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Hexagons become the secondary pattern if symmetry is broken
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Pattern formation on the free surface of a magnetic fluid subjected to a magnetic field is investigated
experimentally. By tilting the magnetic field, the symmetry can be broken in a controllable manner. When
increasing the amplitude of the tilted field, the flat surface gives way to liquid ridges. A further increase results
in a hysteretic transition to a pattern of stretched hexagons. The instabilities are detected by means of a linear
array of magnetic Hall sensors and compared with theoretical predictions.
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Pattern formation in isotropic systems is more compli-primary and secondary instability for various angles ofdgilt
cated than in anisotropic ones: One of the hallmarks of isoThe measurements d&,(¢) agree with the theoretical pre-
tropic systems is the possibility to bifurcate to hexagonddiction if the nonlinear magnetization curve of the magnetic
from an unstructured ground state, which is due to the exisfluid used in the experiment is taken into account.
tence and interaction of three degenerate wave nunfthérs Our experimental setup is shown in Fig. 2. A cylindrical
This situation isstructurally unstablehowever: The smallest vessel with an edge machined from Teflon® with a diameter
distortion of this symmetry acts as a singular perturbatiorof 12 cm and a depth of 2 mm is brimful filled with fluid and
and will lead to a qualitatively different instability, namely, a is situated in the center of a pair of Helmholtz coffsr
primary bifurcation to a stripelike pattern. A specific exampledetails see Ref[6]). The axis of the coils can be tilted
has recently been calculated in defai] for a magnetic fluid against the vertical by an angle=[0°,90°]. The experi-
[3]. In the ideal isotropic system, hexagons will occur undements are performed with the magnetic fluid EMG 909 Lot
the influence of a magnetic field that is perfectly normal withF061998B(Ferrotec Corp, with u,=2.11. A charge-coupled
respect to the fluid surfadel]. The slightest change of the device(CCD) camera is recording the patterns from above.
orientation of the magnetic field is predicted to change thidn order to measure theemplitudeof the steep crests, a linear
subcritical transition: ridges appear supercritically via thearray of 32 Hall sensors was mounted 1.78+0.1 mm below
primary bifurcation. Their interaction with waves along the the bottom of the dish. By this technique the local increase of
less-favored direction gives rise to “stretched” hexagons vidhe magnetic induction below a liquid crest is utilized to
a secondary bifurcation. measure its amplitude. The sensors communicate via 32 am-

A first observation of liquid ridges was reported in Ref. plifiers and a bus with the personal compufe€). Details of
[5]. In this paper we present a quantitative characterization athis method are presented elsewgfg For calibration pur-
the primary bifurcation to liquid ridges and a secondary bi-pose a commercial Hall prob&roup3-LPT-231in combi-
furcation to a pattern of stretched hexagons, as shown in Fignation with the digital teslametédDTM 141) was used.

1, via use of a magnetic measurement technique. Specifi- The magnetic field is tilted towards theaxis. Increasing
cally, we measure the threshold inductiBp and Bg for the  the magnetic induction, we observe a transition from the flat
layer of magnetic fluid to the pattern of liquid ridges, dis-
played in Figs. a) and Xc). The wave vector of the pattern

is oriented along the/ axis and thus perpendicular to the
horizontal field component. The vertical component of the
local magnetic induction was measured by means of the sen-
sor array oriented parallel to the wave vector. In order to

CCD camera

Helmbholtz coil

XET X

FIG. 1. Surface patterns of magnetic fluid in a magnetic field X.:
tilted by the anglep=23° to the vertical. Surface reflections of the

liquid ridges for(a) the vertical inductiorB=20 mT and(b) of the > Teslameter
tilted crests forB=32 mT. The side view of the patterns is pre-
sented in(c) and (d), respectively. FIG. 2. Scheme of the experimental setup.
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FIG. 3. Profiles oB(x), for different values of the applied mag- 23 ¢
netic field. The open circles mark the data, the solid lines the fits by E
22 1
Eq. (D). 2
": 21
reduce the spatial inhomogeneities of the magnetization % 20 |
caused by the finite container size, the spatial variation mea- 2 49 |
sured at a subcritical induction of 20.5 mT is substracted. & 18l

The ensuing local inductioB(x) is presented in Fig. 3 for
different values of the applied magnetic field, measured at 17 b . . . . e
the tilt angle ¢=32°. The open circles mark the data, the 0 d,zci f4° @ 6°d 80 100
solid line gives the least square fit to istance from the edge (mm)

