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Oscillatory decay at the Rosensweig instability: Experiment and theory

Bert Reimann,1,* Reinhard Richter,1 Ingo Rehberg,1 and Adrian Lange2
1Experimentalphysik V, Universita¨t Bayreuth, D-95440 Bayreuth, Germany
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Transient patterns of the Rosensweig instability are accessed with a pulse sequence. The critical scaling
behavior of the oscillation frequency and of the propagation velocity of these patterns is experimentally
investigated by switching the magnetic induction to subcritical values. The experimental findings are in good
agreement with the linear theory, if the low viscosity and the finite thickness of the magnetic liquid layer are
taken into account. In this way we elucidate the subcritical branch of the underlying steady state bifurcation,
which is situated in the immediate vicinity of a splitting type bifurcation.
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I. INTRODUCTION

Pattern formation has mostly been investigated in syst
driven out of thermodynamic equilibrium, e.g., in Rayleig
Bénard convection or Taylor-Couette systems@1#. On the
contrary, examples for pattern formation in systems at eq
librium are buckled shell structures@2,3# and the instability
of a horizontal fluid interface in a vertical electric@4# or
magnetic field@5#. Here dissipation does only have an infl
ence in the transient process of structure formation, not a
final state. For sufficiently low dissipation these systems
close to the ideal, Hamiltonian case, and thus exhibit in
esting bifurcation scenarios.

From an experimental point of view, the normal field i
stability in a magnetic field is conveniently accessible.
1967 Cowley and Rosensweig first investigated the influe
of a homogeneous magnetic field on a horizontally exten
layer of magnetic fluid~MF!. When surpassing a critica
valueBc of the magnetic induction, they observed a hyst
etic transition between the flat surface and a hexagonal
tern of liquid crests@5,6#.

In the present paper we are investigating the fate of
pattern when switching to a subcritical induction. In partic
lar, the oscillatory decay of magnetic liquid ridges@7,8# to-
wards a flat surface is observed. It turns out that the osc
tion frequency and the propagation velocity of the decay
pattern depend sensitively on the subcritical magnetic ind
tion. When approaching the bifurcation pointBc from below,
a dramatic decrease of both observables can be measur

We examine this bifurcation point theoretically within th
framework of a linear theory. The critical scaling behavior
discussed particularly in the context of a perturbation of
so called@9,10# splitting type bifurcation. Here a pair of con
jugated complex eigenvalues with negative real pa
equivalent of an oscillatory decay, merges at the nega
real axis just before the origin of the complex plane. At le
one of the eigenvalues propagates on the positive real a
equivalent of a developing pattern. In the limit of vanishi
viscosity the theory predicts a splitting type bifurcation.

*Present address: Fraunhofer Institute for Factory Operation
Automation, D-39106 Magdeburg, Germany.
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The paper is organized as follows. After a sketch of t
experimental setup in Sec. II, we present in Sec. III the m
surements of the oscillation frequency and the propaga
velocity of the ridges for different magnetic induction. Th
theoretical context is displayed in Sec. IV with an empha
on the set of solutions of the dispersion relation for sup
critical and subcritical induction. Section V is devoted to t
discussion and the conclusion of our results.

II. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 1. A cylindric
vessel with an edge machined from Teflon® with a diameter
of 12 cm and a depth of 3 mm~2 mm! is brimful filled with
fluid and is situated in the center of a pair of Helmholtz coi
The experiments are performed with the magnetic fluid EM
909 ~Ferrotec Corp.!. The fluid is illuminated from above by
90 red light emitting diodes mounted on a ring of 30 c
diameter. This ring is placed 105 cm above the surface
charge-coupled-device camera is positioned in the cente
the ring. By this construction, a flat surface reflects no lig
into the camera lens. Only an inclined surface of prop
angle will reflect light into the camera. The camera is co
nected via a frame grabber to a 90-MHz Pentium PC a
serves additionally as the fundamental clock for timing t
experiment.

