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Abriss (deutsch)

In effizienten Märkten können Händler zukünftige Entwicklungen nicht so prognostizie-
ren, dass sie einen überdurchschnittlichen Gewinn erwarten können. Ob diese Hypothese
gilt oder nicht, wird in der volkswirtschaftlichen Literatur stark diskutiert. Die vorlie-
gende Arbeit untersucht eine eng damit verwandte Fragestellung, nämlich ob es möglich
ist, durch Regelungstechniken Portfolios so zu kontrollieren, dass überhöhte Gewinne er-
wartet werden können, ohne dass dazu in die Zukunft geblickt werden muss.

In dieser Arbeit wird die Literatur der effizienten Märkte diskutiert, eine Einführung in
die stochastische Analysis – wie sie für das Verständnis der modernen Finanzmathematik
nötig ist – gegeben, die Literatur der sogenannten regelungsbasierten Handelsstrategien
vorgestellt und Beispiele dazu gezeigt. Da es für die Analyse regelungsbasierter Han-
delsstrategien notwendig ist, wird im Laufe der Arbeit ein neues stochastisches Fubini-
Theorem bewiesen, das es erlaubt, unter gewissen Voraussetzungen (z. B. in Erwartung
linearer Integrator) Erwartungswert und Itō-Integral (für Semimartingale) zu vertau-
schen. Im Hauptteil der Arbeit werden bekannte Eigenschaften einer speziellen Strategie,
der sogenannten SLS-Strategie, bei der gleichzeitig lang und kurz angelegt und dann auf
die besser arbeitende Seite umgeschichtet wird, auf viel allgemeinere Marktmodelle als in
der entsprechenden Literatur erweitert. Abschließend werden die Auswirkungen solcher
Handelsregeln auf die Finanzmarktstabilität untersucht und die Ergebnisse diskutiert.
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Abstract (English)

In efficient markets, it is not possible for any trader to look into the future in such a way
that the trader can expect excess returns. Whether this hypothesis is true or false is highly
discussed in the economics literature. The work at hand investigates a very close topic:
Is is possible to construct predictable trading rules—by use of control techniques—that
let the trader expect an excess return.

In this work, we summarize the literature on efficient markets, introduce the reader
to the mathematical field of stochastic analysis, which is needed to understand which
trading rules are allowed and which are not, review the literature on feedback trading,
and give several examples. Because it is important for the analysis of feedback-backed
stock trading strategies, we prove a new Fubini-type theorem, which allows to switch
the expectation operator and the Itō integral (for semimartingales), if some conditions
are fulfilled like in expectation linear integrators. In the main part, the properties of
control-based trading rules known from the literature—like the robust positive expectation
property—are extended to much more general market models. The thesis is concluded by
an analysis of the impact of feedback-based trading strategies to market stability and a
discussion of the obtained results.
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Chapter 1

Introduction

Trading means buying and selling assets. However, throughout this work we mostly
rely on the case where one single asset with price p is traded. Generally, a trader tries
to make a profit through buying the asset when it is cheap and selling it when it is
expensive. In this work, we neglect additional gains, e.g. through dividends, since these
gains would in average cause the same amount of trading losses (otherwise one could
make money by buying the asset right before the dividends are payed out and selling
right afterwards) and are not applicable to all kinds of assets. But in fact, the trader is
facing the problem that a maximization of the trading gain is impossible if the market
is arbitrage free. We assume that a trader cannot look into the future, thus, the trader
has to estimate the future price by some heuristic rule.

The trader has several possibilities for choosing this rule, i.e. the trading strategy,
e.g., relying on private (insider) information (insider; however, insider trading usually
is not allowed) or public information. The latter one can be information on the asset’s
underlying firm (fundamentalist or fundamental analyst) or only on past price data
(chartist or technical analyst). Another strategy is to trade fully random (noise trader).
Insiders and fundamentalists believe that the stock price converges in a long run to or
into a small environment around the fundamental price of the stock, i.e. the real price
of the whole firm divided by the number of stocks issued or the fair price of the stocks
calculated by use of (estimated) future payoffs. Insiders just have more information
about the real value of the firm or about future payoffs. Note that in this work we do
not discuss how fundamentalists calculate the fundamental value—they just know it.
Trend followers, for example, think that the future stock price is higher than the current
price if the price has risen in the past and vice versa, i.e., trend followers are chartists.
An overview of these types of traders classified to which information is available and,
thus, potentially used by the traders is given in Tab. 1.1.

The questions whether and which traders are able to make a profit on average are
discussed in the context of efficient markets. The efficient market hypothesis states in
its strong version that no trader is able to make money on average, in its semi-strong
version that only with private information one can make money, and in its weak version
that only with private information or information on fundamentals one can make money.

11



12 CHAPTER 1. INTRODUCTION

Depending on the definition of the efficient market hypothesis, risk and/or trading and
information costs are taken into account. In all versions of the efficient market hypothesis
chartists are not able to make money. Although most academic papers state that at least
the semi-strong version has to be true and although it is reasonable that traders with
more information should be able to make more money on average than traders with less
information, Avramov et al. (2017) empirically find for single assets (i.e. not for indices)
that technical analysts act better than fundamental analysts. For this reason we further
analyze this topic.

trader type private information fundamentals (public) charts (public)

insider yes yes yes
fundamentalist no yes yes

chartist no no yes
noise trader no no no

Table 1.1: Different types of traders classified to available or potentially used information

Much of the discussion on market efficiency, technical trading, and beating the market
follows the idea that a trader (i) has to find a predictable pattern, like “higher returns
at the beginning of January,” (ii) has to construct a trading strategy exploiting this
pattern, and (iii) has to test this new strategy against randomly selected broad index
buy-and-hold strategies (Malkiel, 1973). However, a new strand of research, mainly in
engineering sciences and mathematical control theory, goes another way: Assume task
(i) can be skipped and trading strategies can be constructed directly. These strategies
usually are model-free and do neither use predictions of patterns nor estimations of
parameters like trends. In short and using the terminology of the control community:
They are constructed to be robust against the price. Instead of task (iii), which relies
on real market data, (performance) properties are proven mathematically. This way, the
overfitting problem (cf. Bailey et al., 2014) is avoided.

Whether it is possible to estimate future prices and whether this can result in trading
gains, is discussed in the broad literature on efficient markets in economics, which is
reviewed in Chap. 2. After that, in Chap. 3, we shortly summarize the mathematical
field of stochastic analysis, which investigates how price processes and trading strategies
have to look like for being mathematical sound. Chapter 4 provides some new finding
in the field of stochastic processes and probability theory. We prove that under specific
assumptions it is allowed to switch the expectation operator and the Itō integral (cf.
Fubini’s theorem), use this for calculating the expected value of stochastic differential
equations, and generalize Wald’s lemma to the product case.

In Chap. 5, feedback trading is defined and feedback trading strategies are con-
structed. After that, in Chaps. 6, 7, and 8, we give a literature review on feedback
trading, discuss market requirements, and analyze a small example model. In the main
part of this work, the performance (Chap. 9) and the effects (Chap. 10) of these feedback-
based trading rules are analyzed analytically. The work is concluded by a discussion of
these results, especially of the performance results of a specific feedback trading rule, the
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so-called simultaneously long short (SLS) strategy, in the context of efficient markets, in
Chap. 11.

To sum up, the questions answered in the work at hand are “What is feedback trad-
ing?,” “Does feedback trading perform well?,” “Is feedback trading in contradiction to
market efficiency?,” “Which market assumptions are needed to prove specific perfor-
mance properties?,” and “Does feedback trading affect market stability?” Additionally,
we give (literature) overviews to the topics market efficiency, stochastic analysis, and
feedback trading. Some theorems in the stochastics part are proven. Here, we mention
that some proofs are not carried out in the work at hand and instead there are refer-
ences given. Some proofs are done analogously to proofs that can be found in the related
work. In this case, the references are given and there is no LaTeX proof environment
used. The proofs that are written down in LaTeX proof environments are originally done
by the author of this thesis. However, some proofs are not in LaTeX proof environments
although they are done by the author—in this case, the reference (for the theorem or
for the whole section) links to papers of the author.
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Chapter 2

Hypothesis of Efficient Markets

The market efficiency hypothesis in its strong version states that no trader can make
money on average. In its semi-strong version it states that only insiders make money on
average and in its weak version that only insiders and fundamentalists, who are traders
that know the fundamental value (loosely spoken: the real value) of the assets, can make
money on average. In all versions, technical traders (technical analysts, chartists) cannot
expect a profit. While in the 1970’s this hypothesis was highly accepted (Fama, 1965,
1970), later on, it was highly criticized, and defended (Malkiel, 1989, 2005). Much of
the critics concerned so-called predictable patterns, for example the January effect, i.e.
high positive returns in the first two weeks of January. The defenders of the market
efficiency hypothesis have several arguments against this critics, e.g., that patterns will
self-destroy once published or that small possible gains will vanish when trading costs
have to be payed.

