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Critical exponents of directed percolation measured in spatiotemporal intermittency
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An experimental system showing a transition to spatiotemporal intermittency is presented. It consists of a
ring of hundred oscillating ferrofluidic spikes. Four of five of the measured critical exponents of the system
agree with those obtained from a theoretical model of directed percolation.
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[. INTRODUCTION as does the correlation time wit# t, and the critical dis-
tribution of the laminar lengths is determined Iby*s and by
Intermittency was observed in hydrodynamics as a precurt™ #t for the laminar times.
sor to turbulencésee, e.g., Refl]). For dissipative dynami- Some experimental tests of the conjectiiB] in quasi-one-
cal systems without spatial degrees of freedom intermittencgimensional systems have been md8egl7-24. A short
was first modeled by ordinary differential equations and it-summary of these and the relevant expon¢dfs26 for the
erative map$2]. Spatiotemporal intermittendy8Tl) is a fur-  comparison with the DP model are given in Table |. How-
ther development of this concept for spatially extended sysever, the statement that.’. . there is still no experiment
tems and was introduced by KaneKg)] in the mid 1980's  where the critical behavior of DP was seen” by Grassberger
[4]. It is characterized by patches of ordered and disorderef27] still seems to be true. Thus in this paper an experimental
states fluctuating stochastically in space and t[\i This  approach to this old problem is presented.
behavior has been observed in many systems. Theoretical The system introduced consists of a ring of ferrofluidic
approaches have been made in a large variety of systenspikes excited by an external magnetic field. Ferrofluids, also
ranging from partial differential equations, such as thecalled magnetic fluids, are a colloidal suspension of ferro-
damped Kuramoto-Sivashinsky equatif$7] or the com- magnetic nanoparticels. The fluid is superparamagh28t
plex Ginzburg-Landau equatiof8—10], over stochastical The idea for using this fluid was motivated by the fact that a
partial differential equation$l1l] to coupled map lattices single peak of ferrofluid can show chaotic oscillations under
(CML) [3,12,13 and probabilistic cellular automata4]. external driving of a magnetic fielf29,30. We introduce
In 1986 Pomea(il5] suggested that the onset of chaos viahere a system where about 100 of these oscillating peaks are
STI might be analogous to directed percolati@P) [16].  coupled by magnetic and hydrodynamic interactions. They
Such processes are modeled as a probabilistic cellular aexhibit changes in peak height of about 10% and variations
tomaton with two states per site, associated with the laminain wavelength\ of about 50%. This system is advantageous
and chaotic patches in the case of STI. One of the maimecause of its short response times and the easy control of
features of DP is the presence of an absorbing state, whicihe excitation.
corresponds to the laminar state. The absorbing state pre- The paper is organized as follows. In Sec. Il we describe
vents the nucleation of chaotic domains within laminar do-the experimental setup, the procedure of the measurement,
mains. DP model predicts some universal properties of STland the data extraction methods. In Sec. Ill the quantitative
In particular, the fraction of chaotic domains is expected toresults are presented, i.e., the critical exponghts, vy,
grow with a power lawe?, wheree measures the distance u, andu,. Finally in Sec. IV the results are discussed and
from threshold. The correlation length decreases withs, an outlook to further investigations is given.

TABLE |. Experiments and results in quasi-one-dimensional systems.

