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We investigate the growth of a pattern of liquid crests emerging in a layer of magnetic liquid when subjected
to a magnetic field oriented normally to the fluid surface. After a steplike increase of the magnetic field, the
temporal evolution of the pattern amplitude is measured by means of a Hall-sensor array. The extracted growth
rate is compared with predictions from linear stability analysis by taking into account the proper nonlinear
magnetization curve M�H�. The remaining discrepancy can be resolved by numerical calculations via the
finite-element method. By starting with a finite surface perturbation, it can reproduce the temporal evolution of
the pattern amplitude and the growth rate. The investigations are performed for two magnetic liquids, one with
low and one with high viscosity.
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I. INTRODUCTION

Plato �c. 427–347 B.C.� remarked: “You know that the
beginning is the most important part of any work, especially
in the case of a young and tender thing; for that is the time at
which the character is being framed” �1�. The same may be
true in pattern formation, which makes it most rewarding to
look at its early stage. At the beginning of an evolving pat-
tern stands an unstable mode �2�. As long as the amplitude of
the mode is small, its wave number and growth rate can be
calculated by linear stability analysis. In this way the early
stage of pattern formation has been investigated in many
different systems.

Considering interface instabilities, the Rayleigh-Taylor
configuration is the most prominent example. Here the
growth rate of the fastest-growing mode has been measured
for granular suspensions �3� and for immiscible fluids �4�. In
the latter case a monotonic, roughly linear dependence of the
growth rate as a function of the density difference was de-
rived and observed. The difficulty in setting experiments
with the Rayleigh-Taylor instability is that the driving gravi-
tational field cannot be switched on externally. This makes
the preparation of a plane layer as a starting condition cum-
bersome.

This difficulty is eluded if the interface instability is
driven by an externally applied electric or magnetic field. For
an electrohydrodynamic instability of a polymer liquid/air
interface the growth rate of the dominant mode was recently
measured to increase with the sixth power of the reduced
electrical field �5�, as predicted by linear stability analysis for
thin films. These thin films show a monotonic dispersion
relation. However, the situation is different for thick layers,
where the weight of the liquid has to be taken into account.
This results in gravitational waves, leading to a nonmono-
tonic dispersion relation �6,7�. Neither for the electrostatic
interface instability �see, e.g., 3He-4He mixtures �8�� nor for
its magnetostatic counterpart, has the growth rate of the lin-
early most unstable mode been measured hitherto. In the
following we fill this gap for the magnetostatic case.

The Rosensweig or normal field instability �7� is observed
in a layer of magnetic fluid �MF� �10�, when a critical value

Bc of the vertical magnetic induction is surpassed. Figure 1
presents a photo of the final pattern of static liquid peaks,
which emerge due to a transcritical bifurcation. This was
investigated in theory �11–13� and experiments �14–16�. For
a sudden increase of the magnetic induction B the wave num-
ber qm of the fastest-growing mode was measured in the
linear range, i.e., for small amplitudes �17–20�. In agreement
with theory, its value increases monotonically with the super-
critical magnetic induction. The growth rate of the fastest-
growing mode was recently calculated in detail �21�. Here
we present an experimental test of those predictions.

In order to measure the temporal evolution of the growing
amplitudes, we utilize a linear array of Hall sensors �22�,
which is sketched together with the experimental arrange-
ments in Sec. II. The results are compared with the outcome
of the linear stability analysis in Sec. III and with numerical
calculations in Sec. IV.

II. EXPERIMENT

Our experimental setup is shown in Fig. 2�a�. A cylindri-
cal vessel with an edge made of Teflon with a radius of 60
mm and a depth of 5 mm is filled to the brim with the MF
and situated in the center of a Helmholtz pair of coils �for
details see Ref. �19��. A camera is positioned above the ves-
sel for optical observation. For calibration purposes, a com-
mercial Hall probe �Group3-LPT-231� in combination with a

FIG. 1. �Color online� Rosensweig peaks of the magnetic fluid
type EMG 909, Ferrotec Co., at a supercritical induction B�Bc in a
vessel with diameter of 120 mm. A movie showing the formation of
Rosensweig patterns can be accessed at Ref �9�.
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digital teslameter �DTM 141� was used. For measuring the
temporal evolution of the surface amplitude we take advan-
tage of the local variation of the magnetic field, which is
increased immediately beneath a magnetic spike and reduced
beneath the interspike area. In order to measure these local
variations, a linear array of 32 Hall sensors �KSY 44, Si-
emens Co.� was mounted 1.78±0.1 mm below the bottom of
the dish, as shown in Fig. 2�b�. The sensors communicate via
32 amplifiers and a bus with the PC. Details of this method
are presented in Ref. �23�. In this way line scans with a
frequency up to 7 kHz are possible. This time resolution
makes the method suitable for measurement of the growth
rate of the pattern evolution. Although this technique is su-
perior to the radioscopic method �24� in terms of speed, and
this was our main reason for selecting it for our purposes, we
should also mention its disadvantages such as the limited
vertical �1 �T� and lateral �3.2 mm� resolution.