Additionally, there is the so-called joint hypothesis problem which states that market
efficiency and the used market model have to be tested nearly always simultaneously.
That means, if the test fails, no one knows whether the market is not efficient or whether
the model used is not sufficient. A second point of critics on the critics is the distinction
between statistical inefficiency and economical inefficiency. The first one means that
one can construct a test for showing that there are, for example, predictable patterns.
The second one means that a trader has to be able to exploit this. When the costs for
getting the information of an inefficient market behavior are high, the time range where
markets are inefficient are very short, and/or the trading costs are not close to zero, it
might happen that even if there are statistical inefficiencies, the traders are not able to
make or to expect a profit out of these inefficient market behaviors.

And the last point to defend the market efficiency hypothesis we mention is that even
if one can construct a strategy with “too high” returns, e.g., by taking into account some
external variables, it may be that these variables are better ratios for measuring risk.
When introducing risk-adjusted returns, excess returns are no contradiction to efficient
markets when they go hand in hand with excess risk. In this chapter, we briefly discuss
market efficiency, its critics, and its defense.

Because there is a very broad literature on this topic and there are also a lot of
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16 CHAPTER 2. HYPOTHESIS OF EFFICIENT MARKETS

excellent and famous overviews we refer the interested reader to these overviews (e.g.
Fama, 1991; Malkiel, 2003). Besides the definition and discussion of market efficiency,
we discuss some topics where definitions are not clear, focused on the discussion of the
simultaneously long short (SLS) strategy at the end of this work.

2.1 The Strong Version

In its strong version, the market efficiency states that all information is reflected in
the price. That means, no “sophisticated” trader, even no “insider,” who has private
information, performs on average better than a simple buy-and-hold trader. That means,
when there is no change in the fundamental value, all price movements are fully random
without any trend. Mathematically spoken, the price process is a random walk around
its fundamental value and it is not possible to predict future changes in the fundamentals.
A little bit weaker and maybe closer to markets is the assumption that only nearly all
information is incorporated in the price. But the costs for getting the missing information
and for trading the asset are higher than the possible gain of exploiting this information
(Fama, 1991).

2.2 The Semi-Strong Version

The semi-strong version of the market efficiency hypothesis states that all public infor-
mation is reflected in the price. That means “insider trading” may be profitable, which
is widely accepted. For example, the findings on the effects of Value Line rank changes
are a sign that insider trading may be profitable (Stickel, 1985) (summarized in Fama,
1991). As mentioned in the introduction, both insiders and fundamentalists believe that
the stock price goes to the fundamental value in a long run.

Under the assumption of the semi-strong version, all public information is immedi-
ately incorporated in the asset price. The word “immediately” has to be understood
in an averaged sense, i.e., markets may overreact to new information or underreact and
markets may reflect information too early or too late, but on average all these effects are
balancing out (Fama, 1995). In other words, fundamental value analysis, i.e., trying to
calculate the fundamental or intrinsic value (simplistic: the real value), is on average not
profitable at all, because an asset’s actual price is at any point of time the best estimate
for the fundamental value (based on public information). Fundamentalists can make
profit if they find relevant information faster and rate the effects to the fundamental
values under analysis better. Thus, all fundamentalists try to be as fast and as accurate
as possible, thereby adjusting prices instantaneously to the intrinsic values. Since no one
knows who is the fastest and the best, on average fundamentalists cannot expect excess
gains.
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2.3 The Weak Version

Last, the weak version of market efficiency states that insider trading as well as fun-
damental analysis may be profitable but technical analysis is not. That means, no one
can use past returns to predict future ones. Also in this version, chartists cannot make
money on average, markets have no memory, and patterns do not exist. Or, even a little
bit weaker, when there exists a dependence of past and future returns, these anomalies
are so small that they are not exploitable.

To sum up, in all versions of the market efficiency hypothesis, for chartists it is not
possible to make money on average. Because on the other hand there is a lot of literature
on the profitability of technical trading and there are numerous fund managers who rely
on such strategies, the question whether markets are efficient or not is always considered
to be empirical. That means, chartist fund managers are challenged to provide statistics
that their strategies outperform random-selected buy-and-hold strategies. Hereafter, we
summarize a selection of common critics to the market efficiency hypothesis and state
some arguments of the defenders of the hypothesis against these critics.

2.4 Discussion of the Efficient Market Hypothesis

One strand of critics to the market efficiency hypothesis relies on predictable patterns.
With statistical or data science methods, patterns, i.e., on average recurring behaviors
of stock market prices were found: the Monday effect (lower returns on Mondays; Cross
(1973); French (1980)), the month effect (higher returns at the last day of the month;
Ariel (1987)), the holiday effect (higher returns at the day before a holiday; Ariel (1990)),
and the most famous January effect (higher returns in January and even higher returns
in the first five days of January; Keim (1983); Roll (1983)). These critics attack the
weak version of the efficient market hypothesis.

But, following Malkiel (2003), predictable patterns will self-destroy once published.
Exemplary for the January effect: If the January effect exists, traders would buy at
the last days of December and sell at the very beginning of January. That means, the
pattern would move a few days. Observing this, traders would buy and sell again a
few days earlier, and so on. At the end, the January effect would be destroyed. A
second attack to this strand of critics is that the effects of (predictable) patterns are too
small to exploit them (Lakonishok and Smidt, 1988), especially when trading costs are
considered. This last argument can be generalized: Only because there is a statistical
inefficiency (i.e. predictability in returns, which is shown by use of data science methods)
that does not mean that a trader can make profit of it, when the effect and the power
of the statistic is small relative to additional costs. That means, economical inefficiency
had to be shown by trading performance statistics.

Another strand of critics to market efficiency is that stock returns may be predictable
using some external variables, for example, dividend yields (D/P; Rozeff (1984); Shiller
(1984)), earning per price ratios (E/P; Campbell and Shiller (1988)), or the firms’ size
(Banz, 1981). These studies are related to the semi-strong version of the hypothesis of
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efficient markets. But, as summarized by Fama (1991), these dependencies are either too
small to exploit them (especially when trading costs are taken into account) or, like in
the case of the size effect, they have another reason: Taking into account some external
variables with predictive power may just mean that these variables are better ratios for
measuring risk. That means, if someone finds external variables which are positively
correlated with expected future returns of an asset, these variables are probably corre-
lated with the risk of these assets. When assuming that investing in riskier assets should
result in higher expected profits, the existence of such variables is no contradiction to
market efficiency.

As mentioned above, the definition of market efficiency is not clear at all. Despite the
statistical inefficiency vs. economical inefficiency problem, one can find statements like
“traders cannot expect excess returns” as well as “traders can only expect excess returns
when they accept excess risk” in the literature. The definition of market efficiency is
not unique. So, often the term risk-adjusted gains is used. Here, the next problem
arises: How to measure risk? Often the Capital Asset Pricing Model’s (CAPM’s) β or
the standard deviation is used. We come back to this problem in Chaps. 9 and 11 again.

Next, we explain a few more problems that occur when discussing market efficiency.
First, all empirical findings concerning market efficiency (in all versions) might be results
of data-dredging (also known as p-hacking), i.e., the results might be found by use of
data-mining techniques searching for significant p-values without causality or an under-
lying hypothesis. That means, when doing enough tests with enough data, it is very
likely that eventually examples for and against all test hypotheses concerning efficient
markets are found. However, there are studies indicating that there are (with constant
fundamentals) long term trends (possibly sinusodial) (Granger and Morgenstern, 1962;
Saad et al., 1998). Another problem, related to the data-dredging issue, is the overfit-
ting problem when constructing trading strategies. Bailey et al. (2014) state that often
trading rules are defined by too much use of past data s.t. there is no meaning for future
developments anymore.

Second, there is the joint hypothesis problem, which states that market efficiency
can (nearly) always only be tested when simultaneously using a market model. A conse-
quence is that if a test fails, no one can say whether the market efficiency hypothesis is
wrong or whether the used market model is insufficient. With this argument, all critics
to the efficient market hypothesis in all versions that rely not only on general market
assumptions but on specific market models can be defended.

An exception of this joint hypothesis problem are so-called event studies (Fama
et al., 1969). Event studies analyze how fast and to which extent stock prices adjust to
announcements, i.e. to new public information. So, event studies lie in the field of the
semi-strong form of the market efficiency hypothesis and not in the field of the weak one.
There are studies that indicate that stock prices do not adjust instantaneously to new
events, but there are also papers stating that too early reaction and too late reaction as
well as overreaction and underreaction are averaging out (Stickel, 1985; Fama, 1995).