FIG. 5. Local magnetic in(yction fdia) increasing andb) de-

B(x) = Acogkx— ) +B. (1) creasing the control parametBrand ¢=23°. The solid lines give
) ) the fit by Eq.(8).
Here A denotes the modulation amplitudk,the absolute

value of the wave vector) the phase, anB the mean value

of the induction. b=4.3x 10"°> mT. The dotted line displays the solution with-
The square of the modulation amplitudeis plotted in  out imperfection(b=0 mT).
Fig. 4 versus the control paramet8r The monotonous in- Increasing the control parameter further initiates a sec-

crease after a threshok}, is characteristic for a supercritical ondary instability to the stretched hexagonal pattern as dis-
bifurcation. It can be described by the solution of the stationplayed in Figs. tb) and 1d). The blow-up in Fig. 1d) indi-

ary amplitude equatiofil] cates that the crests riding on top of the ridges are
asymmetric with respect to the wave vector of the ridges.
0=€eA-gA’+b. (2)  Thus the patteriof stretched hexagoh$acks any nontrivial
— rotational symmetry.
In accordance with the symmetry of the problesnr (B For a quantitative analysis of the secondary instability, a

—Bﬁ)/Bf, was selected to be the dimensionless bifurcatiorseries of 400 measurements of the local inducBr) has
parameterg is the cubic coefficient a scaling-, arig an been performed fop=23°. For clarity Fig. &) and 3b) is

imperfection parameter. The solid line in Fig. 4 gives the fitpresenting only every 20th line for a quasistatic increase
of the experimental data by the solution of E2). We obtain o

B,=21.17 mT,g=21.16 mT?, and the slight imperfection (decreasgof the control parameteB, respectively. In order

to detect both the ridges and the crests, the sensor line is now
oriented with an angle=(75.8+0.05° to they axis. In this

zz P way it is covering % ridges, which can be recognized in the
P lower part of the plots. FoB~22 mT the transition to the
% 28 stretched hexagons occurs.
§ 20T A mathematical characterization of the stretched hexagons
EREL can be obtained as follows: In a stretched-hexagonal pattern
Ew.o - the wave vectors fulfill the side conditionkr=K,+k; and
o5 k=|ky| =|ks|. With the abbreviationg=|k|, n=k/k, and b

0.0 b cmommemmms , i =\4n?-1, the wave vectors reakh=k(0,1,0, K,=—(k/2)

205 21.0 21.5 22.0

induction B (w) X(-b,1,0), and ks=—(k/2)(b,1,0), which coincide forn
=1 with the vectors for a regular hexagonal pattern. The
FIG. 4. Square of the modulation amplitude of the liquid ridgesamplitude of the ridge#\; and of the stretched-hexagonal
vs the mean magnetic inducti@of the array detector. For details patternA- can be combined to the amplitude of the overall
see text. pattern
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Hi=3 0.10 FT

A(X) = AScoskyX + %E coskix. (3)
i=1

A cut through this pattern is given by
Xy =Xo+1t-€, (4)

where t denotes the distance from the starting poxgt
=(Xy,Y0,0) of the sensor line and=(sinw,cosw,0) its
unity vector of orientation. Plugging E¢4) in Eq. (3) yields

AXw) = At) = AFR(t) + AGH(1) (5)

for the amplitude along the sensor line. Here

Induction B (mT)

FIG. 6. AmplitudeAg| of the stretched hexagonal pattern vs the
applied magnetic induction. The open squafescles denote the

R(t) = cogk(yp + t cosw)] (6) measured amplitude under increddecreaseof the induction, re-
. o ) spectively. For clarity only every 10th point is shown. The solid
gives the contribution of the ridges, and (dotted line give the fit by Eq.(9) with b=1.6x 10 mT(b
1 =0 mT), respectively. For the other parameters we obtaiBgd
H(t) = g{coik(yo +tcosw)] + cogk(P” +t¥")] =22.594 mT,y;=7.6 mT?, %,=0.9 mT?, andg=116.31 mT?2,
+ cogk(d +tw 7 ) , ,
3K 2 @ dashed line gives the solution for the same parameters, how-
the contribution of the hexagons. Hefe=3(bxy+yo), ¥  ever withbs=0. B
=3(bsinw+cosw), @ =3(bx-yy), and ¥ =3(bsinw For decreasind the system follows the solid line very

—cosw) are abbreviations. For small amplitudes, E5).is \ve|| down to the saddle node. For increasiBghe agree-
sufficient, but for higher amplitudes it is important to take ment is less convincing in the bistable regime. Here the im-

into account the higher harmonikg=mkwith m=1, 2,.... pact of the edgef9] seems to penetrate the interior of the
The surface is then given by dish much stronger. As a consequence the analysis b{QEq.
Mg My is not sufficient in this regimgsee also Fig. @].
At) = RoR (1) + HnH (1), 8 Next we investigate the angular dependence of the critical
® mEZle Rul® mE:1A0 m(®) ® induction for the first and secondary bifurcation. In Fig. 7 the

