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Techniken der ganzzahligen linearen Optimierung für con-
stant dimension codes und verwandte Strukturen
Der Verband der Untervektorräume eines endlichdimensionalen Vektorraumes über einem
endlichen Körper ist versehen mit der so genannten subspace distance oder der injection
distance ein metrischer Raum. Eine Teilmenge dieses metrischen Raumes heißt subspace
code. Falls ein subspace code ausschließlich Elemente, so genannte Codeworte, derselben
Dimension beinhaltet, nennt man ihn constant dimension code, abgekürzt CDC. Die
Minimaldistanz ist der kleinste paarweise Abstand von Elementen eines subspace codes.
Im Falle von CDCs ist die Minimaldistanz äquivalent zu einer oberen Schranke an die
Dimension des Durchschnitts von je zwei Codewörtern.

Subspace codes spielen eine entscheidende Rolle im Kontext von random linear network
coding, bei dem Daten zwischen einem Sender und mehreren Empfängern übertragen
werden, so dass Teilnehmer der Kommunikation zufällige Linearkombinationen der Daten
weitersenden.

Zwei wichtige Probleme des subspace coding sind die Bestimmung der Kardinalität
größter subspace codes und der Klassifikation von subspace codes.
Diese Arbeit gibt unter Zuhilfenahme von Techniken der ganzzahligen linearen Op-

timierung und Symmetrie teilweise Antworten auf obige Fragen mit dem Fokus auf
CDCs.
Mit der coset construction und der improved linkage construction geben wir zwei

allgemeine Konstruktionen an, die die beste bekannte untere Schranke an die Kardinalität
in vielen Fällen verbessern.
Ein als Baustein für aufwändige CDCs oft genutzter und sehr strukturierter CDC ist

der lifted maximum rank distance code, abgekürzt LMRD. Wir verallgemeinern obere
Schranken für CDCs die einen LMRD beinhalten, so genannte LMRD bounds. Dies
liefert eine neue Methode um einen LMRD mit weiteren Codewörtern zu erweitern. In
sporadischen Fällen liefert diese Technik neue beste untere Schranken an die Kardinalität
von größten CDCs. Die improved linkage construction wird genutzt, um eine unendliche
Serie von CDCs deren Kardinalität die LMRD bound übertrifft, zu konstruieren.
Eine weitere Konstruktion, die einen LMRD beinhaltet, gepaart mit einer asympto-

tischen Analyse in dieser Arbeit, beschränkt das Verhältnis zwischen bester bekannter
unterer Schranke und bester bekannter oberer Schranke auf mindestens 61,6% für alle
Parameter.

Des Weiteren vergleichen wir bekannte obere Schranken und zeigen neue Beziehungen
zwischen ihnen auf.
Diese Arbeit beschreibt zudem eine computergestützte Klassifikation von größten

binären CDCs in Dimension acht, Codewortdimension vier und Minimaldistanz sechs.
Dies ist, für nichttriviale Parameter, die zusätzlich nicht den Spezialfall von partial spreads
parametrisieren, der dritte Parametersatz, bei dem die maximale Kardinalität festgestellt
wurde und der zweite Parametersatz, bei dem eine Klassifikation aller größten Codes
vorliegt.

Einige Symmetriegruppen können beweisbar nicht Automorphismengruppen von großen
CDCs sein. Wir geben zusätzlich einen Algorithmus an, der alle Untergruppen einer
endlichen Gruppe nach einer vorgegebenen, mit Einschränkungen wählbaren, Eigenschaft



durchsucht. Im Kontext von CDCs liefert dieser Algorithmus zum einen eine Liste
von Untergruppen, die als Kandidaten von Automorphismengruppen von großen Codes
infrage kommen und zum anderen können hierdurch gefundene Codes mit viel Symmetrie
weiterverarbeitet und vergrößert werden. Dies liefert einen neuen größten Code in dem
kleinsten offenen Fall, nämlich in der Situation des binären Analogons der Fano Ebene.



Integer linear programming techniques for constant dimen-
sion codes and related structures
The lattice of subspaces of a finite dimensional vector space over a finite field is combined
with the so-called subspace distance or the injection distance a metric space. A subset of
this metric space is called subspace code. If a subspace code contains solely elements,
so-called codewords, with equal dimension, it is called constant dimension code, which is
abbreviated as CDC. The minimum distance is the smallest pairwise distance of elements
of a subspace code. In the case of a CDC, the minimum distance is equivalent to an
upper bound on the dimension of the pairwise intersection of any two codewords.
Subspace codes play a vital role in the context of random linear network coding, in

which data is transmitted from a sender to multiple receivers such that participants of
the communication forward random linear combinations of the data.

The two main problems of subspace coding are the determination of the cardinality of
largest subspace codes and the classification of subspace codes.

Using integer linear programming techniques and symmetry, this thesis answers partially
the questions above while focusing on CDCs.

With the coset construction and the improved linkage construction, we state two general
constructions, which improve on the best known lower bound of the cardinality in many
cases.
A well-structured CDC which is often used as building block for elaborate CDCs is

the lifted maximum rank distance code, abbreviated as LMRD. We generalize known
upper bounds for CDCs which contain an LMRD, the so-called LMRD bounds. This also
provides a new method to extend an LMRD with additional codewords. This technique
yields in sporadic cases best lower bounds on the cardinalities of largest CDCs. The
improved linkage construction is used to construct an infinite series of CDCs whose
cardinalities exceed the LMRD bound.
Another construction which contains an LMRD together with an asymptotic analysis

in this thesis restricts the ratio between best known lower bound and best known upper
bound to at least 61.6% for all parameters.

Furthermore, we compare known upper bounds and show new relations between them.
This thesis describes also a computer-aided classification of largest binary CDCs in

dimension eight, codeword dimension four, and minimum distance six. This is, for non-
trivial parameters which in addition do not parametrize the special case of partial spreads,
the third set of parameters of which the maximum cardinality is determined and the
second set of parameters with a classification of all maximum codes.
Provable, some symmetry groups cannot be automorphism groups of large CDCs.

Additionally, we provide an algorithm which examines the set of all subgroups of a finite
group for a given, with restrictions selectable, property. In the context of CDCs, this
algorithm provides on the one hand a list of subgroups, which are eligible for automorphism
groups of large codes and on the other hand codes having many symmetries which are
found by this method can be enlarged in a postprocessing step. This yields a new largest
code in the smallest open case, namely the situation of the binary analogue of the Fano
plane.
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1 Introduction

In network coding, the goal is to transmit information from a source (sender) to at least
one sink (receiver) through a network, such that the participating nodes may use coding
on the data that they received. This setting is called multicast.
More formally, a network is a finite, connected, and directed graph G = (V,A) with

vertices in V and arcs in A such that each arc has a capacity of c : A → Z≥0. V contains
the special vertices S, the sender, and the receivers Ri for i = 1, . . . , r. Vertices are called
nodes and arcs are called links in the following. A link b ∈ A is called ingoing, respective
outgoing, of a node n if b = (m,n), respective b = (n,m), for m ∈ V.
In the classical case, in which no coding but simple replication and forwarding (store-

and-forward) of information at the intermediate nodes, i.e., V \ ({S}∪{Ri | i = 1, . . . , r}),
is allowed, there are examples showing that given capacities are not achieved. The default
example is the so-called butterfly network, see Figure 1. In this case, S wants to send the
information x1 and x2 to both receivers R1 and R2. Using store-and-forward, V1 can only
send x1 on both outgoing links and therefore V3 and R1 both know x1, and the same is
true for x2, V2, V3, and R2. Now V3 has two possibilities: send either x1 or x2 to V4. In
both cases, the information which was not sent can only be sent after transmitting the first
information, introducing a delay in time. If we allow coding at the nodes of this network,
then V3 gains the ability to combine x1 and x2, e.g., using binary vectors x1 and x2 and
+ in Fv2, which is equal to xor, for the newly crafted information α = β1 = β2 = x1 + x2.
α is then sent instead of x1 or x2. Then, R1 computes α + x1 = x2 and R2 computes
α+x2 = x1, so both receivers know both informations. This effectively reduces the overall
time to sent two informations to two receivers through this specific network.
Although using two sources, another standard example is depicted in Figure 2. This

network should be interpreted as wireless connections of two clients SR1 and SR2 to a
base station V1, such that neither of the clients can send or receive information from each
other, but both can communicate over V1. For example, SR1 wants to send x1 to SR2

and SR2 wants to send x2 to SR1 fast while V1 can only get data from one sender in
one time slot. Being wireless, V1 sends the same information to both SR1 and SR2, and
cannot send two distinct information to the clients. The catch is again that by using
x1, x2 ∈ Fv2 and the linear combination x1 + x2, we can reduce the total time for the
exchange of the data by 1/4. The actions of the three participating nodes are listed
in Table 1. Conceptually, this can be modeled via hypergraphs, in which each arc has
one source and a set of vertices as receiver. Neither hypergraphs nor multiple senders,
so-called multisource problems, are handled in this thesis.
The capacity of a network, i.e., the maximum flow in respective the minimum cut

of a network, can be achieved by linear network coding, cf. [LYC03]. In this context,
information is interpreted as vectors in the row vector space V = Fvq and coding at all

11



1 Introduction

S

V1

V2

V3 V4

R1

R2

x1

x2

x1

x1

x2

x2

α

β1

β2

Figure 1: Butterfly network to demonstrate that store-and-forward introduces a time
delay when sending information to both receivers. All capacities are one and
the depicted x1 and x2 is the information to send. The α, β1, and β2 are x1 or
x2 if store-and-forward is applied and for example x1 + x2 for binary vectors
if linear network coding is applied.

SR1 V1 SR2α β

Figure 2: Wireless network with two senders to demonstrate the advantage of network
coding. See Table 1 for the usage of this network.

time store-and-forward linear network coding
slot α β α β

1 SR1 → x1 → V1 − SR1 → x1 → V1 −
2 − V1 ← x2 ← SR2 − V1 ← x2 ← SR2

3 SR1 ← x1 ← V1 V1 → x1 → SR2 SR1 ← x1 + x2 ← V1 V1 → x1 + x2 → SR2

4 SR1 ← x2 ← V1 V1 → x2 → SR2 − −

Table 1: Actions of the participants in Figure 2 using store-and-forward and linear
network coding.
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nodes, not only intermediate ones, is to build a linear combination of the received vectors,
which can be different for each outgoing link throughout the whole network.

If there is a malicious node in the network, it may insert rogue vectors which are then
processed by the nodes in the described way. In fact, we have up to #A erroneous vectors,
one for each link in the network.
Assume that the sender wants to send only x1, . . . , xk ∈ V , a so-called generation.

Multiple generations can be implemented by labeling each sent vector with the generation
number, which then is only linearly combined with vectors having the same label. Assume
further, that there is only one receiver, i.e., r = 1. The method below can also be applied
in a scenario with multiple receivers.
Then, independent of any structural information about the network, the receiver

observes K vectors, y1, . . . , yK ∈ V , which are linear combinations of the valid vectors
x1, . . . , xk and the erroneous vectors e1, . . . , e#A ∈ V . Since V consists of row vectors,
the receiver gets(

y1

...
yK

)
=

( a1,1 ... a1,k

...
. . .

...
aK,1 ... aK,k

)
·
( x1

...
xk

)
+

(
b1,1 ... b1,#A
...

. . .
...

bK,1 ... bK,#A

)
·

(
e1
...

e#A

)
.

We will abbreviate this so-called channel as Y = A ·X+B ·E with Y ∈ FK×vq , A ∈ FK×kq ,
X ∈ Fk×vq , B ∈ FK×(#A)

q , and E ∈ F(#A)×v
q .

By choosing the linear combination in each node randomly, we end up by the so-called
random linear network coding [Ho+03] in which no information about A and B is available
at all. Nevertheless, it is known that the decoding probability converges to 1 by increasing
the field size q →∞. This increases the motivation to not use A and B in the reasoning
of the decoding.
Another advantage is, that the network may have cycles or delays [SKK08] and even

nodes may join or leave the network at will. In all of these scenarios, the receiver gets
Y = AX +BE.
As Kötter and Kschischang observed in [KK08b, Section 2], see also [SKK08, Sec-

tion 3.A], if E is the all-zero matrix 0 ∈ F(#A)×v
q , then the row-space of X contains the

row-space of Y as a subspace. This observation leads to the idea to study subspaces
instead of single vectors and that it does not matter which basis is received. Hence, by
sending an arbitrary k-dimensional basis of U as x1, . . . , xk, the receiver gets K vectors
that span a subspace W . If E = 0, then K ≤ k. Let E′ be the row-space of B · E and
Hl′(U) be an l′-dimensional subspace of U , then we have W = Hl′(U) +E′. Next, E′ can
be split into E′ = E′′ ⊕ Z with E′′ ≤ U , dim(Z ∩ U) = 0, and l′ ≤ l. The interpretation
is that errors which lie in the span of U are no errors at all. Hence, the final channel,
called random linear network coding channel (RLNCC), is

W = Hl(U)⊕ Z,

such that dim(Z ∩U) = 0 and in which t = dim(Z) errors and p = max{0,max{dim(U) |
U ∈ C} − l} erasures occur for a given set of subspaces C.
A set of subspaces of V is called subspace code.

13



1 Introduction

By introducing a metric dx on the set of subspaces of V , it can be proved that the
minimum distance decoder , i.e., argmin{dx(W,B) | B ∈ C}, can reconstruct U using only
W and C if the number of errors and erasures which occurred in the transmission is small.

Although there are two well-known metrics on the set of subspaces of V , the subspace
distance ds(U,W ) = dim(U +W )− dim(U ∩W ) and the injection distance di(U,W ) =
max{dim(U), dim(W )} − dim(U ∩W ), we mainly consider the subspace distance.
The vital property to guarantee a successful decoding is the minimum distance of

the subspace code C, which shall be large and in turn decreases the cardinality of C.
Conversely, it is also preferable to increase the information that each symbol which is
transmitted carries. This corresponds to a large cardinality of C and hence there is a
trade-off between the amount of transmitted data and resistance against errors or erasures.

Hence, for fixed parameters V and d the question to determine the maximum cardinality
of C and to classify subspace codes up to symmetry arises.
While focusing on the so-called constant dimension case in which all elements of C

have the same dimension, this thesis develops new general constructions, sporadic codes,
bounds in special cases and the second classification of a set of parameters which is
non-trivial and not of maximum distance.
The homepage http://subspacecodes.uni-bayreuth.de associated with [Hei+16]

was developed together with this thesis. It lists numerical values for lower and upper
bounds of the sizes of subspace codes and constant dimension codes. There are also codes
to download, for some parameters even all codes up to isomorphism. The parameters
are bounded by field size ≤ 9 and ambient space ≤ 19 and only the subspace distance is
considered.
In Chapter 2, we introduce the notation and basic facts which we will use at various

places in this work. Chapter 3 continues with additional basic facts about the structure
of subspaces in a vector space and it particularly introduces a binary linear program-
ming formulation called DefaultCDCBLP, which is able to determine the maximum
size of a subspace code with constant dimension for fixed other parameters and will
be applied frequently, sometimes slightly modified. Chapter 4 states the well-known
connection between the Hamming distance of pivot vectors and the subspace distance
of corresponding subspaces. This chapter also states the well-known Echelon-Ferrers
construction which we use as building block for some elaborate constructions as the coset
construction in Chapter 5, which generalizes the original coset construction from [HK17c].
An often used constant dimension code (CDC) is the lifted maximum rank distance
code (LMRD). Chapter 6 generalizes known upper bounds for CDCs containing LMRDs.
This bound is called LMRD bound and the proof is used to get sporadic codes whose
cardinalities exceed the corresponding best known largest codes for these parameters.
This chapter describes the paper [Hei18] in more detail. Chapter 7 discusses the best
known upper bounds for the cardinalities of constant dimension codes and shows new
relations between bounds. One of the best recursive constructions, the linkage construc-
tion, is improved in Chapter 8 and numerical computations for small parameters listed in
http://subspacecodes.uni-bayreuth.de associated with [Hei+16] suggest that this is
the best lower bound in most sets of parameters. The limit behaviour of ratios of lower and
upper bounds and an infinite series of parameters in which the LMRD bound is surpassed

14

http://subspacecodes.uni-bayreuth.de
http://subspacecodes.uni-bayreuth.de


are studied in Chapter 9. The chapters 7, 8, and 9 state and partially generalize or
continue the work of the paper [HK17b]. Some symmetries are not feasible for large codes
and can be handled in theory in Chapter 10. They can also be handled with computer
calculations and Chapter 11 shows a general technique which is also implemented in
Magma [BCP97] in the appendix. This yields a set S of subgroups of the GL(F7

2) with the
property that all groups which are not in the conjugacy classes of elements of S under the
GL(F7

2) are automorphism groups of CDCs in this setting with small cardinality. As a
byproduct, we get a new largest code in this setting. This chapter and also the appendix
provide the algorithm and the details of [Hei+17c]. In Chapter 12 we determine the third
exact value of maximum cardinalities of CDCs and second classification of non-trivial
parameters with non-maximum distance. This chapter generalizes the theory of [Hei+17a]
and lists a classification of [HK17a]. We conclude this thesis in Chapter 13 with a list of
open problems.
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2 Preliminaries

Let Fq be the up to isomorphism unique finite field with q elements and denote V ∼= Fvq
the up to isomorphism unique v-dimensional row vector space over Fq. The i-th unit
vector is commonly denoted as ui. The vector space of matrices which have m rows, n
columns and entries in Fq is Fm×nq . If M ∈ Fm×nq , then Mi,∗ is the i-th row for 1 ≤ i ≤ m,
M∗,j is the j-th column for 1 ≤ j ≤ n, and consequently Mi,j is the element in the i-th
row and j-th column. We abbreviate [n] = {1, 2, . . . , n}, if and only if as “iff”, with respect
to as “wrt.”, and without loss of generality as “wlog.”.

Grassmannian and q-binomial coefficients By
[
V
k

]
we denote the set of all k-dimensional

subspaces in V , which is also called Grassmannian and denoted as Gq(v, k) or Gq(v, k) in
other literature.

Its size is given by the q-binomial coefficient [ vk ]q, which is also called Gaussian binomial
coefficient.

We refer to [AAR99; And76; Ber10; Ext83] and in particular to [BKW18b] for further
reading.

1 Lemma
Let q ≥ 2 be a prime power and k and v integers. Then

[ vk ]q =
k−1∏
i=0

qv − qi

qk − qi
=

k−1∏
i=0

qv−i − 1

qk−i − 1
=

k∏
i=1

qv−k+i − 1

qi − 1

if 0 ≤ k ≤ v and [ vk ]q = 0 otherwise.

Proof
The first equality is proved by a simple counting argument. For the i-th basis vector of
an ordered basis of a k-dimensional subspace of Fvq , we have qv − qi (i = 0, . . . , k − 1)
possibilities, whereas, by the very same counting argument, (qk−q0)(qk−q1)·. . .·(qk−qk−1)
ordered bases span the same k-dimensional vector space. The remaining equations are
simple transformations. �

For a prime power q ≥ 2 and a non-negative integer n, we also define the q-number
[n]q = qn−1

q−1 =
∑n−1

i=0 q
i ∈ Z≥0 and the q-factorial [n]q! =

∏n
i=1[i]q together with [0]q! = 1.

We also apply the notation of [n]q =
∑n−1

i=0 q
i for an arbitrary positive integer q. These

17



2 Preliminaries

q-numbers are very useful in proofs containing q-binomial coefficients, due to the following
correspondence.

2 Lemma
For q ≥ 2 prime power and 0 ≤ k ≤ v integers, we have

[ vk ]q =
[v]q!

[k]q![v − k]q!
.

Proof

[ vk ]q =
k∏
i=1

qv−k+i − 1

qi − 1
=

k∏
i=1

(qv−k+i − 1)/(q − 1)

(qi − 1)/(q − 1)
=

k∏
i=1

[v − k + i]q
[i]q

=

∏v
i=v−k+1[i]q∏k

i=1[i]q
=

∏v
i=1[i]q∏k

i=1[i]q ·
∏v−k
i=1 [i]q

=
[v]q!

[k]q![v − k]q!
. �

Particularly, Lemma 2 shows that the q-binomial coefficient is symmetric, i.e., [ vk ]q =
[ v
v−k ]q and that the following two q-Pascal identities hold:

3 Lemma
For q ≥ 2 prime power and 1 ≤ k ≤ v − 1 integers, we have

[ vk ]q =
[
v−1
k

]
q
· qk +

[
v−1
k−1

]
q

and [ vk ]q =
[
v−1
k

]
q

+
[
v−1
k−1

]
q
· qv−k.

Proof
Since qv − 1 = (qv−k − 1)qk + (qk − 1) = (qv−k − 1) + (qk − 1)qv−k, dividing by q − 1

yields [v]q = [v − k]qq
k + [k]q = [v − k]q + [k]qq

v−k. Due to 1 ≤ k ≤ v − 1, we can divide
this by ([k]q[v− k]q) to obtain [v]q

[k]q [v−k]q
= 1

[k]q
qk + 1

[v−k]q
= 1

[k]q
+ 1

[v−k]q
qv−k. Multiplying

with [v−1]q !
[k−1]q ![v−k−1]q !

yields

[v]q !
[k]q ![v−k]q !

=
[v−1]q !

[k]q ![v−k−1]q !
qk +

[v−1]q !
[k−1]q ![v−k]q !

=
[v−1]q !

[k]q ![v−k−1]q !
+

[v−1]q !
[k−1]q ![v−k]q !

qv−k,

which concludes the proof with Lemma 2. �

Moreover, the q-binomial coefficient can be written as a sum:

18



4 Lemma
For q prime power and k ≤ v integers, we have:

[ vk ]q =
k∑
l=0

c(q, k, l)qlv,

where

c(q, k, l) =
(−1)k−l

∑
w∈Fk2 ,||w||1=l q

∑k
j=1 j·wj

qlk
∏k
j=1(qj − 1)

does not depend on v.

Proof
If k < 0, then both sides are zero, hence we assume 0 ≤ k. Let w ∈ Fk2 iterate over all
summands of the evaluation of

∏k
j=1(qv−k+j − 1) such that wj = 1 chooses qv−k+j and

wj = 0 chooses −1, i.e.,
k∏
j=1

(qv−k+j − 1) =
∑
w∈Fk2

k∏
j=1

(qv−k+jwj + (−1)(1− wj))

=
∑
w∈Fk2

(−1)k−||w||1q
∑k
j=1 wj(v−k+j) =

k∑
l=0

∑
w∈Fk2 ,||w||1=l

(−1)k−lql(v−k)+
∑k
j=1 j·wj

=

k∑
l=0

(−1)k−lql(v−k)
∑

w∈Fk2 ,||w||1=l

q
∑k
j=1 j·wj

 .

Hence, this can be inserted in the equation for the q-binomial coefficient:

[ vk ]q =

k∏
j=1

qv−k+j − 1

qj − 1
=

∑k
l=0

(
(−1)k−lql(v−k)

∑
w∈Fk2 ,||w||1=l q

∑k
j=1 j·wj

)
∏k
j=1(qj − 1)

=
k∑
l=0

(−1)k−l
∑

w∈Fk2 ,||w||1=l q
∑k
j=1 j·wj

qlk
∏k
j=1(qj − 1)

qlv =
k∑
l=0

c(q, k, l)qlv. �

The following inequality will be applied multiple times to bound quotients of q-numbers.

5 Lemma
For 1 < b and a real numbers, we have a−1

b−1 ◦
a
b for a ◦ b with ◦ ∈ {<,≤,=,≥, >}. Hence,

we have [x]q
[y]q
◦ qx−y for q ≥ 2 prime power and integers x and y with 1 ≤ y and x ◦ y.
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2 Preliminaries

Divisions of two q-binomial coefficients can be computed straight forward:

6 Lemma (cf. [HKK16b, Lemma 2.4])
For q ≥ 2 prime power and 1 ≤ k ≤ v, we have

[ vk ]q
[ v
k−1 ]q

=
[v − k + 1]q

[k]q
=
qv−k+1 − 1

qk − 1
.

Proof
This is an application of Lemma 2.

[ vk ]q
[ v
k−1 ]q

=
[v]q![k − 1]q![v − k + 1]q!

[k]q![v − k]q![v]q!
=

[v − k + 1]q
[k]q

.
�

The following lemma simplifies the comparison of the Anticode bound (Theorem 107)
to the Compact Johnson bound (Corollary 117) later.

7 Lemma
For q ≥ 2 prime power and integers a, b, c with 0 ≤ b ≤ c ≤ a, we have:

[ ab ]q
[ cb ]q

=
[ ac ]q[
a−b
c−b
]
q

.

Proof
This is also an application of Lemma 2.

[ ab ]q
[ cb ]q

=
[a]q![b]q![c− b]q!
[b]q![a− b]q![c]q!

=
[a]q![c− b]q![a− c]q!
[c]q![a− c]q![a− b]q!

=
[ ac ]q[
a−b
c−b
]
q

.
�

The determination of the exact value of [ vk ]q can be cumbersome and is not always
required since an approximation is often sufficient. To this end, Kötter and Kschischang
proved in [KK08b, Lemma 4] that 1 < [ vk ]q /q

k(v−k) < 4 for a prime power q and 0 < k < v.
In fact, using the q-Pochhammer symbol, which is defined as (a; q)n =

∏n−1
i=0 (1 − aqi),

in the special case (1/q; 1/q)n =
∏n
i=1(1 − q−i) together with the limit (1/q; 1/q)∞ =∏∞

i=1(1− q−i), their proof shows a more exact estimation:

8 Lemma (cf. [KK08b, Lemma 4])
For q ≥ 2 prime power and 0 < k < v, we have

1 < [ vk ]q /q
k(v−k) < (1/q; 1/q)−1

k < (1/q; 1/q)−1
∞ ≤ (1/2; 1/2)−1

∞ ≈ 3.4627.
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We will use µ(q) := (1/q; 1/q)−1
∞ as an abbreviation. µ(q) is monotonically decreasing

in q and some approximated values for small q are given in Table 2. In particular, a
coarse upper bound involving only exponents is µ(q) ≤ 4 ≤ q2 for all q ≥ 2 prime power
and µ(q) ≤ 3 ≤ q for all q ≥ 3 prime power.

q 2 3 4 5 7 8 9
µ(q) 3.46 1.79 1.45 1.32 1.20 1.16 1.14
logq(µ(q)) 1.79 0.53 0.27 0.17 0.09 0.07 0.06

Table 2: Values for µ(q) and logq(µ(q)) for small q.

We perform a similar analysis concerning the limit behavior of qab/
[
a+b
b

]
q
.

9 Lemma (cf. [HK17b, Lemma 5])
For q ≥ 2 prime power and a, b positive integers, we have lima→∞ q

ab/
[
a+b
b

]
q

=

(1/q; 1/q)b and this convergence is strictly monotonically decreasing.
Moreover, we have

(1/q; 1/q)b > (1/q; 1/q)∞ ≥ (1/2; 1/2)∞ > 0.288788 and
(1/q; 1/q)b ≥ (1/2; 1/2)b > (1/2; 1/2)∞ > 0.288788.

Proof
The definition of q-binomial coefficients and q-Pochhammer symbols yields

lim
a→∞

qab[
a+b
b

]
q

= lim
a→∞

qab∏b
i=1

qa+i−1
qi−1

= lim
a→∞

b∏
i=1

qi − 1

qi − q−a
=

b∏
i=1

(1− q−i) = (1/q; 1/q)b.

The monotonicity follows from

qab/
[
a+b
b

]
q

q(a+1)b/
[
a+1+b
b

]
q

=
[a+ 1 + b]q![b]q![a]q!

[b]q![a+ 1]q![a+ b]q!
q−b =

[a+ 1 + b]q
[a+ 1]q

q−b > qbq−b = 1.

The inequalities follow from 1−q−i < 1 and 1−2−i ≤ 1−q−i and
∏b
i=1(1−q−i) >

∏∞
i=1(1−

q−i) ≥
∏∞
i=1(1− 2−i) in the upper and

∏b
i=1(1− q−i) ≥

∏b
i=1(1− 2−i) >

∏∞
i=1(1− 2−i)

in the lower case. �

Although both series of inequalities in the lemma seem to form a single series, the
critical part is not comparable: (1/2; 1/2)b 6> (1/q; 1/q)∞, e.g., b = 1 and q = 3 yield
(1/2; 1/2)b = 0.5 and (1/q; 1/q)∞ ≈ 0.56.

Moreover, we need to count the number of subspaces which lie in a given subspace
and only intersect another given subspace trivially. This number is well-known in a more
general setting.
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2 Preliminaries

10 Lemma ([BKW18b, Lemma 1])
Let B ≤ U ≤W ≤ V with dim(B) = b, dim(U) = u, and dim(W ) = w and c an integer.
Then

#{A ≤W | dim(A) = c and A ∩ U = B} = q(u−b)(c−b) [w−u
c−b

]
q
.

Both sides of the equation are zero iff c < b or w − u < c− b.

The usage of B = {0} in the last lemma implies:

11 Definition
Let W and U be subspaces of V . The set of all c-dimensional subspaces that are in W
and intersect U trivially is[

W\U
c

]
:= {A ≤W | dim(A) = c and A ∩ U = {0}}.

For w = dim(W ) and u = dim(U ∩W ) its cardinality is denoted as
[
w\u
c

]
q
which can

be computed:

[
w\u
c

]
q

=
c−1∏
i=0

qw − qu+i

qc − qi
= quc

c−1∏
i=0

qw−u − qi

qc − qi
= quc [w−uc ]q

for 0 ≤ c ≤ w − u and 0 otherwise.

This allows to count the number of l-subspaces of V that are incident to a specific
k-subspace.

12 Corollary
Let V be a subspace, 0 ≤ k ≤ v, 0 ≤ l ≤ v integers, and U ∈

[
V
k

]
. Then #{W ∈

[
V
l

]
|

W ≤ U} =
[
k
l

]
q
if l ≤ k and #{W ∈

[
V
l

]
| U ≤W} =

[
v−k
l−k
]
q
if k ≤ l.

Proof
If l ≤ k, then #{W ∈

[
V
l

]
| W ≤ U} = #{W ∈

[
U
l

]
} =

[
k
l

]
q
by Lemma 1. If

k ≤ l then each subspace in {W ∈
[
V
l

]
| U ≤ W} is determined by basis extension as

W = Z ⊕U for Z ∈
[
V \U
l−k

]
while each Z ∈

[
W\U
l−k

]
determines the same subspace W . As

#
[
V \U
l−k

]
=
[
v\k
l−k

]
q
and #

[
W\U
l−k

]
=
[
l\k
l−k

]
q
, which is in particular independent of U and
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W , Definition 11 provides

#{W ∈
[
V
l

]
| U ≤W} =

[
v\k
l−k

]
q[

l\k
l−k

]
q

=

[
v−k
l−k
]
q
qk(l−k)[

l−k
l−k
]
q
qk(l−k)

=
[
v−k
l−k
]
q
. �

The rows of any matrix M ∈ Fk×vq having rank k, i.e., 1 ≤ k ≤ v integers, span a
subspace S in

[
V
k

]
. In this context, the matrix M is called generator matrix of S. Since

the application of the Gaussian elimination algorithm on the rows ofM does not change its
row-space, any matrix obtained via basic row operations is a generator matrix of S which
is especially true for the unique matrix in reduced row echelon form (RREF), cf. [Gor16,
Proposition 8.2]. A matrix B in Fr×s, F is a field, has RREF iff B has rk(B) non-zero
rows at the top and r − rk(B) zero rows at the bottom, the first non-zero entry from the
left in each row is a 1, the so called leading 1, the corresponding column is a unit column,
and if a non-zero row i has its first entry in position j then the row i+1 has at least j zeros
in the beginning. Conversely, any basis of S, written as the rows of a matrix N produce a
generator matrix N of S. Although S ∈

[
V
k

]
has # GL(S) = # GL(Fkq ) =

∏k−1
i=0 (qk − qi)

ordered bases and # GL(Fkq )/k! unordered bases, it has exactly one basis whose rows
form a matrix in RREF and in particular the requirement of being in RREF only chooses
a canonical basis of S. Hence the bijection

τq,k,v :
[

Fvq
k

]
→ {A ∈ Fk×vq | rk(A) = k,A is in RREF}

and surjective map

RREFq,k,v : {A ∈ Fk×vq | rk(A) = k} → {A ∈ Fk×vq | rk(A) = k,A is in RREF}

will be applied multiple times. If q, v, and k are clear from the context, we will abbreviate
τq,k,v with τ and RREFq,k,v with RREF. For a matrix M ∈ Fr×s in RREF, a pivot
column c is a column of M such that there is a row that has its leading 1 in c. Note that
any pivot column is a unit vector, M has the rk(M) pivot columns u1, u2, . . . , urk(M) ∈ Fr,
and if column i and j > i are indices of pivot columns ofM withM∗,i = ux andM∗,j = uy,
then x < y. Using the weight of a vector wt(u) = #{j ∈ {1, . . . , v} | uj 6= 0} for u ∈ Fv,
the maps

pq,v,k :

{[
Fvq
k

]
→ {u ∈ Fv2 | wt(u) = k}

U 7→ u, such that uj = 1 iff j is a pivot column of τ(U)

and

pq,v,k :

{
{A ∈ Fk×vq | rk(A) = k,A is in RREF} → {u ∈ Fv2 | wt(u) = k}
M 7→ p(τ−1(M))

for k = 0, 1, . . . , v will be useful in the remaining text. If the context implies q, v, and k,
we abbreviate pq,v,k with p. The image of p is called the pivot vector of U or M .
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2 Preliminaries

13 Example
Denoting ui as the i-th unit vector, the subspace 〈u1, u2〉 ≤ F3

2, which contains the
vectors (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0), fulfills τ(〈u1, u2〉) = ( 1 0 0

0 1 0 ). Conversely,
the rows of any given matrix M ∈ Fvq with rk(M) = k, i.e., not necessary in RREF,
span W , a k-dimensional subspace in Fvq , and in particular τ(W ) is the RREF of M .
Here, we have p(〈u1, u2〉) = (1, 1, 0) and p(( 1 0 0

0 1 0 )) = (1, 1, 0).

Using
[
V
k

]
as vertex set of a graph, we obtain the so-called Grassmann graph [BCN89,

Chapter 9.3], in which two vertices are adjacent iff the intersection of the two corresponding
subspaces has dimension k−1. The Grassmann graph is q[k]q[v−k]q-regular (Corollary 103
and [BCN89, Theorem 9.3.3]) and even distance-regular , i.e., for two vertices v1 and v2

and integers d1 and d2, the number of vertices with distance d1 from v1 and d2 from v2

only depends on d1, d2, and the distance between v1 and v2 but not on the specific choice
of v1 and v2 [BCN89, Chapter 4.1].

Metric spaces and subspace distance The set of all subspaces of V , L(V ) =
⋃v
i=0

[
V
i

]
,

forms a metric space associated with the so-called subspace distance ds(U,W ) = dim(U +
W )− dim(U ∩W ), cf. [KK08b, Lemma 1]. As a short notation, we will use U ≤ V for
U ∈ L(V ).

Depending on the situation, another reformulation of ds(U,W ) may be useful. Applying
dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ), we get:

ds(U,W ) = dim(U +W )− dim(U ∩W ) = dim(U) + dim(W )− 2 dim(U ∩W )

= 2 dim(U +W )− dim(U)− dim(W ) = 2 rk
((

τ(U)
τ(W )

))
− dim(U)− dim(W ).

The metric space (L(V ),ds) may be viewed as a q-analogue of the Hamming space
(Fv2, dh) used in conventional coding theory via the subset-subspace analogy [Knu71].

In the notation of projective geometry, the elements of L(V ) are the flats of PG(V ) ∼=
PG(Fvq) ∼= PG(v − 1, q) and in some literature L(V ) is denoted as Pq(v). In particular,
we use always the vector space dimension. A survey on Galois geometries and coding
theory can be found in [ES16], see also [CPS18]. Subspaces of small (algebraic) dimension
or co-dimension get special names according to Table 3. A vector space of dimension k is
also abbreviated as k-space or k-subspace. If U ≤W or W ≤ U for U,W ≤ V , then we
call U and W incident or U incident to W or W incident to U .

dim(U) 1 2 3 4 v − 1

name point line plane solid hyperplane

Table 3: Names for subspaces according to their dimensions.

Moreover, L(V ) is a lattice – the so-called subspace lattice. A possible visualization is
therefore a Hasse diagram, e.g, Figure 3, which shows a Hasse diagram of L(F4

2).
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Injection distance Another metric on L(V ) is the so-called injection distance di (cf. [SK09])
which is defined by

di(U,W ) = max{dim(U),dim(W )} − dim(U ∩W )

= dim(U +W )−min{dim(U),dim(W )}.

For U,W ∈ L(V ), we have

ds(U,W ) = di(U,W ) + min{dim(U),dim(W )} − dim(U ∩W )

= di(U,W ) + dim(U +W )−max{dim(U),dim(W )}
= 2di(U,W )− | dim(U)− dim(W )|.

This can be bounded with

di(U,W ) ≤ ds(U,W ) ≤ 2di(U,W ).

The first relation is an equality iff U ≤ W or W ≤ U and the second is an equality iff
dim(U) = dim(W ), hence ds and di are equivalent on

[
V
k

]
for each k = 0, . . . , v.

The injection distance di(U,W ) equals the graph distance of the vertices corresponding
to U and W in the Grassmann graph.
Hk(U) is an arbitrary k-dimensional subspace of a vector space U , cf. [KK08b, before

Definition 1].
Using the RLNCC W = Hl(U) ⊕ Z Kötter and Kschischang prove that, for a sent

U , a received W can be successfully decoded by a minimum distance decoder, i.e.,
argmin{dx(W,B) | B ∈ C}, x ∈ {i, s}, if the distance is large enough. The proof involving
the injection distance is analogous to the proof involving the subspace distance, since
ds(X,U) = di(X,U) for all U with X ≤ U . Additional notation will be defined in the
paragraph “Subspace codes”.

14 Theorem (cf. [KK08b, Theorem 2])
Let C be a subspace code, x ∈ {i, s}, U ∈ C, and W = Hl(U)⊕ Z with t = dim(Z) and
p = max{0,max{K(C)}− l}. If t+ p < Dx(C)/2, then U = argmin{dx(W,B) | B ∈ C}.

Proof
Let X = Hl(U). Since X ≤ U and X ≤W , we have dx(X,U) = dim(U)− dim(X) ≤ p
and dx(X,W ) = dim(W )− dim(X) = t, which then shows dx(U,W ) ≤ p+ t < Dx(C)/2
with the triangle inequality. Next, for Y 6= U ∈ C, we have Dx(C) ≤ dx(Y,U) ≤
dx(Y,W )+dx(W,U) again by the triangle inequality, i.e., dx(Y,W ) ≥ Dx(C)−dx(W,U) >
2dx(W,U)− dx(W,U) = dx(W,U). �

This theorem justifies that the subspace distance and the injection distance is studied
in the context of subspace coding.
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2 Preliminaries

Groups Let G be a group and U be a subgroup, denoted U ≤ G. The right coset of g
with respect to U is Ug = {ug | u ∈ U}. The set of right cosets is U\G. The left coset
of g with respect to U is analogously gU = {gu | u ∈ U}. The set of left cosets is G/U .
Finally, #U\G = #G/U = (G : U) is also called the index of U in G.

15 Lemma (Lagrange’s theorem, [KS04, 1.1.7])
If G is a finite group and U ≤ G, then #U · (G : U) = #G.

Let G be a group, U ≤ G a subgroup and g, h ∈ G elements. The conjugation of h with
g is hg = g−1hg, the conjugation class of h in G is hG = {hg | g ∈ G}, the conjugation
of U with g is Ug = g−1Ug = {g−1ug | u ∈ U}, and the conjugation class of U in G is
UG = {Ug | g ∈ G}.

For two groups A and B with A ≤ B let NB(A) denote the normalizer of A in B, i.e.,
NB(A) = {b ∈ B | Ab = A}, and let A E B denote that A is a normal subgroup in B,
i.e., Ab = A for all b ∈ B.
For a finite group G and a prime p, a p-subgroup of G is a subgroup of G of order pi

for an i and a Sylow p-subgroup of G is a subgroup of G that is not properly contained in
any p-subgroup of G.

The following theorem resembles [KM79, Theorem 11.1.1] and the fact about the index
is from [KS04, 3.2.3].

16 Theorem (Sylow’s theorem, [KM79, Theorem 11.1.1], [KS04, 3.2.3])
Let G be a finite group and p be a prime with p | #G.

1. For each i with pi | #G there is a subgroup of G of order pi.

2. If pi+1 | #G, then each subgroup of G of order pi is contained in a subgroup
of G of order pi+1. In particular, if j is maximal with pj | #G then any Sylow
p-subgroup of G has order pj and conversely any subgroup of order pj is a Sylow
p-subgroup of G.

3. The Sylow p-subgroups of G are conjugate in G.

4. The number r of Sylow p-subgroups of G fulfills r ≡ 1 (mod p) and r = (G :
NG(P )) for a Sylow p-subgroup P of G. In particular r | #G.

A consequence of this lemma of particular interest is:

17 Corollary
Let G be a finite group and p be a prime with p | #G. Then any Sylow p-group contains
a conjugate of any p-group.
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The trivial group and 0-subspace is denoted as 〈〉 or {0}.

18 Definition ([KM79, Page 33, 134f], [Tho68], cf. [PS00])
A subnormal series of a group G is a series of subgroups (G1, . . . , Gk) such that 〈〉 =
G0 E G1 E . . . E Gk E Gk+1 = G.
A group G is called solvable if it has a subnormal series 〈〉 = G0 E G1 E . . . E Gk E

Gk+1 = G whose quotient groups are abelian, i.e., Gi/Gi−1 is abelian for all i ∈ [k + 1].
A solvable number is a positive integer n such that any group of order n is solvable.

The negation is called non-solvable number .

19 Lemma ([Tho68], cf. [PS00])
The positive integer n is non-solvable number iff d | n for d ∈ A ∪B ∪ C ∪D ∪ E with
A = {2p(22p − 1) | p prime},
B = {3p(32p − 1)/2 | p ≥ 3 prime},
C = {p(p2 − 1)/2 | p ≥ 7 prime, p2 + 1 ≡ 0 (mod 5)},
D = {5616}, and
E = {22p(22p + 1)(2p − 1) | p ≥ 3 prime}.

This shows a generalization of the famous Feit-Thompson theorem [Koc70, 2.8.1], which
states that any finite group with odd order is solvable and hence any positive and odd
integer is a solvable number.

20 Corollary
Any non-solvable number is divisible by 12 or 20.

Proof
Using 4 | 2p and 32p−1 = 9p−1 ≡ 1p−1 = 0 (mod 8) for any prime p, 2 | p−1∧4 | p+ 1
or 4 | p− 1∧ 2 | p+ 1 for any odd prime p, 5616 = 4 · 1404, and 4 | 22p = 4p for any prime
p, Lemma 19 shows that any non-solvable number is a multiple of 4.

Since 22p ≡ 1 (mod 3), 3 | 3p, and 3 | (p− 1)p(p+ 1) for all primes p, 5616 = 3 · 1872,
and 22p ≡ −1 (mod 5) for odd primes p, Lemma 19 shows that any non-solvable number
is a multiple of 3 in the cases A, B, C, D and a multiple of 5 in the case E. �

In particular, the difference of any two non-solvable numbers is at least 12 and this is
attained between e.g. 168 and 180 as the first non-solvable numbers 60, 120, 168, 180,
240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008 (cf. https:
//oeis.org/A056866) show.
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2 Preliminaries

For a finite group G and a set of primes π, a Hall π-subgroup of G is a subgroup of G
such that any prime that divides its order is contained in π and vice versa and its order
is coprime to its index in G.
For example, Theorem 16 shows that any Sylow p-subgroup of the finite group G is

a Hall π-subgroup of G with π = {p}. Although for π = {p} a Hall π-subgroup always
exist by Theorem 16, in general this is not true, e.g., the alternating group on five
elements, A5, contains a Hall {2, 3}-subgroup, i.e., A4 ≤ A5, but neither a non-trivial
Hall {3, 5}-subgroup nor a non-trivial Hall {2, 5}-subgroup [KS04, Page 135].
A positive divisor d of an integer n is called Hall divisor if GCD(d, n/d) = 1, i.e., d

and n/d are coprime.
Although the following theorem resembles [KM79, Theorem 20.1.1], the version in e.g.

[Koc70, 11.1.1] contains additional facts about the number of Hall π-subgroups of G.

21 Theorem (Hall’s theorem, [KM79, Theorem 20.1.1])
Let G be a finite solvable group, m be a Hall divisor of #G, and π be the set of primes
dividing m.

1. G contains at least one Hall π-subgroup, which then has order m.

2. The Hall π-subgroups of G are conjugate in G.

3. Any subgroup of G whose order divides m is contained in a Hall π-subgroup of G.

The orders of a set of groups are abbreviated as a string 1n12n2 . . . such that there are
ni groups of order i in the set and we omit the cases with ni = 0.

Occasionally, we will mention abstract types of groups. We use Cn for the cyclic group,
Dn for the dihedral group, Qn for the quaternion group of order n, An for the alternating
group, and Sn for the symmetric group on n elements. × denotes a direct product and o
denotes a (not necessarily unique) semidirect product of groups.
The Small Groups Library [BEO], which is implemented in the computer algebra

system Magma [BCP97] and GAP [GAP18], provides precise information of the abstract
types of groups with small order. It contains among others all abstract types of groups of
order ≤ 2000 without 1024.

If X is a finite set and G a finite group acting on X, then the group action is commonly
a right operation and denoted as ◦ or without a symbol. For x ∈ X, the orbit of x under
G is xG = {xg | g ∈ G}, the stabilizer of x in G is StabG(x) = {g ∈ G | xg = x}, which is
a subgroup of G, the orbit space of X under G is X/G = {xG | x ∈ X}, and a transversal
of X under G is a subset T of X such that there is exactly one representative in T for
each orbit in X/G.
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22 Lemma (Orbit-Stabilizer theorem, [KS04, 3.1.5])
Let G be a finite group which operates on the finite set X. Then for any x ∈ X we have
xG = (G : StabG(x)) = #G/# StabG(x). In particular the size of any orbit under G
divides #G.

There is a connection between conjugation and stabilizers.

23 Lemma ([KS04, 3.1.3])
Let G be a finite group which operates on the finite set X. Then for any x ∈ X and
g ∈ G we have StabG(x)g = StabG(xg).

x ∈ X is called fixed under G or fixed point under G, if xG = {x} and any orbit of
size #G is called full-length. A group operation is called transitive, if X = xG for an
arbitrary x ∈ X, which is only possible if #X | #G.
The orbit type of X/G is a string 1n12n2 . . . such that there are ni orbits of size i in

X/G and we omit the cases with ni = 0.
After prescribing a symmetry group U ≤ G some symmetry is given by the normalizer

of U in G operating on the orbits.

24 Lemma
Let G be a group, X a set, and f(x, g) = x ◦ g for x ∈ X, g ∈ G a right operation of
G on X. Let U ≤ G be a subgroup. Then NG(U) operates on X/U via F (xU, n) =
xU ◦ n = (xn)U = (x ◦ n)U = f(x, n)U for xU ∈ X/U , n ∈ NG(U).

Proof
Let xU = x′U ∈ X/U , n, n′ ∈ NG(U), and e ∈ NG(U) the trivial element. F is closed,
since F (xU, n) = xU ◦ n = (xn)U ∈ X/U . F is well-defined, since xU = x′U ⇔ ∃u ∈
U : x′ = x ◦ u and n ∈ NG(U) implies the existence of u′ ∈ U with un = nu′, hence
F (xU, n) = xU ◦ n = xnU = xnu′U = xunU = x′nU = x′U ◦ n = F (x′U, n). The
group operation properties of F are then induced by f : F (xU, e) = f(x, e)U = xU and
F (xU, gh) = xU ◦ gh = (xgh)U = f(x, gh)U = f(f(x, g), h)U = f(x, g)Uh = (xUg)h =
F (F (xU, g), h), which concludes the proof. �

Let G be a finite group and H ≤ G a subgroup. Analogously to [Rom12, Theorem 4.19],
we consider the group operation ϕ : G → SG/H of G on the left cosets of H in G via
left multiplication. Its kernel is ker(ϕ) = {g ∈ G | g(aH) = aH ∀a ∈ G} =

⋂
a∈GH

a,
being the kernel of a group homomorphism,

⋂
a∈GH

a is normal, and for any normal
subgroup N E G which is contained in H, we have N = Na ≤ Ha, i.e.,

⋂
a∈GH

a is the
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largest normal subgroup in H. Hence, we define H◦ =
⋂
a∈GH

a, the core of H. Since
the quotient group G/H◦ is embedded in SG/H by the isomorphism theorem for groups,
we get the following theorem.

25 Theorem (Strong Cayley theorem, cf. [Rom12, Theorem 4.20])
Let G be a finite group and H ≤ G. Then G/H◦ → SG/H is an injective group
homomorphism and (G : H◦) | (G : H)!. If GCD(#H, ((G : H)− 1)!) = 1, then H E G.

The condition GCD(#H, ((G : H)− 1)!) = 1 is fulfilled iff all primes p dividing #H
are ≥ (G : H). This is in particular true if (G : H) is the smallest prime dividing #G:

26 Corollary
Let G be a finite group and p the smallest prime that divides #G. Then any subgroup
of G with index p is normal in G.

The choice of H = 〈〉, i.e., the identity group of G, in Theorem 25 implies the Cayley
theorem (here in the finite case), cf. [Cay54], which states that any group G is isomorphic
to a subgroup of SG.
Let L/K be a field extension. Then Aut(L) is the group of all automorphisms of L

and Aut(L/K) = {g ∈ Aut(L) | g(k) = k ∀k ∈ K} is the subset of automorphisms that
fixes K element-wise.

Isometries and automorphisms An isometry of L(V ), i.e., a distance-preserving map, ι
of the metric space (L(V ), ds) maps L(V ) to L(V ) and fulfills ds(U,W ) = ds(ι(U), ι(W ))
for all U,W ∈ L(V ).
Let β be a fixed non-degenerate symmetric bilinear form on V and π : L(V ) →
L(V ), U 7→ U⊥ = {v ∈ V | β(v, u) = 0∀u ∈ U}, where U⊥ denotes the orthogonal space of
U with respect to β, see also [SK09, Remark after Lemma 1] for ds(U

⊥,W⊥) = ds(U,W ).
Note that although the dimensions are complementary: dim(U) + dim(U⊥) = dim(V ),

we have no complementary subspaces in general, e.g., U = 〈u1+u2〉 has U⊥ = 〈u1+u2, u3〉
in F3

2 with the standard bilinear form β(x, y) = x · yT = x1y1 + x2y2.
Each element in the general linear group GL(V ) induces an isometry on (L(V ),ds).

For M ∈ GL(V ) this map is gM : L(V )→ L(V ) and gM (U) = {u ·M | u ∈ U}, noting
that V contains row vectors. Since two matrices that are scalar multiples, i.e., M = λM ′

for an λ ∈ F∗q , induce the same map gM = g′M
1, we factor the center of the group,

Z(GL(V )) = {λIv | λ ∈ F∗q}, where Iv is the v × v identity matrix, out and get the
projective linear group PGL(V ) = GL(V )/Z(GL(V )).

1The maps are different if applied to vectors in V , but for subspaces of V both maps are equal.
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Next, a field automorphism f also induces an isometry on (L(V ), ds), i.e., f : L(V )→
L(V ) and f(U) = {(f(u1), . . . , f(uv)) | u ∈ U}, i.e., component-wise. All field automor-
phisms of Fpm are multiple applications of the so-called Frobenius automorphism x 7→ xp,
i.e., x 7→ xp

i for i = 0, . . . ,m− 1, cf. [Lan90, Theorem 2.4].
The semidirect product of both groups, PΓL(Fvq) = PGL(Fvq) o Aut(Fq), is known as

the projective semilinear group.
For 3 ≤ dim(V ) these are all isometries:

27 Theorem (cf. [HKK16b, Theorem 2.1], see also [Tra13c, Theorem 5])
For 3 ≤ dim(V ), the automorphism group of (L(V ), ds) is 〈PΓL(V ), π〉 ∼= PΓL(V )o 〈π〉.

The proof involves the Fundamental Theorem of Projective Geometry and this in turn
imposes the restriction on the dimension.
For a prime p and integers v ≥ 1 and m ≥ 1:

#〈PΓL(Fvpm), π〉 = # GL(Fvpm) · 2m/(pm − 1) =

v−1∏
i=0

(pvm − pim) · 2m/(pm − 1).

Hence, for a subspace U ≤ V and an automorphism g = (M · Z(GL(V )), α) ∈
(GL(V )/Z(GL(V )),Aut(Fq)) ∼= PΓL(V ) the operation is

Ug = U ◦ g = α(τ−1(RREF(τ(U) ·M))).

For classifications of subsets of
[
V
k

]
up to isomorphism, the acting group is PΓL(V ).

28 Example
Consider F9

∼= F3(α) with α2 = 2 and the usual scalar product β(x, y) = xy. Using
f(x) = x3 ∈ Aut(F9), I3 as the 3× 3 identity matrix, and id as the identity map, the
operation of((

1 0 0
0 0 1
0 1 0

)
· Z(GL(F3

9)), f, π
)
∈ 〈PΓL(F3

9), π〉 on 〈(1, α, 0)〉 ∈ L(F3
9)

can be computed:

〈(1, α, 0)〉 ◦
((

1 0 0
0 0 1
0 1 0

)
· Z(GL(F3

9)), f, π
)

= 〈(1, 0, α)〉 ◦
(
I3 · Z(GL(F3

9)), f, π
)

= 〈(1, 0, 2α)〉 ◦
(
I3 · Z(GL(F3

9)), id, π
)

= τ−1 ( 1 0 2α
0 1 0 ) ◦

(
I3 · Z(GL(F3

9)), id, id
)

= τ−1 ( 1 0 2α
0 1 0 ) .
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Subspace codes A subspace code C is a subset of L(V ). In this context the elements
of C are called codewords and V the ambient space on C. The so-called minimum
(subspace) distance Ds(C) of C is the smallest distance between pairs of codewords, i.e.,
Ds(C) = min{ds(U,W ) | U 6= W ∈ C}, the same is true for the minimum (injection)
distance Di(C). Another property is the dimension distribution δ(C) of C. δ(C) is a
vector with v + 1 non-negative integral entries δ(C) = (δ0, δ1, . . . , δv) such that δi is the
number of i-dimensional subspaces in C, cf. [HKK16b]. Occasionally, δ(C) is abbreviated
as a string 0n01n1 . . . such that the number of contained i-dimensional codewords is ni and
entries with ni = 0 are commonly omitted. K(C) = {dim(U) | U ∈ C} ⊆ {0, 1, . . . , v} is
the set of dimensions for the codewords in C, i.e., δi = 0 for all i ∈ {0, 1, . . . , v} \K(C).
An automorphism ϕ of a subspace code C is an isometry of (L(V ),ds) such that

ϕ(C) = C, i.e., ϕ(U) ∈ C for all U ∈ C. Using this, the automorphism group of
C is Aut(C) = {ϕ ∈ 〈PΓL(V ), π〉 | ϕ(C) = C}. A subgroup of Aut(C) is denoted
as an automorphism group of C. If G is an automorphism group of C, then C is
called G-invariant and the largest group G with the property that C is G-invariant
is Aut(C). Moreover, C is called self-dual, if π(C) = C⊥ = C and in particular
C⊥ = π(C) = {U⊥ | U ∈ C} is called the orthogonal code of C. Up to isomorphism of
subspace codes, the code C⊥ does not depend on the exact choice of the bilinear form β.
Some literature denote C⊥ as the dual of C.
For q ≥ 2 prime power, non-negative integers v,M, d, K ⊆ {0, 1, . . . , v}, x ∈ {s, i},

and U ≤ 〈PΓL(Fvq), π〉 a (v,M, d;K;U)x
q subspace code is a subspace code C ⊆ L(Fvq)

such that Dx(C) ≥ d, K(C) ⊆ K, #C = M , and U ≤ Aut(C). Note that although all
v-dimensional Fq-vector spaces are isomorphic, it is sometimes convenient to embed C in
a non-standard ambient space.

The two extremal cases of K are commonly denoted as constant dimension code (CDC)
if K = {k}, in this case we write the integer k instead of the set K in (v,M, d;K;U)x

q ,
and mixed dimension code (MDC) if K = {0, 1, . . . , v} is unrestricted, and hence K is
omitted in (v,M, d;K;U)x

q .
If (v,M, d;K;U)x

q denotes a CDC, then Ds(C) = 2Di(C) and we always use x = s.
Moreover, if x is omitted, then we assume the subspace distance, i.e., x = s, also in the
general case.

If U is omitted, then we assume no restriction which defaults to U equals the identity
in 〈PΓL(Fvq), π〉.
If C is a (v,M, d;K)s

q subspace code, then C⊥ is a (v,M, d; v − K)s
q subspace code

where v −K = {v − k | k ∈ K}.
The determination of the maximum size, or at least suitable bounds, of M for fixed

q, v, d,K,U, x and the classification of maximum codes is known as the main problem
of subspace coding since it forms a q-analogue of the main problem of classical coding
theory (cf. [MS77a, Page 23]). In analogy to the classical block codes, we use the symbol
Ax
q(v, d;K;U) for the maximum cardinality of an (v,M, d;K;U)x

q subspace code and the
defaults of the parameters apply as well.
The numbers Aq(v, d; k) are known for a wide range of parameters. By definition,

Aq(v, d; k) = 0 for k < 0 or v < k with the unique maximum code C = ∅. If d ≤ 2, then
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Aq(v, d; k) = [ vk ]q and d = 2 with the unique maximum code C =
[
V
k

]
. If 2k < d, then

for U 6= W ∈
[
V
k

]
we have ds(U,W ) = 2(k − dim(U ∩W )) < d, or if 2(v − k) < d, then

for U 6= W ∈
[
V
k

]
we have ds(U,W ) = 2(dim(U +W )− k) < d, and consequently any

code with minimum distance greater than min{2k, 2(v − k)} has at most one element.
In fact each subset of

[
V
k

]
of cardinality one defines a maximum code, but they are all

isomorphic in the PΓL(Fvq).
2 Since π is an isometry, we have Aq(v, d; k) = Aq(v, d; v − k),

allowing the assumption k ≤ v − k without loss of generality. Any isomorphism class
of CDCs of codeword dimension k corresponds to a unique isomorphism class of CDCs
of codeword dimension v − k, which is only of interest for 3 ≤ v. Next, note that the
subspace distance in the CDC case is always even. Therefore we occasionally use the
assumption 2 ≤ d/2 ≤ k ≤ v − k in the CDC case.

Also, the numbers Aq(v, d) are known for some parameters. If v < d, then ds(U,W ) =
dim(U + W ) − dim(U ∩W ) ≤ v < d implies that each code has at most one element.
Moreover, each subset of L(V ) of cardinality one defines a maximum code, but applying
GL(V ) and π, which are in the potentially unknown automorphism group, yields exactly
one isomorphism class for each codeword dimension k = 0, . . . , bv/2c. If d ≤ 1, then
Aq(v, d) =

∑v
i=0 [ vi ]q with the unique maximum code C = L(V ). Moreover, Aq(2, 2) =

q+ 1 with the unique maximum code C =
[
V
1

]
. The other maximal code is C = {{0}, V }

which is smaller than q + 1 for all prime powers q ≥ 2. Hence, we occasionally assume
2 ≤ d ≤ v and 3 ≤ v in the MDC case with the subspace distance.

This settles the drawback of 3 ≤ v in Theorem 27 in the context of the main problem
of subspace coding for arbitrary K ⊆ {0, 1, . . . , v}.

More bounds and isomorphism types for subspace codes can be found e.g. in [HKK16b]
and [HK18].

Note that for U 6= W in a (v,#C, d; k)q CDC C, the subspace distance yields dim(U ∩
W ) ≤ k−d/2. Therefore, any at least (k−d/2+1)-dimensional subspace of V is contained
in at most one codeword.
By relaxing the restrictions on K, d or U and applying Lemma 23 we obtain the

following connections.

29 Lemma
Let q ≥ 2 be a prime power and v, d, d′ ∈ Z, 0 ≤ v, K,K ′ ⊆ {0, 1, . . . , v},
U,U ′ ≤ PΓL(Fvq), g ∈ PΓL(Fvq), and x ∈ {s, i}. If K ⊆ K ′, d ≥ d′, or U ≥ U ′, then
Ax
q(v, d;K;U) ≤ Ax

q(v, d
′;K ′;U ′). Moreover, we have Ax

q(v, d;K;Ug) = Ax
q(v, d;K;U).

In Chapter 12 we prove A2(8, 6; 4) = 257 and use the following theorem.

2Although the exact automorphism group is unknown for v ≤ 2, this statement solely uses the transitivity
of GL(V ), which is a subgroup of the automorphism group.
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30 Theorem ([HKK16b, Theorem 3.3(i)])
If v = 2k ≥ 8 is even, then Aq(v, v − 2) = Aq(v, v − 2; k).

The online tables http://subspacecodes.uni-bayreuth.de associated with [Hei+16]
list numerical values of the known lower and upper bounds of the sizes of CDCs and
MDCs.

Rank metric codes For matrices M,N ∈ Fm×nq where m and n are positive integers
the rank distance is defined via dr(M,N) = rk(M −N), cf. [Gab85], which in turn yields
the metric space (Fm×nq ,dr). A rank metric code C is a subset of Fm×nq . Its minimum
rank distance is the rank distance between pairs of distinct codewords or ∞ for rank
metric codes of size at most one. The parameters of C with minimum rank distance
d are commonly abbreviated as (m × n,#C, d)q. If C is a subspace of Fm×nq , then C
is called linear, its cardinality is a power of q, and the parameters of C are denoted as
[m× n, logq(#C), d]q.
The maximum achievable size for rank-metric codes is known for all parameters by a

Singleton-like argument. The concatenation of the maps f : A → B and g : B → C is
denoted as g ◦ f : A→ C.

31 Theorem (cf. [Gab85])
Let 1 ≤ d ≤ min{m,n} be integers, q a prime power, and C ⊆ Fm×nq be a rank-metric
code with minimum rank distance d. Then #C ≤ qmax{m,n}(min{m,n}−d+1).

Proof
Let wlog. n ≤ m (otherwise transpose), then the so-called puncturing

fl :

{
Fm×lq → Fm×(l−1)

q

(M∗,1,M∗,2, . . . ,M∗,l) 7→ (M∗,1,M∗,2, . . . ,M∗,l−1)

fulfills dr(A,B)− dr(fl(A), fl(B)) ∈ {0, 1} for A,B ∈ Fm×lq . Thus, f = fn−d+2 ◦ fn−d+3 ◦
. . . ◦ fn is injective, since the minimum rank distance is not zero: dr(f(A), f(B)) ≥
dr(A,B)− d+ 1 ≥ d− d+ 1 = 1. Hence, #f(C) = #{f(M) |M ∈ C} ≤ #Fm×(n−d+1)

q =
qm(n−d+1). �

If 1 ≤ min{m,n} < d, then only #C = 1 is possible, which can be achieved by e.g.
a zero matrix. Both bounds can be combined to give a single upper bound #C ≤⌈
qmax{m,n}(min{m,n}−d+1)

⌉
.

Rank metric codes attaining this upper bound are called maximum rank distance
(MRD) codes. Linear MRD codes exist for all positive integral choices of the parameters

36

http://subspacecodes.uni-bayreuth.de


m, n, and d. The following construction for linear MRD codes was independently found
in [Del78a; Gab85; Rot91]. They are called Gabidulin MRD codes.

Let wlog. n ≤ m (otherwise transpose) and consider g1, . . . , gn ∈ Fqm linearly indepen-
dent over Fq. Then C = Fkqm ·M = {u ·M | u ∈ Fkq} ⊆ Fnqm with

M =


gq

0

1 gq
0

2 ... gq
0

n

gq
1

1 gq
1

2 ... gq
1

n

...
gq
k−1

1 gq
k−1

2 ... gq
k−1

n

 ∈ Fk×nqm

is via the isomorphism Fnqm ∼= Fm×nq the [m×n,mk, d]q Gabidulin MRD code (d = n−k+1),
cf. [HM17, Definition 2.4].

A survey of general constructions and properties of MRD codes can be found in [GR18;
OÖ18].
Moreover, for consistency, we allow m = 0 or n = 0 with C = ∅, and d = 1 with

C = Fm×nq .
In the context of (m× n,#C, d)q rank metric codes, we often use the lifting map

Λq,m,n : Fm×nq →
[

Fm+n
q
m

]
,M 7→ τ−1(Im |M).

If the parameterization of Λq,m,n is clear from the context, we abbreviate this symbol
with Λ. The m× n-matrix consisting entirely of zeros is denoted as 0m×n or simply 0
if the dimension is obvious. Λ is injective and its image is given by all m-subspaces of
Fm+n
q having trivial intersection with the special subspace S = τ−1(0n×m | In) ≤ Fm+n

q .
In fact, Λ is an isometry (Fm×nq , 2dr)→ (Fm+n

q , ds). Of particular interest are the LMRD
codes, which are CDCs of fairly large, though not maximum size, cf. Chapter 4.

Further notation and statements Successive zeros and ones are abbreviated:

1l = 1 . . . 1︸ ︷︷ ︸
l

and 0l = 0 . . . 0︸ ︷︷ ︸
l

.

SX is the symmetric group of the set X and Sn = S[n].
The horizontal concatenation of two matrices A and B having the same number of

rows is denoted as A | B.
If b < a then we assume {a, a+ 1, . . . , b} = ∅.
For a matrix A and vectors x and b of suitable dimension, Ax ≤ b is defined as Ai,∗x ≤ bi

for all i.
For a set X the set of all unordered pairs of X is called

(
X
2

)
= {{x, y} ∈ X×X | x 6= y}.

We will call two subspaces A,B ≤ V disjoint, if their intersection has dimension zero.
If U is a subspace of W , we write U ≤W , if H is subgroup of G, we also write H ≤ G.
The greatest common divisor is called GCD.
1ϕ ∈ {0, 1} which is 1 iff ϕ is true is called indicator function and given a set S we call

1S(x) ∈ {0, 1} with 1S(x) = 1⇔ x ∈ S characteristic function of S.
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For a set X the powerset is 2X = {A ⊆ X}.
A set of at least three points is called collinear if there is a line containing all points

and four points in a plane such that no three of them are collinear form a quadrangle, cf.
[Cox74].
Splitting a large problem into multiple subproblems may be an advantage depending

on the situation.

32 Lemma
Let X be a finite set and f : 2X → {0, 1} be a function. A bijection π : X → X is
called an automorphism (with respect to f) if f(S) = f(π(S)) for all S ⊆ X. Let Γ be a
group of automorphisms, T = {t1, . . . , tm} be a transversal of Γ acting on X, where the
corresponding orbit sizes are in decreasing ordering, and τ : X → {1, . . . ,m} such that
x ∈ X is in the same orbit as tτ(x). If S̃ ⊆ X and i = min{τ(x) | x ∈ S̃}, then there exists
an automorphism γ ∈ Γ with ti ∈ γ(S̃), f(S̃) = f(γ(S̃)), and min{τ(x) | x ∈ γ(S̃)} = i.

Proof
Choose x ∈ S̃ with τ(x) = i and γ ∈ Γ with γ(x) = ti. Note that τ(γ′(x′)) = τ(x′) for all
γ′ ∈ Γ and all x′ ∈ X. �

In general, we label the elements of T in decreasing size of the corresponding orbit
lengths, since large orbits admit small stabilizers and forbid many elements from X in
the subsequent subproblems, i.e., we get few rather asymmetrical large subproblems and
many small subproblems.

33 Lemma (Bézout’s identity, [JJ98, Theorem 1.7 and 1.8])
Let a, b ∈ Z with (a, b) 6= (0, 0), then there are s, t ∈ Z with as + bt = GCD(a, b).
Moreover, GCD(a, b) | as′ + bt′ for all s′, t′ ∈ Z.

Linear programming See e.g. [BK92; DT03; DT97]. The underlying set for linear
programming is a polyhedron, i.e., P (A, b) = {x ∈ Rn | Ax ≤ b} for an A ∈ Rm×n and
b ∈ Rm and column vectors x, it is easy to observe that P (A, b) is convex. Its dimension
dim(P (A, b)) is the maximum number of affinely independent3 vectors in P (A, b) minus
one. If dim(P (A, b)) = n then the polyhedron is called full-dimensional and if it is bounded
it is called polytope. A polyhedron P (A, b) is a formulation forX ⊆ Zn ifX = P (A, b)∩Zn.
For two formulations P (A, b) and P (A′, b′) of X, P (A, b) is called better than P (A′, b′)
if P (A, b) ⊆ P (A′, b′) and it is called optimal if P (A, b) = conv(X), i.e., the convex hull
of X. An inequality sTx ≤ t is called valid for P (A, b) if P (A, b) ⊆ {x ∈ Rn | sTx ≤ t}.
For a valid inequality sTx ≤ t of P (A, b) the set F = {x ∈ P (A, b) | sTx = t} is called

3The vectors {x1, . . . , xl} are affinely independent iff {x2 − x1, . . . , xl − x1} is linearly independent.
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face of P (A, b). Although ∅ and P (A, b) are faces, any face that is neither ∅ nor P (A, b)
is called proper face. Faces are polyhedrons and facets F are faces of P (A, b) with
dim(P (A, b)) = dim(F ) + 1. Hence, facets are faces that are not contained in another
proper faces.
A theoretically important polyhedron is the stable set polytope [PS93]. For an undi-

rected, connected, and simple graph G = (V,E) the stable set polytope is

Stab(G) = conv({x ∈ {0, 1}#V | xa + xb ≤ 1 ∀{a, b} ∈ E}).

