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Pattern formation on the free surface of a magnetic fluid subjected to a magnetic field is investigated
experimentally. By tilting the magnetic field, the symmetry can be broken in a controllable manner. When
increasing the amplitude of the tilted field, the flat surface gives way to liquid ridges. A further increase results
in a hysteretic transition to a pattern of stretched hexagons. The instabilities are detected by means of a linear
array of magnetic Hall sensors and compared with theoretical predictions.

DOI: 10.1103/PhysRevE.71.055202 PACS numberssd: 47.54.1r, 47.20.Ma, 75.50.Mm

Pattern formation in isotropic systems is more compli-
cated than in anisotropic ones: One of the hallmarks of iso-
tropic systems is the possibility to bifurcate to hexagons
from an unstructured ground state, which is due to the exis-
tence and interaction of three degenerate wave numbersf1g.
This situation isstructurally unstable, however: The smallest
distortion of this symmetry acts as a singular perturbation
and will lead to a qualitatively different instability, namely, a
primary bifurcation to a stripelike pattern. A specific example
has recently been calculated in detailf2g for a magnetic fluid
f3g. In the ideal isotropic system, hexagons will occur under
the influence of a magnetic field that is perfectly normal with
respect to the fluid surfacef4g. The slightest change of the
orientation of the magnetic field is predicted to change this
subcritical transition: ridges appear supercritically via the
primary bifurcation. Their interaction with waves along the
less-favored direction gives rise to “stretched” hexagons via
a secondary bifurcation.

A first observation of liquid ridges was reported in Ref.
f5g. In this paper we present a quantitative characterization of
the primary bifurcation to liquid ridges and a secondary bi-
furcation to a pattern of stretched hexagons, as shown in Fig.
1, via use of a magnetic measurement technique. Specifi-
cally, we measure the threshold inductionBp andBs for the

primary and secondary instability for various angles of tiltw.
The measurements ofBpswd agree with the theoretical pre-
diction if the nonlinear magnetization curve of the magnetic
fluid used in the experiment is taken into account.

Our experimental setup is shown in Fig. 2. A cylindrical
vessel with an edge machined from Teflon® with a diameter
of 12 cm and a depth of 2 mm is brimful filled with fluid and
is situated in the center of a pair of Helmholtz coilssfor
details see Ref.f6gd. The axis of the coils can be tilted
against the vertical by an anglew=f0° ,90°g. The experi-
ments are performed with the magnetic fluid EMG 909 Lot
F061998BsFerrotec Corp.d, with mr =2.11. A charge-coupled
devicesCCDd camera is recording the patterns from above.
In order to measure theamplitudeof the steep crests, a linear
array of 32 Hall sensors was mounted 1.78±0.1 mm below
the bottom of the dish. By this technique the local increase of
the magnetic induction below a liquid crest is utilized to
measure its amplitude. The sensors communicate via 32 am-
plifiers and a bus with the personal computersPCd. Details of
this method are presented elseweref7g. For calibration pur-
pose a commercial Hall probesGroup3-LPT-231d in combi-
nation with the digital teslametersDTM 141d was used.

The magnetic field is tilted towards thex axis. Increasing
the magnetic induction, we observe a transition from the flat
layer of magnetic fluid to the pattern of liquid ridges, dis-
played in Figs. 1sad and 1scd. The wave vector of the pattern
is oriented along they axis and thus perpendicular to the
horizontal field component. The vertical component of the
local magnetic induction was measured by means of the sen-
sor array oriented parallel to the wave vector. In order to

FIG. 1. Surface patterns of magnetic fluid in a magnetic field
tilted by the anglew=23° to the vertical. Surface reflections of the

liquid ridges forsad the vertical inductionB̄=20 mT andsbd of the

tilted crests forB̄=32 mT. The side view of the patterns is pre-
sented inscd and sdd, respectively. FIG. 2. Scheme of the experimental setup.
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reduce the spatial inhomogeneities of the magnetization
caused by the finite container size, the spatial variation mea-
sured at a subcritical induction of 20.5 mT is substracted.
The ensuing local inductionBsxd is presented in Fig. 3 for
different values of the applied magnetic field, measured at
the tilt anglew=32°. The open circles mark the data, the
solid line gives the least square fit to

Bsxd = A cosskx− cd + B̄. s1d

Here A denotes the modulation amplitude,k the absolute

value of the wave vector,c the phase, andB̄ the mean value
of the induction.

