλ(0)‖) ≤ ‖δy‖C(X) + ‖δλ‖C(X)

≤ ‖M−1‖(L2(X)×X)2→C(X)2
(
‖y0 − ȳ‖+ ‖λ̄‖

)
.

Inserting this into (6.12) and (6.11), and using the estimate for the state and adjoint (6.10), we get

‖δ̃u‖2L2(U) ≤ c
(
‖M−1‖(L2(X)×X)2→C(X)2

(
‖y0 − ȳ‖2 + ‖λ̄‖2

)
+ µ
‖M−1‖2(L2(X)×X)2→L2(X)2

(1− β)2

(
‖y0 − ȳ‖2 + ‖λ̄‖2

))
,

where taking the square root and using µ‖M−1‖(L2(X)×X)2→L2(X)2 < 1 yields

‖δ̃u‖L2(U) ≤ c

(√
‖M−1‖(L2(X)×X)2→C(X)2 +

√
‖M−1‖(L2(X)×X)2→L2(X)2

(1− β)2

)
(‖y0 − ȳ‖+ ‖λ̄‖).

Theorem 5.3 yields bounds for the operator norms independently of T . Together with (6.10), this
gives the estimate (6.6).

Remark 6.3. Similarly to Theorem 3.2, one could deduce a bound on ‖ 1
e−µt+e−µ(T−t)

(u(t) −
ū)‖L∞(U), if the control operator is bounded.

We give a short interpretation of the two estimates given in Theorem 6.2. For the first inequality,
i.e., (6.6) consider a fixed 0 < ε < 1

2 and t ∈ [εT, (1− ε)T ]. Then, if T →∞, the two scaling terms

e−µt and e−µ(T−t) approach zero exponentially fast and we estimate

1

e−µt + e−µ(T−t) ≥
1

e−µεT + e−µ(T−(1−ε)T )
=

2

e−µεT

and hence e.g. for the difference of state y and its turnpike ȳ,∫ T

0

‖ y(t)− ȳ
e−µt + e−µ(T−t) ‖

2 dt ≥
∫ (1−ε)T

εT

‖ y(t)− ȳ
e−µt + e−µ(T−t) ‖

2 dt ≥ 4

e−2µεT

∫ (1−ε)T

εT

‖y(t)− ȳ‖2 dt

which, using (6.6) of Theorem 6.2, implies∫ (1−ε)T

εT

‖y(t)− ȳ‖2 dt ≤ ce−2µεT
(
‖y0 − ȳ‖+ ‖λ̄‖

)2
.
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Proceeding analogous for the adjoint and the control, we have

‖y − ȳ‖L2(εT,(1−ε)T ;X), ‖u− ū‖L2(εT,(1−ε)T ;U), ‖λ− λ̄‖L2(εT,(1−ε)T ;X) → 0, if T →∞

i.e., L2-convergence on a part of the whole time interval [0,T]. The convergence rate is exponential
and the part is growing linearly in T , as its length is (1− 2ε)T . Moreover, its fraction of the whole

interval is constant, as (1−2ε)T
T = 1−2ε. Thus, on a fixed percentage of the interval [0, T ], the state,

control and adjoint converge to the turnpike in the L2 norm, as the horizon T goes to infinity.
For the second inequality, i.e., (6.7), rewriting the pointwise estimate, we have

‖y(t)− ȳ‖+ ‖λ(t)− λ̄‖ ≤ c(e−µt + e−µ(T−t))

for every t ∈ [0, T ]. Therefore, if we fix 0 < ε < 1
2 and take the maximum over all t ∈ [εT, (1− ε)T ],

we get

‖y − ȳ‖C(εT,(1−ε)T ;X) + ‖λ− λ̄‖C(εT,(1−ε)T ;X) ≤ 2ce−µεT .

The right-hand side approaches zero exponentially fast as T → ∞. Therefore, for each ε ∈]0, 1
2 [,

we obtain uniform exponential convergence on the interval [εT, (1 − ε)T ] of y and λ to ȳ and λ̄

respectively as T → ∞. Again, similar to i), with (1−2ε)T
T = (1− 2ε), we conclude that on a fixed

fraction of the whole interval [0, T ], the state and adjoint converge to the turnpike in the maximum
norm.