The set of constraints xa + xb ≤ 1 ∀{a, b} ∈ E is called edge constraints. This polytope
is full-dimensional since ∅ and any subset of V of cardinality one is an independent set,
yielding #V + 1 affine independent points contained in the polytope. Any clique L ⊆ V
implies a valid inequality

∑
a∈L xa ≤ 1 for Stab(G) which is a facet iff L is maximal with

respect to inclusion. These constraints are called clique constraints.
The LP-relaxation of the variable x ∈ [a, b] ∩ Z is x ∈ [dae, bbc]. If all integral variables

are exchanged to their corresponding LP-relaxed counterparts, then an integer linear
program is called LP-relaxed.

Subspace designs and q-Steiner systems See e.g. [BKW18a; BKW18b] for the notation
of this paragraph.
Let q ≥ 2 be a prime power and 0 ≤ t ≤ k ≤ v and 0 ≤ λ integers. A pair (V,B)

is called t− (v, k, λ)q subspace design, if B is a multiset of k-subspaces of V = Fvq , the
elements of B are called blocks , and each t-subspace of Fvq is contained in exactly λ blocks.
The design is called simple, if B is a set.

If the condition “contained in exactly λ blocks” of the definition of a subspace design is
changed to “contained in at most λ blocks” then it is called subspace packing design and if
it is changed to “contained in at least λ blocks”, it is known as subspace covering design.
Hence, subspace packing designs with λ = 1 are CDCs and vice versa.
A simple t − (v, k, 1)q design is also known as q-Steiner system and abbreviated as

S(t, k, v)q. Therefore, any S(t, k, v)q q-Steiner system is a
(
v, [ vt ]q / [ kt ]q , 2(k − t+ 1); k

)
q

CDC and vice versa. Any S(t, k, v)q q-Steiner system attains the Anticode bound, cf.
Theorem 107, i.e., it is a maximum CDC. Next to the trivial cases with t = k (S =

[
Fvq
k

]
)

and k = v (S = {Fvq}) and the spreads (see below) with t = 1, only one additional set of
parameters of a q-Steiner system is known: S(2, 3, 13)2, cf. [Bra+16].

The smallest non-resolved q-Steiner system would have the parameters S(2, 3, 7)2, i.e.,
it would be a (7, 381, 4; 3)2 CDC. The corresponding structure in the set case is the
well-known Fano plane, cf. Figure 5, which has 7 points and 7 blocks, each block consists
of 3 points such that any two blocks meet in exactly 1 point.

Vector space partitions, (partial) spreads, parallelisms Closely related structures to
subspace codes are vector space partitions, partial spreads, and spreads, which are used
to build parallelisms.
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Figure 5: The Fano plane.

A vector space partition of V is a subset P ⊆ L(V ) \ {{0}} such that any non-zero
vector in V is contained in exactly one element of P , cf. [Hed12]. P is said to be of type
vnv(v − 1)nv−1 . . . 1n1 if P contains exactly ni subspaces of dimension i, where entries
with ni = 0 are commonly omitted. One-dimensional elements of P are called holes.
Each covering of non-zero vectors, i.e., a subset of L(V ) such that a non-zero vector
is contained at most one time, can trivially be extended to a vector space partition by
adding the non-covered points, i.e., one-dimensional subspaces, cf. Table 3. Although
the intersection of any pair U 6= W of elements of P is zero-dimensional and therefore
we have ds(U,W ) = dim(U +W ) = dim(U) + dim(W ), the minimum subspace distance
of P considered as MDC can be as low as two, e.g. if P contains two points. On the
other hand, the minimum distance d = v restricts an MDC to only contain subspaces
with pairwise trivial intersection and therefore such an MDC can be extended to a vector
space partition.

A partial k-spread in V is a subset S ⊆
[
V
k

]
such that each non-zero vector is contained

in at most one element in S. Therefore, S can be extended in a unique way to a k#S1n1

vector space partition with n1 = [ v1 ]q −
[
k
1

]
q

#S = (qv − 1− (qk − 1)#S)/(q − 1). Since
ds(U,W ) = 2k for U 6= W ∈ S, S is also a (v,#S, 2k; k)q CDC. A special case is given if
S is already a vector space partition, i.e., all non-zero vectors of V are partitioned into
subspaces in S. In this case, S is called spread and has [ v1 ]q /

[
k
1

]
q

= (qv − 1)/(qk − 1)

elements. Spreads are known to exist iff k | v (cf. Theorem 124), i.e., Aq(v, 2k; k) =
(qv − 1)/(qk − 1) if k | v.

On the one hand, writing v = lk+r with 0 ≤ r < k, we have qv−1 ≡ qr−1 (mod qk−1)

which is 0 (mod qk−1) iff r = 0. On the other hand, S =
[

Fv/k
qk

1

]
is a spread, the so-called

Desarguesian spread , in
[

Fvq
k

]
, since #S = ((qk)v/k − 1)/(qk − 1) = (qv − 1)/(qk − 1),

the elements of S intersect only trivially, any element U ∈ S has qk vectors, and using
U = 〈u〉 = {αu | α ∈ Fqk}, U is Fqk -linear, and in particular Fq-linear. As observed in
[Tra13c, Theorem 10], different Desarguesian spreads arise through different isomorphisms
between Fv/k

qk
and Fvq , but all of them are linear maps and therefore the linear maps

between these isomorphisms show that all Desarguesian spreads are isomorphic, which
allows to speak of the Desarguesian spread for given parameters.
Bounds on partial spreads may be found in Section 7.1.
For an arbitrary set X, a packing Q of X is a set of subsets of X such that each pair of
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elements of Q is pairwise disjoint. Using this definition, a parallelism in
[
V
k

]
is a packing

of the power set of
[
V
k

]
that consists entirely of spreads. Parallelisms in

[
Fvq
k

]
are known

to exist, cf. [ES16], in the following cases:

• q = 2, v ≥ 4 even, and k = 2,

• all q, v = 2m for m ≥ 2, and k = 2,

• q ≡ 2 (mod 3), v = 4, and k = 2,

• q = 3, v = 6, and k = 2, or

• q = 2, v = 6, and k = 3.

Block Codes The Hamming distance is defined as dh(u,w) = #{i ∈ {1, 2, . . . , v} | ui 6=
wi} for u,w ∈ Fv, where F is a field. A block code C is a subset of Fvq . If its minimum
distance, i.e., the minimum Hamming distance of pairs of C, is lower bounded by d, then
C is called (v,#C, d)q block code and if additionally C is a linear subspace of Fvq of
dimension k, then its parameters are denoted with [v, k, d]q. To dissociate the usage of
block codes from subspace codes, we will indicate their appearance by the term block
code. The weight of u, w(u) = dh(u,0), is the number of non-zero entries of u ∈ Fvq . A
special case is given, if each element of C has the same weight, in which case the block
code is called constant weight code.

Graphs and Cliques If G = (V,E) is an undirected, connected, and simple graph
and w : V → Z≥1 are weights, then we call the tuple (G,w) weighted graph. For
S ⊆ V is G|S the induced subgraph. A clique C in G is a subset of V such that
G|C is a complete graph and a maximum weight clique in (G,w) is a clique C with
w(C) ≥ w(C ′) for any clique C ′ of G. We abbreviate w(S) =

∑
v∈S w(v) for S ⊆ V .

With ω(G,w) := max{w(C) | C clique in (G,w)} we denote the clique number in (G,w).
If w(v) = 1 for all v ∈ V we omit the reference to w and w(S) = #S for S ⊆ V . We refer
to ω(G,w) with w(v) = 1 for all v ∈ V with the term unweighted clique number ω(G).

For a map f : A→ B and b ∈ B the map (f/b) : A→ B is defined via (f/b)(a) = f(a)/b
for all a ∈ A.
The following lemma allows to find substructures of maximum cliques, provided that

the weights are exponential.

34 Lemma
Let G = (V,E) be a graph with weights w : V → Z≥1.

1. If there is a map W : V → Z≥0 and integers c ≥ 1 and T ≥ 0 with w(v) = cW (v)

for all v ∈ V and t = cT , Z = {v ∈ V | t ≤ w(v)}, Y = V \ Z, ω(G|Y , w|Y ) < t,
and C is a maximum weight clique in (G,w), then C ∩ Z is a maximum weight
clique in (G|Z , w|Z).
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2. If A,B ⊆ V with V = A ∪ B (not necessarily a partition) then ω(G,w) ≤
ω(G|A, w|A) + ω(G|B, w|B) ≤ w(A) + ω(G|B, w|B).

3. If there is a mapW : V → Z≥0 and integers c ≥ 1 and 0 ≤ L ≤ T with w(v) = cW (v)

for all v ∈ V , t = cT , and l = cL, V (i, j) = {v ∈ V | i ≤ w(v) < j} for 1 ≤ i < j,
ω(G|V (l,t), w|V (l,t)/l) < t/l −#V/c, and C is a maximum weight clique in (G,w),
then C ∩ V (t,∞) is a maximum weight clique in (G|V (t,∞), w|V (t,∞)).

Proof
1. If C ∩ Z is no maximum weight clique in (G|Z , w|Z) then there is a clique C ′ in

(G|Z , w|Z) with

w(C ∩ Z) < w(C ′)⇔
∑

v∈C∩Z
cW (v)−T <

∑
v∈C′

cW (v)−T

⇔
∑

v∈C∩Z
cW (v)−T + 1 ≤

∑
v∈C′

cW (v)−T ⇔
∑

v∈C∩Z
cW (v) + cT ≤

∑
v∈C′

cW (v)

⇔ w(C ∩ Z) + t ≤ w(C ′).

Consequently, w(C)−w(C∩Z) = w(C∩Y ) ≤ ω(G|Y , w|Y ) < t ≤ w(C ′)−w(C∩Z)
proofs that C is no maximum weight clique in (G,w), a contradiction.

2. Let C be a maximum weight clique in (G,w), then ω(G,w) = w(C) ≤ w(C ∩
A) + w(C ∩B) ≤ ω(G|A, w|A) + ω(G|B, w|B). The last inequality follows from the
definition of cliques.

3. We have max{w(v) | v ∈ V (1, l)} ≤ l/c since w(v) < l ⇔ cW (v) < cL ⇔ cW (v) ≤
cL−1 ⇔ w(v) ≤ l/c for any v ∈ V (1, l).

By ω(G|V (l,t), w|V (l,t)/l) · l = ω(G|V (l,t), w|V (l,t)), the application of (2) yields

ω(G|V (1,t), w|V (1,t)) ≤ ω(G|V (1,l), w|V (1,l)) + ω(G|V (l,t), w|V (l,t))

≤ w(V (1, l)) + ω(G|V (l,t), w|V (l,t)/l)l < #V (1, l)l/c+ (t/l −#V/c)l

≤ #V cL−1 + (cT−L −#V/c)cL = cT = t

which in turn shows that the preconditions of (1) are fulfilled. �

Matroids and their connection to the Greedy Algorithm In each iteration, the greedy
algorithm (Algorithm 1) takes the next best element and does not backtrack to find
better solutions. Usually this leads to solutions which are arbitrarily far away from an
optimal value, but the structures on which this algorithm yields the optimal solution are
characterized.
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35 Definition ([Pit14, Definition 3.1 and 3.5])
Let X be a finite set and I ⊆ 2X , then (X, I) is called independence system iff

1. ∅ ∈ I and

2. if U ∈ I and W ⊆ U , then W ∈ I.

If additionally

3. if U,W ∈ I and #W < #U then there is a u ∈ U \W such that W ∪ {u} ∈ I,

then (X, I) is called matroid . The sets in I are called independent . A basis of an
independence system is a maximal independent set.

Let w : X → R be a function and w(U) =
∑

u∈U w(u) for all U ⊆ X. This function
will be interpreted as objective function of a maximization problem.

Algorithm 1 Greedy algorithm using an independence system, cf. [Pit14, Algorithm 3.1].
Require: (X, I) is an independence system, w : X → R
1: procedure Greedy((X, I), w)
2: Sort X such that we assume w(x1) ≥ w(x2) ≥ . . . ≥ w(x#X)
3: R← ∅
4: for i = 1, . . . ,#X do
5: if R ∪ {xi} ∈ I then
6: R← R ∪ {xi}
7: end if
8: end for
9: return R
10: end procedure

36 Theorem ([Pit14, Definition 3.11])
Let (X, I) be an independence system and B the set of all bases. Then (X, I) is a
matroid iff the output of Greedy (Algorithm 1) is optimal for max{w(U) | U ∈ B}.

A well-known example is the minimum spanning tree of a undirected, connected, and
simple graph.

37 Example ([Pit14, Page 38f])
Let G = (V,E) be a connected, undirected, and simple graph. Then with X = V ,
I = {U ⊆ V | U contains no cycle} we have a matroid (X, I) ([Pit14, Proposition 2.3])
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and for any w : X → R a maximal cycle free subset of V for that w attains its maximum
can be computed by Algorithm 1.

Association schemes and Delsarte’s linear programming bound This paragraph uses
mainly the notation of [BCN89, Chapter 2] with some influences of [MS77b, Chapter 21].
An association scheme is simply a finite set on which multiple relations are defined

simultaneously.

38 Definition ([BCN89, Chapter 2.1] and [MS77b, Chapter 21.2])
Let X be a finite set of size n. An association scheme with d classes is a pair
(X, {R0, R1, . . . , Rd}) such that

1. {R0, R1, . . . , Rd} is a partition of X2,

2. R0 = {(x, x) | x ∈ X},

3. (x, y) ∈ Ri ⇒ (y, x) ∈ Ri for all i ∈ {0, 1, . . . , d}, and

4. there are pkij with p
k
ij = #{z ∈ X | (x, z) ∈ Ri ∧ (z, y) ∈ Rj} for all (x, y) ∈ Rk.

The numbers pkij are called intersection numbers of the scheme and ni = p0
ii is called

valency of Ri.

Clearly, we have n0 = 1 and n = #X =
∑d

i=0 ni.
An association scheme may be interpreted as complete, undirected graph with loops,

such that any edge {x, y} is labeled with the weight i where i is the index of the relation
Ri with (x, y) ∈ Ri. Due to the partition there is exactly one such relation. Then, pkij
may be interpreted as the number of vertices with distance i to x and distance j to y,
where x and y are some vertices with distance k.

Using the adjacency matrix Ai ∈ {0, 1}n×n of the relation Ri with (Ai)x,y = 1 iff
(x, y) ∈ Ri, the n×n identity matrix I, and the n×n all-one matrix J , the four properties
in Definition 38 translate to:

1.
∑d

i=0Ai = J ,

2. A0 = I,

3. Ai = ATi for all i ∈ {0, 1, . . . , d}, and

4. AiAj =
∑d

k=0 p
k
ijAk for all i, j ∈ {0, 1, . . . , d}.
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The subspace A = 〈A0, A1, . . . , Ad〉R ≤ Rn×n is called Bose-Mesner algebra. It has
dimension d+ 1, since the Ai are linearly independent, consists of symmetric matrices,
and any two matrices in A commute, since AiAj =

∑d
k=0 p

k
ijAk =

∑d
k=0 p

k
jiAk = AjAi.

Since the Ai are symmetric and commute, they can be diagonalized simultaneously
(cf. [Gan59, Chapter 9.15]), i.e., there is an S ∈ Rn×n such that S−1AiS is a diagonal
matrix for all i ∈ {0, 1, . . . , d} and the Rn×n can be decomposed into d+ 1 eigenspaces
with dimension fi (i ∈ {0, 1, . . . , d}). These fi are called multiplicities of the association
scheme. Therefore, A is semisimple and has a unique basis of primitive idempotents
{E0, E1, . . . , Ed}, fi = rk(Ei), in which wlog. E0 = n−1J and hence f0 = 1. They fulfill
E2
i = Ei (i ∈ {0, 1, . . . , d}), EiEj = 0n×n (i 6= j ∈ {0, 1, . . . , d}), and

∑d
i=0Ei = I.

Hence, the unique matrices P ∈ Rn×n and n−1Q ∈ Rn×n map one basis to another, i.e.,
Aj =

∑d
i=0 PijEi and Ej = n−1

∑d
i=0QijAi. P and Q are called eigenmatrices of the

association scheme, since AjEi = PijEi.
Let Y ⊆ X and 1Y be its characteristic row vector. The outer distribution of Y is

the matrix B ∈ Zn×(d+1) with Bxi = (Ai1TY )x = #{y ∈ Y | (x, y) ∈ Ri}. The inner
distribution of Y is the vector a = (#Y )−11YB ∈ Qd+1, i.e., ai = (#Y )−11YAi1TY =

(#Y )−1#(Ri ∩ Y 2). Clearly, we have a0 = 1,
∑d

i=0 ai = #Y , a ≥ 0, and B ≥ 0.
The next theorem is due to Delsarte.

39 Theorem ([BCN89,Proposition 2.5.2], [MS77b,Chapter 21.7, Theorem 12])
Let (X, {R0, R1, . . . , Rd}) be an association scheme, Y ⊆ X be non-empty and a,B the
inner and outer distribution of Y . Then aQ ≥ 0 and if (aQ)j = 0 then (BQ)xj = 0 for
all x ∈ X.

The linear programming method uses the linear program

max

{
d∑
i=0

ai

∣∣∣∣∣ a0 = 1 ∧ aQ ≥ 0 ∧ a ≥ 0 ∧ a ∈ Qd+1

}
with additional and situation dependent constraints to upper bound the size of any subset
of the association scheme fulfilling these situation dependent constraints.
Delsarte’s generalization of the Anticode bound is:

40 Theorem ([BCN89, Proposition 2.5.3])
Let (X, {R0, R1, . . . , Rd}) be an association scheme, Y,Z ⊆ X both non-empty, and
aY , aZ be the inner distributions of Y and Z, respectively. If IY ∪̇IZ is a partition of
{1, 2, . . . , d}, (aY )i = 0 for all i ∈ IY , and (aZ)i = 0 for all i ∈ IZ , then #Y ·#Z ≤ #X
and equality holds iff for all i ∈ {1, 2, . . . , d} we have (aYQ)i = 0 or (aZQ)i = 0.

An association scheme (X, {R0, R1, . . . , Rd}) with an ordering of its relations is called
metric, if pkij 6= 0 ⇒ k ≤ i + j and pi+jij 6= 0 for all i, j, k ∈ {0, 1, . . . , d}, cf. [BCN89,
Chapter 2.7] and [MS77b, Chapter 21.4].
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2 Preliminaries

If (X, {R0, R1, . . . , Rd}) is a metric association scheme, then (X,R1) is a distance-
regular graph and x, y ∈ X have distance i in the graph iff (x, y) ∈ Ri. Conversely, if
G = (V,E) is a distance-regular graph of diameter l, then (V, {R0, R1, . . . , Rl}) with
(x, y) ∈ Ri iff x and y have distance i in the graph.

The q-Johnson scheme is the metric association scheme of the Grassmann graph.
Its parameters are computed in [Del76a, Theorem 10], [Del78b] [Del76b, Page 269], cf.
[ZJX11]:

• ni = qi
2 [ k

i

]
q

[
v−k
i

]
q
,

• fi = [ vi ]q − [ v
i−1 ]q,

• Pji =
∑i

m=0(−1)i−mq(
i−m

2 )+jm
[
k−m
k−i

]
q

[ k−jm ]q [ v−k−j+mm ]q, and

• Qij =
fj
ni
Pji.

Pji = Pi(j) is a q-Hahn polynomial [BPV13; Del78b].

46



3 Structure of subspaces in a vector
space

In order to describe some structural properties of a CDC and to give bounds, we will
consider incidences with fixed subspaces. Therefore, let V = Fvq and I (S,X) be the set
of subspaces in S ⊆ L(V ) that are incident to X ∈ L(V ), i.e.,

I (S,X) = {U ∈ S | U ≤ X} ∪ {U ∈ S | X ≤ U}.

41 Lemma
Let C be a (v,#C, d; k)q CDC and X ≤ V . Then we have

#I (C,X) ≤

{
Aq(dim(X), d; k) if dim(X) ≥ k,
Aq(v − dim(X), d; k − dim(X)) if dim(X) < k.

Proof
If dim(X) ≥ k, then I (C,X) is a (dim(X),#I (C,X) , d; k)q CDC and hence its cardi-
nality is bounded by Aq(dim(X), d; k). If dim(X) < k, then we write V = X ⊕ V ′ and
Ui = X ⊕U ′i for all Ui ∈ I (C,X). With this, we have ds(Ui, Uj) = 2k− 2 dim(Ui ∩Uj) ≤
2 (k − dim(X)) − 2 dim(U ′i ∩ U ′j) = ds(U

′
i , U

′
j) and hence {U ′i | Ui ∈ I (C,X)} is a

(v − dim(X),#I (C,X) , d′; k)q CDC with d ≤ d′. �

In general we have no equality in the inequality ds(Ui, Uj) ≤ ds(U
′
i , U

′
j) in the proof:

For the unit vectors u1 and u2 and A = 〈u1〉, B = 〈u2〉, and X = 〈u1 + u2〉 the subspace
〈u1 + u2〉 = (A ∩B)⊕X < (A⊕X) ∩ (B ⊕X) = 〈u1, u2〉 is proper.
If #I (C,X) is small, then we can state the following upper bound on #C:

42 Lemma
Let C be a (v,#C, d; k)q CDC and 0 ≤ l ≤ v. If #I (C,X) ≤ b for all X ∈

[
V
l

]
, then

#C ≤

{
b · [ vl ]q /

[
k
l

]
q

if l ≤ k,
b · [ vl ]q /

[
v−k
l−k
]
q

if k < l.
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3 Structure of subspaces in a vector space

Proof
Double counting T = {(U,X) ∈ C×

[
V
l

]
| U ≤ X or X ≤ U} yields #T =

∑
X #I (C,X)

≤
∑

X b = [ vl ]q b on the one hand and #T =
[
k
l

]
q
·#C if l ≤ k and #T =

[
v−k
l−k
]
q
·#C

if k < l. �

Now, we specialize our considerations to CDCs with v = 2k and minimum subspace
distance d = 2k− 2. Using the two well known facts Aq(v, 2k; k) = qv−q

qk−1
− q + 1 for v ≡ 1

(mod k) and 2 ≤ k ≤ v, cf. Theorem 126, and Aq(v, d; k) = Aq(v, d; v − k), due to the
properties of orthogonal codes, we conclude:

43 Corollary
Let C be a (2k,#C, 2k− 2; k)q CDC for k ≥ 1 and b ∈ Z. Then #I (C,H) ≤ qk + 1 for
all hyperplanes H and #I (C,P ) ≤ qk + 1 for all points P . Moreover, if #I (C,H) ≤ b
for all hyperplanes H or #I (C,P ) ≤ b for all points P , then #C ≤ (qk + 1)b.

Proof
Lemma 41 gives #I (C,P ) ≤ Aq(2k − 1, 2k − 2; k − 1) = qk + 1 and #I (C,H) ≤
Aq(2k− 1, 2k− 2; k) = Aq(2k− 1, 2k− 2; k− 1) = qk + 1. Applying Lemma 42 with l = 1
respective l = v − 1 completes the proof. �

Corollary 43 will be applied in Chapter 12 in order to deduce A2(8, 6; 4) ≤ 272.

44 Lemma ([HKK16b, Lemma 2.8.i])
Let C be a (v,#C, d;K)s

q subspace code, P ∈
[
V
1

]
, H ∈

[
V
v−1

]
with P 6≤ H, and d ≥ 2.

Then the so-called shortened code

S(C,P,H) = {U ∩H | U ∈ I (C,P )} ∪ I (C,H)

is a (v − 1,#I (C,P ) + #I (C,H) , d′;K ′)s
q subspace code with d′ ≥ d − 1 and K ′ ⊆

(K ∪ {k − 1 | k ∈ K}) ∩ {0, 1, . . . , v}.

Applying Lemma 44 for a (v,#C, d; k)q CDC C gives a

(v − 1,#I (C,P ) + #I (C,H) , d′;K ′)s
q

subspace code, where d′ ≥ d− 1 and K ′ = {k − 1, k} ∩ {0, 1, . . . , v}. For a more refined
analysis we will consider incidences of codewords with pairs of points and hyperplanes.
The following proposition is valid for all subsets S ⊆

[
V
k

]
, not only CDCs.
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45 Proposition
Let S ⊆

[
V
k

]
, 1 ≤ k ≤ v− 1, and b ∈ N. If #S > (qv−1)(b−1)

qv−k+qk−2
, then there is a hyperplane

H̄ and a point P̄ 6≤ H̄ with #I
(
S, H̄

)
+ #I

(
S, P̄

)
≥ b.

Proof
Let #I (S,H) + #I (S, P ) ≤ b − 1 for all pairs of points and hyperplanes (P,H) with
P 6≤ H. Double counting the set T of triples (P,H,U), where U ∈ I (S,H) ∪ I (S, P )
and P 6≤ H, gives

#T =
∑
U∈S

 ∑
H∈I

([
V
v−1

]
,U
)#

{
P ∈

[
V
1

]
| P 6≤ H

}
+

∑
P∈I

([
V
1

]
,U
)#

{
H ∈

[
V
v−1

]
| P 6≤ H

}
= #S ·

([
v−k
v−1−k

]
q

(
[ v1 ]q −

[
v−1

1

]
q

)
+
[
k
1

]
q

(
[ v
v−1 ]q −

[
v−1
v−1−1

]
q

))
= #S([v − k]q + [k]q)([v]q − [v − 1]q))

and

#T =
∑
P

∑
H∈
[
V
v−1

]
\I
([

V
v−1

]
,P
)(#I (S,H) + #I (S, P ))

≤ [ v1 ]q

(
[ v
v−1 ]q −

[
v−1
v−1−1

]
q

)
(b− 1) = [v]q([v]q − [v − 1]q)(b− 1),

where we use I
([

V
k

]
, H
)
∩ I

([
V
k

]
, P
)

= ∅, due to P 6≤ H and #I (S,H) + #I (S, P ) ≤
b− 1. Hence, we obtain

#S([v − k]q + [k]q)([v]q − [v − 1]q)) ≤ [v]q([v]q − [v − 1]q)(b− 1),

so that #S ≤ [v]q(b−1)
[v−k]q+[k]q

= (qv−1)(b−1)
qv−k+qk−2

, which is a contradiction. �

Again, we specialize our considerations to CDCs with v = 2k and minimum distance
d = 2k − 2.

46 Corollary
Let C be a (2k,#C, 2k−2; k)q CDC with k ≥ 3. If #C > (qk + 1)(qk + 1− (c+ 1)/2) for
some c ∈ N, then there is a hyperplane H̄ and a point P̄ with #I

(
C, H̄

)
+ #I

(
C, P̄

)
≥

2(qk + 1)− c and P̄ 6≤ H̄.

Proof
The statement follows from Proposition 45 using b = 2(qk + 1)− c. �
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3 Structure of subspaces in a vector space

3.1 DefaultCDCBLP

The following binary linear program (BLP) is the canonical formulation of the main
problem of subspace coding in the constant dimension case and therefore deserves the
name DefaultCDCBLP. We will use it regularly in exactly this or slightly modified
versions, which we denote at the specific text passages.

47 Definition
Let q ≥ 2 be a prime power and 2 ≤ d/2 ≤ min{k, v − k} integers. Then
DefaultCDCBLP(q, v, d, k) is the following BLP:

max
∑

U∈
[

Fvq
k

]xU st

∑
U∈I

([
Fvq
k

]
,W
)xU ≤ Aq(v − w, d; k − w) ∀W ∈

[
Fvq
w

]
∀w ∈ {1, . . . , k − d/2}

∑
U∈I

([
Fvq
k

]
,W
)xU ≤ 1 ∀W ∈

[
Fvq

k−d/2+1

]
∑

U∈I
([

Fvq
k

]
,W
)xU ≤ 1 ∀W ∈

[
Fvq

k+d/2−1

]
∑

U∈I
([

Fvq
k

]
,W
)xU ≤ Aq(w, d; k) ∀W ∈

[
Fvq
w

]
∀w ∈ {k + d/2, . . . , v − 1}

xU ∈ {0, 1} ∀U ∈
[

Fvq
k

]

The importance lies in the following connection:

48 Lemma
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have:
On the one hand, for any (v,N, d; k)q CDC C the characteristic vector

(xU )
U∈
[

Fvq
k

] = (1{U∈C})U∈
[

Fvq
k

]
is feasible for DefaultCDCBLP(q, v, d, k).
On the other hand, for a feasible characteristic vector (xU )

U∈
[

Fvq
k

] of

DefaultCDCBLP(q, v, d, k) the set

C =
{
U ∈

[
Fvq
k

] ∣∣∣ xU = 1
}
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3.1 DefaultCDCBLP

is a (v,N, d; k)q CDC.
In both cases N =

∑
U∈
[

Fvq
k

] xU and in particular, Aq(v, d; k) =

DefaultCDCBLP(q, v, d, k).

Proof
Let C be a (v,N, d; k)q CDC and (xU )

U∈
[

Fvq
k

] = (1{U∈C})U∈
[

Fvq
k

] its characteristic vector.

Then the sizes match N =
∑

U∈
[

Fvq
k

] xU . For W ≤ Fvq with dim(W ) = w we have

#I (C,W ) =
∑

U∈I
([

Fvq
k

]
,W
) xU and hence with Lemma 41:

∑
U∈I

([
Fvq
k

]
,W
)xU = #I (C,W ) ≤

{
Aq(w, d; k) if w ≥ k,
Aq(v − w, d; k − w) if w < k.

Since Aq(v
′, d; k′) = 1 if d/2 > min{k′, v′−k′} we have Aq(w, d; k) = 1 if k ≤ w < k+d/2

and Aq(v−w, d; k−w) ≤ 1 if k− d/2 < w < k. Hence, (xU ) is feasible for all constraints
of DefaultCDCBLP(q, v, d, k).

Let (xU )
U∈
[

Fvq
k

] be feasible for DefaultCDCBLP(q, v, d, k) and C=
{
U ∈

[
Fvq
k

]∣∣∣xU =1
}

a subset of
[

Fvq
k

]
. Again the sizes match N =

∑
U∈
[

Fvq
k

] xU .
The second set of constraints in DefaultCDCBLP(q, v, d, k) are

∑
U∈I

([
Fvq
k

]
,W
) xU ≤

1 for all W ∈
[

Fvq
k−d/2+1

]
and hence any U 6= U ′ ∈ C have dim(U ∩ U ′) ≤ k − d/2 which

implies the minimum subspace distance ds(U,U
′) = 2(k − dim(U ∩ U ′)) ≥ d. �

The constraints with dim(W ) ∈ {k − d/2 + 2, . . . , k + d/2− 2} are implied by the two
sets of constraints with dim(W ) ∈ {k − d/2 + 1, k + d/2− 1} and hence are redundant,
i.e., any (xU ) with 0 ≤ xU ≤ 1 (instead of xU ∈ {0, 1}) for all U ∈

[
Fvq
k

]
which is feasible

for both sets of constraints with dim(W ) ∈ {k − d/2 + 1, k + d/2− 1} is automatically
feasible for the constraints with dim(W ) ∈ {k − d/2 + 2, . . . , k + d/2− 2}.
If C is a (v,#C, d; k)q CDC, then its corresponding feasible vector in DefaultCD-

CBLP(q, v, d, k) fulfills exactly #C ·
[

k
k−d/2+1

]
q
constraints having dim(W ) = k−d/2+1

and #C ·
[
k+d/2−1

k

]
q
constraints having dim(W ) = k + d/2− 1 with equality.

At first glance, any constraint with dim(W ) 6= k − d/2 + 1 is redundant. This is only
true for integral (xU ) and since the solving process of a binary linear program usually
depends on LP-relaxations, one can profit by using these additional constraints.

DefaultCDCBLP(q, v, d, k) may be changed by removing some constraints. An
analogous proof as the proof of Lemma 48 shows the same facts also for the following
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3 Structure of subspaces in a vector space

BLP:

Aq(v, d; k) = max
∑

U∈
[

Fvq
k

]xU

st
∑

U∈I
([

Fvq
k

]
,W
)xU ≤ 1 ∀W ∈

[
Fvq

k−d/2+1

]

xU ∈ {0, 1} ∀U ∈
[

Fvq
k

]

On the one hand, this BLP is inferior to DefaultCDCBLP(q, v, d, k) in terms of the set
of feasible points in the LP-relaxation and consequently the quality of the LP-relaxations
in the solving process of the branch & bound method ([Dak65]) are also inferior, but
it is superior in terms of computation speed of LP-iterations, since all intermediate
computation steps operate on smaller structures. Moreover, using V = Fvq , any subset of
constraints P withxU

∣∣∣∣∣∣∣∣
∑

U∈I
([
V
k

]
,W
) xU ≤ 1 ∀W ∈

[
V

k−d/2+1

] 
⊆P ⊆xU

∣∣∣∣∣∣∣∣
∑

U∈I
([
V
k

]
,W
) xU ≤ Aq(v − w, d; k − w) ∀W ∈ [ Vw ] ∀w ∈ {1, . . . , k − d/2}∧

∑
U∈I

([
V
k

]
,W
)xU ≤ 1 ∀W ∈

[
V

k−d/2+1

]
∧

∑
U∈I

([
V
k

]
,W
)xU ≤ 1 ∀W ∈

[
V

k+d/2−1

]
∧

∑
U∈I

([
V
k

]
,W
)xU ≤ Aq(w, d; k) ∀W ∈ [ Vw ] ∀w ∈ {k + d/2, . . . , v − 1}


can be used for a BLP

max


∑

U∈
[
V
k

]xU
∣∣∣∣∣∣∣∣ xU ∈ P ∧ xU ∈ {0, 1} ∀U ∈

[
V
k

]
whose optimal value is also equal to Aq(v, d; k) using the same proof as Lemma 48.
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3.1 DefaultCDCBLP

number of
q v d k maximal cliques maximum cliques

[ v
k−d/2+1

]
q

[ v
k+d/2−1

]
q

k
<
v
/2 2 5 4 2 186 31 31 155

2 6 4 2 1458 63 63 1395
2 7 4 2 ? 127 127 11811

k
=
v
/2 2 4 4 2 30 30 15 15

2 6 4 3 1302 1302 651 651
2 6 6 3 ? 126 63 63

Table 4: Number of inclusion maximal and maximum cliques of the stable set polytopes
Stab(G) for small CDC parameters. The computation of the entries labeled
with “?” are aborted after 260 hours of wall-time.

It is quite difficult to give an advice which set of constraints P is advisable in the
general case since this depends on the conditions of use.
The set of constraints P, together with −xU ≤ 0 for all U ∈

[
Fvq
k

]
, implies a bet-

ter formulation if it is larger and DefaultCDCBLP(q, v, d, k) uses the best of these
formulations.
The connection between CDCs and stable set polytopes uses the graph

G′ =

([
Fvq
k

]
,

{
{U,W} ∈

( [
Fvq
k

]
2

) ∣∣∣∣ ds(U,W ) < d

})
.

Then

Aq(v, d; k) = max


∑

U∈
[

Fvq
k

]xU
∣∣∣∣∣∣∣∣ x ∈ Stab(G′)

 .

In particular, the set of constraints xU + xW ≤ 1 for all U 6= W ∈
[

Fvq
k

]
with ds(U,W ) <

d hence are called edge constraints.
∑

U∈I
([

Fvq
k

]
,W
) xU ≤ 1 for all W ∈

[
Fvq

k−d/2+1

]
respectively

∑
U∈I

([
Fvq
k

]
,W
) xU ≤ 1 for all W ∈

[
Fvq

k+d/2−1

]
are clique constraints.

Frankl and Wilson proved in [FW86, Theorem 1] that the maximum cardinality of

A ⊆
[

Fvq
k

]
with ds(U,W ) < d for all U 6= W ∈ A is max

{[
v−(k−d/2+1)
k−(k−d/2+1)

]
q
,
[
k+d/2−1

k

]
q

}
if k + d/2− 1 ≤ v and therefore at least one of the two sets of clique constraints of the
last paragraph are facets.

Table 4 lists the numbers of inclusion maximal and maximum cliques of the stable set
polytopes Stab(G′) for small parameters of CDCs computed with Cliquer. For k = v/2,
each maximal clique attains the cardinality of the respective clique number, i.e., is a
maximum clique. For k < v/2 the number of maximum cliques still corresponds with[ v
k−d/2+1

]
q
, i.e., the number of constraints in DefaultCDCBLP(q, v, d, k) induced by
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3 Structure of subspaces in a vector space

W of dimension k − d/2 + 1. Although in this case the constraints induced by the
(k+ d/2− 1)-dimensional subspaces are not maximum cliques, they are inclusion maximal
and according to the table these are all maximal cliques.
Adding inequalities to a formulation may remove the property of a face being a facet

as the following simple example shows. The full-dimensional polytope P = {x ∈ R |
0 ≤ x ≤ 1.5} is a formulation for X = {0, 1} and the valid inequality x ≤ 1.5 implies
the facet F = {x ∈ R | x = 1.5}. By adding the inequality x ≤ 1 to P the formulation
P ′ = {x ∈ R | 0 ≤ x ≤ 1} is better than P . It is even optimal. But x ≤ 1.5 implies the
face F ′ = {x ∈ R | x = 1.5 ≤ 1} = ∅ which is still a face but no facet.

The next lemma will show that the clique constraints are even facets in the polytope of
the LP-relaxation of DefaultCDCBLP(q, v, d, k), i.e., 0 ≤ xU ≤ 1 instead of xU ∈ {0, 1}
for U ∈

[
Fvq
k

]
.

49 Lemma
Let q ≥ 2 be a prime power, 2 ≤ d/2 ≤ k ≤ v − k integers, P be the polytope of the

LP-relaxation of DefaultCDCBLP(q, v, d, k), and Popt = conv

(
P ∩ Z[ vk ]

q

)
. Then:

1. dim(P ) = [ vk ]q and hence Popt is full-dimensional, which implies that P is full-
dimensional,

2. 0 ≤ xU defines a facet of Popt for all U ∈
[

Fvq
k

]
, which implies that these inequalities

define facets of P as well,

3.
∑

U∈I
([

Fvq
k

]
,W
) xU ≤ 1 defines a facet of P for all W ∈

[
Fvq

k−d/2+1

]
, and

4.
∑

U∈I
([

Fvq
k

]
,W
) xU ≤ 1 defines a facet of P for all W ∈

[
Fvq

k+d/2−1

]
.

Proof
We abbreviate G =

[
Fvq
k

]
.

1 The CDCs C0 = ∅ and CU ′ = {U ′} for all U ′ ∈ G yield feasible vectors (xU )U∈G = 0
and (xU )U∈G = 1{U=U ′} for Popt via Lemma 48. They are affinely independent and the

dimension of Popt is exactly [ vk ]q because P ⊆ R[ vk ]
q .

2 Fix an Ū ∈ G and thereby the inequality 0 ≤ xŪ and the face F = {x ∈ Popt | xŪ = 0}.
The CDCs C0 and CU ′ for U ′ ∈ G \ {Ū} yield vectors in F which are again affinely
independent and in particular dim(F ) = [ vk ]q − 1 = dim(P )− 1.

3 We fix a W ∈
[

Fvq
k−d/2+1

]
and the inequality

∑
U∈G:W≤U xU ≤ 1. The number

of k-spaces in Fvq that contain W is λ =
[
v−k+d/2−1

d/2−1

]
q
. Moreover let U0 ∈ G be a

fixed subspace with W ≤ U0. Next, we will define [ vk ]q affinely independent vectors
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3.1 DefaultCDCBLP

(yU )ŪU∈G for all Ū ∈ G in F = {x ∈ P |
∑

U∈G:W≤U xU = 1} which then in turn prove
dim(F ) = [ vk ]q − 1 = dim(P )− 1:

(yU )ŪU∈G =


1{U=Ū} if W ≤ Ū 6= U0,

1{W≤U}/λ if U0 = Ū , and
1{W≤U or U=Ū}/λ if W 6≤ Ū .

All three cases fulfill
∑

U∈G:W≤U xU ≤ 1 with equality.
They are affinely independent iff {(yU )ŪU∈G− (yU )U0

U∈G | Ū 6= U0} is linearly independent:

0 =
∑

Ū∈G\{U0}

µŪ ((yU )ŪU∈G − (yU )U0
U∈G) =

∑
Ū∈G\{U0}

µŪ (yU )ŪU∈G + (−
∑

Ū∈G\{U0}

µŪ )(yU )U0
U∈G

=
∑

W≤Ū 6=U0

µŪ1{U=Ū} + (−
∑

Ū∈G\{U0}

µŪ )1{W≤U}/λ+
∑
W 6≤Ū

µŪ1{W≤U or U=Ū}/λ.

Since the vectors 1{·} are linearly independent, this implies µŪ = 0 for W ≤ Ū 6= U0,
(−
∑

Ū∈G\{U0} µŪ )/λ = 0, and µŪ/λ = 0 for W 6≤ Ū , i.e., µŪ for Ū 6= U0.
Next, each (yU )ŪU∈G is contained in P : Since Aq(v

′, d; k′) ≥ 2 iff 1 ≤ k′ ≤ v′ − 1 and
d/2 ≤ min{k′, v′ − k′}, 2 ≤ d/2 ≤ k ≤ v − k implies that the right hand side of the
inequalities of DefaultCDCBLP(q, v, d, k) which are of the form Aq(v

′, d; k′) are at
least 2. Since

∑
U∈G(yU )ŪU∈G ≤ 1 + 1/λ ≤ 2 for all Ū ∈ G, all these vectors are feasible

for the constraints. Any subset L ∈
(G
λ

)
of cardinality λ implies

∑
U∈L(yU )ŪU∈G ≤ 1 for

all Ū ∈ G and in particular these vectors are feasible for any constraint with dim(W ′) =

k − d/2 + 1. For any Z ∈
[

Fvq
k+d/2−1

]
, we distinguish the following cases. If W 6≤ Z, then∑

U≤Z(yU )ŪU∈G ≤ 1/λ ≤ 1 for all Ū ∈ G. If W ≤ Ū 6= U0, then
∑

U≤Z(yU )ŪU∈G ≤ 1. Else

there are
[

(k+d/2−1)−(k−d/2+1)
k−(k−d/2+1)

]
q

=
[

2(d/2−1)
d/2−1

]
q
k-spaces U withW ≤ U ≤ Z and we have

∑
U≤Z

(yU )ŪU∈G ≤
([

2(d/2−1)
d/2−1

]
q

+ 1

)
/λ ≤ 1

⇔
[

2(d/2−1)
d/2−1

]
q
<
[
v−k+d/2−1

d/2−1

]
q
⇔ 2(d/2− 1) < v − k + d/2− 1

which is implied by 2 ≤ d/2 ≤ k ≤ v − k.
4 An analogous reasoning as in 3 can be applied for a fixed Z ∈

[
Fvq

k+d/2−1

]
. We only

have to replace W ≤ U , W ≤ U0, and W ≤ Ū with U ≤ Z, U0 ≤ Z, and Ū ≤ Z,
respectively as well as λ =

[
k+d/2−1
d/2−1

]
q
. Then an analogous definition of (yU )ŪU∈G provides

[ vk ]q affinely independent vectors contained in the face. The only difference is to show

that for fixed W ∈
[

Fvq
k−d/2+1

]
and Ū ∈ G the vector (yU )ŪU∈G is feasible for the inequality∑

U≥W xU ≤ 1: If W 6≤ Z then
∑

U≥W (yU )ŪU∈G ≤ 1/λ ≤ 1 and if U0 6= Ū ≤ Z then
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3 Structure of subspaces in a vector space

∑
U≥W (yU )ŪU∈G ≤ 1, else there are again

[
2(d/2−1)
d/2−1

]
q
k-spaces between W and Z. Hence:

∑
U≥W

(yU )ŪU∈G ≤
([

2(d/2−1)
d/2−1

]
q

+ 1

)
/λ ≤ 1

⇔
[

2(d/2−1)
d/2−1

]
q
<
[
k+d/2−1
d/2−1

]
q
⇔ 2(d/2− 1) < k + d/2− 1

which is again implied by 2 ≤ d/2 ≤ k ≤ v − k. �

The following statements imply some additional structure that large codes must have
and, as byproduct, allow to upper bound the slack of some inequalities of the Default-
CDCBLP.

50 Lemma
Let q ≥ 2 be a prime power, 2 ≤ d/2 ≤ min{k, v − k} integers and C be a (v,#C, d; k)q
CDC. Then we have #C −#I (C,H) ≤ qv−k Aq(v− 1, d; k− 1) and #C −#I (C,P ) ≤
qk Aq(v − 1, d; k) for any point P and hyperplane H in Fvq .

Proof
Let H ≤ Fvq be a fixed hyperplane and P the set of points in Fvq that are not incident to
H. Double counting of the set {(U,P ) ∈ C × P | P ≤ U} yields

(#C −#I (C,H))(
[
k
1

]
q
−
[
k−1

1

]
q
) =

∑
P∈P

#I (C,P )

and the right hand side is estimated with Lemma 41 to ≤ ([ v1 ]q −
[
v−1

1

]
q
) Aq(v− 1, d; k−

1), which proofs the first part. The second part can be proved in exactly the same
way interchanging points and hyperplanes – or by applying orthogonality, i.e., we also
interchange points and hyperplanes as well as k and v − k. �

This lemma has the consequence for DefaultCDCBLP(q, v, d, k) that it allows to
bound the slack of the inequalities with w = 1 and w = v−1. The slack s of an inequality
f(x) ≤ g is defined as s = g − f(x), which is therefore non-negative, and in particular we
have f(x) ≤ g ⇔ f(x)+s = g∧s ≥ 0. Hence, the slack for the inequality corresponding to
the point P is s(P ) = Aq(v−1, d; k−1)−

∑
U∈I

([
Fvq
k

]
,P
) xU = Aq(v−1, d; k−1)−#I (C,P )

and to the hyperplaneH it is s(H) = Aq(v−1, d; k)−
∑

U∈I
([

Fvq
k

]
,H
) xU = Aq(v−1, d; k)−

#I (C,H).

51 Corollary
Let q ≥ 2 be a prime power, 2 ≤ d/2 ≤ min{k, v − k} integers and C be a (v,#C, d; k)q
CDC. Then we have s(H) ≤ qv−k Aq(v − 1, d; k − 1) + Aq(v − 1, d; k)−#C and s(P ) ≤
qk Aq(v − 1, d; k) + Aq(v − 1, d; k − 1)−#C for any point P and hyperplane H in Fvq .

56



3.1 DefaultCDCBLP

For example Lemma 50 implies for any (6,#C, 4; 3)2 CDC C: #C − #I (C,H) ≤
8 · A2(5, 4; 2) = 8 · 9 and #C −#I (C,P ) ≤ 8 · A2(5, 4; 3) = 8 · 9 for any point P and
hyperplane H in F6

2, i.e.,

#C ≤ 72 + min
{

min
{

#I (C,P )
∣∣∣P ∈ [ F6

2
1

]}
,min

{
#I (C,H)

∣∣∣H ∈ [ F6
2

5

]}}
In particular, if #C = 77, then 5 ≤ #I (C,P ) and 5 ≤ #I (C,H) for any point P and
hyperplane H in F6

2.
Alternatively, Corollary 51 upper bounds the slack: s(P ) ≤ 81 − #C and s(H) ≤

81−#C for any point P and hyperplane H in F6
2 which is of particular interest if the

right hand side is ≤ 8, i.e., #C ≥ 73, since the left hand side is bounded by 9 due to
Lemma 41.
In fact, Table 6 in [HKK15] shows that there is a point which is incident to exactly 5

codewords for any (6, 77, 4; 3)2 CDC.
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4 The connection between subspaces
and pivot vectors

For u ∈ Fv2 let EFq(u) = {M ∈ Fwt(u)×v
q |M in RREF and p(M) = u}. In particular we

have # EFq((u1, u2, . . . , uv)) = q
∑v
i=1(1−ui)·

∑i−1
j=1 uj and

∑
u∈Fv2 ,wt(u)=k # EFq(u) = [ vk ]q.

A Ferrers diagram is a graphical representation of a partition of an integer. Let
n = s1 + s2 + . . . + sl for positive integers s1, s2, . . . , sl with s1 ≥ s2 ≥ . . . ≥ sl, cf.
[And76]. The l × s1 array with si dots in the i-th row which are all aligned to the right
is the Ferrers diagram of the partition n = s1 + s2 + . . .+ sl. Note that some literature
aligns the dots to the left.
For an m × η Ferrers diagram F , a Ferrers diagram rank metric code (FDRMC)

(F ,#C, d)q is a (m × η,#C, d)q rank metric code C such that each matrix in C has
non-zeros only in the positions where F has dots.

The Echelon-Ferrers diagram of u ∈ Fv2 is the Ferrers diagram consisting of dots in the
positions in which EFq(u) has variables, which is independent of q, cf. [ES09; Etz+16].

52 Example
For u = (1, 0, 1, 1, 0) ∈ F5

2 we have

EFq(u) =

{(
1 b1 0 0 b2
0 0 1 0 b3
0 0 0 1 b4

)
∈ F3×5

q

∣∣∣∣ b1, b2, b3, b4 ∈ Fq

}
.

Here, we have # EFq(u) = q4 and the Echelon-Ferrers diagram uses n = 4, s1 = 2,
s2 = s3 = 1, and is

• •
•
• .

The subspace distance between two subspaces with the same set of pivot columns can
be computed by the rank distance of the corresponding generator matrices.

53 Lemma ([SE11, Corollary 3])
For all U,W ∈ L(V ) with p(U) = p(W ), we have ds(U,W ) = 2dr(τ(U), τ(W )).

Moreover, one can lower bound the subspace distance of two arbitrary matrices U ∈
EFq(u) and W ∈ EFq(w) by only considering u and w.
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4 The connection between subspaces and pivot vectors

54 Lemma ([ES09, Lemma 2])
For two subspaces U,W ∈ L(V ), we have dh(p(U),p(W )) ≤ ds(U,W ).

Note that u and w may have different weight, i.e., U and W may have different
dimension.
The Echelon-Ferrers construction from [ES09], see also [HR18], works as follows: To

construct a (v,M, d)q MDC, we choose a block code B ⊆ Fv2 with minimum Hamming
distance at least d. B is called skeleton code in this context. For each b ∈ B, we take
a Cb ⊆ EFq(b) with minimum rank distance of at least d/2. Then, by Lemma 53 and
Lemma 54, C =

⋃
b∈B{τ−1(A) | A ∈ Cb} has the desired properties and M =

∑
b∈B #Cb.

Moreover, to construct a (v,M, d; k)q CDC, the same construction as before with the
restriction of B being a constant weight code in which each vector has weight k can be
applied.

Hence, the two main questions that arise from this construction are how to choose the
skeleton code and how to choose a rank metric code in EFq(u) for given u ∈ Fv2.

To give a partial answer to the second question, let dim(F , δ) be the maximum dimension
of a linear FDRMC with the Ferrers diagram F and minimum rank distance 1 ≤ δ. Then
we have an upper bound on dim(F , δ).

55 Theorem ([ES09, Theorem 1])
Let F be a m× η Ferrers diagram and 1 ≤ δ an integer. Let νi be the number of dots
in F , which are not contained in the first i rows and not contained in the rightmost
δ − 1− i columns for 0 ≤ i ≤ δ − 1, then dim(F , δ) ≤ min{νi | i ∈ {0, 1, . . . , δ − 1}}.

The authors of [ES09] conjectured that this upper bound is tight for all reasonable
parameters. This conjecture is still unrefuted and valid in many cases, cf. [Etz+16].
If u ∈ Fv2 has k consecutive 1’s and is 0 else, i.e., u = (0v−k−c1k0c) for 0 ≤ c ≤ v − k,

then its Echelon-Ferrers diagram has k rows and c columns and is full, i.e., it is the
partition of n = k · c with s1 = s2 = . . . = sk = c if 1 ≤ c or else it contains no dot. Any
element in the set EFq(u) therefore has v − k − c zero columns, then k pivot columns,
and then c variable columns yielding a cardinality of qkc. In this case, omitting these
v − c columns in the beginning yields Fk×cq in which we look for a rank metric code with
minimum distance at least d/2. Embedding such a rank metric code again in EFq(u)
then yields a desired subcode Cu. Moreover, the cardinality of each rank metric code is
equal to the cardinality of the embedded code in EFq(u) and vice versa and therefore,
focusing on constructing large codes, we take an (k × c, dqmax{k,c}(min{k,c}−d/2+1)e, d/2)q
MRD code, cf. Theorem 31, such that #Cu = dqmax{k,c}(min{k,c}−d/2+1)e. Hence, in these
cases the bound of Theorem 55 is tight.
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For special subclasses explicit formulae for the sizes of the corresponding codes have
been obtained, see [Ska10]. Additional refinements to the Echelon-Ferrers construction
have been proposed recently, see [ES13; Etz+16; ST15].

A prominent special case is the so called lifted maximum rank code (LMRD), cf. [SKK08,
Proposition 4]. It arises by taking the skeleton code B = {(1k0v−k)} in the Echelon-
Ferrers construction. Therefore an LMRD code is a (v, dqmax{k,v−k}(min{k,v−k}−d/2+1)e,
d; k)q CDC, which simplifies, using 2 ≤ d/2 ≤ k ≤ v − k, to a (v, q(v−k)(k−d/2+1), d; k)q
CDC. Using this special pivot vector, all RREF matrices of codewords of an LMRD
have a k × k identity matrix in the beginning. In other words, for an (k × (v −
k), dqmax{k,v−k}(min{k,v−k}−d/2+1)e, d/2)q MRD M , the set {Λ(A) | A ∈M} is an LMRD.
The arising question of upper bounds on sizes for CDCs which contain an LMRD

as subset was partly answered by Etzion and Silberstein in [ES13, Theorem 10 and
Theorem 11].

56 Theorem (cf. [ES13, Theorems 10 and 11])
Let C be a (v,#C, d; k)q CDC that contains an LMRD for 2 ≤ d/2 ≤ k ≤ v − k.

• If d = 2(k − 1) and k ≥ 3, then #C ≤ q2(v−k) + Aq(v − k, 2(k − 2); k − 1),

• if d = k even, then #C ≤ q(v−k)(k/2+1) +
[
v−k
k/2

]
q

qv−qv−k
qk−qk/2 + Aq(v − k, k; k).

The paper [Hei18] and also this thesis in Chapter 6 generalize both bounds in Proposi-
tion 88 and Proposition 91 such that both bounds together cover the parameter range
2k < 3d together with 2 ≤ d/2 ≤ k ≤ v − k.

57 Proposition (Proposition 99 and [Hei18, Proposition 1])
For 2 ≤ d/2 ≤ k ≤ v − k let C be a (v,#C, d; k)q CDC that contains an LMRD code.
If k < d ≤ 2/3v we have

#C ≤ q(v−k)(k−d/2+1) + Aq(v − k, 2(d− k); d/2).

If additionally d = 2k, r ≡ v (mod k), 0 ≤ r < k, and [r]q < k, then the right hand side
is equal to Aq(v, d; k) and achievable in all cases.

If (v, d, k) ∈ {(6 + 3l, 4 + 2l, 3 + l), (6l, 4l, 3l) | l ≥ 1}, then there is a CDC containing
an LMRD with these parameters whose cardinality achieves the bound.
If k < d and v < 3d/2 we have

#C ≤ q(v−k)(k−d/2+1) + 1

and this cardinality is achieved.
If d ≤ k < 3d/2 we have

#C ≤ q(v−k)(k−d/2+1) + Aq(v − k, 3d− 2k; d)

+
[
v−k
d/2

]
q

[
k
d−1

]
q
q(k−d+1)(v−k−d/2)/

[
k−d/2
d/2−1

]
q
.
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4 The connection between subspaces and pivot vectors

Another interesting special case for generating a (v,#C, d′; k)q CDC C with d ≤ d′

2 ≤ d/2 ≤ k ≤ v − k is given by the restriction to only use pivot vectors with k
consecutive ones, cf. [Tra13a]. Then, as seen before, the maximum code in EFq(u) for u =
(0v−k−c1k0c) ∈ Fv2 has dqmax{k,c}(min{k,c}−d/2+1)e elements, answering the second question
arising in the context of the Echelon-Ferrers construction, which was how the rank metric
code should be chosen. In this case, also the first question can be answered thoroughly by
taking the skeleton code B = {(0id/21k0v−k−id/2) | i ∈ {0, 1, . . . , b(v − k)/(d/2)c}}. Note
that the Hamming distance between two arbitrary elements of B is at least d and hence
Lemma 54 guarantees a subspace distance of at least d and that any other choice of B
consisting entirely of vectors with k consecutive ones yields a final CDC of at most the
same size. Therefore,

#C =

b(v−k)/(d/2)c∑
i=0

dqmax{k,v−k−id/2}(min{k,v−k−id/2}−d/2+1)e,

which can be simplified using x = b(v − 2k)/(d/2)c, y = b(v − k − d/2 + 1)/(d/2)c, and
z = b(v−k)/(d/2)c. Note that k ≤ v−k− id/2⇔ i ≤ x and 0 ≤ v−k− id/2−d/2+1⇔
i ≤ y and 0 ≤ v − 2k ≤ v − k − d/2 + 1 ≤ v − k implies 0 ≤ x ≤ y ≤ z and d ≤ k + 1
implies x+ 1 ≤ y. Hence:

=
x∑
i=0

q(v−k−id/2)(k−d/2+1) +
z∑

i=x+1

dqk(v−k−id/2−d/2+1)e

=

x∑
i=0

q(v−k−id/2)(k−d/2+1) +

y∑
i=x+1

qk(v−k−id/2−d/2+1) +

z∑
i=y+1

1.

For the last sum, z − y = b(v − k)/(d/2)c − b(v − k + 1)/(d/2)c+ 1 ∈ {0, 1}, by applying
α − 1 < bαc ≤ α for α ∈ R, and z − y = 0 iff v − k < ld/2 = v − k + 1 for an l ∈ Z iff
d/2 | v − k + 1. For the first sum, we apply the geometric series to get:

q(v−k)(k−d/2+1)
x∑
i=0

(
q(−d/2)(k−d/2+1)

)i
= q(v−k)(k−d/2+1) 1− q(−d/2)(k−d/2+1)(x+1)

1− q(−d/2)(k−d/2+1)

= q(v−k)(k−d/2+1) q
d/2(k−d/2+1) − qd/2(k−d/2+1)(−x)

qd/2(k−d/2+1) − 1

=
q(v−k+d/2)(k−d/2+1) − q(v−k−xd/2)(k−d/2+1)

qd/2(k−d/2+1) − 1
.

For the second sum, we have 0 if x = y and else we apply also the geometric series to get:

qk(v−k−d/2+1)
y∑

i=x+1

(
qk(−d/2)

)i
= qk(v−k−d/2+1) q

k(−d/2)(x+1) − qk(−d/2)(y+1)

1− qk(−d/2)

= qk(v−k−d/2+1) q
kd/2(−x) − qkd/2(−y)

qkd/2 − 1
=
qk(v−k+1−d/2(x+1)) − qk(v−k+1−d/2(y+1))

qkd/2 − 1
.
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Moreover, note that C contains a LMRD and hence its cardinality is restricted by
Theorem 56 and Proposition 99 and particularly, its minimum distance is equal to d.

This results in the following

58 Theorem (cf. [Tra13a, Corollary 6])
For q prime power and integers v, d, and k with 2 ≤ d/2 ≤ k ≤ v − k as well as
x = b(v − 2k)/(d/2)c and y = b(v − k − d/2 + 1)/(d/2)c we have:

Aq(v, d; k) ≥ q(v−k+d/2)(k−d/2+1) − q(v−k−xd/2)(k−d/2+1)

qd/2(k−d/2+1) − 1

+ 1x<y
qk(v−k+1−d/2(x+1)) − qk(v−k+1−d/2(y+1))

qkd/2 − 1

+ 1d/2 - v−k+1.

Fixing d = 2k, we derive another special case from the Echelon-Ferrers construction.
Here, x = bv/kc − 2 and z = bv/kc − 1, i.e., x+ 1 = z, rendering y unnecessary. Then,
by writing r ≡ v (mod k) for 0 ≤ r < k, we have z = (v − r)/k − 1 and particularly
kz = v − k − r and xk = zk − k = v − 2k − r. The first sum can be further evaluated to

x∑
i=0

qv−k−ik =
qv − qv−k−xk

qk − 1
=
qv − qv−k−v+2k+r

qk − 1
=
qv − qk+r

qk − 1

The second sum becomes also easier by applying r + 1− k ≤ 0:

z∑
i=x+1

dqk(v−2k−ik+1)e = dqk(v−2k−zk+1)e = dqk(v−2k−v+k+r+1)e = dqk(r+1−k)e = 1.

Hence, the constructed code of the last paragraph has a size of

qv − qk+r

qk − 1
+ 1 =

qv − qk+r + qk − 1

qk − 1
, (4.1)

which is equal to Theorem 126 and is optimal if [r]q < k, i.e., Aq(v, 2k; k) = qv−qk+r

qk−1
+ 1

with r ≡ v (mod k), 0 ≤ r < k, and [r]q < k, cf. Theorem 131.
The main ingredients of the last construction were pivot vectors with k consecutive

ones. This can be improved by considering pivot vectors with at most two blocks of
consecutive ones, such that these pivot vectors still have k ones in total. Although the
maximum cardinality of FDRMCs is still an open question, the following lemma settles
many cases.
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4 The connection between subspaces and pivot vectors

59 Theorem ([ES09, Theorem 2], transposed version)
Let F be an m × η, m ≤ η, Ferrers diagram and δ a positive integer such that the
uppermost δ − 1 rows of F contain η dots. Then there is a FDRMC of cardinality∑m

i=δ ri in Fm×ηq for all q ≥ 2 prime power, where ri is the number of dots in the i-th
row of F for i ∈ {1, . . . ,m}. This FDRMC size achieves the bound of Theorem 55.

In particular, for all integers 1 ≤ δ = d/2 ≤ k − d/2 there is a bound achieving
FDRMC for F =

(
A B
C

)
such that A, B, and C are full Ferrers diagrams with the

shapes (k − d/2) × (λd/2), (k − d/2) × (v − k − λd/2), and (d/2) × (v − k − λd/2) for
λ ∈ {0, . . . , d2(v − k)/de}.

60 Lemma
Let q ≥ 2 be a prime power and 2 ≤ d/2 ≤ k ≤ v − k integers. If additionally d ≤ k + 1,
then there is a (v,N, d; k)q CDC with

N = q(v−k)(k−d/2+1) q
(d/2)2(M+1) − 1

q(d/2)2 − 1
q−(d/2)2M

with M = d2(v − k)/de.

Proof
Let pλ = (1k−d/20λd/21d/20v−k−λd/2) for λ ∈ {0, . . . ,M}. Then pλ ∈ Fv2 is of weight k
for all λ ∈ {0, . . . ,M} and dh(pλ, pλ′) = d for all λ 6= λ′ ∈ {0, . . . ,M}. Hence, pλ gives
rise to a Ferrers diagram with four blocks (A B

C ) such that A, B, and C have the shapes
(k − d/2)× (λd/2), (k − d/2)× (v − k − λd/2), and (d/2)× (v − k − λd/2), respectively.
A, B, and C are full Ferrers diagrams, i.e., using m and η of Theorem 59, we have m = k
and η = v − k and therefore m ≤ η. For δ = d/2 the uppermost δ − 1 rows have each η
dots since d ≤ k + 1 is equivalent to d/2− 1 ≤ k − d/2.

Consequently, the FDRMC corresponding to pλ has the dimension (d/2)(v−k−λd/2)+
(k − d+ 1)(v − k) for all λ ∈ {0, . . . ,M} and by Lemma 54 the CDC has cardinality

N =
M∑
λ=0

q(d/2)(v−k−λd/2)+(k−d+1)(v−k) = q(v−k)(k−d/2+1)
M∑
λ=0

q−(d/2)2λ

= q(v−k)(k−d/2+1) q
−(d/2)2(M+1) − 1

q−(d/2)2 − 1
= q(v−k)(k−d/2+1) q

(d/2)2(M+1) − 1

q(d/2)2 − 1
q−(d/2)2M . �

Note that p0 is the pivot vector of an LMRD and in fact the first factor of the cardinality,
i.e., q(v−k)(k−d/2+1), is the size of an LMRD. Hence this construction improves on the size

of an LMRD by a factor of q
(d/2)2(M+1)−1

q(d/2)2−1
q−(d/2)2M .
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Another construction of FDRMC is given by the next lemma. It will be applied to
prove Lemma 97 and Lemma 98.

61 Lemma (cf. [Etz+16, Theorem 9])
Let A be an [a × a′, l, da]q and B a [b × b′, l, db]q rank metric code. Then there is an
[(a+ b)× (a′ + b′), l, da + db]q rank metric code such that each codeword contains a zero
matrix of size b× a′ in the bottom left corner.
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5 The Coset Construction

The coset construction is a parameterized construction for CDCs. One property is that
the minimum subspace distance of constructed sets can be bounded in terms of the
parameters. Not surprisingly, the size of these sets is also dependent on the parameters
and hence we try to create large codes with this new method. To achieve this, we show
that it is possible to extend a given coset constructed set with another coset constructed
set, depending on the parameterization of both codes, or an arbitrary codeword, only
depending on its pivot vector. This allows to combine the coset construction with the
Echelon-Ferrers construction, since the latter incorporates large sets of codewords having
predefined pivot vectors.

The classical coset construction in [HK17c] generalizes [ES13, Construction III], which
is only applicable for (8, N, 4; 4)q CDCs, to arbitrary parameters (v1 + v2, N, d; k1 + k2)q
using two blocks. Here we describe an evolved version of this construction which involves
an arbitrary number b of blocks for (

∑b
i=1 vi, N, d;

∑b
i=1 ki)q CDCs.

5.1 The coset construction

First, we need to introduce a padding for matrices which adds zero-columns into a given
matrix. Let M ∈ Fm×nq be a matrix and p ∈ Fs2 be a vector for n+ wt(p) = s. ϕp(M) is
the matrix M ′ ∈ Fm×sq with

M ′i =

{
0m×1 if pi = 1

Mi−
∑i
j=1 pj

else
.

For example, we have ϕ(010001)((
1 0 1 1
0 1 1 0 )) = ( 1 0 0 1 1 0

0 0 1 1 0 0 ).
Next, for a positive integer b and 0 ≤ ki ≤ vi integers for i ∈ [b], let F(ki,vi)i∈[b]

be the
Ferrers diagram consisting of ki rows with

∑b
j=i+1(vj − kj) dots for each i = 1, . . . , b− 1,
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5 The Coset Construction

i.e.:

F(ki,vi)i∈[b]
=

k1


• . . . •

...
• . . . •︸ ︷︷ ︸
v2−k2

• . . . •
...

• . . . •

• . . . •
...

• . . . •

k2


• . . . •

...
• . . . •︸ ︷︷ ︸
v3−k3

• . . . •
...

• . . . •

. . .
...

kb−1


• . . . •

...
• . . . •︸ ︷︷ ︸
vb−kb

.

For b ≥ 1, Ci ∈
[

F
vi
q

ki

]
, i = 1, . . . , b, and M in an (F(ki,vi)i∈[b]

, N, δ)q FDRMC (1 ≤ N ,
1 ≤ δ), we introduce the abbreviation

C(C1, . . . , Cb,M) :=
τ(C1) 0

τ(C2)
. . .

0 τ(Cb)

+


0(
∑b−1
i=1 ki)×v1

ϕ(p(C2)|...|p(Cb))(M)

0kb×v1 0kb×(
∑b
i=2 vi)


which is the matrix in RREF that arises if one builds the diagonal block matrix with the
RREF matrices corresponding to C1, . . . , Cb and embeds the Echelon-Ferrers diagram
matrix M in the top right part with an embedding, such that the pivot columns of
C2, . . . , Cb are also pivot columns in C(C1, . . . , Cb,M). Using this definition, F(ki,vi)i∈[b]

is the Echelon-Ferrers diagram of (1k1 | p(C2) | . . . | p(Cb)), and it is in particular
independent of C2, . . . , Cb for only their ambient space and subspace dimension is needed.

62 Lemma (Coset construction, cf. [HK17c, Lemma 3])
Let q ≥ 2 be a prime power, l and b be positive integers, 1 ≤ ki ≤ vi for i ∈ [b] be

integers, ∅ 6= Cji ⊆
[

F
vi
q

ki

]
for i ∈ [b] and j ∈ [l] and Cji ∩C

j′

i = ∅ for i ∈ [b] and j 6= j′ ∈ [l].
LetM be a non-empty (F(ki,vi)i∈[b]

,#M, 1)q FDRMC. Then

C((Cji )i,j ,M) :=
⋃̇

j∈[l]
{τ−1(C(C1, . . . , Cb,M)) | Ci ∈ Cji ∀i ∈ [b],M ∈M}

is a subset of
[

F
∑b
i=1 vi

q∑b
i=1 ki

]
of size #C((Cji )i,j ,M) = #M ·

∑l
j=1

∏b
i=1 #Cji .
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5.1 The coset construction

0 0 0
0 0 0 0 0 0 0︸ ︷︷ ︸︸ ︷︷ ︸

}
} • • • •

• • • •
•︸ ︷︷ ︸︸︷︷︸

{
{

3 non-pivot columns
1 non-pivot column

Prototype of a codeword of the coset construction: Ferrers diagram:

τ(C1)

τ(C2)

τ(C3)

Figure 6: Prototype of a CDC codeword and connection to the Ferrers diagram in the
setting of Example 63.