The square of the modulation amplitudeA is plotted in

Fig. 4 versus the control parameterB̄. The monotonous in-
crease after a thresholdBp is characteristic for a supercritical
bifurcation. It can be described by the solution of the station-
ary amplitude equationf1g

0 = epA − gA3 + b. s2d

In accordance with the symmetry of the problemep=sB̄2

−Bp
2d /Bp

2 was selected to be the dimensionless bifurcation
parameter,g is the cubic coefficient a scaling-, andb an
imperfection parameter. The solid line in Fig. 4 gives the fit
of the experimental data by the solution of Eq.s2d. We obtain
Bp=21.17 mT,g=21.16 mT−2, and the slight imperfection

b=4.3310−5 mT. The dotted line displays the solution with-
out imperfectionsb=0 mTd.

Increasing the control parameter further initiates a sec-
ondary instability to the stretched hexagonal pattern as dis-
played in Figs. 1sbd and 1sdd. The blow-up in Fig. 1sdd indi-
cates that the crests riding on top of the ridges are
asymmetric with respect to the wave vector of the ridges.
Thus the patternsof stretched hexagonsd lacks any nontrivial
rotational symmetry.

For a quantitative analysis of the secondary instability, a
series of 400 measurements of the local inductionBsxd has
been performed forw=23°. For clarity Fig. 5sad and 5sbd is
presenting only every 20th line for a quasistatic increase

sdecreased of the control parameterB̄, respectively. In order
to detect both the ridges and the crests, the sensor line is now
oriented with an anglev=s75.8±0.05d° to they axis. In this
way it is covering 212 ridges, which can be recognized in the
lower part of the plots. ForB<22 mT the transition to the
stretched hexagons occurs.

A mathematical characterization of the stretched hexagons
can be obtained as follows: In a stretched-hexagonal pattern
the wave vectors fulfill the side condition −kW1=kW2+kW3 and

k̄= ukW2u= ukW3u. With the abbreviationsk= ukW1u, n= k̄/k, and b̃
=Î4n2−1, the wave vectors readkW1=ks0,1,0d, kW2=−sk/2d
3s−b̃,1 ,0d, and kW3=−sk/2dsb̃,1 ,0d, which coincide forn
=1 with the vectors for a regular hexagonal pattern. The
amplitude of the ridgesA0

R and of the stretched-hexagonal
patternA0

H can be combined to the amplitude of the overall
pattern

FIG. 3. Profiles ofBsxd, for different values of the applied mag-
netic field. The open circles mark the data, the solid lines the fits by
Eq. s1d.

FIG. 4. Square of the modulation amplitude of the liquid ridges

vs the mean magnetic inductionB̄ of the array detector. For details
see text.

FIG. 5. Local magnetic induction forsad increasing andsbd de-

creasing the control parameterB̄ and w=23°. The solid lines give
the fit by Eq.s8d.
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AsxWd = A0
RcoskW1xW +

A0
H

3 o
i=1

i=3

coskW ixW . s3d

A cut through this pattern is given by

xWM = xW0 + t ·eW , s4d

where t denotes the distance from the starting pointxW0
=sx0,y0,0d of the sensor line andeW =ssinv ,cosv ,0d its
unity vector of orientation. Plugging Eq.s4d in Eq. s3d yields

AsxWMd = Astd = A0
RRstd + A0

HHstd s5d

for the amplitude along the sensor line. Here

Rstd = cosfksy0 + t cosvdg s6d

gives the contribution of the ridges, and

Hstd =
1

3
hcosfksy0 + t cosvdg + cosfksF* + tC*dg

+ cosfksF + tCdgj s7d

the contribution of the hexagons. HereF= 1
2sbx0+y0d, C

= 1
2sb sinv+cosvd, F* = 1

2sbx0−y0d, and C* = 1
2sb sinv

−cosvd are abbreviations. For small amplitudes, Eq.s5d is
sufficient, but for higher amplitudes it is important to take
into account the higher harmonicskm=mk with m=1, 2, ….
The surface is then given by

Astd = o
m=1

MR

A0
RmRmstd + o

m=1

MH

A0
HmHmstd. s8d

This model is fitted to the data by four nonlinear parameters,
which are the wave numberk of the ridges, the starting point
xW0=sx0,y0d of the sensor line, and the stretching factorn of
the hexagonal pattern. The amplitudesA0

R andA0
H are linear

parameters of the basic functionsRstd and Hstd. The solid
lines in Fig. 5 give the best fit by Eq.s8d taking into account
the basic mode of the ridgessMR=1d and the first two of the
hexagonssMH=2d.