Authors Year Experiment Size Ty (s) Geometry B Vg 12 Ms
Ciliberto et al.[17] 1988 RB convection 20 10 Annular 0.5 +9.1
Daviaudet al.[8,18] 1990 RB convection 40 2 Linear 0:3.05 0.5-0.05 0.5-0.05 1.650.2
Daviaudet al.[8,18] 1990 RB convection 30 2 Annular 0.5 0.5 $0.1
Michallandet al.[19] 1993 Viscous fingering 40 15 Linear  0#48.05 0.5 0.630.02
Willaime et al. [20] 1993 Line of vortices 15 5 Linear 0.5
Degenet al.[21] 1996 Taylor-Dean 20900 1.5 Linear 1.36:0.26 ~0.64 ~0.73 1.67-0.14
Colovaset al.[22] 1997 Taylor-Couette 30700 0.5 Linear
Bottin et al.[23] 1997 Plane Couette Linear
Vallette et al. [24] 1997 Fluid fronts 40 0.5 Linear
Jenser(theory [25,26] 1999 Directed percolation 0.27648p 1.0968544) 1.7338476) 1.748
Present paper Ferrofluidic spikes 108 0.08 Annular =@3d5 1.2:0.1 0.720.05 1.70.05
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FIG. 1. Sketch of the experimental setup.

IIl. EXPERIMENT 430

The experiment is based on the Rosensweig instability
[28]. This instability is observed in a horizontal layer of
magnetic fluid, when a threshold of the vertically oriented
magnetic field is surpassed. The flat surface becomes un
stable and a pattern of liquid spikes emerges. In case of ar
inhomogeneous field the wavelength of this pattern can be 0
controlled by the magnetic fielth. The wavelength scales position x in units of L,
with the gradient of the magnetic field divided by a basic
field at the undisturbed surface of the fluid. A larger gradient FIG. 2. Space-time plots of the different states of the system.
emphasizes small peaks and suppresses large ones. Thus!dr2.8 A, laminar state(b) l,=3.0 A, spatiotemporal intermit-
order to generate as many spikes as possible, the setup of tH8CY: (¢) le,=3.6 A, chaotic state. 500 excitation periods are
experiment consists of a cylindrical electromagnet with ashown. The positionx is normalized over the size of the ring.
sharp edggFig. 1). The magnetic fluid is trapped by the
inhomogeneous magnetic field at this edge of the magneti-
cally soft iron core. In that way the 40-mm diameter of the The spatiotemporal behavior is investigated by observing
pole shoe supports a ring of up to 130 spikes of magnetighe ring with the CCD camera. To extract the wavelength and
fluid as indicated by the picture in Fig. 1. _ amplitude of the spikes as a function of space, we define a
The magnetic fluid used in this experiment is EMG901ying of interest around the center of the pole shoe, which is
from Ferrofluidics, a fluid based on magnetite f&, with  covering the ring of spikes. It is divided into 1024 segments.
isoparafin as carrier fluid. At 20°C EMG901 fES a densityThe average of the gray values within each segment repre-
p=1.53gcem”, a surface tensiow=29 MNm *, a dy-  gents the amplitude. That way we get a spatial resolution of
namical viscosityp=25 mPas and a susceptibiliy=3. around ten segments per peak. This reduction of the two-

The ring of spikes is recorded with a charge-coupled deginengional image to a single line scan can be done in real

vice (CCD)-camera mounted above the pole shoe. The elecﬁme with a frequency of 12.5 Hz

tr_omag_net cons_lsts of_a b'a$ coil and an excitation coil. The In Fig. 2(@) 500 of such scans of a laminar state are shown
bias coll is provided with a direct current b 1.0 Ato keep . . . .
in space and time, where dark regions correspond to high

the magnetic fluid in its place. The excitation coil is driven . - o A

by an alternating current, phase locked with the camera fregmphtudes. The driving frequency of the excitation field is
- ' - ; fox=12.5 Hz, as mentioned above. The peried 1/f,, is