Proof
For a fixed j ∈ [l] and Ci ∈ Cji for i ∈ [b], τ(Ci) is a ki × vi matrix over Fq of rank ki for
all i ∈ [b]. For M ∈ M, ϕ(p(C2)|...|p(Cb))(M) fits in terms of dimensions into the matrix
C(C1, . . . , Cb,M) and has zero columns to the top of the pivot columns of Ci for 2 ≤ i ≤ b.
Hence, C(C1, . . . , Cb,M) has rank

∑b
i=1 ki and therefore τ−1(C(C1, . . . , Cb,M)) is a∑b

i=1 ki dimensional subspace in F
∑b
i=1 vi

q . Counting C((Cji )i,j ,M) completes the proof.�

63 Example
Let b = 3 and k1 = 2, v1 = 3, k2 = 1, v2 = 4, and k3 = 1, v3 = 2. Then τ(C1) consists of
2 × 3 matrices, τ(C2) consists of 1 × 4 matrices, and τ(C3) consists of 1 × 2 matrices,
such that each matrix has full (row) rank. Any CDC codeword, considered as matrix in
RREF, which is constructed by the coset construction using these building blocks, has
dimension 4× 9 and full (row) rank. Figure 6 shows a graphical representation of such a
codeword as RREF matrix and the relationship with a properly sized Ferrers diagram,
i.e., in this example the Ferrers diagram partitions the number 9 into 4 + 4 + 1 and has
therefore shape 3× 4.

The name coset construction reflects the fact that any vector u = (λ1, . . . , λb) ·
C(C1, . . . , Cb,M) with λi ∈ Fkiq for i ∈ [b] is divided into parts which lie in cosets of
C1, . . . , Cb. With v′i =

∑i−1
j=2 vj+1, v′′i =

∑i
j=2 vj , and oi = (λ1, . . . , λb)·ϕp(Ci)(M∗,(v′i,...,v′′i ))

for i ∈ {2, . . . , b} and o1 = 0, we can split u into (u1 | . . . | ub) where ui = oi + λi · τ(Ci)
for i ∈ [b]. Hence, ui is in the coset oi + Ci for i ∈ [b].
The parameter l is called the length and (Cji )i,j ,M are called components of the

construction.
There are some special cases. If b = 1, then C((Cji )i,j ,M) =

⋃̇
j∈[l]C

j
1. If ki = vi for an

ī ∈ [b], then Cj
ī

= {τ−1(Ikī)} = {Fkīq }.
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5 The Coset Construction

5.2 The minimum subspace distance of the coset
construction and rearranging of the components

We can bound the subspace distance of the constructed code.

64 Lemma (cf. [HK17c, Lemma 4])
Let q, b, vi, and ki for i ∈ [b] satisfy the conditions of Lemma 62, Ci, C ′i ∈

[
F
vi
q

ki

]
for

i ∈ [b] and M,M ′ in an (F(ki,vi)i∈[b]
, N, 1)q FDRMC (2 ≤ N).

1. If p(Ci) = p(C ′i) for all i ∈ [b], then

2dr(M,M ′) ≤ ds(C(C1, . . . , Cb,M), C(C ′1, . . . , C
′
b,M

′))

with equality if Ci = C ′i for all i ∈ [b] and

2.

b∑
i=1

ds(Ci, C
′
i) ≤ ds(C(C1, . . . , Cb,M), C(C ′1, . . . , C

′
b,M

′)).

Proof
We use the reformulation

ds(C(C1, . . . , Cb,M), C(C ′1, . . . , C
′
b,M

′)) = 2

(
rk
(
C(C1,...,Cb,M)
C(C′1,...,C

′
b,M

′)

)
−

b∑
i=1

ki

)
.

1. Let p(Ci) = p(C ′i) for i ∈ [b], then

ϕ(p(C′2)|...|p(C′b))
(M ′) = ϕ(p(C2)|...|p(Cb))(M

′)

and

ϕ(p(C2)|...|p(Cb))(M
′)− ϕ(p(C2)|...|p(Cb))(M) = ϕ(p(C2)|...|p(Cb))(M

′ −M).

Moreover, τ(C ′i)− τ(Ci) has zero columns at the positions of the ones of p(Ci) and
we apply

rk

01 A
. . .

0b

 ≤ rk

B1 A
. . .

Bb


which is true for any choice of A,B1, . . . , Bb, using 0 as a zero matrix with appro-
priate dimension. Note that the rank of a matrix is invariant under permutations
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5.2 The minimum subspace distance of the coset construction and rearranging of the components

of rows or columns, respectively. Hence, the rank in the reformulation is equal to

rk



τ(C1) ϕ(p(C2)|...|p(Cb))(M)
. . .

0 τ(Cb)
τ(C ′1)− τ(C1) ϕ(p(C2)|...|p(Cb))(M

′ −M)
. . .

0 τ(C ′b)− τ(Cb)


= rk


I∑b

i=1 ki

B1 M ′ −M

0
. . .

Bb



≥
b∑
i=1

ki + rk(M ′ −M).

We get the first part of the claim by inserting this in the reformulation.

2. Here, we apply rk(X 0
0 Z ) ≤ rk(X Y

0 Z ) b− 1 times, which is also true for all X,Y, Z of
appropriate dimension. Hence, the rank in the reformulation can be bounded by

≥ rk



τ(C1) 0
. . .

0 τ(Cb)
τ(C ′1) 0

. . .
0 τ(C ′b)


=

b∑
i=1

rk
(
τ(Ci)
τ(C′i)

)
=

b∑
i=1

(ds(Ci, C
′
i)/2 + ki).

The last equality follows from ds(Ci, C
′
i) = 2

(
rk
(
τ(Ci)
τ(C′i)

)
− ki

)
. Inserting this in

the reformulation concludes the proof. �

It is also possible to deduce some constraints for the components of a coset construction,
if the resulting code shall fulfill a given minimum distance.

65 Lemma ([HK17c, Lemma 7])
Under the same preconditions as Lemma 62 and 0 ∈ M, we have for all i ∈ [b] and
j ∈ [l]

Ds(C((Cji )i,j ,M)) ≤ Ds(Cji )

and
Ds(C((Cji )i,j ,M)) ≤ 2Dr(M).

Proof
For an ī ∈ [b] and j̄ ∈ [l] let Cī 6= C ′

ī
∈ C j̄

ī
and Ci ∈ C j̄i for i ∈ [b], i 6= ī. Then

ds(C(C1, . . . , Cī−1, Cī, Cī+1, . . . , Cb,0), C(C1, . . . , Cī−1, C
′
ī, Cī+1, . . . , Cb,0)) = ds(Cī, C

′
ī)
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5 The Coset Construction

which is lower bounded by the minimum subspace distance, i.e., Ds(C((Cji )i,j ,M)).
For the second part, we take a j̄ ∈ [l] and let Ci ∈ C j̄i for i ∈ [b] and M 6= M ′ ∈ M.

Then the equality in Lemma 64 shows

ds(C(C1, . . . , Cb,M), C(C1, . . . , Cb,M
′)) = 2dr(M,M ′)

which is again lower bounded by the minimum distance, completing the proof. �

Both, Lemma 64 and Lemma 65 together verify the intuition that the best choice for
Dr(M) is Ds(C((Cji )i,j ,M))/2 to achieve large codes. Moreover, both lemmata show that
the best choice for Ds(Cji ) for any i ∈ [b] and j ∈ [l] is exactly Ds(C((Cji )i,j ,M)) and
this automatically fulfills the Condition 2 in Lemma 64. Note that the left hand side of
Condition 2 in Lemma 64, i.e.,

∑b
i=1 ds(Ci, C

′
i), is at least 2b for Cji ∈ C

j
i and Cj

′

i ∈ C
j′

i

for i ∈ [b] and j 6= j′ ∈ [l]. Hence, if both necessary conditions in Lemma 65 and the
conditions of Lemma 62 are fulfilled we have 2b ≤ Ds(C((Cji )i,j ,M)).

The next example shows that it is in general not feasible to lower bound the subspace
distances of

⋃̇l

j=1C
j
i in terms of Ds(C((Cji )i,j ,M)).

66 Example
Let U1 = τ−1 ( 1 0 1 0

0 1 0 0 ), U2 = τ−1 ( 1 0 1 1
0 1 0 1 ), and U3 = τ−1 ( 0 0 1 0

0 0 0 1 ). Then with b = 2,
l = 3, M = {0}, C1

1 = {U1}, C2
1 = {U2}, C3

1 = {U3}, C1
2 = {U1}, C2

2 = {U3}, and
C3

2 = {U2}, the code constructed by Lemma 62 is C = {W1,W2,W3} with W1 =

τ−1
(
U1 0
0 U1

)
, W2 = τ−1

(
U2 0
0 U3

)
, and W3 = τ−1

(
U3 0
0 U2

)
. Note that ds(U1, U2) = 2,

ds(U1, U3) = ds(U2, U3) = 4, ds(W1,W2) = ds(W1,W3) = 6, and ds(W2,W3) = 8 and in
particular we have 6 = Ds(C) 6≤

∑b
i=1 Ds

(⋃̇l

j=1C
j
i

)
= 2 + 2.

Next, we will rearrange the components in order to construct larger codes. This may
decrease the minimum subspace distance, as the following example shows.

67 Example
Continuing Example 66 with the permutations σ1 = () ∈ S[3] and σ2 = (2, 3) ∈ S[3],

we see that C((Ci,σi(j))i,j ,M) = {W ′1,W ′2,W ′3} with W ′1 = W1, W ′2 = τ−1
(
U2 0
0 U2

)
, and

W ′3 = τ−1
(
U3 0
0 U3

)
. In particular Ds(C((Ci,σi(j))i,j ,M)) = 4, since ds(W

′
1,W

′
2) = 4 and

ds(W
′
1,W

′
3) = ds(W

′
2,W

′
3) = 8.

Although permuting the components of a code of Lemma 62 may change the minimum
distance, which is nevertheless lower bounded by 2b, it can increase the size of constructed
codes.
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5.2 The minimum subspace distance of the coset construction and rearranging of the components

68 Lemma
Under the same preconditions as Lemma 62, #C1

i ≥ #C2
i ≥ . . . ≥ #Cli, and σi ∈ S[l]

arbitrary for all i ∈ [b], we have

l∑
j=1

b∏
i=1

#Cσi(j)i ≤
l∑

j=1

b∏
i=1

#Cji .

Proof
For X > x and Y > y we have XY + xy > Xy + xY since XY + xy − Xy − xY =
(X − x)(Y − y) > 0. Hence, we can rearrange the factors while not decreasing the value
of the sum. For 1 ≤ j < j′ ≤ l let

• X =
∏
i∈[b],σi(j)<σi(j′)

#Cσi(j)i ,

• y =
∏
i∈[b],σi(j)>σi(j′)

#Cσi(j)i ,

• x =
∏
i∈[b],σi(j)<σi(j′)

#Cσi(j
′)

i , and

• Y =
∏
i∈[b],σi(j)>σi(j′)

#Cσi(j
′)

i .

Note that #Cσi(j)i ≥ #Cσi(j
′)

i ⇔ σi(j) < σi(j
′). Applying the stated fact shows that

σ′i ∈ S[l] defined as

σ′i(w) =


σi(w) if w 6∈ {j, j′}
σi(j) if w ∈ {j, j′} and σi(j) < σi(j

′)

σi(j
′) if w ∈ {j, j′} and σi(j) > σi(j

′)

for all i ∈ [b] yields
∑l

j=1

∏b
i=1 #Cσi(j)i ≤

∑l
j=1

∏b
i=1 #Cσ

′
i(j)
i . Performing this for all

pairs j, j′ with 1 ≤ j < j′ ≤ l transforms σi into the identity for all i ∈ [b]. �

The next example shows that the coset construction is able to prove that some subspaces
are feasible together in the same CDC, whereas the Echelon-Ferrers construction cannot
deduce this fact. Note that CDCs with subspace distance 2 are well-known and considered
trivial.

69 Example
Let d ∈ Z≥4 even, b ∈ Z≥2, 1 ≤ ki ≤ vi integers for i ∈ [b], A1, A

′
1 ∈ F(k1−1)×(v1−k1−1)

q ,
Ai, A

′
i ∈ Fki×(vi−ki)

q for i ∈ [b] \ {1}, B1, B
′
1 ∈ F1×(v1−k1−1)

q , and M,M ′ in an
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5 The Coset Construction

(F(ki,vi)i∈[b]
, N, 1)q FDRMC (2 ≤ N) such that

∑b
i=1 dr(Ai, A

′
i) ≥ d/2 − 1. We de-

fine subspaces as follows:

C1 =
(

Ik1−1 0 0 A1

01×(k1−1) 1 0 B1

)
C ′1 =

(
Ik1−1 0 0 A′1

01×(k1−1) 0 1 B′1

)

and for 2 ≤ i ≤ b:

Ci = ( Iki Ai )

C ′i = ( Iki A
′
i ) .

Then, we have dh(p(τ−1(C(C1, . . . , Cb,M))), p(τ−1(C(C ′1, . . . , C
′
b,M

′)))) = 2 and hence
both subspaces may not appear together in a non-trivial code constructed by the
Echelon-Ferrers construction. But since rk

(
C1

C′1

)
= k1 + 1 + dr(A1, A

′
1) and rk

(
Ci
C′i

)
=

ki+dr(Ai, A
′
i) for i ∈ [b], we have ds(τ

−1(C(C1, . . . , Cb,M)), τ−1(C(C ′1, . . . , C
′
b,M

′))) ≥∑b
i=1 ds(Ci, C

′
i) =

∑b
i=1 2

(
rk
(
Ci
C′i

)
− ki

)
= 2

(∑b
i=1 dr(Ai, A

′
i)
)

+ 2 ≥ d by Lemma 64.

5.3 Extending the coset construction

It is possible to extend a code which is created by the coset construction with further
codewords by only considering their pivot columns. This is especially useful for the
combination of the coset construction with the Echelon-Ferrers construction [ES09].

70 Lemma (cf. [HK17c, Lemma 5])
Under the same preconditions as Lemma 62 and with a subspace U ≤ F

∑b
i=1 vi

q such that

si =

∑i
j=1 vj∑

η=
∑i−1
j=1 vj+1

p(U)η

for i ∈ [b], we have
∑b

i=1 |ki − si| ≤ ds(U,W ) where W ∈ C((Cji )i,j ,M).

Proof
Since dh(a|a′, b|b′) = dh(a, b) + dh(a′, b′) and dh(a, a′) ≥

∣∣||a||1 − ||a′||1∣∣ for a, b ∈ Fη2 and
a′, b′ ∈ Fν2 , we have

∑b
i=1 |ki− si| ≤ dh(p(U), p(W )) ≤ ds(U,W ) where the last inequality

follows from Lemma 54. �
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5.3 Extending the coset construction

Two CDCs arising both by the coset constructions for different parameters can also be
combined.

71 Lemma
Let 2 ≤ q prime power, 1 ≤ bj , and 1 ≤ kji ≤ v

j
i (vj1 6= 1) be integers given for i ∈ [bj ],

j ∈ [2] with
∑b1

i=1 v
1
i =

∑b2

i=1 v
2
i .

Let W j be a codeword of a CDC arising by an application of the coset construction
with parameters q, bj , kji , v

j
i for i ∈ [bj ] and j ∈ [2]. The other parameters and sets

involved in both constructions may be arbitrary, as long as they fit in the preconditions
of Lemma 62.
Let N j

i =
∑i

r=1 v
j
r for i ∈ [bj ], j ∈ [2], {M1, . . . ,Mm} = {N1

1 , . . . , N
1
b1 , N

2
1 , . . . , N

2
b2},

such that 1 = M0 < M1 < . . . < Mm.
Let xji =

∑Mi
r=Mi−1

p(W j)r for i ∈ [m] and j ∈ [2].
Then we have

∑m
i=1 |x1

i − x2
i | ≤ ds(W

1,W 2) and additionally max{b1, b2} ≤ m ≤
b1 + b2, 0 ≤ xji ≤ Mi −Mi−1 for i ∈ [m], j ∈ [2], and kji =

∑m
r=1:Nj

i−1<Mr≤Nj
i
xjr for

i ∈ [bj ], j ∈ [2] where we assume N j
0 = 0 for j ∈ [2].

Proof
We have

∑m
i=1 |x1

i − x2
i | ≤ dh(p(W 1), p(W 2)) ≤ ds(W

1,W 2), where the last inequality
follows from Lemma 54. The remaining statements follows simply by counting and using
the definitions. �

The last lemma can be reformulated to a minimization problem, i.e.,

z∗ = min

m∑
i=1

|x1
i − x2

i |

st kji =

m∑
r=1:Nj

i−1<Mr≤Nj
i

xjr ∀i ∈ [bj ] ∀j ∈ [2]

0 ≤ xji ≤Mi −Mi−1 ∀i ∈ [m]∀j ∈ [2]

xji ∈ Z ∀i ∈ [m]∀j ∈ [2],

then z∗ ≤ ds(W
1,W 2).

An application of the triangle inequality in the special case of b = 2 will provide an
explicit criterion.

72 Corollary (cf. [HK17c, Lemma 6])
Let 2 ≤ q prime power, bj = 2, and 1 ≤ kji ≤ v

j
i (vj1 6= 1) be integers given for i, j ∈ [2]

with v1
1 + v1

2 = v2
1 + v2

2. Additionally, we assume v1
1 ≤ v2

1.
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5 The Coset Construction

Let W j be a codeword of a CDC arising by an application of the coset construction
with parameters q, bj , kji , v

j
i for i, j ∈ [2], the other parameters and sets involved in both

constructions may be arbitrary, as long as they fit in the preconditions of Lemma 62.
If v1

1 = v2
1 , let z = |k1

1−k2
1|+ |k1

2−k2
2|, else, i.e., v1

1 < v2
1 , let α1 = max{0, k2

1−v2
1 +v1

1},
β1 = min{v1

1, k
2
1}, α2 = max{0, k1

2 − v2
1 + v1

1}, and β2 = min{v2
2, k

1
2}, and

z1 = min{|x− k1
1|+ |x− (k2

1 + k2
2 − k1

2)| : x ∈ {α1, β1, k
1
1} ∩ [α1, β1]},

z2 = min{|x− k2
2|+ |x− (k1

1 + k1
2 − k2

1)| : x ∈ {α2, β2, k
2
2} ∩ [α2, β2]},

and z = max{z1, z2}. Then z ≤ ds(W
1,W 2).

Proof
If v1

1 < v2
1, then we have, using the notation of Lemma 71:

min |x1
1 − x2

1|+ |x1
2 − x2

2|+ |x1
3 − x2

3|
st k1

1 = x1
1, k

1
2 = x1

2 + x1
3, k

2
1 = x2

1 + x2
2, k

2
2 = x2

3

0 ≤ x1
1, x

2
1 ≤ v1

1, 0 ≤ x1
2, x

2
2 ≤ v2

1 − v1
1, 0 ≤ x1

3, x
2
3 ≤ v2

2

x1
1, x

1
2, x

1
3, x

2
1, x

2
2, x

2
3 ∈ Z,

which can be simplified to

= min |k1
1 − x2

1|+ |k1
2 − x1

3 − k2
1 + x2

1|+ |x1
3 − k2

2|
st max{0, k2

1 − v2
1 + v1

1} ≤ x2
1 ≤ min{v1

1, k
2
1}

max{0, k1
2 − v2

1 + v1
1} ≤ x1

3 ≤ min{v2
2, k

1
2}

x1
3, x

2
1 ∈ Z.

Note that max{0, k2
1 − v2

1 + v1
1} ≤ min{v1

1, k
2
1} and max{0, k1

2 − v2
1 + v1

1} ≤ min{v2
2, k

1
2}.

Using the triangle inequality, we can lower bound the objective in two ways:

1. |k1
2 − x1

3 − k2
1 + x2

1|+ |x1
3 − k2

2| ≥ |x2
1 − (k2

1 + k2
2 − k1

2)| yields

≥ min |x2
1 − k1

1|+ |x2
1 − (k2

1 + k2
2 − k1

2)|
st max{0, k2

1 − v2
1 + v1

1} ≤ x2
1 ≤ min{v1

1, k
2
1}, x2

1 ∈ Z and

2. |k1
1 − x2

1|+ |k1
2 − x1

3 − k2
1 + x2

1| ≥ |x1
3 − (k1

1 + k1
2 − k2

1)| yields:

≥ min |x1
3 − (k1

1 + k1
2 − k2

1)|+ |x1
3 − k2

2|
st max{0, k1

2 − v2
1 + v1

1} ≤ x1
3 ≤ min{v2

2, k
1
2}, x1

3 ∈ Z.

In both cases, the objective is a convex function and hence its minimum is attained on
the boundaries or the constant part intersected with the boundaries.
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5.4 Bounds and constructions for the components of the coset construction

If v1
1 = v2

1, then we have, using the notation of Lemma 71:

min |x1
1 − x2

1|+ |x1
2 − x2

2|
st k1

1 = x1
1, k

1
2 = x1

2, k
2
1 = x2

1, k
2
2 = x2

2

0 ≤ x1
1, x

2
1 ≤ v1

1, 0 ≤ x1
2, x

2
2 ≤ v2

2

x1
1, x

1
2, x

2
1, x

2
2 ∈ Z,

which is feasible with minimum |k1
1 − k2

1|+ |k1
2 − k2

2|.
The conclusion follows in both cases from Lemma 71. �

5.4 Bounds and constructions for the components of the
coset construction

The next lemmata show bounds on
∑l

j=1

∏b
i=1 #Cji , which is one part that determines

the size of codes which are constructed by Lemma 62. The other part is #M. Latter is
studied in the literature [ES09; Etz+16; TR10], see also Chapter 4.

73 Lemma (cf. [HK17c, Corollary 1])
Under the same preconditions as Lemma 62 and d ≤ Ds(C((Cji )i,j ,M)) we have:

1.
∑l

j=1

∏b
i=1 #Cji ≤ l ·

∏b
i=1 Aq(vi, d; ki) and

2.
∑l

j=1

∏b
i=1 #Cji ≤

[
vī
kī

]
q
·
∏b
i=1,i 6=ī Aq(vi, d; ki) for all ī ∈ [b].

Proof
Using Lemma 65, we have d ≤ Ds(Cji ) for all i ∈ [b] and j ∈ [l]. Hence, Cji is a
(vi,#Cji , d

j
i ; ki)q CDC with d ≤ dji and #Cji ≤ Aq(vi, d

j
i ; ki) ≤ Aq(vi, d; ki) for all i ∈ [b],

j ∈ [l]. Therefore we fix an ī ∈ [b] and compute

l∑
j=1

b∏
i=1

#Cji =
l∑

j=1

#Cj
ī

b∏
i=1,i 6=ī

#Cji

 ≤ b∏
i=1,i 6=ī

Aq(vi, d; ki) ·
l∑

j=1

#Cj
ī
.

Hence, the first part results via

b∏
i=1,i 6=ī

Aq(vi, d; ki) ·
l∑

j=1

#Cj
ī
≤

b∏
i=1,i 6=ī

Aq(vi, d; ki) ·
l∑

j=1

Aq(vī, d; kī)

and the second part uses
⋃̇l

j=1C
j
ī
⊆
[

F
vī
q

kī

]
concluding the proof. �
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5 The Coset Construction

Note that the upper bound of the first part of Lemma 73 is better than the second part
of this lemma iff l ·Aq(vī, d; kī) <

[
vī
kī

]
q
for all ī ∈ [b].

Another upper bound is given by an optimal solution of a non-linear integer maximiza-
tion problem.

74 Lemma
Let b, l, bi, ui ∈ Z≥1 with l ≤ bi for i ∈ [b]. Then

x∗i = (ui, . . . , ui︸ ︷︷ ︸
α∗i

, β∗i︸︷︷︸
1

, 1, . . . , 1︸ ︷︷ ︸
γ∗i︸ ︷︷ ︸

l

)j∈[l] ∀i ∈ [b]

is an optimal solution for

max

l∑
j=1

b∏
i=1

xi,j

st

l∑
j=1

xi,j ≤ bi ∀i ∈ [b]

1 ≤xi,j ≤ ui ∀i ∈ [b] ∀j ∈ [l]

xi,j ∈ Z ∀i ∈ [b] ∀j ∈ [l]

with either

• α∗i = l − 1, β∗i = ui, and γ∗i = 0, if lui ≤ bi, or

• β∗i ≡ bi + 1 − l (mod ui − 1) and 1 ≤ β∗i ≤ ui − 1, which is therefore unique,
α∗i =

bi+1−l−β∗i
ui−1 , and γ∗i = l − 1− α∗i , if bi < lui

for all i ∈ [b].

Proof
This maximization problem is feasible since xi,j = 1 for all i ∈ [b] and j ∈ [l] is feasible
with objective value l and it is bounded since all variables are bounded. Therefore the
maximum exists.
Let x′i,j for i ∈ [b] and j ∈ [l] denote an optimal solution.
Then

∑l
j=1 x

′
i,j = min{bi, lui} for i ∈ [b] since otherwise at least one x′i,j could be

increased while strictly increasing the objective value since all coefficients are positive,
which is a contradiction to the optimality of x′i,j .

Since for real-valued a ≤ A and b ≤ B we have 0 ≤ (A − a)(B − b) and hence
Ab+ aB ≤ AB + ab we can assume wlog. that x′i,1 ≥ x′i,2 ≥ . . . ≥ x′i,l for i ∈ [b].
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5.4 Bounds and constructions for the components of the coset construction

Furthermore, since for real-valued x ≤ X and 0 < ε, as well as a, a′ ∈ R we have
0 ≤ Xε− xε and hence Xa+ xa′ ≤ X(a+ ε) + x(a′ − ε) we can assume wlog. that all
but at most one index j̄ fulfill either x′i,j = 1 or x′i,j = ui.
Hence, (x′i,j)j∈[l] has the form (ui, . . . , ui, λ, 1, . . . , 1) with 1 ≤ λ ≤ ui, which is then

defined via
∑l

j=1 x
′
i,j = min{bi, lui}. In particular, this implies λ ∈ Z and x∗i,j as defined

above is an optimal solution. �

75 Lemma
Under the same preconditions as Lemma 62 and d ≤ Ds(C((Cji )i,j ,M)) we have:

l∑
j=1

b∏
i=1

#Cji ≤ max
d≥di∈2Z≥1 ∀i∈[b]∧l=min{Aq(vi,di;ki)|i∈[b]}

l∑
j=1

b∏
i=1

xi,j ,

where the xi,j are given by Lemma 74 for bi = Aq(vi, di; ki) and ui = Aq(vi, d; ki) for
i ∈ [b].

Proof
The possible values for the length l are part of the stated optimization formulation. Note
that smaller l would strictly decrease the maximum value and hence are omitted. For
each j ∈ [l] we have #Cji ≤ Aq(vi, d; ki) = ui due to the lower bound for the minimum
distance of Lemma 65. Applying Lemma 74 completes the proof. �

We need a technical lemma before we can state a lower bound.

76 Lemma (cf. [ES13, Lemma 5])
For positive integers m, n, and d ≤ d′ and 2 ≤ q prime power, any [m ×
n,max{m,n}(min{m,n} − d + 1), d]q Gabidulin MRD code contains an [m ×
n,max{m,n}(min{m,n} − d′ + 1), d′]q Gabidulin MRD code as subspace.

Proof
We can wlog. assume that n ≤ m since the rank of a matrix is invariant under transposition
and let ϕ : Fqm → Fmq be the isomorphism between a finite field and the corresponding Fq-
vector space after choosing a basis. To ease the notation, we will apply ϕ component-wise.

Let g1, . . . , gn ∈ Fqm be Fq-linear independent. We use Mκ =


gq

0

1 gq
0

2 ... gq
0

n

gq
1

1 gq
1

2 ... gq
1

n

...
gq
κ−1

1 gq
κ−1

2 ... gq
κ−1

n

 for

κ ∈ {k, k′}. Let C = Fkqm ·Mk such that ϕ(C) is the [m × n,mk, d]q Gabidulin MRD
code with k = n− d+ 1. Then with C ′ = Fk

′
qm ·Mk′ the set ϕ(C ′) is a [m× n,mk′, d′]q

Gabidulin MRD code with k′ = n− d′ + 1. Since C ′ ≤ C, the statement follows. �
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5 The Coset Construction

77 Lemma (cf. [HK17c, Lemma 13])
Under the same preconditions as Lemma 62 and d1, . . . , db even positive integers, there

are sets Cji ⊆
[

F
vi
q

ki

]
for i ∈ [b] and j ∈ [l] such that

1. d :=
∑b

i=1 di,

2. d ≤ Ds(Cji ) for i ∈ [b] and j ∈ [l],

3. di ≤ Ds(
⋃̇l

j=1C
j
i ) for i ∈ [b],

4. d ≤ Ds(C((Cji )i,j ,M)) if d ≤ Dr(M),

5. l = minbi=1{qmax{ki,vi−ki}(d−di)/2} = qminbi=1{max{ki,vi−ki}(d−di)}/2,

6. #Cji = qmax{ki,vi−ki}(min{ki,vi−ki}−d/2+1) for i ∈ [b] and j ∈ [l], and

7.

l∑
j=1

b∏
i=1

#Cji = l ·
b∏
i=1

qmax{ki,vi−ki}(min{ki,vi−ki}−d/2+1)

= l · q
∑b
i=1 max{ki,vi−ki}(min{ki,vi−ki}−d/2+1).

Proof
Let Li = Λq,ki,vi−ki be the lifting map, which shall also be applied to sets via Li(S) =
{Li(M) |M ∈ S}, for i ∈ [b].
For each i ∈ [b], we choose

⋃̇l

j=1C
j
i ⊆ Li(Bi) for a linear [ki × (vi − ki),max{ki, vi −

ki}(min{ki, vi − ki} − di/2 + 1), di/2]q Gabidulin MRD code Bi and for each j ∈ [l] we
choose Cji specifically as lifting of different cosets of a linear [ki × (vi − ki),max{ki, vi −
ki}(min{ki, vi−ki}−d/2+1), d/2]q Gabidulin MRD code Bj

i , which is chosen as subspace
of Bi by Lemma 76.

Then, by Lemma 53 and dr(A+C,B +C) = dr(A,B) for matrices A,B,C ∈ Fa×bq , we

have d ≤ Ds(Cji ) for i ∈ [b], j ∈ [l], di ≤ Ds(
⋃̇l

j=1C
j
i ) for all i ∈ [b], and by Lemma 64 we

have d ≤ Ds(C((Cji )i,j ,M)).
The length l of the construction is upper bounded by the number of cosets for each

i ∈ [b], i.e.,

l ≤ qmax{ki,vi−ki}(min{ki,vi−ki}−di/2+1)

qmax{ki,vi−ki}(min{ki,vi−ki}−d/2+1)

and aiming for large codes, we choose l to be as large as possible.
The size of each coset of Bj

i is #Bj
i = qmax{ki,vi−ki}(min{ki,vi−ki}−d/2+1), which is by

definition also the size of Cji for all i ∈ [b] and j ∈ [l].
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5.5 Example of the coset construction: (18, N, 6; 9)2 CDCs

The final size results since the size of each coset is equal for each j ∈ [l]. �

Another construction involves parallelisms and is able to attain the upper bound.

78 Lemma (cf. [HK17c, Theorem 9])
Under the same preconditions as Lemma 62, if there is a parallelism in

[
F
vi
q

ki

]
and b ≤ ki

for all i ∈ [b], there are sets Cji ⊆
[

F
vi
q

ki

]
for i ∈ [b], j ∈ [l] such that

1. 2b ≤ Ds(C((Cji )i,j ,M)) if 2b ≤ Dr(M),

2. l = minbi=1

{[ vi
ki

]
q
(qki−1)

qvi−1

}
,

3. #Cji = qvi−1
qki−1

for i ∈ [b], j ∈ [l],

4.
∑l

j=1

∏b
i=1 #Cji = l ·

∏b
i=1

qvi−1
qki−1

, and

5.
∑l

j=1

∏b
i=1 #Cji attains both bounds of Lemma 73 with equality if b = ki for all

i ∈ [b].

Proof
Let Pi be a parallelism in

[
F
vi
q

ki

]
for i ∈ [b]. For each i ∈ [b], we choose

⋃̇l

j=1C
j
i ⊆ Pi and

for each j ∈ [l] we choose Cji as different spreads in Pi.
Then, Ds(Cji ) = 2ki for i ∈ [b] and j ∈ [l], which upper bounds Ds(C((Cji )i,j ,M) by

Lemma 65. Since 2 ≤ Ds(
⋃̇l

j=1C
j
i ) for i ∈ [b], Lemma 64 shows 2b ≤ Ds(C((Cji )i,j ,M)).

Each Cji is a spread in
[

F
vi
q

ki

]
and therefore has cardinality qvi−1

qki−1
for i ∈ [b] and j ∈ [l].

Hence, each Pi contains exactly

[ vi
ki

]
q
(qki−1)

qvi−1 spreads for all i ∈ [b] and aiming for large
codes, we choose l ≤ #Pi for i ∈ [b] to be as large as possible.
For the last statement, we use Aq(νk, 2k; k) = qνk−1

qk−1
for ν positive integer, cf. Corol-

lary 125. Using Lemma 73 with d = 2b directly yields the first upper bound. For the
second upper bound we choose ī such that l = #Pī. This concludes the proof. �

5.5 Example of the coset construction: (18, N, 6; 9)2 CDCs

The next example applies Lemma 78 to parallelisms in
[

F6
2

3

]
, which are the only known

parallelisms with k = 3 and hence allow to choose b = 3.
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5 The Coset Construction

pivot vector dimension
of FDRMC

details if MRD

s1 = 6

111111|111000|000000 63 9× 9 MRD, the lifted MRD
111111|000111|000000 54
111111|000000|111000 45
111111|000000|000111 36 6× 9 MRD

s2 = 6

111000|111111|000000 45
000111|111111|000000 36 9× 6 MRD
000000|111111|111000 9 9× 3 MRD
000000|111111|000111 6 6× 3 MRD

s3 = 6

111000|000000|111111 9 3× 9 MRD
000111|000000|111111 6 3× 6 MRD
000000|111000|111111 3 3× 3 MRD
000000|000111|111111 0 0× 0 MRD

Table 5: Pivot vectors used by the Echelon-Ferrers construction for (18, N, 6; 9)2 CDCs.

79 Example
Let q = 2, b = 3, v1 = v2 = v3 = 6, and k1 = k2 = k3 = 3.
Then we apply Lemma 78 to obtain l = 155, #Cji = 9 for i ∈ [3], j ∈ [155] and∑l
j=1

∏b
i=1 #Cji = 155 · 93 = 112 995.

Choosing an (F , 215, 3)2 FDRMCM with

F =

• • • • • •
• • • • • •
• • • • • •

• • •
• • •
• • •

is possible by Theorem 59 and even bound achieving by Theorem 55.
Putting both parts together, the coset construction in Lemma 62 yields an (18, N, d; 9)2

CDC Ccoset with N = 112 995 · 215 = 3 702 620 160 ≈ 231.8 and 6 ≤ d.
N is small compared to the cardinality of an LMRD with parameters (18, 263, 6; 9)2,

but Lemma 70 with s1 = 6, s2 = 3, s3 = 0, and
∑b

i=1 |ki− si| = 6 shows that combining
both codes is also feasible for these parameters.
More general, any subspace U with dim(U) = 9 and si =

∑6i
η=6i−5 p(U)η for i ∈ [3]

can be added to Ccoset to build a (18, N ′, 6; 9)2 CDC via Lemma 70 if 6 ≤ |s1 − 3| +
|s2 − 3|+ |s3 − 3|, s1 + s2 + s3 = 9, and 0 ≤ si ≤ 6 for i ∈ [3]. This is fulfilled iff either
sī = 6 for an ī ∈ [3] or {s1, s2, s3} = {0, 4, 5}. Hence a possibility to choose pivot vectors,
fulfilling the constraints on s1, s2, and s3, that additionally has a pairwise Hamming
distance of at least 6 is shown in Table 5.

Note that the dimension of the three FDRMCs which are not rectangular MRD codes
is determined exactly by Theorem 59.

This set of pivot vectors is the unique possibility if one iteratively and greedily takes
the remaining pivot vectors according to the largest dimension.
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5.6 Algorithms and problem formulations for computing good components

Hence, combining the corresponding codewords of the Echelon-Ferrers construction
with Ccoset yields an (18, N ′, 6; 9)2 CDC with N ′ = 3 702 620 160 + 263 + 254 + 245 + 236 +
245 + 236 + 29 + 26 + 29 + 26 + 23 + 20 = 9 241 456 945 250 010 249 ≈ 9.24 · 1018.

This is larger than the code constructed by the multicomponent construction of Theo-
rem 58 (≈ 9.22 · 1018), the improved linkage construction of Theorem 136 (≈ 9.22 · 1018),
or the construction in Lemma 60 (263−27 · (236− 1)/(29− 1) = 9 241 421 688 455 823 360).
The improved linkage construction builds an (18, N, 6; 9)2 code with N ≤

max{A2(m, 6; 9) · 29(16−m) + A2(24−m, 6; 9) | m = 9, . . . , 15}, which is upper bounded
by 9 223 372 124 661 828 921 ≈ 9.22 · 1018, if one takes the exact value A2(i, 6; 9) = 1 for
9 ≤ i ≤ 11, A2(12, 6; 9) = 585, and the Anticode bound in the remaining necessary cases:
A2(13, 6; 9) ≤ 319 449, A2(14, 6; 9) ≤ 168 823 644, and A2(15, 6; 9) ≤ 87 807 053 113.

Note that Lemma 34 with c = 2, W the upper bound on the dimension of an
FDRMC, cf. Theorem 55, L = 48, and T = 60 on the graph G, consisting of the
1200 pivot vectors with sī = 6 for an ī ∈ [3] or {s1, s2, s3} = {0, 4, 5} such that two
pivot vectors are connected with an edge iff their Hamming distance is at least 6, uses
3072 = ω(G|V (l,t), w|V (l,t)/l) < t/l − #V/c = 3496 and consequently any maximum
weight clique in G has to contain a maximum weight clique on the seven pivot vectors
with 60 ≤W (.) (for W (.) from Lemma 34), i.e., it has to contain the pivot vector of an
LMRD. Applying this lemma again with L = 40 and T = 52 for the induced subgraph
G′ of (111111111000000000) with 947 vertices uses 3361 = ω(G′|V (l,t), w|V (l,t)/l) <
t/l −#V/c = 3623 and hence any maximum weight clique contains in addition to the
pivot vector of an LMRD also a maximum weight clique on the seven pivot vectors which
have Hamming distance at least 6 to the pivot vector of an LMRD and 52 ≤W (.), i.e,
the pivot vector (111111000111000000). The 820 remaining pivot vectors in the induced
subgraph G′′ that have Hamming distance at least 6 to both forced pivot vectors in a
maximum weight clique have all an upper bound on the dimension of their FDRMCs of
45 and the unweighted clique number of G′′ is 16, i.e., any maximum weight clique in
G′′ is bounded by 245 · 16 = 249 and hence any maximum weight clique in G is bounded
by 263 + 254 + 249 ≈ 9.2419 · 1018. This is therefore an upper bound on the size of any
code constructed by the Echelon-Ferrers construction involving only these 1200 pivot
vectors. The LMRD bound of Proposition 99 is not applicable for these parameters.

5.6 Algorithms and problem formulations for computing
good components

The question how to find good components, i.e., components with large
∑l

j=1

∏b
i=1 #Cji

while having a large minimum subspace distance, will be tackled in this section. First,
an intuitive greedy version is presented which has the drawback that it may not find
maximum cardinalities. Second, a formulation as weighted independent set with an
additional restriction is shown that may be solved optimally by e.g. an integer linear
programming approach.
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5 The Coset Construction

5.6.1 Matroids and the Greedy algorithm in the setting of the coset
construction

In order to choose the Cji , one can apply a greedy like approach, i.e., take multiple CDCs
in the same ambient space, until it suffices or there is no further fitting code. More
detailed, fix a prime power q ≥ 2, an positive integer b and 1 ≤ ki ≤ vi integers and even
di ≥ 2 for i ∈ [b], and an even integral d ≥ 2, such that d ≤

∑b
i=1 di. Then Algorithm 2

computes a selection of the components.

Algorithm 2 Greedy strategy for computing the components of the coset construction,
cf. [HK17c, Algorithm 8].
1: procedure GreedyComponents(q, d, b, v1, . . . , vb, d1, . . . , db, k1, . . . , kb)
2: for i ∈ {1, . . . , b} do
3: Ci ← GreedyComponentsHelper(q, vi, d, di, ki)
4: end for
5: l ← min{Ci | i ∈ [b]}
6: return (C1, . . . , Cb), l
7: end procedure
8: procedure GreedyComponentsHelper(q, v, d, d′, k)
9: R ←

[
Fvq
k

]
10: j ← 0
11: while R 6= ∅ do
12: j ← j + 1
13: select CDC Aj of maximum cardinality in R with Ds(Aj) ≥ d
14: R ← {U ∈ R | Ds(Aj ∪ {U}) ≥ d′}
15: end while
16: return (A1, . . . ,Aj)
17: end procedure

Although this approach seems to be rather intuitive, it is in general not able to provide
a choice of (Cji )i,j that maximizes

∑l
j=1

∏b
i=1 #Cji . This can be seen since the underlying

structure is no matroid, cf. Definition 35. For prime power q ≥ 2, integers 1 ≤ k ≤ v − 1,
and even d ≥ 2, we define X := { all CDCs in

[
Fvq
k

]
with subspace distance d } and I :=

{ disjoint subsets of X }. Clearly, (X, I) is an independence system. For U 6= W ∈
[

Fvq
k

]
with ds(U,W ) ≥ d we now have {U}, {W}, {U,W} ∈ X and {{U}, {W}}, {{U,W}} ∈ I.
Since it is not possible to add an element from {{U}, {W}} to {U,W} such that the
resulting set is in I, the third property of Definition 35 is not fulfilled and (X, I) is no
matroid. Therefore the greedy approach may not yield a solution of maximum size.

5.6.2 A clique formulation for the components

The inequality
∑b

i=1 ds(Ci, C
′
i) ≤ ds(C(C1, . . . , Cb,M), C(C ′1, . . . , C

′
b,M

′)) of Lemma 64
is fulfilled, if we choose even di ≥ 2 for i ∈ [b], such that the target minimum distance d
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lower bounds
∑b

i=1 di and in turn each di lower bounds ds(Ci, C
′
i). Hence, after fixing the

di, the problem to find (Cji )i,j is decoupled into finding (Cji )j for each i ∈ [b]. Moreover,⋃̇
j∈[l]C

j
i is a (vi, N, di; ki)q CDC for suitable parameters. Therefore, we can start by

taking an integer 1 ≤ κi ≤ Aq(vi, d; ki), a (vi,#Ai, di; ki)q CDC Ai, and split it into all
cardinality restricted subsets S(Ai, κi) = {U ⊆ Ai | #U ≤ κi ∧ d ≤ Ds(U)}. Then, any⋃̇
j∈[l]C

j
i with #Cji ≤ κi is equivalent to a clique in a graph having vertex set S(Ai, κi).

Two vertices S1 6= S2 are connected with an edge iff S1 ∩S2 = ∅. The goal is to maximize
the weighted clique, where the weights are given by the cardinalities of the vertices and
that the length l of the coset construction restricts the number of vertices in the clique.
One possibility is to involve Cliquer [NÖ03]. Another possibility is to utilize a BLP:

max
∑

S∈S(Ai,κi)

#S · xS

st
∑

S∈S(Ai,κi)

xS = l

xS1 + xS2 ≤ 1 ∀ S1 6= S2 ∈ S(Ai, κi) : S1 ∩ S2 6= ∅
xS ∈ {0, 1} ∀ S ∈ S(Ai, κi)

Then we use Lemma 68 to combine cliques for different i ∈ [b]. Lemma 64 guarantees a
minimum subspace distance of

∑b
i=1 di ≥ d for the coset constructed code that uses these

cliques as components.

5.7 Further Examples

In this section, we apply the coset construction to some parameters in order to achieve or
surpass the best known lower bound of Aq(v, d; k) at the time of the writing of the paper
[HK17c].

5.7.1 (8, N, 4; 4)q CDCs

An improvement beyond the Echelon-Ferrers construction was Construction III in [ES13]
giving A2(8, 4; 4) ≥ 4797. The coset construction generalizes [ES13, Construction III].
Note that also [CP17, Theorem 4.1] achieves the same cardinality N = q12 + [ 4

2 ]q (q2 +

1)q2 + 1 using a different approach, cf. [CPS18]. Moreover the code constructed in [ES13,
Construction III], as well as our coset construction, contain an LMRD code and N is
upper bound achieving, cf. Proposition 99.
We apply the coset construction with q ≥ 2 prime power, b = 2, k1 = k2 = 2, and

v1 = v2 = 4. Since
[

F4
q

2

]
admits parallelisms (cf. Page 39), we therefore use Lemma 78 to

obtain l =
[ 4
2 ]
q

q2+1
= q2 + q + 1 and sets Cji , i ∈ [b] and j ∈ [l], each of size q2 + 1. Moreover,

since b = 2 the FDRMC part of the construction is in fact an ordinary (2×2, q2, 2)q MRD
code. Hence, the coset construction produces an (8, q2(q2+q+1)(q2+1)2, 4; 4)q CDC Ccoset.
Now we apply Lemma 70 for codewords having a pivot vector of (11110000) or (00001111).
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5 The Coset Construction

Since both have a Hamming distance of at least 4 to any codeword in Ccoset and have
Hamming distance of 8 with each other, we can extend Ccoset with an (8, q12, 4; 4)q LMRD
and the single codeword τ−1(04×4 | I4) to get an (8, q12 + q2(q2 + q+ 1)(q2 + 1)2 + 1, 4; 4)q
CDC.

5.7.2 (3k,N, 2k; k + 1)q CDCs

80 Theorem (cf. [HK17c, Theorem 11])
Let q ≥ 2 be a prime power and k ≥ 3 an integer. Then Aq(3k, 2k; k+1) ≥ q4k−2 +qk+1.
This achieves the bound for CDCs that contain an LMRD of Proposition 99.

Proof
Apply the coset construction with b = 2, k1 = 1, d1 = 2, v1 = k + 1, k2 = k, d2 = 2k − 2,
and v2 = 2k − 1. Then Aq(k + 1, 2; 1) =

[
k+1

1

]
q

= qk+1−1
q−1 and using orthogonality

Aq(2k − 1, 2k − 2; k) = Aq(2k − 1, 2k − 2; k − 1) which is the maximum size of a partial
spread with 2k − 1 ≡ 1 (mod k − 1), i.e., it is known to be q2k−1−q

qk−1−1
− q + 1 = qk + 1

(cf. Theorem 126). Since qk + 1 < qk+1−1
q−1 , we can choose l = 1, C1

1 = {U} with an

U ∈
[

Fk+1
q

1

]
, a (2k − 1, qk + 1, 2k − 2; k)q CDC C1

2 and an MRD code (1× (k − 1), 1, k)q

forM, i.e.,M = {01×(k−1)}. Using the coset construction and Lemma 64, this produces
a (3k, qk + 1, 2k; k + 1)q CDC Ccoset. Using Lemma 70, the common pivot vector of an
LMRD, i.e., (1k+102k−1) has a Hamming distance of 2k to any pivot vector of a subspace
in Ccoset, the code Ccoset can be extended with any (3k, q4k−2, 2k; k + 1)q LMRD. �

For k = 3 is this:

81 Corollary (cf. [HK17c, Theorem 10])
Let q ≥ 2 be a prime power. Then Aq(9, 6; 4) ≥ q10 + q3 + 1 and this achieves the bound
for CDCs that contain an LMRD of Proposition 99.

5.7.3 (10, 4173, 6; 4)2 CDCs

The coset construction is able to utilize the previously found (6, 77, 4; 3)2 CDCs of [HKK15]
to produce a (10, 4173, 6; 4)2 CDC. We apply the search strategy of Section 5.6.2 to find
distinct sets inside of a (6, 77, 4; 3)2 code.

82 Theorem ([HKK15, Theorem 1 and Table 6])
A2(6, 4; 3) = 77 and there exist exactly 5 isomorphism classes of optimal (6, 77, 4; 3)2

CDCs under the action of GL(F6
2).
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type size automorphism group duality respective π
A 168 self-dual
B 48 self-dual
C 2 self-dual
D 2 dual of E
E 2 dual of D

A simple computation shows that the size of a maximum subset of a (6, 77, 4; 3)2

CDC of type B, C, D or E, having subspace distance of 6, is at most 5. In the case
of type A, it is however 7. More precisely let A be a (6, 77, 4; 3)2 CDC of type A and
Si = {U ⊆ A | #U = i ∧ 6 ≤ Ds(U)}. Then another simple calculation computes all the
sets in Si for all i ∈ [9]. Their cardinalities are:

i = 1 2 3 4 5 6 7 8 9 = A2(6, 6; 3)

#Si = 77 840 2240 1792 560 112 16 0 0

Applying and extending the coset construction yields a (10, 4173, 6; 4)2 CDC that
surpasses any CDC that the Echelon-Ferrers construction produces: An extensive computer
search shows that the Echelon-Ferrers construction yields codes of maximum size 4167 in
this case.

83 Theorem (cf. [HK17c, Theorem 13])
A2(10, 6; 4) ≥ 4173 and this achieves the LMRD bound of Proposition 99.

Proof
First, the coset construction produces a (10, 76, 6; 4)2 CDC Ccoset. Therefore, we choose
b = 2, k1 = 1, d1 = 2, v1 = 4, k2 = 3, d2 = 4, and v2 = 6. Since A2(4, 2; 1) = [ 4

1 ]2 = 15, we
have l ≤ 15. Applying the search strategy of Section 5.6.2 allows to split the (6, 77, 4; 3)2

CDC C of type A into 15 pairwise disjoint subsets of cardinality 7251043. Hence, fixing
l = 15, choosing Cj1 = {Uj} for different Uj ∈

[
F4

2
1

]
(j ∈ [l]), and Cj2 specifically as these

15 distinct subsets in C for j ∈ [l], we have
∑l

j=1

∏b
i=1 #Cji = 7 · 2 + 5 · 10 + 4 · 3 = 76.

M is an ordinary (1× 3, 1, 3)2 MRD, i.e.,M = {01×3}. Hence, the coset construction
in Lemma 62 and Lemma 64 yield a (10, 76, 6; 4)2 CDC Ccoset. The Hamming distance
between (1111000000) and the pivot vector of an arbitrary subspace in Ccoset is exactly
6 and using Lemma 70 any (10, 212, 6; 4)2 LMRD is a feasible extension for Ccoset. A
computer search showed that this extended (10, 212 + 76, 6; 4)2 CDC is not maximal and
can be further extended by another codeword, yielding an (10, 4173, 6; 4)2 CDC. �

If we take subsets of an (6, 77, 4; 3)2 CDC of type B, C, D or E, we have at most∑l
j=1

∏b
i=1 #Cji ≤ l ·5 ≤ 15 ·5 = 75, which is too small compared to the target cardinality
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5 The Coset Construction

of 76. The last extension by one subspace cannot be achieved if one only considers pivot
vectors, since any possible pivot vector either has Hamming distance of at most 4 to a
codeword in Ccoset or has Hamming distance of 0 to any codeword in an LMRD.

A possible start to generalize this to (10, N, 6; 4)q is again to take b = 2, k1 = 1, d1 = 2,
v1 = 4, k2 = 3, d2 = 4, and v2 = 6. Then l = [ 4

1 ]q = q3 + q2 + q + 1 and Cj1 = {Uj} for

different Uj ∈
[

F4
q

1

]
for j ∈ [l]. In [HKK15, Theorem 2 and Section 4], the (6, 77, 4; 3)2

CDC of type A was generalized to a (6, q6 + 2q2 + 2q + 1, 4; 3)q CDC for all prime powers
q ≥ 2. This seems to be the canonical choice for the CDC that shall be split into l subsets.
This last step has to be performed analytically, since even for q = 3 it contains already
754 subspaces and enumerating all subsets up to cardinality κ ≤ Aq(6, 6; 3) = q3 + 1 is
computationally infeasible.

88



6 The LMRD bound and naturally
arising code constructions

In this chapter, we study a bound for constant dimension codes which contain a lifted
maximum rank distance code. This particular bound is therefore called LMRD bound,
cf. Proposition 99. At first, there were two LMRD bounds, each for disjoint but small
sets of parameters, introduced by Etzion and Silberstein in [ES13, Theorems 10 and 11].
The results of this chapter, which were previously published in [Hei18], generalize both
bounds to one single bound, while increasing the range of applicable parameters such
that [ES13, Theorems 10 and 11] arise as special cases.
Analogously to the style of the tables in http://subspacecodes.uni-bayreuth.de,

cf. [Hei+16], Figure 7 visualizes for fixed q and v the parameter regions of d and k in
which which if clause of Proposition 99 is applicable.

First, we will generalize [ES13, Theorem 10] in Proposition 88 and [ES13, Theorem 11]
in Proposition 91 respectively, the latter in a parameterized scheme. Second, we will
show the optimal choice for parameters of Proposition 91 and also the superiority of
Proposition 88 compared to Proposition 91, where both are applicable. Last, the proof of
Proposition 88 can be exploited to get a new code construction. The codewords of a given
CDC can be extended such that the arising new CDC is compatible to any LMRD in
higher ambient space dimension. Note that the beauty lies in the fact that this new CDC
is compatible to any LMRD having the same parameters q, v, d, and k and therefore the
usually hard question how to combine CDCs or which CDCs are compatible is trivial in
our setting.
Since the writing of [ES13] there are some works that can profit of a generalized

LMRD bound. First of all Etzion asked in Research Problem 5 of his survey of 100 open
problems [Etz13] and the authors of [HK17c] asked in the conclusion for a generalization of
the LMRD bound. Next the expurgation-augmentation method of Honold et al. [AHL16;
LH14] often surpasses the LMRD bound and is therefore stronger than all constructions
that include an LMRD as subset. The homepage http://subspacecodes.uni-bayreuth.
de, cf. [Hei+16] lists some explicit calculations of lower and upper bounds and particularly
the LMRD bound for small parameters, i.e., q ≤ 9 and v ≤ 19. Finally, there are multiple
papers that use the LMRD bound and can profit of this generalization [ES16; HK17a;
HK17b; HKK15; ST13; ST15].
By

Γq,k,v = τ−1(0(v−k)×k | Iv−k)

we denote the (v − k)-dimensional subspace of V that contains all vectors which start
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6 The LMRD bound and naturally arising code constructions

k = d = 2
k

d
d = 2k

d = k

k = 3d/2

v = 3d/2

Figure 7: For fixed q and v the image shows the general knowledge about LMRD
bounds in analogy to the tables in http://subspacecodes.uni-bayreuth.
de, cf. [Hei+16]. From top to bottom: No LMRD bound is known for
parameters in the area with vertical lines ( ), Below, for parameters in ( )
the tightest currently known LMRD bound is Theorem 91. For parameters
in ( ) Theorem 88 is the currently tightest LMRD bound, and the LMRD
bound is trivial in the dotted area ( ).

with k zeros. We use this to partition the vector space V = Fvq

V = Γq,k,v ∪̇ ∆q,k,v.

Hence, ∆q,k,v contains all qv − qv−k vectors of V whose first k entries are not 0k each.
Note that the authors of [HKK15] denote Γq,k,v special flat and that we drop the

reference to q, v, and k if it is clear from the context, similarly to the definition of τ and
p in Chapter 2.

6.1 Bounds on CDCs containing LMRDs

In general, any (k − d/2 + 1)-dimensional subspace of V is contained in at most one
codeword of a (v,#C, d; k)q CDC C. If C contains an LMRD M , then all (k − d/2 + 1)-
subspaces in ∆ are covered by codewords in M . More precisely:

84 Lemma ([ES13, Lemma 4])
Using 2 ≤ d/2 ≤ k ≤ v − k, each (k − d/2 + 1)-dimensional subspace of V , whose non-
zero vectors are in ∆, is a subspace of exactly one element of a (v, q(v−k)(k−d/2+1), d; k)q
LMRD code.
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6.1 Bounds on CDCs containing LMRDs

Proof
The number of (k − d/2 + 1)-dimensional subspaces in ∆ is

#
[

V \Γ
k−d/2+1

]
=
[

v\v−k
k−d/2+1

]
q

= q(v−k)(k−d/2+1)
[

k
k−d/2+1

]
q
.

The cardinality of any LMRD code with these parameters is q(v−k)(k−d/2+1). It contains
only non-zero vectors from ∆, and, since each (k − d/2 + 1)-dimensional subspace is
contained in exactly one codeword while each k-dimensional subspace contains

[
k

k−d/2+1

]
q

(k − d/2 + 1)-dimensional subspaces, the statement follows. �

85 Lemma
Any subspace U of V contains a (dim(U)− dim(U ∩ Γ))-dimensional subspace, whose
non-zero vectors are in ∆.

Proof
By definition of ∆ all vectors in U \ (U ∩ Γ) are in ∆. Then by basis extension there is a

W ∈
[

U\Γ
dim(U)−dim(U∩Γ)

]
with U = W ⊕ (U ∩ Γ) and (W \ {0}) ⊆ ∆. �

These two lemmata will now show that CDCs containing LMRDs have to have a large
intersection with Γ, which is of course not true for general CDCs.

86 Lemma
Using 2 ≤ d/2 ≤ k ≤ v − k, any (v,#C, d; k)q CDC C that contains an LMRD code M
can be partitioned into

C = M ∪̇
⋃̇k

t=d/2
St,

where St = {U ∈ C | dim(U ∩ Γ) = t}, and

ds(A ∩ Γ, B ∩ Γ) ≥ ds(A,B)− 2k + a+ b

for A ∈ Sa and B ∈ Sb.

Proof
A subspace U ∈ C with dim(U∩Γ) ≤ d/2−1 contains an at least (k−d/2+1)-dimensional
subspace W with non-zero vectors in ∆ via Lemma 85. Then Lemma 84 shows that
W0 = Hk−d/2+1(W ) is contained in exactly one codeword in M , i.e., U ∈M . Moreover,
using the minimum distance, W0 is in at most one element of C.

For A ∈ Sa and B ∈ Sb we have dim(A∩B∩Γ) ≤ dim(A∩B) = k−ds(A,B)/2, hence
ds(A ∩ Γ, B ∩ Γ) = a+ b− 2 dim(A ∩B ∩ Γ) ≥ ds(A,B)− 2k + a+ b. �
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Note that M = S0 and the inequality ds(A ∩ Γ, B ∩ Γ) ≥ ds(A,B)− 2k + a+ b is also
valid if A or B is in M .

Using this lemma, we can upper bound the size of a (v,#C, d; k)q CDC C that contains
an LMRD M , for 2 ≤ d/2 ≤ k ≤ v − k, via

#C = #M +

k∑
t=d/2

#St = q(v−k)(k−d/2+1) +

k∑
t=d/2

#St.

The following trick may be observed in [AA09, Theorem 3].

87 Lemma
Let l < 2m be an integer and Ai ⊆

[
V
i

]
for m ≤ i ≤ M such that ds(U,W ) ≥

dim(U) + dim(W )− l for U 6= W ∈
⋃M
i=mAi. Then

#
M⋃
i=m

Ai ≤ Aq(v, 2m− l;m).

Proof
For each m ≤ i ≤M , we define Bi = {Hm(U) | U ∈ Ai}. Then the set C =

⋃M
i=mBi is

a (v,#
⋃M
i=mAi, 2m− l;m)q CDC. The cardinality follows from the minimum distance,

i.e., for Ũ 6= W̃ ∈ C such that U ∈ Au yielded Ũ and W ∈ Aw yielded W̃ , we have
u+w− l ≤ ds(U,W ) = u+w− 2 dim(U ∩W )⇒ dim(Ũ ∩ W̃ ) ≤ dim(U ∩W ) ≤ l/2 and
ds(Ũ , W̃ ) = 2(m− dim(Ũ ∩ W̃ )) ≥ 2(m− l/2) > 0. �

Now we are ready to state the first LMRD bound:

88 Proposition (cf. [ES13, Theorem 10])
For 2 ≤ d/2 ≤ k ≤ v − k and k < d let C be a (v,#C, d; k)q CDC that contains an
LMRD code. Then

#C ≤ q(v−k)(k−d/2+1) + Aq(v − k, 2(d− k); d/2).

Proof
Let CM be the LMRD code which is contained in C and C = CM ∪̇

⋃̇k

t=d/2St the partition
of Lemma 86. Let Ai = {U ∩ Γ | U ∈ Si} ⊆

[
Γ
i

]
, m = d/2, M = k, and l = 2k − d.

Then k < d is equivalent to l < 2m and we have ds(U ∩ Γ,W ∩ Γ) ≥ ds(U,W ) − 2k +
dim(U ∩ Γ) + dim(W ∩ Γ) ≥ dim(U ∩ Γ) + dim(W ∩ Γ)− l by Lemma 86. In particular,
dim(U ∩ Γ) + dim(W ∩ Γ) − l ≥ 2m − l > 0 shows #

⋃M
i=mAi = #

⋃M
i=m Si. Applying

Lemma 87 provides #
⋃M
i=mAi ≤ Aq(dim(Γ), 2m− l;m) = Aq(v−k, 2(d−k); d/2), which

completes the proof. �
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The special case of d = 2(k − 1) and k ≥ 3 was already proved in [ES13, Theorem 10].
Next, we generalize [ES13, Theorem 11] and therefore need two technical lemmata.

89 Lemma
Let c, k, q, t, t0, and y be integers, where q is a prime power, y 6= 0, and c ≤ k − t as
well as t0 ≤ t. Then [

k\t0
c

]
q

[
t0
y

]
q
≤
[
k\t
c

]
q

[
t
y

]
q
.

Proof
Since t0 = t, c < 0, y < 0, t0 < y or c = 0 are obvious, we assume 1 ≤ c and 1 ≤ y ≤ t0 < t.
Using the reformulations from Definition 11, Lemma 2, and Lemma 5, we obtain[

k\t0
c

]
q

[
t0
y

]
q[

k\t
c

]
q

[
t
y

]
q

qc(t−t0) =
[ k−t0c ]q

[
t0
y

]
q

[ k−tc ]q
[
t
y

]
q

=
[k − t0]q![t0]q![k − t− c]q![t− y]q!

[k − t]q![t]q![k − t0 − c]q![t0 − y]q!

=
t∏

i=t0+1

[k − i+ 1]q[i− y]q
[k − i− c+ 1]q[i]q

≤
t∏

i=t0+1

(
[k − i+ 1]q

[k − i− c+ 1]q
q−y
)
.

Then, by abbreviating gi = k − i+ 1− c ≥ 1 for all i ≤ t, we get

[gi + c]q
[gi]q

≤ qgi+c

qgi − 1
= qc

1

1− q−gi
≤ qc 1

1− q−1
= qc

q

q − 1
≤ qc+1.

Inserting this in the first inequality yields
t∏

i=t0+1

(
[k − i+ 1]q

[k − i− c+ 1]q
q−y
)
≤

t∏
i=t0+1

(
qc+1q−y

)
= q(c+1−y)(t−t0) ≤ qc(t−t0),

which completes the proof. �

The restriction t0 ≤ t is the reason for the fixation t0 = d/2 later in this section.

90 Lemma
Using the notation of Lemma 86, let c, t, and y be integers with 0 ≤ y ≤ k, d/2 ≤ t ≤ k,
and k − d/2 + 1 ≤ c + y. Let Nt,Y = {U ∈ St | Y ≤ U} = I (St, Y ) for each Y ∈

[
Γ
y

]
with 0 ≤ y ≤ k and d/2 ≤ t ≤ k. Then:∑

Y ∈
[

Γ
y

]#Nt,Y = #St ·
[
t
y

]
q
.

Moreover for all Y ∈
[

Γ
y

]
:

k−c∑
t=d/2

#Nt,Y ·
[
k\t
c

]
q
≤
[
v\v−k
c

]
q
.
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Proof
The equation follows from double-counting the set {(Y, U) ∈

[
Γ
y

]
× St | Y ≤ U}.

For the inequality, we have 0 on the left hand side if c < 0 or k − d/2 < c, i.e., we
assume 0 ≤ c ≤ k − d/2. The statement follows from counting⋃̇k

t=d/2

⋃̇
U∈Nt,Y

[
U\Γ
c

]
⊆
[
V \Γ
c

]
.

The left hand side is disjoint, because for fixed Y there is, using dim(〈Y,R〉) = y + c ≥
k − d/2 + 1, at most one element W ∈ C with 〈Y,R〉 ≤W , where R ∈

[
V \Γ
c

]
.

Furthermore
[
U\Γ
c

]
= ∅ for k − c < t and U ∈ Nt,Y . �

Note that we use deliberately t < y ≤ k with Nt,Y = ∅.
In particular, we have:

#Nt0,Y ≤

[
v\v−k
c

]
q
−
∑k−c

t=d/2,t 6=t0 #Nt,Y ·
[
k\t
c

]
q[

k\t0
c

]
q

for all integers c, t0, and y with 0 ≤ y ≤ k, k−d/2+1 ≤ c+y, Y ∈
[

Γ
y

]
, and d/2 ≤ t0 ≤ k,

as well as 0 ≤ c ≤ k − t0.
In the successive discussion, we fix t0 = d/2 (cf. Lemma 89), to ease the notation

significantly while maintaining the same level of detail: The second summand of the last
part of the proof of the next proposition would not vanish for other t0.
Now we can state the second LMRD bound.

91 Proposition (cf. [ES13, Theorem 11])
For 2 ≤ d/2 ≤ k ≤ v − k let C be a (v,#C, d; k)q CDC that contains an LMRD
code for integers c and y, such that 1 ≤ y ≤ d/2, 1 ≤ c ≤ min{k − d/2, d/2}, and
k − d/2 + 1 ≤ c+ y. Then

#C ≤ q(v−k)(k−d/2+1) +

[
v−k
y

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y

]
q

qc(v−k−d/2) + Aq(v − k, d− 2(c− 1); k − c+ 1).

Proof
Using Lemma 86 we only have to upper bound #Sd/2+

∑k
t=d/2+1 #St. Applying Lemma 90,

we get:

#Sd/2 =

∑
Y ∈
[

Γ
y

]#Nd/2,Y[
d/2
y

]
q

≤
∑

Y ∈
[

Γ
y

]
[
v\v−k
c

]
q
−
∑k−c

t=d/2+1 #Nt,Y

[
k\t
c

]
q[

k\d/2
c

]
q

[
d/2
y

]
q

=

[
v−k
y

]
q

[
v\v−k
c

]
q
−
∑k−c

t=d/2+1 #St
[
t
y

]
q

[
k\t
c

]
q[

k\d/2
c

]
q

[
d/2
y

]
q

.
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6.2 Comparison of the bounds

Hence

#Sd/2 +
k∑

t=d/2+1

#St

≤

[
v−k
y

]
q

[
v\v−k
c

]
q[

k\d/2
c

]
q

[
d/2
y

]
q

+

∑k−c
t=d/2+1 #St

([
k\d/2
c

]
q

[
d/2
y

]
q
−
[
t
y

]
q

[
k\t
c

]
q

)
[
k\d/2
c

]
q

[
d/2
y

]
q

+
k∑

t=k−c+1

#St.

Now we apply Lemma 89 for 1 ≤ y, t0 = d/2, and d/2 + 1 ≤ t ≤ k− c, and thereby upper
bound the second summand with zero.
The last summand can be upper bounded by again utilizing Lemma 87 with Ai =
{U ∩ Γ | U ∈ Si} ⊆

[
Γ
i

]
, m = k − c + 1, M = k, which is possible since 1 ≤ c, and

l = 2k − d (cf. Lemma 86), using 0 < 2m − l = d − 2(c − 1) ⇔ c ≤ d/2. This upper
bounds the last summand with Aq(v − k, d− 2(c− 1); k − c+ 1). �

The special case of d = k even, c = 1, y = d/2 was already proved in [ES13, Theorem 11].

6.2 Comparison of the bounds

Having Proposition 88 and Proposition 91 at hand, we aim to clarify for which values
of y and c Proposition 91 is best and, using this knowledge, we compare the strongest
version of Proposition 91 with Proposition 88 to see that Proposition 88 is always stronger
wherever the parameters q, v, d, and k allow the application of both bounds.

The easy part is to eliminate y in Proposition 91, since smaller y(c) are always better.

92 Remark
Using 2 ≤ d/2 ≤ k ≤ v − k, the function f(y) =

[
v−k
y

]
q
/
[
d/2
y

]
q

=
∏y−1
i=0

qv−k−qi
qd/2−qi is

monotonically increasing for 1 ≤ y ≤ d/2. Hence, the optimal choice for y is max{1, k−
d/2 + 1 − c} for a fixed c, which implies max{1, k − d + 1} ≤ c ≤ min{k − d/2, d/2}.
Note that such a c exists iff d/2 < k < 3d/2.