nd
FIG. 1. Scheme of the experimental setup.
©2003 The American Physical Society20-1
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In order to prepare a state of unstable liquid ridges,
magnetic induction has to be switched in a jumplike man
@7#. We start all measurements from a common subcrit
induction B0512.75 mT. The jumplike increase of the in
duction is initiated by the computer. Its digital-to-analog co
verter is connected via an amplifier~fug Elektronik GmbH!
to the Helmholtz coils~Oswald Magnetfeldtechnik!. The
magnet system cannot follow the control signal instantly;
relaxation timetB to a jumplike increase of the control sig
nal depends on the jumpDB. For a maximal jump ofDB
57 mT, the relaxation time mounts up totB58.0 ms. The
other characteristic time scales of the system are the capi
time scale, tc5s1/4/(g3/4r1/4).12.5 ms, and the viscou
time scale,tn5s/(gm).450.3 ms. The dynamic viscosityn
and surface tension with air (s) of the MF are taken from
the literature@11#. The densityr of the MF is measured to b
1.16 g/cm3, which is somewhat higher than the value
1.02 g/cm3 given by the producer. The gravitational acce
eration is denoted byg. For the empty Helmholtz coils, th
spatial homogeneity of the magnetic field is better th
61%. This grade is valid within a cylinder of 10 cm diam
eter and 14 cm in height oriented symmetrically around
center of the coils. Two Hall probes are positioned imme
ately under the vessel. A Siemens Hall probe~KSY 44!
serves to measure the magnetic field during the jump
increase, and is connected via a digital voltmeter~Prema
6001!. For measuring a constant magnetic field and for c
bration purposes, we use a commercial Hall probe~Group3-
LPT-231! connected to the digital teslameter~DTM 141!.
Both devices are controlled via an IEEE bus by the co
puter.

III. EXPERIMENTAL RESULTS

In the following we demonstrate the preparation of t
state of liquid ridges. First the induction is increased jum
like from B0512.75 mT up to a supercritical valueBsup, as
sketched in Fig. 2. Due to the supercritical induction, liqu
ridges emerge. Before they start to develop into the hexa
nal state, the induction is switched back to a subcritical va
Bsub.B0. Now the liquid ridges decay in an oscillatory ma

FIG. 2. Pulse sequence for the preparation of the liquid ridg
The small lettersa, b, c mark the times when the pictures of Fig.
have been captured.
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ner. Figure 3 shows half of such an oscillation period. T
oscillation starts with a pattern of concentric liquid ridges,
presented in Fig. 3~a!. Figure 3~b! shows the approximately
flat surface after a quarter of the period. The liquid ridg
after half of the oscillation period are displayed in Fig. 3~c!.

A. Oscillation frequency

Next we describe the extraction of the oscillation fr
quency. Therefore we calculate the azimuthal average of
gray level values in the vessel, as described in detail in R
@7#, which defines a single horizontal line in the space-tim
plot of Fig. 4~a!. These lines are displayed as a function
the delay time—indicated by the vertical axis—after switc
ing to the subcritical value. In order to surpass the tempo
resolution of the camera, the experiment has to be done
petitively with different delay times. Thus the space-tim
plot displays the evolution of the inclined~dark! and ap-
proximately horizontal~bright! parts of the surface of the
magnetic liquid. The dashed line~i! denotes the start of the
oscillation, when the magnetic induction was switched to
subcritical value. The gray value distribution is approx
mately repeated at the site of line~ii ! in Fig. 4~a!.

s.

FIG. 3. Initial pattern of liquid ridges~a!, approximately flat
surface after a quarter of the oscillation period~b!, and liquid ridges
after half of the period~c!.

FIG. 4. ~a! Space-time plot of the oscillation of the liquid ridge
in the outer region of the vessel. The dashed horizontal line at i~ii !
denotes the start~half of the period! of the oscillation, respectively
In ~b! a sketch of the height profiles at the corresponding time
given. The circles and squares mark points of equal inclination.
clarity the height profiles have been vertically shifted.
0-2
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OSCILLATORY DECAY AT THE ROSENSWEIG . . . PHYSICAL REVIEW E68, 036220 ~2003!
The gray value is a measure of the deviation from
horizontal surface. The flat surface both at the valley and
crest corresponds to white areas. The interpretation of
measurement in Fig. 4~a! is sketched in Fig. 4~b! in terms of
height profiles. It illustrates the fact that only half an osc
lation period elapses between line~i! and ~ii ! in Fig. 4~a!.