And last, there is the momentum effect, which states that assets that performed
well over the last few months will do so over the next few months (approximately up
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to twelve months) and similar for bad assets (Jegadeesh and Titman, 1993, 2001; Fama
and French, 1996, 2008). According to Moskowitz (2010) this effect can be explained by
behavioral economics: Traders tend to underreact at first and overreact with a delay,
both causing momentum. Related to the momentum effect is the disposition effect, which
states that traders tend to sell rising assets too early to lock in the winnings while sell
falling assets too late since they hope the charts become better again. Both behaviors
make a delay in the assets’ reaction to news in the fundamentals: After good news
prices do not rise adequately since some traders sell for locking in winnings and after
bad news prices do not fall adequately because some traders hold their shares too long
because they hope for good news. For a trader to exploit the momentum effect there
is the problem that this effect eventually stops and the traders can hardly anticipate
when this will happen. Nonetheless, the momentum effect can be exploited. The only
way to explain this in an efficient market is to take risk into account: Investing in
well performing assets has to be riskier than investing in poor performing assets. This
seems to be quite counterintuitive, but from another perspective, maybe the asset is only
performing better because the underlying firm is accepting more risk in its work. Other
explanations for this increase of risk are that for well performing firms it is harder to
hold the performance level and that the investment opportunities might have changed
due to the better performance (cf. Moskowitz, 2010).

To sum up, there are various versions (strong, semi-strong, weak) and definitions
(with or without risk, with or without trading and information cost, comparison to
random strategies or not) of the efficient market hypothesis, but in all versions chartists
are not allowed to make money on average. The attacks to market efficiency are always
considered to be empirical, while the defense is empirical and theoretical.

In the work at hand, we provide some theoretical critics without running into the
joint hypothesis problem or into the overfitting problem because we construct our trading
rules model-free, i.e., in the definition of these rules no market model is assumed, and in
the analyses of our strategies, we only start with specific market models but generalize
the performance properties to markets where just a few general assumptions have to be
fulfilled. For the construction and the analysis of our technical trading rules we need
some basics from the field of stochastic analysis, which are given next.
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Chapter 3

Stochastic Analysis in Continuous
Time

In this chapter, we give a very brief overview of stochastic analysis, which is the field
of mathematics dealing with stochastic processes, stochastic integration, and stochas-
tic differential equations. This is important to understand the analysis of the trading
strategies we are interested in. We need to know how to calculate gains as stochas-
tic integrals, what trading strategies are meaningful and allowed, e.g., not looking into
the future, and what are stochastic differential equations, because by means of these
equations often market models are defined.

We restrict this overview to the more general case of continuous time and we skip
the proofs, except for the cases where they are important for the understanding. The
proofs can be found in the literature of stochastic analysis, especially in the work of
Protter (2005); Øksendal (2003); Applebaum (2009); Kühn (2016); McKean jr. (1969).
This chapter is following Kühn (2016) and also Protter (2005) very closely. Some of the
definitions and theorems in this chapter are not directly needed for this work, but they
are needed indirectly or for the general understanding of stochastic analysis or for those
readers who want to read in the cited references.

3.1 Basics of Stochastic Analysis

Before starting with stochastic integrals, which is the most important concept of this
chapter, we have to define and discuss a few sets, functions, sequences, etc. All these
concepts building upon stochastics and probability theory.

Definition 1 (Basic Setting). Let Ω be a non-empty set of outcomes. We call F ⊂ ℘(Ω)
a σ-algebra if it contains Ω, is closed under complement, and is closed under countable
unions. The pair (Ω,F) is called a measurable space. All elements of F are called
measurable. A function

P : F → [0, 1]

21
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with P(Ω) = 1 and P
(⋃̇

n∈NAi

)
=
∑

n∈N P(Ai) for all countable sequences of disjoint

sets Ai ∈ F is called probability measure. The triple (Ω,F ,P) is called a probability
space. A set N is called a null set if N ∈ F and P(N) = 0. A probability space is called
complete if all subsets of all null sets are measurable. A filtration F = (Ft)t∈[0,T ] is a
family of σ-algebras with Fs ⊂ Ft ⊂ F for all s ≤ t. We call T ∈ R+ the horizon of the
model and (Ω,F ,F,P) a filtered probability space.

The σ-algebra Ft can be interpreted as the information that is known at time t,
i.e., if A ∈ Ft then at time t we know whether A happened or not. Note that every
probability space can be transformed into a complete one: Let’s define

F̃ = {Ã ⊂ Ω | ∃A1, A2 ∈ F s.t. A1 ⊂ Ã ⊂ A2 and P(A2 \A1) = 0}

and P̃ : F̃ → [0, 1], Ã 7→ P(A1) = P(A2). One can prove that F̃ is a σ-algebra, that P̃ is
well defined, that (Ω, F̃ , P̃) is complete, and that F̃ is the smallest complete σ-algebra
that contains F .

Definition 2 (Usual Conditions). A filtered and complete probability space (Ω,F ,F,P)
fulfills the usual conditions if F0 contains all null sets of F and if F is right-continuous,
i.e., if

Ft = Ft+
for all t ∈ [0, T ) with Ft+ :=

⋂
u∈(t,T ]

Fu.

That means the information that is available at time t is exactly the same as directly
after t or—the other way around—it cannot happen that an information is not available
at time t but directly after t. Note that F does not need to be left-continuous, i.e.,
knowing all information up to t does not mean that the information at time t is already
known.

Definition 3 (Random Variables and Stochastic Processes). Let (Ω,F ,P) be a proba-
bility space and (Ω′,F ′) be a measurable space. A function Z : Ω→ Ω′ is called random
variable (and also measurable) if Z−1(A′) ∈ F for all A′ ∈ F ′. If (Ω′,F ′) = (R,B(R)),
Z is called a real-valued random variable, B(R) is the Borel σ-algebra on R, which is the
smallest σ-algebra that contains all open sets of R. For any M ⊂ ℘(Ω) we denote with
σ(M) the smallest σ-algebra that contains M. For a real-valued random variable Z we
define σ(Z) = {Z−1(A) | A ∈ B(R)}, which is a σ-algebra. A mapping X : Ω×[0, T ]→ R
is called a (real-valued) stochastic process if Xt : Ω→ R, ω 7→ X(ω, t) is a random vari-
able for all t (i.e., if Xt is F-measurable). If Xt is additionally Ft-measurable for all
t, we call X an adapted stochastic process. For a stochastic process X for all t we call
(F0

t (X))t∈[0,T ] with F0
t (X) = σ({X−1

s (A) | s ≤ t, A ∈ B(R)}) the natural filtration of X.

Sometimes, we use R+
0 instead of [0, T ], which is just a little bit more general. Note

that any stochastic process is adapted to its natural filtration. The mapping t 7→ Xt(ω)
is called a sample path of X. The natural filtration of a right-continuous stochastic pro-
cess (i.e. a stochastic process that has only right-continuous paths (lims→t,s>tXs(ω) =
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Xt ∀ω)) does not necessarily have to be right-continuous: Let’s have a look at the process
X with Xt = (t − t0)+Z for any t0 ∈ (0, T ) and any non-constant real-valued random
variable Z. It holds that F 0

t (X) = {0,Ω} if t ≤ t0 and F 0
t (X) = σ(Z) if t > t0. It follows

that F0
t0 6= F

0
t0+.

For any filtration F we can define F̃ via F̃t =
⋂

u∈(t,T ]

σ(Fu,N ) if t ∈ [0, T ) and

F̃t = σ(FT ,N ) if t = T , with N = {A ∈ F | P(A) = 0}, which fulfills the usual condi-
tions. When adding the null sets to any right-continuous filtration, this new filtration

is automatically right-continuous: It holds
⋂

u∈(t,T ]

σ(Fu,N ) = σ

( ⋂
u∈(t,T ]

Fu,N

)
for any

filtration F. We always assume the usual conditions.

Definition 4 (Stopping Time). A random variable τ : Ω→ [0, 1] is called stopping time
if for all t it holds {τ ≤ t} := {ω ∈ Ω | τ(ω) ≤ t} ∈ Ft. The set Fτ = {A ∈ F | A∩{τ ≤
t} ∈ Ft ∀t ∈ [0, T ]} is the stopping time σ-algebra of τ .

That means, for a stopping time τ at time t we know whether τ happened yet. When
τ is a stopping time it holds {τ < t} ∈ Ft. Since F is right-continuous it additionally
holds that if {τ < t} ∈ Ft for all t it follows that τ is a stopping time.