Hence, the 2-dimensional polytope, in which the possible parameters (c, y) lie, therefore
is only 1-dimensional, but y(c) depends on c.
It is harder to find a good choice for c. Fortunately it suffices to consider the three

summands in Proposition 91 separately and the first is independent of y and c. As we
will see, a smaller c is better. Next, we compare the third summand of Proposition 91 for
different c.
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6 The LMRD bound and naturally arising code constructions

93 Lemma (cf. Theorem 108 with t = 1 and m = v)
For a prime power q ≥ 2 and integers v ≥ 0 and k 6= 0, we have

Aq(v, d; k) ≤ Aq(v, d− 2; k − 1).

Proof
The statement is obvious for the separated cases k < 0, v < k, 2k < d, v ≤ 1, or d ≤ 2.
For odd d we can use d̃ = d+ 1 due to Aq(v, d; k) = Aq(v, d+ 1; k). Hence, we assume
2 ≤ d/2 ≤ k ≤ v integers. We estimate the left hand side with the Singleton bound
(Theorem 109) and the right hand side with the size of an LMRD code. Since both bounds
depend on whether k ≤ v/2, we have these three cases:
If k ≤ v/2, then

Aq(v, d; k) ≤
[
v−d/2+1
v−k

]
q
≤ µ(q)q(v−k)(k−d/2+1) ≤ q(v−k+1)(k−d/2+1) ≤ Aq(v, d− 2; k − 1),

which is true for q ≥ 3, since µ(q) ≤ q ≤ qk−d/2+1, and q = 2 with 2 ≤ k − d/2 + 1. For
q = 2 and d = 2k, the Singleton bound is

[
v−k+1

1

]
2

= 2v−k+1 − 1 yielding the result.
If v/2 ≤ k − 1, then

Aq(v, d; k) = Aq(v, d; v − k) ≤
[
v−d/2+1

k

]
q
≤ µ(q)qk(v−k−d/2+1)

≤ q(k−1)(v−k−d/2+3) ≤ Aq(v, d− 2; v − k + 1) = Aq(v, d− 2; k − 1),

which is true, since µ(q) ≤ q2 ≤ q3k−3−v+d/2, i.e., v+5 ≤ 2k+3 ≤ 2k+1+d/2 ≤ 3k+d/2.
If v is odd and k = (v + 1)/2, then

Aq(v, d; k) = Aq(v, d; (v + 1)/2) = Aq(v, d; (v − 1)/2) ≤
[
v−d/2+1
(v+1)/2

]
q

≤ µ(q)q((v−1)/2−d/2+1)(v+1)/2 ≤ q((v−1)/2−d/2+2)(v+1)/2

≤ Aq(v, d− 2; (v − 1)/2) = Aq(v, d− 2; k − 1),

which is true for 3 ≤ v since µ(q) ≤ q2 ≤ q(v+1)/2. �

Next, we compare the second summand of Proposition 91 for different c, but thereby
we have to consider the dependence of y(c) of c:

94 Lemma
For integers c, d, k, q, v, and y(c) such that q ≥ 2 is a prime power, 2 ≤ d/2 ≤ k ≤ v−k
integers, 0 ≤ c ≤ k − d/2− 1, and 0 ≤ y(c) ≤ d/2, let

f(c) =

[
v−k
y(c)

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y(c)

]
q

qc(v−k−d/2).

If y(c+ 1) = y(c) or y(c+ 1) = y(c)− 1 ≥ 0, then f(c) ≤ f(c+ 1).
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6.2 Comparison of the bounds

Proof
The term

λ =
[d/2− y(c)]q!

[d/2− y(c+ 1)]q!
· [v − k − y(c+ 1)]q!

[v − k − y(c)]q!

is 1 if y(c+ 1) = y(c) and

[v − k − y(c) + 1]q
[d/2− y(c) + 1]q

≤ µ(q)qv−k−d/2

if y(c+ 1) = y(c)− 1. Using the q-factorial version of the q-binomial coefficient, one gets:

f(c)

f(c+ 1)
=
qk−d/2−c − 1

qk−c − 1
· q−(v−k−d/2) · λ

≤ q−d/2 · q−(v−k−d/2) · λ

≤

{
q−(v−k) if y(c+ 1) = y(c)

µ(q)q−(d/2) ≤ q2−(d/2) else

≤ 1 �

Since smaller values for y and c are preferable, we compare Proposition 88 with
Proposition 91 to see that Proposition 88 is always tighter, if both are applicable. Since
the size of the LMRD subcode is equal in both bounds, it remains to compare the second
summand of Proposition 88 with the sum of the second and the third summand of
Proposition 91. Luckily, a simplified estimation, only involving the second summand of
Proposition 91 and a crude lower bound of c = 1, yields the desired result.

95 Lemma
Let d, k, q, and v be integers such that q ≥ 2 is a prime power, 2 ≤ d/2 ≤ k ≤ v − k,
k < d, 1 ≤ k − d/2, c = 1, and y = k − d/2. Then

Aq(v − k, 2(d− k); d/2) ≤

[
v−k
y

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y

]
q

qc(v−k−d/2).

Proof
The right hand side is alwasy at least one by Lemma 5:[

v−k
y

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y

]
q

qc(v−k−d/2) =

[
v−k
y

]
q[

d/2
y

]
q

[k]q
[k − d/2]q

qv−k−d/2

=

y∏
i=1

qv−k−y+i − 1

qd/2−y+i − 1

[k]q
[k − d/2]q

qv−k−d/2 ≥
y∏
i=1

qv−k−d/2qd/2qv−k−d/2 ≥ qv−k ≥ 1.
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6 The LMRD bound and naturally arising code constructions

Hence, we assume wlog. 2 ≤ Aq(v − k, 2(d− k); d/2) and in particular 3d/2 ≤ v which
allows in turn the application of the Singleton bound of Theorem 109:

Aq(v − k, 2(d− k); d/2)≤
[

v−d+1
v−k−d/2

]
q
≤µ(q)q(v−k−d/2)(k−d/2+1)≤q(v−k−d/2)(k−d/2+1)+d/2

= q(v−k−d/2)(k−d/2) · qd/2 · qv−k−d/2 ≤
y∏
i=1

[v − k − y + i]q
[d/2− y + i]q

· [k]q
[k − d/2]q

· qv−k−d/2

=
[v − k]q![k]q![k − d/2− c]q![d/2− y]q!

[v − k − y]q![k − c]q![k − d/2]q![d/2]q!
· qv−k−d/2 =

[
v−k
y

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y

]
q

qc(v−k−d/2). �

6.3 The LMRD bound

Before we state the LMRD bound, which is the combination of both single LMRD bounds,
we look at some parameters q, v, d, and k in which Proposition 88 is tight.

The Echelon-Ferrers construction yields some partial spread parameters, in which
Proposition 88 is tight and, even more, Aq(v, 2k; k) is met.

96 Remark
For 2 ≤ d/2 ≤ k ≤ v − k, as well as k < d ≤ 2v/3, we have:

If d = 2k, then Aq(v−k, 2(d−k); d/2) corresponds to a partial spread and if in addition
r ≡ v (mod k), 0 ≤ r < k, and [r]q < k then Aq(v − k, 2(d− k); d/2) = qv−k−qk+r

qk−1
+ 1,

cf. Theorem 131. Hence, the bound in Proposition 88 is #C ≤ qv−k + qv−k−qk+r

qk−1
+ 1 =

qv−qk+r

qk−1
+ 1 = Aq(v, d; k). An optimal CDC containing an LMRD can be constructed

with Equation 4.1, as a special case of the Echelon-Ferrers construction, cf. Chapter 4.
If v = 3d/2, then Aq(v − k, 2(d− k); d/2) corresponds to an orthogonal partial spread

and if in addition d− k | d/2, it corresponds to a spread of size (q3d/2−k − 1)/(qd−k − 1),
cf. Corollary 125.

Next, we list two infinite families of parameters such that Proposition 88 is tight. The
first was not known before and the second is listed for completeness.

97 Lemma
For integral l ≥ 1 and prime power q, there is a (6l, q3l(l+1) + q2l + ql + 1, 4l; 3l)q CDC
C that contains an LMRD. This cardinality achieves the bound of Proposition 88.

Proof
The bound of Proposition 88 can be computed via Remark 96.
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6.3 The LMRD bound

C is constructed with the Echelon-Ferrers construction, cf. Chapter 4, and these pivot
vectors:

(1l1l1l0l0l0l) (i.e., an LMRD of size q3l(l+1))
(1l0l0l1l1l0l)
(0l1l0l1l0l1l)
(0l0l1l0l1l1l) (i.e., a subcode with 1 element)
Note that the Hamming distances between these four constant weight codewords is

always 4l which implies the subspace distance of at least 4l via Lemma 54. The size
of the subcode, corresponding to the second constant weight codeword, is q2l and can
be constructed with Lemma 61 and an [l × 2l, 2l, l]q MRD. The third constant weight
codeword gives rise to the ql codewords of C using the same technique and an [l × l, l, l]q
MRD. �

Previously, only the optimality for l = 1 was known [ES13, Theorem 10].
Another series of LMRD bound achieving parameters is:

98 Lemma
For integral l ≥ 1 and prime power q, there is a (6 + 3l, q6+4l + q2+l + 1, 4 + 2l; 3 + l)q
CDC C that contains an LMRD. This cardinality achieves the bound of Proposition 88.

Proof
First, the bound is given by #C ≤ q6+4l + Aq(3 + 2l, 2 + 2l; 2 + l). The second summand
is, due to orthogonal codes and 3 + 2l ≡ 1 (mod 1 + l) for l ≥ 1, known, cf. Theorem 126,
and equal to q2+l + 1.
Second, C can be constructed with the Echelon-Ferrers construction, cf. Chapter 4,

and these pivot vectors:
(1111+l1101+l0101+l) (i.e., an LMRD of size q6+4l)
(1101+l0111+l1101+l)
(0101+l1101+l1111+l) (i.e., a subcode with 1 element)
Note that the Hamming distances between these three constant weight codewords is

always 4+2l which implies the subspace distance of at least 4+2l via Lemma 54. The size
of the subcode, corresponding to the second constant weight codeword, is q2+l and can be
constructed with Lemma 61, a [1×(2+ l), 2+ l, 1]q MRD and a [(2+ l)×(1+ l), 2+ l, 1+ l]q
MRD. �

For all prime powers q and integral l ≥ 1, this bound was previously known [ES13,
Theorem 10] as well as the construction [ES09] and it is listed here for completeness.

99 Proposition ([Hei18, Proposition 1])
For 2 ≤ d/2 ≤ k ≤ v − k let C be a (v,#C, d; k)q CDC that contains an LMRD code.
If k < d ≤ 2v/3 we have

#C ≤ q(v−k)(k−d/2+1) + Aq(v − k, 2(d− k); d/2).
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6 The LMRD bound and naturally arising code constructions

If additionally d = 2k, r ≡ v (mod k), 0 ≤ r < k, and [r]q < k, then the right hand side
is equal to Aq(v, d; k) and achievable in all cases.

If (v, d, k) ∈ {(6 + 3l, 4 + 2l, 3 + l), (6l, 4l, 3l) | l ≥ 1}, then there is a CDC containing
an LMRD with these parameters whose cardinality achieves the bound.
If k < d and v < 3d/2 we have

#C ≤ q(v−k)(k−d/2+1) + 1

and this cardinality is achieved.
If d ≤ k < 3d/2 we have

#C ≤ q(v−k)(k−d/2+1) + Aq(v − k, 3d− 2k; d)

+
[
v−k
d/2

]
q

[
k
d−1

]
q
q(k−d+1)(v−k−d/2)/

[
k−d/2
d/2−1

]
q
.

Proof
First, we discuss the optimal choice of y and c. Remark 92 shows that the optimal choice
for y is max{1, k− d/2 + 1− c}. Then, for max{1, k− d+ 1} ≤ c ≤ min{k− d/2, d/2} we
compare the second summand and the third summand of the statement in Proposition 91
separately. The third summand, i.e., Aq(v − k, d− 2(c− 1); k − c+ 1) is monotonically
decreasing in c as seen in Lemma 93. The second summand, in which we have to consider
y(c), i.e., [

v−k
y(c)

]
q

[ kc ]q[
k−d/2
c

]
q

[
d/2
y(c)

]
q

qc(v−k−d/2)

is also monotonically decreasing in c by Lemma 94. Hence, the smallest c yields the
smallest upper bound and therefore max{1, k − d+ 1} is the optimal choice for c.

Second, we compare the bound of Proposition 91 to the bound of Proposition 88 where
both bounds are applicable, i.e., d/2 < k < d. The second summand of Proposition 91,
utilizing the optimal choice of y and c, is already larger than the second summand of
Proposition 88 by Lemma 95.
Hence, we only apply Proposition 91 for d ≤ k < 3d/2 and in particular d ≤ k shows

c = k − d+ 1 ≥ 1 and y = d/2 ≥ 2.
Third, we consider the cases in which Proposition 88 is tight.
The restriction v < 3d/2 is equivalent to 2(v − k − d/2) < 2(d − k), i.e., any two

codewords U 6= W in an orthogonal (v − k,#C, 2(d − k); d/2)q code have ds(U,W ) ≤
2(v − k − d/2) < 2(d− k), hence #C ≤ 1. Moreover a code attaining this bound can be
constructed by extending a (v,#M,d; k)q LMRD with the codeword Z = τ−1((0v−k | Ik)),
since 2k ≤ v implies that Z intersects each other codeword trivially.
Two additional families of parameters such that Proposition 88 is tight are given by

Lemma 97 and Lemma 98.
Proposition 88 is tight in some partial spread cases via Remark 96 and even meets the

bound Aq(v, 2k; k). �
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6.4 Improved code sizes

Therefore, Proposition 99 implies the parameter regions in Figure 7.

6.4 Improved code sizes

Since Lemma 86 states that any (v,#C, d; k)q CDC that contains an LMRD M can be
partitioned into C = M ∪̇ Sd/2 ∪̇ . . . ∪̇ Sk, we know that any codeword in C \M has an
at least d/2-dimensional intersection with Γ. Hence, we describe a promising approach to
find large codes C by considering E ⊆

[
Γ
d/2

]
. If k < d, i.e., k − d/2 + 1 ≤ d/2, then any

codeword in C \M contains different elements of E. Moreover, Lemma 86 also states,
that the minimum distance of E has to be at least 2(d − k), cf. Proposition 88. With
other words, E is a (v − k,#E, 2(d− k); d/2)q CDC embedded in Γ. On the one hand,
it is natural to consider already large CDCs, which for example are listed here: http:
//subspacecodes.uni-bayreuth.de [Hei+16] and try to extend them. On the other
hand, a given (v′, N ′, d′; k′)q CDC can be used to build a (v′+2k′−d′/2, N ′, 2k′; 2k′−d′/2)q
CDC that is compatible to any LMRD that respects these parameters.

Moreover, if k < d, then a (v,#C, d; k)q CDC C that contains an LMRD M implies a
(v − k,#C −#M, 2(d− k); d/2)q CDC C ′ = {Hd/2(U ∩ Γ) | U ∈ C \M}, which in turn
shows that generating a large C is at least as difficult as generating C ′.

Next, the number of subspaces in C \M having a large intersection with Γ is limited by
#St ≤ Aq(v − k, d− 2(k − t); t) for max{d/2, k − d/2 + 1} ≤ t ≤ k as an application of
Lemma 87, m = M = t, l = 2k − d, At = {U ∩ Γ | U ∈ St} ⊆ [ Γ

t ], with #At = #St, and
the minimum distance ds(U ∩ Γ,W ∩ Γ) ≥ ds(U,W )− 2k + 2t ≥ d− 2k + 2t > 0 shows.

For a given subcode E, Algorithm 3 shows our applied search strategy. The argument
rmax controls the level of detail of each of the independent nmax runs. Also, we do not
precompute the set of extensions for each subspace in E, although it may be useful to
save computation time if rmax is large compared to the size of the set of extensions, i.e.[
v−d/2
k−d/2

]
q
, and nmax is at least two.

Table 6 lists improved sizes of CDCs for small fixed parameters q, v, d, and k. The size
of the LMRD with these parameters is #M and the successive columns only show the
extended cardinality without the corresponding LMRD size. Therefore LMRD-B−#M is
the size of the LMRD bound, PBKLB−#M is the previously best known lower bound,
E is the used subcode up to embedding in Γ, and BKLB−#M is the current best known
lower bound, i.e., the code size constructed with our described method. The codes can be
downloaded from http://subspacecodes.uni-bayreuth.de, see also [Hei+16].
A further improvement of the second code, i.e. (q, v, d, k) = (2, 11, 6, 4), such that it

still contains an LMRD, would imply a (7,#E, 4; 3)2 CDC E with 333 < #E.
The situation of the first code, i.e., (q, v, d, k) = (2, 10, 6, 5), is a special case, since

#S3 ≤ 155, #S4 ≤ 1, and S5 ⊆ {Γ}.
If #S5 = 1, then #S3 = #S4 = 0, because any subspace U ∈ S3 ∪ S4 has ds(U,Γ) ≤ 4,

hence we set S5 = ∅.
If #S4 = 1, then #S3 ≤ 140, because for U ∈ S4 we have #{W ∈ S3 | dim((U ∩ Γ) ∩

(W ∩ Γ)) = 3} = [ 4
3 ]2 = 15, i.e., the elements in this set have ds(U,W ) = 2(5− 3) = 4

101

http://subspacecodes.uni-bayreuth.de
http://subspacecodes.uni-bayreuth.de
http://subspacecodes.uni-bayreuth.de


6 The LMRD bound and naturally arising code constructions

Algorithm 3 Random search strategy for extending an arbitrary LMRD
Require: E is a (v−k,#E, 2(d−k); d/2)q CDC embedded in Γ, 1 ≤ nmax, and 1 ≤ rmax

1: procedure Search(E,nmax, rmax)
2: T ←

{
τ(U)

∣∣∣ U ∈ [ Fv−d/2q

k−d/2

]}
. as an array, so Ti is the i-th element

3: Cmax ← {}
4: for n ∈ {1, . . . , nmax} do
5: C ← {}
6: for U ∈ E do
7: B ∈

[
V

v−d/2

]
. such that B ⊕ U = V

8: M ← τ(B)
9: σ ← random(S#T )

10: for r ∈ {1, . . . ,min{rmax,#T}} do
11: W ← U ⊕ τ−1(Tσ(r) ·M)
12: for Z ∈ C do
13: if dim(Z ∩W ) > k − d/2 then
14: continue r
15: end if
16: end for
17: C ← C ∪ {W}
18: if k < d then
19: continue U
20: end if
21: end for
22: end for
23: if #C > #Cmax then
24: Cmax ← C
25: end if
26: end for
27: return Cmax

28: end procedure
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q v d k #M LMRD-B
−#M

PBKLB
−#M

E BKLB
−#M

2 10 6 5 215 155 122
[SE11, Ex. 4]

[
Γ
3

]
155

2 11 6 4 214 A2(7, 4; 3)
≤ 381

285
[ES09; Hei+16]

(7, 333, 4; 3)2

[Hei+16]
333

2 11 6 5 218 1395 852
[ES09; Hei+16]

[
Γ
3

]
1334

2 12 6 4 216 A2(8, 4; 3)
≤ 1493

1144
[ES09; Hei+16]

(8, 1326, 4; 3)2

[BÖW16]
1303

2 12 6 5 221 11811 7232
[ES09; Hei+16]

[
Γ
3

]
7925

2 13 6 4 218 A2(9, 4; 3)
≤ 6205

4747
[ST15]

(9, 5986, 4; 3)2

[BÖW16]
5753

Table 6: New lower bounds on some CDC parameters

and, aiming for large code sizes, we set S4 = ∅.
Therefore, a code with these parameters that contain an LMRD and achieves the

LMRD bound has to contain a subcode S3 of cardinality 155, i.e., all subspaces
[

Γ
3

]
have

to be extended with subspaces in
[
V \Γ

2

]
such that the minimum distance constraint is

fulfilled. The subspace distance of any codeword U ∈M and W ∈ S3 = C \M is at least
6 and therefore only the minimum distance of S3 is in question.
There are, for each subspace in

[
Γ
3

]
,
[

10−3
5−3

]
2

= 2667 extensions to 5 dimensions, of

which
[

10\5
2

]
2
/
[

5\3
2

]
2

= 2480 have a trivial intersection with Γ.
Hence, by prescribing the following subgroup of order 31 of the stabilizer of Γ, i.e., the

cyclic group generated by a block diagonal matrix consisting of twice the same generator
of a Singer cycle in Γ,

G =

〈
0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


〉
,

we partition the set
{
U ∈

[
F10

2
5

] ∣∣∣ dim(U ∩ Γ) = 3
}
of size 2480 ·155 = 384 400 into 12400

orbits of length 31 under the action of G. 3100 of these orbits contain a pair of subspaces
that has an intersection of at least dimension 3 and hence these orbits cannot be subset
of a (10, N, 6; 5)2 CDC. The remaining 9300 orbits are then considered as vertices of a
graph in which two vertices O1 6= O2 share an edge iff dim(U ∩W ) ≤ 2 for all U ∈ O1

and W ∈ O2. Clearly, the clique number is upper bounded by 5 = #
[

Γ
3

]
/#G since

each 3-dimensional subspaces in Γ may be contained at most once without violating the
minimum distance. A greedy clique search provides a clique of size 5. With other words
these five orbits are an extension of any (10, 215, 6; 5)2 LMRD of size 155 achieving the
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6 The LMRD bound and naturally arising code constructions

LMRD bound of Proposition 99. Representatives in RREF of these five orbits are(
1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0

1 0 0 0 0
0 1 1 0 0
0 0 0 0 1

)
,

(
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

)
,

(
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1

1 0 0 0 1
0 1 0 1 0
0 0 1 0 1

)
,(

1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 0

1 0 0 0 1
0 1 0 1 1
0 0 1 0 1

)
,

(
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1

1 0 0 0 0
0 1 0 0 1
0 0 1 1 1

)
,

in which the omitted parts are zeros, since the corresponding rows are RREF matrices of
the 3-dimensional intersection with Γ.

An approach with a BLP

The problem of extending a large embedded CDC to one that can be joined with an
LMRD can be formulated as BLP:

100 Lemma
Let C ′ be a (v′, N ′, d′; k′)q CDC embedded in Γ = Γq,k,v, where v = v′ + 2k′ − d′/2,
k = 2k′ − d′/2, s = k′ − d′/2 + 1, and V = Fvq . Moreover we use a (v, qv

′s, 2k′; k)q
LMRD M and E(U) = {W ∈

[
V
k

]
| U ≤ W} for U ∈ C ′. Then, for any feasible

X = {xU,W ∈ {0, 1} | U ∈ C ′,W ∈ E(U)} of the BLP below and C = {W | xU,W =
1, U ∈ C ′,W ∈ E(U)}, we have that M ∪ C is a (v, qv

′s + #C, 2k′; k)q CDC.

max
∑
U∈C′

∑
W∈E(U)

xU,W

st ∑
W∈E(U)

xU,W ≤ 1 ∀ U ∈ C ′

∑
U∈C′

∑
W∈E(U):B≤W

xU,W ≤ 1 ∀ B ∈ [ Vs ]

xU,W ∈ {0, 1} ∀ U ∈ C ′,W ∈ E(U)

Proof
The first constraint of the BLP ensures that each U ∈ C ′ is extended to at most one
codeword W ∈ C, whereas the second constraint ensures that the minimum distance of
C is large enough: dim(X ∩ Y ) < s implies ds(X,Y ) > 2(k − s) = 2((2k′ − d′/2)− (k′ −
d′/2 + 1)) = 2(k′ − 1). �

Note that this BLP is a subset of DefaultCDCBLP(q, v, d, k) (Definition 47) in terms
of W -variables. Since #E(U) =

[
v−k′
k−k′

]
q
for all U ∈ C ′, the number of variables of the
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6.4 Improved code sizes

BLP in Lemma 100 is #C ′ ·
[
v−k′
k−k′

]
q
, which is considerably smaller than the number of

variables in DefaultCDCBLP(q, v, d, k) (Definition 47), i.e., [ vk ]q.
As an example, we apply this to (q, v, d, k) = (2, 10, 6, 5). We additionally know that

any C with #C ≥ 142 fulfills W ∩ Γ = U for all U ∈
[

Γ
3

]
and W ∈ E(U). Therefore, we

can add the restrictions to these W ’s to the BLP of Lemma 100 by either adding the
additional constraints xU,W = 0 for all U ∈

[
Γ
3

]
and W ∈ E(U) with W ∩ Γ 6= U , or

by restricting the set E(U) to E(U)′ = {W ∈ E(U) | W ∩ Γ = U}, which in turn has
2480 elements for all U ∈

[
Γ
3

]
. This adapted BLP has then 155 · 2480 = 384 400 variables

– compared to [ 10
5 ]2 = 109 221 651 variables of DefaultBLP (Definition 47) and to the

original version in Lemma 100 with 155 · 2667 = 413 385 variables. Unfortunately, trying
to solve this adapted BLP, Gurobi ([Gur16]) cannot even compute the LP-relaxation of
the whole problem, i.e., in the branch & bound ([Dak65]) root node, due to the lack of
memory.
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7 Known upper bounds

Contents of this chapter were previously published in [HK17b].
The list of known upper bounds has not changed much since [EV11a; KSK09]. Compar-

isons of the bounds are distributed in the literature and even commentaries, cf. [BPV13].
Unfortunately, some results are wrong and this chapter is dedicated to provide a complete
picture of upper bounds for CDCs and comparisons between them, to the best of our
knowledge.
Interestingly, most upper bounds for CDCs for 2 ≤ d/2 < k ≤ v − k integers are

dominated by the improved Johnson bound, which in turn refers back to more elaborate
upper bounds on partial spreads.
Besides these general upper bounds, the only two sporadic improvements for 2 ≤

d/2 < k ≤ v − k, i.e., no partial spreads, are A2(6, 4; 3) = 77 < 81 [HKK15] and
A2(8, 6; 4) = 257 < 289, cf. Theorem 191.

See http://subspacecodes.uni-bayreuth.de associated with [Hei+16] for numerical
values of the known lower and upper bounds of the sizes of general subspace codes and
CDCs for small parameters.
The structural results of Lemma 41 imply an upper bound which in turn is able to

prove many known bounds, such as the Anticode bound, Johnson IIa, and Johnson IIb.

101 Lemma
For q ≥ 2 prime power, 2 ≤ d/2 ≤ min{k, v − k} integers, and 0 ≤ x ≤ v, we have

Aq(v, d; k) ≤


Aq(x,d;k)[ vx ]

q[
v−k
x−k

]
q

=
Aq(x,d;k)[ vk ]

q

[xk ]
q

if k ≤ x,

Aq(v−x,d;k−x)[ vx ]
q

[ kx ]
q

=
Aq(v−x,d;k−x)[ vk ]

q[
v−x
k−x

]
q

if x < k.

Proof
Let C be a (v,N, d; k)q CDC and k ≤ x. Double counting {(U,X) ∈ C ×

[
Fvq
x

]
| U ≤ X}

and applying Lemma 41 yields N
[
v−k
x−k

]
q

=
∑

X∈
[

Fvq
x

]#I (C,X) ≤ [ vx ]q Aq(x, d; k).

For x < k we count {(U,X) ∈ C ×
[

Fvq
x

]
| X ≤ U} and apply again Lemma 41 to get

N [ kx ]q =
∑

X∈
[

Fvq
x

]#I (C,X) ≤ [ vx ]q Aq(v − x, d; k − x).

The application of Lemma 7 proves the equalities. �
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7 Known upper bounds

Anticode type bounds A large class of upper bounds for CDCs is given by a similar
technique.

In general an anticode of diameter e is a subset of a metric space whose elements have
pairwise distance of at most e.

In the next lemma we count the number of k-spaces in Fvq which have a large intersection
with a fixed m-dimensional subspace in Fvq .

102 Lemma ([HK17b, Lemma 2])
For q ≥ 2 prime power and t, k, v,m integers, such that t ≤ k ≤ v, we have for all
W ∈

[
Fvq
m

]
#
{
U ∈

[
Fvq
k

]
| dim(U ∩W ) ≥ k − t

}
=

t∑
i=0

q(m+i−k)i [ m
k−i ]q

[
v−m
i

]
q
.

Moreover, the cardinality is non-zero if 0 ≤ t ≤ k ≤ v and k − t ≤ m ≤ v.

Proof
Both sides of the equation are zero if t < 0, v < m, or m < k − t and hence we assume
wlog. 0 ≤ t ≤ k ≤ v and k − t ≤ m ≤ v.

Consider an U ∈
[

Fvq
k

]
with dim(U ∩W ) = k− i for max{0, k−m} ≤ i ≤ min{t, v−m}.

Then, the number of choices of U can be counted via (U∩W )⊕U ′. We have U∩W ∈
[
W
k−i
]

and U ′ ∈
[

Fvq\W
i

]
, whereas

[
k\k−i
i

]
q
choices of U ′ span the same subspace U . Hence,{

U ∈
[

Fvq
k

] ∣∣∣ dim(U ∩W ) = k − i
}

= [ m
k−i ]q ·

[
v\m
i

]
q
/
[
k\k−i
i

]
q

= [ m
k−i ]q ·

[
v−m
i

]
q
qim/

([
k−(k−i)

i

]
q
qi(k−i)

)
= [ m

k−i ]q ·
[
v−m
i

]
q
qi(m−k+i).

Finally, applying the convention [ ab ]q = 0 for integers with b < 0 or b > a and summing
over i = 0, 1, . . . , t yields the result. �

The size is independent of the choice of W ∈
[

Fvq
m

]
. Moreover dim(U ∩W ) ≥ k − t is

equivalent to ds(U,W ) ≤ m − k + 2t, and therefore using m = k, we get the size of a
sphere S(W,k, t) =

{
U ∈

[
V
k

]
| ds(U,W ) ≤ 2t

}
, i.e., a sphere in

[
Fvq
k

]
with radius 2t and

center W ∈
[

Fvq
k

]
, cf. [KK08b, Definition 4].

103 Corollary (cf. [KK08b, Theorem 5])
For q ≥ 2 prime power, integers 0 ≤ t ≤ k ≤ v, and W ∈

[
Fvq
k

]
we have

#S(W,k, t) =
t∑
i=0

qi
2 [ k

i

]
q

[
v−k
i

]
q
.
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An anticode in
[

Fvq
k

]
with diameter e is a subset A ⊆

[
Fvq
k

]
such that e = max{ds(U,W ) |

U 6= W ∈ A}, i.e., its maximum distance is bounded, whereas in the case of CDCs the
minimum distance is bounded. Hence, S(W,k, t) is an anticode in

[
Fvq
k

]
with diameter 4t by

the triangle inequality ds(X,Y ) ≤ ds(X,W )+ds(W,Y ) ≤ 2t+2t for all X,Y ∈ S(W,k, t).

104 Lemma ([AA09, Lemma 1], cf. [AAK01, Theorem 1’])
Let G = (V,E) be a graph that admits a transitive group of automorphisms Aut(G) and
let A,B be arbitrary subsets of the vertex set V . Then, there exists a group element
g ∈ Aut(G) such that

#A

#V
≤ #(g(A) ∩B)

#B
.

Proof
We count T = {(a, f) ∈ A×Aut(G) | f(a) ∈ B} in two ways.
First, we have #T =

∑
f∈Aut(G) #{a ∈ A | f(a) ∈ B} =

∑
f∈Aut(G) #(f(A) ∩B).

Second, let a ∈ A be fixed and for fixed b ∈ B there is, by applying the transitivity of
the action of Aut(G), a hb ∈ Aut(G) such that hb(a) = b. Then, we can express the set
of group elements which map a to b by a coset of the stabilizer of a in Aut(G):

{f ∈ Aut(G) | f(a) = b} = {f ∈ Aut(G) | f(a) = hb(a)}
= {f ∈ Aut(G) | h−1

b ◦ f(a) = a} = {hb ◦ f | f ∈ Aut(G) ∧ f(a) = a}
= hb{f ∈ Aut(G) | f(a) = a} = hb StabAut(G)(a).

By the Orbit-Stabilizer theorem (Lemma 22) we know #(aAut(G)) ·# StabAut(G)(a) =
# Aut(G) and the transitivity of Aut(G) implies aAut(G) = V .
Therefore:

#T =
∑
a∈A

#{f ∈ Aut(G) | f(a) ∈ B} =
∑
a∈A

#

(⋃̇
b∈B
{f ∈ Aut(G) | f(a) = b}

)
=
∑
a∈A

∑
b∈B

#
(
hb StabAut(G)(a)

)
=
∑
a∈A

∑
b∈B

# StabAut(G)(a)

=
∑
a∈A

∑
b∈B

# Aut(G)/#V = #A ·#B ·# Aut(G)/#V.

Both ways of counting #T imply:∑
f∈Aut(G) #(f(A) ∩B)

# Aut(G)
=

#A ·#B
#V

such that the left hand side is the average size of images of A in B and hence there is a
g ∈ Aut(G) with the desired property. �
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7 Known upper bounds

105 Corollary ([AA09, Corollary 1], cf. [AAK01, Theorem 1])
Let C be a (v,#C, d; k)q CDC with pairwise subspace distances in D ⊆ {d, d+ 2, . . .}.
Then, for any B ⊆

[
Fvq
k

]
, there exists a CDC C∗ ⊆ B with distances in D such that

#C ≤
#C∗ · [ vk ]q

#B
.

In particular, if C has the minimum subspace distance d and B is an anticode in[
Fvq
k

]
with diameter d − 2, we have #C∗ ≤ 1 and #C ≤

[ vk ]
q

#B . Using the spheres
S(W,k, b(d/2− 1)/2c) as B, we obtain the Sphere-packing bound. Another approach to
prove this bound is to use the distance-regularity of the Grassmann graph.

106 Theorem (Sphere-packing bound, cf. [KK08b, Theorem 6])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have

Aq(v, d; k) ≤
[ vk ]q∑b(d/2−1)/2c

i=0 qi2
[
k
i

]
q

[
v−k
i

]
q

.

Let V = Fvq andW ∈
[

V
k−d/2+1

]
be a fixed subspace. Then the set B=

{
U ∈

[
V
k

]∣∣W ≤U}
is an anticode in

[
V
k

]
of diameter d− 2 and size #B =

[
v−k+d/2−1

d/2−1

]
q
.

Similarly, by orthogonality, if W ∈
[

V
k+d/2−1

]
is a fixed subspace, then the set B =

{U ∈
[
V
k

]
| U ≤W} is an anticode in

[
V
k

]
of diameter d− 2 and size #B =

[
k+d/2−1
d/2−1

]
q
.

Frankl and Wilson proved in [FW86, Theorem 1] that these anticodes have the largest
possible size, which implies the tightest Anticode-type bound. We will speak of the
anticode bound. This is also derived by considering Theorem 40 for the q-Johnson scheme.

107 Theorem (Anticode bound, [WXS03, Theorem 5.2], [EV11a, Theorem 1])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers we have

Aq(v, d; k) ≤
[ vk ]q[

max{k,v−k}+d/2−1
d/2−1

]
q

= min

 [ vk ]q[
v−k+d/2−1

d/2−1

]
q︸ ︷︷ ︸

=

[ v
k−d/2+1

]
q[

k
k−d/2+1

]
q

,
[ vk ]q[

k+d/2−1
d/2−1

]
q︸ ︷︷ ︸

=

[ v
v−k+d/2−1

]
q[

v−k
v−k+d/2−1

]
q

 .
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Proof
Applying Lemma 101 with x = k − d/2 + 1 yields Aq(v, d; k) ≤ [ vk ]q /

[
v−k+d/2−1

d/2−1

]
q
and

with x = k + d/2− 1 we get Aq(v, d; k) ≤ [ vk ]q /
[
k+d/2−1
d/2−1

]
q
. The minimum of both right

hand sides is [ vk ]q /
[

max{k,v−k}+d/2−1
d/2−1

]
q
. Applying Lemma 7 yields the transformation.�

Another possibility to use Corollary 105, in which #C∗ does not have to be one, is
given by the next theorem.

108 Theorem ([AA09, Theorem 3], [KSK09, Theorem 8], [HK17b, Theorem 8])
For q ≥ 2 prime power, 2 ≤ d/2 ≤ min{k, v − k}, 0 ≤ t < d/2, and k − t ≤ m ≤ v
integers we have

Aq(v, d; k) ≤
[ vk ]q Aq(m, d− 2t; k − t)∑t
i=0 q

i(m+i−k) [ m
k−i ]q

[
v−m
i

]
q

.

Proof
Let W ∈

[
Fvq
m

]
be a fixed subspace and define B =

{
U ∈

[
Fvq
k

] ∣∣∣ dim(U ∩W ) ≥ k − t
}
,

so that #B =
∑t

i=0 q
(m+i−k)i [ m

k−i ]q
[
v−m
i

]
q
is given by Lemma 102.

Let C∗ be an arbitrary (v,#C∗, d; k)q CDC with C∗ ⊆ B.
Applying Lemma 87 with Ai = {U ∈ C∗ | dim(U ∩W ) = i} ⊆

[
W
i

]
for m = k − t ≤

i ≤ k = M and ds(X ∩W,Y ∩W ) ≥ dim(X ∩W ) + dim(Y ∩W ) − l with l = 2k − d,
which is implied by dim(X ∩Y ) ≤ k−d/2, shows that #

⋃k
i=k−tAi ≤ Aq(m, d−2t; k− t),

since d−2t > 0. Moreover, ds(X ∩W,Y ∩W ) ≥ d−2t > 0 implies #C∗ = #
⋃k
i=k−tAi ≤

Aq(m, d−2t; k− t). Applying Corollary 105 with D = {d, d+1, . . . , v} yields the bound.�

If v −m < i, then the corresponding summands in the denominator are all zero and
hence the right hand side only increases. Focusing on strong bounds allows therefore to
assume additionally t ≤ v −m.
Some allocations of the parameters in Theorem 108 may be interpreted. Choosing

m = v gives the bound Aq(v, d; k) ≤ Aq(v, d − 2t; k − t), cf. Lemma 93. For t = 0
and m ≤ v − 1, we obtain Aq(v, d; k) ≤ Aq(m, d; k) [ vk ]q / [mk ]q. This is exactly the
application of Johnson IIb (Inequality (7.2) in Theorem 113) v −m times and omitting
the rounding and hence, for fixed t = 0, the optimal choice for m is m = v − 1. In this
case, Theorem 108 is equivalent to Johnson IIb (Inequality (7.2) in Theorem 113). It is
not known whether there are parameters such that Theorem 108 strictly improves on
Theorem 113 at all. For t = 1 and m = v− 1 the bound can be rewritten via Lemma 3 to
Aq(v, d; k) ≤ Aq(v − 1, d− 2; k − 1).

Numerical computations for small parameters, i.e., 2 ≤ q ≤ 9 prime power, 4 ≤ v ≤ 100,
2 ≤ d/2 ≤ k ≤ v−k integers, indicate that in all cases with d/2 < k, i.e., non-partial spread
cases, there are no proper improvements compared to Theorem 113. If d = 2k, i.e., partial
spreads which are mainly treated in the next subsection, then there are improvements
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7 Known upper bounds

compared to Corollary 125 of which some are summarized in Proposition 134. The other
improvements are inferior compared to Theorem 130 and Theorem 132.

Puncturing and the Singleton bound Let U ∈
[

Fvq
k

]
be a subspace and H ∈

[
Fvq
v−1

]
be

a hyperplane. The operation

punct :
[

Fvq
k

]
→
[
H
k−1

]
, U 7→ Hk−1(U ∩H)

is called puncturing operation. Using the definition of H, see Page 27, punct(U) = U ∩H
if U 6≤ H and one of the

[
k
k−1

]
q
arbitrary chosen (k − 1)-subspaces of U otherwise.

Although punct is no map, it has the property that punct(U) ≤ U and therefore, for
U,W ∈

[
Fvq
k

]
,

ds(punct(U),punct(W )) = 2(k − 1− dim(punct(U) ∩ punct(W )))

≥ 2(k − dim(U ∩W ))− 2 = ds(U,W )− 2.

Applying punct d/2−1 times to a (v,#C, d; k)q CDC C yields a (v−d/2+1,#C, d′; k−
d/2+1)q CDC D with 2 ≤ d′, which proves #C = #D, whereas D has at most

[
v−d/2+1
k−d/2+1

]
q

elements. Considering either the code or its orthogonal code gives:

109 Theorem (Singleton bound [KK08b, Theorem 9])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers we have

Aq(v, d; k) ≤
[

v−d/2+1
max{k,v−k}

]
q

= min

{[
v−d/2+1

k

]
q
,
[
v−d/2+1
v−k

]
q

}
.

The equality follows from 0 ≤ x and 0 ≤ y imply |x− y| ≤ |x+ y|, hence for y = a− b:
|a+b−x

2 − b| ≤ |a+b−x
2 − a|, i.e,

[
a+b−x

b

]
q
≥ [ a+b−x

a ]q.
In [XF09, Section 4] Xia and Fu verified that the Anticode bound is always stronger

than the Singleton bound for 2 ≤ d/2 ≤ k ≤ v − k.
Referring to [KK08b] the authors of [KSK09, Section 3.1] state that even a relaxation

of the Singleton bound is always stronger than the sphere packing bound for non-trivial
codes. However, on the one hand, for q = 2, v = 8, d = 6, and k = 4, the Sphere-packing
bound gives an upper bound of 200 787/451 ≈ 445.2 while the Singleton bound gives an
upper bound of [ 6

4 ]2 = 651. On the other hand, for q = 2, v = 8, d = 4, and k = 4, the
Singleton bound gives [ 7

3 ]2 = 11811 and the Sphere-packing bound gives [ 8
4 ]2 = 200 787.

Examples in which the Singleton bound dominates the Sphere-packing bound are easy
to find. For d = 2 both bounds coincide and for d = 4 the Singleton bound is always
stronger than the Sphere-packing bound since

[
v−1
k

]
q
< [ vk ]q.
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110 Lemma
The Sphere-packing bound (Theorem 106) is strictly tighter than the Singleton bound
(Theorem 109) if q = 2, v = 2k, d = 6, and 3 ≤ k integer.

Proof
For these parameters, the Singleton bound is

[
2k−2
k−2

]
2
and the Sphere-packing bound is[

2k
k

]
2
/(1 + 2([k]2)2). Hence,[

2k
k

]
2

1 + 2([k]2)2
<
[

2k−2
k−2

]
2
⇔ [2k]2!

([k]2!)2(1 + 2([k]2)2)
<

[2k − 2]2!

[k − 2]2![k]2!

⇔ [2k]2[2k − 1]2
[k]2[k − 1]2(1 + 2([k]2)2)

< 1.

Using the inequalities [x]2 = 2x − 1 < 2x and 0 < 1 we get

⇐ 24k−1

2(2k − 1)3(2k−1 − 1)
≤ 1

which is true for all 3 ≤ k. �

In fact, for q ≤ 9 and v ≤ 19 even the conversion is true, as the entries of http:
//subspacecodes.uni-bayreuth.de associated with [Hei+16] show. The asymptotic
bounds [KK08b, Corollaries 7 and 10], using normalized parameters, and [KK08b, Figure 1]
suggest that there is only a small range of parameters where the Sphere-packing bound
can be superior to the Singleton bound.

Johnson I Transferring the classical Johnson bounds for constant weight codes regarding
the Hamming distance [Joh62; Ton98] to the CDC case, Xia and Fu proved:

111 Theorem (Johnson I [XF09, Theorem 2])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers with

(
qk − 1

)2
>

(qv − 1)
(
qk−d/2 − 1

)
, we have

Aq(v, d; k) ≤
(
qk − qk−d/2

)
(qv − 1)

(qk − 1)
2 − (qv − 1)

(
qk−d/2 − 1

) .

However, the required condition of Theorem 111 is rather restrictive and can be
simplified considerably.
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7 Known upper bounds

112 Proposition ([HK17b, Proposition 1])
For q ≥ 2 prime power and integers 0 ≤ k < v and 2 ≤ d/2 ≤ min{k, v − k}, the bound
in Theorem 111 is applicable iff d/2 = min{k, v−k} and 1 ≤ k. Then, it is equivalent to

Aq(v, d; k) ≤ qv − 1

qmin{k,v−k} − 1
.

If k = v then the bound is equivalent to Aq(v, d; k) ≤ 1.

Proof
If k = 0 we have

(
qk − 1

)2
= 0, so that we assume k ≥ 1 in the following. If k ≤ v − k

and d/2 ≤ k − 1, then

(qv − 1)
(
qk−d/2 − 1

)
≥
(
q2k − 1

)
(q − 1) ≥ q2k − 1 > q2k − 2qk + 1 =

(
qk − 1

)2
.

If k ≥ v− k+ 1 and d/2 ≤ v− k− 1, then applying v− d/2 ≥ k+ 1, k ≥ v− k, 1 ≥ q−d/2,
and q ≥ 2 shows

(qv − 1)
(
qk−d/2 − 1

)
≥
(
qk − 1

)2
⇔ qv−d/2 + 2 ≥ qk + qv−k + q−d/2

⇐ qk+1 + 2 ≥ 2qk + 1⇔ (q − 2)qk + 1 ≥ 0.

If d/2 = min{k, v− k}, q ≥ 2, and k ≥ 1, then it can be easily checked that the condition
of Theorem 111 is satisfied and we obtain the proposed formula after simplification. �

Proposition 112 corresponds in fact to the simplest bound on partial spreads Corol-
lary 125, which is tight in the spread case. In Section 7.1 we will list more elaborate
bounds on partial spreads.

Johnson II Although Proposition 112 as generalization of the first Johnson bound is
rather weak, generalizing [Joh62, Inequality (5)], see [XF09], leads to strong upper bounds.

113 Theorem (Johnson II [XF09, Theorem 3], [EV11a, Theorem 4,5])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have

Aq(v, d; k) ≤ qv − 1

qk − 1
Aq(v − 1, d; k − 1) and (7.1)

Aq(v, d; k) ≤ qv − 1

qv−k − 1
Aq(v − 1, d; k). (7.2)
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Proof
Applying Lemma 101 with x = 1 yields Aq(v, d; k) ≤ Aq(v − 1, d; k − 1) [ v1 ]q /

[
k
1

]
q
. The

same lemma with x = v − 1 yields Aq(v, d; k) ≤ Aq(v − 1, d; k) [ v
v−1 ]q /

[
v−k
v−1−k

]
q
. �

We call Inequality (7.1) Johnson IIa and Inequality (7.2) Johnson IIb.
For partial spreads, i.e., d = 2k, Inequality (7.1) gives Aq(v, 2k; k) ≤

⌊
qv−1
qk−1

⌋
which is

Corollary 125 and similarly, for d = 2(v − k), Inequality (7.2) gives Aq(v, 2v − 2k; k) ≤⌊
qv−1
qv−k−1

⌋
. This correspondence involving orthogonality is analyzed in the next lemma.

Some literature omits Inequality 7.2 and only state Inequality 7.1, e.g., [XF09, Theo-
rem 3]. An analogous behavior may be observed in the classical case of constant weight
codes, in which e.g. [MS77b, Theorem 4 on page 527] omits one of the two bounds and
formulates Problem (2) on page 528 with the hint that ones should be replaced by zeros
as exercise for the reader.

114 Proposition (cf. [EV11a, Section III, Lemma 13], [HK17b, Proposition 2])
Johnson IIa and Johnson IIb are equivalent using orthogonality.

Proof
We have

Aq(v, d; k) = Aq(v, d; v−k)
(7.1)

≤ qv−1

qv−k−1
Aq(v−1, d; v−k−1) =

qv−1

qv−k−1
Aq(v−1, d; k),

which is Johnson IIb, and

Aq(v, d; k) = Aq(v, d; v−k)
(7.2)

≤ qv−1

qk−1
Aq(v−1, d; v−k) =

qv−1

qk−1
Aq(v−1, d; k−1),

which is Johnson IIa. �

The two bounds in Theorem 113 may be applied recursively. In the classical case it
is not settled which of the two corresponding bounds is stronger, cf. [MS77b, Research
Problem 17.1]. Let A(n, d, w) be the maximum size of a binary constant weight code of
length n, Hamming distance d and weight w. Then the two corresponding inequalities to
Theorem 113 are A(n, d, w) ≤ bn/w · A(n− 1, d, w − 1)c and A(n, d, w) ≤ bn/(n− w) ·
A(n− 1, d, w)c. Applying the first bound yields

A(28, 8, 13) ≤ b28/13 ·A(27, 8, 12)c ≤ b28/13 · 10547c = 22716

while applying the second bound yields

A(28, 8, 13) ≤ b28/15 ·A(27, 8, 13)c ≤ b28/15 · 11981c = 22364
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7 Known upper bounds

using the numerical bounds from http://webfiles.portal.chalmers.se/s2/research/
kit/bounds/cw.html, cf. [AVZ00]. The authors of [EV11a; KSK09] state that the optimal
choice of Inequality (7.1) or Inequality (7.2) also is not settled. We are able to answer
this particular question for CDCs.

115 Proposition ([HK17b, Proposition 3])
For q ≥ 2 prime power and integers 0 ≤ k ≤ v−k and 2 ≤ d/2 ≤ min{k, v−k}, we have⌊

qv − 1

qk − 1
Aq(v − 1, d; k − 1)

⌋
≤
⌊
qv − 1

qv−k − 1
Aq(v − 1, d; k)

⌋
.

Moreover, the equality holds iff v = 2k.

Proof
By considering orthogonal codes, we obtain equality for v = 2k. Now we assume k < v/2
and show

qv − 1

qk − 1
Aq(v − 1, d; k − 1) + 1 ≤ qv − 1

qv−k − 1
Aq(v − 1, d; k), (7.3)

which implies the proposed statement. Considering the size of an LMRD code, we can
lower bound the right hand side of Inequality (7.3) to

qv − 1

qv−k − 1
Aq(v − 1, d; k) ≥ qv − 1

qv−k
· q(v−k−1)(k−d/2+1).

Since

[
v−1
k−1

]
q[

v−k+d/2−1
d/2−1

]
q

=

k−1∏
i=1

qv−k+i−1
qi−1

d/2−1∏
i=1

qv−k+i−1
qi−1

≤
k−1∏
i=d/2

qv−k+i

qi − 1
= q(v−k)(k−d/2)

k−1∏
i=d/2

1

1− q−i

we can use the Anticode bound to upper bound the left hand side of Inequality (7.3) to

qv − 1

qk − 1
Aq(v − 1, d; k − 1) + 1 ≤ qv − 1

qk − 1
· q(v−k)(k−d/2) · µ(k − 1, d/2, q) + 1,

where µ(a, b, q) :=
a∏
i=b

(
1− q−i

)−1. Thus, it suffices to verify

qk−d/2+1

qk − 1
· µ(k − 1, d/2, q) +

1

f
≤ 1, (7.4)

where we have divided by

f :=
qv − 1

qv−k
· q(v−k−1)(k−d/2+1) =

qv − 1

q
· q(v−k−1)(k−d/2).
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Since d ≥ 4, we have µ(k − 1, d/2, q) ≤
∞∏
i=2

(
1− q−i

)−1 ≤
∞∏
i=2

(
1− 2−i

)−1
< 1.74. Since

v ≥ 4 and q ≥ 2, we have 1
f ≤

2
15 . Since k ≥ 2, we have qk−d/2+1

qk−1
≤ q

q2−1
, which is at most

3
8 for q ≥ 3. Thus, Inequality (7.4) is valid for all q ≥ 3.

If d ≥ 6 and q = 2, then µ(k − 1, d/2, q) ≤
∞∏
i=3

(
1− 2−i

)−1
< 1.31 and qk−d/2+1

qk−1
≤ 1

3 , so

that Inequality (7.4) is satisfied.
In the remaining part of the proof we assume d = 4 and q = 2. If k = 2, then

µ(k−1, d/2, q) = 1 and qk−d/2+1

qk−1
= 2

3 . If k = 3, then µ(k−1, d/2, q) = 4
3 and qk−d/2+1

qk−1
= 4

7 .

If k ≥ 4, then qk−d/2+1

qk−1
≤ 8

15 , µ(k − 1, d/2, q) ≤ 1.74, and 1
f ≤

2
255 due to v ≥ 2k ≥ 8.

Thus, Inequality (7.4) is valid in all cases. �

Since Proposition 115 states that Johnson IIa dominates Johnson IIb if k ≤ v − k, we
can now initially assume k ≤ v − k and apply Johnson IIa recursively, which is then the
optimal choice between these two inequalities in contrast to the lack of knowledge in the
classical case.

116 Corollary (Recursive Johnson IIa)
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have

Aq(v, d; k) ≤

⌊
qv − 1

qk − 1

⌊
qv−1 − 1

qk−1 − 1

⌊
. . .

⌊
qv−k+d/2+1 − 1

qd/2+1 − 1
Aq(v − k + d/2, d; d/2)

⌋
. . .

⌋⌋⌋
.

For example [EV11a, Theorem 6], [KSK09, Theorem 7], and [XF09, Corollary 3] list
this bound in an explicit version by inserting Aq(v − k + d/2, d; d/2) ≤

⌊
qv−k+d/2−1
qd/2−1

⌋
,

which is the simplest partial spread bound, cf. Corollary 125.
If, in addition to inserting Corollary 125, also the rounding in each step is omitted, we

obtain the sometimes called Compact Johnson bound :

117 Corollary (Compact Johnson bound, [ZJX11, Proposition 1])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have

Aq(v, d; k) ≤

[ v
k−d/2+1

]
q[

k
k−d/2+1

]
q

=
[ vk ]q[

v−k+d/2−1
d/2−1

]
q

.

This is exactly the Anticode bound of Theorem 107 for k ≤ v/2 by applying Lemma 7
and in particular Inequality 7.1 dominates the Anticode bound if k ≤ v − k.
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7 Known upper bounds

The Johnson bound could be improved in [KK17] by considering multisets of points
which are qr-divisible, i.e., a multiset P of points in Fvq is called qr-divisible for 1 ≤ r ≤ v−1,
iff #P ≡ #(P ∩H) (mod qr) for any hyperplane H ≤ Fvq , where P ∩H is also a multiset
and contains exactly the points of P which are in H. The authors of [KK17] show that
the multiset of points corresponding to a (v,N, d; k)q CDC with 2 ≤ k is qk−1-divisible.
Here we use a modified notation which was applied in e.g. [Hei+17a], too.

118 Definition (cf. [Hei+17a])
Let q ≥ 2 be a prime power and a and k positive integers. Then

{
a

[k]q

}
k

:= max

{
b ∈ Z

∣∣∣∣∣∃a1, . . . , ak ∈ Z≥0 : a− b[k]q =
k∑
i=1

aiq
k−i[i]q

}
.

This allows to state the Improved Johnson bound.

119 Theorem (Improved Johnson bound, [KK17, Theorem 3 and 4])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ k ≤ v − k integers, we have

Aq(v, d; k) ≤
{
qv − 1

qk − 1
Aq(v − 1, d; k − 1)

}
k

.

As an example, we have A2(9, 6; 4) ≤
{

[9]2 A2(8,6;3)
[4]2

}
4

=
{

17374
[4]2

}
4

= 1156 with
A2(8, 6; 3) = 34, cf. Theorem 127 since 17374 − 1156 · 15 = 34 = 8 + 12 + 14 but
neither 17374− 1157 · 15 = 19 nor 17374− 1158 · 15 = 4 can be written as non-negative
integer combination of 8, 12, 14, and 15. This improves on Johnson IIa (Inequality 7.1 in
Theorem 113) by two. In [KK17] is an easy algorithm to verify whether a given integer
can be represented as

∑k
i=1 aiq

k−i[i]q in Definition 118.
Similar to Corollary 116 the bound of Theorem 119 can also be applied recursively.

This bound is called Recursive Improved Johnson bound.

120 Corollary (Recursive Improved Johnson bound, cf. [KK17])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ k ≤ v − k integers, we have

Aq(v, d; k) ≤

q
v − 1

qk − 1

qv−1 − 1

qk−1 − 1

. . .
{
qv
′+1 − 1

q
d
2

+1 − 1
Aq(v

′, d;
d

2
)

}
d
2

+1

. . .


k−2


k−1


k

,

where v′ = v − k + d/2 and {a/[k]q}k is defined in Definition 118.
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Linear Programming Bound Applying Theorem 39 to the q-Johnson scheme allows
to use the linear programming method, described in Chapter 2. However, numerical
computations indicate that it is not better than the Anticode bound (Theorem 107) which
is called Compact Johnson bound (Corollary 117).
In the case of the q-Johnson scheme

([
Fvq
k

]
, {R0, R1, . . . , Rk}

)
, we have (U,W ) ∈ Ri

iff ds(U,W ) = 2i for U,W ∈
[

Fvq
k

]
and hence the inner distribution a of any (v,#C, d; k)q

CDC C fulfills ai = 0 for all 1 ≤ i ≤ d/2− 1. Therefore, the linear programming method
involving these additional constraints and parameters (Qi,j and fj) below Theorem 39 is:

121 Theorem (Linear Programming bound [ZJX11, Proposition 3])
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers, we have

Aq(v, d; k)

≤ 1 + max


k∑

i=d/2

xi

∣∣∣∣∣∣
k∑

i=d/2

−Qi,jxi ≤ fj ∀j ∈ [k] ∧ xi ≥ 0 ∀i ∈ {d/2, . . . , k}


= 1 + min


k∑
j=1

yjfj

∣∣∣∣∣∣
k∑
j=1

Qi,jyj ≤ −1∀i ∈ {d/2, . . . , k} ∧ yj ≥ 0 ∀j ∈ [k]



The authors of [ZJX11] proved that the Compact Johnson Bound (Corollary 117) can
be interpreted as feasible solution for the constraints of the minimization linear program
in Theorem 121. Therefore, the Linear Programming bound yields a stronger upper bound
than the Compact Johnson bound, but numerical computations for small parameters
(q ≤ 9 and v ≤ 30) indicate that both bounds are equal, i.e.,

[ v
k−d/2+1

]
q
/
[

k
k−d/2+1

]
q

is assumed to be the optimal value for any linear program in Theorem 121 for these
parameters.

Sporadic cases In only two non-partial spread cases, the upper bound could be further
improved:

122 Theorem ([HKK15, Theorem 1])
A2(6, 4; 3) = 77.

123 Proposition (Theorem 191 and [HK17a])
A2(8, 6; 4) = 257.
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7 Known upper bounds

Unfortunately, these two improved upper bounds do not tighten Corollary 116 for any
set of parameters as Lemma 198 shows.

7.1 Upper bounds for partial spreads

In the case of partial spreads, i.e., CDCs with maximum possible subspace distance d = 2k,
more elaborate upper bounds are known. Interestingly, they involve the remainder r ≡ v
(mod k) with 0 ≤ r < k. The question of the best upper bound in the subclass of spreads,
i.e., r = 0, is completely settled.

124 Theorem ([Seg64, §VI])
Let q ≥ 2 be a prime power and 1 ≤ k ≤ v be integers. Then Fvq contains a spread iff
k | v.

Since a k-spread in Fvq is a (v, (qv − 1)/(qk − 1), 2k; k)q CDC, it fulfills the simplest of
all upper bounds for partial spreads with equality:

125 Corollary
For q ≥ 2 prime power and 2 ≤ k ≤ v− k integers, we have Aq(v, 2k; k) ≤ qv−1

qk−1
which is

equality iff k | v. Moreover, using v = tk + r, 2 ≤ t, and 0 ≤ r < k integers, we have⌊
qv−1
qk−1

⌋
= qv−qk+r

qk−1
+ qr.

Proof
Since the minimum distance is 2k, any point in Fvq is in at most one codeword. There are
[ v1 ]q = qv−1

q−1 points in Fvq , and
[
k
1

]
q

= qk−1
q−1 points in any codeword, so the first statement

follows immediately.

The last statement follows from
⌊
qv−1
qk−1

⌋
= qk+r q

k(t−1) − 1

qk − 1︸ ︷︷ ︸
∈Z

+qr +

⌊
qr − 1

qk − 1

⌋
︸ ︷︷ ︸

=0

. �

Note that this is also the Anticode bound Theorem 107 applied to d/2 = k.
Superior upper bounds are known if one focuses on partial spreads with k - v. If the

remainder r is one then the question of the best upper bound is also settled.

126 Theorem ([Beu75])
For q ≥ 2 prime power and integers v = tk + r, 2 ≤ t, 0 ≤ r < k, we have Aq(v, 2k; k) ≥
qv−qk+r

qk−1
+ 1 with equality for r ≤ 1.
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7.1 Upper bounds for partial spreads

This construction provides codes of the same size as Theorem 58.
By a computer search described in [ElZ+10], an (8, 34, 6; 3)2 CDC was found, which

improves on the construction of Theorem 126 by exactly one. Applying the upper bound
of Theorem 129, one gets A2(8, 6; 3) = 34 and recursively A2(8+3l, 6; 3) for l ≥ 0. Besides
these parameters, no partial spread exceeding the lower bound from Theorem 126 is
known. This also settled the determination of the best upper bound if q = 2 ∧ v ≡ 2
(mod 3) (6 ≤ v integer).

127 Theorem ([ElZ+10, Theorem 5])
For 2 ≤ t we have A2(3t+ 2, 6; 3) = 23t+2−25

23−1
+ 2.

For the remaining values of k, i.e., q = 2 ∧ v ≡ 2 (mod k) for arbitrary 4 ≤ k ≤ v − k
integers, the question of the best upper bound could also be answered. They match the
cardinality of the construction in Theorem 126.

128 Theorem ([Kur17a, Theorem 4.3])
For 2 ≤ t and 4 ≤ k we have A2(tk + 2, 2k; k) = 2tk+2−2k+2

2k−1
+ 1.

For almost 30 years the best general upper bound was given by Drake and Freeman.

129 Theorem ([DF79, Corollary 8], cf. [BB52])
For q ≥ 2 prime power and integers v = tk + r, 2 ≤ t, 1 ≤ r < k, and
θ = b(

√
1 + 4qk(qk − qr)−(2qk−2qr+1))/2c we have Aq(v, 2k; k) ≤ qv−qk+r

qk−1
+qr−1−θ.

Quite recently this bound could be improved by considering the non-covered points of
a partial spread as columns of a generator matrix of a linear, projective, and divisible
code together with the linear programming method, cf. [Hei+17b; HKK18a; HKK18b].
In fact Theorem 129 is a special case of Theorem 130 for y = k.

130 Theorem ([Kur17b, Theorem 2.10] and [DF79] for y = k)
For q ≥ 2 prime power and integers v = tk + r, 2 ≤ t, 1 ≤ r < k, 0 ≤ z = [r]q + 1− k,
and max{r, 2} ≤ y ≤ k, we have

Aq(v, 2k; k) ≤ qv − qk+r

qk − 1
+

⌈
qy − 1

2
− 1

2

√
1 + 4qy(qy − (z + y − 1)(q − 1)− 1)

⌉
.
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7 Known upper bounds

The next theorem shows that the construction of Theorem 126 is asymptotically optimal,
i.e., if k is much larger than the remainder of the division of v by k.

131 Theorem ([NS17, Theorem 5])
For q ≥ 2 prime power and integers v = tk + r, 2 ≤ t, 1 ≤ r < k, and [r]q < k, we have
Aq(v, 2k; k) = qv−qk+r

qk−1
+ 1.

Since [2]2 = 3 < k, Theorem 131 contains Theorem 128 as special case.
Applying similar techniques, the result was generalized to k ≤ [r]q. In fact, Theorem 131

is a special case of Theorem 132 with z = 0 and the upper bound of Theorem 127 is a
special case of Theorem 132 with z = 1.

132 Theorem ([Kur17b, Theorem 2.9] and [NS17] for z = 0)
For q ≥ 2 prime power and integers v = tk + r, 2 ≤ t, 1 ≤ r < k, and z = max{0, [r]q +

1− k} ≤ [r]q/2 we have Aq(v, 2k; k) ≤ qv−qk+r

qk−1
+ 1 + z(q − 1).

Using Theorem 130 the restriction z ≤ [r]q/2 can be removed from Theorem 132,
cf. [HKK18a].

There are also 21 sporadic series that are better by exactly one compared to Theorem 130
and Theorem 132.

133 Theorem ([Kur17b, Appendix])
Let 2 ≤ t. Then

A2(4t+ 3, 8; 4) ≤ 24 · 24t−1−23

24−1
+ 4

A2(6t+ 4, 12; 6) ≤ 26 · 26t−2−24

26−1
+ 8

A2(6t+ 5, 12; 6) ≤ 26 · 26t−1−25

26−1
+ 18

A3(4t+ 3, 8; 4) ≤ 34 · 34t−1−33

34−1
+ 14

A3(5t+ 3, 10; 5) ≤ 35 · 35t−2−35

33−1
+ 13

A3(5t+ 4, 10; 5) ≤ 35 · 35t−1−34

35−1
+ 44

A3(6t+ 4, 12; 6) ≤ 36 · 36t−2−34

36−1
+ 41

A3(6t+ 5, 12; 6) ≤ 36 · 36t−1−35

36−1
+ 133

A3(7t+ 4, 14; 7) ≤ 37 · 37t−3−34

37−1
+ 40

A4(5t+ 3, 10; 5) ≤ 45 · 45t−2−43

45−1
+ 32

A4(6t+ 3, 12; 6) ≤ 46 · 46t−3−43

46−1
+ 30

A4(6t+ 5, 12; 6) ≤ 46 · 46t−1−45

46−1
+ 548

A4(7t+ 4, 14; 7) ≤ 47 · 47t−3−44

47−1
+ 128

A5(5t+ 2, 10; 5) ≤ 55 · 55t−3−52

55−1
+ 7

A5(5t+ 4, 10; 5) ≤ 55 · 55t−1−54

55−1
+ 329

A7(5t+ 4, 10; 5) ≤ 75 · 75t−1−72

75−1
+ 1246

A8(4t+ 3, 8; 4) ≤ 84 · 84t−1−83

84−1
+ 264

A8(5t+ 2, 10; 5) ≤ 85 · 85t−3−82

85−1
+ 25

A8(6t+ 2, 12; 6) ≤ 86 · 86t−4−82

86−1
+ 21

A9(3t+ 2, 6; 3) ≤ 93 · 93t−1−92

93−1
+ 41

A9(5t+ 3, 10; 5) ≤ 95 · 95t−2−93

95−1
+ 365
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7.2 Overview

Currently, Corollary 125 (in the spread case), Theorem 130, Theorem 132, and Theo-
rem 133 constitute the tightest parametric bounds for partial spreads.

Theorem 108 improves on the upper bound of partial spreads compared to Corollary 125.

134 Proposition
For q ≥ 2 prime power, 2 ≤ k, 1 ≤ w, and qw+3 ≤ k integers, we have Aq(2k+w, 2k; k) ≤
Aq(2k + w − 1, 2k − 2; k − 1) and this is tighter then Aq(2k + w, 2k; k) ≤

⌊
q2k+w−1
qk−1

⌋
=

qk+w + qw, which is implied by Corollary 125.

Proof
Note that qw + 3 ≤ k ⇒ w < k. The first inequality follows from Theorem 108 with
m = 2k + w − 1 and t = 1 involving Lemma 3 and the equality from q2k+w − 1 =
(qk+w + qw)(qk − 1) + qw − 1. We have [w + 1]q = [w]q + qw by the definition of the
q-number (or by Lemma 3) and qw + 3 ≤ k ⇔ [w]q ≤ (k − 4)/(q − 1). In particular,
[w+1]q = [w]q+q

w ≤ qw+(k−4)/(q−1) ≤ (k−3)+(k−4) ≤ 2k−4⇔ [w+1]q+1−(k−1) ≤
[w + 1]q/2 is needed for the existence of a suitable z in Theorem 132 with t = 2 and
r = w + 1, which in turn shows

Aq(2k + w − 1, 2k − 2; k − 1) ≤ q2k+w−1 − qk+w

qk−1 − 1
+ 1 + z(q − 1) = qk+w + 1 + z(q − 1).

Finally, z ≤ [w + 1]q + 1− (k − 1) = [w]q − k + 2 + qw < [w]q implies

qk+w + 1 + z(q − 1) < qk+w + 1 + [w]q(q − 1) = qk+w + qw. �

7.2 Overview

For q ≥ 2 prime power and 2 ≤ d/2 ≤ k ≤ v − k integers, an overview of dominance
relations between upper bounds is depicted here. An arrow A→ B means in this context,
that the bound A is at most the value of the bound B on all parameters on which both
are defined that fulfill q ≥ 2 prime power and 2 ≤ d/2 ≤ k ≤ v − k integers. If this is a
tie then A → B means that the parameters on which A is defined is a superset of the
parameters on which B is defined.
Figure 8 shows the dominance relations for d/2 < k without the two sporadic cases

in Theorem 122 and Proposition 123 and Figure 9 shows the dominance relations for
d/2 = k without the 21 sporadic series in Theorem 133 and without the spread case, i.e.,
k | v.

123



7 Known upper bounds

Improved Johnson bound
Theorem 119

Johnson IIa, Inequality 7.1
Theorem 113

Recursive Johnson IIa
Corollary 116

Anticode bound
Theorem 107

Sphere-packing bound
Theorem 106

Johnson IIb, Inequality 7.2
Theorem 113

Ahlswede Aydinian
Theorem 108

Recursive Improved
Johnson bound Corollary 120

Linear Programming bound
Theorem 121

Singleton bound
Theorem 109

Figure 8: Dominance relations of upper bounds for non-partial spread CDCs, without
the two sporadic cases.