The experiments are performed with the magnetic fluids
EMG 909 �Lot No. F050903B� and APG J12 �Lot No.
F112795C� from Ferrotec Co. Their material parameters
were measured and are as follows: a density of �
=1005 �1097� kg m−3, a surface tension of �=2.4
�10−2 �2.89�10−2� N m−1, and a dynamic viscosity of �
=4.2�10−3 �51.9�10−3� Pa s. The parameters of EMG
909 differ slightly from those in Ref. �19� because of a new
method of fabrication of that fluid.

These two test fluids were chosen because their material
parameters are rather similar, with one exception: the dy-
namic viscosity differs by nearly an order of magnitude. By
carrying out the measurements for both fluids one can judge
whether the viscosity influences the degree of agreement in a

comparison between theory, numerics, and experiment with
respect to the growth rate.

Furthermore, the magnetization curve M =M�H� was
measured �see symbols in Fig. 3�. To exploit the experimen-
tal data for the theoretical calculations, the points can be
fitted in the investigated range �25� with a simple Langevin
function,

L��� = Ms
��coth��� −

1

�
� with � =

3	0

Ms
� H . �2.1�

The best fit for EMG 909 �APG J12� yields a saturation
magnetization of Ms

�=10.92 �12.12� kA m−1 and an initial
susceptibility of 	0=0.65 �0.91� �see the solid lines in Fig.
3�. Here Ms

� denotes a value that serves for a convenient
description of the magnetization in the low-field regime. Ms

�

differs from the true saturation magnetization Ms obtained
from the entire range of magnetic fields. That range should
be fitted with a more advanced function, which takes into
account also the polydisperse nature of the MF �see Ref.
�26�, Chap. 3.8�.

The data above lead to theoretical values for the critical
induction �10� of Bc,theor=24.9 mT for EMG 909 and
Bc,theor=20.3 mT for APG J12. The experimental values
were measured as Bc,expt=25.7 �21.7� mT for EMG 909
�APG J12�, which is a quite good agreement with a differ-
ence of only about 3% �6%�.

CCD camera

Magnetic
fluid

Helmholtz coil

from mag.
array sensor

Converter
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(a)

(b)

FIG. 2. Magnetic measuring principle: �a� Sketch of the experi-
mental setup; �b� photograph of the linear array of 32 Hall sensors
mounted 1.78 mm under the bottom of a transparent vessel.

(a)

(b)

FIG. 3. Magnetization M versus the magnetic field H for the
magnetic fluids EMG 909 �a� and APG J12 �b�. The triangles indi-
cate M for an increasing field, and the open circles for a decreasing
field. The solid line gives the fit with the simple Langevin function
�see text�.
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On switching on the Helmholtz coils in a jumplike man-
ner, the magnet will need a finite response time 
B. This time
depends on the size of the jump �B and has a maximum of

B=30 ms for a maximal jump of �B=35 mT. To reduce
this time, we start all measurements from a subcritical induc-
tion of Bsub=0.84Bc, which leads to 
B�10 ms. The other
characteristic times are the capillary time tc=�1/4 / �g0

3/4�1/4�
�12.6 �12.9� ms and the viscous time t�=� / ��g0��
�583 �57� ms, with the fluid parameters as listed above for
EMG 909 �APG J12�. The kinematic viscosity � is given by
� /�.

Figure 4 demonstrates the utilized magnetic pulse se-
quence �Fig. 4�a�� and the evolution of the surface structure
�Figs. 4�b�–4�g��. As shown in Fig. 4�a�, the magnetic induc-
tion is jumplike increased from a sub- to a supercritical value
at time t=0 ms. From Fig. 4�b� we deduce that the surface
deformations first emerge at the edge of the vessel. This is

due to the discontinuity of the magnetic induction at this
place. Because of this inhomogeneous growth of the ampli-
tude across the vessel, the amplitude is measured only in a
small region of about 35 mm between the edge and the cen-
ter of the container, as marked by white horizontal lines in
Figs. 4�b�–4�e�. Figure 4�f� displays the evolution of the pat-
tern from a stripelike to a hexagonal arrangement in the area
of measurement. Whereas Figs. 4�b�–4�f� were recorded for
the fluid EMG 909, we display in Fig. 4�g� the pattern evo-
lution for APG J12. Its surface undergoes similar stages; only
the time of appearance of those structures is different.

On the basis of the time-resolved measured data points of
the sensor array, we determine the amplitude from the root-
mean-square value �rms� of that data. We display the result
for EMG 909 in Fig. 5�a� and for APG J12 in Fig. 6�a�. For
these measurements the induction was increased from the

subcritical value B̂= �B−Bc� /Bc=−0.16 to supercritical val-

ues in the interval from B̂=0.0 to 0.3. The offset of the am-
plitude results from the noise of the Hall sensors. The first
phase of growth shows a dramatic increase, which is fol-
lowed by an oscillatory relaxation toward the final stage in
the pattern-forming process. That relaxation process differs
from a purely damped sinusoidal one due to the reorganiza-
tion of the peaks into a hexagonal pattern.