Theorem 5. Let X be a counting process, that is Xt =
∑
n∈N

I[τn,T ](t) with stopping

times τn. The filtration F0
t (X) = σ(Xs, s ≤ t) is right-continuous.

Proof in Protter (2005, Thm. I.25).

Definition 6 (Equivalence of Stochastic Processes). Let X and Y be two stochastic
processes. We call X a version of Y and vice versa if P(Xt1 ∈ A1, . . . , Xtn ∈ An) =
P(Yt1 ∈ A1, . . . , Ytn ∈ An) for all n ∈ N, t1, . . . , tn ∈ [0, T ], and A1, . . . , An ∈ B(R). The
process X is a modification of Y and vice versa when P(Xt = Yt) = 1 for all t. The
processes X and Y are indistinguishable if P(Xt = Yt ∀t ∈ [0, T ]) = 1.

If two processes are indistinguishable, they are modifications. If they are modifica-
tions, they are versions. Two versions do not need to be defined on the same space. If
X and Y are indistinguishable, there exists N ∈ F0 s.t. t 7→ Xt(ω) equals t 7→ Yt(ω) for
all ω ∈ Ω \N . If X and Y are modifications of each other, for all t there exists Nt ∈ Ft
s.t. Xt(ω) = Yt(ω) for all ω ∈ Ω \Nt. But

⋃
t∈[0,T ]

Nt does not need to be measurable.

For the difference of indistinguishable processes and modifications we give a small
example: Let X ≡ 0 and Yt(ω) = It=U(ω) with U being uniformly distributed on [0, T ].
It holds P(Xt = Yt) = P(U 6= t) = 1 for all t, but P(Xt = Yt ∀t) = 0.

If X and Y are modifications of each other and the paths of X and Y are right-
continuous, X and Y are indistinguishable. The proof is based on the set

⋃
t∈Q∩[0,T )

Nt ∪

NT , which is a null set. For details see Kühn (2016, pp. 7f) and Protter (2005, Thm.
I.2).
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Definition 7 (Càdlàg). A stochastic process X is called càdlàg (“continue à droite,
limite à gauche”) if all paths of X are right-continuous and lims→t,s<tXs(ω) = Xt−(ω)
exists in R for all t ∈ (0, T ].

We setX0−(ω) = X0(ω), ∆Xt = Xt−Xt−, X− = (Xt−)t∈[0,T ], and ∆X = (∆Xt)t∈[0,T ].
When X and Y are indistinguishable, then X− and Y− are indistinguishable, too, as well
as ∆X and ∆Y (cf. Kühn, 2016, Def. 2.13).

Theorem 8. Let f : [0, T ]→ R be a càdlàg function. For all n ∈ N there is only a finite
number of jumps with absolute value bigger than 1

n and {t | ∆ft 6= 0} is countable.

Proof in Kühn (2016, p. 8). Usually, asset prices are modeled via càdlàg processes.
This class allows for price jumps, e.g., caused by shocks, but does not allow for double
jumps. Double jump means that neither the right limit nor the left limit equals the
value of the process at the jump time.

For a stochastic process X and a set B ∈ B(R) we call τ(ω) = inf{t > 0 | Xt(ω) ∈ B}
the hitting time of B for X. If X is an adapted process with right-continuous or left-
continuous paths and B an open set, then the hitting time of B is a stopping time (Kühn,
2016, p. 8).

Definition 9 (Conditional Expectation). Let Z be a real-valued, F-measurable random
variable and let G ⊂ F be a sub σ-algebra. If Z ≥ 0 or E[Z] < ∞ there exists an a.s.
unique G-measurable random variable Z ′ s.t. E[IAZ] = E[IAZ ′] ∀A ∈ G. With Z ′ =:
E[Z|G] we denote one version of this conditional expectation of Z under information G.

If neither Z ≥ 0 nor E[Z] <∞ holds, but instead E[|Z||G] <∞, we can set E[Z|G] =
E[Z+|G]−E[Z−|G]. Note that in general a conditional expectation is not deterministic.

Definition 10 (Martingale). An adapted, càdlàg process (Xt)t∈[0,T ] with E[|Xt|] <∞ for
all t is called a martingale if E[Xt|Fs] = Xs a.s. for all s ≤ t. It is called a submartingale
if E[Xt|Fs] ≥ Xs a.s. for all s ≤ t and a supermartingale if E[Xt|Fs] ≤ Xs a.s. for all
s ≤ t.

The definition of martingales is equivalent to E[IA(Xt−Xs)] = 0 ∀s ≤ t and A ∈ Fs.
Note that the definition of martingale depends on P and F.

Theorem 11. If H is a random variable with E[|H|] < ∞, there exists exactly one
P-martingale X with XT = H a.s. (modulo indistinguishability). This is a càdlàg
transformation of the process t 7→ E[H|Ft], i.e. a process where all paths are made
right-continuous.

Proof in Dellacherie and Meyer (1978).

Definition 12 (One Dimensional Brownian Motion). An adapted process (Bt)t≥0 with
B0 = 0 is a Brownian motion if Bt −Bs is independent of Fs for all 0 ≤ s ≤ t <∞, if
Bt −Bs ∼ N (0, t− s) for all 0 ≤ s ≤ t <∞, and if all paths t 7→ Bt(ω) are continuous.

Theorem 13. A Brownian motion exists.
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Proof in Klenke (2006). Note that this definition is over-determined. One could
either drop the assumption of Gaussian distributed increments and instead use any
distribution with mean 0 and variance t − s. By use of the central limit theorem the
Gaussian distribution follows. Or, one could drop the assumption of continuous paths as
this property would follow by use of the Kolmogorov Chentsov continuity theorem, i.e.,
there would exist a continuous modification of the process. Without the usual conditions
the definition had to be modified to a.a. paths. But by use of the usual conditions we
could set all non-continuous paths to zero and would have a Brownian motion where all
paths are continuous (cf. Kühn, 2016, Bem. 2.27).

Let (Bt)t be a Brownian motion and s ≤ t. Since it holds E[Bt|Fs] = Bs + E[Bt −
Bs|Fs] = Bs + E[Bt −Bs] = Bs, the Brownian motion is a martingale. In a similar way
it can be shown that (B2

t − t)t is a martingale, too, and exploiting Z ∼ N (µ, σ2) ⇒

E
[
eZ
]

= eµ+σ2

2 and V
[
eZ
]

= e2µ+σ2
(
eσ

2 − 1
)

that also

(
eaBt−

a2t
2

)
t

is a martingale

for all real a (Kühn, 2016, Thm. 2.28).

Definition 14 (Grid and Mesh). For k ∈ N we call π = (t0, . . . , tk) a grid on [a, b] if
a = t0 < t1 < . . . < tk = b. We define the mesh size mesh(π) = max

j=1,...,k
(|tj − tj−1|).

Theorem 15. Let B be a Brownian motion, (πn)n∈N be a sequence of grids on [a, a+
t] (i.e., πn = (tn0 , . . . , t

n
kn

), kn ∈ N, and a = tn0 < tn1 < . . . < tnkn = a + t) with

lim
n→∞

mesh(πn) = 0. Define π
(2)
n (B) =

∑
j=1,...,kn

(Btnj −Btnj−1
)2.

Then it holds lim
n→∞

E
[(
π

(2)
n (B)− t

)2
]

= 0 (convergence in L2 (mean square), which

implies convergence in probability (∀ε > 0 : lim
n→∞

P
(∣∣∣π(2)

n (B)− t
∣∣∣ > ε

)
= 0)).

Proof in Kühn (2016, Thm. 2.30).

Theorem 16. If the sequence of grids is refining, the convergence is a.s. (i.e.,

P
(

lim
n→∞

π
(2)
n (B) = t

)
= 1).

Proven in Protter (2005, Thm. I.28 (and Thm. I.14)). By use of grids with mesh size

to zero we defined π
(2)
n , which is something like a quadratic variation (with n → ∞).

Later, we formally define the quadratic variation and see that this quadratic variation
with grids equals the formally defined quadratic variation for Brownian motions (and,
actually, for all semimartingales). Note that Thm. 15 tells us a property of the Brownian
motion in general and not of its single paths, like the next theorem.

Theorem 17. For 0 < a < b and r ∈ R+ and for a.a. sample paths t 7→ Bt(ω) there
exists a sequence of grids πn on [a, b] (depending on ω) with lim

n→∞
mesh(πn) = 0 and

π
(2)
n (B(ω)) =

∑
j=1,...,kn

(
Btnj (ω)−Btnj−1

(ω)
)2

= r.

(Cf. Kühn, 2016, Thm. 2.31).
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Definition 18 (Variation). Let (Xt)t≥0 be a càdlàg stochastic process. With V (X)t =

sup
n∈N

∑
k=1,...,2n

∣∣∣X k
2n
t −X k−1

2n
t

∣∣∣ we denote the variation of X. The process V (X)t is [0,∞]-

valued. We say that X has finite variation if V (X)t <∞ a.s. for all t <∞.