Theorem 108
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8 The improved linkage construction

Contents of this chapter were previously published in [HK17b].
We slightly improve the so-called linkage construction by Gluesing-Luerssen, Troha / Mor-

rison [GMT15; GT16] and Silberstein, Trautmann [ST15], which yields the best known
lower bounds for Aq(v, d; k) for many parameters, see e.g. http://subspacecodes.
uni-bayreuth.de associated with [Hei+16].
In [GT16] Gluesing-Luerssen and Troha introduced the so-called linkage construction

which uses two constant dimension codes of the same codeword-dimension k, subspace
distance d, and field size q. These two CDCs may still differ in their ambient vector
space and cardinality. Together with a fitting rank metric code, the linkage construction
embeds both CDCs in a larger common ambient space while padding one of the two
CDCs with the matrices of the rank metric code. This idea leads to a recursive lower
bound for Aq(v, d; k) which is one of the largest for general parameters.
The same method was invented independently by Silberstein and Trautmann as a

Corollary to their Construction D in [ST15] and also appeared in [GMT15, Theorem 5.1]
for cyclic orbit codes and in [EV11a, Theorem 11] for spreads.

135 Theorem ([GT16, Theorem 2.3], cf. [ST15, Corollary 39])
For q ≥ 2 prime power, 0 ≤ k ≤ vi integers, di even integer (i ∈ {1, 2}), and an integer
dr, let Ci be a non-empty (vi, Ni, di; k)q CDC for i ∈ {1, 2} and let Cr be a non-empty
[k × v2, nr, dr]q linear rank metric code. Then

{τ−1(τ(U) |M) : U ∈ C1,M ∈ Cr} ∪ {τ−1(0k×v1 | τ(W )) : W ∈ C2}

is a (v1 + v2, N1q
nr +N2,min{d1, d2, 2dr}; k)q CDC.

Since the generated CDC depends on the choice of C1, C2, and Cr and in particular
their representatives within isomorphism classes, one typically obtains many isomorphism
classes of CDCs with the same parameters.
[ST15, Theorem 37] corresponds to the weakened version of Theorem 135 in which

C2 = ∅, cf. [GMT15, Theorem 5.1]. In [ST15, Corollary 39] Silberstein and Trautmann
obtain the same cardinality, by assuming d1 = d2 = 2dr which is indeed the optimal
choice, and 3k ≤ v, which is no restriction since for 2k ≤ v ≤ 3k − 1 the optimal choice
of ∆ in [ST15, Corollary 39] is given by ∆ = v − k and in that case the constructed
CDC is an LMRD code extended with a (v − k,N, d; k)q CDC. For v − k < ∆ ≤ v the
constructed code is an embedded (∆, N, d; k)q CDC.
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8 The improved linkage construction

The main aspect about the last theorem is that the pivot vectors of any codeword
in {τ−1(τ(U) | M) : U ∈ C1,M ∈ Cr} and the pivot vector for any codeword in
{τ−1(0k×v1 | τ(W )) : W ∈ C2} have their ones in distinct positions. Hence, Lemma 54
guarantees that their subspace distance is large enough. Applying the very same lemma
can increase the size of the constructed code by allowing the second CDC to be in a larger
ambient space, i.e., the ones in the pivot vectors may overlap. This in turn shows that
Theorem 135 is a special case involving d = 2k and linearity of the rank metric codes of
the following theorem.

136 Theorem ([HK17b, Theorem 18])
For q ≥ 2 prime power, 0 ≤ k ≤ vi integers, 2 ≤ di even integer (i ∈ {1, 2}), 1 ≤ dr ∈ Z,
and 2 ≤ d even integer, let Ci be a non-empty (vi, Ni, di; k)q CDC for i ∈ {1, 2} and let
Cr be a non-empty (k × (v2 − k + d/2), Nr, dr)q rank metric code. Then

{τ−1(τ(U) |M) : U ∈ C1,M ∈ Cr} ∪ {τ−1(0k×(v1−k+d/2) | τ(W )) : W ∈ C2}

is a (v1 + v2 − k + d/2, N1Nr +N2,min{d1, d2, 2dr, d}; k)q CDC.

Proof
Denote the sets with C1 = {τ−1(τ(U) |M) : U ∈ C1,M ∈ Cr}, C2 = {τ−1(0k×(v1−k+d/2) |
τ(W )) : W ∈ C2}, and C = C1 ∪ C2. The dimension of the ambient space and the
codewords of C directly follow from the construction. Since the constructed matrices are
all in RREF and pairwise distinct, C is well defined and we have #C = N1Nr +N2. It
remains to lower bound the minimum subspace distance of C.
Let A,C ∈ C1 and B,D ∈ Cr. If A 6= C, then

ds(τ
−1(τ(A) | B), τ−1(τ(C) | D)) = 2

(
rk
(
τ(A) B
τ(C) D

)
− k
)

≥ 2
(

rk
(
τ(A)
τ(C)

)
− k
)

= ds(A,C) ≥ d1.

If A = C but B 6= D, we have

ds(τ
−1(τ(A) | B), τ−1(τ(C) | D)) = 2

(
rk
(
τ(A) B
τ(C) D

)
− k
)

= 2
(

rk
(
τ(A) B
0 D−B

)
− k
)

= 2(k + rk(D −B)− k) ≥ 2dr.

For A′ 6= C ′ ∈ C2,

ds(τ
−1(0k×(v1−k+d/2) | τ(A′)), τ−1(0k×(v1−k+d/2) | τ(C ′))) = ds(A

′, C ′) ≥ d2.

At last, for two codewords U ∈ C1 and W ∈ C2, we apply Lemma 54. The pivot
vector p(U) has its k ones in the first v1 positions and the pivot vector p(W ) has
its k ones not in the first v1 − k + d/2 positions, so that the ones can coincide at
most at the positions {v1 − k + d/2 + 1, . . . , v1}. Thus, ds(U,W ) ≥ dh(p(U), p(W )) ≥
k − (k − d/2) + k − (k − d/2) = d. �
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The next example shows a case in which Theorem 136 improves on Theorem 135.

137 Example ([HK17b])
Consider (7, N, 4; 3)2 CDCs.
On the one hand, applying Theorem 135 implies (v1, v2) ∈ {(3, 4), (4, 3)} and 4 ≤

min{d1, d2, 2dr}. We have #C1 ≤ A2(v1, d1; 3) = 1 and #C2 ≤ A2(v2, d2; 3) = 1 in both
cases. Hence, the size of the constructed code is bounded by N ≤ 1 · 22v2 + 1 ≤ 257.
On the other hand, Theorem 136 allows to choose d = 4, i.e., the pivot-ones may

overlap in exactly one position. This allows to choose (v1, v2) = (3, 5), d1 = d2 = 2dr = 4,
#C1 = A2(3, 4; 3) = 1, and #C2 = A2(5, 4; 3) = 9. Using a (3 × 4, 28, 2)2 MRD code
allows to construct a CDC of size N = 1 · 28 + 9 = 265.

For (7, N, 4; 3)2 CDCs, Theorem 136 is inferior compared to the best known lower bound
333, cf. Theorem 171. This situation changes in general. For 2 ≤ q ≤ 9 prime power, 2 ≤
d/2 ≤ k ≤ v − k, and v ≤ 19 integers Theorem 135 provides the best known lower bound
for Aq(v, d; k) in 42.1% of the cases, while Theorem 136 provides the best known lower
bound in 69.1% of the cases, see http://subspacecodes.uni-bayreuth.de/cdctoplist/
associated with [Hei+16] for details. Since Theorem 135 is a special case of Theorem 136
the set of parameters for which Theorem 135 gives the best known lower bound is a subset
of the set of parameters where Theorem 136 yields the best known lower bound.

Although Theorem 136 has some degrees of freedom, some of its parameters are obvious,
if one wants to construct codes of largest possible size. First, both involved CDCs have
to be maximum CDCs of cardinality Aq(vi, di; k) or a reasonable lower bound, if the
exact value is unknown. Second, the rank metric code has to be an MRD code of size⌈
qmax{k,v2−k+d/2}(min{k,v2−k+d/2}−dr+1)

⌉
. Third, d1 = d2 = 2dr ≤ d, since otherwise it

would be possible to increase the sizes of the involved rank metric codes or CDCs and
therefore the size of the constructed code, until this condition is achieved. Fourth, the
condition can be sharpened to d1 = d2 = 2dr = d as the following lemma shows. By
increasing d, the ambient space dimension of the constructed CDC increases together with
Nr and N2, but for a larger ambient space a more tailored application of Theorem 136
allows larger CDCs.

138 Lemma
For q ≥ 2 prime power, k, vi, di, dr, d, l ∈ Z (i ∈ {1, 2}) and 0 ≤ k ≤ vi, 2 ≤ di even
(i ∈ {1, 2}), 1 ≤ dr ∈ Z, 2 ≤ d even, and 2 ≤ l even, we have

Aq(v1, d; k) ·
⌈
qmax{k,v2−k+(d+l)/2}(min{k,v2−k+(d+l)/2}−d/2+1)

⌉
+ Aq(v2, d; k) ≤

Aq(v1, d; k) ·
⌈
qmax{k,(v2+l/2)−k+d/2}(min{k,(v2+l/2)−k+d/2}−d/2+1)

⌉
+ Aq((v2 + l/2), d; k).
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8 The improved linkage construction

Proof
Since v2 − k + (d + l)/2 = (v2 + l/2) − k + d/2 both first summands are equal and
Aq(v2, d; k) ≤ Aq((v2 + l/2), d; k) concludes the proof. �

This discussion provides the following two corollaries of Theorem 136.

139 Corollary ([HK17b, Corollary 3])
For q ≥ 2 prime power, 0 ≤ k ≤ min{v1, v2} integers, and 2 ≤ d even, we have

Aq(v1 + v2 − k + d/2, d; k)

≥ Aq(v1, d; k) ·
⌈
qmax{k,v2−k+d/2}(min{k,v2−k+d/2}−d/2+1)

⌉
+ Aq(v2, d; k).

By a variable substitution:

140 Corollary ([HK17b, Corollary 4])
For q ≥ 2 prime power, 0 ≤ k ≤ m ≤ v − d/2 integers, and 2 ≤ d even, we have

Aq(v, d; k)

≥ Aq(m, d; k) ·
⌈
qmax{k,v−m}(min{k,v−m}−d/2+1)

⌉
+ Aq(v −m+ k − d/2, d; k).

Not all possible values of m are of interest. In fact cardinalities for small values of m
are exceeded by the choice m∗ = k.

141 Lemma
For q ≥ 2 prime power, 2 ≤ d/2 ≤ k ≤ v− k integers, k ≤ m ≤ min{d/2 + k− 1, v− k},
and m∗ = k we have

Aq(m, d; k) ·
⌈
qmax{k,v−m}(min{k,v−m}−d/2+1)

⌉
+ Aq(v −m+ k − d/2, d; k)

≤ Aq(m
∗, d; k) ·

⌈
qmax{k,v−m∗}(min{k,v−m∗}−d/2+1)

⌉
+ Aq(v −m∗ + k − d/2, d; k)

= q(v−k)(k−d/2+1) + Aq(v − d/2, d; k)

and the corresponding CDC contains an LMRD.

Proof
First, Aq(m, d; k) = 1 iff 0 ≤ k ≤ m and d/2 > min{k,m− k}. The latter is implied by
m ≤ k+ d/2− 1. Hence, using k ≤ v−m, Aq(m, d; k) ·

⌈
qmax{k,v−m}(min{k,v−m}−d/2+1)

⌉
+

Aq(v−m+ k− d/2, d; k) simplifies to qλ(k−d/2+1) + Aq(λ+ k− d/2, d; k) with λ = v−m.
This term is maximal if λ is maximal, i.e., m is minimal which is the case for m∗ = k.�
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142 Example
For the parameters of A2(9, 4; 3) we can apply Corollary 140 for all m ∈ {3, . . . , 7}. The
following table lists

A2(9, 4; 3) ≥ A2(m, 4; 3) · 2max{3,9−m}(min{3,9−m}−1) + A2(10−m, 4; 3)

for all m ∈ {3, . . . , 7}. As implied by Lemma 141, m = 3 is superior to m = 4 but the
best lower bound of this method uses m = 6.

m A2(m, 4; 3) 2max{3,9−m}(min{3,9−m}−1) A2(10−m, 4; 3) A2(9, 4; 3) ≥
3 1 26·2 ≥ 333 4429
4 1 25·2 77 1101

5 9 24·2 9 2313
6 77 23·2 1 4929
7 ≥ 333 23·1 1 2665

The next question is to examine the case when there is no other possibility for m that
is not covered by Lemma 141.

143 Corollary
For q ≥ 2 prime power, 2 ≤ k ≤ v−k integers with v ≤ 3k−1, and d = 2k, the improved
linkage construction is equivalent to an extended LMRD, i.e., Aq(v, 2k; k) ≥ qv−k + 1,
which is also the upper bound for CDCs containing an LMRD for these parameters.

Proof
Using v − d/2 ≤ min{d/2 + k − 1, v − k} ⇔ v ≤ 3k − 1, the lower bound of the improved
linkage construction of Corollary 140 is maximized by Lemma 141 for all possible m.
The last part follows with Aq(v − k, 2k; k) = 1 iff 0 ≤ k ≤ v − k and d/2 = k >

min{k, v − 2k}, i.e., 2k ≤ v < 3k and Proposition 99. �

Although the last statement is valid for many partial spreads, we can analyze the
spread case in more detail.

144 Lemma ([HK17b, Lemma 4])
If d = 2k and k | v, then Corollary 140 gives Aq(v, d; k) ≥ qv−1

qk−1
for allm = k, 2k, . . . , v−k

and smaller sizes otherwise.
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8 The improved linkage construction

Proof
Using Corollary 125, we get Aq(v

′, 2k; k) = (qv
′ − 1)/(qk − 1) for all integers v′ being

divisible by k and obtain

Aq(v, 2k; k) ≥ Aq(m, 2k; k) ·
⌈
qmax{k,v−m}(min{k,v−m}−k+1)

⌉
+ Aq(v −m, 2k; k)

=
qm − 1

qk − 1
· qv−m +

qv−m − 1

qk − 1
=
qv − 1

qk − 1

if k divides m. Otherwise, Aq(m, 2k; k) < qm−1
qk−1

and Aq(v −m, 2k; k) < qv−m−1
qk−1

imply for
the right hand side

Aq(m, 2k; k) · qv−m + Aq(v −m, 2k; k) <
qm − 1

qk − 1
· qv−m +

qv−m − 1

qk − 1
=
qv − 1

qk − 1
. �

Algorithm 4 Dynamic programming approach for the tightest application of Corol-
lary 140.
Require: q ≥ 2 prime power, 0 ≤ k, 0 ≤ vmax integers, and 2 ≤ d even, f : Z≥k+d/2 → Z

such that f(v) ≤ Aq(v, d; k).
Ensure: a(v) ≤ Aq(v, d; k) for all integral v ≤ vmax.
1: for v ∈ {−∞, . . . , k − 1} do
2: a(v)← 0
3: end for
4: for v ∈ {k, . . . , k + d/2− 1} do
5: a(v)← 1
6: end for
7: for v ∈ {k + d/2, . . . , vmax} do
8: a(v)← f(v)
9: for m ∈ {k, . . . , v − d/2} do

10: if k < m ≤ min{k + d/2− 1, v − k} then
11: . By Lemma 141 these m are inferior to m∗ = k.
12: continue
13: end if
14: t← a(m)

⌈
qmax{k,v−m}(min{k,v−m}−d/2+1)

⌉
+ a(v −m+ k − d/2)

15: . only uses a(i) for i ≤ v − d/2
16: a(v)← max{a(v), t}
17: end for
18: end for
19: return a(·)

The tightest evaluation of Corollary 140 can be computed with a dynamic programming
approach, as depicted in Algorithm 4. This algorithm also uses an oracle f which
incorporates additional lower bounds of Aq(v, d; k) in order to strengthen the computed
lower bounds.
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By arithmetic progressions of step size s, we can apply Corollary 140 recursively such
that only two starting values are necessary.

145 Proposition ([HK17b, Proposition 6])
For q ≥ 2 prime power and integers 0 ≤ k ≤ v0, 1 ≤ d/2 ≤ s, and 0 ≤ l, we have

Aq(v0 + ls, d; k) ≥ Aq(v0, d; k) · bl + Aq(s+ k − d/2, d; k)[l]b

with b =
⌈
qmax{k,s}(min{k,s}−d/2+1)

⌉
.

If additionally 2k ≤ v0 + d/2 and d/2 ≤ k + 1, then we have

Aq(v0 + ls, d; k) ≥ Aq(s+ k − d/2, d; k) · (qk−d/2+1)
v0−k+d/2

[l]qs(k−d/2+1) + Aq(v0, d; k).

Proof
Both sides of both parts of the proposition are equal if l = 0 and hence we assume wlog. 1 ≤
l. Next, we abbreviate a(x) = Aq(x, d; k) and b(x) =

⌈
qmax{k,x}(min{k,x}−d/2+1)

⌉
. Using

this shortened notation, Corollary 140 is simply: a(v) ≥ a(m)b(v−m)+a(v−m+k−d/2)
for all m ∈ {k, . . . , v − d/2}.
Let v = v0 + ls and m = v0 + (l − 1)s. Since 1 ≤ l, k ≤ v0, and d/2 ≤ s, we have

k ≤ m ≤ v − d/2. Then applying Corollary 140 yields

a(v0 + ls) ≥ a(v0 + (l − 1)s) · b(s) + a(s+ k − d/2)

and by induction

a(v0 + ls) ≥ a(v0 + (l − i)s) · b(s)i + a(s+ k − d/2)[i]b(s)

for all i ∈ {0, . . . , l} which is the first part of the proposition for i = l.
For the second part, applying Corollary 140 with v = v0 + ls and m = s + k − d/2,

again with k ≤ m ≤ v − d/2, gives

a(v0 + ls) ≥ a(s+ k − d/2) · b(v0 + (l − 1)s− k + d/2) + a(v0 + (l − 1)s),

and by induction for all i ∈ {0, . . . , l}:

a(v0 + ls) ≥ a(s+ k − d/2) ·
i∑

j=1

b(v0 + (l − j)s− k + d/2) + a(v0 + (l − i)s).

If 2k ≤ v0 + d/2 and d/2 ≤ k + 1, then

b(v0 + (l − j)s− k + d/2) = (qk−d/2+1)
v0+(l−j)s−k+d/2

,
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8 The improved linkage construction

so that
l∑

j=1

b(v0 + (l − j)s− k + d/2) =
l∑

j=1

(qk−d/2+1)
v0+(l−j)s−k+d/2

=

(qk−d/2+1)
v0−k+d/2

l−1∑
r=0

(qs(k−d/2+1))
r

= (qk−d/2+1)
v0−k+d/2

[l]qs(k−d/2+1) . �

146 Example ([HK17b, Example 1])
Using A2(13, 4; 3) = 1597245 [Bra+16] and A2(7, 4; 3) ≥ 333 [Hei+16], the application
of Proposition 145 with s = 6 gives

A2(13 + 6l, 4; 3) ≥ 4096l · 1597245 + 333 · 4096l − 1

4095

and

A2(13 + 6l, 4; 3) ≥ 333 · 16777216 · 4096l − 1

4095
+ 1597245

for all l ≥ 0.

Proposition 155 shows that the first lower bound almost meets the Anticode bound, cf.
Theorem 107 asymptotically.

It is easy to generalize Theorem 136 to more than two involved CDCs.

147 Corollary ([HK17b, Corollary 5])
For q ≥ 2 prime power and integers 1 ≤ k ≤ vi, 2 ≤ m, and i ∈ {1, . . . ,m}, let

• Ci be a non-empty (vi, Ni, di; k)q CDC,

• CRi be a non-empty (k × vRi , NR
i , d

R
i )q rank metric code,

• vR1 = 0, CR1 = ∅, NR
1 = 1, dR1 =∞, and

• δi ∈ Z, δi ≤ k − 1, δm = 0, vRi =
∑i−1

j=1(vj − δj) for i 6= 1.

Then
m⋃
i=1

{
τ−1(0k×(v−vi−vRi ) | τ(Ui) |Mi) : Ui ∈ Ci,Mi ∈ CRi

}
is a (v,N, d; k)q CDC with

• v =
∑m

i=1(vi − δi),

• N =
∑m

i=1Ni ·NR
i , and

• d = min{di, 2dRi , 2(k − δi) | i = 1, . . . ,m}.
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Proof
By inductively applying Theorem 136 up to m − 1 times, we prove that for all m′ ∈
{1, . . . ,m} there is a(
vm′+v

R
m′ ,

m′∑
i=1

Ni ·NR
i ,min{dm′ , 2dRm′ ,min{di, 2dRi , 2(k − δi)|i ∈ {1, . . . ,m′ − 1}}}; k

)
q

CDC

C{1,...,m′} =

m′⋃
i=1

{
τ−1(0k×(vm′+v

R
m′−vi−v

R
i ) | τ(Ui) |Mi) : Ui ∈ Ci,Mi ∈ CRi

}
,

which then concludes the prove for m′ = m.
This claim is trivially valid for m′ = 1 with C{1} = C1 and for m′ = 2 applying

Theorem 136 for C1, C2, and CR2 with d = 2(k − δ1) ≥ 2 yields a (v1 + v2 − δ1, N1 +N2 ·
NR

2 ,min{d1, d2, 2d
R
2 , 2(k − δ1)}; k)q CDC C{1,2}.

Let ιn : 2

[
Fv
′
q

k

]
→ 2

[
Fnq
k

]
with v′ ≤ n and ιn(S) = {τ−1(0k×(n−v′) | τ(U)) : U ∈ S)} be

an embedding of subspaces in an ambient space of dimension n.
If C{1,...,m′} has the stated properties, then using Theorem 136 with C{1,...,m′}, Cm′+1,

CRm′+1, and d = 2(k − δm′) ≥ 2, we construct a(
vm′+1 + vRm′+1,

m′+1∑
i=1

Ni ·NR
i , D; k

)
q

CDC

C{1,...,m′+1} = ιvm′+1+vR
m′+1

(C{1,...,m′}) ∪ {τ−1(τ(U) |M) : U ∈ Cm′+1,M ∈ CRm′+1}

with

D = min{dm′+1,min{dm′ , 2dRm′ ,min{di, 2dRi , 2(k − δi) | i ∈ {1, . . . ,m′ − 1}}},
2dRm′+1, 2(k − δm′)}

= min{dm′+1, 2d
R
m′+1,min{di, 2dRi , 2(k − δi) | i ∈ {1, . . . ,m′}}}. �

The sizes of the codes of Corollary 147 are inferior compared to the dynamic program-
ming approach, since its proof consists also of multiple applications of Theorem 136.
However, it can be used to prove:

148 Corollary ([HK17b, Corollary 6], cf. [GT16, Theorem 4.6])
For q ≥ 2 prime power and integers 1 ≤ k ≤ min{v1, v2}, 2 ≤ d/2, a [k×(v1+v2), n, d/2]q
linear MRD code CR and (vi−2, Ni, d; k)q CDCs Ci for i ∈ {3, 4}. Then

{τ−1(Ik×k |M) : M ∈ CR}
∪{τ−1(0k×k | τ(U) | 0k×v2) : U ∈ C3}
∪{τ−1(0k×k | 0k×v1 | τ(U)) : U ∈ C4}
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8 The improved linkage construction

is a (v1 + v2 + k, q(v1+v2)(k−d/2+1) +N3 +N4, d; k)q CDC.

Proof
Applying Corollary 147 with

• m = 3

• C̄1 = C4, C̄2 = C3,

• C̄3 = {τ−1(Ik×k)} (i.e., an (k, 1,∞; k)q CDC)

• δ1 = δ2 = δ3 = 0

• C̄R1 = ∅

• C̄R2 = {0k×v2} (i.e., an (k × v2, 1,∞)q rank metric code)

• C̄R3 = CR

yields the (v1 + v2 + k, q(v1+v2)(k−d/2+1) +N3 +N4, d; k)q CDC in question. �

Interestingly, Corollary 148 constructs not necessarily the same codes as [GT16, Theo-
rem 4.6]. Although they have the same cardinality, since the latter constructions involves
matrices A | B such that dr ≤ min{rk(A), rk(B)}, while our construction involves matrices
C of the same size as A | B with dr ≤ rk(C).
This is not equivalent as the following small example shows: It is not possible to

split C =
(
Ik−1

0
| 0 | . . . | 0 | w

)
, where w is a non-zero column, in two matrices A =(

Ik−1

0
| 0 | . . . | 0

)
and B = (0 | . . . | 0 | w) both having rank at least dr for 2 ≤ dr ≤ k.

Conclusively, we remark that an application of Corollary 140 with 2k ≤ m ≤ v − k
using an LMRD in the CDC C1 cannot generate a CDC that exceeds the LMRD bound
of Proposition 99.

149 Lemma ([HK17b, Lemma 6])
For q ≥ 2 prime power, 0 ≤ k ≤ vi integers, 2 ≤ di even integer (i ∈ {1, 2}), 1 ≤
dr ∈ Z, and 2 ≤ d even let Ci be a (vi, Ni, di; k)q CDC for i ∈ {1, 2} and let Cr be a
(k × (v2 − k + d/2), Nr, dr)q rank metric code.

If additionally k ≤ min{v1/2, (v1 + v2 + d/2)/3}, dr = d1/2, d1 ≤ d2, d1 ≤ d, Cr is
MRD, and C1 contains an LMRD in

[
F
v1
q

k

]
, then the CDC constructed in Theorem 136

contains an LMRD in
[

F
v1+v2−k+d/2
q

k

]
.
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Proof
Let {τ−1(Ik×k | M) : M ∈ R} ⊆ C1 be the lifted MRD code in C1. Since R is a
(k × (v1 − k),#R, d1/2)q MRD code, we have #R = q(v1−k)(k−d1/2+1). The first set of
the construction contains

{τ−1(Ik×k |M | A) : M ∈ R,A ∈ Cr}

in which {(M | A) : M ∈ R,A ∈ Cr} forms a (k × (v1 + v2 − 2k + d/2), N, dr)q rank
metric code of size N = q(v1−k)(k−d1/2+1) · q(v2−k+d/2)(k−dr+1) = q(v1+v2−2k+d/2)(k−dr+1),
hence it is an MRD code. �

135





9 Asymptotic bounds

Contents of this chapter were previously published in [HK17b].
For q ≥ 2 prime power and 2 ≤ d/2 ≤ min{k, v − k} integers the ratio “LMRD /

Singleton” is at least 1/4 and converges to 1 for increasing q Lemma 8, cf. [KK08b]:

qmax{k,v−k}(min{k,v−k}−d/2+1)[
v−d/2+1

max{k,v−k}

]
q

≥ qmax{k,v−k}(min{k,v−k}−d/2+1)

µ(q) · qmax{k,v−k}(min{k,v−k}−d/2+1)
= µ(q)−1 >

1

4
.

In this chapter, we tighten this analysis to get a ratio “best known lower bound / best
known upper bound” of at least 0.616081 for all q ≥ 2 prime power and 2 ≤ d/2 ≤ k ≤ v−k
integers and in fact, using the q-Pochhammer symbol, cf. Page 20,

(1/q; 1/q)k

(1− q−(d/2)2 · 1d≤k+1)(1/q; 1/q)d/2−1

is the largest known general lower bound of this ratio that we will derive in this chapter.
This might be improved as [ES13, Table 2], only exemplarily for d = 4, indicates.

An asymptotic result involving the non-constructive probabilistic method was applied
for fixed d and k (or fixed v − k due to orthogonal codes) to show that the ratio of
“best known lower bound / best known upper bound” tends to 1 for increasing v, cf.
[FR85, Theorem 4.1], which is implied by a more general result of Frankl and Rödl on
hypergraphs or [BE12, Theorem 1] for an explicit error term.

If the parameter k can vary with the dimension v, then our asymptotic analysis implies
that there is still a gap of almost 1.6 ≈ 0.616081−1 of the ratio of “best known upper
bound / best known lower bound” of the code sizes for q = 2, d = 4 and k = bv/2c, which
is the worst case.
Using the asymptotic result in Lemma 9, we can compare the size of the lifted MRD

codes to the Singleton and the Anticode bound for all interesting parameters. The
monotonicity is of particular interest, since it shows that the limit is the worst case lower
bound of the ratios “LMRD / Singleton” or “LMRD / Anticode” in both cases.

150 Proposition ([HK17b, Proposition 7])
For q ≥ 2 prime power and integers 2 ≤ d/2 ≤ k ≤ v − k the ratio of the size of an
LMRD code divided by the size of the Singleton bound converges for v → ∞ strictly
monotonically decreasing to (1/q; 1/q)k−d/2+1 and we have

(1/q; 1/q)k−d/2+1 > (1/q; 1/q)∞ ≥ (1/2; 1/2)∞ > 0.288788 and

(1/q; 1/q)k−d/2+1 ≥ (1/2; 1/2)k−d/2+1 > (1/2; 1/2)∞ > 0.288788.
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9 Asymptotic bounds

Proof
With z = k − d/2 + 1 and s = v − k the LMRD has size qsz and the Singleton bound
is [ s+zz ]q. Therefore, the ratio is qsz/ [ s+zz ]q, so that Lemma 9 gives the proposed limit,
monotonicity, and the inequalities. �

151 Proposition ([HK17b, Proposition 8])
For q ≥ 2 prime power and integers 2 ≤ d/2 ≤ k ≤ v − k the ratio of the size of an
LMRD code divided by the size of the Anticode bound converges for v → ∞ strictly
monotonically decreasing to (1/q;1/q)k

(1/q;1/q)d/2−1
≥ q

q−1 · (1/q; 1/q)k and we have

q
q−1(1/q; 1/q)k > q

q−1(1/q; 1/q)∞ ≥ 2(1/2; 1/2)∞ > 0.577576 and
q
q−1(1/q; 1/q)k ≥ 2(1/2; 1/2)k > 2(1/2; 1/2)∞ > 0.577576.

Proof
With z = d/2 − 1 and s = v − k the LMRD has size qs(k−z). The Anticode bound is[
s+k
k

]
q
/ [ s+zz ]q. Therefore, the ratio is

qsk[
s+k
k

]
q

·

(
qsz

[ s+zz ]q

)−1

.

From Lemma 9 we conclude

lim
s→∞

qsk[
s+k
k

]
q

= (1/q; 1/q)k and lim
s→∞

qsz

[ s+zz ]q
= (1/q; 1/q)z,

so that the limit follows. The subsequent inequalities follow from 2 ≤ d/2, the monotonicity
of (1/q; 1/q)n, q ≥ 2, and Lemma 9.
In particular, f(q) = q

q−1(1/q; 1/q)λ ≥ 2
2−1(1/2; 1/2)λ for λ ∈ {k,∞} is implied by

1−q−i
1−(q+1)−i

≤ 1 for all 1 ≤ i and

f(q)

f(q + 1)
=

q2

q2 − 1

λ∏
i=1

1− q−i

1− (q + 1)−i
=

q2

q2 − 1

q − 1

q

λ∏
i=2

1− q−i

1− (q + 1)−i
≤ q

q + 1
≤ 1.

The monotonicity can be computed directly using q-factorials

qs(k−z) [ s+zz ]q[
s+k
k

]
q

·

[
s+1+k
k

]
q

q(s+1)(k−z) [ s+1+z
z ]q

=
[s+ z]q![s+ 1 + k]q![k]q![s]q![z]q![s+ 1]q!

[z]q![s]q![k]q![s+ 1]q![s+ k]q![s+ 1 + z]q!
qz−k

=
[s+ 1 + k]q
[s+ 1 + z]q

qz−k > qk−zqz−k = 1
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and hence
qs(k−z)[

s+k
k

]
q
/ [ s+zz ]q

>
q(s+1)(k−z)[

s+1+k
k

]
q
/ [ s+1+z

z ]q
.

�

The coarser lower bound of the ratio “LMRD / Anticode” of (1/q;1/q)∞
(1/q;1/q)d/2−1

was already
proved in [ES13, Lemma 9].
In particular, the best known lower L and upper U bounds on Aq(v, d; k) for all

parameters fulfill L/U > 0.577576 and the most challenging parameters are given by
q = 2, d = 4, and k = bv/2c.

This can be slightly improved by Lemma 60 instead of the LMRD bound for d ≤ k + 1.

152 Proposition
For q ≥ 2 prime power and integers 2 ≤ d/2 ≤ k ≤ v − k with d ≤ k + 1 the ratio of the
size of the code constructed in Lemma 60 divided by the size of the Anticode bound
converges for v → ∞ strictly monotonically decreasing to (1/q;1/q)k

(1−q−(d/2)2 )(1/q;1/q)d/2−1

≥
q4

q4−1
· q
q−1 · (1/q; 1/q)k and we have

q4

q4−1
q
q−1(1/q; 1/q)k > q4

q4−1
q
q−1(1/q; 1/q)∞ ≥ (32/15)(1/2; 1/2)∞ > 0.616081 and

q4

q4−1
q
q−1(1/q; 1/q)k ≥ (32/15)(1/2; 1/2)k > (32/15)(1/2; 1/2)∞ > 0.616081.

Proof
From Proposition 151 we know that the size of an LMRD code divided by the size of the
Anticode bound converges for v →∞ strictly monotonically decreasing to (1/q;1/q)k

(1/q;1/q)d/2−1
and

the code in Lemma 60 has cardinality µ = q(d/2)2(M+1)−1

q(d/2)2M (q(d/2)2−1)
= 1−q−(d/2)2(M+1)

1−q−(d/2)2
times the size

of an LMRD, where M = d(v − k)/de. Hence, limv→∞ µ = limM→∞ µ = 1/(1− q−(d/2)2
)

shows the limit.
To show that the convergence is monotonically decreasing, we abbreviate δ = d/2 and

λ = (v − k)/(2δ) and use M(v) = dλe, which fulfills M(v + 1) −M(v) ∈ {0, 1} and
M(v+ 1)−M(v) = 1 iff 2δ | v−k. In that case, we have M(v) = λ and M(v+ 1) = λ+ 1.

For a (v,N, d; k)q CDC let the ratio of the size of Lemma 60 divided by the size of the
Anticode bound be f(v), i.e.,

f(v) =
µq(v−k)(k−δ+1)

[
v−k+δ−1

δ−1

]
q

[ vk ]q
=

(qδ
2(M(v)+1) − 1)q(v−k)(k−δ+1)[k]q![v − k + δ − 1]q!

qδ2M(v)(qδ2 − 1)[v]q![δ − 1]q!
,

so that

f(v + 1)

f(v)
=
qδ

2(M(v+1)+1) − 1

qδ2(M(v)+1) − 1

[v − k + δ]q
[v + 1]q

qk−δ+1

qδ2(M(v+1)−M(v))
.
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If M(v+ 1)−M(v) = 0, applying Lemma 5 with d ≤ k+ 1⇔ δ−k ≤ −δ+ 1 ≤ −1 < 1
shows

f(v + 1)

f(v)
=

[v − k + δ]q
[v + 1]q

qk−δ+1 < q−k+δ−1qk−δ+1 = 1.

If M(v + 1)−M(v) = 1, we write M(v) = λ and M(v + 1) = λ+ 1:

f(v + 1)

f(v)
=
qδ

2(λ+2) − 1

qδ2(λ+1) − 1

[v − k + δ]q
[v + 1]q

qk−δ+1

qδ2 =
qδ

2(λ+2) − 1

qδ2(λ+2) − qδ2

qv − qk−δ

qv − q−1
.

This is ≤ 1 iff

(qδ
2(λ+2) − 1)(qv − qk−δ) ≤ (qδ

2(λ+2) − qδ2
)(qv − q−1)

⇔ −qδ2(λ+2)+k−δ − qv + qk−δ ≤ −qδ2(λ+2)−1 − qδ2+v + qδ
2−1

⇔ qk−δ + qv(qδ
2 − 1) ≤ qδ2(λ+2)(qk−δ − q−1) + qδ

2−1.

Now we use the estimations k − δ ≤ v on the left hand side and qk−δ − q−1 ≥ qk−δ−1 as
well as δ2 − 1 ≥ 0 on the right hand side to obtain:

⇐ qv+δ2 ≤ qδ2(λ+2)+k−δ−1 ⇔ v ≤ δ2(λ+ 1) + k − δ − 1.

Since δ2λ = (v − k)δ/2 we have

⇔ v ≤ (v − k)δ/2 + δ2 + k − δ − 1⇔ 0 ≤ (v − k)(δ/2− 1) + δ2 − δ − 1,

so that 0 ≤ v − k and 0 ≤ δ/2− 1 together with 0 ≤ δ2 − δ − 1 for all 2 ≤ δ shows the
monotonicity.
For the first inequality, we abbreviate

g(δ) =
(1/q; 1/q)k

(1− q−δ2)(1/q; 1/q)δ−1

and show that g is monotonically increasing so that the minimum is at δ = 2. Hence, using
the q-Pochhammer symbol (1/q; 1/q)x =

∏x
i=1(1− q−i), cf. Page 20, and the inequality

from Lemma 5, we get

g(δ)

g(δ + 1)
=

(1− q−(δ+1)2
)(1/q; 1/q)δ

(1− q−δ2)(1/q; 1/q)δ−1
=

(1− q−(δ+1)2
)(1− q−δ)

(1− q−δ2)

=
(q(δ+1)2 − 1)(qδ − 1)qδ

2

(qδ2 − 1)q(δ+1)2qδ
<

(q(δ+1)2 − 1)qδ
2

q(δ+1)2qδ
qδ−δ

2
=
q(δ+1)2 − 1

q(δ+1)2 < 1.

The inequality (1/q; 1/q)k > (1/q; 1/q)∞ for all q ≥ 2 is implied by 1− q−i < 1.
Last, we show that for any k

h(q) =
q4

q4 − 1

q

q − 1
(1/q; 1/q)k
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is monotonically increasing so that the minimum is attained at q = 2. Therefore, we use
1−q−i

1−(q+1)−i
< 1 for q ≥ 2 and additionally d ≤ k + 1⇒ 3 ≤ k:

h(q)

h(q + 1)
=

q4q((q + 1)4 − 1)q(1/q; 1/q)k
(q4 − 1)(q − 1)(q + 1)4(q + 1)(1/(q + 1); 1/(q + 1))k

=
q6((q + 1)4 − 1)

(q4 − 1)(q − 1)(q + 1)5

2∏
i=1

1− q−i

1− (q + 1)−i

k∏
i=3

1− q−i

1− (q + 1)−i︸ ︷︷ ︸
<1

<
q6((q + 1)4 − 1)

(q4 − 1)(q − 1)(q + 1)5

(q − 1)2(q + 1)4

q5(q + 2)
=
q((q + 1)4 − 1)(q − 1)

(q4 − 1)(q + 1)(q + 2)

<
q(q + 1)4(q − 1)

(q4 − q)(q + 1)(q + 2)
=

(q + 1)3

(q2 + q + 1)(q + 2)
=

(q + 1)3

(q + 1)3 + 1
< 1.

This concludes the proof. �

An analogous improvement of the “LMRD / Anticode” ratio was tried in [ES13, Table 2].
Given Proposition 152 it is possible to improve the estimation of Proposition 151 to get

“lower bound / Anticode” ≥ 0.616081 for all reasonable parameters. Since Proposition 152
is applicable for d ≤ k+1, we can assume k+2 ≤ d⇔ dk/2e ≤ d/2−1 in Proposition 151.
Therefore the tightest bound (1/q;1/q)k

(1/q;1/q)d/2−1
of Proposition 151 can be estimated to

(1/q; 1/q)k
(1/q; 1/q)d/2−1

≥ (1/q; 1/q)k
(1/q; 1/q)dk/2e

=
k∏

i=dk/2e+1

(1− q−i)

≥
k∏

i=dk/2e+1

(1− 2−i) ≥ (1− 2−dk/2e−1)bk/2c ≥ (1− 2−k/2−1)k/2

and (1− 2−k/2−1)k/2 has its minimum on 2 ≤ k at k∗ ≈ 2.566 with (1− 2−k
∗/2−1)k

∗/2 ≈
0.744 > 0.616081.
Replacing the Anticode bound by the (recursive) improved Johnson bound of Corol-

lary 120 does not change the limit behavior of Proposition 151 or Proposition 152 for
v →∞ and since this bound surpasses the Johnson bound of Corollary 116, the Johnson
bound does not change this limit behavior either. Since the improved and standard
Johnson bound refer back to bounds for partial spreads, we first need the following
auxiliary lemma.

153 Lemma ([HK17b])
For q ≥ 2 prime power and integers 2 ≤ d/2 = k ≤ v − k the ratio of the best known
lower bound divided by the best known upper bound converges to 1 for v →∞.
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Proof
For the integers t and r we write v = tk + r with 2 ≤ t and 0 ≤ r < k. Theorem 126
yields the lower bound qv−qk+r

qk−1
+ 1 for these parameters and (qv − 1)/(qk − 1) is a trivial

upper bound for spreads, cf. Corollary 125.

lim
t→∞

(qtk+r − qk+r)/(qk − 1) + 1

(qtk+r − 1)/(qk − 1)
= lim

t→∞

qtk+r − qk+r + qk − 1

qtk+r − 1

= lim
t→∞

1− qk−tk + qk−tk−r − q−tk−r

1− q−tk−r
= 1 �

154 Lemma
Using the notation of Definition 118, we have

{
a

[k]q

}
k
≥ a

[k]q
− kq.

Proof
By definition, {a/[k]q}k is the maximal b ∈ N such that there are non-negative integers
a0, . . . , ak−1 with a− b · [k]q =

∑k−1
i=0 ai · qk−1−i · q

i+1−1
q−1 . By [KK17, Theorem 4] this is

equivalent to the existence of a qk−1-divisible multiset of points of cardinality a−b·[k]q and
by [KK17, Proposition 1] and the definition of F (q, r) beforehand, there are qk−1-divisible
multisets of points of cardinality n for all n > (k − 1)qk − [k]q. Using n := a − b · [k]q
there is a qk−1-divisible multisets of points of cardinality a − b · [k]q if a − b · [k]q >

(k − 1)qk − [k]q ⇔ a−(k−1)qk

[k]q
+ 1 > b. Hence, by Lemma 8, {a/[k]q}k ≥

a−(k−1)qk

[k]q
=

a
[k]q
− (k−1)qk

[k]q
≥ a

[k]q
− (k−1)qk

qk−1 ≥ a
[k]q
− kq. �

Now we will show that the ratio between the Improved Johnson bound (Corollary 120)
and the Anticode bound (Theorem 107) tends also to 1 as v tends to infinity for 2 ≤ d/2 ≤
k ≤ v− k. Therefore we abbreviate v′ = v− k+ d/2 and ai = (qv

′+i− 1)/(qd/2+i− 1) > 1
for i = 0, . . . , k − d/2 and note that

k−d/2∏
i=j

ai =

k−d/2∏
i=j

[v′ + i]q
[d/2 + i]q

=
[v]q![d/2 + j − 1]q![v − k]q!

[v′ + j − 1]q![k]q![v − k]q!
=

[ vk ]q[
v′+j−1
d/2+j−1

]
q

for j ∈ {0, 1}.
Hence, Corollary 120 and the statements of Lemma 153 and Lemma 154, as well as the
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estimation from Lemma 8, yield

[ vk ]q[
v′−1
d/2−1

]
q

≥

q
v − 1

qk − 1

qv−1 − 1

qk−1 − 1

. . .
{
qv
′+1 − 1

qd/2+1 − 1
·

⌊
qv
′ − 1

qd/2 − 1

⌋}
d/2+1

. . .


k−2


k−1


k

= {ak−d/2{ak−d/2−1{. . . {a1ba0c}d/2+1 . . .}k−2}k−1}k
≥ ak−d/2(ak−d/2−1(. . . (a1(a0 − 1)− (d/2 + 1)q) . . .)− (k − 1)q)− kq
≥ ak−d/2(ak−d/2−1(. . . (a1(a0 − kq)− kq) . . .)− kq)− kq

=

k−d/2∏
i=0

ai − kq

k−d/2∑
j=1

k−d/2∏
l=j

al + 1

 ≥ k−d/2∏
i=0

ai − kq(k − d/2 + 1)

k−d/2∏
i=1

ai

=
[ vk ]q[
v′−1
d/2−1

]
q

− kq(k − d/2 + 1)
[ vk ]q[
v′

d/2

]
q

=
[ vk ]q[
v′−1
d/2−1

]
q

1− kq(k − d/2 + 1)

[
v′−1
d/2−1

]
q[

v′

d/2

]
q


≥

[ vk ]q[
v′−1
d/2−1

]
q

(
1− kq(k − d/2 + 1)

µ(q)q(d/2−1)(v−k)

q(d/2)(v−k)

)

=
[ vk ]q[
v′−1
d/2−1

]
q

(
1− kq(k − d/2 + 1)µ(q)

qv−k

)
.

Hence, we have 1 ≥ “Improved Johnson bound / Anticode bound” ≥ zv, where zv is a
series with limv→∞ zv = 1, and thus the sqeeze theorem [Soh14, Theorem 3.3.6] shows
that the Improved Johnson bound does not tighten the limit behaviour compared to the
Anticode bound.

Next, we consider the ratio between the lower bound from the first arithmetic progres-
sion of the improved linkage construction of Proposition 145 and the Anticode bound
Theorem 107 for l→∞.

155 Proposition ([HK17b, Proposition 9])
For q ≥ 2 prime power and integers k ≤ v0 − k, 1 ≤ d/2 ≤ k ≤ s, and 0 ≤ l, we have

lim
l→∞

Aq(v0, d; k)bl + Aq(s+ k − d/2, d; k)[l]b[
v0+ls
k

]
q
/
[
v0+ls−k+d/2−1

d/2−1

]
q

=
(Aq(v0, d; k) + Aq(s+ k − d/2, d; k)/(b− 1))(1/q; 1/q)k

q(v0−k)(k−d/2+1)(1/q; 1/q)d/2−1

with b = qs(k−d/2+1).
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Proof
We abbreviate X = Aq(v0, d; k) and Y = Aq(s+ k − d/2, d; k).
The numerator can be rewritten as

Xbl + Y
bl − 1

b− 1
=

(
X + Y

1− b−l

b− 1

)
bl

and therefore we use the convergence

lim
l→∞

X + Y
1− b−l

b− 1
= X + Y/(b− 1).

Next we apply Lemma 9 to both q-binomial coefficients:

lim
l→∞

q(v0+ls−k)k[
(v0+ls−k)+k

k

]
q

= (1/q; 1/q)k and lim
l→∞

q(v0+ls−k)(d/2−1)[
(v0+ls−k)+(d/2−1)

d/2−1

]
q

= (1/q; 1/q)d/2−1.

With

Z = q(v0−k)(k−d/2+1) =
q(v0+ls−k)kq−ls(k−d/2+1)

q(v0+ls−k)(d/2−1)
=

q(v0+ls−k)kb−l

q(v0+ls−k)(d/2−1)
,

which is in particular independent of l, we can finally put all components together

lim
l→∞

(
X + Y 1−b−l

b−1

)
bl

bl
q(v0+ls−k)k[

v0+ls
k

]
q

[
v0+ls−k+d/2−1

d/2−1

]
q

q(v0+ls−k)(d/2−1)
Z−1

= (X + Y/(b− 1))(1/q; 1/q)k(1/q; 1/q)−1
d/2−1Z

−1,

concluding the proof. �

For Example 146 with d = 4 and k = 3, we obtain a ratio of(
1 597 245 +

A2(7, 4; 3)

4095

)
· 21/225 ∈ [0.99963386, 0.99963388]

for v = 13 + 6l with l → ∞ using 333 ≤ A2(7, 4; 3) ≤ 381, i.e., the Anticode bound
of Theorem 107 is almost met by the arithmetic progression of the improved linkage
construction.

9.1 Codes better than the LMRD bound

Although CDCs larger than the LMRD bound are very rare, we use the improved linkage
construction, cf. Theorem 136, to provide an infinite series of such CDCs with d = 4 and
k = 3.
Proposition 99 yields a bound for CDCs that contain an LMRD. This bound is

superseded by two infinite series of CDCs with q = 2, d = 4, and k = 3, cf. [AHL16].
Besides d = 4, k = 3, the only other case where the MRD bound was superseded is
A2(8, 4; 4) ≥ 4801 > 4797, cf. [BÖW16] and [Hei+16]. The improved linkage construction
allows to improve on the MRD bound for all field sizes q, if v is large enough.
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9.1 Codes better than the LMRD bound

156 Proposition (cf. [HK17b, Proposition 10])
For q ≥ 2 prime power and integral v ≥ 12 we have

Aq(v, 4; 3)

q2v−6 +
[
v−3

2

]
q

≥ q−4 Aq(7, 4; 3)

q4 + (1/q; 1/q)−1
2

> 1 +
1

2q3
.

Proof
Let v0 ∈ {12, 13, 14} and v = v0 + 3l ≥ 12 for 0 ≤ l.
Corollary 140 with m = 7 shows

Aq(v0, 4; 3) ≥ Aq(7, 4; 3)q2v0−14 + Aq(v0 − 6, 4; 3) ≥ q2v0−14 Aq(7, 4; 3).

Applying Proposition 145 with s = 3 gives

Aq(v0 + 3l, 4; 3) ≥ q6l Aq(v0, 4; 3) + Aq(4, 4; 3)[l]q6 ≥ q6l Aq(v0, 4; 3).

Hence, we have for all 2 ≤ q and 12 ≤ v

Aq(v, 4; 3) = Aq(v0+3l, 4; 3) ≥ q6l Aq(v0, 4; 3) ≥ q2(v0+3l)−14 Aq(7, 4; 3) = q2v−14 Aq(7, 4; 3).

From Lemma 9 we conclude the strictly monotonically decreasing convergence

lim
v→∞

q2(v−5)/
[

(v−5)+2
2

]
q

= (1/q; 1/q)2 = (q − 1)(q2 − 1)q−3.

Hence, we get

lim
v→∞

Aq(v, 4; 3)

q2v−6 +
[
v−3

2

]
q

≥ lim
v→∞

q2v−14 Aq(7, 4; 3)

q2v−6 +
[
v−3

2

]
q

= lim
v→∞

q−4 Aq(7, 4; 3)

q4 +

[
v−3

2

]
q

q2v−10

=
q−4 Aq(7, 4; 3)

q4 + (1/q; 1/q)−1
2

and this convergence is also strictly monotonically decreasing.
Now we have to distinguish q = 2, q = 3, and 4 ≤ q in this proof.
Although Aq(7, 4; 3) ≥ q8+q5+q4+q2−q ≥ q8+q5+q4 for q ≥ 2 by [HK16, Theorem 4],

in the special case of q = 2 the better bound of A2(7, 4; 3) ≥ 333 is known. Moreover, we
use (1/q; 1/q)2 ≥ (1/2; 1/2)2 = 3/8 and (1/3; 1/3)2 = 16/27 where Lemma 9 shows this
inequality.
For q = 2 we have 2−4333

24+8/3
> 1.1149 > 1.0625 = 1 + 1/(2 · 23), for q = 3 we have

34+3+1
34+27/16

> 1.0279 > 1.0186 > 1 + 1/(2 · 33), and for 4 ≤ q a small computation shows
q4+q+1
q4+8/3

> 1 + 1/(2q3). �

Many estimations in the proof of Proposition 156 are very coarse for q = 2 considering
that many good codes and hence lower bounds on A2(v, d; k) are available, usually found
by extensive computer searches involving prescribed automorphisms, see e.g. [KK08a].

145



9 Asymptotic bounds

157 Proposition ([HK17b, Proposition 11])
For v ≥ 19 we have A2(v,4;3)

22v−6+
[
v−3

2

]
2

> 1.3056.

Proof
We will use A2(7, 4; 3) ≥ 333 [Hei+16], A2(8, 4; 3) ≥ 1326 [BÖW16], A2(9, 4; 3) ≥
5986 [BÖW16], and A2(13, 4; 3) = 1 597 245 [Bra+16].
Let v0 ∈ {19, 20, 21}. We apply Corollary 140 with m = 13 to obtain A2(v0, 4; 3) ≥

22v0−26 A2(13, 4; 3) + A2(v0 − 12, 4; 3), i.e., A2(19, 4; 3) ≥ 6 542 315 853, A2(20, 4; 3) ≥
26 169 263 406, and A2(21, 4; 3) ≥ 104 677 054 306.

Applying Proposition 145 with s = 3 to v = v0 + 3l ≥ 19 gives A2(v0 + 3l, 4; 3) ≥
26l A2(v0, 4; 3)+[l]26 ≥ 26l A2(v0, 4; 3) and with Lemma 9 and (1/2; 1/2)2 = 3/8 we obtain

lim
v→∞

A2(v, 4; 3)

22v−6 +
[
v−3

2

]
2

≥ lim
l→∞

26l A2(v0, 4; 3)

22(v0+3l)−6 +
[
v0+3l−3

2

]
2

= lim
l→∞

A2(v0, 4; 3)

22v0−6 +
[

(v0+3l−5)+2
2

]
2
/22(v0+3l−5) · 22(v0−5)

=
A2(v0, 4; 3)

22v0−6 + (1/2; 1/2)−1
2 22v0−10

=
A2(v0, 4; 3)

22v0−6 + 8/3 · 22v0−10
=

A2(v0, 4; 3)

7/3 · 22v0−7
.

This convergence is strictly monotonically decreasing.
The right hand side is ≈ 1.3056442380 for v0 = 19, ≈ 1.3056442377 for v0 = 20, and
≈ 1.3056442462 for v0 = 21. Hence, its minimum is attained with v0 = 20. �

In Proposition 156 and Proposition 157, we applied Proposition 145 without the
second summand on the right hand side, which is equivalent to directly applying [ST15,
Theorem 37]. In that case, only one instead of three starting values for the recursion
in Proposition 156 would have sufficed. The usage of Corollary 140 in the last proof
was fundamental to derive large CDCs for medium sized ambient spaces by considering
A2(13, 4; 3) = 1 597 245 and good lower bounds for small dimensions.

We compare the sizes of different constructions with the size of an LMRD, the best
known lower bound bklb, and the best known upper bound bkub in Tables 7, 8, and 9.
The values of Proposition 99 are given in column mrdb. Applying Theorem 135 and
Theorem 136 to the best known codes give the columns lold and lnew, respectively. The
results obtained in [AHL16] are stated in column ea. The ratio between the mentioned
constructions and the MRD bound can be found in Table 9. Since differences are partially
beyond the given accuracy, we give absolute numbers in Table 7. Note that the values
in column bklb of Table 9 show that Proposition 157 is also valid for v ≥ 16, while we
have a smaller ratio for v < 16. The relative advantage over LMRD codes is displayed in
Table 8.
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9.1 Codes better than the LMRD bound

v bklb mrdb bkub lold lnew ea
6 77 71 77 65 65
7 333 291 381 257 265 301
8 1326 1179 1493 1033 1101 1117
9 5986 4747 6205 4929 4929 4852
10 23870 19051 24698 21313 21313 18924
11 97526 76331 99718 85249 85257 79306
12 385515 305579 398385 383105 383105 309667
13 1597245 1222827 1597245 1532417 1532425 1287958
14 6241665 4892331 6387029 6241665 6241665 4970117
15 24966665 19571371 25562941 24966657 24966665 20560924
16 102223681 78289579 102243962 102223681 102223681 79608330
17 408894729 313166507 409035142 408894721 408894729
18 1635578957 1252682411 1636109361 1635578889 1635578957
19 6542315853 5010762411 6544674621 6542315597 6542315853 5200895489

Table 7: Lower and upper bounds for A2(v, 4; 3).

v bklb mrdb bkub lold lnew ea
6 1.203125 1.109375 1.203125 1.015625 1.015625
7 1.300781 1.136719 1.488281 1.003906 1.035156 1.175781
8 1.294922 1.151367 1.458008 1.008789 1.075195 1.090820
9 1.461426 1.158936 1.514893 1.203369 1.203369 1.184570
10 1.456909 1.162781 1.507446 1.300842 1.300842 1.155029
11 1.488129 1.164719 1.521576 1.300797 1.300919 1.210114
12 1.470623 1.165691 1.519718 1.461430 1.461430 1.181286
13 1.523252 1.166179 1.523252 1.461427 1.461434 1.228292
14 1.488129 1.166423 1.522786 1.488129 1.488129 1.184968
15 1.488129 1.166545 1.52367 1.488129 1.488129 1.225527
16 1.523252 1.166606 1.523554 1.523252 1.523252 1.186257
17 1.523252 1.166636 1.523775 1.523252 1.523252
18 1.523252 1.166651 1.523746 1.523252 1.523252
19 1.523252 1.166659 1.523801 1.523252 1.523252 1.210928

Table 8: Lower and upper bounds for A2(v, 4; 3) divided by the size of a corresponding
LMRD code.
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9 Asymptotic bounds

v bklb mrdb bkub lold lnew ea
6 1.084507 1.0 1.084507 0.915493 0.915493
7 1.144330 1.0 1.309278 0.883162 0.910653 1.034364
8 1.124682 1.0 1.266327 0.876166 0.933842 0.947413
9 1.261007 1.0 1.307141 1.038340 1.038340 1.022119
10 1.252953 1.0 1.296415 1.118734 1.118734 0.993334
11 1.277672 1.0 1.306389 1.116833 1.116938 1.038975
12 1.261589 1.0 1.303705 1.253702 1.253702 1.013378
13 1.306190 1.0 1.306190 1.253176 1.253182 1.053263
14 1.275806 1.0 1.305519 1.275806 1.275806 1.015900
15 1.275673 1.0 1.306140 1.275672 1.275673 1.050561
16 1.305712 1.0 1.305972 1.305712 1.305712 1.016845
17 1.305678 1.0 1.306127 1.305678 1.305678
18 1.305661 1.0 1.306085 1.305661 1.305661
19 1.305653 1.0 1.306124 1.305653 1.305653 1.037945

Table 9: Lower and upper bounds for A2(v, 4; 3) divided by the corresponding LMRD
bound.
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10 Theoretic arguments for the exclusion
of automorphisms

Prescribing some subgroups of the PΓL(Fvq) as automorphism subgroup of CDCs restricts
possible code sizes. In this chapter, we provide theoretic arguments which show that some
groups yield only small codes, in some cases even smaller than a corresponding LMRD
code. Hence, these groups are not automorphism groups of maximum cardinality codes.
First, we need to count b-spaces which are fixed but not point-wise fixed.

158 Lemma
Let q ≥ 2 be a prime power, 0 ≤ b ≤ v be integers and G ≤ PΓL(Fvq) be a subgroup
with #G = 2 such that the set of fixed points in Fvq under the operation of G is a
(v − 1)-dimensional subspace if q is even and the disjoint union of a (v − 1)-dimensional
subspace with a point if q is odd. Then

#
{
U ∈

[
Fvq
b

]∣∣∣#(U ·G)=1 ∧ ∃P ∈
[
U
1

]
:#(P ·G)=2

}
=


0 if b ≤ 1,[
v−2
b−2

]
q
qv−b if 2 ≤ b ∧ 2 | q,[

v−1
b−1

]
q

if 2 ≤ b ∧ 2 - q.

Proof
If b ≤ 1 then the set is empty and hence we assume wlog. 2 ≤ b. Let F = F if q is even
and F = F ∪̇f if q is odd for a hyperplane F ≤ Fvq and a point f ≤ Fvq with f 6≤ F the
set of fixed points under the operation of G. Let 〈M〉 = G.
If q is even: For any U ∈

[
Fvq
b

]
that is fixed such that there is a point P in U which

is not fixed, there are #
([

Fvq
1

]
\
[
F
1

])
= [ v1 ]q −

[
v−1

1

]
q

= qv−1 possibilities for P . After
choosing P , the line 〈P, P ·M〉 contains exactly one fixed point PF since any line contains
q + 1 points, which is odd, and at least two fixed points on this line would imply that the
line is contained in F . Next, there are

[
dim(F )−1

dim(U∩F )−1

]
q

=
[
v−2
b−2

]
q
possibilities to extend

PF to a (b− 1)-dimensional vector space UF contained in F . U is then determined via
U = 〈P,UF 〉. Since U contains #

([
U
1

]
\
[
U∩F

1

])
=
[
b
1

]
q
−
[
b−1

1

]
q

= qb−1 points which
are not fixed, any of them determines the same U . Hence, the total number of possibilities
is qv−1 ·

[
v−2
b−2

]
q
/qb−1 =

[
v−2
b−2

]
q
qv−b.

If q is odd: Any U ∈
[

Fvq
b

]
that is fixed such that there is a point P in U which is

not fixed contains a (b− 1)-dimensional fixed subspace U ∩ F and #
([

U
1

]
\
[
U∩F

1

])
=
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10 Theoretic arguments for the exclusion of automorphisms

[
b
1

]
q
−
[
b−1

1

]
q

= qb−1 points that are not in F , which is an odd number, and hence f ≤ U .
Therefore, after fixing one of the

[
v−1
b−1

]
q
possible (b− 1)-dimensional subspaces S in F ,

U is uniquely determined via U = f ⊕ S. �

By examining LP-certificates, i.e., multipliers of constraints in an optimal solution of
the LP-relaxation of DefaultCDCBLP(q, v, d, k), cf. Definition 47, with a prescribed
group, we get the following lemma.

159 Lemma
Let q ≥ 2 be a prime power, 2 ≤ d/2 < k ≤ v− k integers and G ≤ PΓL(Fvq) a subgroup
with #G = 2 such that the set of fixed points in Fvq under the operation of G is a
(v− 1)-dimensional subspace, if q is even and the disjoint union of a (v− 1)-dimensional
subspace with a point, if q is odd. Let C be a (v,#C, d; k)q CDC with G ≤ Aut(C).
Then

[
k

d/2−1

]
q

#C ≤
[

v−1
k−d/2+1

]
q

+


[

v−2
k−d/2−1

]
q
qv−k+d/2−1 [k−1]q

[k−d/2]q
if 2 | q,[

v−1
k−d/2

]
q
qd/2−1 if 2 - q.

Proof
We abbreviate b = k − d/2 + 1 ≥ 2 and use the term fixed with respect to G operating
on the set of subspaces without further notice and partition C = CP ∪̇CF ∪̇CN , such that
CP contains all point-wise fixed codewords, CF contains all codewords that are fixed but
not point-wise fixed, and CN contains all codewords which are not fixed. With BP , BF ,
and BN we also abbreviate the set of b-spaces which are point-wise fixed, fixed but not
point-wise fixed, and non-fixed, respectively. Let F = F if q is even and F = F ∪̇f if q
is odd for a hyperplane F ≤ Fvq and a point f ≤ Fvq with f 6≤ F the set of fixed points
under the operation of G = 〈M〉.

First, CN = ∅, since for any U ∈ CN we have S = U ∩ F = (U ·M) ∩ F = U ∩ (U ·M)
with dim(S) = k − 1 and hence dim(U) + dim(U ·M)− 2 dim(S) = 2 < d violating the
minimum distance.
Second, any U ∈ CP contains exactly

[
k
b

]
q
point-wise fixed b-spaces and no other

b-spaces.
Third, any U ∈ CF contains exactly

[
k−1
b

]
q
point-wise fixed b-spaces,

α =

{[
k−2
b−2

]
q
qk−b if 2 | q[

k−1
b−1

]
q

if 2 - q

fixed b-spaces which are not point-wise fixed by Lemma 158, and β =
[
k
b

]
q
−
[
k−1
b

]
q
− α

b-spaces which are not fixed.
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Fourth, #BP =
[
v−1
b

]
q
and

#BF =

{[
v−2
b−2

]
q
qv−b if 2 | q[

v−1
b−1

]
q

if 2 - q

by Lemma 158.
Fifth, by double counting of

{
(U,W ) ∈ CP ×

[
Fvq
b

] ∣∣∣ W ≤ U} and “Second”, we have

[
k
b

]
q

#CP =
∑

W∈BP

#I (CP ,W ) .

Sixth, by double counting of
{

(U,W ) ∈ CF ×
[

Fvq
b

] ∣∣∣ W ≤ U} and “Third”, we have

[
k
b

]
q

#CF =
∑

W∈BP

#I (CF ,W ) +
∑

W∈BF

#I (CF ,W ) +
∑

W∈BN

#I (CF ,W )

and by double counting {(U,WF ,WN ) ∈ CF ×BF ×BN | WF ≤ U ∧WN ≤ U},

β
∑

W∈BF

#I (CF ,W ) = α
∑

W∈BN

#I (CF ,W ) .

Seventh, combining “Fifth” and “Sixth” as well as the estimation of Lemma 41 and the
counting of “Fourth”, we conclude[

k
b

]
q

#C =
∑

W∈BP

#I (C,W ) + (β/α+ 1)
∑

W∈BF

#I (C,W )

≤ #BP + (β/α+ 1)#BF =
[
v−1
b

]
q

+ (β/α+ 1)#BF

Eighth, using the q-Pascal identities of Lemma 3 and the representation of q-binomial
coefficients of Lemma 2, we compute

β

α
+ 1 =

β + α

α
=

[
k
b

]
q
−
[
k−1
b

]
q

α
=

[
k−1
b−1

]
q
qk−b

α

=



[
k−1
b−1

]
q
qk−b[

k−2
b−2

]
q
qk−b

=
[k−1]q ![b−2]q ![k−b]q !
[b−1]q ![k−b]q ![k−2]q !

=
[k−1]q
[b−1]q

if 2 | q,[
k−1
b−1

]
q
qk−b[

k−1
b−1

]
q

= qk−b if 2 - q,

which concludes the proof. �
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10 Theoretic arguments for the exclusion of automorphisms

160 Example
The group G′ =

((
0 1
1 0

Iv−2

)
· Z(GL(Fvq)), id

)
≤ PΓL(Fvq) fixes for 2 ≤ v and all q ≥ 2

prime power the points in

〈(1, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, 0, . . . , 1)〉 ∪ 〈(1,−1, 0, . . . , 0)〉 ⊆ Fvq

and the union is point-wise disjoint iff q is odd.
Let q = 2, v = 7, d = 4, k = 3, and G ≤ GL(F7

2) any subgroup with order 2 such that
the set of fixed points form a 6-dimensional subspace, e.g., a conjugate to G′. Then, by
the last lemma, any (7, N, 4; 3;G)2 CDC fulfills 7N ≤ 651 + 1 · 32 · 3, i.e., N ≤ 106.72.
In particular, there is no CDC with these parameters of size at least 107 such that there
is a conjugate to the matrix depicted above in its automorphism group.

Ignoring the parity of q, we can prove that the bound for even q in Lemma 159 is
always tighter than the bound for odd q. By comparing the bound for odd q with the
cardinality of corresponding LMRD codes, we see that latter strictly surpasses the bounds
and hence no maximum code for fitting parameters has any group fulfilling the conditions
of Lemma 159 as automorphism subgroup.

161 Corollary
Let q ≥ 2 be a prime power and 2 ≤ d/2 < k ≤ v − k integers. Then[

v−2
k−d/2−1

]
q
qv−k+d/2−1 [k − 1]q

[k − d/2]q
<
[

v−1
k−d/2

]
q
qd/2−1

and in particular the odd bound of Lemma 159 has at least the size of the even bound
for the same q.
Next, we also have[

v−1
k−d/2+1

]
q

+
[

v−1
k−d/2

]
q
qd/2−1 <

[
k

d/2−1

]
q
q(v−k)(k−d/2+1)

which proves that both bounds in Lemma 159 are smaller than an LMRD code with the
same parameters of size q(v−k)(k−d/2+1), i.e., no code of size at least q(v−k)(k−d/2+1) has
G of Lemma 159 as automorphism group.
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Proof
Applying Lemma 2 and the estimation of Lemma 5 yields[

v−2
k−d/2−1

]
q
qv−k+d/2−1[k − 1]q[

v−1
k−d/2

]
q
qd/2−1[k − d/2]q

=
[v − 2]q![k − d/2]q![v − k + d/2− 1]q!q

v−k[k − 1]q
[k − d/2− 1]q![v − k + d/2− 1]q![v − 1]q![k − d/2]q

=
qv−k[k − 1]q

[v − 1]q
< qv−kqk−v = 1.

For the next part, we abbreviate a = v− k and b = k− d/2 + 1, i.e., 2 ≤ b ≤ a− 1 and
1 ≤ a− b ≤ a− 2. Since 0 ≤ µ(q)−1qb − 1 we conclude[

v−1
b

]
q

+
[
v−1
b−1

]
q
qk−b <

[
k
b

]
q
qab

⇐ µ(q)qb(v−b−1) + µ(q)q(b−1)(v−b)qk−b ≤ qb(k−b)qab ⇔ µ(q)qa−b + µ(q) ≤ qa

⇔ 1 ≤ (µ(q)−1qb − 1)qa−b ⇐ 1 ≤ (µ(q)−1qb − 1)q ⇔ (q−1 + 1)µ(q) ≤ qb.

This proves the claim for 3 ≤ q or 3 ≤ b because µ(q) ≤ q2 for 2 ≤ q, µ(q) ≤ q for
3 ≤ q, and 1 + q ≤ q2 for 2 ≤ q. Hence, only the case q = b = 2 remains.