) o ) measured data for the transition to ridges are marked by
This model is fitted to the data by four nonlinear parametersgjrcles, whereas the transition to stretched hexagons is de-

which are the wave numbérof the ridges, the starting point 5teq by triangles and the reverse transition to ridges by

>

Xo=(Xg,Yo) of the sensor line, and the stretching faatoof squares.

the hexagonal pattern. The amplitudefsand Ay are linear The solid line gives, calculated for the instability of the
parameters of the basic functiof§t) and H(t). The solid  flat surface. It follows from the dispersion relation of the
lines in Fig. 5 give the best fit by E¢8) taking into account  surface waves in the direction with w?=0 and k,=ke
the basic mode of the ridgédg=1) and the first two of the =\/5g/¢, using the relation between magnetic induction and
hexagongM=2). magnetization,

From this fit the amplitudeA'J of the hexagons can be
extracted. It is plotted in Fig. 6 versus the control parameter

B. The open squareircles mark the data for an increase
(decreasgof B, respectively. The hysteresis is characteristic
for a subcritical bifurcation, which has been predicted for the
transition from ridges to stretched hexag¢gs

Next we describe the amplitudfl&y:A_gI of the hexagons
after the secondary bifurcation at=(B?-B2)/B3. In the

spirit of a weakly nonlinear analysis slightly abosgwe use
the amplitude equation
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O=€eAy+y(1+ ’Yzfs)Aa - gAa +bs. (9) 0 5 10 15 20 25 30 35 40 45
inclination of the field ¢ (deg)
In this experimental paper the coefficients in Ef) have
been obtained by a fit to the measurements in order to cir- FIG. 7. Critical inductions vs the inclination of the magnetic
cumvent their tedious calculation from the basic equations]fc.?e!d- Tktle datla _markfeﬂ bydopen Cilr_C'i(S han_ be4eg eétir?;ted by
. . = . . . itting the evolution of the ridge amplitude.g., Fig. 4 by Eq.(2).

10 avoid th_e ambiguity of(B) in .the hysteretic regime, The other values, marked by full symbols, have been determined by
B(Ay) was fitted to the data according to RE8]. The result  visual inspection of the liquid layer. The solid line gives the fit
of the fit is presented in Fig. 6 by a solid line, while the obtained via Eq(10).
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o dependence observed in the experiment is quantitatively de-
(k= 0.ky) = g|ky| + ;|ky|3 B %)kiMi scﬁbed by taking into account tfle nonlinea(r:1 magnetizai/ion.
. In addition we measured the backward bifurcation to hexa-
MZ—MEQ gons, which has been predicted by an energy variational
x+1 method[2]. A full quantitative agreement with these predic-
X — - tions cannot be expected, because the theory is restricted to
MZ—Mgi—X+_—\/ 2 %i—x permeabilitiesu, <1.4, while we had to use,=2.11 to
xt1l x+1 xt1

avoid huge fields. The essence of the experimental observa-
(10)  tion, namely, a structural change of the primary instability,
seems to be well described by this theoretical ansatz: for
broken symmetry, ridges always precede hexagons. They are
increasingly difficult to resolve, however, if the angle of tilt
R i . diminishes. A similar scenario can be expected, e.g., for non-
*+Mxe, denotes the magnetization of the fluid for the undis-gq,sginesq-inclined layer convectiga3], for magnetohy-
turbed surface. The susceptibilitieg(H)=M(H)/H and  §,5qynamic as well as electroconvection in tilted magnetic
x'(H)=dM(H)/oH were determined from the experimental fie|4s[14], for lucent hexagons under influence of an asym-

magnetization curve assuming a logarithmic normal distribumetric Fourier filter[15], and for Turing pattern$16] in
tion for the size of the magnetic particles in the flidd,12.  gtressed gel.

In contrast, in Ref[2] a constanty has been used, which

results in aB, not depending orp. We thank W. Pesch for fruitful discussions and Deutsche
To conclude, for the tilted field instability we have mea- Forschungsgemeinschaft for financial support under Grant

sured the forward bifurcation to liquid ridges. The angularNo. Ri 1054/1-3.

The dispersion relation E¢10) takes into account the non-
linearity of the magnetization curvel(H) of the fluid and
can be deduced from Ed36) in [10] whereby M =Mye,
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