In order to determine the oscillation period, we select t
radial positions with a lateral distance of a half wave leng
The corresponding equal intensities do appear after ha
the oscillation period at these positions, as illustrated in F
4~b! by the open circles and squares. This fairly complica
procedure turned out to be more practical than the sim
method of measuring the full period because of the fast
cay of the patterns.

The oscillation period as a function of the magnetic
duction is shown in Fig. 5. Starting with a jump to the s
percritical inductionBsup518 mT, the oscillation period wa
measured for 12 different values of the subcritical induct
Bsub. The measured data are denoted in Fig. 5~a! by open
circles. The error bars are estimated from seven indepen
measurements. The data show a square-root-like depend
from the induction, and are well described by the theo
~solid line!, developed in Sec. IV. A second measurem
series has been performed forBsup517.5 mT. In this way, a
pattern of liquid ridges with a smaller wave number has b
prepared. The data for these oscillation frequencies

FIG. 5. ~a! Oscillation frequency of the liquid ridges versus th
subcritical magnetic induction. The open circles~squares! denote
the measured data obtained after a pulse ofBsup518 mT~17.5 mT!,
respectively. A layer thickness of 3 mm was used. The so
~dashed! lines give the theory for a viscous~inviscid! MF, respec-
tively, as presented in Sec. IV.~b! Square of the oscillation fre
quency of the liquid ridges as a function of the subcritical magn
induction.
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marked in Fig. 5 by open squares. Again a good agreem
between experimental data and theory is found. In Fig. 5~b!,
the square of the oscillation frequency has been plotted
sus the induction in order to show the range of validity of t
square-root-like behavior.

B. Propagation velocity

After a jump to a subcritical magnetic induction the ridg
do not only start to oscillate, but also have a finite propa
tion velocity. We have measured this behavior in a vesse
2 mm. Figure 6 shows the space-time plot of the gray va
distribution of the whole vessel. In the right part, we obse
the oscillatory behavior of the ridges already shown abo
and in the central part one can detect stripes with an incl
tion to the left, i.e., to the center of the vessel. These stri
stem from the ridges which are propagating towards the c
ter of the vessel. The three white lines denote spec
maxima and minima of the gray value distribution. Each li
consists of 64 independent extrema. From a linear fit of
central white line, we estimate the propagation velocity
the ridge.

In Fig. 7~a!, the propagation velocity obtained in this wa
is denoted by open squares and has been plotted versu
subcritical induction. Each data point has been estima
from six independent measurements. The data show
square-root-like behavior for a full decade of the velocity.
comparison with Fig. 5, this dependency could be corro
rated even in the immediate vicinity of the bifurcation poin
For comparison the open circles give the values for
propagation velocity as extracted from the data of the os
lation frequency in Fig. 5 by division with the wave numbe
The solid line gives the corresponding theoretical results
viscous fluids, a fluid layer of 3 mm, and a magnetic perm
ability of m r51.94 ~see Sec. IV!. The dotted line gives the
theoretical results for a fluid layer of 2 mm and the sa
permeability, which does not seem to describe the meas
ments adequately. When considering the fact that the he
is not necessarily constant when changing the magnetic
~as discussed in detail below!, the height of the layer can b
introduced as a fit parameter. The dash-dotted line repres
the best fit yieldingh51.04 mm. It shows systematic devia
tions from the data. Thus in addition we use the magne
permeability as a fit parameter, thus taking into account
aging of the magnetic fluid. The dashed line gives the b
two-parameterfit, yielding m r51.98 andh51.15 mm. Fig-

d

c

FIG. 6. Space-time plot of the propagation of the magnetic
uid ridges in a vessel of 2 mm depth. The three solid lines den
the ridge from which the propagation velocity has been extrac
The whole vessel is shown with its edge at the right hand side
0-3
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REIMANN et al. PHYSICAL REVIEW E 68, 036220 ~2003!
ure 7~b! shows the square of the velocity versus the subc
cal induction.