Using (1/2; 1/2)1 = 1/2 and (1/2; 1/2)2 = 3/8 we get by applying Lemma 8 the
inequalities

[
v−1

2

]
2
< 8

322(v−3),
[
v−1

1

]
2
< 2 · 2v−2, and 22(k−2) <

[
k
2

]
2
and in turn[

v−1
2

]
2

+
[
v−1

1

]
2

2k−2 <
[
k
2

]
2

22a ⇐ 1
322v−3 + 2v+k−3 ≤ 22v−4

⇔ 2 · 2v + 6 · 2k ≤ 3 · 2v ⇔ 6 ≤ 2v−k,

which is true for all 3 ≤ a. �

Before we can state Lemma 159 for partial spreads, we first need two auxiliary lemmata
to prove that, under the operation of a fitting group, there is a point such that any fixed
line which is not point-wise fixed contains this point.

162 Lemma
Let q ≥ 2 be a prime power and A,B,C,D ≤ F3

q four different points such that they
form a quadrangle, i.e., no three points of them are collinear. Then, ((A+B) ∩ (C +
D)) + ((A+ C) ∩ (B +D)) + ((A+D) ∩ (B + C)) is a line iff q is even.

Proof
Let A = 〈a〉, B = 〈b〉, C = 〈c〉, andD = 〈d〉, then {a, b, c} span F3

q and hence there is a ma-
trixM ′ ∈ GL(F3

q) with aM ′ = (1, 0, 0), bM ′ = (0, 1, 0), and cM ′ = (0, 0, 1). Since no three

are collinear, dM ′ = (x, y, z) with x, y, z ∈ F∗q and using M ′′ =
(
x−1 0 0

0 y−1 0
0 0 z−1

)
∈ GL(F3

q)
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10 Theoretic arguments for the exclusion of automorphisms

with M := M ′M ′′, we get AMZ(GL(F3
q)) = 〈(1, 0, 0)〉, BMZ(GL(F3

q)) = 〈(0, 1, 0)〉,
CMZ(GL(F3

q)) = 〈(0, 0, 1)〉, and DMZ(GL(F3
q)) = 〈(1, 1, 1)〉, which in turn allows to use

wlog. A = 〈(1, 0, 0)〉, B = 〈(0, 1, 0)〉, C = 〈(0, 0, 1)〉, and D = 〈(1, 1, 1)〉.
Hence we have the six linesA+B = τ−1 ( 1 0 0

0 1 0 ), A+C = τ−1 ( 1 0 0
0 0 1 ), A+D = τ−1 ( 1 0 0

0 1 1 ),
B + C = τ−1 ( 0 1 0

0 0 1 ), B +D = τ−1 ( 1 0 1
0 1 0 ), and C +D = τ−1 ( 1 1 0

0 0 1 ), as well as the three
intersection points (A+B) ∩ (C +D) = τ−1(1, 1, 0), (A+ C) ∩ (B +D) = τ−1(1, 0, 1),
(A+D) ∩ (B + C) = τ−1(0, 1, 1).

Then ((A + B) ∩ (C + D)) + ((A + C) ∩ (B + D)) + ((A + D) ∩ (B + C)) =

τ−1
(

RREF
(

1 1 0
1 0 1
0 1 1

))
= τ−1

(
RREF

(
1 0 1
0 1 1
0 0 2

))
, which is a line iff q is even. �

163 Lemma
Let q ≥ 2 be a prime power, v a positive integer and G ≤ PΓL(Fvq) a subgroup with
#G = 2 such that the set of fixed points in Fvq under the operation of G is a (v − 1)-
dimensional subspace if q is even and the disjoint union of a (v−1)-dimensional subspace
with a point if q is odd. Then any fixed line which is not point-wise fixed contains the
same point Q ≤ Fvq .

Proof
Let F = F , if q is even and F = F ∪̇f , if q is odd for a hyperplane F ≤ Fvq and a point
f ≤ Fvq with f 6≤ F the set of fixed points under the operation of G. Moreover let g ∈ G
be the non-trivial element.
Let q be even and A, B non-fixed points in Fvq such that A + Ag 6= B + Bg are two

different lines which then are fixed, but not point-wise fixed. We will show that A+Ag
and B +Bg contain a common fixed point Q, which then is in all fixed lines which are
not point-wise fixed, since any fixed line which is not point-wise fixed contains exactly
one fixed point.

Let P = (A+B)∩F , then P is fixed and in particular P = (Ag+Bg)∩F = ((A+B)g)∩F
and (A + B) ∩ (Ag + Bg) = P (if the intersection would be larger, then A,B,Ag,Bg
would be on the same line), i.e., E = A+ B + Ag + Bg is a plane. Hence A+ Ag and
B +Bg intersect in exactly a point Q, we have to show that Q is fixed.

Let P ′ = (A+Bg) ∩ F , then, like before, P ′ = (Ag +B) ∩ F = (A+Bg) ∩ (Ag +B).
Since E ∼= F3

q and with A, B, C = Ag, and D = Bg no three points of {A,B,C,D}
are collinear, otherwise both lines would be equal, we apply Lemma 162 and see that

L = ((A+B) ∩ (Ag +Bg))︸ ︷︷ ︸
P

+ ((A+Ag) ∩ (B +Bg))︸ ︷︷ ︸
Q

+ ((A+Bg) ∩ (B +Ag))︸ ︷︷ ︸
P ′

is a line, which is in particular point-wise fixed, since it contains two different fixed points
P and P ′ and hence Q is fixed.
Let q be odd and L be a line that is fixed, but not point-wise fixed. Since L contains

q + 1 points, which is an even number, and intersects F in exactly one point, it also
contains f . Hence, setting Q = f completes the proof. �
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The next lemma states Lemma 159 for partial spreads.

164 Lemma
Let q ≥ 2 be a prime power, 2 ≤ k ≤ v − k integers and G ≤ PΓL(Fvq) a subgroup
with #G = 2 such that the set of fixed points in Fvq under the operation of G is a
(v − 1)-dimensional subspace if q is even and the disjoint union of a (v − 1)-dimensional
subspace with a point if q is odd. Let C be a (v,#C, 2k; k)q CDC with G ≤ Aut(C).
Then

[k]q#C ≤ [v − 1]q + qk−1

and in particular

Aq(v, 2k; k;G) ≤ [v − 1]q + qk−1

[k]q
= qk−1 q

v−k − 1

qk − 1
+ 1.

Proof
We use the term fixed with respect to G operating on the set of subspaces without
further notice and partition C = CP ∪̇CF ∪̇CN , such that CP contains all point-wise fixed
codewords, CF contains all codewords that are fixed but not point-wise fixed, and CN
contains all codewords which are not fixed.
Let F = F if q is even and F = F ∪̇f if q is odd for a hyperplane F ≤ Fvq and a point

f ≤ Fvq with f 6≤ F the set of fixed points under the operation of G.
Let Q be the fixed point that any line which is fixed but not point-wise fixed contains

by Lemma 163.
CN = ∅ by the minimum distance and #CF ≤ 1, since any two codewords in CF

contain Q.
The inequality[

k
1

]
q

#C ≤ (qk−1 + 12|q)#I (C,Q) +
∑

P∈
[
F
1

]
\{Q}

#I (C,P )

is valid, since any codeword contributes
[
k
1

]
q
to the left hand side and

• for an even q, any U ∈ CP which contains Q also contains
[
k
1

]
q
− 1 other fixed

points and hence contributes qk−1 +
[
k
1

]
q
≥
[
k
1

]
q
to the right hand side,

• for an even q, any U ∈ CP which does not contain Q contains
[
k
1

]
q
fixed points,

contributing
[
k
1

]
q
to the right hand side,

• for an even q, any U ∈ CF contains Q and also
[
k−1

1

]
q
−1 fixed points, contributing

qk−1 +
[
k−1

1

]
q

=
[
k
1

]
q
, which is implied by the q-Pascal identities from Lemma 3,

to the right hand side,
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10 Theoretic arguments for the exclusion of automorphisms

• for an odd q, any U ∈ CP contains
[
k
1

]
q
fixed points and hence contributes

[
k
1

]
q
to

the right hand side, and

• for an odd q, any U ∈ CF contains Q and also
[
k−1

1

]
q
fixed points, contributing

qk−1 +
[
k−1

1

]
q

=
[
k
1

]
q
, which is implied by the q-Pascal identities from Lemma 3,

to the right hand side.

This inequality may be estimated further by Lemma 41 to[
k
1

]
q

#C ≤ (qk−1 + 12|q)#I (C,Q) +
∑

P∈
[
F
1

]
\{Q}

#I (C,P )

≤ qk−1 + 12|q + #(
[
F
1

]
\ {Q}) = qk−1 + 12|q +

[
v−1

1

]
q
− 12|q

which concludes the proof. �

Analogously to Corollary 161, the size of an LMRD surpasses the bound in the last
lemma.

165 Lemma
Let q ≥ 2 be a prime power, 2 ≤ k ≤ v − k integers and G ≤ PΓL(Fvq) a subgroup
with #G = 2 such that the set of fixed points in Fvq under the operation of G is a
(v − 1)-dimensional subspace if q is even and the disjoint union of a (v − 1)-dimensional
subspace with a point if q is odd. Let C be a (v,#C, 2k; k)q CDC with #C ≥ qv−k.
Then G 6≤ Aut(C), which is particularly true for codes of maximum size.

Proof
We prove that any code with G as automorphism group is smaller than the corresponding
LMRD of size qv−k, i.e.,

Aq(v, 2k; k;G) ≤ qk−1 q
v−k − 1

qk − 1
+ 1 < qv−k ≤ Aq(v, 2k; k).

Since 1 < 2 ≤ qk−1(q−1) we have qk−1 < qk−1 and hence qk−1 qv−k−1
qk−1

+1 < qk−1 qv−k−1
qk−1 +

1 = qv−k the bound of Lemma 164 yields the inequality. �

We can also argue a more tailored upper bound for additional subgroups if q is even.

166 Lemma
Let q ≥ 2 be an even prime power, 6 ≤ v integers, and G ≤ PΓL(Fvq) a subgroup
with #G = 2 such that the set of fixed points in Fvq under the operation of G is a
(v − 2)-dimensional subspace. Let C be a (v,#C, 4; 3)q CDC with G ≤ Aut(C). Then

#C ≤

[
v−2

2

]
q

q2 + q + 1
+

(q + 1)2qv−3

q2 + q + 1
+

[ v2 ]q −
[
v−2

2

]
q
− [v − 2]q · qv−3(q + 1)

q2
.
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Proof
Let F be the (v − 2)-dimensional subspace consisting of fixed points, BP , BF , B4 ⊆

[
Fvq
2

]
,

such that all lines in BP are point-wise fixed, all lines in BF are fixed but not point-wise
fixed, and all lines L in B4 have the property that dim(〈L ·G〉) = 4, i.e., L contains no
fixed point.
Then, the following equality is valid

#C =
1

q2 + q + 1

∑
L∈BP

#I (C,L) +
q + 1

q2 + q + 1

∑
L∈BF

#I (C,L) +
1

q2

∑
L∈B4

#I (C,L)

by distinguishing three cases of codewords. Let U ∈ C be a codeword, then U contributes
one to the left hand side and

• if U is point-wise fixed, it contains [ 3
2 ]q = q2 + q + 1 lines in BP and no other lines,

contributing exactly one to the right hand side,

• if U is fixed but not point-wise fixed, it intersects F in a line (since [ 3
2 ]q = q2 + q+ 1

is odd), hence this line is in BP and by Lemma 158 it contains q lines of BF . Since it
contains no line of B4 (otherwise dim(U) ≥ 4), it contributes 1

q2+q+1
+ q q+1

q2+q+1
= 1

to the right hand side, and

• if U is not fixed, then dim(U ∩F ) = 1, since dim(U ∩F ) = 2 violates the minimum
distance, and contains in particular no fixed line. Since

[
3−1
2−1

]
q

= q + 1 lines in U
contain U ∩ F , all other [ 3

2 ]q − (q + 1) = q2 lines are in B4 and consequently U
contributes q2/q2 = 1 to the right hand side.

Using the inequality of Lemma 41 we can estimate the right hand side to

≤ 1

q2 + q + 1
#BP +

q + 1

q2 + q + 1
#BF +

1

q2
#B4.

Clearly #BP =
[
v−2

2

]
q
.

Next, any L ∈ BF contains q + 1 points, which is an odd number, and hence exactly
one fixed point. The other q points fall in q/2 orbits under G of which each orbit spans
L. The total number of orbits of points is ([ v1 ]q −

[
v−2

1

]
q
)/2 = qv−2(q + 1)/2 and hence

#BF = qv−2(q+1)/2
q/2 = qv−3(q + 1).

Subtracting the number of point-wise fixed lines and the number of lines that contain
exactly one fixed point (any line containing exactly one fixed point contains q points that
are not in F ) from the number of lines in total, we obtain #B4 = [ v2 ]q −#BP −

[
v−2

1

]
q
·

([v]q − [v − 2]q)/q = [ v2 ]q −#BP −
[
v−2

1

]
q
·#BF . �

For example the group

G =

〈(( 0 1
1 0

0 1
1 0

Iv−4

)
· Z(GL(Fvq)), id

)〉
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10 Theoretic arguments for the exclusion of automorphisms

fulfills the requirements of the lemma and applied to q = 2 and v = 7 it yields
A2(7, 4; 3;G) ≤ 298 + 5

7 ≈ 298.7.
The next lemma considers a specific conjugacy class of subgroups in the GL(F7

2),
in which each group has order 3 and each non-trivial element of each group has a 5-
dimensional eigenspace for the eigenvalue 1. The reasoning involves computations with
GAP, cf. [GAP18].

167 Lemma
Let G =

〈(
1 1
1 0

I5

)〉
≤ GL(F7

2) ∼= PΓL(F7
2). Then A2(7, 4; 3;G) ≤ 255.

Proof
Denote g =

(
1 1
1 0

I5

)
∈ GL(F7

2). Since points and non-zero vectors correspond in F2, the
set of fixed points F is the set of points in the eigenspace of g for the eigenvalue 1, i.e.,

F = τ−1

(
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

)
.

Let C be a (7,#C, 4; 3;G)2 CDC and BP , BF , B4 ⊆
[

F7
2

2

]
such that all lines in

BP are point-wise fixed, all lines in BF are fixed but not point-wise fixed, and B4 ={
L ∈

[
Fvq
2

] ∣∣∣ dim(〈L,Lg, Lg2〉) = 4 ∧ dim(L ∩ Lg ∩ Lg2) = 0
}
.

Note that BP =
[
F
2

]
, BF = {τ−1( 1 0 0 0 0 0 0

0 1 0 0 0 0 0 )} (L ∈ BF ⇔ ∃l ∈ F7
2 : L = {0, l, l ·

g, l · g2} ⇔ l + l · g = l · g2 ⇔ l ∈ ker(I7 + g + g2)), and #B4 = 930, by a computation
with GAP. Each U ∈

[
F7

2
3

]
which is not fixed but fulfills dim(U ∩ (U · g)) ≤ 1 and

dim(U ∩ (U · g2)) ≤ 1 (otherwise U 6∈ C by the minimum distance) contains exactly 4
lines in B4, by a computation with GAP.
Then the following inequality holds

#C ≤ 1

7

∑
L∈BP

#I (C,L) +
∑
L∈BF

#I (C,L) +
1

4

∑
L∈B4

#I (C,L)

by distinguishing three cases for U ∈ C, which contributes one to the left hand side,

• if U is point-wise fixed, then it contains 7 lines in BP and no other lines and hence
it contributes one to the right hand side,

• if U is fixed but not point-wise fixed, then dim(U ∩ F ) ∈ {1, 2}. If the intersection
would be 2, then the remaining 4 points would have at least a fixed point but all
fixed points are contained in F , which is a contradiction. Hence, this intersection is
1-dimensional and U contains no line in BP and at least one of the seven lines in U
is fixed which then cannot be in F , i.e., this line is in BF . Since it contains no line
in B4 (if it did, then dim(U) ≥ 4), U contributes exactly one to the right hand side,
and
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• if U is not fixed then it does not contain a fixed line by the minimum distance
and by the preceding discussion it contains exactly 4 lines of B4, contributing also
exactly one to the right hand side.

With Lemma 41 we can estimate the right hand side further to

≤ #BP /7 + #BF + #B4/4 = 155/7 + 1 + 930/4 = 255 + 9/14

which then can be rounded down since #C is an integer. �

Another reasoning is able to provide an upper bound for CDCs having prescribed
symmetry.

168 Lemma
Let q ≥ 2 be a prime power, 2 ≤ d/2 ≤ k ≤ v − k, f < m ≤ M , u, o, λ be integers,

U ≤ PΓL(Fvq), f be the number of fixed subspaces in
[

Fvq
k

]
under the operation of U ,

o = ord(U), u be the smallest positive not-one divisor of o, and m ≤ Aq(v, d; k) ≤M .

1. If M < u, then Aq(v, d; k;U) ≤ f .

2. If o is a prime, λo+ f < m, and M < (λ+ 1)o, then Aq(v, d; k;U) ≤ λo+ f .

In both cases, no maximum (v,N, d; k)q CDC has the automorphism subgroup U .

Proof
Since Aq(v, d; k) < u, any (v,N, d; k;U)q CDC consists of fixed subspaces in the first case
and since Aq(v, d; k;U) < (λ+ 1)o, any (v,N, d; k;U)q CDC contains at most λ orbits of
size o and at most f fixed k-spaces. The primality of o completes the second case. �

169 Corollary
A2(4, 4; 2;U1) = 0, A2(5, 4; 2;U2) ≤ 8, and A2(5, 4; 2;U3) = 0 for any U1 ≤ GL(F4

2) of
order 7, U2 ≤ GL(F5

2) of order 7, and U3 ≤ GL(F5
2) of order 31.

Proof
We will use A2(4, 4; 2) = 5 and A2(5, 4; 2) = 9 as well as x7− 1 = (x+ 1)(x3 + x+ 1)(x3 +
x2 + 1) and x31 − 1 = (x+ 1)(x5 + x2 + 1)(x5 + x3 + 1)(x5 + x3 + x2 + x+ 1)(x5 + x4 +
x2 + x+ 1)(x5 + x4 + x3 + x+ 1)(x5 + x4 + x3 + x2 + 1) over F2.

Since a line consists of 3 points over F2 and the order of the three groups are at least 7
and prime, any fixed line is point-wise fixed in all three cases. Moreover, a point 〈p〉 with
p ∈ Fv2, 2 ≤ v is fixed by 〈M〉 ≤ GL(Fv2) ∼= PΓL(Fv2) iff pM = p, i.e., p is non-zero and in
the eigenspace of M for the eigenvalue 1.
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10 Theoretic arguments for the exclusion of automorphisms

Next, in all three cases the minimal polynomial m(x) of an arbitrary generating matrix
is monic and not 1 or x+ 1 due to the order of at least 7.

In the first two cases, m(x) divides x7− 1 and has hence at least degree 3 and therefore
x + 1 divides the characteristic polynomial at most once in the first case and at most
twice in the second case, i.e., the algebraic multiplicity of 1 is at most 1 in the first case
and at most 2 in the second case. Since the geometric multiplicity of 1, i.e., the dimension
of the eigenspace of 1, is upper bounded by the algebraic multiplicity of 1, we have at
most one fixed point in the first case and at most one point-wise fixed line in the second
case. Then Lemma 168 with m = M = 5, λ = 0 and m = M = 9, λ = 1 completes the
proof in the first and second case, respectively.
In the third case, m(x) divides x31 − 1 and hence has degree 5 and is therefore equal

to the characteristic polynomial and in particular the algebraic multiplicity of 1 is zero.
Then Lemma 168 with m = M = 9, λ = 0 completes this case. �

Unfortunately, this technique and especially Lemma 168 may not be applied to upper
bound A2(7, 4; 3;U) with an U ≤ GL(F7

2) of order 127. Although x127 − 1 = (x+ 1)(x7 +
x+1)(x7 +x3 +1)(x7 +x3 +x2 +x+1)(x7 +x4 +1)(x7 +x4 +x3 +x2 +1)(x7 +x5 +x2 +x+
1)(x7+x5+x3+x+1)(x7+x5+x4+x3+1)(x7+x5+x4+x3+x2+x+1)(x7+x6+1)(x7+x6+
x3+x+1)(x7+x6+x4+x+1)(x7+x6+x4+x2+1)(x7+x6+x5+x2+1)(x7+x6+x5+x3+
x2+x+1)(x7+x6+x5+x4+1)(x7+x6+x5+x4+x2+x+1)(x7+x6+x5+x4+x3+x2+1)
proves exactly in the same way as in the last lemma that the minimal polynomial has
degree 7 and equals the characteristic polynomial and that there is no fixed point, the
tightest known bounds are 333 ≤ A2(7, 4; 3) ≤ 381 and we are forced to choose m = 333
and M = 381, which renders the application of Lemma 168 infeasible since there is no λ
with the needed properties.
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11 Algorithmic arguments for the
exclusion of automorphisms

In this chapter, we describe a method to compute candidates for automorphism groups of
large codes, previously presented in [Hei+17c]. Although it is an exhaustive search of all
subgroups of a given finite group, which is, despite of being finite, often simply not possible
due to time restrictions, it is nevertheless applicable for large finite ambient groups, since
not the subgroups but rather the conjugacy classes of subgroups are enumerated and not
even all of them. If, for fixed q, v, d, and k, there is no U -invariant (v,#C, d; k)q CDC of
the desired size, then by Lemma 29 there is especially no supergroup of any conjugate of
U such that there is a (v,#C, d; k)q CDC having at least the desired size.

We want to emphasize that this method is a very general technique which can be applied
in various situations. We only take advantage that the ambient group is PΓL(Fv2) =
GL(Fv2).
Applied to (7,#C, 4; 3)2 CDCs C we can derive the following facts. The ambient

symmetry group is GL(F7
2), which has 163 849 992 929 280 ≈ 1.6 · 1014 elements and many

subgroups.

170 Theorem ([Hei+17c, Theorem 1])
Let C be a set of planes in PG(6, 2) which are mutually intersecting in at most one
point. If |C| ≥ 329, then the automorphism group of C is conjugate to one of the
33 subgroups of GL(F7

2) given in Appendix 14.1.1. The orders of these groups are
1121324751637281192121141161. Moreover, if |C| ≥ 330 then |Aut(C)| ≤ 14 and if
|C| ≥ 334 then |Aut(C)| ≤ 12.

171 Theorem ([Hei+17c, Theorem 2])
In PG(6, 2), there exists a set C of 333 planes which are mutually intersecting in at
most one point. Hence,

A2(7, 4; 3) ≥ 333.

The set C is given explicitly in Appendix 14.1.2. Its automorphism group Aut(C) is
isomorphic to the Klein four-group. It is the group G4,6 in Appendix 14.1.1.

In the language of projective geometry, see e.g. [ES16] for a contemporary survey,
a (7, 333, 4; 3)2 CDC corresponds to collections of planes in PG(6, 2) which mutually
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11 Algorithmic arguments for the exclusion of automorphisms

intersect in at most one point. Prior to [Hei+17c] the best known bounds were 329 ≤
A2(7, 4; 3) ≤ 381, see [BR14] and Theorem 107. Moreover, the q-Steiner system S(2, 3, 7)2

would be a (7, 381, 4; 3)2 CDC of maximum size, if it exists, and vice versa, cf. Chapter 2.
This upper bound of 381 may only be attained if any line is contained in exactly one
codeword.

Many articles focus on the existence question for S(2, 3, 7)2 q-Steiner system respective
(7, 381, 4; 3)2 CDCs, e.g. [Etz15a; Etz15b; EV11b; HK16; HS16; KP15; Met99; MMY95;
Tho87; Tho96], and in [BKN16; KKW17] all but one conjugacy class of non-trivial
automorphism groups (G2,1 in Appendix 14.1.1) were eliminated and in particular the
automorphism group of any putative (7, 381, 4; 3)2 CDC has at most order two.

11.1 Ascending in the subgroup lattice

The key technique, which renders this method feasible, is to construct only necessary
groups.

172 Lemma (cf. [Hei+17c, Lemma 4])
Let G be a finite group and {A ≤ G} the set of its subgroups, n, u be positive integers
such that n | u | #G and any subgroup of G of order u contains at least one normal
subgroup of order n, and f : {A ≤ G} → {0, 1} be a map that is monotonically
decreasing, i.e., f(A) ≥ f(B) for all A ≤ B.

1. Suppose T = {N ≤ G | #N = n and f(N) = 1} and L = {U ≤ G | #U =
u and N ≤ U ≤ NG(N) for an N ∈ T}. Then f(U) = 0 for all U ≤ G with
#U = u and U 6∈ L.

2. Let furthermore f be invariant under conjugation, i.e., f(Ag) = f(A) for all
g ∈ G and u/n is prime. Suppose T is a transversal of {NG | N ≤ G,#N =
n and f(N) = 1}, PN is a transversal of {gNG(N) | g ∈ NG(N)}, and L =
{〈N, g〉G | N ∈ T, g ∈ PN ,#〈N, g〉 = u}. Then f(U) = 0 for all U ≤ G with
#U = u and UG 6∈ L.

Proof
1. Let Ū ≤ G with #Ū = u and Ū 6∈ L. Then Ū contains a normal subgroup N̄ of

order n and in particular the relation N̄ ≤ Ū ≤ NG(N̄) holds. Since Ū 6∈ L we have
N̄ 6∈ T . This implies f(N̄) = 0 and by monotonicity f(Ū) = 0.

2. First, since u/n is a prime, U ≤ G of order u is 〈N, g〉 for an N ≤ G with #N = n
and a g ∈ NG(N) with g 6∈ N .

Second, let Ū ≤ G with #Ū = u and ŪG 6∈ L. Then Ū contains a normal subgroup
N̄ of order n. Assume there is a g ∈ G such that N̄g = M ∈ T . Note that
N̄g ≤ Ūg. Let l ∈ Ūg \M , then there is a h ∈ NG(M) such that lh = k ∈ PM and
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11.2 Exhaustive search in the subgroup lattice

Ūgh = 〈M,k〉. Then 〈M,k〉G ∈ L is a contradiction. Hence, there is no such g and
therefore f(N̄) = 0, which in turn implies f(Ū) = 0. �

The requirements on n and u may be fulfilled in many cases as the next lemma shows.
The Small Groups Library (Page 30) may provide additional constellations of u and n
such that Lemma 172 is applicable.

173 Lemma
Let U be a finite group, p, q1, . . . , qs different primes with p ≤ qi for i ∈ [s] for an integral
s ≥ 1, and x, x1, . . . , xs positive integers. If

1. #U = px,

2. #U = pqx1
1 or

3. #U = pqx1
1 . . . qxss and #U is a solvable number,

then U contains a normal subgroup of index p.

Proof
1. Theorem 16 guarantees a subgroup of order px−1 and Corollary 26 shows its

normality.

2. Theorem 16 guarantees a subgroup of order qx1
1 and Corollary 26 shows its normality.

3. By setting π = {q1, . . . , qs}, Theorem 21 guarantees a subgroup of order qx1
1 . . . qxss

and Corollary 26 shows again its normality. �

11.2 Exhaustive search in the subgroup lattice

Throughout this section, let G be a finite group and {A ≤ G} the set of its subgroups,
P : {A ≤ G} → {0, 1} be a map that is monotonically decreasing, i.e., P(A) ≥ P(B) for
all A ≤ B, and invariant under conjugation, i.e., P(Ag) = P(A) for all g ∈ G.
We will now describe a technique to compute a superset of {A ≤ G | P(A) = 1}. The

full implementation in Magma, cf. [BCP97], can be found in the appendix, Chapter 14.3.

11.2.1 The algorithm in pseudo code

The algorithm consists of two steps.
First, we compute a superset of {A ≤ G | P(A) = 1 and #A is a prime power}. Second,

we compute a superset of {A ≤ G | P(A) = 1 and #A is a no prime power}.
Let A(H) be the abstract type of the group H and G(A) be an arbitrary group having

the abstract type A, i.e., A(G(A)) = A for all abstract types A.
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11 Algorithmic arguments for the exclusion of automorphisms

Algorithm 5 Step 1
1: function GetConClassesSG(G,n,R)
Require: G a finite group, n ∈ Z, and R is a superset of a transversal of {A ≤ G : #A |

n ∧#A < n ∧ P(A) = 1} under the conjugation of G
Ensure: T is a transversal of S under conjugation in G with {A ≤ G | #A = n∧P(A) =

1} ⊆ S ⊆ {A ≤ G | #A = n}. The computation of T does not evaluate P but uses it
implicitly via R as described in Lemma 172 and Lemma 173.

2: return T
3: end function
4: function Step1(G,P)
Require: G a finite group, P : {A ≤ G} → {0, 1} (monotonically decreasing and

invariant under conjugation)
5: if P(〈〉) = 0 then
6: return ∅
7: end if
8: R← {〈〉} . subgroups with P(·) = 1
9: F ← ∅ . subgroups with P(·) = 0

10: Z ← 1 . largest order for Step 2, any larger order contains an excluded p-group
11: for p prime that divides #G do . in any order, even in parallel
12: TakeSylowGroup← true
13: M ← max{l : pl | #G}
14: for e← 1 to M do . in ascending order
15: if e = M and TakeSylowGroup = false then
16: Z ← Z · pM−1

17: continue
18: end if
19: C ← getConClassesSG(G, pe, R)
20: OneTaken← false
21: for c ∈ C do . in any order, even in parallel
22: if c contains an f ∈ F up to conjugacy in G or P(c) = 0 then
23: F ← F ∪ {c}
24: TakeSylowGroup← false
25: else
26: R← R ∪ {c}
27: OneTaken← true
28: end if
29: end for
30: if OneTaken = false then
31: Z ← Z · pe−1

32: break e
33: end if
34: end for
35: end for
36: return R,F, Z
37: end function
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Algorithm 6 Step 2
1: function HallDivisors(n)
Require: n is a positive integer
2: return {a ∈ Z | ∃b ∈ Z, a · b = n, a, b ≥ 1,GCD(a, b) = 1}
3: end function
4: function Step2(G,P, R, F, Z)
Require: G a finite group, P : {A ≤ G} → {0, 1} (monotonically decreasing and

invariant under conjugation), R, F , and Z from Step1
5: FO ← {d|#G : 1 ≤ d, d is a prime power , d 6∈ {#r | r ∈ R}}
6: FA ← {A(H) | H is an arbitrary group whose order is a prime power and divides

#G,A(H) 6∈ {A(r) | r ∈ R}}
7: for n ∈ {d|Z : 1 ≤ d, d is no prime power} do . in ascending order
8: A← {A(H) | H is an arbitrary group of order n}
9: h← HallDivisors(n)
10: if n is a solvable order and (h ∩ FO) 6= ∅ then. any group of order n contains

an excluded subgroup
11: FA ← FA ∪A
12: FO ← FO ∪ {n}
13: continue
14: end if
15: for a ∈ A do . in any order, even in parallel
16: if (G(a) is solvable and (h ∩ FO) 6= ∅) or (FO ∩ {#b | b ≤ G(a)} 6= ∅) or

(FA ∩ {A(b) | b ≤ G(a)} 6= ∅) then
17: FA ← FA ∪ {a}
18: end if
19: end for
20: if A ⊆ FA then . all abstract types of order n could be excluded
21: FO ← FO ∪ {n}
22: continue
23: end if
24: C ← getConClassesSG(G,n,R)
25: OneTaken← false
26: for c ∈ C do . in any order, even in parallel
27: if A(c) ∈ FA or ∃f ∈ F, g ∈ G : fg ≤ c then
28: continue
29: end if
30: if P(c) = 1 then
31: R← R ∪ {c}
32: A← A \ A(c)
33: OneTaken← true
34: else
35: F ← F ∪ {c}
36: end if
37: end for
38: FA ← FA ∪A
39: if OneTaken = false then
40: FO ← FO ∪ {n}
41: end if
42: end for
43: return R
44: end function
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11 Algorithmic arguments for the exclusion of automorphisms

11.3 The evaluation function P for CDCs and shortcuts in
the GL

In this section we describe a possibility to choose P such that {A ≤ G | P(A) = 1} ⊇ {A ≤
G | ∃(v,N, d; k)q CDC with N ≥ κ and A ≤ Aut(C)} for a previously chosen κ ∈ Z≥0.
Since the evaluation of P may take a long time, we will abort the computation after it
exceeds a time limit of t seconds. If this time limit is set to ∞, then both sets are equal,
i.e., {A ≤ G | P(A) = 1} = {A ≤ G | ∃(v,N, d; k)q CDC with N ≥ κ and A ≤ Aut(C)}.
Kohnert and Kurz presented in [KK08a, Theorem 2] a Kramer-Mesner approach for

constructing constant dimension codes having a prescribed group of automorphisms:

174 Theorem ([KK08a, Theorem 2])
Let H ≤ GL(Fvq). There is a (v,N, d′; k)q CDC C with H ≤ Aut(C) and d′ ≥ d iff there
is a solution x ∈ {0, 1}#ω for the equations

∑#ω
i=1(#ωi)xi = N and MHx ≤ 1. Here, ω

are the orbits of
[

Fvq
k

]
under H, Ω are the orbits of

[
Fvq

k−d/2+1

]
under H, 1 = (1, . . . , 1)T

of length #Ω, and MH ∈ Z#Ω×#ω
≥0 such that MH

Ωi,ωj
= #{U ∈ ωj | W ≤ U} for an

arbitrary W ∈ Ωi. Then C = ∪#ω
i=1:xi=1ωi.

This can be reformulated as BLP:

175 Corollary
Using the notation of the last theorem, there is a (v,N, d′; k)q CDC C with H ≤ Aut(C)
and d′ ≥ d of maximum cardinality iff

N = max

#ω∑
i=1

(#ωi)xi

stMHx ≤ 1

x ∈ {0, 1}#ω

The BLP in Corollary 175 can be tightened by adding constraints for more dimensions.
This is equivalent to DefaultCDCBLP(q, v, d, k) of Definition 47 with a prescribed
symmetry group H.
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176 Lemma
Let H ≤ PΓL(Fvq). There is a (v,N, d′; k)q CDC C with H ≤ Aut(C) and d′ ≥ d of
maximum cardinality iff

N = max
∑

U∈Tk(H)

#(UH)xU

st
∑

U∈Tk(H)

#I (UH,W )xU ≤ Aq(v − l, d; k − l) ∀W ∈ Tl(H), 1 ≤ l ≤ k − d/2 + 1

∑
U∈Tk(H)

#I (UH,W )xU ≤ Aq(l, d; k) ∀W ∈ Tl(H), k + d/2− 1 ≤ l ≤ v − 1

x ∈ {0, 1}Tk(H)

using Ti(H) as a transversal of
[

Fvq
i

]
under the operation of H for i ∈ {0, 1, . . . , v}.

Let zILP(H; q, v, d, k) be the optimal value of the integer linear program of Lemma 176
and zLP(H; q, v, d, k) its linear programming relaxation, i.e., the same program but with

x ∈ [0, 1]Tk(H) instead of x ∈ {0, 1}Tk(H).

For each U ∈ Tk(H) the constraint xU ≤ 1 is redundant since Aq(v − l, d; k − l) = 1 for
l = k− d/2 + 1 and for any U ∈ Tk(H) there is an l-dimensional W ′ ≤ U and therefore a
W ∈ Tl(H) with W ′ ∈WH. Hence

x ∈ [0,∞[Tk(H)

suffices.
In addition to Aq(v− l, d; k− l) = 1 for l = k− d/2 + 1, we also have Aq(l, d; k) = 1 for

l = k+d/2−1. Hence, any xU (U ∈ Tk(H)) may be trivially fixed to 0 if #I (UH,W ) ≥ 2
for a W ∈ Tl(H) with l = k − d/2 + 1 or l = k + d/2− 1.
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Algorithm 7 P for CDCs
1: function PCDC(H; q, v, d, k; t;κ)
Require: H ≤ PΓL(Fvq) a subgroup, q, v, d, k the parameters of a CDC, t a time limit in

seconds, κ ∈ Z≥0 a threshold for the code size
2: if zLP(H; q, v, d, k) < κ then
3: return 0
4: end if
5: z ← the smallest upper bound of zILP(H; q, v, d, k) which is computed for t seconds
6: if z < κ then
7: return 0
8: end if
9: return 1

10: end function

The computation of the optimal value of the linear programming relaxation is much
easier than the computation of the corresponding integer linear program. In fact, the
branch & bound solving method for integer linear programs, cf. [Dak65], incorporates the
computation of linear programs of subproblems multiple times. In particular, before the
actual branch & bound may be started, it determines a global upper bound via the linear
programming relaxation of the whole problem, i.e., the computation of zILP involves the
computation of zLP implicitly. Also the computation of zILP may be aborted, if a feasible
solution with objective value at least κ is found. This can be achieved by adding the
additional constraint ∑

U∈Tk(H)

#(UH)xU ≥ κ

and setting the objective function to 0.

11.3.1 Using the remaining symmetry

We will use Lemma 24, which guarantees that we still have some symmetry to exploit in
order to decrease the solving time of zILP:
The variables of zILP(H; q, v, d, k) are indicator variables of X =

[
Fvq
k

]
/H for H ≤

PΓL(Fvq). Using Lemma 24 the group N = NPΓL(Fvq )(H) is an automorphism group of
X. Let now TN = {TN1 , . . . , TN

#TN
} be a transversal of N operating on X and define the

BLP zILP(H; q, v, d, k;TNi ) for TNi ∈ TN as the maximization problem zILP(H; q, v, d, k)
with the additional constraint xU = 1 for {U} = Tk(H) ∩ TNi .

The correspondence is: C =
⋃
D with D ⊆ X is a non-empty feasible solution in

zILP(H; q, v, d, k) iff there is an n ∈ N and i such that C ◦ n is a non-empty feasible
solution in zILP(H; q, v, d, k;TNi ) of the same cardinality.

Assume zILP(H; q, v, d, k;TNi ) < κ then no orbit in TNi ◦N is subset of a (v,#C, d; k)q
CDC C with H ≤ Aut(C) and #C ≥ κ. Hence we can fix more variables in all
subproblems zILP(H; q, v, d, k;TNi ) and even in zILP(H; q, v, d, k), i.e., xU = 0 for all
U ∈ Tk(H) ∩ (TNi ◦N) in these problems.
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11.3 The evaluation function P for CDCs and shortcuts in the GL

This implies that later solved subproblems contain less variables and hence the ordering
of the computation of the subproblems is of interest. A heuristical idea is to sort the
set TN in decreasing order of orbit length of the TNi ◦N . Then, the first subproblems
correspond to orbits of large size, i.e., small stabilizer due to the orbit-stabilizer theorem,
cf. Lemma 22, and the latter subproblems have even more fixed variables.

To decrease the total computation time of all subproblems even further, we start all of
them in parallel while we assume for zILP(H; q, v, d, k;TNi ) that all zILP(H; q, v, d, k;TNj ) <
κ for all 1 ≤ j < i ≤ #TN integers.

11.3.2 Conjugacy classes of cyclic groups

We focus on G = GL(Fvq) instead of PΓL(Fvq).
Any group of order p for p prime is cyclic and in particular isomorphic to Cp. The

conjugacy classes of elements in G provide a starting point, but different conjugacy classes
of elements may yield the same conjugacy class as subgroups.

177 Lemma
Let G be a finite group and g, h ∈ G of the same order o ≥ 2. Then 〈g〉 and 〈h〉 are
conjugate in G iff there is an l ∈ G with gi = hl for an i ∈ [o−1] such that GCD(i, o) = 1.
If g and h are not conjugate in G, then i 6= 1 and in particular, if o = 2 then g and h
are conjugate in G iff 〈g〉 and 〈h〉 are conjugate in G.

Proof
On the one hand, if 〈g〉 and 〈h〉 are conjugate in G, i.e., there is an l ∈ G with 〈g〉 = 〈h〉l,
we use 〈h〉l = 〈hl〉 and 〈g〉 = 〈hl〉 iff gi = hl for any gi which generates 〈g〉, i.e. i ∈ [o− 1]
with GCD(i, o) = 1. On the other hand, if gi = hl for an i ∈ [o−1] such that GCD(i, o) = 1
then 〈g〉 = 〈gi〉 = 〈hl〉 = 〈h〉l. �

178 Example
g =

(
0 1 0
0 0 1
1 1 0

)
∈ GL(F3

2) has order 7 and the characteristic polynomial x3 + x+ 1. Note
that conjugate matrices, which are sometimes called similar in the context of the GL,
have the same characteristic polynomial. Although g is not conjugate to g3 =

(
1 1 0
0 1 1
1 1 1

)
,

which has order 7 and the characteristic polynomial x3 + x2 + 1, both are trivially
conjugate as subgroups, i.e., 〈g〉 = 〈g3〉I3 .

The conjugacy classes of elements in the GL(Fvq) may be computed with the Frobenius
normal form [BKN16].
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11 Algorithmic arguments for the exclusion of automorphisms

11.3.3 Conjugation test with the dimension of eigenspaces

The expensive test, whether a group contains a cyclic subgroup or an element up to
conjugation, may be replaced by the following, rather easy, criterion in the GL(Fvq).
For a square matrix M ∈ Fv×vq and λ ∈ Fq, we define the subspace Eig(M,λ) =

ker(M − λIv) = {x ∈ Fvq | xM = λx}, which is exactly the eigenspace of λ if λ is an
eigenvector and else it is the subspace {0} ≤ Fvq .

179 Lemma
Let M ∈ GL(Fvq) and λ ∈ Fq. Then:

1. Eig(M,λ) ≤ Eig(M i, λi) for all i ∈ Z≥1.

2. Eig(M i, λi) ≤ Eig(M,λsi) for all i ∈ Z≥1 such that there are s, t ∈ Z with
s · i+ t · ord(M) = 1.

3. Eig(M,λ) ·N = Eig(MN , λ) for any N ∈ GL(Fvq).

Proof
1. If x ∈ Eig(M,λ) then xM = λx⇒ xM i = λix and in turn x ∈ Eig(M i, λi).

2. By Lemma 33 there are s, t ∈ Z with s · i+ t · ord(M) = 1 iff GCD(i, ord(M)) = 1.
If x ∈ Eig(M i, λi) then xM i = λix ⇒ xM si = λsix. Since Iv = M t·ord(M) this
implies xM si+t·ord(M) = λsix⇔ xM = λsix.

3.

Eig(MN , λ) = {x ∈ Fvq | xN−1MN = λx}
= {(xN−1)N ∈ Fvq | (xN−1)M = λ(xN−1)}
= {y ∈ Fvq | yM = λy}N = Eig(M,λ) ·N �

In particular for M ∈ GL(Fvq) the property Eig(M, 1) is equal for all generators of
〈M〉, which allows to define Eig(〈M〉, 1) = Eig(M, 1). Using this definition with an
N ∈ GL(Fvq), we have Eig(〈M〉N , 1) = Eig(〈MN 〉, 1) = Eig(MN , 1) = Eig(M, 1) ·N and
although these subspaces may differ, their dimension is invariant. This in turn allows the
definition dim(Eig(〈M〉G, 1)) = dim(Eig(M, 1)).
The criterion to determine whether a group U ≤ GL(Fvq) contains a specific cyclic

subgroup up to conjugacy is now as follows. Assume, we have a transversal {T1, . . . , Tn}
of conjugacy classes of cyclic groups of order o such that ti = dim(Eig(Ti, 1)) for all i ∈ [n]
and there is a j ∈ [n] such that ti 6= tj for all i ∈ [n] \ {j}. Then U contains a conjugate
of Tj iff U contains a matrix M with ord(M) = o and dim(Eig(M, 1)) = tj .
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11.4 Application for (7, N, 4; 3)2 CDCs

The described method is applied to (7, N, 4; 3)2 CDCs with κ = 329, but the technique
also yielded results for κ = 330 and κ = 334. G = GL(F7

2) is of size 163 849 992 929 280 =
221 · 34 · 5 · 72 · 31 · 127. Previously, [BKN16] applied similar ideas to the q-Steiner system
case S(2, 3, 7)2 and lists some subgroups up to conjugacy that we use also here.
In this context, we write that a subgroup U or conjugacy class of subgroups W

of the GL(F7
2) is excluded, if the prescription of U or a representative R of W has

A2(7, 4; 3;U) < κ or A2(7, 4; 3;R) < κ, respectively.
It does not matter how we order the prime factors 2, 3, 5, 7, 31, and 127.

p ∈ {5, 31, 127}

The primes 5, 31, and 127 have in common that the largest prime power dividing #G is
51, 311, and 1271. Sylow’s theorem (Theorem 16) states that the Sylow p-subgroup is
unique up to conjugation for p ∈ {5, 31, 127}.

The Sylow 127-subgroup in G yields codes of maximum size N ≤ 254 [KK08a; Tho87].
The Sylow 31-subgroup S31 in G yields zILP(S31; 2, 7, 4, 3) = 279. Both computations
took merely seconds.
The Sylow 5-subgroup S5 in G has one fixed plane and 7 fixed lines. Unfortunately,

the solving process of zILP does not admit an upper bound which is better than 381 in 18
hours and was aborted. Hence, S5 remains in the final list, cf. G5,1 in the appendix.

p ∈ {3, 7}

Groups of order 7 Since 7 is prime, all groups of order 7 have to be cyclic.
There are three conjugacy classes of subgroups of G of order 7. One of them, HG

7 ,
has zILP(H7; 2, 7, 4, 3) ≤ 296 after 60 seconds and the other two groups do not admit an
upper bound of zILP which is better than 381 in 18 hours and were aborted.
Hence, two conjugacy classes of order 7 remain. Representatives are depicted as G7,1

and G7,2 in the appendix.

Groups of order 49 Since the up to conjugacy unique Sylow 7-group S49 in G has
order 72 and contains a conjugate of H7, the monotonicity implies zILP(S49; 2, 7, 4, 3) ≤
zILP(H7; 2, 7, 4, 3) ≤ 296.

Groups of order 3 There are three conjugacy classes of groups of order three in G. One
of them, HG

3 , has zILP(H3; 2, 7, 4, 3) ≤ 255 with the argument in Lemma 167 or by a
computation after 60 seconds. We have dim(Eig(HG

3 , 1)) = 5. The other two groups do
not admit an upper bound of zILP which is better than 381 in 18 hours and were aborted.
They have dim(Eig(·, 1)) ∈ {1, 3}.
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Groups of order 9 There are four conjugacy classes of groups of order 9 in G, which can
e.g. be computed with SubgroupClasses(GL(7,2):OrderEqual:=9); in Magma [BCP97].
Two of them contain a conjugate of H3 and hence cannot be automorphism group of
(7, N, 4; 3)2 CDCs with N > 255 and the other two groups do not admit an upper bound
of zILP which is better than 381 in 18 hours and were aborted. They have abstract type
C9 and C3 × C3.

Groups of order 27 Analogously, there are three conjugacy classes of groups of order 27
in G. One of them contains a conjugate to H3, the other two have an upper bound of
zILP of at most 309. These two computations took merely minutes.

Groups of order 81 The Sylow 3-subgroup S81 of G has order 81 and since it contains a
conjugate of H3 we have by monotonicity zILP(S81; 2, 7, 4, 3) ≤ zILP(H3; 2, 7, 4, 3) ≤ 255.
Hence, two conjugacy classes of order 3 and two conjugacy classes of order 9 remain.

Representatives for them are depicted as G3,1, G3,2, G9,1, and G9,2 in the appendix.

p = 2

Groups of order 2 There are three conjugacy classes of groups in G of order 2, HG
2 , H ′G2 ,

and H ′′G2 . Two of them can be excluded straight forward in merely seconds of computation
time or by theoretical arguments via Lemma 159, cf. Example 160, and Lemma 166:
zILP(H2; 2, 7, 4, 3) ≤ 106 with dim(Eig(H2, 1)) = 6 and zILP(H ′2; 2, 7, 4, 3) ≤ 298 with
dim(Eig(H ′2, 1)) = 5. Although the computation of zILP(H ′′2 ; 2, 7, 4, 3) does not admit
an upper bound of zILP which is better than 381 in 18 hours and was aborted, we have
dim(Eig(H ′′2 , 1)) = 4.

Hence, the test whether a group contains H2 or H ′2 up to conjugacy can be replaced by
the consideration of the dimension of eigenspaces, as described in Section 11.3.3.

Groups of order 4 There are 42 conjugacy classes of order 4 in G. 34 of them contain
conjugates of H2 or H ′2. One additional conjugacy class HG

4 can be excluded, since
zILP(H4; 2, 7, 4, 3) ≤ 327 in 18 hours of computation time. Prescribing the remaining
seven conjugacy classes, the upper bound of zILP could not be improved to at most 328
in 18 hours.

Groups of order 8 There are 867 conjugacy classes of subgroups of G of order 8. All but
38 contain a conjugate of H2 or H ′2. 27 of these 38 conjugacy classes are then excluded
via a computation of zILP in at most 14 hours. The remaining 11 conjugacy classes of
groups of order 8 could not be excluded in 14 hours.

Groups of order 16 The conjugacy classes of order 16 in G cannot be computed any
more directly with built-in commands in Magma due to time and space restrictions, which
makes the application of Lemma 172 necessary. Any group of order 16 contains a subgroup
of order 8 by Sylow’s theorem (Theorem 16) and any subgroup of index two is a normal
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subgroup (Corollary 26). Hence we can apply Lemma 172 with n = 8 and u = 16 and
extend the remaining 11 subgroups of the last paragraph. This yields 50 conjugacy classes
of subgroups of G of order 16 that do not contain a conjugate of H2 or H ′2. Solving zILP
for these 50 cases shows that the maximum value of 329 is attained exactly once in mostly
minutes and at most 8 hours each.
This group is of abstract type (C4 × C2) o C2, cf. G16,1 in the appendix, and a slight

modification of a maximum code having G16,1 as automorphism group yields the up to
now largest code with the parameters (7, 333, 4; 3)2.

There are 12 CDCs up to isomorphism under the NG(G16,1) of type (7, 329, 4; 3;G16,1)2.
They all have the same orbit structure 112249881614 and each of these isomorphism classes
of codes contain 16 CDCs. Hence, the BLP in Lemma 176 has 16 · 12 = 192 maximum
solutions.

Groups of order 2i with i ≥ 5 Applying Lemma 172 to G16,1, we found the group H32

of order 32 and a code of type (7, 327, 4; 3;H32)2. Applying again Lemma 172 to H32

yields the group H64 of order 64 and a code of type (7, 317, 4; 3;H64)2.
In particular, any subgroup H of G of order 2i with i ≥ 5 contains by Sylow’s theorem

(Theorem 16) at least one subgroup of order 32 and hence any (7, N, 4; 3;H)2 CDC has
N ≤ 327.
Therefore the 20 remaining representatives of subgroups of order 2j (j ≥ 1) of G are

G2,1, G4,1, . . . , G4,7, G8,1, . . . , G8,11, and G16,1 in the appendix.

Composite order

Any subgroup of G, whose order does not divide 24 ·32 ·5·7 = 5040 contains by Theorem 16
at least one subgroup of prime power order which cannot be automorphism group of a
(7, N, 4; 3)2 CDC with N ≥ 329, as worked out in the last paragraphs. Therefore, we only
have to consider subgroups of G = GL(F7

2), whose order divides 5040 and is neither 1 nor
a prime power.

Hence, only the 51 orders in O = {6, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45,
48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315,
336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040} remain.

Hall’s theorem, cf. Theorem 21 and the Small Groups Library, see Page 30 will be
applied. The non-solvable numbers in O are {60, 120, 168, 180, 240, 336, 360, 420, 504,
720, 840, 1008, 1260, 1680, 2520, 5040} and the Small Groups Library contains no data
for the orders {2520, 5040}.

The implication of Hall’s theorem in this application may be represented by a directed
graph, cf. Figure 10a, whose vertices are the solvable numbers in O and there is an arc
from a to b iff a | b, GCD(a, b/a) = 1, and there is no c such that (a, c) and (c, b) are arcs,
i.e., we deliberately remove the transitive arcs.
Similarly, the implication of the Small Groups Library in this application may also

be represented by a directed graph, cf. Figure 10b, whose vertices are orders in O, for
which the Small Groups Library contains all abstract types of groups, and there is an arc
from a to b iff any group of order b contains at least one subgroup of order a and there is
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no c such that (a, c) and (c, b) are arcs, i.e., we remove again the transitive arcs. After
inserting the transitive arcs, the graph in Figure 10b contains the graph in Figure 10a as
subgraph.
Let o be the label of a vertex in this graph. Then the exclusion of all subgroups of

order o in G implies that all subgroups of an order which is the label of an outgoing
vertex of the vertex o are excluded as well and this may cascade, since we omitted the
transitive arcs.
First, we consider the conjugacy classes of subgroups of G with an order in {6, 10, 12,

14, 15, 21, 35, 56, 80, 2520, 5040}, since they are vertices in the graph without an ingoing
arc in Figure 10, i.e., neither Hall’s theorem nor the Small Groups Library is able to
provide the information to exclude them on the level of only considering orders.

6 There are 12 subgroups of order 6 up to conjugacy in G. 9 of them contain a
conjugate of H2, H ′2 or H3. The 3 remaining groups cannot be excluded in 18 hours
of computation time.

10 There are 3 subgroups of order 10 up to conjugacy in G. 2 of them contain a
conjugate of H2 or H ′2. The remaining group has its zILP value upper bounded
by 306 in about 6 hours. By applying Hall’s theorem and the Small Groups
Library, e.g. via the graph in Figure 10, the exclusion of order 10 also excludes
the orders in {20, 30, 40, 60, 70, 90, 120, 140, 180, 210, 280, 360, 420, 630, 840, 1260} by
monotonicity.

12 There are 96 subgroups of order 12 up to conjugacy in G. 80 of them contain a
conjugate of H2, H ′2 or H3. All but one group could be excluded computationally
in days, this remaining group is of abstract type C3 o C4. The solving process of
zILP for this remaining group was aborted after 9 days.

14 There are 4 subgroups of order 14 up to conjugacy in G. 2 of them contain a
conjugate of H2, H ′2 or H7. One, H14, has its zILP upper bounded by 301 after
60 seconds and the other, H ′14 is of abstract type C14 and its zILP is at most 332.
The computation of the upper bound of zILP(H ′14; 2, 7, 4, 3) was difficult and the
technique described in Section 11.3.1 was applied. The orbit type is 112473014828

and after removing the trivially forbidden orbits 112472814632. The normalizer
NG(H ′14) has order 168 and the normalizer-orbit type is 11413621250, making a total
of 66 subproblems. All subproblems could be solved in about 1 day.

15 There are 3 subgroups of order 15 up to conjugacy in G. One of them contains
a conjugate of H3. The remaining groups could be excluded computationally in
days. By considering Figure 10, the exclusion of order 15 implies the exclusion for
all orders in {30, 45, 90, 105, 180, 210, 315, 630, 1260}.

21 There are 8 subgroups of order 21 up to conjugacy in G. 5 of them contain a
conjugate of H3 or H7. The remaining groups could be excluded computationally
in at most 2 hours each. By considering again Figure 10, the exclusion of order
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(a) A directed graph which shows the implication of Hall’s theorem.
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(b) A directed graph which shows the implication of the Small Groups Library. After inserting
all transitive arcs, it contains the graph in Figure 10a as subgraph.

Figure 10: Directed graphs which shows the implication of Hall’s theorem and the Small
Groups Library. The exclusion of any subgroup of order o excludes any
subgroup whose orders are the labels for the outgoing arcs of vertex labeled
o.
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11 Algorithmic arguments for the exclusion of automorphisms
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Figure 11: The subgraph of the graph in Figure 10b with vertices with labels in {18, 24,
28, 36, 48, 72, 144, 240, 504, 720, 1008}.

21 implies the exclusion for all orders in {42, 63, 84, 105, 126, 168, 210, 252, 315, 336,
420, 630, 840, 1260, 1680}.

35 There is one subgroup of order 35 up to conjugacy in G and it contains a conjugate
of H7. This implies the exclusion for all orders in {70, 105, 140, 210, 280, 315, 420,
560, 630, 840, 1260, 1680}.

56 There are 38 subgroups of order 56 up to conjugacy in G. 26 of them contain a
conjugate of H2, H ′2 or H7. The remaining 12 groups could be excluded compu-
tationally in a few seconds. This implies the exclusion of the orders in {112, 280,
560}.

80 Referring to the Small Groups Library each group of order 80 contains a subgroup
of order 10 or a subgroup of abstract type C2×C2×C2×C2, i.e., order 16, and each
subgroup of G of this abstract type cannot be automorphism group of (7, N, 4; 3)2

CDCs with N ≥ 329. This additionally excludes the order 560.

2520 There are 7 subgroups of order 2520 up to conjugacy in G. All contain a conjugate
of H2, H ′2, H3 or H7.

5040 There are 4 subgroups of order 5040 up to conjugacy in G. All contain a conjugate
of H2, H ′2, H3 or H7. None of them is solvable.

The remaining groups are denoted G6,1, G6,2, G6,3, G12,1, and G14,1 in the appendix.
All these orders, except for 80, may be processed in parallel since no information is

shared in between. Only order 80 depends on the previously performed exclusion of order
10 and the excluded abstract types of order 16.

After this iteration, only the 11 orders in {18, 24, 28, 36, 48, 72, 144, 240, 504, 720, 1008}
remain to be taken into consideration, since the orders 6, 12, and 14 could not be excluded
completely.

Note that the exclusion of order 18 implies the exclusion of the orders 72 and 504, and
similarly, the exclusion of order 36 implies the exclusion of the orders 144, 720, and 1008,
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11.5 Local search with BLP techniques

while the exclusion of order 48 implies the exclusion of order 240 by monotonicity, cf.
Figure 11.

18 There are 16 subgroups of order 18 up to conjugacy in G. 13 of them contain a
conjugate ofH2, H ′2 orH3. The remaining groups could be excluded computationally
in at most 5 minutes each.

24 There are 525 subgroups of order 24 up to conjugacy in G. 488 of them contain a
conjugate of H2, H ′2 or H3. The abstract types of these remaining groups are: 14
times S4, 19 times C2×A4, 2 times SL(F2

3), and 2 times (C6×C2)oC2. All but the
two groups of abstract type SL(F2

3) contain an excluded C12, C6 × C2, or A4. The
remaining two groups of abstract type SL(F2

3) could be excluded computationally
in at most 2 minutes.

28 There are 9 subgroups of order 28 up to conjugacy in G. 8 of them contain a
conjugate of H2, H ′2 or H7. The remaining group is of abstract type C14 × C2 and
could be excluded computationally in less than 1 minute.

36 There are 61 subgroups of order 36 up to conjugacy in G. 59 of them contain a
conjugate of H2, H ′2 or H3. The remaining groups are both of abstract type C3×A4

and in particular, they contain an excluded A4.

48 Referring to the Small Groups Library, each group of order 48 contains a subgroup
of order 24 or a subgroup of abstract type A4.

Since all of these conjugacy classes of subgroups could be excluded, the whole subspace
lattice of GL(F7

2) was exhaustively searched for subgroups that may be automorphism
groups for a (7, N, 4; 3)2 CDC with N ≥ 329.

11.5 Local search with BLP techniques

An advantage of the automorphism search strategy in Section 11.4 is that we get large
codes with large automorphism groups as a byproduct. In this case, we found a (7, 329, 4; 3;
G16,1)2 CDC C329, cf. G16,1 in the appendix, Chapter 14.1.1 and the paragraph “Groups
of order 16” on Page 172, which we will modify in this section to get larger codes.
For the sake of a general explanation, let Cstart be a (v,N, d; k;G)q CDC and η ∈
{0, 1, . . . , N}. Equipping the BLP in Lemma 176 for H ≤ G with the additional constraint∑

U∈Tk(H)∩Cstart

#(UH)xU ≥ η

allows to use BLP solvers to search for large codes in the neighborhood of Cstart. The
parameter η controls how “near” our starting code Cstart and the computed code C are,
i.e., #(C ∩ Cstart) ≥ η. Any feasible solution of this modified BLP corresponds to a
(v,N ′, d′; k;H ′)q CDC C ′ with η ≤ N ′, d ≤ d′, and H ≤ H ′.
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11 Algorithmic arguments for the exclusion of automorphisms

Applying this local search strategy to G = G16,1, a (7, 329, 4; 3;G16,1)2 CDC Cstart, and
H = 〈I7〉 with η = 300 yields a (7, 333, 4; 3)2 CDC C ′ of whom further investigation shows
that Aut(C ′) is conjugate to G4,6 in the GL(F7

2), cf. Appendix 14.1.1. Hence, choosing
H ≤ G16,1 as a conjugate of G4,6 in GL(F7

2) suffices to find this code by removing two
fixed planes, i.e., creating a temporary CDC of cardinality 325, and extending it by two
other fixed planes and two orbits of size two. The code C ′′ depicted in Section 14.1.2 has
Aut(C ′′) = G4,6, it is in the same orbit as C ′.

Moreover, this (7, 333, 4; 3)2 CDC contains 35 planes which are incident to the same
hyperplane. By removing these planes and hyperplane, we get a set of 298 planes in the
affine geometry AG(6, 2) which mutually intersect in at most a point, cf. [Zum16].

11.6 An implementation in Magma and examples

Here, we discuss some applications of the source code in Section 14.3 in the appendix.
Essentially, we implement the pseudo code of Section 11.2.1, which uses an arbitrary
finite group G and a function P : {A ≤ G} → {0, 1} which is monotonically decreasing,
i.e., P(A) ≥ P(B) for all A ≤ B, and invariant under conjugation, i.e., P(Ag) = P(A)
for all g ∈ G. If G is some subgroup of a general linear group, we add specific details
described in Section 11.3.3.

Moreover, Section 14.3 in the appendix lists additional code that implements function-
ality in the context of subspace coding and CDCs and in particular DefaultCDCBLP,
cf. Definition 47.
It also provides functionality that solves a BLP automatically from Magma [BCP97]

using Gurobi [Gur16] via an adapter in Python [Ros95]. This is used in a prototype of
an evaluation function P ′ which can be specialized to P depending on different settings.

Automorphisms of (4, 5, 4; 2)2 CDCs

There is only one isomorphism class of (4, 5, 4; 2)2 CDCs and we denote a representative
as C. The automorphism group of C is isomorphic to GL(F4/2

22 )×Aut(F22/F2) of order
(42 − 1) · (42 − 4) · 2 = 360, cf. [Tra13c, Theorem 11 and Corollary 12] and [Tra13b,
Theorem 4.16 and Theorem 4.17].

The following call of the algorithm searches all subgroups of G = GL(F4
2) for conjugacy

classes UG such that there is a (4, 5, 4; 2;U)2 CDC. Its result is shown in Figure 12. The
overall computations took a few seconds.

DefaultCDCBLP(" defcdc_2442 . lp " , 2 ,4 ,4 ,2 : rhs := [ 1 , 1 , 1 ] , lb :=5 ,
replaceme :=" replaceme ") ;

write_python_helper (" adapter . py" , "defcdc_2442 . lp " , "add_" , "
replaceme ") ;

myeval := func<U_idx | eval_DefaultCDCBLP (2 , 4 , 4 , 2 ,U_idx [ 1 ] , 1 0 0 , "
sg " cat IntegerToStr ing (U_idx [ 2 ] ) ,"add_" ,U_idx [ 2 ] , " adapter .
py") >;

sgc := SearchSubgroupLatt ice (GL(4 , 2 ) , myeval ) ;
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11.6 An implementation in Magma and examples

L := PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (GL(4 , 2 )
, sgc ) ;

PrintSubgroupLatticeAsDigraph ( sgc , L) ;

Listing 1: Using the algorithm for (4, 5, 4; 2)2 CDCs

Although the GL(F4/2
22 )× Aut(F22/F2) ∼= C3 × S5 has 44 subgroups up to conjugacy,

the algorithm and Figure 12 list only 37, since multiple groups are conjugate under G.

Automorphisms of (5, 9, 4; 2)2 CDCs

There are four isomorphism classes of (5, 9, 4; 2)2 CDCs and their automorphism groups
are isomorphic to A4 × C2, C6, or S3, cf. [GSS00, Theorem 5.1].

The following call of the algorithm searches all subgroups of G = GL(F5
2) for conjugacy

classes UG such that there is a (5, 9, 4; 2;U)2 CDC. Its result is shown in Figure 13. The
overall computations took a few seconds.

DefaultCDCBLP(" defcdc_2542 . lp " , 2 ,5 ,4 ,2 : rhs := [ 1 , 1 , 1 , 5 ] , lb :=9 ,
replaceme :=" replaceme ") ;

write_python_helper (" adapter . py" , "defcdc_2542 . lp " , "add_" , "
replaceme ") ;

myeval := func<U_idx | eval_DefaultCDCBLP (2 , 5 , 4 , 2 ,U_idx [ 1 ] , 1 0 0 , "
sg " cat IntegerToStr ing (U_idx [ 2 ] ) ,"add_" ,U_idx [ 2 ] , " adapter .
py") >;

sgc := SearchSubgroupLatt ice (GL(5 , 2 ) , myeval ) ;
L := PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (GL(5 , 2 )

, sgc ) ;
PrintSubgroupLatticeAsDigraph ( sgc , L) ;

Listing 2: Using the algorithm for (5, 9, 4; 2)2 CDCs

Automorphisms of (7, N, 4; 3)2 CDCs with 329 ≤ N

We can also apply our algorithm to the same setting as in Section 11.4 to get automatically
a superset of cardinality 47 of the manually reasoned subgroup classes. Here, we choose
the timeout for the evaluation function to be 600 seconds. The first part of the algorithm
involving groups of prime power took about 11 hours wall-time and the second part
involving composite group orders took additionally 3 hours wall-time. About 6 hours
were used for the ascending step from groups of order 4 to groups of order 8. To be
specific, the test if two subgroups of order 8 are conjugate is the expensive operation.
The evaluation function was executed 147 times and took 45 times 600 seconds and one
time 7 seconds if its value is 1 and in the remaining 101 cases it took less than 1 hour
combined. Note that the evaluation function was not called for 〈〉 ≤ GL(F7

2).
Obviously, the groups that the algorithm returned may be used as a starting point for

more elaborate exclusion methods to retrieve the same result as Theorem 170.
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11.6 An implementation in Magma and examples

C1 (1)

C2 (2) C3 (3)

C2^2 (4) C6 (6)S3 (6)

A4 (12)C2^3 (8)

C2*A4 (24)

Figure 13: Output of the code of Listing 2. Any label shows the abstract type and the
order in brackets. An arrow means that a group is subgroup up to conjugacy.

DefaultCDCBLP(" defcdc_2743 . lp " , 2 ,7 ,4 ,3 : lb :=329 , replaceme :="
replaceme ") ;

write_python_helper (" adapter . py" , "defcdc_2743 . lp " , "add_" , "
replaceme ") ;

myeval := func<U_idx | eval_DefaultCDCBLP (2 , 7 , 4 , 3 ,U_idx [ 1 ] , 6 0 0 , "
sg " cat IntegerToStr ing (U_idx [ 2 ] ) ,"add_" ,U_idx [ 2 ] , " adapter .
py") >;

sgc := SearchSubgroupLatt ice (GL(7 , 2 ) , myeval ) ;
L := PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (GL(7 , 2 )

, sgc ) ;
PrintSubgroupLatticeAsDigraph ( sgc , L) ;

Listing 3: Using the algorithm for (7, N, 4; 3)2 CDCs with 329 ≤ N

2− (7, 3, 2)2 subspace packing and covering designs

The BLP in the evaluation function for CDCs of Lemma 176 may slightly be changed
to only use constraints with l = t and right hand side ≤ λ to allow the exclusion of
automorphisms of simple t− (v, k, λ)q subspace packing designs. As a byproduct, feasible
solutions of the BLP which is solved in the evaluation function are subspace packing
designs.
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11.6 An implementation in Magma and examples

DefaultCDCBLP(" defpackingdes ign_2743 . lp " , 2 ,7 ,4 ,3 : rhs
:= [ 0 , 2 , 0 , 0 , 0 , 0 ] , lb :=741 , replaceme :=" replaceme ") ;

write_python_helper (" adapter . py" , " defpackingdes ign_2743 . lp " , "
add_" , " replaceme ") ;

myeval := func<U_idx | eval_DefaultCDCBLP (2 , 7 , 4 , 3 ,U_idx [ 1 ] , 1 0 0 , "
sg " cat IntegerToStr ing (U_idx [ 2 ] ) ,"add_" ,U_idx [ 2 ] , " adapter .
py") >;

sgc := SearchSubgroupLatt ice (GL(7 , 2 ) , myeval ) ;

Listing 4: Using the algorithm to find large simple 2− (7, 3, 2)2 subspace packing designs

We did not perform a complete search of the subgroup lattice with the code in Listing 4,
since too many groups of order 8 could not be excluded and hence it was computationally
infeasible to ascend to all necessary subgroups of order 16. As an intermediate result of
the solving proceess, we found a group of order 27, i.e.,

U =

〈
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1

 ,


0 0 0 0 1 1 0
0 0 0 1 0 1 1
0 0 1 0 0 0 0
1 1 0 0 1 0 1
1 0 0 1 0 1 0
1 0 0 0 1 0 1
0 1 0 1 0 1 0

〉 ,
which yields a simple 2−(7, 3, 2)2 subspace packing designs of cardinality 741. This attains
the maximum cardinality for all simple 2 − (7, 3, 2)2 packing designs with prescribed
automorphism group U and the computation took about 30 seconds. The upper bound
without prescribed automorphisms is 381 · 2 = 762. U is a Heisenberg group and the
orbits of the subspace packing designs have the orders 34992724.