guency, providing a stroboscopic jitter free recording on long &x ex

time scales. The alternating current can be adjusted betwedt§€d 0 scale the time. Due to this stroboscopic recording the
0 and 4.1 A. In this interval the number of spikes rangesscillations of the spikes cannot be seen. _
from 60 to 130. For the amplitudes used in the experiment, FOr the measurements a current of 1 A is applied to the
108 spikes have been observed. bias coil and a constant volume of the magnetic fluid is
To keep the viscosity and the surface tension constant, thiéropped on the edge of the pole shoe. After a waiting time of
fluid is temperature controlled to 12#8.03°C by cooling 2 h thermal equilibrium is reached. Then the second coil is
the pole shoe. To prevent the evaporation of the isoparafiirovided with a sinusoidal excitation signal of an amplitude
the volume around the edge of the pole shoe is sealed with@f 1,,=4.05 A, driving the system into the fully chaotic re-
glass plate to provide long term stability. gime similar to the one indicated in Fig(@. That state is
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FIG. 3. Complexification of the datésee text The left hand side displays the data in real spdeg(c)], the right hand side the
corresponding graphs in Fourier spade),(d)].

the basis for a quench to a lower excitation value correspondived from the distribution ofA for the fully laminar case

ing to the STI regimdgFig. 2(b)], which is then analyzed which is presented in Fig. 5 by a solid line. There are no
subsequently. The recording of the data starts after a waitingirger variations than 1%. Smaller values/ofare artefacts
time of ~1800r, when the transients following the quench of the recording technique and thus are suppressed. For com-
have died out. The data are recorded for 2000 excitatiorp)arison, the dashe@lotted lines give the distribution of
periodst. For higher excitation amplitudes the laminar statefor the intermittent(chaotio states. The calculations of the
[Fig. 2a)] becomes intermittent in space and tiffég. 2b)]  exponents are robust to changes of the threshold of up to

and eventually chaotifFig. 2(c)]. o , 50%. This variation of the binarization threshold corre-
For a quantitative analys_|s O.f the transition a Te"ab'e de'sponds to changes in the resulting critical exponents within
tection of the regular domains is fundamental. Different cri-

. A . ~the statistical errors. In Fig. 6 we demonstrate the application
teria for the distinction of the regular and chaotic domain 9 bp

h b 8 17-24 B f the st aNSsf the above described procedure to the intermittent data.
ave been proposgs,17-24. Because of the strong varia- Figure @a) gives the raw datal) displays the local wave-

ngth, and(c) the relative changd after binarization. The

N(x,t). To obtain\(x,t) we use a method callecbomplexi-

SN o . . binarized information. To get a better signal-to-noise ratio we
fication, which is based on the Hilbert transformation g g

average the results over six independent runs of the experi-
i* = F UHm) AL, 1) ;‘lr:ﬁgt, which include six refills of the apparatus with fresh

wherei, is the real intensity at position[Fig. 3@)], i} is the
complex intensity ak [Fig. 3(c)], andH(n) is the Heaviside

PN
function in Fourier spacgFigs. 3b) and 3d)]. By this =
method a zero imaginary part is added to every real value
[see Fig. 8a)]. Then the data are transformed to Fourier <
space, where the amplitudes corresponding to negative wav'$
numbers are eliminatefd-igs. 3b) and 3d)]. With a back- 3
ward transformation to real space, every value has a nonzerg . , . , . , . , .
imaginary part[Fig. 3(c), dashed ling \ is subsequently < 03fm) ' ' ' ' :
calculated as the phase difference between neighboring val I 1
ues in real spacé¢Fig. 4a)]. In the last step the relative T 02 7
changes of the local wavelength g o1k M M i
Ea A e
A= IAes1 =N @ T goprALt-anl v/\.. WA -4
At 0.0 0.2 0.4 0.6 0.8 1.0

T osition x in units of L
are calculated. To get a clear distinction between regular ana P /L

irregular domain_s, changes ik which are larger than 0.01 FIG. 4. (a) Local wavelengthx calculated from Fig. &) in
are counted as irregular, whereas smaller changes belong diaits ofL,. (b) Relative change of local wavelength The dashed
regular domaingFig. 4b)]. The threshold valué\. is de- line corresponds to the threshold of 0.01 taken from Fig. 5.
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FIG. 5. Distributions of the relative change of wavelengtifor
three different .,: solid linels=2.8 A corresponding to Fig.(d),
dashed lind .,= 3.0 A corresponding to Fig.(B), and dotted line o=
lx=3.5 A corresponding to Fig.(2). The cutoff of the distribution 3
for the fully laminar state gives the threshold of the binarization 450
A.=0.01, as depicted by the arrow.