IV. THEORY

In the first part, we present those aspects of the lin
theory which are necessary to calculate the measured sc
behavior, whereas the second part focuses on the pecu
ties of the bifurcation scenario.

A. Scaling behavior of the measured quantities

For the sake of clarity in the presentation, the details
the method to calculate the above measured quantities
explained for an infinitely thick layer of magnetic fluid.
viscous MF of horizontally infinite extent subjected to a ve
tical magnetic induction is considered. The MF has a f
surface with air above, where the basic state is that o
nondeformed surface. The dispersion relation for small d
turbances from the basic state is given by@12#

FIG. 7. ~a! The open squares mark the propagation velocity
the liquid ridges measured as a function of the subcritical magn
induction. For the measurements a preparing pulse ofBsup

518 mT and a layer thickness of 2 mm were used. The open cir
give the values for the propagation velocity as calculated from
oscillation frequencies of Fig. 5. The solid~dotted! line indicates
the theoretical results for viscous fluids and a layer thickness
mm ~2 mm!, respectively~see Sec. IV!. The dash-dotted line give
the best least squares fit by theory for keeping the permeab
fixed atm r51.94, where the height of the fluid layer, now used a
fit parameter, yieldsh51.04 mm. The solid line gives the best two
parameter fit, where both, the magnetic permeability and thickn
of the liquid layer have been used as fit parameters. The best fi
been obtained form r51.98 andh51.15 mm. ~b! Square of the
propagation velocity versus the induction.
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~m r21!2B2q2

~m r11!m0m r
G

5A12
iv

nq2, ~4.1!

where n is the cinematic viscosity of the MF,m r its
relative permeability,B the absolute value of the extern
magnetic induction, andm0 the permeability of the vacuum
For dispersion relation~4.1!, the small disturbances from
the basic state were decomposed into normal mod
exp@2i(vt2q•r )#. Herer5(x,y) is the planar space vecto
q5(qx ,qy) the wave vector, andq5uqu denotes the wave
number. Withv5v11 iv2, the real part of2 iv, v2, is
called the growth rate and defines whether the disturban
will grow (v2.0) or decay (v2,0). The absolute value o
the imaginary part of2 iv, uv1u, gives the angular fre-
quency of the oscillation if it is different from zero. Th
critical induction for the onset of the instability reads asBc

2

52m0m r(m r11)Arsg/(m r21)2 @5#.
For asupercritical inductionBsup51.05Bc , the dispersion

relation~thick solid lines in Fig. 8! predicts that the linearly
most unstable pattern evolves most quickly. It is charac
ized by the maximal growth ratevm5 iv2,m (v1,m[0,
v2,m.0) and its corresponding wave numberqm, marked by
thin solid lines in Fig. 8~a!. Such features can be conclude
from the facts that atqm the real part ofv2 has its smallest
negative value and the imaginary part is zero.

According to the experimental procedure, the solution
the dispersion relation~4.1! for a subcritical induction atqm
is the relevant solution for the comparison with the expe
mental data. The thick dashed lines in Fig. 8 display
dispersion relation forBsub50.96Bc . At the maximal wave
number qm, one can read the relations Re(v2)5v1

22v2
2

.0 and Im(v2)52v1v2,0 ~thin dashed lines in Fig. 8!. It
is now difficult to conclude from these two relations wheth
the pattern decays, or grows and oscillates, respectiv
Therefore it is advantageous for a viscous MF to plot inste
the actual growth rate, Re(2 iv)5v2, and the oscillation
frequency, Im(2 iv)52v1, as shown in Fig. 9.