Since this simple 2− (7, 3, 2)2 subspace packing design of size 741 is close to the upper
bound of 762 we used U also in the search for good simple 2− (7, 3, 2)2 subspace covering
designs. Modifying the BLP to a minimization problem, such that all inequalities are
“≥ 2” instead of “≤ 2” and prescribing U yields a simple 2− (7, 3, 2)2 subspace covering
design of size 783 and orbits under U of sizes 9122725. This also attains the minimum
cardinality for all simple 2 − (7, 3, 2)2 covering designs with prescribed automorphism
group U and the computation took about 5 minutes. Any simple 2− (7, 3, 2)2 subspace
covering design has size at least 2 · 381 = 762 and hence, this is again optimal up to 21
elements.

Applied to simple 2− (7, 3, 2)2 subspace designs, the algorithm computes a list L of 75
subgroups of GL(F7

2) such that all conjugacy classes of subgroups which do not have a
representative in this list cannot be automorphism group of such a subspace design. The
orders of the groups in L are in {1, 2, 4, 7, 8, 14, 16}.

Starting with the subspace packing design of size 741, the strategy of Section 11.5 with
H = 〈〉 and η = 730 was not capable of increasing its cardinality.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

The only three cases in which the values of Aq(v, d; k) are determined are A2(6, 4; 3) = 77,
A2(8, 6; 4) = 257, and A2(13, 4; 3) = 1597245. In the first two cases, the exact number
of non-isomorphic maximum codes in the PΓL, i.e., without orthogonality, is known: 5
and 2. For general (2k,N, 2k − 2; k)q CDCs with k ≥ 3 integer and q ≥ 2 prime power,
the best lower bound is given by the Echelon-Ferrers construction and the best upper
bound is given by the Johnson bound, involving the maximum size of partial spreads in
Theorem 126, as q2k + 1 ≤ N ≤ (qk + 1)2. For 4 ≤ k the lower bound also achieves the
LMRD bound in Proposition 99. For k = 3, the LMRD bound is q2k + q2 + q + 1. Any
improvements on these lower and upper bounds then have direct consequences for mixed
dimension subspace codes via Theorem 30. In the paper [Hei+17a; HK17a], we focused
on the case 257 ≤ A2(8, 6; 4) ≤ 289 and by theoretical and computer aided arguments,
we could decrease this upper bound to attain the lower bound. By a further investigation
of the involved substructures, we could determine the non-isomorphic codes.

Here, we develop the theory depicted in the paper [Hei+17a; HK17a] in a more general
perspective for (2k,N, 2k − 2; k)q CDCs, where k ≥ 3 is an integer and q ≥ 2 is a prime
power. In the paper [Hei+17a; HK17a], we used similar arguments, which were very
specific for (8, N, 6; 4)2 CDCs. For these parameters, the Echelon-Ferrers construction
can only increase the size of a corresponding LMRD by one additional codeword, which
intersects the special subspace of the LMRD Sk = τ−1(0k×k | Ik) in at least a (k−1)-space.
Hence, we immediately get at least two non-isomorphic (2k, q2k + 1, 2k − 2; k)q CDCs.
One that contains Sk and several that contain k-spaces Ui with dim(Sk ∩ Ui) = k − 1.

Since we want to study the number of hyperplanes that contain a specific number i of
codewords for all reasonable i of all (2k, q2k + 1, 2k − 2; k)q extended LMRD codes, we
need the number of codewords of a (2k, q2k, 2k − 2; k)q LMRD which are incident to a
fixed point.

180 Lemma
Let k ≥ 3 be an integer and q ≥ 2 a prime power. Any point in F2k

q which is not in
Sk = τ−1(0k×k | Ik) is contained in exactly qk codewords of any (2k, q2k, 2k − 2; k)q
LMRD L.

Proof
Since #I (C,P ) ≤ Aq(2k − 1, 2k − 2; k − 1) = qk + 1 for any (2k,#C, 2k − 2; k)q CDC C

and any point P in F2k
q and the mean value of codewords in L that contain a fixed point

P which is not in Sk is q2k ·
[
k
1

]
q
/(
[

2k
1

]
q
−
[
k
1

]
q
) = qk, we only have to show that there

is no point P ′ 6≤ Sk with #I (L,P ′) = qk + 1.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

Assume that there is a point P ′ = 〈(p1 | p2)〉 (p1, p2 ∈ Fkq ) with #I (L,P ′) = qk + 1.
Then a basis change with M ∈ GL(F2k

q ) such that 〈(p1 | p2)〉M Z(GL(F2k
q )) = 〈(uk |

01×k)〉, where ui is the i-th unit vector, yields an isomorphic LMRD L′ with

#I
(
L′, τ−1((uk | 01×k))

)
= qk + 1.

Denote these qk + 1 codewords with Ui for 1 ≤ i ≤ qk + 1. Then

τ(Ui) =
(

Ik−1 0(k−1)×1 Mi

01×(k−1) 1 01×k

)
for 1 ≤ i ≤ qk + 1, and particularly, the MRD code corresponding to L′ contains

(
Mi
01×k

)
for 1 ≤ i ≤ qk + 1. Omitting the last row of each matrix in

{(
Mi
01×k

)
| 1 ≤ i ≤ qk + 1

}
yields a ((k − 1) × k, qk + 1, k − 1)q rank-distance code, which cannot exist, since the
maximum cardinality for these parameters is qk((k−1)−(k−1)+1) = qk. �

We are now prepared to state the hyperplane spectrum of (2k, q2k, 2k − 2; k)q LMRDs
and (2k, q2k + 1, 2k − 2; k)q extended LMRDs.

181 Lemma
Let k ≥ 3 be an integer and q ≥ 2 a prime power.

For any (2k, q2k, 2k−2; k)q LMRD L there are [k]q hyperplanes containing no codewords
and each of the [2k]q − [k]q remaining hyperplanes contains qk codewords.
For any (2k, q2k + 1, 2k − 2; k)q CDC L ∪ {Sk}, using Sk = τ−1(0k×k | Ik), there

are [k]q hyperplanes containing one codeword and each of the [2k]q − [k]q remaining
hyperplanes contains qk codewords.
For any (2k, q2k + 1, 2k − 2; k)q CDC L ∪ {U}, such that U has dimension k and

dim(U∩Sk) = k−1, there are [k−1]q hyperplanes containing one codeword, [k]q−[k−1]q
hyperplanes containing no codewords, [k]q − [k − 1]q hyperplanes containing qk + 1
codewords, and each of the [2k]q − 2[k]q + [k − 1]q remaining hyperplanes contains qk

codewords.

Proof
Let, on the one hand, H be a hyperplane containing Sk. Then it contains no LMRD
codeword since any LMRD codeword intersects Sk trivially and consequently their sum
span F2k

q . On the other hand, let H be a hyperplane that does not contain Sk. Then
applying the fact #I (L,H) = #I

(
L⊥, H⊥

)
and Lemma 180, since H⊥ is a point non-

incident to S⊥k , i.e., the special subspace of the LMRD L⊥, shows #I
(
L⊥, H⊥

)
= qk.

There is a total of
[

2k−k
2k−1−k

]
q
hyperplanes containing Sk and all remaining

[
2k

2k−1

]
q
−[

2k−k
2k−1−k

]
q
hyperplanes do not contain Sk.

In the second case, i.e., L ∪ {Sk}, any hyperplane containing Sk contains the codeword
Sk. The remainder of the argumentation is the same as in the previous case.
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In the third case, there are
[

2k−k
2k−1−k

]
q
hyperplanes containing Sk,

[
2k−k

2k−1−k
]
q
hyperplanes

containing U , and
[

2k−k−1
2k−1−k−1

]
q
hyperplanes containing 〈Sk, U〉. Therefore, all hyperplanes

containing Sk and not U contain no codewords, all hyperplanes containing Sk and U
contain one codeword, i.e., U , all hyperplanes which do not contain Sk but U contain in
addition to the qk codewords from L also U , and all remaining hyperplanes contain qk

LMRD-codewords like in the first argument. �

In particular, there are (2k, q2k + 1, 2k − 2; k)q CDCs C1 and C2 and hyperplanes
H1 and H2 with #I (C1, H1) = qk + 1, #I (C2, H2) = qk, and #I (C2, H) ≤ qk for all
hyperplanes H. This implies that both cases of the following lemma are in fact attained.

182 Lemma ([Hei+17a, Lemma 2])
For an integral k ≥ 3 and prime power q ≥ 2, let P̃ be a point and H̃ be a hy-
perplane, both in F2k

q with P̃ 6≤ H̃. Let further C be a (2k,N, 2k − 2; k)q CDC
with N ≥ q2k + 1. Then there is a g ∈ 〈PΓL(F2k

q ), π〉 such that for all points P
and hyperplanes H in F2k

q one of the two following cases is true for D = g ◦ C:

#I
(
D, H̃

)
= #I (D,H) ≤ #I (D,P ) ≤ #I

(
D, P̃

)
≥

case 1 qk + 1 qk + 1 qk + 1
⌈

(q2k+1)·(qk−1)−(q2k−1−1)(qk+1)
q2k−1(q−1)

⌉
case 2 qk qk qk

⌈
(q2k+1)·(qk−1)−(q2k−1−1)qk

q2k−1(q−1)

⌉

Proof
First, by Lemma 41 #I (C,H) ≤ Aq(2k − 1, 2k − 2; k) = qk + 1 for all hyperplanes H
and #I (C,P ) ≤ Aq(2k − 1, 2k − 2; k − 1) = qk + 1 for all points P .
Second, if #I (C,H) ≤ l − 1 for all hyperplanes H, then double-counting of{

(U,H) ∈ C ×
[

F2k
q

2k−1

] ∣∣∣ U ≤ H}
yields N ·

[
k
1

]
q

=
∑

H #I (C,H) ≤
[

2k
1

]
q

(l − 1), i.e, N ≤ (qk + 1)(l − 1). Since
N ≥ q2k + 1 = (qk + 1)(qk − 1) + 2, there is a hyperplane H ′ that is incident to l ≥ qk

codewords.
Third, fix an arbitrary hyperplane H ′′ and assume #I (C,P ) ≤ α for all P ≤ H ′′. Then

there is a point P ′′ not incident to H ′′ with #I (C,P ) ≥ (q2k+1)·(qk−1)−(q2k−1−1)α
q2k−1(q−1)

= β.
Assuming that #I (C,P ) < β for all points P 6≤ H ′′ and double counting the set{

(U,P ) ∈ C ×
[

F2k
q

1

] ∣∣∣ P ≤ U} yields (q2k + 1) ·
[
k
1

]
q
≤ N ·

[
k
1

]
q

=
∑

P≤H′′ #I (C,P ) +∑
P 6≤H′′ #I (C,P ) <

[
2k−1

1

]
q
α + (

[
2k
1

]
q
−
[

2k−1
1

]
q
)β, i.e., β >

(q2k+1)·
[
k
1

]
q
−
[

2k−1
1

]
q
α[

2k
1

]
q
−
[

2k−1
1

]
q

=

(q2k+1)·(qk−1)−(q2k−1−1)α
q2k−1(q−1)

, which is a contradiction.
Fourth, we distinguish three cases.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

1. There is a hyperplane H ′ that is incident to exactly qk + 1 codewords. Then we
use g1 ∈ PΓL(F2k

q ) with g1 ◦H ′ = H̃, which exists via basis extension. Then, using
“Third”, there is a point P ′ which is not contained in H̃ and incident to at least⌈

(q2k+1)·(qk−1)−(q2k−1−1)(qk+1)
q2k−1(q−1)

⌉
codewords. Since the stabilizer of H̃ in PΓL(F2k

q ) is

transitive on the set of points non-incident to H̃, there is a g2 ∈ PΓL(F2k
q ) with

g2 ◦ H̃ = H̃ and g2 ◦ P ′ = P̃ .

2. Any hyperplane is incident to at most qk codewords, but there is a point P ′ that is
incident to qk + 1 codewords. Then we use g′1 ∈ PΓL(F2k

q ) with g′1 ◦ (π(P ′)) = H̃
and using g1 = g′1 · π we are in the first case.

3. Any hyperplane and any point is incident to at most qk codewords. Then the
argument in “Second” guarantees the existence of a hyperplane H ′ that is incident
to exactly qk codewords. Again, we use g1 ∈ PΓL(F2k

q ) with g1 ◦H ′ = H̃. Then,
again using “Third”, there is a point P ′ which is not contained in H̃ and incident
to at least

⌈
(q2k+1)·(qk−1)−(q2k−1−1)qk

q2k−1(q−1)

⌉
codewords. Since the stabilizer of H̃ in

PΓL(F2k
q ) operates again transitive on the set of points non-incident to H̃, there is

a g2 ∈ PΓL(F2k
q ) with g2 ◦ H̃ = H̃ and g2 ◦ P ′ = P̃ .

The map g is g2 · g1 and g ◦ C has the stated properties in all three cases. �

The first three cases for k and q = 2 are:

183 Corollary
Any (6, N, 4; 3)2 CDC C with 65 ≤ N is isomorphic to a CDC D, such that for a fixed
point P̃ and a hyperplane H̃ which are non-incident, one of two cases is attained:

#I
(
D, H̃

)
= #I (D,H) ≤ #I (D,P ) ≤ #I

(
D, P̃

)
≥

case 1 9 9 9 d5.5e
case 2 8 8 8 d6.47e

Any (8, N, 6; 4)2 CDC C with 257 ≤ N is isomorphic to a CDC D, such that for a
fixed point P̃ and a hyperplane H̃ which are non-incident, one of two cases is attained:

#I
(
D, H̃

)
= #I (D,H) ≤ #I (D,P ) ≤ #I

(
D, P̃

)
≥

case 1 17 17 17 d13.25e
case 2 16 16 16 d14.24e

Any (10, N, 8; 5)2 CDC C with 1025 ≤ N is isomorphic to a CDC D, such that for a
fixed point P̃ and a hyperplane H̃ which are non-incident, one of two cases is attained:
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#I
(
D, H̃

)
= #I (D,H) ≤ #I (D,P ) ≤ #I

(
D, P̃

)
≥

case 1 33 33 33 d29.13e
case 2 32 32 32 d30.12e

P is an arbitrary point and H is an arbitrary hyperplane in the respective vector
space in all three cases.

The set of codewords incident to the hyperplane H̃ is called hyperplane configuration
and can be investigated even further using the bijection ι : F2k−1

q → H̃ for subspaces and
sets of subspaces. The next lemma shows that all possible hyperplane configurations are
determined by the non-isomorphic (2k−1, N, 2k−2, k)q CDCs with qk ≤ N ≤ qk+1, which
are the orthogonal codes of (2k−1, N, 2k−2, k−1)q partial spreads with qk ≤ N ≤ qk+1.

184 Lemma
Let P̃ and H̃ be a point and a hyperplane in F2k

q which are not incident and Ai be a
superset of the transversal of (2k − 1, i, 2k − 2, k)q CDCs for qk ≤ i ≤ qk + 1, where
3 ≤ k. Let C be a (2k,#C, 2k − 2; k)q CDC with #C ≥ q2k + 1. Then there is a
g ∈ 〈PΓL(F2k

q ), π〉 such that for all points P and hyperplanes H in F2k
q one of the two

following cases is true for D = g ◦ C:

ι−1
(
I
(
D, H̃

))
∈ #I (D,H)≤ #I (D,P )≤ #I

(
D, P̃

)
≥

case 1 Aqk+1 qk + 1 qk + 1
⌈

(q2k+1)·(qk−1)−(q2k−1−1)(qk+1)
q2k−1(q−1)

⌉
case 2 Aqk qk qk

⌈
(q2k+1)·(qk−1)−(q2k−1−1)qk

q2k−1(q−1)

⌉

Proof
Applying Lemma 182, we only have to show that there is a g ∈ PΓL(F2k

q ) such that

g ◦ P̃ = P̃ , g ◦ H̃ = H̃, and ι−1
(
I
(
g ◦ C, H̃

))
∈ Aqk ∪ Aqk+1 for a C with

#I
(
C, H̃

)
= #I (C,H) ≤ #I (C,P ) ≤ #I

(
C, P̃

)
≥

case 1 qk + 1 qk + 1 qk + 1
⌈

(q2k+1)·(qk−1)−(q2k−1−1)(qk+1)
q2k−1(q−1)

⌉
case 2 qk qk qk

⌈
(q2k+1)·(qk−1)−(q2k−1−1)qk

q2k−1(q−1)

⌉
Moreover we assume wlog. P̃ = 〈u2k〉 and H̃ = 〈u1, . . . , u2k−1〉 since we can map any

non-incident pair of point and hyperplane to 〈u2k〉 and 〈u1, . . . , u2k−1〉 in the PGL(F2k
q ),

using the canonical basis 〈u1, . . . , u2k〉 of F2k
q .

SinceAqk andAqk+1 are supersets of transversals, there is a g′ = (M ·Z(GL(F2k−1
q )), α) ∈

PΓL(F2k−1
q ) with g′ ◦ ι−1

(
I
(
C, H̃

))
∈ Aqk ∪ Aqk+1, where M ∈ GL(F2k−1

q ), Z(G) is
the center of the group G, and α is a field automorphism.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

Now we define g =
((

M 0(2k−1)×1

01×(2k−1) 1

)
· Z(GL(F2k

q )), α
)
∈ PΓL(F2k

q ). Then this g

has the stated properties: g ◦ P̃ = α
(
〈u2k〉 ·

(
M 0(2k−1)×1

01×(2k−1) 1

)
· Z(GL(F2k

q ))
)

= P̃

and similarly g ◦ H̃ = α
(
〈u1, . . . , u2k−1〉 ·

(
M 0(2k−1)×1

01×(2k−1) 1

)
· Z(GL(F2k

q ))
)

= H̃ since
α(0) = 0, α(1) = 1, and rk(M) = 2k − 1. �

The main difference of (6, N3, 4; 3)2 CDCs and (8, N4, 6; 4)2 CDCs, i.e., q = 2 and 3 ≤
k ≤ 4, to other combinations of q and k is that the classification of (2k−1, N, 2k−2, k−1)q
for qk ≤ N ≤ qk + 1 is known:

185 Theorem ([GSS00, Theorem 5.1])
A2(5, 4; 2) = 9 and there are 4 isomorphism types of (5, 9, 4; 2)2 CDCs. Their automor-
phism groups have the orders: 63241.

186 Theorem ([GSS00, Theorem 5.3])
There are 9 isomorphism types of (5, 8, 4; 2)2 CDCs. Their automorphism groups have
the orders: 112432611681.

187 Theorem ([HKK16a, Theorem 1])
A2(7, 6; 3) = 17 and there are 715 isomorphism types of (7, 17, 6; 3)2 CDCs. Their
automorphism groups have the orders: 1551270327419667188122167246325421485642961

11211281192126881.

188 Theorem ([HKK16a, Theorem 2])
There are 14445 isomorphism types of (7, 16, 6; 3)2 CDCs. Their automorphism groups
have the orders: 113587251131434107620748199312241611812012112493614214836419611121

168228813841960126881.

Suppose we know that a (2k,N, 2k− 2; k)q CDC contains a subset F ⊆
[

F2k
q

k

]
, then we

can state two BLP upper bounds for N and additionally, we get a third upper bound as
an LP-relaxation of one of these two BLPs.
These bounds are similar to DefaultBLP but respect the distinction of Lemma 182

in the two cases.
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189 Lemma
Let k ≥ 3 be an integer and q ≥ 2 a prime power. Let F ⊆

[
F2k
q

k

]
and f ∈ {qk, qk + 1},

then any (2k,#C, 2k−2; k)q CDC C with F ⊆ C such that each point and hyperplane is
incident to at most f codewords has #C ≤ zBLP

2k (F, f) ≤ zLP
2k (F, f), where Var2k =

[
F2k
q

k

]
,

zLP
2k is the LP-relaxation of zBLP

2k , and

zBLP
2k (F, f) = max

∑
U∈Var2k

xU

st
∑

U∈I(Var2k,W )

xU ≤ f ∀W ∈
[

F2k
q
w

]
∀w ∈ {1, 2k − 1}

∑
U∈I(Var2k,W )

xU ≤ 1 ∀W ∈
[

F2k
q
w

]
∀w ∈ {2, 2k − 2}

xU = 1 ∀U ∈ F
xU ∈ {0, 1} ∀U ∈ Var2k .

Proof
Interpreting (xU )U∈Var2k

as incidence vector of C, the objective function is equal to
#C. The first set of constraints is feasible by the choice of f and the second set of
constraints is feasible by Lemma 41: #I (C,W ) ≤ Aq(2k − 2, 2k − 2; k − 2) = 1 for any
2-dimensional W and #I (C,W ) ≤ Aq(2k − 2, 2k − 2; k) = Aq(2k − 2, 2k − 2; k − 2) = 1
for any 2k − 2-dimensional W . The third set of constraints is feasible since F ⊆ C. �

Note that in zLP
2k the constraints xU ≤ 1 may be omitted, since for any U ∈ Var2k,

there is a line W in U and hence implicitly a constraint xU ≤
∑

U∈I(Var2k,W ) xU ≤ 1.
In addition to the two upper bounds of the last lemma, we consider an integer linear

programming formulation of C̃ = {U ∩ H̃ | U ∈ C} for a (2k,#C, 2k − 2; k)q CDC C.
Any codeword that is contained in H̃ has dimension k in C̃ and any other codeword has
dimension k − 1 in C̃.

190 Lemma
For a prime power q ≥ 2 and an integer 3 ≤ k and F ⊆

[
F2k−1
q

k

]
let

Var2k−1(F ) :=
{
U ∈

[
F2k−1
q

k−1

] ∣∣∣ dim(U ∩ S) ≤ 1 ∀S ∈ F
}

and ω(F,W ) = max{#Ω |
Ω ⊆ I (Var2k−1(F ),W ) ∧ dim(U1 ∩ U2) ≤ 1 ∀U1 6= U2 ∈ Ω}. If #F ∈ {qk, qk + 1}, then
any (2k,#C, 2k − 2; k)q CDC C with #C ≥ l and ι(F ) ⊆ C such that each point and

191



12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

hyperplane is incident to at most #F codewords satisfies #C ≤ zBLP
2k−1(F ), where

zBLP
2k−1(F ) = max

∑
U∈Var2k−1(F )

xU + #F st

∑
U∈I(Var2k−1(F ),W )

xU ≤ #F −#I (F,W ) ∀W ∈
[

F2k−1
q

1

]
∑

U∈I(Var2k−1(F ),W )

xU ≤ 1 ∀W ∈
[

F2k−1
q

2

]
\ (∪S∈F

[
S
2

]
)

∑
U∈I(Var2k−1(F ),W )

xU ≤ 1 ∀W ∈
[

F2k−1
q

2k−4

]
: S 6≤W ∀S ∈ F

∑
U∈I(Var2k−1(F ),W )

xU ≤ min{ω(F,W ), q2 + q + 1} ∀W ∈
[

F2k−1
q

2k−3

]
: S 6≤W ∀S ∈ F

∑
U∈I(Var2k−1(F ),W )

xU ≤ q(#F −#I (F,W )) ∀W ∈
[

F2k−1
q

2k−2

]
∑

U∈Var2k−1(F )

xU ≥ l −#F

xU ∈ {0, 1} ∀U ∈ Var2k−1(F )

Proof
Interpreting (xU )U∈Var2k−1(F ) as incidence vector of {U ∩ H̃ | U ∈ C ∧ U 6≤ H̃}, one can
check the objective function and the last two lines. Since two k-spaces in C intersect in
at most a point, any two elements in {U ∩ H̃ | U ∈ C} also intersect in at most a point,
which proves the constraints with dim(W ) ∈ {2, 2k − 4}.

Any (2k − 3)-space W contains at most ω(F,W ) planes by the definition of ω, also
ι(W ) is incident to

[
(2k)−(2k−3)

(2k−2)−(2k−3)

]
q

= q2 + q + 1 (2k − 2)-spaces, which in turn contain

at most one codeword of C. If W contains a k-space of F , then any (k − 1)-space in W
meets this k-space in at least a line. This proves the constraints with dim(W ) = 2k − 3.

For any point W its embedding ι(W ) is incident to at most #F codewords of C proving
the constraints with dim(W ) = 1.

For any (2k−2)-subspaceW its embedded ι(W ) is contained in
[

(2k)−(2k−2)
(2k−1)−(2k−2)

]
q

= q+1

hyperplanes in F2k
q of which one of them is H̃. Since each hyperplane of F2k

q is incident
to at most #F codewords and H̃ is incident to exactly #F codewords, i.e., ι(F ), the
other q hyperplanes are each incident to either #F codewords if W contains no element
of F or #F − 1 codewords if W contains one element of F . Obviously two k-spaces in a
(2k − 2)-space intersect in at least a line and hence W contains at most one element of F .
This proves the constraints with dim(W ) = 2k − 2. �

192



12.1 The application for (8, N, 6; 4)2 CDCs with 257 ≤ N

The single last inequality allows the BLP solver to cut the branch & bound tree early since
we are only interested in solutions of cardinality at least l, cf. [Dak65]. ω(F,W ) is in fact
the clique number of the subgraph incident toW of the graph having vertex set Var2k−1(F )
and two vertices U1 6= U2 have an edge iff dim(U1 ∩ U2) ≤ 1. Although the upper bound
min{ω(F,W ),#F −#I (F,W )} is feasible for dim(W ) = 1 and min{ω(F,W ), q(#F −
#I (F,W ))} is feasible for dim(W ) = 2k − 2 the computation of ω(F,W ) is difficult,
since these subgraphs have many vertices.
Some of the involved problems are also too difficult to be tackled directly and it is

often easier to split a large problem into subproblems while utilizing symmetry to reduce
the number of constructed subproblems via e.g. Lemma 32.

12.1 The application for (8, N, 6; 4)2 CDCs with 257 ≤ N

The main result of this whole chapter is

191 Theorem ([Hei+17a, Theorem 1])
A2(8, 6; 4) = 257 and up to isomorphism there are two maximum codes. Both are
extended LMRD codes.

This surprising theorem has then additional implications for MDCs via Theorem 30.

192 Corollary ([Hei+17a, Corollary 3])
A2(8, 6) = 257.

Theorem 191 has two very interesting aspects. First, the simple construction for CDCs
using an LMRD and extending it, which is here also a special case of the Echelon-Ferrers
construction, is capable of providing maximum codes for these parameters. Second, any
maximum code contains 256 evenly distributed codewords, i.e., all points are covered
by exactly 16 codewords of the LMRD, and one additional codeword that intersects the
special subspace S4 = τ−1(04×4 | I4) in at least a plane. This irregular structure is a
necessity to get maximum codes.

As special subspaces we explicitly label a point P̃ = 〈(0, 0, 0, 0, 0, 0, 0, 1)〉 and a hyper-
plane H̃ = {x ∈ F8

2 | x8 = 0}. Note that P̃ and H̃ are not incident.
The remaining section uses four phases to prove Theorem 191. Since Lemma 184

determines substructures of (8, N, 6; 4)2 CDCs with 257 ≤ N , these phases resemble
the strategy to exclude possible hyperplane configurations in Phase 1, then extend the
remaining possible hyperplane configurations to 31-point-hyperplane configurations in
Phase 2, i.e., sets of 31 codewords such that 16 respective 17 are incident to H̃ and
15 respective 14 are incident to P̃ , which have to be contained in any CDC of size at
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

least 257 by Lemma 184. These 31-point-hyperplane configurations fix 31 out of at least
257 codewords which reduces the search space significantly. Therefore, it is possible to
compute A2(8, 6; 4) ≤ 257 in Phase 3. In the last phase, i.e., Phase 4, we reuse the
31-point-hyperplane configurations which are subset of (8, 257, 6; 4)2 CDCs to argue that
any code with these parameters is necessarily an extended LMRD. Using an independent
reasoning, we show that the LMRD is unique up to isomorphism, cf. Theorem 193, hence
proving Theorem 191.
Let A17 be a transversal of the 715 (7, 17, 6; 3)2 CDCs of Theorem 187 and A16 be a

transversal of the 14445 (7, 16, 6; 3)2 CDCs of Theorem 188.

12.1.1 Excluding hyperplane configurations (Phase 1)

For all A ∈ A16 ∪ A17 we computed zLP
8 (ι(A⊥),#A) of Lemma 189 and found that all

but 33 elements in A16 (37 251 hours wall-time with CPLEX [IBM10])1 and 5 elements
in A17 (1021 hours wall-time with CPLEX [IBM10]) have an optimal value smaller than
256.9, i.e., we have implemented a safety threshold of ε = 0.1, and cannot be extended
to (8, 257, 6; 4)2 CDCs. These 38 remaining elements are listed in Table 12 and their LP
values are stated in Table 11. By Fi we denote the corresponding sets of solids in F8

2 for
1 ≤ i ≤ 38.

For indices 1 ≤ i ≤ 38 we computed zBLP
7 (ι(Fi)) of Lemma 190 and obtained 27

elements in A16 and 3 elements in A17 that have zBLP
7 (ι(Fi)) < 256.9 ≤ zLP

8 (ι(Fi),#Fi),
cf. Table 11 for details. This computation was aborted after 100 hours of wall-time with
CPLEX [IBM10] for each of these 38 subproblems.
Since zBLP

7 (ι(F8)) ≤ 257.2408 was close to 256.9, we split the BLP into subproblems
with Lemma 32. Var7(ι(F8)) has exactly 948 planes which form 56 orbits (4381316283212)
under the action of its automorphism group of order 32. Hence, Lemma 32 generated 56
subproblems. After 15 hours, the first subproblem was solved optimally with an upper
bound of 256. The objective values of the other 55 subproblems could be upper bounded
by 254 in less than 15 minutes.
The computation performed up to this point shows A2(8, 6; 4) ≤ 271 in a total of

42 087 hours wall-time.

12.1.2 Extending hyperplane configurations to 31-point-hyperplane
configurations (Phase 2)

Next we want to enlarge the remaining seven hyperplane configurations, cf. indices
1 ≤ i ≤ 7 in Table 12, to 31-point-hyperplane configurations.

We build up a graph Gi = (Vi, Ei), whose vertex set Vi consists of all solids in
[

F8
2

4

]
that contain P̃ and intersect the elements from Fi in at most a point. For U,W ∈ Vi, we
have {U,W} ∈ Ei iff U ∩W = P̃ . Using Cliquer [NÖ03], we enumerate all cliques of size
31−#Fi of Gi and compute a transversal T (Fi) of the action of the stabilizer of Fi, see

1Most computations were performed on the Cluster of the University of Bayreuth using mostly CPUs of
type Intel E5-2630 v4 @ 2.20GHz, which we assume if nothing else is further specified.
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12.1 The application for (8, N, 6; 4)2 CDCs with 257 ≤ N

the sixth column of Table 11 for the corresponding orbit lengths. The clique computations
for 1 ≤ i ≤ 7, i 6= 5 took between 27 and 589 hours wall-time with Cliquer [NÖ03] on
an AMD Opteron 6348 @ 1.4GHz, see Table 10 for details about the running times and
#Vi, while the computation time for the transversal was negligible. Altogether, the clique
computation wall-time for 1 ≤ i ≤ 7, i 6= 5, was 1464 hours. The clique computation for
G5 was aborted after 600 hours wall-time and then performed in parallel using Lemma 32.
With X as the vertex set of G5, Γ the automorphism group of F5, and f(S) equals 1

iff S is a clique in G5. The 1258 vertices of G5 are partitioned into 24 orbits of size 1
and 617 orbits of size 2 by Γ, which leaves us 641 graphs where we have to enumerate
all cliques of size 31 −#F5 − 1 = 14. Since some of these graphs still consist of many
vertices, we iteratively apply Lemma 32 with the identity group as Γ for at most two
further times: After the first round, we split the 68 subproblems, which lead to graphs
with at least 700 vertices. Then, we split the 81 subproblems, which lead to graphs
with at least 600 vertices. Finally, we end up with 104 029 graphs, where we have to
enumerate all cliques of size 14, 13 or 12. All of these instances have been solved in
parallel with Cliquer [NÖ03] to get a superset of the transversal of all cliques of size 15
of G5. Applying the action of the automorphism group of order 2 then allowed to get
a transversal as well as all cliques, simply as union of the orbits. This took about 750
hours in CPU-time with 16 processes on two Intel Xeon E5-2690 @ 2.90GHz, where the
smaller problems were preprocessed on a single computer and the remaining 55 420 larger
subproblems were processed in parallel with 16 cores.
The complete extension step took about 2 214 hours wall-time.

12.1.3 Excluding 31-point-hyperplane configurations (Phase 3)

For the 73 234 31-point-hyperplane configurations resulting from the last step, we computed
zLP

8 (·) in 953 hours. The maximum value aggregated by the contained hyperplane
configuration with index i is stated in the seventh column of Table 11 and Table 10.
For the configuration with index 1 there are 195, for the configuration with index 3
there are 98, and for the configuration with index 7 there are 240 31-point-hyperplane
configurations with zLP

8 ≥ 256.9.
Next, we computed zBLP

8 for these remaining 195 + 98 + 240 cases in 851 hours, see the
eighth column of Table 11 and Table 10. The counts for value at least 257 are 2 + 0 + 240
and all of them have exactly 257 as optimum value, i.e., we have A2(8, 6; 4) = 257 and
any maximum CDC with these parameters contains one of these 242 31-point-hyperplane
configurations up to isomorphism.

In total, the computations needed for the exclusion of the 31-point-hyperplane configu-
rations took 1 804 hours wall-time.

12.1.4 Classification of (8, 257, 6; 4)2 CDCs (Phase 4)

Now we will verify indirectly that there exists a codeword U such that C \ {U} is an
LMRD code in all those extensions.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

The hyperplane configuration of C in H̃ is either F1 ∈ A16 or F7 ∈ A17 with 2 and 240
possible 31-point-hyperplane configurations, respectively.

For F1 there exists a unique solid S in F8
2 which is disjoint from the 31 prescribed solids

in both cases. Adding the constraint xS = 0 to the BLP of Lemma 189 yields an upper
bound of 256, i.e., S has to be a codeword in C, in about 2 hours of wall-time with CPLEX
[IBM10] in each of the two cases. The codeword S covers its 15 contained points. Via
xS = 1 and ∑

P∈
[
S
1

]
∑

U∈I(Var8,P )

xU ≥ 16,

we can ensure that another codeword of C meets S in a point. This modification of the
BLP of Lemma 189 again yields an upper bound of 256 in about two hours of wall-time
with CPLEX [IBM10] in both cases. Thus, C \ {S} has to be an LMRD code.

For F7 there exists a unique solid S in F8
2 which is disjoint from 30 of the prescribed

solids and meets the other prescribed solid S′ in a plane, in all 240 cases. By adding∑
P∈
[
S
1

]
∑

U∈I(Var8,P )

xU ≥ 8,

we can ensure that S is met by another codeword, besides S′, from C in a point. The
augmented BLP of Lemma 189 needs 9 hours wall-time with CPLEX [IBM10] and end up
with zBLP

8 ≤ 256 for each of the 240 cases. Thus, C \ {S′} has to be an LMRD code.
This sums up to 2 168 hours wall-time for this indirect classification.
Moreover, the contained LMRD code is then unique up to isomorphism:

193 Theorem ([Hei+17a; Hei+on, Theorem 10])
The Gabidulin construction gives the unique isomorphism type of not necessarily linear
4× 4 MRD codes with minimum rank distance 3.

Proof
Let C be a 4 × 4 MRD code of minimum rank distance 3. Then #C = 256. For each
vector u ∈ F4

2, there are exactly 16 matrices in C having u as their last row, cf. Lemma 180.
After removing this common row, those 16 matrices form a binary 3× 4 MRD code of
minimum rank distance 3. These MRD codes have been classified in [HKK16a] into 37
isomorphism classes.
Let C ′ be one of these codes, extended to size 4× 4 by appending the zero vector as

a last row to all the matrices in C ′. Up to isomorphism, C is the extension of one of
these 37 codes C ′ by 256 − 16 = 240 matrices. In particular, for each u ∈ F4

2 \ {0}, it
must be possible to add 16 matrices of size 4× 4 with last row u without violating the
rank distance. For fixed u, this question can be formulated as a clique problem: We
define a graph Gu, whose vertex set is given by all 4× 4 matrices with last row u having
rank distance ≥ 3 to all matrices in C ′. Two vertices are connected by an edge if the
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12.2 Another approach for A2(8, 6; 4) ≤ 272

corresponding matrices have their rank distance ≥ 3. Now the question is whether the
graph Gu admits a clique of size 16 for all u ∈ F4

2 \ {0}. Using Cliquer [NÖ03], we
compute that this is only possible for a single type of the 37 codes C ′.
For this remaining type, the full extension problem to a 4 × 4 MRD code is again

formulated as a clique problem. The graph is defined in a similar way, but without the
restriction on the last row of the matrices in the vertex set. This yields a graph with
1920 vertices. The maximum clique problem is solved within seconds for this graph. The
result are 8 cliques of maximum possible size 240, such that we get 8 extensions to a rank
distance code of size 16 + 240 = 256, which are MRD codes. Those 8 codes turn out to
be isomorphic to the Gabidulin MRD code. �

By the last theorem, in our setting there is only a single type of an LMRD code, which
is the lifted Gabidulin MRD code. It is iso-dual (isomorphic to its orthogonal code).

194 Corollary
Let C be an (8, 257, 6; 4)2 CDC, then C is isomorphic to either {〈(I4 | B)〉 | B ∈
M} ∪ {〈(04×4 | I4)〉} or {〈(I4 | B)〉 | B ∈ M} ∪ {〈(04×3 | I4 | 04×1)〉}, where M is the
4× 4 Gabidulin MRD code with minimum rank distance 3.

Proof
From Theorem 193 we conclude that the contained LMRD code C ′ ⊆ C is isomorphic to
the lifted version of the Gabidulin MRD code M . It has a stabilizer of cardinality 230 400,
which partitions the 451 solids intersecting each codeword of C ′ in at most a point in two
orbits: the special solid of C ′, which intersects all codewords of C ′ trivially, and an orbit
consisting of 450 solids, which all intersect the special solid of C ′ in a plane. �

12.2 Another approach for A2(8, 6; 4) ≤ 272

In [HK17a] we show another approach to get A2(8, 6; 4) ≤ 272 computationally by involving
(7, 34, 5; {3, 4})2 and (7, 33, 5; {3, 4})2 subspace codes and produce the classification of the
latter as byproduct.
These substructures can be found at http://subspacecodes.uni-bayreuth.de asso-

ciated with [Hei+16].
For any (8,#C, 6; 4)2 CDC C with 281 ≤ #C (273 ≤ #C) Corollary 46 guarantees a

non-incident point-hyperplane-pair (P̃ , H̃) such that the shortened code of C via Lemma 44,
using P̃ and H̃, has the parameters (7, N, 5; {3, 4})2 with 34 ≤ N (33 ≤ N), respectively.

195 Theorem ([HKK16b, Theorem 3.3.ii], [HKK16a, Theorem 6])
A2(7, 5) = 34 and there are exactly 20 isomorphism types of codes having these param-
eters. All of them have dimension distribution 317417. In 11 cases the automorphism
group is trivial and in the remaining 9 cases the automorphism group is a unique group
of order 7, which partitions F7

2 into 2 fixed vectors and 18 orbits of size 7.
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

These 20 isomorphism types contain just 9 of the 715 isomorphism types of (7, 17, 6; 3)2

and (7, 17, 6; 4)2 CDCs. Denoting these nine cases by a1, . . . , a9, the 20 isomorphism
types of (7, 34, 5; {3, 4})2 subspace codes can be categorized as {{a1, a6}, {a2, a6}, {a3, a7},
{a3, a8}, {a4, a4}, {a4, a9}, {a5, a6}, {a6, a6}}.

In particular, these pairings can be covered by just the three cases {a3, a4, a6}, i.e., any of
these eight sets contain at least one of these three elements. Prescribing the corresponding
17 codewords and computing the LP-relaxation of DefaultCDCBLP(2, 8, 6, 4) gives:

type # Aut LP bound
a4 32 221.00
a6 7 230.63
a3 32 268.04

This excludes any possible (7, 34, 5; {3, 4})2 embedded subcode.
Thus, by computing only three linear programs, we can conclude A2(8, 6; 4) ≤ 280. We

remark that the classification results of Theorem 187 and Theorem 195 were obtained
using the clique search software Cliquer [NÖ03], which is not based on floating point
numbers.

The next step is to consider codes of size at least 273 and hence their shortened codes
have a cardinality of at least 33.

196 Theorem ([HK17a, Theorem 3])
There are 563 isomorphism types of (7, 33, 5; {3, 4})2 codes. Their automorphism groups
have the orders: 14812194475681142 and the possible dimension distributions are 316417

and 317416.

Proof
Any (7, 33, 5; {3, 4})2 subspace code contains a (7, 17, 6; 3)2 CDC up to orthogonality.
For each of the 715 isomorphism types of (7, 17, 6; 3)2 CDCs C in F7

2, we first compute
A(C) =

{
W ∈

[
F7

2
4

] ∣∣∣ ds(W,U) ≥ 5 ∀U ∈ C
}
. Then, we build up a graph G(C) with

vertex set A(C) in which two different vertices U,W ∈ A(C) are joined by an edge iff
ds(U,W ) ≥ 6. These 715 graphs have between 832 and 1056 vertices and between 213 760
and 353 088 edges. Applying the software Cliquer [NÖ03] on the computing cluster of
the University of Bayreuth gives 23 740 cliques of cardinality 16 – after 11 200 hours
of CPU time. Via the group action of the automorphism group of the corresponding
(7, 17, 6; 3)2 CDC C, they form 563 orbits. �

Only 76 out of the 715 isomorphism types of (7, 17, 6; 3)2 CDCs can be extended to
(7, 33, 5; {3, 4})2 codes. These 76 codes have automorphism groups of orders 15127334261

7112116232242164111211281192126881 and together can be extended to 1562731415261101

11144149167177110411081 codes of size 33, whereas ini means there are ni CDCs of size
17 that give rise to i codes of size 33.
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12.2 Another approach for A2(8, 6; 4) ≤ 272

In 75 of these 76 cases the LP relaxation of DefaultCDCBLP(2, 8, 6, 4) with 17 forced
codewords gives an objective value strictly smaller than 272, so that only one case with
LP relaxation 282.96 and # Aut = 64 remains, which is in only five (7, 33, 5, {3, 4})2 codes.
This automorphism group of order 64 partitions the 127 non-zero vectors of F7

2 into 8 orbits
of types: 112143161321641. Thus, besides exact arithmetic clique computations, 75 LP
computations and 40 BLP computation of DefaultCDCBLP(2, 8, 6, 4) with 33 forced
codewords, one for each of the 8 orbit representatives and 5 extensions to (7, 33, 5, {3, 4})2

codes, suffices to deduce A2(8, 6; 4) ≤ 272.
Instead of decomposing the 563 isomorphism types of (7, 33, 5; {3, 4})2 codes into their

components, we may also utilize the following BLP formulation.

197 Lemma
If C is a (2k,#C, 2k−2; k)q CDC containing the (2k−1, qk+1, 2k−2; k−1)q CDC Fk−1

and (2k − 1, qk, 2k − 2; k)q CDC Fk in the hyperplane im(ι) then #C ≤ z(Fk−1, Fk),
where ι : F2k−1

q → F2k
q , v 7→ (v | 0), G :=

[
F2k
q

k

]
, Q :=

[
F2k
q

1

]
\ I
([

F2k
q

1

]
, im(ι)

)
, and

z(Fk−1, Fk) = max
∑
U∈G

xU

st
∑

U∈I(G,A)

xU ≤ 1 ∀A ∈
[

F2k
q
a

]
∀ a ∈ {2, 2k − 2}

∑
U∈I(G,A)

xU ≤ qk + 1 ∀A ∈
[

F2k
q
a

]
∀ a ∈ {1, 2k − 1}

∑
U ′∈ι(Fk−1)

x〈U ′,P 〉 = yP ∀P ∈ Q

∑
P∈Q

yP = 1

xU = 1 ∀U ∈ ι(Fk)
xU ∈ {0, 1} ∀U ∈ G
yP ∈ {0, 1} ∀P ∈ Q

In fact Q may even be restricted to a transversal of points of the embedded stabilizer
of Fk. Of course, we also obtain z(F3, F4) ≤ 272 in all 563 cases.

Given the bounds A2(6, 4; 3) = 77 < 81 and A2(8, 6; 4) = 257 < 289, one might conjec-
ture that A2(2k, 2k−2; k) is much smaller than

(
2k + 1

)2, which is implied by the Johnson
bound (Theorem 113) and Beutelspacher’s result for partial spreads (Theorem 126), for
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12 (2k,N, 2k − 2; k)q CDCs with q2k + 1 ≤ N

k ≥ 3, i.e.,

Aq(2k, 2k − 2; k) ≤
⌊
q2k − 1

qk − 1
A2(2k − 1, 2k − 2; k − 1)

⌋
= (qk + 1)

(
q2k − qk+1

qk − 1
+ 1

)
= (qk + 1)2.

Unfortunately, those potential results cannot yield improvements when combined with
the Johnson bound for Aq(2k + 1, 2k − 2; k).

198 Lemma
No improvement on the upper bound of Aq(2k, 2k − 2; k) for k ≥ 3 yields a stronger
bound on Aq(2k + 1, 2k − 2; k) involving an application of Johnson IIa Theorem 113.

Proof
Due to the Johnson bound, Aq(2k, 2k−2; k−1) ≤ q2k−1

qk−1−1
, and Aq(2k, 2k−2; k) ≥ q2k+1,

i.e., a LMRD extended by one additional codeword, we have

Aq(2k + 1, 2k − 2; k) ≤
⌊
q2k+1 − 1

qk − 1
Aq(2k, 2k − 2; k − 1)

⌋
≤ q2k+1 − 1

qk − 1
· q

2k − 1

qk−1 − 1

<
q2k+1 − 1

qk+1 − 1
· q2k ≤

⌊
q2k+1 − 1

qk+1 − 1
· (q2k + 1)

⌋
≤
⌊
q2k+1 − 1

qk+1 − 1
Aq(2k, 2k − 2; k)

⌋
. �

The main obstacle to use the same approach for the next parameters, i.e., the bound
1025 ≤ A2(10, 8; 5) ≤ 1089, is that, up to our knowledge, the (9, 33, 8; 4)2 CDCs have not
been classified and not even 65 ≤ A2(9, 7; {4, 5}) ≤ 66 could be determined.
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13 Conclusion

In this thesis, we applied mainly techniques of integer linear programming to constant
dimension codes to tighten bounds of maximum CDCs and to classify them.
We improve many lower bounds on this maximum size of CDCs with the coset con-

struction, the improved linkage construction and additional sporadic cases. One of our
constructions in the Echelon-Ferrers scheme is provably able to raise the ratio between
lower bound and upper bound to approximately 61.6% for all parameters.
By proving new relations between known upper bounds, we compare them and in

particular list all state-of-the-art upper bounds.
We also generalize bounds for CDCs containing lifted maximum rank distance codes.
By theoretical arguments and a computer search in the subgroup lattice of a finite

group, we identified a comprehensive list of candidates for the automorphism group of
CDCs in the setting of the binary q-Fano plane and get as byproduct a (7, 333, 4; 3)2

CDC, which is the largest currently known CDC for these parameters.
We also classify maximum (8, N, 6; 4)2 CDCs by a very involved computer search.
Despite or because of these achievements, there are open problems that seem to be

reachable.
Although Proposition 99 settles many cases, there is still no LMRD bound for q ≥ 2

prime power, 2 ≤ d/2 ≤ k ≤ v − k integers, and 3d/2 ≤ k, cf. Figure 7. The ratio of
LMRD bound and best known upper bound is still an open question. The methods of
Section 6.4 are far from being exhausted and that may even be a hint for infinite series of
large or even LMRD bound achieving codes.

In this thesis, we applied integer linear programming methods to CDCs. They may also
be applied to subspace codes in a BLP similar to DefaultCDCBLP in Definition 47. A
relaxation of binary linear programming is semidefinite programming and the techniques
in this area may be applied instead or in addition to solve e.g. the subproblems arising of
the evaluation function of our algorithm.
This leads to applications of this algorithm. Since it only needs a finite group G

and a monotone and conjugation-invariant map on the set of subgroups of G to the
co-domain {0, 1}, it is a very general tool to get a superset of interesting subgroups which
then may be handled intensively in a post-processing step. Hence, there are countless
application areas of which subspace code sizes are only the tip of the iceberg. One open
issue is the time which is needed for the conjugation test of subgroups. Additionally, an
implementation in GAP [GAP18] would be useful for easy usage and broad availability.
Further automorphism groups may be excluded in theory.

The question of the size of the coset construction is still open, just like Ferrers diagram
rank metric codes and the question of optimal skeleton codes. Solving these questions
would imply many improved code sizes for a wide variety of parameters.
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13 Conclusion

Being recursive in nature, the improved linkage construction would then profit of these
advances and boost the code sizes even more. This construction depends, next to q, v, d,
and k, on one additional parameter and maybe one can prove the optimal choice of this
parameter. A first step in this direction is done by Lemma 141. This would be in particular
useful since this allows then an explicit formula, which in turn could be compared to the
upper bounds in terms of limit behaviour as demonstrated in Proposition 151.
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14 Appendix

We use a special format when writing subspaces for a compact overview. Let p be a
prime and 1 ≤ k ≤ v and U ∈ [ vk ]p be the subspace in question. First, we use the RREF
M = τ(U) ∈ Fk×vp , in which we represent each entry in the matrix with the canonical
representative of Fp ∼= Z/(p · Z) in {0, 1, . . . , p− 1}. Each column of M is then replaced
by an integer which is the p-adic number with coefficients in this column, i.e., M∗,j is
replaced by Nj =

∑k
i=1Mi,j · pi−1 for j ∈ {1, . . . , v}. Finally, even the brackets and

occasionally leading zeros, if v is obvious from the context, are omitted and usually, if
each Nj ≤ 9, additionally the separating commata are omitted.
For example, the subspace

U = τ−1
(

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

)
∈ [ 7

3 ]2

is hence replaced by 0102004 or even 102004, if v = 7 is fixed.
Since we are encoding matrices in RREF, the k pivot columns are the first numbers

p0, p1, . . . , pk−1 appearing in this order and no digit is larger than
∑k

i=1 p
i−1 = [k]p.

14.1 Appendix for A2(7, 4; 3) ≥ 333

14.1.1 The surviving groups
By Gn,m we denote the groups corresponding to Theorem 170. Here n denotes the order
of Gn,m and m is a consecutive index. To the right or bottom of each group Gn,m, we list
the abstract type of Gn,m.

G1,1 = 〈I7〉 C1

G2,1 =

〈
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1


〉

C2

G3,1 =

〈
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


〉

C3

G3,2 =

〈
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


〉

C3

G4,1 =

〈
0 0 1 0 1 0 0
0 1 1 0 0 1 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
1 0 1 1 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1

 ,


0 0 0 1 1 1 1
0 1 1 1 0 1 0
1 0 0 1 1 0 1
0 0 0 1 0 0 0
0 0 1 0 1 1 0
1 0 1 1 1 1 1
0 0 0 0 0 0 1


〉

C2 × C2

G4,2 =

〈
1 0 0 1 0 1 0
1 0 0 1 1 1 1
0 0 1 1 0 1 0
1 0 1 1 0 0 0
1 0 1 0 1 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0

 ,


0 1 0 0 0 1 1
1 1 1 1 0 1 0
1 1 1 0 0 1 1
1 0 1 1 1 1 0
1 0 1 0 0 1 0
1 0 1 0 1 0 0
1 1 0 1 1 1 0


〉

C2 × C2

G4,3 =

〈
1 1 0 0 0 1 0
1 1 1 1 1 0 0
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 0 1 1 0 0 0
1 0 1 1 1 1 0
0 1 0 1 1 1 1

 ,


0 0 1 1 1 0 0
1 0 1 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 0
1 1 1 0 1 1 0
1 1 1 1 1 0 0
1 0 1 1 1 0 1


〉

C2 × C2

G4,4 =

〈
1 1 1 0 0 1 1
1 1 1 1 0 1 0
0 1 0 1 1 1 1
1 1 0 1 1 0 1
1 1 0 0 0 0 1
1 1 0 1 0 1 1
0 0 0 1 1 0 1

 ,


0 0 1 0 1 1 0
0 0 1 0 0 1 1
1 0 0 1 0 1 0
0 1 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 0 1
1 0 1 0 1 1 1


〉

C2 × C2
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G4,5 =

〈
1 1 1 0 1 0 1
0 0 1 0 0 1 1
0 1 0 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 1 1

 ,


0 0 1 0 1 1 0
0 0 1 0 0 1 1
1 0 0 1 0 1 0
0 1 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 0 1
1 0 1 0 1 1 1


〉

C2 × C2

G4,6 =

〈
0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 1 1 0 0
0 1 0 0 0 0 0
0 1 0 0 1 1 0
1 0 1 1 1 0 1

 ,


1 1 0 0 0 1 0
1 1 0 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 1
1 0 0 0 1 0 1
1 0 0 1 1 1 1
0 1 0 0 0 1 1


〉

C2 × C2

G4,7 =

〈
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


〉

C4

G5,1 =

〈
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


〉

C5

G6,1 =

〈
0 1 0 0 1 1 0
1 1 0 0 0 1 0
0 1 1 1 1 0 0
0 0 0 1 0 0 0
1 0 0 0 1 1 0
1 1 0 0 1 0 0
0 0 0 0 0 0 1

 ,


0 1 1 1 1 0 0
1 1 1 1 0 0 0
0 1 0 0 1 1 0
0 1 1 1 0 1 0
0 0 1 1 0 0 0
1 0 1 0 1 1 0
0 0 0 0 0 0 1


〉

S3

G6,2 =

〈
1 1 0 1 0 1 0
1 1 0 1 1 0 0
0 0 0 1 1 1 0
1 1 1 0 0 0 0
1 0 1 0 1 1 0
0 1 1 0 1 1 0
0 0 0 0 0 0 1

 ,


1 0 1 1 0 1 0
1 0 1 0 1 0 0
0 0 0 0 1 1 0
1 1 0 0 1 1 0
1 0 0 0 0 0 0
0 1 1 1 1 1 0
0 0 0 0 0 0 1


〉

S3

G6,3 =

〈
1 0 0 0 1 0 0
1 0 0 1 1 1 0
1 1 1 0 1 0 0
1 0 1 1 1 0 0
1 1 1 0 0 0 0
0 1 1 0 1 1 0
0 0 0 0 0 0 1


〉

C6

G7,1 =

〈
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 0 0 0 1


〉

C7

G7,2 =

〈
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1


〉

C7

G8,1 =

〈
1 1 1 0 1 0 0
1 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 1 1 1 1 1 0
1 0 1 0 1 0 0
0 0 0 0 0 0 1

 ,


0 0 1 0 1 1 1
1 0 0 1 0 0 0
1 1 0 0 0 0 1
0 1 1 0 1 1 1
0 0 1 1 1 0 1
1 1 1 0 0 1 1
1 0 0 1 1 1 1

 ,


0 1 0 0 0 1 1
1 1 1 0 0 1 1
1 0 0 0 0 1 1
0 1 0 0 0 0 1
0 0 0 0 1 0 0
1 0 0 1 0 0 0
1 1 1 1 0 1 1


〉

C2 × C2 × C2

G8,2 =

〈
1 0 0 1 1 1 1
0 0 1 1 0 1 1
0 0 0 0 1 1 0
0 1 1 1 1 0 0
0 1 0 1 0 0 1
0 1 1 1 0 0 1
0 1 0 0 0 1 1

 ,


1 0 1 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 1
0 0 0 0 1 1 1
0 1 0 1 0 0 1
0 1 1 0 1 1 0
0 0 1 0 1 1 1

 ,


1 0 1 1 1 0 1
1 0 0 0 0 1 1
1 1 1 0 0 1 1
1 0 1 1 0 1 1
0 0 0 0 1 0 0
1 0 0 1 1 0 0
0 1 1 0 0 0 1


〉

C2 × C2 × C2

G8,3 =

〈
1 0 1 1 0 0 0
1 0 0 0 1 1 1
1 0 0 0 0 1 1
0 0 0 1 1 0 0
0 1 1 0 0 0 0
0 0 0 0 1 1 1
1 0 1 0 1 1 0

 ,


1 0 1 1 0 0 1
1 0 0 0 0 1 1
1 0 1 1 1 1 0
1 0 0 0 1 1 0
0 1 0 1 0 0 1
1 1 1 1 0 0 0
0 0 0 0 0 0 1

 ,


0 0 1 0 1 1 1
0 1 1 1 0 0 1
0 0 0 1 0 0 1
0 1 1 1 1 0 0
0 0 0 0 1 0 0
1 1 0 0 0 0 1
0 1 0 1 1 0 0


〉

C4 × C2

G8,4 =

〈
1 0 0 1 1 1 1
1 1 0 1 0 1 0
1 1 1 0 0 1 1
1 1 0 0 0 0 0
1 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 0 1 1

 ,


0 0 0 1 1 1 0
1 1 0 0 0 0 1
0 0 0 0 0 1 0
0 1 0 1 1 1 0
0 0 0 0 1 0 0
1 1 0 1 1 1 0
0 1 1 0 0 0 1

 ,


1 0 0 0 1 0 0
1 0 1 1 1 1 0
1 1 0 1 1 1 0
0 1 0 0 1 0 1
0 0 0 0 1 0 0
0 1 0 1 0 1 1
1 0 1 0 0 1 0


〉

Q8

G8,5 =

〈
0 0 1 0 0 1 1
1 1 0 0 0 0 0
0 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 0
1 0 1 1 0 1 1
1 1 0 0 1 1 0

 ,


0 0 0 1 1 1 0
0 1 1 1 1 0 0
0 1 0 0 0 0 1
0 1 1 1 1 0 1
1 0 1 0 0 1 1
1 0 1 0 1 0 0
1 1 1 1 1 1 1

 ,


0 1 1 1 0 1 0
1 1 1 0 0 1 1
1 0 0 0 0 1 1
0 0 0 1 1 0 0
0 0 0 0 1 0 0
1 1 1 1 1 0 0
1 0 1 0 1 1 0


〉

Q8

G8,6 =

〈
1 1 0 1 1 0 1
1 1 1 1 1 0 1
1 1 0 0 0 0 0
0 1 0 1 0 1 1
0 1 0 1 0 0 1
0 0 0 1 1 0 0
1 0 1 0 0 1 0

 ,


0 0 0 1 1 1 0
0 1 0 1 1 1 1
0 0 0 0 1 1 0
1 0 1 0 0 0 0
0 0 1 1 1 0 1
0 0 0 1 1 0 1
1 0 0 1 1 1 1

 ,


1 1 0 1 1 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 1 0 1 0 1 1
0 1 1 0 1 0 1


〉

D8

G8,7 =

〈
0 0 1 0 0 1 1
1 1 0 0 0 0 0
1 1 0 0 1 0 0
1 0 0 1 1 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 1 1 0 0 0 1

 ,


0 1 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 1 1 0 0
0 0 0 0 1 1 1
0 1 0 1 0 0 1
1 0 0 0 0 1 1
1 1 0 0 0 1 0

 ,


1 0 1 1 0 0 1
1 1 1 0 0 1 1
1 0 0 0 0 1 1
1 1 0 1 1 1 1
0 0 0 0 1 0 0
1 1 1 1 1 0 0
0 1 1 0 1 0 1


〉

C4 × C2

G8,8 =

〈
1 0 0 1 1 1 1
1 1 0 1 0 1 0
1 1 1 0 0 1 1
1 1 0 0 0 0 0
1 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 0 1 1

 ,


0 0 0 1 0 1 0
0 1 0 1 1 1 1
1 0 0 1 1 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1

 ,


1 0 0 0 1 0 0
1 0 1 1 1 1 0
1 1 0 1 1 1 0
0 1 0 0 1 0 1
0 0 0 0 1 0 0
0 1 0 1 0 1 1
1 0 1 0 0 1 0


〉

C4 × C2

G8,9 =

〈
0 0 1 0 0 1 1
1 1 1 0 0 1 1
1 1 0 1 1 1 0
1 0 0 0 0 1 0
0 1 0 1 0 0 1
0 0 1 1 0 1 1
0 1 1 0 1 0 1

 ,


0 1 1 0 0 0 1
0 1 0 1 0 1 1
0 0 0 0 0 1 0
1 1 1 0 0 1 0
0 0 1 1 1 0 1
0 0 1 0 0 0 0
1 1 0 1 0 0 1

 ,


0 0 0 1 0 1 0
1 0 0 0 1 1 1
1 1 1 0 1 1 1
0 1 1 1 1 0 0
0 0 0 0 1 0 0
1 1 1 1 1 0 0
1 0 1 0 0 1 0


〉

D8

G8,10 =

〈
1 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 1
1 0 0 0 0 1 0
0 1 0 1 0 0 1
1 0 0 1 0 0 0
1 0 1 0 0 1 0

 ,


1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 0 0 1 1 0 0
1 0 0 0 1 1 0
0 0 1 1 1 0 1
1 0 1 1 1 1 0
0 0 1 0 0 1 1

 ,


0 0 0 1 0 1 0
1 0 0 0 1 1 1
1 1 1 0 1 1 1
0 1 1 1 1 0 0
0 0 0 0 1 0 0
1 1 1 1 1 0 0
1 0 1 0 0 1 0


〉

D8
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G8,11 =

〈
0 0 1 1 1 0 0
0 1 0 0 0 0 1
0 0 1 0 1 0 1
1 1 0 0 1 0 1
0 1 0 1 0 0 1
1 1 1 1 1 0 1
0 1 0 0 0 1 1


〉

C8

G9,1 =

〈
1 0 1 1 0 1 0
1 0 1 1 1 0 0
0 0 1 1 1 0 0
1 1 0 0 1 1 0
1 1 0 1 1 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 1


〉

C9

G9,2 =

〈
0 1 0 0 0 1 0
1 0 0 0 0 1 0
0 1 1 0 0 1 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

 ,


0 1 0 0 0 1 0
1 0 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 1 1 0 0
0 0 0 1 0 1 0
0 1 1 0 0 1 0
0 0 0 0 0 0 1


〉

C3 × C3

G12,1 =

〈
1 0 0 0 0 1 1
0 0 0 1 1 0 1
1 1 1 1 1 0 0
1 1 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 1 1 1
0 0 0 0 1 0 0

 ,


1 0 0 0 0 0 0
1 1 0 0 0 1 1
1 0 1 0 1 0 1
1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ,


1 0 0 0 0 1 1
0 1 0 1 1 1 1
1 0 1 1 1 0 0
1 1 0 0 0 1 1
1 0 0 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 1 0


〉

C3 o C4

G14,1 =

〈
0 1 1 1 1 0 0
0 1 1 0 0 0 0
0 1 1 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 1 1 0
1 0 1 0 0 1 0
0 0 0 0 0 0 1


〉

C14

G16,1 =

〈
0 0 1 0 1 0 0
1 0 0 0 1 0 0
0 0 0 1 0 1 0
0 1 0 0 0 0 1
1 0 1 0 1 1 1
1 0 1 0 0 1 0
0 0 1 1 1 1 1

 ,


0 0 1 1 0 1 1
1 0 1 1 1 0 1
0 1 1 1 1 1 0
0 0 1 1 0 1 0
1 1 1 1 0 1 0
1 0 0 1 0 1 1
0 0 1 0 0 0 0


〉

(C4 × C2) o C2

14.1.2 The code of size 333 in the binary Fano setting

The code of size 333 is printed below. Since the group G4,6 of Appendix 14.1.1 is its
automorphism group we print only one representative in each orbit. The orbit type is
19226468.

9 fixed subspaces:

0124412
1012460
1124633
1204601
1213457
1214425
1224713
1240020
1242770

26 representatives of
orbits of length 2:

0102140
1024453
1112434
1122124
1123346
1204571
1210410
1211460

1212473
1214336
1230426
1241116
1242375
1242415
1242577
1243345
1243422
1243774
1244105
1244164
1244225
1245130
1245346
1245505
1245775
1246357

68 representatives of
orbits of length 4:

0102004
0102467

0110224
0111240
0112034
0120240
0121457
0122241
0122344
0124161
0124435
0124473
1002146
1002342
1002427
1012413
1020467
1021034
1021247
1024355
1024446
1102204
1102452
1121430
1122405
1124210

1124231
1200314
1202246
1202422
1203413
1210324
1210475
1211415
1212142
1214026
1214507
1220433
1224217
1224605
1231465
1234241
1234413
1234610
1240266
1240416
1241157
1241265
1241533
1242430

1242672
1243544
1243727
1244067
1244343
1244401
1244606
1245122
1245311
1245663
1246050
1246073
1246134
1246240
1246517
1247007
1247404
1247754
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14.2 Appendix for A2(8, 6; 4) = 257

In Table 12, we list the 38 (7, 16, 6; 3)2 and (7, 17, 6; 3)2 CDCs with zLP
8 (.) ≥ 256.9. Table 11

lists for these CDCs whether it is in A16 or A17, the size of their automorphism group, the
relaxations zLP

8 (.) and zBLP
7 (.), which are applied to the hyperplane configurations, then the

orbits of the extension to point-hyperplane configurations of each hyperplane configuration
and finally the maximum of zLP

8 (.) with prescribed point-hyperplane configuration grouped
by the contained hyperplane configuration and, if needed, the maximum zLP

8 (.), again
for prescribed point-hyperplane configuration grouped by the contained hyperplane
configuration. Details for the extension of one of the first seven hyperplane configurations
to all point-hyperplane configurations is depicted in Table 10.

Wall-time in hours for
i #Vi Phase 2 LP in Phase 3 BLP in Phase 3
1 1231 144 51 328
2 1303 589 78
3 1194 217 21 519
4 1243 278 22
5 1258 750 419
6 1251 209 13
7 864 27 349 4

Table 10: Details for the computation of all 31-point-hyperplane configurations in Phase 2
and Phase 3.