From this fit the amplitudeA0
H of the hexagons can be

extracted. It is plotted in Fig. 6 versus the control parameter

B̄. The open squaresscirclesd mark the data for an increase

sdecreased of B̄, respectively. The hysteresis is characteristic
for a subcritical bifurcation, which has been predicted for the
transition from ridges to stretched hexagonsf2g.

Next we describe the amplitudeAH=A0
H of the hexagons

after the secondary bifurcation ateS=sB̄2−BS
2d /BP

2. In the
spirit of a weakly nonlinear analysis slightly aboveeS we use
the amplitude equation

0 = eAH + g1s1 + g2eSdAH
2 − gAH

3 + bS. s9d

In this experimental paper the coefficients in Eq.s9d have
been obtained by a fit to the measurements in order to cir-
cumvent their tedious calculation from the basic equations.

To avoid the ambiguity ofAHsB̄d in the hysteretic regime,

B̄sAHd was fitted to the data according to Ref.f8g. The result
of the fit is presented in Fig. 6 by a solid line, while the

dashed line gives the solution for the same parameters, how-
ever withbS=0.

For decreasingB̄ the system follows the solid line very

well down to the saddle node. For increasingB̄ the agree-
ment is less convincing in the bistable regime. Here the im-
pact of the edgesf9g seems to penetrate the interior of the
dish much stronger. As a consequence the analysis by Eq.s9d
is not sufficient in this regimefsee also Fig. 5sadg.

Next we investigate the angular dependence of the critical
induction for the first and secondary bifurcation. In Fig. 7 the
measured data for the transition to ridges are marked by
circles, whereas the transition to stretched hexagons is de-
noted by triangles and the reverse transition to ridges by
squares.

The solid line givesBp calculated for the instability of the
flat surface. It follows from the dispersion relation of the
surface waves in they direction with v2=0 and ky=kc

=Îrg/s, using the relation between magnetic induction and
magnetization,

FIG. 6. AmplitudeA0
H of the stretched hexagonal pattern vs the

applied magnetic induction. The open squaresscirclesd denote the
measured amplitude under increasesdecreased of the induction, re-
spectively. For clarity only every 10th point is shown. The solid
sdottedd line give the fit by Eq. s9d with b=1.6310−4 mTsb
=0 mTd, respectively. For the other parameters we obtainedBs

=22.594 mT,g1=7.6 mT−1, g2=0.9 mT−1, andg=116.31 mT−2.

FIG. 7. Critical inductions vs the inclination of the magnetic
field. The data marked by open circles have been estimated by
fitting the evolution of the ridge amplitudese.g., Fig. 4d by Eq. s2d.
The other values, marked by full symbols, have been determined by
visual inspection of the liquid layer. The solid line gives the fit
obtained via Eq.s10d.
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v2skx = 0,kyd = gukyu +
s

r
ukyu3 −

m0

r
ky

2MZ
2

3

M2 − MZ
2 x̄ − x

x̄ + 1

M2 − MZ
2 x̄ − x

x̄ + 1
+

M

x̄ + 1
ÎM2 − MZ

2 x̄ − x

x̄ + 1

.

s10d

The dispersion relation Eq.s10d takes into account the non-
linearity of the magnetization curveMsHd of the fluid and
can be deduced from Eq.s36d in f10g wherebyM =MZez
+MXex denotes the magnetization of the fluid for the undis-
turbed surface. The susceptibilitiesx̄sHd=MsHd /H and
x8sHd=]MsHd /]H were determined from the experimental
magnetization curve assuming a logarithmic normal distribu-
tion for the size of the magnetic particles in the fluidf11,12g.
In contrast, in Ref.f2g a constantx has been used, which
results in aBp not depending onw.

To conclude, for the tilted field instability we have mea-
sured the forward bifurcation to liquid ridges. The angular

dependence observed in the experiment is quantitatively de-
scribed by taking into account the nonlinear magnetization.
In addition we measured the backward bifurcation to hexa-
gons, which has been predicted by an energy variational
methodf2g. A full quantitative agreement with these predic-
tions cannot be expected, because the theory is restricted to
permeabilitiesmr ,1.4, while we had to usemr =2.11 to
avoid huge fields. The essence of the experimental observa-
tion, namely, a structural change of the primary instability,
seems to be well described by this theoretical ansatz: for
broken symmetry, ridges always precede hexagons. They are
increasingly difficult to resolve, however, if the angle of tilt
diminishes. A similar scenario can be expected, e.g., for non-
Boussinesq-inclined layer convectionf13g, for magnetohy-
drodynamic as well as electroconvection in tilted magnetic
fields f14g, for lucent hexagons under influence of an asym-
metric Fourier filterf15g, and for Turing patternsf16g in
stressed gel.
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