It has to be noted that in Fig. 8 for reasons of clarity on
one solution of the dispersion relation forBsup and Bsub is
plotted. In the reduced interval of wave numbers in Fig.
all solutions are displayed. A detailed analysis about
number of solutions for dispersion relation~4.1! is presented
in Ref. @13#.

From Fig. 9, it becomes clear that the solution atqm in the
subcritical case corresponds to a decaying and oscilla
pattern. The frequency of the oscillation is given by

f 5
uv1u
2p

~4.2!

and the experimentally measured propagation velocity by

v5
uv1u
qm

. ~4.3!
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OSCILLATORY DECAY AT THE ROSENSWEIG . . . PHYSICAL REVIEW E68, 036220 ~2003!
With the two formulas~4.2!, ~4.3!, the frequency and the
propagation velocity of the decaying pattern can be ca
lated and then compared with the experimental results.
this purpose, the dispersion relation in the case of a fi
layer has to be applied@see Eq.~4.3! in Ref. @7##.

B. Bifurcation

Whereas in Fig. 9 the behavior of the growth rate and
oscillation frequency aroundqm at a fixed subcritical induc-
tion is shown, the plot ofv2 and 2v1 versus the contro
parameterB, as shown in Fig. 10, reveals the influence of t
finite viscosity on the bifurcation scenario.

For the limiting case of an inviscid fluid, the bifurcatio
diagram is given in Fig. 10 by dashed lines. The patt
oscillates below a certain threshold for the subcritical ind
tion, Bc,0@qm(n50),v250# @see Eq. ~4.7!#. Above that
threshold the pattern can either decay according to the s
tion v2,0 or can develop towards the most unstable lin
pattern belonging toBsub.Bc sincev2.0 is also a solution
@14#.

FIG. 8. Dependence of Re(v2) ~a! and Im(v2) ~b! on the wave
numberq for a supercritical (1.05Bc , thick solid line! and a sub-
critical (0.96Bc , thick dashed line! induction. The wave numberqm

of the linearly most unstable pattern and the corresponding v
vm

2 are indicated by thin solid lines. The solution in the subcritic
case forqm is indicated by the thin dashed lines. The material p
rameters for the calculations aren55.1731026 m2/s, r51.16
3103 kg/m3, s52.6531022 kg/s2, m r51.94, and Bc

516.84 mT.
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For a viscous fluid~solid lines in Fig. 10! the behavior is
more complex. A first critical inductionBc,1, occurs, where
the set of solutions for dispersion relation~4.1! changes from
two complex solutions to two negative real solutions. Bo
real solutions exist until at a second critical inductionBc,2,
one of them abruptly ends, as explained below. At a th
critical inductionBc,0, one of the two negative real solution
changes its sign and becomes positive. Note thatBc,0 does
not give the onset of the Rosensweig instability from the
surface, which takes place atBc,Bc,0 . RatherBc,0 charac-
terizes the onset of growth of the preset pattern with wa
numberqm.

To understand this complex behavior, dispersion relat
~4.1! is analyzed in dimensionless units~indicated by a bar!
in the rearranged form

S 11
2 i v̄

2n̄q̄2D 2

2A11
2 i v̄

n̄q̄2
5

2q̄2q̄312B̄2q̄2

4n̄2q̄4
.

~4.4!

All lengths were scaled with@s/(rg)#1/2, the time with
s1/4/(g3/4r1/4), the viscosity withs3/4/(g1/4r3/4), and the in-
duction withBc . Equation~4.4! reveals that whatever valu

e
l
-

FIG. 9. Dependence of the growth ratev2 ~a! and the oscillation
frequency2v1 ~b! on the wave numberq for the case of a super
critical ~thick solid line! and a subcritical~thick dashed line! induc-
tion. The solutions atqm for both cases are indicated by the corr
sponding thin lines. Parameters are the same as in Fig. 8.
0-5
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REIMANN et al. PHYSICAL REVIEW E 68, 036220 ~2003!
v̄PC has, the left hand side of Eq.~4.4! has to be real be
cause the right hand side of Eq.~4.4! is always real since
(q̄,n̄,B̄)PR. This condition together with the mixing of rea
and complex quantities in Eq.~4.4! is essential to understan
the above described appearance of different sets of solut