14.3 The Magma implementation corresponding to
Section 11.6

An implementation of the pseudo code of Section 11.2.1 in
Magma

////////////////////
// func t i on s f o r sav ing in te rmed ia t e r e s u l t s to f i l e s f o r a r e en t rant

a lgor i thm
////////////////////

func t i on F i l eHe lpe r ( fname , func , args : mode:=" a s s o c i a t i v e a r r a y ")
a s s e r t mode in [ " a s s o c i a t i v e a r r a y " ," array " ] ;

// t ry to get s t o rage from f i l e
t ry
s to rage := eva l (Read ( fname ) ) ;

catch e // s to rage does not e x i s t
i f mode eq " a s s o c i a t i v e a r r a y " then
s to rage := Assoc ia t iveArray ( Parent ( args ) ) ;
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14 Appendix
Index

1
6
or

1
7
planes

in
F

72

1
1240000,1240124,1241062,1241146,1242463,1242547,1243401,1243525,1244635,1244711,1245657,1245773,1246256,1246372,1247234,1247310

2
1240000,1240124,1241062,1241146,1242647,1242763,1243625,1243701,1244234,1244310,1245256,1245372,1246473,1246557,1247411,1247535

3
124,1240000,1240124,1241447,1241563,1242631,1242715,1243276,1243352,1244230,1244314,1245753,1246401,1246525,1247046,1247162

4
1240000,1240524,1241042,1241566,1242237,1242403,1243165,1243751,1244270,1244354,1245632,1245716,1246127,1246313,1247441,1247675

5
124,1240124,1241046,1241162,1242637,1242713,1243671,1243755,1244230,1244314,1245276,1245352,1246407,1246523,1247441,1247565

6
1240000,1240124,1241370,1241757,1242605,1242721,1243276,1243451,1244017,1244133,1245263,1245345,1246534,1246612,1247446,1247562

7
124,124000,124124,1024062,1024146,1214452,1214746,1224403,1224727,1241572,1241633,1242557,1242615,1245461,1245724,1246476,1246730

8
124,124000,124124,1024062,1024146,1214546,1214652,1224503,1224627,1241471,1241730,1242416,1242754,1245527,1245662,1246575,1246633

9
124,1240000,1240124,1241157,1242634,1242756,1243673,1243710,1244211,1244335,1245262,1245347,1246463,1246501,1247425,1247546

10
124,1240000,1240124,1241072,1241157,1242634,1242756,1243673,1243710,1244211,1244335,1245347,1246463,1246501,1247425,1247546

11
124,1240000,1241072,1241157,1242634,1242756,1243673,1243710,1244211,1244335,1245262,1245347,1246463,1246501,1247425,1247546

12
124,1240000,1240124,1241072,1241157,1242634,1242756,1243673,1243710,1244211,1245262,1245347,1246463,1246501,1247425,1247546

13
124,1240000,1240124,1241241,1241630,1242415,1242561,1243166,1244023,1244452,1245613,1245737,1246354,1246775,1247206,1247372

14
124,1240000,1240124,1241241,1241630,1242415,1242561,1243166,1243547,1244023,1244452,1245737,1246354,1246775,1247206,1247372

15
124,1240000,1241437,1241513,1242661,1242745,1243252,1243376,1244230,1244314,1245647,1245763,1246051,1246175,1247422,1247506

16
124,1240000,1241241,1241630,1242415,1242561,1243166,1243547,1244023,1244452,1245613,1245737,1246354,1246775,1247206,1247372

17
124,124000,124124,1024466,1024553,1204267,1204342,1234506,1234713,1240570,1240721,1243437,1243565,1245042,1245126,1246453,1246634

18
124,1240000,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

19
124,1240000,1240124,1241367,1241446,1242521,1243243,1243562,1244076,1244757,1245311,1245734,1246150,1246673,1247235,1247412

20
124,1240000,1240124,1241367,1241446,1242521,1242605,1243243,1243562,1244757,1245311,1245734,1246150,1246673,1247235,1247412

21
124,1240000,1240124,1241367,1241446,1242521,1242605,1243243,1243562,1244076,1244757,1245311,1245734,1246150,1247235,1247412

22
124,1240000,1240124,1241664,1241740,1242427,1242503,1243165,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

23
124,1240000,1240124,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247311

24
124,1240000,1240124,1241367,1241446,1242521,1242605,1243243,1244076,1244757,1245311,1245734,1246150,1246673,1247235,1247412

25
124,1240000,1240124,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1247235,1247311

26
124,1240000,1240124,1241664,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

27
124,1240000,1240124,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

28
124,1240000,1240124,1241437,1241513,1242661,1242745,1243376,1244230,1244314,1245647,1245763,1246051,1246175,1247422,1247506

29
124,1240124,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

30
124,124000,124124,1024341,1024630,1204526,1204653,1234367,1234644,1240046,1240135,1243474,1243726,1245237,1245664,1246512,1246605

31
124,1240000,1240124,1241057,1241173,1242655,1242771,1243602,1243726,1244230,1244314,1245267,1245343,1246465,1246541,1247516

32
124,1240000,1240124,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1245516,1245632,1246372,1246451,1247235,1247311

33
124,1240000,1240124,1241664,1241740,1242427,1242503,1243243,1244076,1244757,1245516,1245632,1246372,1246451,1247235,1247311

34
124,1240000,1240124,1241367,1241446,1242521,1242605,1243243,1243562,1244076,1244757,1245311,1245734,1246673,1247235,1247412

35
124,1240000,1240124,1241367,1241446,1242521,1242605,1243243,1243562,1244076,1244757,1245311,1245734,1246150,1246673,1247235

36
124,1240000,1240124,1241664,1241740,1242427,1242503,1243165,1243243,1244076,1244757,1245632,1246372,1246451,1247235,1247311

37
10024,1202436,1211471,1221433,1232464,1240776,1243450,1243712,1244143,1244522,1245307,1245660,1246021,1246615,1247267,1247546

38
124,124000,124124,1024062,1024146,1214466,1214772,1224437,1224713,1241561,1241620,1242574,1242636,1245407,1245742,1246423,1246765
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14.3 The Magma implementation corresponding to Section 11.6

e l s e
s t o rage := [ ] ;

end i f ;
end try ;

// look up f o r args
i f mode eq " a s s o c i a t i v e a r r a y " then
i f I sDe f ined ( storage , args ) then
return s to rage [ args ] ;

end i f ;
e l s e
findme := [ i [ 2 ] : i in s t o rage | i [ 1 ] eq args ] ;
i f #findme ge 1 then
return findme [ 1 ] ;

end i f ;
end i f ;

// args not proce s sed p r ev i ou s l y
r e t := func ( args ) ;

i f mode eq " a s s o c i a t i v e a r r a y " then
s to rage [ args ] := r e t ;

e l s e
Append(~ storage ,<args , ret >) ;

end i f ;

Write ( fname , s torage , "Magma" : Overwrite := true ) ;
r e turn r e t ;

end func t i on ;

////////////////////
// ( non ) s o l v ab l e numbers
////////////////////

// https : // o e i s . org /A056866 :
// A po s i t i v e i n t e g e r n i s a non−s o l v ab l e number i f and only i f i t i s a

mu l t ip l e o f any o f the f o l l ow i ng numbers :
// a ) 2^p(2^2p−1) , p any prime .
// b) 3^p(3^2p−1)/2 , p odd prime .
// c ) p(p^2−1)/2 , p prime g r ea t e r than 3 such that p^2+1 = 0 (mod 5) .
// d) 2^4∗3^3∗13.
// e ) 2^2p(2^2p+1)(2^p−1) , p odd prime .

func t i on IsNonSolvableNumber_helper_a (n)
p := 2 ;
whi l e t rue do
t := 2^p∗(2^(2∗p)−1) ;
i f (n mod t ) eq 0 then
return true ;

end i f ;
i f t gt n then
return f a l s e ;

end i f ;
p := NextPrime (p) ;
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end whi l e ;
end func t i on ;

f unc t i on IsNonSolvableNumber_helper_b (n)
p := 3 ;
whi l e t rue do
t := In t e g e r s ( ) ! (3^p∗(3^(2∗p)−1)/2) ;
i f (n mod t ) eq 0 then
return true ;

end i f ;
i f t gt n then
return f a l s e ;

end i f ;
p := NextPrime (p) ;

end whi l e ;
end func t i on ;

f unc t i on IsNonSolvableNumber_helper_c (n)
p := 7 ;
whi l e t rue do
t := In t e g e r s ( ) ! (p∗(p^2−1)/2) ;
i f ( ( p^2+1) mod 5 eq 0) and ( ( n mod t ) eq 0) then
return true ;

end i f ;
i f t gt n then
return f a l s e ;

end i f ;
p := NextPrime (p) ;

end whi l e ;
end func t i on ;

f unc t i on IsNonSolvableNumber_helper_d (n)
re turn (n mod 5616) eq 0 ;

end func t i on ;

f unc t i on IsNonSolvableNumber_helper_e (n)
p := 3 ;
whi l e t rue do
t := 2^(2∗p) ∗(2^(2∗p)+1)∗(2^p−1) ;
i f (n mod t ) eq 0 then
return true ;

end i f ;
i f t gt n then
return f a l s e ;

end i f ;
p := NextPrime (p) ;

end whi l e ;
end func t i on ;

f unc t i on IsNonSolvableNumber (n)
i f ( ( n mod 20) ne 0) and ( ( n mod 12) ne 0) then
return f a l s e ;

end i f ;
r e turn IsNonSolvableNumber_helper_a (n)
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or IsNonSolvableNumber_helper_b (n)
or IsNonSolvableNumber_helper_c (n)
or IsNonSolvableNumber_helper_d (n)
or IsNonSolvableNumber_helper_e (n) ;

end func t i on ;

f unc t i on IsSolvableNumber (n)
re turn not IsNonSolvableNumber (n) ;

end func t i on ;

// Tests
// non_solvable_orders := [ 60 , 120 , 168 , 180 , 240 , 300 , 336 , 360 , 420 , 480 ,

504 , 540 , 600 , 660 , 672 , 720 , 780 , 840 , 900 , 960 , 1008 , 1020 , 1080 ,
1092 , 1140 , 1176 , 1200 , 1260 , 1320 , 1344 , 1380 , 1440 , 1 5 0 0 ] ;

// t := Cputime ( ) ;
// f o r i in [ 1 . . 1 5 0 0 ] do
// i f ( i in non_solvable_orders and ( not IsNonSolvableNumber ( i ) ) ) or ( ( not

i in non_solvable_orders ) and IsNonSolvableNumber ( i ) ) then
// i ;
// end i f ;
// i f ( i mod 300) eq 0 then
// "−>", i ;
// end i f ;
// end f o r ;
// Cputime ( t ) ;

////////////////////
// u t i l i t y f unc t i on s
////////////////////

func t i on Cycl icGroupGenerator (U)
a s s e r t I sCy c l i c (U) ;
r e turn [ i : i in U | Order ( i ) eq Order (U) ] [ 1 ] ;

end func t i on ;

f unc t i on IsConjugateHelperGroups (G,A,B)
a s s e r t A subset G;
a s s e r t B subset G;

i f Order (A) ne Order (B) then
return f a l s e ;

end i f ;

i f CanIdentifyGroup (Order (A) ) then // a l s o B i d e n t i f y a b l e
i f Ident i fyGroup (A) ne Ident i fyGroup (B) then
return f a l s e ;

end i f ;
end i f ;

i f I sCy c l i c (A) then // a l s o B c y c l i c
i f Type (A. 1 ) eq GrpMatElt then // a l s o B. 1 GrpMatElt
i f Dimension ( Eigenspace ( Cycl icGroupGenerator (A) ,1 ) ) ne Dimension (

Eigenspace ( Cycl icGroupGenerator (B) ,1 ) ) then
return f a l s e ;
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end i f ;
end i f ;

end i f ;

r e turn IsConjugate (G,A,B) ;
end func t i on ;

f unc t i on IsConjugateHelperElements (G, a , b)
a s s e r t a in G;
a s s e r t b in G;

i f Order ( a ) ne Order (b) then
return f a l s e ;

end i f ;

i f Type ( a ) eq GrpMatElt then // a l s o b GrpMatElt
i f Dimension ( Eigenspace ( a , 1 ) ) ne Dimension ( Eigenspace (b , 1 ) ) then
return f a l s e ;

end i f ;
end i f ;

r e turn IsConjugate (G, a , b) ;
end func t i on ;

f unc t i on IsConjugateHelperSubgroupsConjugate (G,A,B)
a s s e r t A subset G;
a s s e r t B subset G;
a s s e r t Order (B) l e Order (A) ;

i f Order (A) eq Order (B) then
return IsConjugateHelperGroups (G,A,B) ;

end i f ;

SGC := { i ‘ subgroup : i in SubgroupClasses ( A : OrderEqual :=Order (B) ) } ;

f o r i in SGC do
i f IsConjugateHelperGroups (G, i ,B) then
return true ;

end i f ;
end f o r ;

r e turn f a l s e ;
end func t i on ;

f unc t i on Fi l terL i s tOfGroupsForConjugates (G,L)
R: = [ ] ;
f o r i in [ 1 . .#L ] do
f o r j in [ i +1..#L ] do
i f IsConjugateHelperGroups (G,L [ i ] , L [ j ] ) then
// cont inue can be used s i n c e the con jugat ion i s t r a n s i t i v e
cont inue i ;

end i f ;
end f o r ;
Append(~R,L [ i ] ) ;
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end f o r ;
r e turn R;

end func t i on ;

procedure Fi lterListOfCycl icGroupsNotNecessarySameOrderForConjugates (G,~L :
AssumeNoElementWiseConjugation := f a l s e )

s t a r t := 1 ;
i f AssumeNoElementWiseConjugation then
s t a r t := 2 ;

end i f ;

i :=0;
whi l e t rue do
i +:= 1 ;
i f i gt #L then
return ;

end i f ;
j := i +1;
whi l e t rue do
i f j gt #L then
break ;

end i f ;
i f Order (L [ i ] ) eq Order (L [ j ] ) then
f o r z in [ s t a r t . . Order (L [ i ] ) ] do
i f GCD( z , Order (L [ i ] ) ) ne 1 then
cont inue ;

end i f ;
i f I sConjugateHelperElements (G, Cycl icGroupGenerator (L [ i ] ) ^z ,

Cycl icGroupGenerator (L [ j ] ) ) then
Remove(~L , j ) ;
break ;

end i f ;
end f o r ;

end i f ;
j +:= 1 ;

end whi l e ;
end whi l e ;

end procedure ;

// G ambient group
// A subgroup to use f o r a s c ens i on
// p prime , i . e . , we generate groups U o f s i z e #A ∗ p with A <= U
func t i on AscendSubgroupLattice_NoCheck (G,A, p)
a s s e r t IsPrime (p) ;
a s s e r t ( Order (G) mod p) eq 0 ;
a s s e r t A subset G;
// a s s e r t p l e Minimum( Fac to r i z a t i on (Order (A) ) ) [ 1 ] ; // normal i ty c r i t e r i o n

o f Strong Cayley theorem

N := Normal izer (G,A) ;
CN := SetToSequence ({ sub<G| i [3] > : i in ConjugacyClasses (N) | ( ( Order (A) ∗

p mod i [ 1 ] ) eq 0) and ( not i [ 3 ] in A) and (Order ( sub<G| Generators (A)
j o i n { i [3 ]} >) eq Order (A) ∗p) }) ;

L := {@ sub<G| Generators (A) j o i n {CyclicGroupGenerator ( i )}> : i in CN @} ;
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re turn L ;
end func t i on ;

// G ambient group
// A subgroup to use f o r a s c ens i on
// p prime , i . e . , we generate groups U o f s i z e #A ∗ p with A <= U
func t i on AscendSubgroupLattice (G,A, p)
a s s e r t p l e Minimum( Fac to r i z a t i on (Order (A) ) ) [ 1 ] ; // normal i ty c r i t e r i o n o f

Strong Cayley theorem
return AscendSubgroupLattice_NoCheck (G,A, p) ;

end func t i on ;

// we assume that i f a c y c l i c group o f order o i s in p o s s i b l e s g c o f
exc ludedsgc ,

// then a l l r e p r e s e n t a t i v e s o f conjugacy c l a s s e s o f c y c l i c groups o f order
o are e i t h e r in p o s s i b l e s g c o f exc ludedsgc

func t i on FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c ,
exc ludedsgc , c o l l e c t i o n s g t o t e s t )

i f Type (G) ne GrpMat then
return c o l l e c t i o n s g t o t e s t ;

end i f ;
a l l_cyc l i c_group_orders := {Order ( i ) : i in p o s s i b l e s g c | I sCy c l i c ( i ) }

j o i n {Order ( i ) : i in exc ludedsgc | I sCy c l i c ( i ) } ;
f i l t e r := Assoc ia t iveArray ( I n t e g e r s ( ) ) ;
f o r o in a l l_cyc l i c_group_orders do
pos_o := { i : i in p o s s i b l e s g c | Order ( i ) eq o and I sCy c l i c ( i ) } ;
forb_o := { i : i in exc ludedsgc | Order ( i ) eq o and I sCy c l i c ( i ) } ;
eig_pos_o := { Dimension ( Eigenspace ( Cycl icGroupGenerator ( i ) , 1 ) ) : i in

pos_o } ;
eig_forb_o := { Dimension ( Eigenspace ( Cycl icGroupGenerator ( i ) , 1 ) ) : i in

forb_o } ;
f i l t e r [ o ] := eig_forb_o d i f f eig_pos_o ;

end f o r ;
R := [ ] ;
f o r U in c o l l e c t i o n s g t o t e s t do
f o r o in a l l_cyc l i c_group_orders do
i f ( Order (U) mod o ) ne 0 then
cont inue ;

end i f ;
a l l_conc la s se s_o := { i [ 3 ] : i in ConjugacyClasses (U) | i [ 1 ] eq o } ;
e ig_al l_conc lasses_o := { Dimension ( Eigenspace ( i , 1 ) ) : i in

a l l_conc la s se s_o } ;
i f (# ( e ig_al l_conc lasses_o meet f i l t e r [ o ] ) ) ge 1 then
cont inue U;

end i f ;
end f o r ;
Append(~R,U) ;

end f o r ;
r e turn R;

end func t i on ;

// e . g . :
// ComputeListOfCandidateSubgroups (GL(5 , 2 ) , 2 ^ 1 , [ ] , [ ] ) ;
// ComputeListOfCandidateSubgroups (GL(5 , 2 ) , 3 1 ^ 1 , [ ] , [ ] ) ;
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// a:=ComputeListOfCandidateSubgroups (GL(5 , 2 ) , 2 ^ 1 , [ ] , [ ] ) ;
// ComputeListOfCandidateSubgroups (GL(5 , 2 ) , 2^2 , [ a [ 1 ] ] , [ ] ) ;
// ComputeListOfCandidateSubgroups ( SymmetricGroup (4) , 12 , [ PermutationGroup

<4 | [ 4 , 3 , 2 , 1 ] , [ 3 , 4 , 1 , 2 ] : Order :=4>,PermutationGroup
<4 | [ 1 , 2 , 4 , 3 ] , [ 1 , 3 , 4 , 2 ] : Order :=6>] , [ ] ) ;

f unc t i on ComputeListOfCandidateSubgroups (G, ta rge to rde r , po s s i b l e s g c ,
exc ludedsgc : use_expens ive_conjugat ion_tests := true )

i f t a r g e t o rd e r eq 1 then
return [ sub<G| Id (G) >];

end i f ;

// Sylow group
b , p , e := IsPrimePower ( t a r g e t o rd e r ) ;
i f b and (Order (G) mod (p^( e+1) ) ) ne 0 then
SC := [ SylowSubgroup (G, p) ] ;
SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c ,

exc ludedsgc , SC) ;
re turn SC ;

end i f ;

// f a s t way to get groups o f prime order
i f IsPrime ( t a r g e t o rd e r ) then
CC := SetToSequence ({ sub<G| i [3] > : i in ConjugacyClasses (G) | i [ 1 ] eq

t a r g e t o rd e r }) ;
i f use_expens ive_conjugat ion_tests then
Fi lterListOfCycl icGroupsNotNecessarySameOrderForConjugates (G,~CC :

AssumeNoElementWiseConjugation := true ) ;
end i f ;
r e turn CC;

end i f ;

FactTargetorder := Fac to r i z a t i on ( t a r g e t o rd e r ) ;
// t a r g e t o rd e r = p^y or p^1 N such that N i s not d i v i s i b l e by p and a l l

prime f a c t o r s o f N are l a r g e r than p and ta r g e t o rd e r i s a s o l v ab l e
number

i f (#FactTargetorder eq 1) or ( FactTargetorder [ 1 ] [ 2 ] eq 1 and (#
FactTargetorder l e 2 or IsSolvableNumber ( t a r g e t o rd e r ) ) ) then

p := FactTargetorder [ 1 ] [ 1 ] ;
SC := &j o i n [ AscendSubgroupLattice (G, i , p ) : i in p o s s i b l e s g c | Order ( i ) eq

( t a r g e t o rd e r / p) ] ;
SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c ,

exc ludedsgc , SC) ;
i f use_expens ive_conjugat ion_tests then
SC := Fi l terL i s tOfGroupsForConjugates (G,SC) ;

end i f ;
r e turn SC ;

end i f ;

i f IsInSmallGroupDatabase ( t a r g e t o rd e r ) then
AllTargetOrderAbstractGroups := SmallGroups ( t a r g e t o rd e r ) ;
t ry
// " : IsNormal := true " does sometimes r a i s e an except ion : Parameter ’

IsNormal ’ i s not de f ined f o r t h i s f unc t i on
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AllTargetOrderAbstractGroups_NormalSubgroups_Orders := [ [ j ‘ o rder : j in
SubgroupClasses ( i : IsNormal := true ) ] : i in

AllTargetOrderAbstractGroups ] ;
catch e
AllTargetOrderAbstractGroups_NormalSubgroups_Orders := [ [ j ‘ o rder : j in

SubgroupClasses ( i ) | IsNormal ( i , j ‘ subgroup ) ] : i in
AllTargetOrderAbstractGroups ] ;

end try ;
AllTargetOrderAbstractGroups_NormalSubgroups_Orders_IndexPrime :=
{ { j : j in i | IsPrime ( I n t e g e r s ( ) ! ( t a r g e t o rd e r / j ) ) } : i in

AllTargetOrderAbstractGroups_NormalSubgroups_Orders } ;

i f &and [ #i ge 1 : i in
AllTargetOrderAbstractGroups_NormalSubgroups_Orders_IndexPrime ] then

// use the l a r g e s t normal subgroup with prime index f o r a s c ens i on (
prime index does not have to be _smallest_ prime d i v i s o r o f
t a r g e t o rd e r )

OrdersToUseForAscension := { Maximum( i ) : i in
AllTargetOrderAbstractGroups_NormalSubgroups_Orders_IndexPrime } ;

SC := &j o i n [ AscendSubgroupLattice_NoCheck (G, i , I n t e g e r s ( ) ! ( t a r g e t o rd e r /
Order ( i ) ) ) : i in p o s s i b l e s g c | Order ( i ) in OrdersToUseForAscension
] ;

SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c ,
exc ludedsgc , SC) ;

i f use_expens ive_conjugat ion_tests then
SC := Fi l terL i s tOfGroupsForConjugates (G,SC) ;

end i f ;
r e turn SC ;

end i f ;
end i f ;

// f a l l b a c k
SC := [ i ‘ subgroup : i in Subgroups (G : OrderEqual := ta r g e t o rd e r ) ] ;
SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c ,

exc ludedsgc , SC) ;
re turn SC ;

end func t i on ;

f unc t i on ComputeListOfCandidateSubgroups_Caller (
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests )

re turn ComputeListOfCandidateSubgroups (
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests [ 1 ] ,
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests [ 2 ] ,
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests [ 3 ] ,
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests [ 4 ]
: use_expens ive_conjugat ion_tests :=
G_targetorder_poss ib lesgc_excludedsgc_use_expensive_conjugat ion_tests [ 5 ] )

;
end func t i on ;

f unc t i on Ha l lD i v i s o r s ( ord )
re turn { &∗ i : i in Subsets ( { i [ 1 ] ^ i [ 2 ] : i in Fac t o r i z a t i on ( ord ) } ) } ;

end func t i on ;
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f unc t i on ContainsExcludedSubgroupUpToConjugacy (G, exc ludedsgc , U)
t o con s i d e r := { i : i in exc ludedsgc | ( Order (U) mod Order ( i ) eq 0) and (

Order ( i ) ne Order (U) ) } ;
i f &or [ i subset U : i in t o con s i d e r ] then
return true ;

end i f ;
f o r i in t o con s i d e r do
i f IsConjugateHelperGroups (G,U, i ) then
return true ;

end i f ;
end f o r ;
r e turn f a l s e ;

end func t i on ;

////////////////////
// main func t i on s
////////////////////

func t i on SearchSubgroupLattice_PGroups (G, eva l func :
use_expens ive_conjugat ion_tests := true , fname_saved_SC:="saved_SC . txt " ,
fname_saved_evals :=" saved_evals . txt " , verbose := true ,
SubgroupClas se s In fus ion := [ ] )

MaximumPrimePowers := [ ] ;
exc ludedsgc := [ ] ;
p o s s i b l e s g c := [ sub<G| Id (G) >];
name_counter := 1 ;
i n d i c e s := [ ] ;
FactOrderG := Fac to r i z a t i on (Order (G) ) ;
i f verbose then
g loba l t ime := Realtime ( ) ;
" I I : Fa c t o r i z a t i on o f group order =", FactOrderG ;

end i f ;

// from l a r g e to smal l primes , t h i s order i s a r b i t r a r y
f o r pcounter := #FactOrderG to 1 by −1 do
p := FactOrderG [ pcounter ] [ 1 ] ;
IsSylowPGroupPossible := true ;
LargestPrimePowerDividingOrderG := FactOrderG [ pcounter ] [ 2 ] ;
f o r ecounter in [ 1 . . LargestPrimePowerDividingOrderG ] do
i f verbose then
"################";
"# proc e s s i ng a l l subgroups o f order =", p^ecounter ;
"################";
end i f ;
MaximumNotCompleteExcludedPrimePowerThisPrime := ecounter ;
i f ecounter eq LargestPrimePowerDividingOrderG and IsSylowPGroupPossible

eq f a l s e then
i f verbose then
" I I : at l e a s t one subgroup was excluded which imp l i e s by monotonic i ty

that the Sylow p−group i s excluded " ;
end i f ;
MaximumNotCompleteExcludedPrimePowerThisPrime :=

MaximumNotCompleteExcludedPrimePowerThisPrime−1;
break ;
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end i f ;

i f verbose then
" I I : compute subgroup conjugacy c l a s s e s " ;
t := Cputime ( ) ;

end i f ;
i f p^ecounter in [ Order ( i [ 1 ] ) : i in SubgroupClas se s In fus ion ] then
i f verbose then
" I I : us ing subgroup c l a s s e s from i n f u s i o n " ;

end i f ;
idx := Index ( [ Order ( i [ 1 ] ) : i in SubgroupClas se s In fus ion ] , p^ecounter ) ;
SC := SubgroupClas se s In fus ion [ idx ] ;
SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G,

po s s i b l e s g c , exc ludedsgc , SC) ;
e l i f fname_saved_SC eq "" then
SC := ComputeListOfCandidateSubgroups_Caller(<G, p^ecounter ,

p o s s i b l e s g c , exc ludedsgc , use_expensive_conjugat ion_tests >) ;
e l s e
SC := Fi l eHe lpe r ( fname_saved_SC ,

ComputeListOfCandidateSubgroups_Caller , <G, p^ecounter , p o s s i b l e s g c
, exc ludedsgc , use_expensive_conjugat ion_tests >) ;

end i f ;
i f verbose then
" I I : computed subgroup conjugacy c l a s s e s in " , Cputime ( t ) ;
" I I : # subgroup conjugacy c l a s s e s =", #SC;

end i f ;

AtLeastOneSubgroupClassIncluded := f a l s e ;
f o r s ccounte r in [ 1 . .#SC] do
i f verbose then
" I I : p rog r e s s " , sccounter , " o f " , #SC;

end i f ;
U := SC[ sccounte r ] ;

i f use_expens ive_conjugat ion_tests then
i f ContainsExcludedSubgroupUpToConjugacy (G, exc ludedsgc ,U) then
i f verbose then
" I I : conta in s an excluded subgroup up to conjugacy " ;

end i f ;
cont inue ;

end i f ;
end i f ;

i f verbose then
t := Realtime ( ) ;

end i f ;
i f fname_saved_evals eq "" then
r e t := eva l func (<U, name_counter>) ;

e l s e
r e t := F i l eHe lpe r ( fname_saved_evals , eva l func , <U, name_counter>) ;

end i f ;
i f verbose then
" I I : eva l took ( r e a l time ) " , Realt ime ( t ) , "and was " , r e t ;

end i f ;
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name_counter +:= 1 ;

i f r e t then
AtLeastOneSubgroupClassIncluded := true ;
Append(~ po s s i b l e s g c , U) ;
Append(~ ind i c e s , name_counter−1) ;
e l s e
IsSylowPGroupPossible := f a l s e ;
Append(~ excludedsgc , U) ;

end i f ;
end f o r ;

i f AtLeastOneSubgroupClassIncluded eq f a l s e then
i f verbose then
" I I : a l l subgroup conjugacy c l a s s e s are excluded , hence sk ip l a r g e r p−

groups " ;
end i f ;
MaximumNotCompleteExcludedPrimePowerThisPrime :=

MaximumNotCompleteExcludedPrimePowerThisPrime−1;
break ;

end i f ;

end f o r ;

Append(~MaximumPrimePowers , <p ,
MaximumNotCompleteExcludedPrimePowerThisPrime>) ;

end f o r ;

// Write (" save_SearchSubgroupLattice_PGroups . txt ",<MaximumPrimePowers ,
exc ludedsgc , po s s i b l e s g c , name_counter , i nd i c e s >,"Magma" : Overwrite :=
true ) ;

i f verbose then
" I I : SearchSubgroupLattice_PGroups t o t a l r e a l time " , Realtime ( g loba l t ime )

;
end i f ;
r e turn MaximumPrimePowers , exc ludedsgc , po s s i b l e s g c , name_counter , i n d i c e s ;

end func t i on ;

f unc t i on SearchSubgroupLattice_NonPGroups (G, eva l func , MaximumPrimePowers ,
exc ludedsgc , po s s i b l e s g c , name_counter , i n d i c e s :
use_expens ive_conjugat ion_tests := true , fname_saved_SC:="saved_SC . txt " ,
fname_saved_evals :=" saved_evals . txt " , verbose := true ,
SubgroupClas se s In fus ion := [ ] )

CompletelyExcludedOrders := {} ;
CompletelyExcludedAbstractTypes := {} ;
i f verbose then
g loba l t ime := Realtime ( ) ;

end i f ;

// i n i t i a l i z e CompletelyExcludedAbstractTypes us ing groups og prime power
order

f o r o in {Order ( i ) : i in p o s s i b l e s g c } do
i f IsInSmallGroupDatabase ( o ) then
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CompletelyExcludedAbstractTypesOfPrimePowerOrder := { <o , i> : i in [ 1 . .
NumberOfSmallGroups ( o ) ] } ;

f o r g in [ i : i in p o s s i b l e s g c | Order ( i ) eq o ] do
Exclude (~CompletelyExcludedAbstractTypesOfPrimePowerOrder ,

Ident i fyGroup ( g ) ) ;
end f o r ;
CompletelyExcludedAbstractTypes j o i n :=

CompletelyExcludedAbstractTypesOfPrimePowerOrder ;
end i f ;

end f o r ;
i f verbose then
" I I : CompletelyExcludedAbstractTypes a f t e r i n i t i a l i z a i o n =",

CompletelyExcludedAbstractTypes ;
end i f ;

r emain ingorder s := [ i : i in D iv i s o r s ( &∗[ i [ 1 ] ^ i [ 2 ] : i in
MaximumPrimePowers ] ) | i gt 1 and not IsPrimePower ( i ) ] ;

i f verbose then
" I I : remaining orde r s =", remain ingorder s ;

end i f ;

f o r ord in remain ingorders do
i f verbose then
"################";
"# proc e s s i ng a l l subgroups o f order =", ord ;
"################";
end i f ;

// "#####sta tu s#####";
// "# CompletelyExcludedOrders =", CompletelyExcludedOrders ;
// "# CompletelyExcludedAbstractTypes =", CompletelyExcludedAbstractTypes

;
// "# h a l l d i v i s o r s =", Ha l lD i v i s o r s ( ord ) ;
// "# not IsNonSolvableNumber ( ord ) =", not IsNonSolvableNumber ( ord ) ;
// "# NumberOfSmallGroups ( ord ) =", NumberOfSmallGroups ( ord ) ;
// "################";

// does the Hal l theorem s u f f i c e to exc lude a l l conjugacy c l a s s e s o f
groups o f order ord ?

h a l l d i v i s o r s := Ha l lD i v i s o r s ( ord ) ;
i s so lvab lenumber := IsSolvableNumber ( ord ) ;
IsExcludedByHall := #( h a l l d i v i s o r s meet CompletelyExcludedOrders ) ge 1 ;
i f i s so lvab lenumber and IsExcludedByHall then
i f verbose then
" I I : Hal l theorem imp l i e s excluded subgroup o f o rde r s : " , h a l l d i v i s o r s

meet CompletelyExcludedOrders ;
end i f ;
Inc lude (~CompletelyExcludedOrders , ord ) ;
cont inue ;

end i f ;

SetOfAbstractTypesToExcludeForThisOrder := {} ;
i f IsInSmallGroupDatabase ( ord ) then
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SetOfAbstractTypesToExcludeForThisOrder := {<ord , i> : i in [ 1 . .
NumberOfSmallGroups ( ord ) ] } ;

end i f ;

// can we exc lude a l l ab s t r a c t types o f r e p r e s e n t a t i v e s o f conjugacy
c l a s s e s ?

AbstractTypesWhichAreExcluded := {} ;
i f IsInSmallGroupDatabase ( ord ) then
CanExcludeAllAbstractTypes := true ;
f o r i in [ 1 . . NumberOfSmallGroups ( ord ) ] do
i f IsExcludedByHall and Smal lGroupIsSolvable ( ord , i ) then
// abs t r a c t type conta in s by Hall ’ s theorem an excluded subgroup
Inc lude (~AbstractTypesWhichAreExcluded , <ord , i >) ;
cont inue ;

end i f ;
AT := SmallGroup ( ord , i ) ;
SAT := SubgroupClasses (AT) ;
i f #( { i ‘ order : i in SAT } meet CompletelyExcludedOrders ) ge 1 then
// AT conta in s a subgroup with excluded order
Inc lude (~AbstractTypesWhichAreExcluded , <ord , i >) ;
cont inue ;

end i f ;
i f #( { Ident i fyGroup ( i ‘ subgroup ) : i in SAT } meet

CompletelyExcludedAbstractTypes ) ge 1 then
// AT conta in s a subgroup with excluded abs t r a c t type
Inc lude (~AbstractTypesWhichAreExcluded , <ord , i >) ;
cont inue ;

end i f ;
CanExcludeAllAbstractTypes := f a l s e ;

end f o r ;
i f CanExcludeAllAbstractTypes then
i f verbose then
" I I : the Smallgroups Library exc ludes a l l ab s t r a c t types o f

r e p r e s e n t a t i v e s o f t h i s order " ;
end i f ;
Inc lude (~CompletelyExcludedOrders , ord ) ;
cont inue ;

end i f ;
end i f ;

i f verbose then
" I I : compute subgroup conjugacy c l a s s e s " ;
t := Cputime ( ) ;

end i f ;
i f ord in [ Order ( i [ 1 ] ) : i in SubgroupClas se s In fus ion ] then
i f verbose then
" I I : us ing subgroup c l a s s e s from i n f u s i o n " ;

end i f ;
idx := Index ( [ Order ( i [ 1 ] ) : i in SubgroupClas se s In fus ion ] , ord ) ;
SC := SubgroupClas se s In fus ion [ idx ] ;
SC := FilterMatrixGroupCyclicGroupDimensionEigenspaceOne (G, po s s i b l e s g c

, exc ludedsgc , SC) ;
e l i f fname_saved_SC eq "" then
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SC := ComputeListOfCandidateSubgroups_Caller(<G, ord , po s s i b l e s g c ,
exc ludedsgc , use_expensive_conjugat ion_tests >) ;

e l s e
SC := Fi l eHe lpe r ( fname_saved_SC , ComputeListOfCandidateSubgroups_Caller

, <G, ord , po s s i b l e s g c , exc ludedsgc , use_expensive_conjugat ion_tests
>) ;

end i f ;
i f verbose then
" I I : computed subgroup conjugacy c l a s s e s in " , Cputime ( t ) ;
" I I : # subgroup conjugacy c l a s s e s =", #SC;

end i f ;

IsThisOrderCompletelyExcluded := true ;

f o r s ccounte r in [ 1 . .#SC] do
i f verbose then
" I I : p rog r e s s " , sccounter , " o f " , #SC;

end i f ;
U := SC[ sccounte r ] ;

i f IsInSmallGroupDatabase ( ord ) and Ident i fyGroup (U) in
AbstractTypesWhichAreExcluded then

i f verbose then
" I I : sk ip t h i s group due to AbstractTypesWhichAreExcluded " ;

end i f ;
cont inue ;

end i f ;

i f use_expens ive_conjugat ion_tests then
i f ContainsExcludedSubgroupUpToConjugacy (G, exc ludedsgc ,U) then
i f verbose then
" I I : conta in s an excluded subgroup up to conjugacy " ;

end i f ;
cont inue ;

end i f ;
end i f ;

i f verbose then
t := Realtime ( ) ;

end i f ;
i f fname_saved_evals eq "" then
r e t := eva l func (<U, name_counter>) ;

e l s e
r e t := F i l eHe lpe r ( fname_saved_evals , eva l func , <U, name_counter>) ;

end i f ;
i f verbose then
" I I : eva l took ( r e a l time ) " , Realt ime ( t ) , "and was " , r e t ;

end i f ;
name_counter +:= 1 ;

i f r e t then
IsThisOrderCompletelyExcluded := f a l s e ;
i f IsInSmallGroupDatabase ( ord ) then
Exclude (~SetOfAbstractTypesToExcludeForThisOrder , Ident i fyGroup (U) ) ;
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end i f ;
Append(~ po s s i b l e s g c , U) ;
Append(~ ind i c e s , name_counter−1) ;
e l s e
Append(~ excludedsgc , U) ;

end i f ;
end f o r ;
i f IsThisOrderCompletelyExcluded then
Inc lude (~CompletelyExcludedOrders , ord ) ;

e l s e
CompletelyExcludedAbstractTypes j o i n :=

SetOfAbstractTypesToExcludeForThisOrder ;
end i f ;

end f o r ;

// Write (" save_SearchSubgroupLattice_NonPGroups . txt ",<excludedsgc ,
po s s i b l e s g c , name_counter , i nd i c e s >,"Magma" : Overwrite := true ) ;

i f verbose then
" I I : SearchSubgroupLattice_NonPGroups t o t a l r e a l time " , Realt ime (

g loba l t ime ) ;
end i f ;
r e turn excludedsgc , po s s i b l e s g c , name_counter , i n d i c e s ;

end func t i on ;

f unc t i on SearchSubgroupLatt ice (G, eva l func :
use_expens ive_conjugat ion_tests := true , fname_saved_SC:="saved_SC . txt " ,
fname_saved_evals :=" saved_evals . txt " , verbose := true ,
SubgroupClas se s In fus ion := [ ] )

MaximumPrimePowers , exc ludedsgc , po s s i b l e s g c , name_counter , i n d i c e s :=
SearchSubgroupLattice_PGroups ( G, eva l func

: use_expens ive_conjugat ion_tests :=use_expensive_conjugat ion_tests ,
fname_saved_SC:=fname_saved_SC , fname_saved_evals :=fname_saved_evals ,
verbose :=verbose , SubgroupClas se s In fus ion := SubgroupClas se s In fus ion ) ;

exc ludedsgc , po s s i b l e s g c , name_counter , i n d i c e s :=
SearchSubgroupLattice_NonPGroups ( G, eva l func , MaximumPrimePowers ,
exc ludedsgc , po s s i b l e s g c , name_counter , i n d i c e s

: use_expens ive_conjugat ion_tests :=use_expensive_conjugat ion_tests ,
fname_saved_SC:=fname_saved_SC , fname_saved_evals :=fname_saved_evals ,
verbose :=verbose , SubgroupClas se s In fus ion := SubgroupClas se s In fus ion ) ;

po s s i b l e s g c_so r t ed := Sort ( po s s i b l e s g c , func<x , y | Order ( x )−Order (y )>) ;
re turn po s s i b l e s g c_so r t ed ;

end func t i on ;

////////////////////
// post p ro c e s s i ng f unc t i on s
////////////////////

func t i on
PostProce s s_Poss ib l eCon jugayClas se sSubgroupsLat t i c e_he lper_In i t i a l i z e (
p o s s i b l e s g c )

SGCLattice := [ ] ;
f o r i in [ 1 . .# po s s i b l e s g c −1] do
f o r j in [ i +1..# po s s i b l e s g c ] do
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i f Order ( p o s s i b l e s g c [ i ] ) l t Order ( p o s s i b l e s g c [ j ] ) and (Order ( p o s s i b l e s g c
[ j ] ) mod Order ( p o s s i b l e s g c [ i ] ) ) eq 0 then

Append(~SGCLattice ,< i , j ,"?">) ;
end i f ;
i f Order ( p o s s i b l e s g c [ i ] ) gt Order ( p o s s i b l e s g c [ j ] ) and (Order ( p o s s i b l e s g c

[ i ] ) mod Order ( p o s s i b l e s g c [ j ] ) ) eq 0 then
Append(~SGCLattice ,< j , i ,"?">) ;

end i f ;
end f o r ;

end f o r ;
f o r i in SGCLattice do
x := i [ 1 ] ;
y := i [ 2 ] ;
z := i [ 3 ] ;
i f z eq "?" and po s s i b l e s g c [ x ] subset p o s s i b l e s g c [ y ] then
Exclude (~SGCLattice , i ) ;
Append(~SGCLattice ,<x , y , " S">) ;

end i f ;
end f o r ;
r e turn SGCLattice ;

end func t i on ;

f unc t i on
PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice_helper_Expens ive (G,
po s s i b l e s g c , SGCLattice )

f o r i in SGCLattice do
x := i [ 1 ] ;
y := i [ 2 ] ;
z := i [ 3 ] ;
i f z eq "?" then
i f IsConjugateHelperSubgroupsConjugate (G, p o s s i b l e s g c [ y ] , p o s s i b l e s g c [ x ] )

then
Append(~SGCLattice ,<x , y , "C">) ;

end i f ;
Exclude (~SGCLattice , i ) ;

end i f ;
end f o r ;
r e turn SGCLattice ;

end func t i on ;

// remove u t i l i t y data , t r a n s i t i v e edges , and s o r t
func t i on PostProcess_Poss ibleConjugayClassesSubgroupsLatt ice_helper_Cleanup

( SGCLattice )
a s s e r t #{ i : i in SGCLattice | i [ 3 ] eq "?" } eq 0 ;
SGCLattice := {@ <i [ 1 ] , i [2] > : i in SGCLattice @} ;
R := [ i : i in SGCLattice ] ;
f o r a in [ 1 . .# SGCLattice ] do
f o r b in [ a+1..#SGCLattice ] do
f o r c in [ b+1..#SGCLattice ] do
i f [<a , b>, <b , c>, <a , c>] subset SGCLattice then
i f Index (R,<a , c>) ne 0 then
Remove(~R, Index (R,<a , c>)) ;

end i f ;
end i f ;
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end f o r ;
end f o r ;

end f o r ;
Sort (~R) ;
re turn R;

end func t i on ;

// e . g . PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (GL(5 , 2 ) ,
p o s s i b l e s g c ) ;

f unc t i on PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (G, p o s s i b l e s g c )
SGCLattice :=

PostProce s s_Poss ib l eCon jugayClas se sSubgroupsLat t i c e_he lper_In i t i a l i z e (
p o s s i b l e s g c ) ;

SGCLattice :=
PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice_helper_Expens ive (G
, po s s i b l e s g c , SGCLattice ) ;

SGCLattice :=
PostProcess_Poss ibleConjugayClassesSubgroupsLatt ice_helper_Cleanup (
SGCLattice ) ;

r e turn SGCLattice ;
end func t i on ;

f unc t i on GroupNameCollection ( Col lect ionOfGroups )
re turn [ GroupName( i ) : i in Col lect ionOfGroups ] ;

end func t i on ;

f unc t i on PrintSubgroupLatt iceAsDigraph ( po s s i b l e s g c , La t t i c e )
names := GroupNameCollection ( p o s s i b l e s g c ) ;
r e t := "digraph {" ;
f o r i in [ 1 . .# names ] do
r e t cat := "a" cat IntegerToStr ing ( i ) cat " [ l a b e l =\"" cat names [ i ] cat "

(" cat IntegerToStr ing (Order ( p o s s i b l e s g c [ i ] ) ) cat ") \ " ] ; " ;
end f o r ;
f o r i in La t t i c e do
r e t cat := "a" cat IntegerToStr ing ( i [ 1 ] ) cat "−>a" cat IntegerToStr ing ( i

[ 2 ] ) cat " ; " ;
end f o r ;
r e t cat := "}" ;
re turn r e t ;

end func t i on ;

////////////////////////////////////////
// automatic t e s t :
// −> S7 , a l l subgroups o f order at most 5
// −> GL(3 ,2 ) , a l l subgroups o f order at most 10
////////////////////////////////////////

f o r i in <
<SymmetricGroup (7) , func< o | o l e 5> >,
<GL(3 , 2 ) , func< o | o l e 5> >
> do

G := i [ 1 ] ;
f := i [ 2 ] ;
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ac tua l := SearchSubgroupLatt ice (G, func<U_idx | f ( Order (U_idx [ 1 ] ) ) > :
fname_saved_SC:="" , fname_saved_evals :="" , verbose := f a l s e ) ;

expected := Sort ( [ i ‘ subgroup : i in SubgroupClasses (G) | f ( i ‘ o rder ) ] , func<x
, y | Order ( x )−Order (y )>) ;

a s s e r t SequenceToSet ( GroupNameCollection ( ac tua l ) ) eq SequenceToSet (
GroupNameCollection ( expected ) ) ;

a s s e r t I s I somorph ic (
Digraph<#actua l | [ [ i [ 1 ] , i [ 2 ] ] : i in

PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (G, ac tua l ) ]> ,
Digraph<#expected | [ [ i [ 1 ] , i [ 2 ] ] : i in

PostProcess_Poss ib leConjugayClassesSubgroupsLatt ice (G, expected ) ]>) ;
end f o r ;

Some Magma implementations for subspace codes

////////////////////
// func t i on s f o r subspaces and subspace / i n j e c t i o n d i s t ance
////////////////////

func t i on Grassmannian (q , v , k )
re turn {@ x [ 2 ] : x in OrbitsOfSpaces ( sub<GL(v , q ) | Id (GL(v , q ) )>, k ) @} ;

end func t i on ;

// Subspaces (q , v , k ) = Grassmannian (q , v , k ) f o r Grassmannian
// Subspaces (q , v ) f o r a l l subspaces
func t i on Subspaces (q , vk , . . . )
a s s e r t #vk l e 2 ;
i f #vk eq 2 then
return Grassmannian (q , vk [ 1 ] , vk [ 2 ] ) ;

e l s e
re turn SetToIndexedSet(& j o i n {@ Grassmannian (q , vk [ 1 ] , k ) : k in [ 0 . . vk [ 1 ] ]

@}) ;
end i f ;

end func t i on ;

// get a l l t−subspaces o f U
func t i on Inc idence sSma l l e r (U, t )

G := GL(Dimension (U) , BaseRing (U) ) ;
O := OrbitsOfSpaces ( sub<G| Id en t i t y (G)>, t ) ;
T := [ BasisMatr ix ( i [ 2 ] ) : i in O ] ;
M := BasisMatr ix (U) ;
re turn {@ VectorSpaceWithBasis ( i ∗M) : i in T @} ;

end func t i on ;

// get a l l t−subspaces o f A which conta in U
func t i on Inc idence sB igge r (A, U, t )

re turn {@ U+i : i in Inc id ence sSma l l e r (Complement (A,U) , t−Dimension (
U) ) @} ;

end func t i on ;

// get a l l t−subspaces o f A which are i n c i d en t with U
func t i on Inc id enc e s (A, U, t )
i f Dimension (U) eq t then

226



14.3 The Magma implementation corresponding to Section 11.6

re turn U;
e l i f Dimension (U) gt t then
return Inc idence sSma l l e r (U, t ) ;

e l s e
re turn Inc idence sB igge r (A,U, t ) ;

end i f ;
end func t i on ;

f unc t i on SubspaceDistance (U,W)
return Dimension (U+W) − Dimension (U meet W) ;

end func t i on ;

f unc t i on In j e c t i onD i s t an c e (U,W)
return Maximum(Dimension (U) , Dimension (W) ) − Dimension (U meet W) ;

end func t i on ;

f unc t i on SubspaceCodeParameters ( code )
// convert to l i s t with unique e n t r i e s

C := [ j : j in { i : i in code } ] ;
v := Degree (C [ 1 ] ) ;
a s s e r t &and [ Degree ( i ) eq v : i in C ] ;
r e turn <v , #C, Minimum ( [ SubspaceDistance (C[ i ] ,C[ j ] ) : i , j in [ 1 . .#C] |

i l t j ] ) , {Dimension ( i ) : i in C}>;
end func t i on ;

// rhs i s e i t h e r a l i s t with v−1 non−negat ive i n t e g e r s or f a l s e
// i f rhs i s a l i s t , then the e n t r i e s should be : A_q(v−w, d ; k−w) (w=1 , . . . , k−

d/2) , 1 (w=k−d /2+1 , . . . , k+d/2−1) , A_q(w, d ; k ) (w=k+d / 2 , . . . , v−1)
// depending on the s i t u a t i o n these e n t r i e s may d i f f e r ( e . g . , <=2 f o r

Packing Designs )
// i f rhs_i=0 then no i n e q u a l i t i e s o f dimension i are generated
// never c on s t r a i n t s w i l l be generated f o r the dimensions in k−de l t a +2,

. . . , k+de l ta−2
// i f rhs == f a l s e , then only c on s t r a i n t s with w=k−d/2+1 are generated
// lb = lower bound on the ob j e c t i v e , d e f a u l t s to zero
// replaceme gene ra t e s a p l a c eho lde r with the contents o f p l a c eho lde r ( e . g .

f o r add i t i o na l c on s t r a i n t s )
// e . g . DefaultCDCBLP(" defcdc_2542 . lp " , 2 ,5 ,4 ,2 : rhs := [ 1 , 1 , 1 , 5 ] , lb :=9 ,

replaceme :=" replaceme ") ;
// e . g . DefaultCDCBLP(" defcdc_2743 . lp " , 2 ,7 ,4 ,3 : rhs := [ 21 , 1 , 1 , 1 , 9 , 7 7 ] , lb

:=329 , replaceme :=" replaceme ") ;
procedure DefaultCDCBLP( fname , q , v , d , k : rhs := f a l s e , lb :=0 , replaceme :=

f a l s e )
d e l t a := In t e g e r s ( ) ! ( d/2) ;
G := Grassmannian (q , v , k ) ;

// ob j e c t i v e func t i on
out := "max\n " ;
f o r i in [ 1 . .#G] do out cat := " +x" cat IntegerToStr ing ( i ) ; end f o r ; out

cat := "\n " ;
out cat := " s t \n " ;

// optimal lower bound f o r the ob j e c t i v e func t i on
i f lb ne 0 then
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f o r i in [ 1 . .#G] do out cat := " +x" cat IntegerToStr ing ( i ) ; end f o r ; out
cat := " >= " cat IntegerToStr ing ( lb ) cat "\n " ;

end i f ;

// c on s t r a i n t s
i f Type ( rhs ) eq BoolElt then
rhs := [ 0 : i in [ 1 . . v−1] ] ;
rhs [ k−de l t a +1] := 1 ;

end i f ;
f o r w in [ 1 . . v−1] do
i f w in [ k−de l t a +2. . k+de l ta −2] then
cont inue ;

end i f ;
i f rhs [w] eq 0 then
cont inue ;

end i f ;

f o r W in Grassmannian (q , v ,w) do
Gsub := Inc id enc e s ( VectorSpace (GF(q ) , v ) ,W, k ) ;
f o r U in Gsub do
out cat := " +x" cat IntegerToStr ing ( Index (G,U) ) ;

end f o r ;
out cat := " <= " cat IntegerToStr ing ( rhs [w] ) cat "\n " ;

end f o r ;
end f o r ;

// op t i ona l p l a c eho ld e r
i f Type ( replaceme ) ne BoolElt then
out cat := replaceme cat "\n " ;

end i f ;

// f o o t e r o f the lp f i l e : d e c l a r a t i on o f v a r i a b l e s as b i n a r i e s
out cat := " binary \n " ;
f o r i in [ 1 . .#G] do
out cat := " x" cat IntegerToStr ing ( i ) ;

end f o r ;
out cat := "\n " ;
out cat := "end " ;

Write ( fname , out : Overwrite := true ) ;
end procedure ;

f unc t i on CollectionOfSubspacesToListOfRREFMatrices ( c )
re turn [ EchelonForm ( BasisMatr ix ( i ) ) : i in c ] ;

end func t i on ;

// a x b matr i ce s over F_q with rank d i s t ance d
func t i on MRDGeneralizedGabidulin ( a , b , d , q : s :=1)
i f a l t b then
m := a ;
M := b ;
t ranspose := true ;

e l s e
m := b ;
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M := a ;
t ranspose := f a l s e ;

end i f ;
// M x m matr ices , m <= M
as s e r t GCD( s ,M) eq 1 ;

// k i s dimension o f subspace , i . e . , number o f rows o f G
k := m−d+1;
i f k l e 0 then
return {@ ZeroMatrix (GF(q ) , a , b ) @} ;

end i f ;
F := GF(q M̂) ;
g := NormalElement (F , GF(q ) ) ; // g^(q^0) , . . . , g^(q^(M−1) ) are ba s i s

o f F over F_q
G := Matrix (F , k , m, [ [ ( g^(q^co l ) ) ^(q^(( row∗ s ) mod M) ) : c o l in [ 0 . .

m−1] ] : row in [ 0 . . k−1 ] ] ) ;
MRDvec := [ a∗G : a in VectorSpace (F , k ) ] ;
x , y := VectorSpace (F , GF(q ) ) ; // y : F −> GF(q ) M̂
myMRD := {@ Hor i zonta lJo in ( [ Matrix (M, 1 , ElementToSequence (y ( i ) ) ) : i in

ElementToSequence ( j ) ] ) : j in MRDvec @} ;

i f t ranspose then
myMRD := {@ Transpose ( i ) : i in myMRD @} ;
end i f ;

a s s e r t &and [ Nrows ( i ) eq a : i in myMRD ] ;
a s s e r t &and [ Ncols ( i ) eq b : i in myMRD ] ;
a s s e r t &and [ Parent ( i [ 1 ] [ 1 ] ) eq GF(q ) : i in myMRD ] ;
a s s e r t &and [ Rank( i ) ge d : i in myMRD | i ne 0 ] ;
a s s e r t #myMRD eq q^(M∗(m−d+1) ) ;

r e turn myMRD;
end func t i on ;

// s c on t r o l s g e n e r a l i z a t i o n in MRDGeneralizedGabidulin
func t i on LMRD(q , v , d , k : s :=1)
myMRD := MRDGeneralizedGabidulin (k , v−k , I n t e g e r s ( ) ! ( d/2) , q : s := s ) ;
LMRDmat := [ Hor i zonta lJo in ( Ident i tyMatr ix (GF(q ) , k ) , i ) : i in myMRD ] ;
myLMRD := {@ sub<VectorSpace (GF(q ) , v ) | Rows( i )> : i in LMRDmat @} ;

a s s e r t #myLMRD eq Ce i l i n g (q^((Maximum(v−k , k ) ) ∗(Minimum(v−k , k )−d/2+1) ) ) ;
a s s e r t &and [ Dimension ( i ) eq k : i in myLMRD ] ;
a s s e r t &and [ i subset VectorSpace (GF(q ) , v ) : i in myLMRD ] ;

re turn myLMRD;
end func t i on ;

////////////////////////////////////////
// add i t i ona l c on s t r a i n t s f o r DefaultCDCBLP and the s o l v i n g proce s s
////////////////////////////////////////

// e . g . eval_DefaultCDCBLP (2 , 5 , 4 , 2 , SylowSubgroup (GL(5 , 2 ) ,2 ) ,100 ," sg1 " ,"add_
" ,1 ," adapter . py") ;
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f unc t i on eval_DefaultCDCBLP(q , v , d , k ,U, t ime l imi t , subgroupname ,
addendum_prefix , addendum_number , adaptername )

addendum := "" ;
G := Subspaces (q , v , k ) ;
o r b i t s := { x [ 2 ] ^U : x in OrbitsOfSpaces (U, k ) } ;

f o r o r b i t in o r b i t s do
orep := Representat ive ( o r b i t ) ;
orep idx := Index (G, orep ) ;
f o r j in o r b i t do
i f j ne orep then
j i d x := Index (G, j ) ;
addendum cat := "+x" cat IntegerToStr ing ( orep idx ) cat " −x" cat

IntegerToStr ing ( j i d x ) cat " = 0\n " ;
end i f ;

end f o r ;
end f o r ;

Write ( subgroupname , U, "Magma" : Overwrite := true ) ;
Write ( addendum_prefix cat IntegerToStr ing (addendum_number) cat " . txt " ,

addendum : Overwrite := true ) ;

r e tu rnva lue := System (" gurobi . sh " cat adaptername cat " " cat
IntegerToStr ing (addendum_number) cat " " cat IntegerToStr ing ( t ime l im i t
) ) ;

r e tu rnva lue := re turnva lue / 256 ;
a s s e r t r e turnva lue in [ 0 , 1 ] ;
i f r e tu rnva lue eq 0 then
return true ; // t rue means there i s a s o l u t i o n or the time l im i t was

reached
e l s e
re turn f a l s e ; // f a l s e means the problem i s i n f e a s i b l e

end i f ;
end func t i on ;

////////////////////////////////////////
// adapter between Magma and Gurobi
////////////////////////////////////////

// c r e a t e s a Python f i l e c a l l e d fname_helper , which can be executed with
// gurobi . sh fname_helper <number o f addendum f i l e > <t ime l imi t>
// I t then r ep l a c e s replaceme in fname_DefaultCDCBLP with the contents in

addendum_prefix<number o f addendum f i l e >. txt
// and execute s Gurobi f o r at most the s p e c i f i e d amount o f time .
// I t r e tu rn s 0 i f f a s o l u t i o n i s found or the t ime l im i t i s reached , 1 i f f

the problem i s i n f e a s i b l e , or 99 in any other case
// e . g . write_python_helper (" adapter . py" , "defcdc_2542 . lp " , "add_" , "

replaceme ") ;
procedure write_python_helper ( fname_helper , fname_DefaultCDCBLP ,

addendum_prefix , replaceme )
a := "

import gurobipy , sys , datetime , os \n\
\n\
de f au l t = open ( ’" cat fname_DefaultCDCBLP cat " ’ ) . read ( ) \n\
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addendum = open ( ’" cat addendum_prefix cat "%s . txt ’% sys . argv [ 1 ] ) . read ( ) \n\
o u t f i l e = open ( ’" cat addendum_prefix cat " i lp_%s . lp ’% sys . argv [ 1 ] , ’w’ ) \n\
o u t f i l e . wr i t e ( d e f au l t . r ep l a c e ( ’ " cat replaceme cat " ’ , addendum) ) \n\
o u t f i l e . c l o s e ( ) \n\
os . system ( ’ gz ip −f " cat addendum_prefix cat " i lp_%s . lp ’% sys . argv [ 1 ] ) \n\
\n\
try : \ n\
time = in t ( sys . argv [ 2 ] ) \n\

except : \ n\
time = 10\n\

\n\
m = gurobipy . read ( ’" cat addendum_prefix cat " i lp_%s . lp . gz ’% sys . argv [ 1 ] ) \n\
m. params . LogToConsole = 0\n\
m. params . LogFi le = ’" cat addendum_prefix cat " i lp_%s . lp . log ’% sys . argv [ 1 ] \ n

\
m. params . TimeLimit = time\n\
m. opt imize ( ) \n\
\n\
i f m. Status == gurobipy .GRB.TIME_LIMIT:\ n\
try : \ n\
m. wr i t e ( ’ " cat addendum_prefix cat " i lp_%s . lp . so l ’% sys . argv [ 1 ] ) \n\
p r in t datet ime . datet ime . now( ) , ’ time ’ , m. ObjVal\n\

except gurobipy . GurobiError : \ n\
p r in t datet ime . datet ime . now( ) , ’ time ’ \ n\

sys . e x i t (0 ) \n\
e l i f m. Status == gurobipy .GRB.OPTIMAL:\ n\
m. wr i t e ( ’ " cat addendum_prefix cat " i lp_%s . lp . so l ’% sys . argv [ 1 ] ) \n\
p r in t datet ime . datet ime . now( ) , ’ opt ’ , m. ObjVal , m. ObjBound\n\
sys . e x i t (0 ) \n\

e l i f m. Status == gurobipy .GRB. INFEASIBLE:\ n\
pr in t datet ime . datet ime . now( ) , ’ i n f e a s i b l e ’ \ n\
sys . e x i t (1 ) \n\

e l s e : \ n\
p r in t datet ime . datet ime . now( ) , ’EE: Gurobi s t a tu s i s : ’ , m. Status \n\
sys . e x i t (99) \n\

" ;
Write ( fname_helper , a : Overwrite := true ) ;

end procedure ;
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Glossary

dh(u,w) = #{i ∈ {1, 2, . . . , v} | ui 6= wi}, Hamming distance.

wt(u) = dh(u,0), weight.

di(U,W ) = max{dim(U),dim(W )} − dim(U ∩W ), injection distence.

Di(C) = min{di(U,W ) | U 6= W ∈ C}, minimum injection distance.

dr(M,N) = rk(M −N), rank distance.

Dr(M,N) = min{dr(U,W ) | U 6= W ∈ C}, minimum rank distance.

ds(U,W ) = dim(U +W )− dim(U ∩W ), subspace distance.

Ds(C) = min{ds(U,W ) | U 6= W ∈ C}, minimum subspace distance.

Fq the up to isomorphism unique finite field with q elements, 2 ≤ q prime power.

Fvq the up to isomorphism unique vector space of dimension 1 ≤ v over Fq, usually row
vectors F1×v

q .

Fm×nq the up to isomorphism unique vector space of m× n matrices over Fq.[
Fvq
k

]
set of all k-dimensional subspaces of Fvq , Grassmannian.

[
v
k

]
q

= #
[

Fvq
k

]
=
∏k−1
i=0

qv−qi
qk−qi , q-binomial coefficient.[

W\U
c

]
set of c-subspaces of W which have trivial intersection with U .[

w\u
c

]
q

= #
[
W\U
c

]
= quc

[
w−u
c

]
q
.

[n]q = (qn − 1)/(q − 1), q-number.

[n]q! =
∏n
i=1[i]q, q-factorial.

GL(V ) general linear group of V .

Z(GL(V )) = {λIv | λ ∈ F∗q}, center of GL(V ).

PGL(V ) = GL(V )/Z(GL(V )), projective general linear group.
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PΓL(Fvq) = PGL(Fvq) o Aut(Fq), projective semilinear group.

Iv v × v identity matrix, I if the dimension is obvious.

0m×n m× n zero matrix, 0 if the dimension is obvious.

Jm×n m× n all-one matrix, J if the dimension is obvious.

Mi,∗ i-th row of the matrix M .

M∗,j j-th column of the matrix M .

Mi,j element of the matrix M in row i and column j.

Ug = {ug | u ∈ U}, right coset.

U\G = {Ug | g ∈ G}.

gU = {gu | u ∈ U}, left coset.

G/U = {gU | g ∈ G}.

(G : U) = #G/#U , index.

hg = g−1hg, conjugation.

hG = {hg | g ∈ G}.

Ug = {ug | u ∈ U}.

UG = {Ug | g ∈ G}.

Cn cyclic group of order n, used as abstract type.

Dn dihedral group of order n, used as abstract type.

Qn quaternion group of order n, used as abstract type.

An alternating group on n elements, used as abstract type.

Sn symmetric group on n elements, used as abstract type.

o semidirect product.

× direct product, cartesian product.

NB(A) = {b ∈ B | Ab = A}, normalizer.

E normal subgroup.

◦ group action, sometimes without symbol, concatenation of maps.

xG = {xg | g ∈ G}, orbit.
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X/G = {xG | x ∈ X}, orbit space.

StabG(x) = {g ∈ G | xg = x}, stabilizer.

Aut(L/K) = {g ∈ Aut(L) | g(k) = k ∀k ∈ K}.

U⊥ = π(U), orthogonal space. , see π(U)

τq,k,v :
[

Fvq
k

]
→
{
A ∈ Fk×vq

∣∣ rk(A) = k,A is in RREF
}
, bijection, τ if parameters are

obvious.

pq,v,k(U) ∈ Fv2, p(U)i = 1 iff column i in the RREF matrix of U is a pivot column, for

U ∈ Fk×vq in RREF or U ∈
[

Fvq
k

]
, p if the parameters are known.

π(U) = {v ∈ V | β(v, u) = 0∀u ∈ U} for some non-degenerate symmetric bilinear form
β.

RREFq,k,v : {A ∈ Fk×vq | rk(A) = k} → {A ∈ Fk×vq | rk(A) = k,A is in RREF}, RREF
if parameters are obvious.

Λq,m,n : Fm×nq →
[

Fm+n
q
m

]
,M 7→ τ−1((Im |M)), Λ if parameters are obvious.

(a; q)n =
∏n−1
i=0 (1− aqi), q-Pochhammer symbol.

µ(q) = (1/q; 1/q)−1
∞ .

(m× n,N, d)q rank metric code C ⊆ Fm×nq , #C = N , and Dr(C) ≥ d.

[m× n, k, d]q linear (m× n, qk, d)q rank metric code.

t− (v, k, λ)q subspace design.

S(t, k, v)q q-Steiner system.

Ax
q(v, d;K;U) maximum size M of a (v,M, d;K;U)x

q subspace code.

Aut(C) ≤ 〈PΓL(V ), π〉 with g ∈ Aut(C) iff Cg = C.

δ(C) = (δ0, δ1, . . . , δv) such that δi is the number of i-subspaces in C.

K(C) = {dim(U) | U ∈ C}.

L(V ) = {U | U ≤ V }.

(v,M, d;K;U)x
q subspace code C ⊆ L(Fvq) with #C = M , Dx(C) ≥ d (x ∈ {i, s}),

K(C) ⊆ K, and U ≤ Aut(C), U defaults to 〈〉, K defaults to {0, . . . , v} (MDC) or
k (CDC).
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≤ smaller or equal, subgroup, subspace.

〈〉 trivial group, trivial subspace.

1l 1 . . . 1 of length l.

0l 0 . . . 0 of length l.

GCD(a, b) greatest common divisor of a and b.

v −K = {v − k | k ∈ K}.

[n] = {1, 2, . . . , n}.

SX symmetric group of the set X.

Sn = S[n].

Hk(U) arbitrary k-subspace in U .

| horizontal concatenation of matrices.

Ax ≤ b Ai,∗x ≤ bi for all i.(
X
2

)
= {{x, y} ∈ X ×X | x 6= y}.

1ϕ ∈ {0, 1}, 1 iff ϕ is true, indicator function.

1S(x) ∈ {0, 1}, 1 iff x ∈ S is true, characteristic function.

st subject to.

⊕ direct sum of subspaces.

# cardinality of a set.

rk rank of a matrix.

a 6= b ∈ c synonym of {a, b} ∈
(
c
2

)
.

ui i-th unit vector in Fvq for i ∈ [v].

:= the term on the left hand side is defined to be the term on the right hand side.

ker(M) = {x | xM = 0}, kernel of M .

minS smallest element in S, minimum.

argmin{f(x) | x ∈ S} y ∈ S with f(y) = min{f(x) | x ∈ S}.

SL(V ) = {M ∈ GL(V ) | det(M) = 1}, special linear group.
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Ahlswede Aydinian bound, 111
anticode, 109
Anticode bound, 110
association scheme, 44
automorphism, 34
automorphism group, 34
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better formulation, 38
Beutelspacher bound, 120
Bézout’s identity, 38
binary linear program, see BLP
block, 39
block code, 41
BLP, 50, 85, 104, 166, 190
butterfly network, 11

Cayley theorem, 32
CDC, 34
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channel, 13
characteristic function, 37
clique, 41, 85, 194
clique constraints, 39
clique number, 41, 103
collinear, 38, 153
Compact Johnson bound, 117
conjugation, 28
constant dimension code, see CDC
constant weight code, 41
coset, 28
coset construction, 67

DefaultCDCBLP, 50
Delsarte, 45
Desarguesian spread, 40
dimension distribution, 34

distance-regular, 24, 46
Drake Freeman bound, 121

Echelon-Ferrers construction, 60, 67, 98,
185

Echelon-Ferrers diagram, 59
edge constraints, 39

face, 39
facet, 39
Fano plane, 39
FDRMC, 59, 82
Feit-Thompson theorem, 29
Ferrers diagram, 59, 67, 82
fixed, 31
formulation, 38
Frobenius automorphism, 33
full-dimensional, 38
full-length, 31

Gaussian binomial coefficient, see q-binomial
coefficient

Gaussian elimination, 23
generator matrix, 23
graph, 41
graph distance, 27
Grassmann graph, 24, 46
Grassmannian, 17
greedy, 84, 103
greedy algorithm, 42
group, 28
group action, 30

Hall π-subgroup, 30
Hall divisor, 30
Hall’s theorem, 30
Hamming distance, 41, 60
Hamming space, 24
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hole, 40
hyperplane configuration, 189

Improved Johnson bound, 118
improved linkage construction, 126, 143,

144
independence system, 43, 84
independent, 43
index, 28
indicator function, 37
induced graph, 41
injection distance, 27
intersection numbers, 44
invariant, 34
iso-dual, 197
isometry, 32

Johnson I bound, 113
Johnson IIa bound, 114
Johnson IIb bound, 114

Kramer-Mesner approach, 166

Lagrange’s theorem, 28
lattice, 24
lifting, 37
Linear Programming bound, 119
linear programming method, 45
linkage construction, 125
LMRD, 37, 61, 185
LMRD bound, 61, 89, 134
LP-relaxation, 39

main problem of subspace coding, 34
matroid, 43, 84
maximum rank distance, see MRD
maximum weight clique, 41
MDC, 34
metric, 45
minimum distance, 14, 34
minimum distance decoder, 14, 27
mixed dimension code, see MDC
MRD, 36
multicast, 11

non-solvable number, 29

normal subgroup, 28
normalizer, 28

optimal formulation, 38
orbit, 30
orbit space, 30
orbit type, 31
Orbit-Stabilizer theorem, 30, 109
orthogonal code, 34
orthogonal space, 32

p-subgroup, 28
packing, 40
parallelism, 41, 81, 85
partial spread, 40, 120
pivot, 23
point-hyperplane configuration, 193
polyhedron, 38
polytope, 38, 95
proper face, 39

q-binomial coefficient, 17
q-factorial, 17
q-Hahn polynomial, 46
q-Johnson scheme, 46
q-number, 17
q-Pascal identities, 18
q-Pochhammer symbol, 20, 137
q-Steiner system, 39
quadrangle, 38, 153

rank distance, 36
rank metric code, 36, 125
Recursive Improved Johnson bound, 118
Recursive Johnson IIa, 117
reduced row echelon form, 23
RLNCC, 13
RREF, 23

self-dual, 34
shortened code, 48
Singer cycle, 103
Singleton bound, 112
skeleton code, 60
slack, 56
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solvable group, 29
solvable number, 29
Sphere-packing bound, 110
spread, 40, 120, 129
stabilizer, 30
stable set polytope, 39
store-and-forward, 11
Strong Cayley theorem, 32
subgroup, 28
subnormal series, 29
subspace code, 13, 34
subspace covering design, 39, 181
subspace design, 39, 181
subspace distance, 24, 60
subspace packing design, 39, 181
Sylow p-subgroup, 28
Sylow’s theorem, 28

transitive, 31
transversal, 30

unweighted clique number, 41

valid inequality, 38
vector space partition, 40

weight, 23, 41
weighted graph, 41
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