FIG. 4. Measuring the growth rate of the normal field instability.
�a� Pulse sequence. The full lines display the jump from a sub- to a
supercritical magnetic induction. The small letters b, c, d, and e
mark the times when the pictures �b�–�e� were captured. These
snapshots show the pattern at times of 40 �b�, 250 �c�, 450 �d�, and
700 ms �e� for EMG 909. The white horizontal lines in the pictures
indicate the area of measurement. �f�,�g� display the pattern evolu-
tion within a small area �8.2�32.7 mm2� around this location. �f�
Presents a sequence of images for the MF mark EMG 909, and �g�
the corresponding sequence for the MF mark APG J12.

(a)

(b)

FIG. 5. Time-resolved amplitudes for the fluid EMG 909. �a�
Measurements for increasing supercritical inductions B̂=0.028 �full
line�, 0.057 �dashed line�, 0.100 �dotted line�, 0.157 �dash-dotted
line�, and 0.200 �short-dashed line�. For clearer appearance, the
plotted lines are smoothed by averaging ten neighboring points of

the original data set. �b� Numerical results for B̂=0.028 �full line�,
0.058 �dashed line�, 0.103 �dotted line�, 0.153 �dashed-dotted line�,
and 0.203 �short-dashed line�.
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The corresponding outcome of the numerical simulations
�see Sec. IV� is presented in Fig. 5�b� for EMG 909 and Fig.
6�b� for APG J12. These plots show the height of the ampli-
tude with time, as calculated before �27�, but for the param-
eters of the investigated MF. A drastic increase of the surface
height is followed by an oscillatory relaxation, in remarkable
agreement with the measurements. The less viscous fluid
EMG 909 goes through several oscillations after a steep in-
crease, whereas the more viscous fluid APG J12 goes
through very few oscillations.

Next we describe the extraction of the growth rate from
the amplitude curves in Figs. 5�a� and 6�a�. The first phase of
growth in the amplitude is fitted with y�t�=y0+A exp�2t�,
where y0 denotes an offset and A the amplitude of the expo-
nential growth.

Due to the noisy experimental data it is difficult to deter-
mine the area of validity for the exponential growth. There-
fore we adopt the following procedure. First we fit the offset
y0 of the amplitude in the range t= �0,20� ms for EMG 909
�t= �0,50� ms for APG J12� with a straight line without
slope and hold this value constant in the following fits. Next,
a series of fits of the amplitude curve with an exponential
function is performed, where the end point of the fitting
range is varied in the interval from t=20 ms to the time
when the amplitude reaches its maximum. We estimate the
end of the exponential range from the evolution of the fitting

error 	2 according to Fig. 7. This value increases linearly as
more data points are considered as long as the fitted curve is
well described by an exponential function. The maximal fit-
ting range is reached when 	2 deviates from the linear in-
crease and grows with a much higher rate than before. The
beginning of this deviation indicates the proper fitting range
for the maximal growth rate, as marked in Fig. 7 by open

circles for three curves at magnetic inductions of B̂=0.05,
0.1, and 0.2. With increasing induction the deviation from
the linear growth of 	2 becomes more prominent. The end of
the fitting range estimated in this way is in accordance with
the inflection point determined by visual inspection from the
temporal evolution of the amplitude. The error in the growth
rate resulting from the uncertainty of the fitting range was
tested to be about 10% of the value of the growth rate for all
applied inductions.

The measured growth rate is multiplied by the capillary
time tc yielding the dimensionless variable ̂2. The experi-
mental values for EMG 909 �APG J12� are plotted as open
squares in Fig. 8 �Fig. 9�. The size of the error bars is mainly
based on the uncertainty of the proper fitting range. The four
lines are results of theoretical considerations which will be
described in detail in the following sections.

III. COMPARISON WITH LINEAR THEORY

A. System and basic equations

A horizontally unbounded layer of an incompressible,
nonconducting, and viscous magnetic fluid of thickness h
and constant density � is considered. The fluid is bounded
from below by the bottom of a container made of a magneti-
cally impermeable material and has a free surface with air
above.

In a linear stability analysis, all small disturbances from
the basic state are decomposed into normal modes, i.e., into
components of the form exp�−i�t−q� ·r���, where r�= �x ,y�
and the wave number is the absolute value of the wave vec-
tor, q= 	q� 	. With =1+ i2, the real part of −i, 2, is
called the growth rate and defines whether the disturbances
will grow �2�0� or decay �2�0�. The absolute value of
the imaginary part of −i, 	1	, gives the angular frequency

(b)

(a)

FIG. 6. Time-resolved amplitudes for the fluid APG J12. �a�
Measurements for increasing supercritical inductions B̂=0.025 �full
line�, 0.082 �dashed line�, 0.152 �dotted line�, 0.236 �dashed-dotted
line�, and 0.300 �short-dashed line�. For clearer appearance, the
plotted lines are smoothed by averaging five neighboring points of

the original data set. �b� Numerical results for B̂=0.024 �full line�,
0.082 �dashed line�, 0.151 �dotted line�, 0.237 �dashed-dotted line�,
and 0.305 �short-dashed line�.