It holds that V (X)t = lim
n→∞

∑
k=1,...,2n

∣∣∣X k
2n
t −X k−1

2n
t

∣∣∣. If X is right-continuous (or

even left-continuous) it holds V (X)t = sup
π=(t0,...,tn)

∑
k=1,...,n

|Xtk − Xtk−1
|, where all grids

π are allowed. The advantage of the dyadic definition is that V (X)t is Ft-measurable.
If X is càdlàg and has finite variation, the mapping t 7→ V (X)t is non-decreasing and
càdlàg (cf. Kühn, 2016, Thm. 2.34).

Theorem 19. The Brownian motion has a.s. an unbounded variation.

Proof in Kühn (2016, Thm. 2.35). This property makes the definition of stochastic
integrals somehow tricky as we see later on.

The filtration Ft(B) = σ(Bs, s ≤ t,N ) with N being the set of null sets of σ(Bs, s ≤
T ) is an example for a right-continuous filtration. Proven in Karatzas and Shreve (1991,
Chap. 2, Prop. 7.7, and Thm. 7.9).

So far, we learned about the definition and some properties of stochastic processes, as
they are needed for constructing price movements. However, we need trading strategies,
which are also processes, and trading gains to understand how trading in stochastic
finance works.

3.2 Stochastic Integration—Simple Predictable Processes

In this section, we define trading gains as stochastic integrals. For this, we start with
trading strategies that are constructed similarly to discrete time trading, i.e., at first we
allow the trader to reallocate the portfolio only finitely often.

Definition 20 (Stochastic Intervals). For stopping times τ and σ, we define the stochas-
tic intervals

Kτ, σK = {(ω, t) ∈ Ω× [0, T ] | τ(ω) < t ≤ σ(ω)},

Kτ, σJ= {(ω, t) ∈ Ω× [0, T ] | τ(ω) < t < σ(ω)},

Jτ, σK = {(ω, t) ∈ Ω× [0, T ] | τ(ω) ≤ t ≤ σ(ω)},

Jτ, σJ= {(ω, t) ∈ Ω× [0, T ] | τ(ω) ≤ t < σ(ω)},

and
JτK = Jτ, τK.

Definition 21 (Simple Predictable Process). A process H is called simple predictable if
it can be written as

Ht(ω) =
∑

i=1,...,n

Zi−1(ω)IKTi−1,TiK(ω, t)
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with n ∈ N, (Ti)i=1,...,n stopping times with 0 = T0 ≤ T1 ≤ . . . ≤ Tn = T , and Zi
FTi-measurable random variables (i = 0, . . . , n) with |Zi| < ∞. With S we denote the
set of all simple predictable processes.

Definition 22 (Stochastic Integral). Let H be a simple predictable process and X be a
càdlàg process. We define the stochastic integral IX(H) via

IX(H) =
∑

i=1,...,n

Zi−1(XTi −XTi−1) ∈ L0(Ω,F ,P).

With L0(Ω,F ,P) we denote the set of equivalence classes of measurable functions
where we identify functions that are almost everywhere identical. We call H the inte-
grand and X the integrator. This definition is path-by-path and thus does not depend
on the representation of H.

Stochastic integrals are very important in financial mathematics. In a discrete time
setting {0, . . . , N}, a strategy is a stochastic process (Hi)i=1,...,N on the probability space
(Ω,F ,F,P) with F = (Fi)i=0,...,n that is (in a discrete sense) predictable, i.e., Hi is Fi−1-
measurable. A price process in discrete time is given by an adapted stochastic process
X, i.e., Xi is Fi-measurable and the trading gain is given by

∑
i=1,...,n

Hi(Xi−Xi−1). Our

integral IX(H) (in continuous time) actually is a generalization of the discrete time gain
(Kühn, 2016, p. 17). Thus, stochastic integrals can be used for the calculation of trading
gains. The restriction of the integrand to simple predictable processes means that the
trading portfolio is reallocated only finitely often. Our aim is to generalize the definition
of stochastic integrals even more.

As mentioned above, the use of the Brownian motion as an integrator is somehow
tricky because it has an unbounded variation. However, since Brownian motions are
an often used process in the definition of complex market models, it is our aim to
define integrals even for Brownian motions as integrators. But before going to Brownian
motions, we restrict our analysis to processes with finite variation. The set of all adapted,
càdlàg processes X with V (X)T <∞ is denoted by V. A process is called increasing if
all paths are non-decreasing. The subset of V of all adapted, càdlàg, increasing processes
X with V (X)T <∞ is denoted by V+.

For all X ∈ V there exists exactly one pair (A,B) ∈ V+ × V+ s.t. X = X0 + A− B
and V (X) = A+B and A0 = B0 = 0. If there is another pair (A′, B′) ∈ V+ × V+ with
X = X0 + A′ − B′ and A0 = B0 = 0 it holds V (X)t ≥ At + Bt ∀t. The proof is based

on the construction of A = X−X0+V (X)
2 and B = V (X)−X+X0

2 and can be found in Kühn
(2016, p. 18).

Via A ∈ V+ we can define random measures (depending on ω) on B([0, T ]) by
µA((s, t], ω) = At(ω) − As(ω) with s ≤ t. Actually, µA is a pre-measure on the ring
of all finite unions of intervals (s, t] (s ≤ t), which can be extended to a measure on
the corresponding σ-algebra (Brokate and Kersting, 2011, Satz XI.2 and the following
example).

If H is bounded and all paths t 7→ Ht(ω) are Borel measurable, we can define
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pathwise, i.e. ω-by-ω, the Lebesgue-Stieltjes integral via∫ T

0
Hs(ω)dXs(ω) =

∫ T

0
Hs(ω)dAs(ω)−

∫ T

0
Hs(ω)dBs(ω)

=

∫ T

0
Hs(ω)dµA(ds, ω)−

∫ T

0
Hs(ω)dµB(ds, ω).

If H is simple predictable, this is exactly IX(H). If t 7→ Ht(ω) is continuous (or just
left-continuous) this is also a Riemann-Stieltjes integral, which can be approximated via
step functions (simple predictable integrands).

Next, we investigate why it is in general not possible to define a meaningful stochastic
integral ω-by-ω. As mentioned above, this definition of stochastic integrals does not
work in general when X is of unbounded variation. For any function x : [0, 1]→ R with
sup
t∈[0,1]

|x(t)| <∞ (which is true if x is continuous or càdlàg) but V (x)1 =∞ (e.g., x is a

path of a Brownian motion), we can find a sequence (hn)n∈N of functions hn : [0, 1]→ R
with sup

t∈[0,1]
|hn(t)| ≤ 1 ∀n but Ix(hn) → ∞ for n → ∞ (Kühn, 2016, p. 20). With the

Banach-Steinhaus theorem it follows that there exists a continuous (and thus bounded)
function h : [0, 1] → R with lim sup

n→∞

∑
i=1,...,2n

h
(
i−1
2n

) [
x
(
i

2n

)
− x

(
i−1
2n

)]
= ∞, i.e., there

exists a continuous function s.t. Ix(h)→∞ if the grid (which is a dyadic grid) is refined
with mesh → 0. That means, for each path of a Brownian motion (or even other
processes with unbounded variation) we find a continuous function as integrand so that
the integral goes to infinity. This is not how we want to model financial markets because
Brownian motions should be possible as integrators. However, these functions hn use at
time ti−1 information of time ti. That means, in this example the traders can look into
the future when using the strategies hn. Thus, next we restrict our integrand to strategies
where the trader does not look into the future and define stochastic integrals for this
set of integrands. Note that our stochastic integral shall still allow the interpretation as
trading gain.

Definition 23 (Predictable Process). The smallest σ-algebra that contains A×{0} ∀A ∈
F0 and A× (s, t] ∀0 ≤ s < t ≤ T,A ∈ Fs is called the predictable σ-algebra P. With

E = {A× {0} ∀A ∈ F0} ∪ {A× (s, t] ∀0 ≤ s < t ≤ T,A ∈ Fs}

it holds P = σ(E) = {M ⊂ Ω× [0, T ] | M ∈ A ∀A σ-algebra on Ω× [0, T ] with E ⊂ A}.
A process H : Ω × [0, T ] → R is called predictable if it is P-measurable, i.e., P-B(R)-
measurable.