Ill. EXPERIMENTAL RESULTS

At low excitation amplituded ,,<3.0 A the system is
completely regulafFig. 2(a)] showing 108 spikes. Slight 0 = ' '
! - . 0 1
spatial variations of the wavelength<0.01 remain constant position x in units of L,

in time. In Fig. 2b) atle,=3.0 A irregular fluctuations are FIG. 6. x-t-plots at different states of the data processi{@y.

aF?Pafe”ty W_h'(?h vye consider as a manlfgstatlon of STI: AQaW data;(b) same section as ifa) after transforming the data.
fairly clear distinction between regular and irregular domainsyyhite corresponds to large local wavelengths, black to small ones.
can be made in this image even by naked eye. Further ing) Final step: the relative change of local wavelength over two
crease ofl ., leads to a spreading of the irregular domainssypsequent periods is calculated and binarized. The black areas
engulfing the regular regions, until finally the whole systemare defined as regularA0.01), the white are chaoticA(
is chaotic[Fig. 2(c)]. >0.01).

As an order parameter for STI we take tivae-averaged
chaotic fractiony, which is the ratio of chaotic regions to laminar timest are the number of segments between two
the length of the system. This ratio is averaged over the 2006haotic ones at a certain positiag. The averages of these
excitation periodsr. Its variation with the control parameter numbers are displayed in Fig. 8 as the function of the nor-
I ex IS shown in Fig. 7. The error bars represent the variancenalized control parameter
of the chaotic fraction.

Close to the onset of STI the mean chaotic fraction is W77 7T 7T T 7
expected to grow with a power law

e
%0
—T
it
1

>
§
'YN(Iex_Ic)B- ©) B 0.6+ i
N
The solid line in Fig. 7 is a fit to our data, usihg, 8, and § 041 T
an offset representing background noise as adjustable paramg
eters. The threshold value determined in this walyis3.0 § 0.2 .
+0.05 A and the exponeng=0.3+0.05 is in agreement
with the theoretical expectation for DB=0.276 486(8) 00 1
[25] 1 1 1 1 1 1 1 1
Another way to characterize the regular domains is to 28 29 30 31 32 33 34 35 36
look at the mean laminar expansion in spdcand timeT. excitation amplitude I (A)
First we define the laminar lengttsas the number of con- FIG. 7. The mean chaotic fractionversus excitation amplitude

secutive regular segments between two chaotic ones dividad,. The solid line is a power law fit. The error bars represent the
by the total number of segments at a certain tipeThe  statistical errors.
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A ° ? olsdﬁo. :€} °
' o& ° Og
_ 0o 2% 0% o o
T~e ™ (6) 2 300 g,
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and the fit yields the exponenf =1.2+0.2, which is rep- laminar time t in units of ©

resented by the solid line ang =0.7+0.1, which is repre-

sented by the dashed line. Only data in the range of 0.03 FIG. 10. Distributions of the laminar lengtta) and the laminar

<e<0.1 are taken into account. For smallea finite size ~ timet (b) for e>0. The legend ir(b) holds for both figures.

effect is obvious: Following Cross and Hohenbggd] the i ) ]

characteristic length of the regular domathsnust be much the laminar domain lengthand timest. To suppress the

smaller than the system size 1. For 0.1 the system is no statlst|c_al f_Iuctuanons the values are Iogarlthmma!ly _blnn_ed.