FIG. 7. Errors for fits of three amplitude curves with magnetic

inductions of B̂=0.05 �full line�, 0.1 �dashed line�, and 0.2 �dotted
line� in dependence on the end point of the fitting range. The open
circles mark the end of the fitting range.
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of the oscillations if it is different from zero. With the as-

sumption that the magnetization M� of the magnetic fluid de-

pends linearly on the applied magnetic field H� , M� = ��r

−1�H� =	H� , the linear stability analysis leads to the disper-
sion relation �28–30�

0 =
�2

q̃ coth�q̃h� − q coth�qh�
�q̃�4q4 + �q2 + q̃2�2�coth�q̃h�

− q�4q2q̃2 + �q2 + q̃2�2�tanh�qh� −
4q2q̃�q2 + q̃2�

cosh�qh�sinh�q̃h�
�

+ tanh�qh��g0q +
�

�
q3 −

�0�rM
2

�
��qh�q2� , �3.1�

where �r is the relative permeability of the MF, M the abso-
lute value of the magnetization, g�0= �0,0 ,−g0� the accelera-
tion due to gravity, �0 the permeability of free space, q̃
=
q2− i /�, and

��qh� =
eqh�1 + �r� + e−qh�1 − �r�

eqh�1 + �r�2 − e−qh�1 − �r�2 . �3.2�

A nonlinear law of magnetization for a more realistic com-
parison with the experiment is examined, too. The magnetic
part of the dispersion relation �3.1� changes to

�1 + 	�M2��qh� → �1 + 	̄�M2

�� eqh�1+	̄�/�1+	��2 + 	̄� − 	̄e−qh�1+	̄�/�1+	�

eqh�1+	̄�/�1+	��2 + 	̄�2 − 	̄2e−qh�1+	̄�/�1+	�� �3.3�

with the differential susceptibility 	d= ��M /�H�Hg
, the chord

susceptibility 	c= �M /H�Hg
, and 1+ 	̄=
�1+	d��1+	c� at a

given strength of the magnetic field Hg. With the help of the
magnetization curve �see Fig. 3� one can determine 	d, 	c,
and 	̄ for every supercritical induction.
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FIG. 10. Scaled maximal growth rate ̂2,m versus the scaled

induction B̂ for the magnetic fluids EMG 909 �a� and APG J12 �b�.
Using an infinite thickness of the layer, the solid lines shows the
theoretical result for EMG 909 �APG J12�. The results for a finite
thickness of h=5 �2.5� mm are indicated by filled triangles �open
circles�, respectively. A calculation with h=5 mm and a dynamical
viscosity reduced by 50% gives the dashed lines.
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FIG. 8. Scaled growth rate ̂2 versus the scaled induction B̂ for
the magnetic fluid EMG 909. The open squares give the experimen-
tal values with the corresponding errors. A fit for those data using
the approximation Eq. �3.9b� yields the thick solid line. Using a
linear law of magnetization and an infinite thickness of the layer,
the dashed line shows the theoretical result. The results with a non-
linear law of magnetization and a finite thickness of h=5 mm are
indicated by the long-dashed line. From the numerical simulations
the resulting growth rate is given by the filled triangles. A fit to
these results with Eq. �3.9b� gives the thin solid line.
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FIG. 9. Scaled growth rate ̂2 versus the scaled induction B̂ for
the magnetic fluid APG J12. The symbols and types of lines are as
in Fig. 8.
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The condition of marginal stability, =0, defines the criti-
cal quantities at which the Rosensweig instability occurs. In
the limit of an infinitely thick �h→�� layer, the critical in-
duction and the wave number, respectively, are

Bc,�
2 =

2�0�r��r + 1�
��g

��r − 1�2 , qc =
�g

�
. �3.4�

These critical values for the onset of the instability apply for
viscous as well as for inviscid magnetic fluids.

B. Growth rate of the most unstable linear pattern for a
linear law of magnetization

Within the band of unstable wave numbers, the mode with
the largest growth rate is of primary importance. For its es-
timation it is advantageous to consider the dimensionless
form �indicated by the bar� of the dispersion relation �3.1� in
the limit h→� for growing disturbances, i.e., = i2 with
2�0,

��̄ +
̄2

2q̄2�2

+
q̄ + q̄3 − 2B̄2q̄2

4q̄4 − �̄2
1 +
̄2

�̄q̄2 = 0. �3.5�

All lengths were scaled with �� / ��g0��1/2, the time with
�1/4 / �g0

3/4�1/4�, the viscosity with �3/4 / �g0
1/4�3/4�, and the in-

duction with Bc,�. The maximal growth rate is determined by
�̄2 /�q̄=0.