As long asBsub>Bc,1 all solutions of the dispersion rela
tion with q5qm are real, i.e.,2 iv5v2PR ~see Fig. 10!.
Using this result it follows from Eq.~4.4! that there is a
valuev̄252 n̄q̄m

2 beyond which the radicand becomes neg
tive. Since a complex value for the left hand side of Eq.~4.4!
is not allowed, the solution does not exist beyondv̄25

2 n̄q̄m
2 . This corresponds to the point in Fig. 10, where o

of the solutions suddenly terminates atBc,2 . Therefore the
second critical induction yields

B̄c,2@ n̄,q̄m~ n̄ !,v̄252 n̄q̄m
2 #5A1

2 S 1

q̄m

1q̄m1 n̄2q̄m
2 D .

~4.5!

The first critical induction is the minimal induction for whic
real solutions exist, thus

FIG. 10. Dependence ofv2 ~a! and2v1 ~b! on the subcritical
inductionBsub for an inviscid MF (n50, dashed line! and a viscous
MF (n55.1731026 m2/s, solid line!. The three critical inductions
Bc,0, Bc,1, andBc,2 are explained in the text. The remaining mat
rial parameters for the calculations are those from Fig. 8 withqm(n)
determined forBsup518 mT.
03622
ns.
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e

B̄c,1@ n̄,q̄m~ n̄ !,v̄2,min#

5H 1

2 S 1

q̄m

1q̄mD 22n̄2q̄m
2 FA11D2S 11

D

2 D 2G J 1/2

,

~4.6!

with v̄2,min5n̄q̄m
2 D5( n̄q̄m

2 /36)@2601(108112A93)2/3

1144(108112A93)22/3#. Finally, the third critical induction
is defined byv̄250 which leads to

B̄c,0@ q̄m~ n̄ !,v̄250#5A1

2 S 1

q̄m

1q̄mD . ~4.7!

The three thresholds~4.5!–~4.7! follow the relation B̄c,1

<B̄c,0<B̄c,2 , where the equal sign applies ton̄50. With
increasing viscosityn̄ the differences between the threshol
increase.

Eventually, we focus on the type of the prevailing bifu
cation. In Fig. 11, the eigenvalue2 iv is plotted in the com-
plex plane for both the viscous~a! and the inviscid~b! fluid.
For the viscous fluid, the complex eigenvalues merge on
real axis atBc,1 and are real for all inductions larger tha
Bc,1 , as presented in Fig. 11~a!. The crossing towards the
positive real axis of one of the real eigenvalues occurs
Bc,0 . That defines the steady state character of the bifu
tion.

With vanishing viscosity the character of the bifurcatio
approaches the splitting type@9,10# where two pure imagi-
nary eigenvalues split into two real ones, as shown in F
11~b!.

V. DISCUSSION AND CONCLUSION

Comparing the theoretical curves in Fig. 5 and the m
sured results, we find an excellent agreement for the
quency of the oscillating liquid ridges. Such an agreemen
based on the fact that the viscosity and the finite depth of
fluid layer are taken into account. The only fit parameter
the permeability of the magnetic fluid. We obtainedm r
51.94, which is slightly higher than the value 1.8 given
the producer. This is well justified by the increased ma
density: It is nearly 8% higher than the one given in the d
sheets of the producer, probably through evaporation of
kerosene. Therefore the contribution of the magnetite na
particles to the properties of the whole fluid becomes lar
and the relative permeability increases.