We define Ft− = σ

(⋃
s<t
Fs
)

. Let H be a predictable process. Then it holds for

all t ∈ (0, T ] that Ht is Ft−-measurable and for all ω that the path t 7→ Ht(ω) is
B([0, T ])-measurable. A proof can be found in Kühn (2016, p. 22), which uses the fact
that for a non-empty set Ω̃ and E ⊂ ℘(Ω̃) 3 B it holds that B ∩ σ(E) = σB(B ∩ E).
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The intersection of a set M and a set of sets M with M ⊂ Ω̃ 3 M is defined via
M ∩M := {C ⊂ Ω̃ | ∃A ∈ M with C = A ∩M}. With σ(E) we denote the smallest
σ-algebra that contains E on the space Ω̃ and with σB(E) we analogously denote the
smallest σ-algebra that contains E on the space B. To not allow all adapted processes as
integrands is reasonable because there are adapted processes that would lead to arbitrage
possibilities if they were allowed as trading strategies. An example is given in Kühn
(2016, p. 23).

Note that a process which is Ft−-measurable for all t is not necessarily predictable.
Every predictable process is adapted, but not every adapted process is predictable.

It would also be possible to define the predictable σ-algebra through the set of all
left-continuous, adapted processes or even through all sets A × {0}, A ∈ F0 and J0, τK
with τ being a stopping time. That means, with

E ′ = {X−1([a, b)) | a, b ∈ R, X adapted and left-continuous}

and
E ′′ = {A× {0} | A ∈ F0} ∪ {J0, τK | τ stopping time}

it holds
σ(E) = σ(E ′) = σ(E ′′).

In short we can write σ(E ′) = σ({X : Ω× [0, T ]→ R | X adapted and left-continuous}).
A proof is given in Kühn (2016, pp. 23ff) and uses that for allM1,M2 ⊂ ℘(Ω̃) (with Ω̃
being a non-empty set) it holds M1 ⊂ σ(M2)⇒ σ(M1) ⊂ σ(M2). It was also possible
to replace “left-continuous” by càglàd (“continue à gauche, limite à droite”), i.e., by the
property that all paths of X are left-continuous and lims→t,s>tXs(ω) =: Xt+(ω) exists in
R for all t ∈ [0, T ). It follows that all left-continuous, adapted processes are predictable.

Simply spoken, when all information that is known in the interval [0, t) is used, the
value of a predictable process at time t is already known. Thus, it is reasonable that
an adapted, left-continuous process is predictable. Note again that not every process
which is Ft−-measurable is predictable. That the integrator has to be right-continuous
is caused by the applicability of this theory to financial markets. When a price process
jumps at time t (due to new information at time t) we want the value of the price process
at time t to be the new value. Also other definitions for the integrator would be possible
from a mathematicians point of view (cf. Kühn, 2016, Bem. 3.17). The combination of
right-continuous integrators and left-continuous (or in general: predictable) integrands
fits exactly to financial markets. Note that while the integrator has to fulfill some
regularity constraints, e.g., càdlàg, the integrand just has to be predictable. In Kühn
(2016, Bsp. 3.18) the following example of a somehow irregular but predictable process
is given. The process Ht = I{Bt≥1} with B a standard Brownian motion is predictable
because it holds {(ω, t) ∈ Ω× [0, T ] | Ht(ω) = 1} = {(ω, t) ∈ Ω× [0, T ] | Bt(ω) ∈ [1,∞)}
and the right side is a part of the predictable σ-algebra P since P can be defined by
means of all adapted, left-continuous processes (and the Brownian motion is adapted
and left-continuous). However, Ht is neither in all points of time left-continuous nor in
all points of time there exists the limit from the right.
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Now, we further analyze the integral IX : S → L0, which is linear. We say that
a sequence of stochastic processes (Hn)n∈N converges uniformly to H on Ω × [0, T ] if
lim
n→∞

sup
(ω,t)∈Ω×[0,T ]

|Hn(ω, t))−H(ω, t)| = 0.

Definition 24 (Good Integrator). Let X be an adapted, càdlàg process. We call X a
good integrator if IX is continuous in the following sense: For all (Hn)n∈N ⊂ S and
H ∈ S it holds Hn → H uniformly on Ω× [0, T ]⇒ IX(Hn)→ IX(H) in probability.

Note that the definition would be equivalent if we replaced H by 0. Next, we define
the stochastic integral for good integrators X and adapted, càglàd integrands H (which
could be extended to bounded, predictable integrands). In all cases, the integrand has
to be predictable (Kühn, 2016, Bem. 3.22).

Definition 25 (Absolutely Continuous Measures). Let P and O be two measures on
the same probability space. We say that O is absolutely continuous with respect to P if
P(A) = 0⇒ O(A) = 0 ∀A ∈ F . In this case we write O� P.

Theorem 26. If O� P and (Zn)n∈N is a sequence of real-valued random variables that
converges to Z in P-probability, then it converges to Z in O-probability, too.

A proof can be found in Kühn (2016, Lemma 3.25). With this, for O� P it directly
follows that every good integrator in (Ω,F ,F,P) is a good integrator in (Ω,F ,F,O),
too. This property is very important in stochastic finance, especially when considering
hedging problems.

Theorem 27. If X ∈ V, it follows that X is a good integrator.

Proof in Kühn (2016, Thm. 3.27).

Definition 28 (Square Integrable Process). A stochastic process X is called square
integrable if E

[
X2
t

]
<∞ ∀t ∈ [0, T ].

Doob’s optional sampling theorem (not to be confused with Doob’s optional stopping
theorem) says that for a martingale X and τ1 ≤ τ2 stopping times on [0, T ] it holds that
Xτ1 = E [Xτ2 |Fτ1 ] a.s. This theorem can be used, as done in Kühn (2016, Thm. 3.29),
to show that all square integrable martingales are good integrators.

Definition 29 (Localization). Let (Tn)n∈N be a sequence of stopping times on [0, T ] with
T1 ≤ T2 ≤ . . .. We say that (Tn)n∈N is localizing if P(Tn = T ) → 1 for n → ∞. The
process XTn

t := Xt∧Tn is called a stopped process.

For a process X, it holds XT = XtIt<T + XT It≥T . Furthermore, we define XT− =
XtIt<T +XT−It≥T with X0− = 0 the pre-stopped process.

Note that for a.a. ω T has to be reached. For example, Tn = T − 1
n (T > 1) is not

localizing. (If we had R+
0 instead of [0, T ], the condition had to be P(Tn ≥ t) → 1 for

n→∞ ∀t ∈ R+
0 .)
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Definition 30 (Local). A stochastic process X is a local martingale if there exists a
localizing sequence of stopping times (Tn)n∈N s.t. the stopped process XTn is a martingale
for all n ∈ N.

A stochastic process X is called locally bounded if there exists a localizing sequence
of stopping times (Tn)n∈N s.t. the stopped process XTn is bounded for all n ∈ N.

In general, if C is a class of stochastic processes, we can define the corresponding
local class Cloc via X ∈ Cloc if there exists a localizing sequence of stopping times (Tn)n∈N
s.t. the stopped process XTn ∈ C for all n ∈ N.

It holds C ⊂ Cloc. An example for a local martingale that is not a martingale is the
trading gain of a doubling-up strategy. Every bounded, local martingale is a martingale
(Kühn, 2016, Prop. 3.35). If (Tn)n∈N is a localizing sequence of stopping times and the
stopped processes XTn are good integrators for all n ∈ N, X is a good integrator, too
(Kühn, 2016, Thm. 3.36). Note that the set of all good integrators is a vector space.

Definition 31 (Semimartingale). An adapted, càdlàg process X is called a semimartin-
gale if there exists a local martingale M and an adapted process with finite variation A
s.t.

X = M +A.

Theorem 32 (Fundamental Theorem of Local Martingales). For all c > 0 a local
martingale M can be decomposed into M = N + A where A is a local martingale with
finite variation and N is a local martingale with jumps with absolute values bounded by
c.

This theorem is proven in Protter (2005, pp. 102ff). It follows that every local
martingale can be additively decomposed into a square integrable, local martingale and
a process with finite variation (Kühn, 2016, Korollar 3.41).

Theorem 33 (Bichteler-Dellacherie). The set of good integrators is exactly the set of
semimartingales.

A proof can be found in Protter (2005, Chap. III) (cf. Kühn, 2016, Thm. 3.39).

The stochastic integral IX : S → L0 is a function that maps simple predictable
stochastic processes to random variables, i.e., the integral is evaluated at time T . Since,
e.g., the trading gain develops over the time, we now want the stochastic integral to map
to a space of stochastic processes.