An expansion of B̄, q̄, and ̄2 in the form

B̄ = 1 + B̂, q̄ = 1 + q̂m, ̄2 = 0 + ̂2,m �3.6�

leads to an analytical expression of the dependence of ̂2,m
on the induction and the viscosity. All careted quantities in

�3.6� are small �B̂ , q̂m , ̂2,m�1�, and denote the scaled dis-
tances from the critical values at the onset of the instability.
If �̄�̂2,m, Eq. �3.5� and its derivative are expanded by
means of higher-order terms of the applied induction in the
ansatz

̂2,m = �B̂ + �B̂2 + �B̂3 + O�B̂4� , �3.7�

q̂m = �B̂2 + �B̂3 + O�B̂4� . �3.8�

The dependence of the maximal growth rate on the pa-
rameters viscosity and induction is then given by �21�

̂2,m = �2

�̄
B̂ + �1

�̄
−

3

�̄3�B̂2 + �10

�̄5 −
3

�̄3�B̂3
for 0 � B̂ � �̄2/6, �3.9a�

c1

B̂ + c2B̂ for �̄2/6 � B̂ � 0.4. �3.9b� �

For scaled inductions larger than �̄2 /6, one has to solve the
full implicit dispersion relation �3.1� and its derivative with
respect to q numerically. The fit for an excellent agreement
with these numerical data includes a linear term and a
square-root term with respect to B̂, where the coefficients
depend on the magnetic fluid.

The calculation of the scaled induction, which separates
the two scaling regimes in Eq. 3.9, gives �̄2 /6�8�10−5 �
�9�10−3� for the fluid EMG 909 �APG J12�. Therefore Eq.
�3.9b� has to be used for most practical experiments because
such supercritical inductions above Bc can hardly be accom-
plished in an experiment. Using the test fluids EMG 909 and
APG J12, respectively, the fit of the maximal growth rate
results in the coefficients c1�1.39 and c2�2.77 for EMG
909 �31� and c1�0.45 and c2�2.97 for APG J12. The cor-
responding curves are plotted as solid lines in Figs. 10�a� and
10�b�, respectively.

Next we test the robustness of the theoretical curve
against variations of the experimental parameters. Taking
into account the finite thickness of the layer does not create
much difference if the test fluid is EMG 909: neither a thick-
ness of h=5 mm �filled triangles� nor of h=2.5 mm �open
circles� causes much change, as shown in Fig. 10�a�. Figure
10�b� displays that for the fluid APG J12 only the smallest

tested thickness of 2.5 mm results in an apparent difference
in comparison to the case of an infinite thickness. Addition-
ally to the experimental filling level of 5 mm, the height of
2.5 mm had been chosen because the inevitable field gradient
at the edge of the vessel can diminish the fluid level in the
central part by up to a factor of 0.6 �19�.

During the course of the experiment an increase of the
temperature of the MF may occur. Therefore a hypothetical
reduction of the dynamic viscosity � by 50% at a filling level
of h=5 mm is considered in order to test its influence. The
results are indicated by the dashed lines in Fig. 10 and show
a noticeable influence on the maximal growth rate only in the
case of the fluid APG J12. All in all, the theoretical behavior
seems to be rather robust to variations of the experimental
parameters.

IV. COMPARISON OF THEORETICAL
AND EXPERIMENTAL RESULTS

The comparison starts with the values for EMG 909. The
measured growth rates �see Fig. 8, open squares� can be fit-
ted using the approximation �3.9b� which is marked by the
thick solid line in Fig. 8. It results in the coefficients c1,expt
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�1.44 and c2,expt�−0.87. The dashed line shows the result
for a linear law of magnetization, i.e., the numerical solution
of the dispersion relation �3.1� and its derivative with respect
to q, and an infinite thickness of the layer. Applying again a
fit according to Eq. �3.9b� yields c1,theor,lin�1.39 and
c2,theor,lin�2.77. Comparing these two curves and the corre-
sponding fit coefficients �see also Table I�, it becomes clear
that these theoretical values differ grossly from the measured
ones.

In Sec. III B we saw that taking into account a finite layer
thickness or a variation of the viscosity of the MF has only a
diminutive influence, and therefore cannot much reduce the
difference with the experimental data. Thus a nonlinear law
of magnetization is examined for a more appropriate com-
parison. Using the actually measured material data, a finite
layer thickness of h=5 mm, and the magnetization curve of
Fig. 3�a� results in the data plotted by the long-dashed line.
The latter, which can be fitted by Eq. �3.9b� using
c1,theor,nlin�1.24 and c2,theor,nlin�0.94, lies appreciably closer
to the experimental data.

Figure 9 shows the experimental �open squares� and the
theoretical results for the second tested magnetic fluid, APG
J12. A fit of the experimental data by means of Eq. �3.9b�
gives the thick solid line, where the fit coefficients are given
in Table I. The theoretically determined growth rates are
based on either a linear law for the magnetization �dashed
line� or a nonlinear one �long-dashed line�.

In contrast to previous studies �18,19�, a nonlinear law of
magnetization is necessary in order to reduce the gap be-
tween the theoretical data for the maximal growth rate and

the experimental results. Despite that, for B̂=0.25 the theo-
retical value thus estimated is about 70% �EMG 909� and
35% �APG J12�, respectively, above the measured one.