7. Examples. Finally we provide examples for which the error estimation result for bounded
control operators, i.e., Theorem 3.2, the error estimation results for unbounded but admissible
control operators, i.e., Theorem 5.4 and the turnpike result Theorem 6.2 hold. First, we consider
the interior control of a heat equation and secondly, the boundary control of a wave equation.

Example 7.1. (Interior control of an unstable heat equation) Let Ω ⊂ Rn with smooth boundary
and ωc ⊂ Ω be non-empty. For T > 0, we consider the evolution equation

∂y

∂t
= (∆ + c2I)y + χωcu in Ω× (0, T )

y = 0 in ∂Ω× (0, T )

y(x, 0) = y0 in Ω,

where χωc is the characteristic function of the control domain ωc, U = L2(ωc) and y0 ∈ L2(Ω).
Moreover, we consider an observation operator C = χωo

for non-empty ωo ⊂ Ω. As ∆ generates a
semigroup on X = L2(Ω) with domain D(∆) = H2(Ω)∩H1

0 (Ω), we obtain by classical perturbation
results, cf. [8, Theorem 1.3], that (∆ + c2I) generates a semigroup with the same domain as ∆. If
c2 > λ1, where λ1 is the smallest eigenvalue of the negative Laplacian, the uncontrolled system is
unstable. Defining B : L2(ωc)→ L2(Ω) via Bu := χωcu, the pair (∆, B) is exactly null controllable
in finite time [3, 10], thus stabilizable. Analogously, it follows that (∆, C) is detectable. As B
is bounded on L2(X), one could apply the sensitivity result Theorem 3.2 or the turnpike result
Theorem 6.2 to optimal control problems governed by these operators. For moderate instability
parameters c > 0 with respect to the control and observation region, one can also obtain a turnpike
and sensitivity result in the W ([0, T ])-norm with [14, Theorem 3.1, Theorem 5.2] and we refer to
[14, Example 3.5] for this matter. However, if c is large, the results of [14] cannot be applied, while
the results of the present paper still hold.



EXPONENTIAL SENSITIVITY AND TURNPIKE ANALYSIS 21

Example 7.2 (Dirichlet control of a wave equation). Second, we provide an example of a hy-
perbolic PDE with unbounded but admissible control operator presented in [26, Section 10.9]. We
consider the model of a vibrating membrane on Ω ⊂ R2, where Ω is a bounded C2 domain and we
can take action through Dirichlet boundary control on a part Γ ⊂ Ω of the boundary. Moreover,
we assume that (Ω,Γ, T ) fulfill the so called Geometric Control Condition (GCC), which ensures
that all geometric optics have to enter the control domain in a time smaller than T . A consequence
of this condition is exact controllability, see [4, 23], and hence stabilizability. We consider the wave
equation

∂2w

∂t2
= ∆w on Ω× (0, T )

w = 0 on ∂Ω \ Γ× (0, T )

w = u on Γ× (0, T )

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) x ∈ Ω,

where f ∈ L2(Ω), g ∈ H−1(Ω) and u ∈ L2(L2(Γ)). It was shown in [26, Proposition 10.9.1], that
one can deduce a corresponding well-posed boundary control system on X = L2(Ω)×H−1(Ω) with

generator Λ =

(
0 I
−Λ0 0

)
, D(Λ) = H1

0 (Ω) × L2(Ω), where Λ0 is the Dirichlet Laplacian and a

control operator B defined by

Bv =

(
0

Λ0Dv

)
∀v ∈ U = L2(Γ)

B∗
(
ϕ
ψ

)
= − ∂

∂ν
(Λ−1

0 ψ)∣∣Γ ∀(ϕ,ψ) ∈ D(Λ),

where D is the Dirichlet map and ∂
∂ν the outward normal derivative. We refer the reader to [26,

Section 10.6, Section 10.9] for details. In particular, B is an admissible control operator for the
semigroup generated by Λ. Moreover as the GCC is satisfied, the pair (Λ, B) is exponentially
stabilizable. If we now consider any observation region ωo ⊂ Ω, such that (Ω, ωo, T ) satisfy the
GCC, then the pair (Λ, C) is exponentially detectable. As in this example the control operator is
unbounded on X, one cannot apply Theorem 3.2. Yet, Theorem 5.4 and Theorem 6.2 are applicable
to the optimal control problems governed by this equation.
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University, 1996.
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[13] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, Springer, 2016.
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