3.3 Stochastic Integration—Adapted, Càglàd Processes

We denote the space of all adapted, right-continuous processes with D̃, the space of all
adapted, càdlàg processes with D ⊂ D̃, the space of all adapted, left-continuous processes
with L̃, and the space of all adapted, càglàd processes with L ⊂ L̃.
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Definition 34 (Stochastic Integral as a Stochastic Process). Let

H =
∑

i=1,...,n

Zi−1IKTi−1,TiK ∈ S

with Zi FTi-measurable (i = 1, . . . , n − 1) and 0 = T0 ≤ T1 ≤ . . . ≤ Tn = T stopping
times and X be an adapted, càdlàg process. We call the linear function JX : S → D with

JX(H)t =
∑

i=1,...,n

Zi−1(XTi∧t −XTi−1∧t)

the stochastic integral of H over X. We also denote this process by H •X.

Thus, H • Xt is the value of the process at time t ∈ [0, T ] and it holds JX(H)T =
IX(H).

Definition 35 (up Convergence). Let (Hn)n∈N be a sequence of stochastic processes and
H be a stochastic process. We say that Hn converges uniformly in probability (up) to H
if sup
t∈[0,T ]

|Hn,t −Ht| → 0 for n→∞ in probability.

That means, in t ∈ [0, T ] it has to converge uniformly but in ω ∈ Ω the convergence
has just to be in probability. It holds that we can construct a metric d : D × D → R+

0

by use of the up convergence, i.e., for this metric it has to hold for all (Yn)n∈N ⊂ D and
Y ∈ D that Yn → Y up, n → ∞ ⇔ d(Yn, Y ) → 0, n → ∞. One possibility of such a
metric is

dup(X,Y ) = E

[
sup
t∈[0,T ]

|Xt − Yt| ∧ 1

]
.

Actually, this is a metric on the equivalence classes of D where we identify indistinguish-
able processes because dup(X,Y ) = 0 if and only if X and Y are indistinguishable. This
metric dup is also a metric on S × S and we denote it in both cases by dup.

On a metric space (M,d) it holds for all (xn)n∈N ⊂M and x ∈M that

d(xn, x)→ 0, n→∞⇔ ∀(nk)k∈N ∃ (nkl)l∈N s.t. d
(
xnkl , x

)
→ 0, l→∞.

Note that there exists no metric d̃ s.t. Yn → Y a.s., n → ∞ ⇔ d̃(Yn, Y ) → 0, n → ∞
(Kühn, 2016, Bem. 3.44).

Definition 36 (up Metric Spaces). We denote S together with the metric dup by Sup =
(S, dup) and D together with the metric dup by Dup = (D, dup).

Theorem 37. If X is a good integrator, JX : Sup → Dup is continuous, i.e., for all
(Hn)n∈N ⊂ S and H ∈ S it holds that Hn → H up⇒ JX(Hn)→ JX(H) up.

Proven in Kühn (2016, Thm. 3.46). Let Y be a stochastic process. We define
Y ∗t = sup

0≤s≤t
|Ys| and Y ∗ = sup

0≤s≤T
|Ys|.
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Definition 38 (up Cauchy Sequence). A sequence (Xn)n∈N of stochastic processes is
called an up Cauchy sequence if ∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N : dup(Xn, Xm) ≤ ε.

A sequence (Xn)n∈N of stochastic processes is an up Cauchy sequence if and only if

∀ε > 0 P

(
sup
t∈[0,T ]

|Xn,t −Xm,t| > ε

)
→ 0, n,m→∞.

Theorem 39. If X is a good integrator, for all (Hn)n∈N ⊂ S it holds that if (Hn)n∈N is
an up Cauchy sequence, (JX(Hn))n∈N is an up Cauchy sequence, too.

Proven in Kühn (2016, Korollar 3.48). Theorem 39 allows us to define the stochastic
integral in a meaningful sense (even for Brownian motions as integrators) as a limit.

Theorem 40. Every up Cauchy sequence in Dup has a limit in Dup, i.e., Dup is complete.

A proof is in Kühn (2016, Thm. 3.49).

Definition 41 (the closure of S). With Sup we denote the closure of S under dup, i.e.,
Sup = {H : Ω× [0, T ]→ R | ∃(Hn)n∈N ⊂ S s.t. Hn → H up}.

Note that for all H ∈ Sup sup
t∈[0,T ]

|Hn,t − Ht| has to be F-measurable. All H ∈ Sup

have to be adapted and left-continuous (Kühn, 2016, Bem. 3.51 and Thm. 3.49).

Definition 42 (Stochastic Integral on Sup). Let X be a good integrator, H ∈ Sup, and
(Hn)n∈N ⊂ S be a sequence with Hn → H, up. The stochastic integral of H over X is
lim
n→∞

JX(Hn) =: JX(H) =: H •X.

Theorem 43. The definition for H •X with X being a good integrator and H ∈ Sup is
well defined, i.e., it does not depend on which (Hn)n∈N ⊂ S is chosen.

Proof in Kühn (2016, Bem. 3.53).

Theorem 44. The mapping JX : Sup → D is the unique, continuous function on Sup
that equals JX : S → D on S (when identifying indistinguishable processes).

Proven in Kühn (2016, Thm. 3.54). Let

L0 = {H ∈ L | H0 = 0}.

Theorem 45. It holds that S ⊂ L0 dense with respect to dup and that Sup = L0.

Proof in Kühn (2016, Thm. 3.55). Thus, H • X is defined for all H ∈ L0 and all
semimartingales X.

Now, we calculate the integral B • Bt (B is a standard Brownian motion). The
Brownian motion is in L0 and is a martingale, thus the integral is defined. We set
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Bn,u =
∑

k=1,...,2n
B k−1

2n
T I( k−1

2n
T, k

2n
T ](u), u ∈ [0, T ]. It holds Bn ∈ S ∀n ∈ N. Since the

paths of B are uniformly continuous, it holds Bn → B up, n→∞. We calculate

JB(Bn)t =
∑

k=1,...,2n s.t. k
2n
T≤t

B k−1
2n

T

(
B k

2n
T −B k−1

2n
T

)
=

∑
k=1,...,2n s.t. k

2n
T≤t

1

2

(
B2

k
2n
T
−B2

k−1
2n

T

)
−

∑
k=1,...,2n s.t. k

2n
T≤t

1

2

(
B k

2n
T −B k−1

2n
T

)2
.

The first sum converges to 1
2B

2
t and the second sum to 1

2 t (Thm. 16). Since the stochastic
integral is continuous, the grid is dense in [0, T ], and t 7→ 1

2B
2
t − 1

2 t as well as t 7→ JB(B)t
are right-continuous, it follows P

(
JB(B)t = 1

2B
2
t − 1

2 t ∀t ∈ [0, T ]
)

= 1.

Let A be a continuous process with finite variation and A0 = 0. It follows A • At =
1
2A

2
t (Kühn, 2016, p. 41). When we have JX(X) for any continuous, good integrator

X and Xn defined analogously to Bn converging up to X, it follows that JX(Xn) is an

up Cauchy sequence. The limit of
∑

k=1,...,2n

(
X k

2n
T −X k−1

2n
T

)2
(n → ∞) exists, which

means that for a continuous, good integrator the so-called quadratic variation on a grid
with mesh size to zero exists (cf. Thm. 15). Actually, the quadratic variation (on a grid
with mesh size to zero) exists even for non-continuous, good integrators, which is not
clear at all since Xn does not need to converge to X up but pointwise. It is important
to note that a pointwise convergence does not necessarily imply a convergence in the
up sense. However, for some results, the pointwise convergence is enough, like for the
quadratic variation.

Now the question arises why this effort for the definition of the stochastic integral is
needed. Another way would be to shrink the set of possible integrators to (continuous)
processes with finite variation. However, as the next example shows, this would not be
a good choice for financial mathematics.

In a financial market with a riskless bond S0 ≡ 0 and a risky asset modeled via a
continuous, non-constant stochastic process with finite variation, which is a good inte-
grator, we can define the left-continuous, adapted integrand H via Ht =

(
S1
t − S1

0

)
It≤t0

where t0 ∈ (0, T ] is a point of time where P(S1
t0 6= S1

0) > 1, which exists. Applying
the result for A • At for continuous processes with finite variation, the trading gain is
given via H • S1

T =
(
S1 − S1

0

)
•
(
S1 − S1

0

)
t0

= 1
2

(
S1
t0 − S

1
0

)2
, which is non-negative with

probability 1 and positive with probability > 0. That means, this would be an arbitrage
possibility (cf. Kühn, 2016, Prop. 3.58).

In the following, we give a few more results concerning the stochastic integral. If τ is
a [0, T ]-valued stopping time, it holds (H •X)τ =

(
HIJ0,τK

)
•X = H •(Xτ ) (Kühn, 2016,

pp. 42f). The jump process of the integral s 7→ ∆(H •X)s and the process s 7→ Hs(∆Xs)
are indistinguishable (Kühn, 2016, p. 43).
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So far, we have seen that our stochastic integral maps a good integrator (i.e. a
semimartingale) and an integrand (∈ L0 = Sup) into the set D. However, is the integral
itself a semimartingale again?