One may discuss several reasons for the considerable dis-
agreement between theory and experiment, such as errors in
the material parameters or a limited resolution of the sensor

array. However, most importantly a systematic deviation may
have its origin in the finite size of the container: because of
that, experiment and theory may have different starting con-
ditions. Figure 11 displays a radioscopic surface profile re-

corded for B̂=−0.1, i.e., in a subcritical region of the insta-
bility. One clearly sees surface undulations well before the
critical induction. They are most prominent next to the edge
of the vessel and have their origin in the discontinuity of the
magnetization at this place. Thus, the experiment will start
with a finite disturbance whereas the theory is estimated for a
infinitesimal perturbation.

In the following we perform numerical calculations start-
ing with a finite perturbation, in order to test whether this can
better describe the experimental data.

V. NUMERICAL SIMULATIONS

Our numerical simulations are based on a coupled system
of nonlinear governing equations: the Maxwell equations in
the magnetic liquid and its surroundings, the Navier-Stokes
equations in the magnetic liquid, and the Young-Laplace
equation on the free surface.

Because magnetic fluids can be regarded as insulators, the
Maxwell equations in the entire space are given by

curl H� = 0� , div B� = 0, �4.1�

with the constitutive relation

B� =�0�M� + H� � in �F�t� ,

�0H� outside �F�t� ,
�

where �F�t� denotes the domain that is occupied by the mag-

netic liquid at time t. The magnetization M� is assumed to
follow a Langevin law �see Eq. �2.1��. Such a nonlinear law
results in a better approximation of the measured magnetiza-

tion than a linear dependence of M� on H� as used in Sec. III.
The hydrodynamic behavior of the magnetic liquid is de-

scribed by the nonstationary, incompressible Navier-Stokes

TABLE I. List of critical inductions Bc and fit coefficients c1

and c2 for EMG 909 and APG J12. The theoretical, numerical, and
experimental data were fitted according to Eq. �3.9b�, where c1

scales the square-root term and c2 the linear term.

Bc �mT� c1 c2

EMG 909

Experiment 25.7 1.44 −0.87

Theory, M�H� lineara 20.1 1.39 2.77

Theory, M�H� nonlinearb 24.9 1.24 0.94

Numerics 25.0 1.23 −0.10

APG J12

Experiment 21.7 0.69 0.32

Theory, M�H� lineara 17.3 0.45 2.97

Theory, M�H� nonlinearb 20.4 0.47 1.45

Numerics 21.9

aThe linear stability theory uses a linear function to fit the magne-
tization.
bThe linear stability theory uses the Langevin function to fit the
magnetization.

radial distance (mm)

h
ei

g
h
t
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FIG. 11. Radioscopic measured surface profile �circles� of the

fluid EMG 909 recorded for B̂=−0.1 for a fluid height of 3 mm. At
the position of 0 mm is the center, at 60 mm the inner edge of the
Teflon vessel. The y axis denotes the height of the fluid with respect
to its level without a magnetic field.
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equations in the time-dependent fluid domain �F�t�. These
equations read as follows:

�� �u�

�t
+ �u� · �� �u�� = div T�u� ,p,H� � − �g�0z , �4.2a�

div u� = 0. �4.2b�

Here, u� denotes the fluid velocity, p the sum of the hydrody-
namic pressure and the fluid-magnetic pressure, and T the
magnetically augmented stress tensor with

Tij�u� ,p,H� � = �� �ui

�xj
+

�uj

�xi
� − �p +

�0

2
H2��ij + BiHj .

The system of equations is completed by the force balance at
the free surface, which is given by the Young-Laplace equa-
tion in the following form:

�T�u� ,p,H� �n�� = �Kn� , �4.3�

where � is the surface tension, n� the outer unit normal on
��F�t�, and K the sum of the principal curvatures. Here, ���
denotes the jump of the quantity � across the interface. Fur-
thermore, the kinematic condition

u� · n� = v� �4.4�

with the normal velocity v� of the free surface �F is used.
Finally, the system is closed with initial and boundary con-
ditions.

In order to solve the coupled system of nonlinear partial
differential equations numerically, it is split into two sub-
problems: a magnetostatic problem for the magnetic field
and a flow problem which also involves the Young-Laplace
equation.

We consider for our numerical simulations a bounded

three-dimensional domain �̃= G̃� �z̃b , z̃t� with a two-

dimensional hexagonal base G̃ which contains exactly one
peak. Furthermore, the interval �z̃b , z̃t� in the z̃ direction is
chosen such that its end points are far below and above the
free surface, respectively. This ensures that the position of
the free surface does not affect the magnetic field on the
upper and lower boundaries.