The comparison of theoretical and experimental res
for the case of the propagation velocity in a layer of 2 m
depth as presented in Fig. 7 is less successful. The meas
values, which are denoted by open squares, are about
smaller than the theoretical prediction given by the dot
line. However, a convincing fit is presented by the dash
line, which gives the theoretical curve for a permeability
m r51.98 and a layer thickness ofh51.15 mm. The perme-
ability has slightly increased by 2% compared to the m
surements in Fig. 5, probably due to evaporation during t
months of measurements.
0-6



to
m
a
th

u
b

h
as

the
is

s for
ss
n-

ly.
d
en

ency
ge

kes
or
act,
-
ted
his

the
ge
ic
er.
the
id

mi-
tem
ical
ifur-

a-
d
dic
be
g

de-
m-
f a

de-
ve-
f
eo-
of
es-
rca-
a-

ne
n

ng

a

m

e

de
-

g
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More puzzling is the drawdown of the fluid level toh
51.15 mm, compared to the filling level of 2 mm. Due
the inevitable field gradient at the edge of the vessel, so
fluid is pulled from the center towards this edge. In this w
the fluid level in the center is diminished, the area where
propagation velocity has been measured.

This behavior has been checked in independent meas
ments of the surface height of the static Rosensweig insta
ity by means of a radioscopic method@15#. For the same type
of MF, the same supercritical induction and a vessel dept
4 mm, a drawdown of the fluid level by a factor of 0.6, w

FIG. 11. Plot of the imaginary versus the real part of the co
plex eigenvalues2 iv5v22 iv1 from Fig. 10 for the viscous~a!
and inviscid~b! MF. ~a! With increasing subcritical induction th
complex eigenvalues pass throughB.16.960 mT (d) and merge
at Bc,1.17.006 mT. From there one negative real eigenvalue
creases until it terminates atBc,2.17.014 mT. The other real nega
tive eigenvalue increases and changes its sign atBc,0

.17.009 mT.~b! The two imaginary eigenvalues pass throughB

.17.033 mT (j) and split atBc,0.17.059 mT into one decreasin
negative and one increasing positive real eigenvalue.
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observed in the center of the dish. Thus, a reduction of
fluid depth by a factor of 0.58, as suggested by the fit,
reasonable. Such a drawdown has drastic consequence
the already shallow depth of 2 mm. The influence is le
important for a reduction from 3 mm to 2 mm, as demo
strated in Fig. 7~a! by the solid and dotted lines, respective

Figures 5~b! and 7~b! display the square of the measure
quantities against the subcritical induction. It can be se
that the square-root-like dependence describes the frequ
behavior with a precision of better than 10% within a ran
down to 80% of the critical induction.

The theoretical analysis of the bifurcation scenario ma
it clear that oscillations almost up to the critical induction f
the onset of the surface instability are to be expected. In f
the interval fromBc,1 to Bc,0 , where theory predicts a mo
notonous decay instead of an oscillatory decay, is estima
for our experimental parameters to be 0.003 mT apart. T
subtle difference betweenBc,0 andBc,1 cannot be resolved in
our experiment. For the current experimental resolution,
viscosity of the magnetic fluid would have to be in the ran
of 131024 m2 s21, but the viscosity of the used magnet
fluid EMG 909 is about two orders of magnitude small
The closeness to the inviscid case is further illustrated by
curves of oscillation frequency for the viscous and invisc
case, as displayed in Fig. 5, which can hardly be discri
nated. Thus the experimental resolution in the studied sys
suggests a splitting type bifurcation, where the theoret
analysis unveils the true steady state character of the b
cation.

According to the similar bifurcation scenario in the Far
day experiment@16,17#, a similar scaling behavior shoul
also be observable for the natural frequency of perio
driven capillary-gravity waves. In close analogy, it can
initiated by a jump from supercritical to subcritical drivin
amplitude.

To conclude, we have experimentally investigated the
cay of transient magnetic liquid ridges emerging after a ju
plike increase of the magnetic induction with the help o
pulse sequence. It was possible to observe a dramatic
crease of the oscillation frequency and the propagation
locity in the vicinity of the bifurcation point. The scaling o
both quantities agree in an excellent manner with the th
retical predictions, if the viscosity and the finite thickness
the magnetic liquid layer are taken into account. In quint
sence, we have uncovered the subcritical part of the bifu
tion diagram in the neighborhood of a splitting type bifurc
tion.
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