longer intermittent, but rather chaotic. The solid line represent the power law fit for the distribution
In Fig. 9 the distributions of the laminar domain length ©f the lengths(7) and for the time<8):

and time fore=0 are presented. At the threshold the distri-

. S p(l)~1"#s, (7)
bution should follow a power law for both the distribution of
S p(t)~17#. ®
10'L ] We obtainu=1.7+0.05, in agreement with the theoretical
value us=1.734 andu,=2.1+0.1, in accordance with the
10%F 1 theoretical valugu,>2.0.
IN 3 ] For e>0 the power law has a cutoff at the correlation
5 0F E length (time) of the system and an exponential tail with a
S . ] decay length equal to the correlation lengih.c,, (time
g 10¢ Odeca) (Fig. 10.
S8 E ] deca
10°E ] Both parameters should grow with the same power law as
. the mean expansions and T in Egs. (5) and (6). This be-
10°F o p() \‘\\ 4 havior can be seen in Fig. 11. The lines correspond to power
E o+ plt) ] law fits with the exponentsys=1.1+0.2 and v;=0.62
T T E—T +0.14. The large errors are due to the statistical fluctuations
lamtinar length | resp. time t in units of segments resp. © of the distributions and difficulties in the definition of the
cutoff length.
FIG. 9. Distribution of the laminar domain lengthand timet The distributions cannot be described by a simple power
for e=0. The solid lines are power law fits. To suppress the statislaw. A more complicated distribution function has been sug-
tical fluctuations the distributions are logarithmically binned. gested,
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FIG. 11. The correlation length and time# derived from the FIG. 12. Distribution of the laminar domain lengthfor e
exponential decay of the distributioriBig. 10 versus control pa-  =0.019. The solid line stems from E(g).
rametere. The lines are power law fits. The error bars represent
statistical errors. [32]. Following the ideas presented in that book the allow-
ance for a continuum of states between the absorbing and the
p(l)=(Al"*+B)e decay (9)  active one might result in a more realistic description of the

experimental situation.
in Ref. [17] The solid line in Flg 12 is a fit to this empirical Another way to soften the assumption of a tru|y absorbing
distribution function fore=0.019 withl yecqy=0.17. It shows  state is the introduction of stochastic mechanisms permitting
clearly that the power law is now replaced by a functionthe nucleation of chaotic domains. In DP implementing a

more reminiscent of an exponential decay. weak external field that creates chaotic domains in a pure
laminar neighborhood with a certain probabili5,33 does
IV. DISCUSSION this. As long as the probability of the creation processes is

, small the critical behavior of DP is only slightly disturbed. If
To conclude, we have presented an experimental systefe ronability becomes too large the universality is de-
exhibiting STI. In contrast to all previous experiments, gyqved. The stochastic field could be an anologon to the
which are autonomous ones, our system is periodicallybackground noise” of our experimental apparatus.
driven. We have measured the critical exponggitss, v, Alternatively, traveling solitonlike structures have added
Ms, andpu for the mean chaotic fractiom, the mean lami- 4 cML and DP[34]. The interaction of these structures
nar length¢, the mean laminar tim&, the correlation length gt jead to chaotic domains nucleating in laminar regions,

EdecayaNd tiMe fgecay, and the laminar length and time dis- \yhich again softens the assumption of a truly absorbing state
tribution functions fore~0. Four of the five exponents agree g, |eads to the breakdown of universality in DP.

with the theoretical expectation derived from a DP model | any of these ideas will be able to explain the behavior
within our experimental resolution. Considering the simplic- o the measured decay times is subject to further investiga-
ity of the underlying discrete model, the fact that the theory;jgp,.
is applicable only nedr;, the complexity of our experiment,

and the fact that our apparatus has a finite size, this concor-
dance seems truly remarkable.

The fact that the parametey; is far from the expected The authors would like to thank Hugues Chated Haye
value needs further discussion. One difference between thdinrichsen for helpful discussions. One of (R.R) would
underlying model and our experiment might be the nature ofike to thank Victor Steinberg for inspiring contributions.
the absorbing state. In fact, the absence of a truly absorbinBeutsche Forschungsgemeinschaft through Re588/12 has fi-
state seems to be common to all experimental results so farancially supported the experiments.
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