The Maxwell equations are transformed into their dimen-
sionless form by using the strength of the applied magnetic
field and a characteristic length scale l, which is a fixed mul-
tiple of the wavelength of the pattern. In this way, the do-
main �=G� �zb ,zt� is obtained. The Maxwell equations in
dimensionless form read

curl H� = 0� , div B� = 0 in � . �4.5�

The first differential equation in �4.5� ensures the existence

of a scalar magnetostatic potential � such that H� =−�� �.
Hence, by using the second differential equation of �4.5�, we
get

− div���x�, 	�� �	��� �� = 0 in � . �4.6�

The coefficient function ��x� ,H� is given by

��x�,H� = �1 x� � �A�t� ,

1 +
M�H�

H
x� � �F�t� , �

where �F�t� and �A�t� are the three-dimensional subdomains
of � that correspond to the areas inside and outside the mag-
netic liquid at time t, respectively. Equation �4.6� is equipped
with boundary conditions which correspond to the case of a
flat surface. We refer to �16� for details.

The solution of the magnetostatic problem �4.6� is ap-
proximated by a finite-element method with continuous,
piecewise triquadratic functions. The nonlinearity in �4.6�
due to the nonlinear magnetization law is overcome by a
fixed-point iteration. In each iteration step, the large system
of linear equations arising is solved by a geometric multigrid
method.

For solving the time-dependent Navier-Stokes equations,
we start with a semidiscretization in time by applying the
fractional-step �-scheme �32,33�, which is of second order
and strongly A-stable �34,35�. The resulting equations in
each time step are solved by a finite-element method which
incorporates the Young-Laplace equation �4.3�. Furthermore,
the arbitrary Lagrangian Eulerian �ALE� approach is applied
to handle the time-dependent fluid domains.

It is well known that the finite-element spaces which are
used to approximate velocity and pressure in the discretized
Navier-Stokes equations cannot be chosen independently but
have to satisfy a constraint that is given by the inf-sup �or
Babuška-Brezzi� condition. We used in our calculations con-
tinuous, piecewise, triquadratic functions for the velocity and
discontinuous, piecewise, linear functions of the pressure.
This pair of spaces satisfies the inf-sup condition �36,37�.

After discretizing the Navier-Stokes equations in time and
space, one has to solve in each time step a nonlinear saddle-
point problem. The nonlinearity is resolved by a fixed-point
iteration. The resulting system of linear equations is again
solved by a geometric multigrid method. We refer to Refs.
�38–40� for details.

The position of the free surface is updated after each time
step by using the kinematic condition �4.4�. Since the domain
that is occupied by the magnetic liquid changes in time, the
meshes used by both finite-element methods have also to
change in time in order to guarantee that the free surface is
approximated by faces of three-dimensional mesh cells. We
have used a simple algebraic mesh update which arranges the
mesh points according to the height of the free surface posi-
tion.

All numerical results were obtained by using the software
package MooNMD �41�.

In order to get the developed surface profile, one has to
choose a proper initial surface perturbation. Starting with a
completely flat surface �z�0�, the calculations will result in
the same flat surface for all times, independent of the
strength of the applied magnetic field. We used a rotationally
symmetric cosinelike profile as initial perturbation. Its am-
plitude was selected as 0.007 mm �0.034 mm� for the fluid
EMG 909 �APG J12�, respectively. Figure 12 demonstrates
for the fluid EMG 909 that higher �lower� starting values
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result in an earlier �later� growth of the perturbation in com-
parison with the experimental curve. The selected perturba-
tion gives the expected dynamic growth of the perturbation
into the oscillatory relaxation process, provided the strength
of the applied field is large enough. Note that the obtained
dynamic growth rate is independent of the initial perturba-
tion height.

It has been shown in theory and experiment that the wave
number of maximal growth depends linearly on the scaled

magnetic induction B̂ �18�. For a first attempt to unravel the
mismatch between theory and experiment, we performed all
numerical calculations with the critical wavelength qc.

From these numerical simulations, we obtain a critical
value for the onset of the Rosensweig instability by taking
the smallest value that results in a growth of the perturbation.
If the strength of the applied field is smaller than this ob-
tained threshold, then the initial surface perturbation declines
toward a flat surface. The sets of critical inductions for the
two fluids are collected in the second row of Table I.

Also, from numerical simulations it is possible to deter-
mine the growth rate. Due to the lack of noise, the fitting
range for the exponential growth of the amplitude can be
easily determined via the maximum of the numerical differ-
entiated amplitude curve. The resulting values of the growth
rate at different supercritical inductions are indicated by
filled triangles in Figs. 8 and 9. Fitting these numerical re-
sults for the fluid EMG 909 with Eq. �3.9b� results in the
coefficients c1,num�1.23 and c2,num�−0.1 �see the thin solid
line�. Due to the structure of the numerical results for the
fluid APG J12, we refrained from a single fit over the entire

range of B̂. Therefore no fit coefficients c1,num and c2,num for
APG J12 are given in the corresponding list �Table I�.

VI. DISCUSSION AND CONCLUSIONS

We performed measurements of the growth of surface un-
dulations at the Rosensweig instability for different super-
critical inductions, applied to two magnetic fluids of different

viscosity. Comparing the values of the growth rates for both
tested magnetic fluids �cf. Table I�, one notes that the less
viscous one �EMG 909� has larger growth rates than the
more viscous one �APG J12�. At B̂=0.25 the experimental
value of ̂2,m for EMG 909 is about 18% larger than the
corresponding value for APG J12. That the less viscous fluid
grows faster is intuitively clear since less viscosity goes
along with less friction inside the fluid. Therefore more en-
ergy is transformed into the movement of the fluid, which
appears in our case as the growth of the peaks.

A comparison of experimental and theoretical values �cf.
Figs. 8 and 9� shows that the theoretical values, obtained
from calculations with a linear magnetization curve, overes-
timate the experimental ones considerably. This mismatch
could be reduced by taking into account the proper nonlinear
magnetization curve in the linear theory. Even so, the esti-
mated growth rates remained 70% �35%� above the experi-
mental values for the less �more� viscous fluid, respectively.
There are several reasons for this discrepancy.

First we do not measure the growth of only the fastest-
growing mode, but an averaged growth of several modes, by
using the rms value of the measured amplitude from the
Hall-sensor array. In contrast to the case of the static, tilted
field instability �22�, we could not fit the spatial modulation
of the signal of the sensor array with periodic functions. This
difficulty might stem from the higher complexity of the
evolving pattern which cannot fully be captured by a one-
dimensional array, and the limited spatial resolution of the
array. As an outcome we are not able to estimate a dispersion
relation 2�q�, as in Refs. �3,42�. Therefore the growth rate
extracted from the rms values of the magnetic amplitude data
can only be considered a rough estimate for a maximal
growth rate determined from the dispersion relation.

Second, the vessel in the experiment has a finite size,
which causes an inhomogeneous growth of the surface am-
plitude starting with a finite amplitude from the edge of the
vessel. In contrast, the theory is for a laterally infinite layer
of fluid and infinitesimal surface perturbations. We could
corroborate this thesis with radioscopic measurements of the
static surface profile, unveiling a finite surface elevation for
subcritical inductions.

Here the numerical simulation via the finite-amplitude
method comes to the rescue, because it can take a starting
condition with finite amplitude into account. The calculated
temporal evolution of the surface undulations agrees well
with the measurement, including the oscillations, which were
observed for two different viscosities. This feature is beyond
the framework of a linear stability analysis and can be cal-
culated only with the help of numerical methods �27�. More
importantly, the numerically estimated growth rates match

the measured ones well. For supercritical inductions of B̂
�0.1, the agreement between experimental and numerical
values is clearly better for the less viscous fluid EMG 909.
The two data sets can hardly be distinguished. For supercriti-

cal inductions of B̂�0.1, the agreement between experimen-
tal, numerical, and theoretical values is clearly better for the
more viscous fluid APG J12. The numerical results fall prac-
tically onto the fit of the experimental ones �compare filled
triangles and thick solid line in Fig. 9�.

FIG. 12. Temporal evolution of the measured peak amplitude for

B̂=0.25 for the MF EMG 909 �dots� and the corresponding evolu-
tion of the calculated peak amplitude for different initial perturba-
tion heights of 0.791 �dashed line�, 0.313 �dotted line�, 0.007 �full
line�, and 0.001 mm �dashed-dotted line�. The scaled rms amplitude
is the measured rms amplitude minus its offset at 0 ms.
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Remaining discrepancies between experiment and numer-
ics may stem from the following. Due to computational
costs, so far the numerical simulations were performed for a
pattern with fixed, critical wavelength qc for all values of the
magnetic induction. In future, more refined calculations will
take into account the linear dependence 2�q� for the wave
number of maximal growth. Furthermore, in the experiment
first circular ridges appear, which then arrange in a hexago-
nal pattern during their growth. This might change the
growth rate, in contrast to the numerical evolution, which
starts already with a hexagonal pattern. This latter point is
difficult to solve numerically.

For future experiments the finite amplitude at the begin-
ning of the experiment should be reduced, e.g., by introduc-
ing a ramp as in Ref. �16�. More importantly it will be nec-
essary to reduce, to the highest possible extent, the effect of
the lateral boundaries on the growth of the unstable mode by
choosing improved experimental and computational condi-
tions �e.g., size of the container�. Moreover, we expect an
improvement of the accuracy by a radioscopic measurement
of the growth rate with a two-dimensional x-ray detector
�24�, so that it becomes feasible for slow evolution of highly
viscous magnetic fluids. A Fourier analysis of these spa-

tiotemporally resolved surface profiles will allow an estima-
tion of the growth rate of the fastest-growing mode.

To conclude, we have experimentally, theoretically, and
numerically investigated the growth rate during the first
stage of pattern formation in the Rosensweig instability. De-
spite the use of a nonlinear law of magnetization, there re-
mains a discrepancy between the predictions of linear stabil-
ity analysis and experimental data. In contrast, the
experimental data are confirmed by numerical simulations
using a nonlinear magnetization curve together with a finite
initial surface undulation. The growth behavior of the related
electrostatic instability should be similar, but remains to be
investigated.
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