Theorem 46. The process H • X is a good integrator and it holds for G ∈ Sup that
G • (H •X) = (GH) •X.

Proven in (Kühn, 2016, p. 43). This property is called associativity.

If H is bounded and X is a square integrable martingale, H •X is a square integrable
martingale, too (Kühn, 2016, pp. 43f). When H ∈ Sup, then H is locally bounded. If
X is a local square integrable martingale, i.e., if there exists a localizing sequence of

stopping times (Tn)n∈N s.t. E
[(
XTn
T

)2
]
< ∞ and XTn is a martingale for all n ∈ N,

then H •X is a local square integrable martingale, too (Kühn, 2016, p. 45).

It is possible to relax the restriction of the integrands (H ∈ L0) to locally bounded,
predictable processes H, which requires much more effort (Protter, 2005, Chap. IV.).
It also holds that for locally bounded integrands and local martingales as integrators,
the integral is a local martingale. If the integrand is bounded and the integrator is a
square integrable martingale, the integral is a square integrable martingale, too. But for
a bounded integrand and a martingale as integrator, the integral does not need to be a
martingale (Kühn, 2016, Bem. 3.60).

Definition 47 (Uniformly Integrable). A sequence of real-valued random variables
(Zn)n∈N is called uniformly integrable if E[|Zn|] <∞ ∀n ≥ 1 and

lim
z→∞

sup
n≥1

∫
|Zn|>z

|Zn|dP

 = 0.

Theorem 48. A sequence of real-valued random variables (Zn)n∈N is uniformly inte-

grable if and only if there exists a function ϕ : R+ → R+ with ϕ(x)
x → ∞, x → ∞ s.t.

sup
n∈N

E[ϕ(|Zn|)] <∞.

(Kühn, 2016, p. 44).

Definition 49 (Random Grid Tends to Identity). Let (σn)n∈N be a sequence of random
grids given through σn = (Tn0 , T

n
1 , . . . , T

n
kn

) with 0 = Tn0 ≤ Tn1 ≤ . . . ≤ Tnkn = T stopping
times, kn ∈ N. We say that (σn)n∈N tends to identity if

‖σn‖ = max
i=1,...,kn

|Tni − Tni−1| → 0 a.s., n→∞.

Let Y be a stochastic process and σ = (T0, T1, . . . , Tk) be a random grid. Via

Y (σ)(ω, t) =
∑

i=1,...,k

YTi−1(ω, t)IKTi−1,TiK(ω, t)
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we define the simple predictable process Y (σ). And for an integrator X we define the
integral

Y (σ) •X =
∑

i=1,...,k

YTi−1(XTi−1 −XTi).

Theorem 50. If X is a semimartingale, Y is an element of D0(= {Y ∈ D | Y0 = 0}) or
L0, and (σn)n∈N is a sequence of random grids tending to identity, it holds Y (σn) •X →
Y− •X up, n→∞.

Proven in Protter (2005, Thm. II.21). Note that in general Y (σn) → Y−, n → ∞
is true only pointwise but not up (if Y is continuous, it is true also up). Like for the
quadratic variation on a grid with mesh size to zero, the step functions do not need to
converge up to the integrand, however, the sequence of integrals converges up.

Definition 51 (Quadratic Variation of a Semimartingale). Let X and Y be two semi-
martingales, which especially means that X and Y are elements of D. We define the
quadratic variation process of X through [X,X] = X2 −X2

0 − 2X− •X. The quadratic
covariation of X and Y is defined through [X,Y ] = XY −X0Y0 −X− • Y − Y− •X.

It holds [X,Y ] = 1
2([X+Y,X+Y ]− [X,X]− [Y, Y ]), which is called the polarization

identity. If B is a standard Brownian motion, it holds [B,B]t = B2
t − 2B • Bt =

B2
t − (B2

t − t) = t ∀t ≥ 0. That means, for a Brownian motion the formally defined
quadratic variation equals the limit of the quadratic variation for grids with mesh size
to zero (cf. Thm. 15). This is true for all semimartingales.

Let X be a semimartingale. The quadratic variation of X is an increasing, adapted,
càdlàg process.

Theorem 52. It holds [X,X]0 = 0 and ∆[X,X]t = [X,X]t − [X,X]t− = (∆Xt)
2. If

(σn)n∈N is a sequence of random grids tending to identity (with 0 = Tn0 ≤ Tn1 ≤ . . . ≤
Tnkn = T stopping times), then

∑
i=1,...,kn

(
XTni −XTni−1

)2
→ [X,X] up, n→∞. If τ is a

stopping time, it holds [Xτ , X] = [X,Xτ ] = [Xτ , Xτ ] = [X,X]τ .

A proof can be found in Kühn (2016, Thm. 3.65).

Theorem 53. The process [X,Y ] has finite variation and, thus, is a semimartingale.

This theorem is proven in Kühn (2016, Korollar 3.66).

Theorem 54. Let X and Y be semimartingales. The process XY is a semimartingale
and, thus, the vector space of all semimartingales equipped with that product is an
algebra.

A proof is given in Kühn (2016, Korollar 3.67). The process [X,X] is càdlàg and
increasing and it holds ∆[X,X]t = (∆Xt)

2, t ≥ 0, thus, we can path-by-path de-
compose the process into a continuous part and a jump part via [X,X]t = [X,X]ct +
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∑
0<s≤t

(∆Xs)
2, t ≥ 0, with [X,X]ct = lim

n→∞

[X,X]t −
∑

0<s≤t, |∆Xs|> 1
n

(∆Xs)
2

 (Protter,

2005, Thm. II.22). Note that there is in general no canonical numbering of the jumps
since it is possible that there are infinite many jumps in any neighborhood of zero. Since
there is only a finite number of jumps bigger than 1

n , the last sum is well defined. Since
[X,X]t is increasing and ∆[X,X]t = (∆Xt)

2, t ≥ 0, the difference is non-negative. Be-
cause the difference is decreasing in n, the limit exists. Note that in general it is not
possible to decompose a process X (with unbounded variation) into a continuous part
and a jump part. For all increasing processes A it is possible to define the continuous

part via Act = lim
n→∞

At − ∑
0≤s<t, As+−As−> 1

n

(As+ −As−)

 − (At − At−) (Kühn, 2016,

p. 49).

Let X and Y be semimartingales. It holds [X,Y ]0 = 0 and ∆[X,Y ] = ∆X∆Y .
Thus, again, we can path-by-path decompose the process into a continuous part and a
jump part via [X,Y ]t = [X,Y ]ct +

∑
0<s≤t

(∆Xs)(∆Ys), t ≥ 0 (Protter, 2005, Thm. II.23).

Theorem 55. Let (σn)n∈N be a sequence of random grids tending to identity with
0 = Tn0 ≤ Tn1 ≤ . . . ≤ Tnkn = T stopping times. It holds

∑
i=1,...,kn

(XTni −XTni−1)(Y Tni −

Y Tni−1) → [X,Y ] up, n → ∞. If τ is a stopping time, it holds [Xτ , Y ] = [X,Y τ ] =
[Xτ , Y τ ] = [X,Y ]τ .

The proof is in Kühn (2016, Thm. 3.69).

Let X be an adapted, càdlàg process with bounded variation, then it holds [X,X]c =
0. If X is additionally continuous, it holds that [X,X] = X2

0 is constant (Protter, 2005,
Thm. II.26). Let X be a semimartingale with [X,X]c = 0 and Y be any semimartingale,
it holds [X,Y ]t = X0Y0 +

∑
0<s≤t

∆Xs∆Ys (Protter, 2005, Thm. II.28). Especially, then

it holds [X,Y ]c = 0 and [X,Y ] = 0 if X or Y has continuous paths.

Theorem 56. Let X be a local martingale with continuous paths and [X,X]T = 0.
Then X is constant, i.e., Xt = x0 ∈ R ∀t ∈ [0, T ].

Proof in Protter (2005, Thm. II.27). Note that the Brownian motion has infinite
variation (cf. Protter, 2005, Thm. I.29).

Theorem 57. If X and Y are semimartingales and H,K ∈ L0, it holds [H •X,K •Y ] =
(HK) • [X,Y ].

Proven in Kühn (2016, Thm. 3.71).

Theorem 58. Let M be a local martingale. The process M is a square integrable
martingale if and only if E[[M,M ]T ] <∞. In this case, it holds for the variance V[Mt] =
E[M2

t ]−M2
0 = E[[M,M ]t] ∀t ∈ [0, T ].



38 CHAPTER 3. STOCHASTIC ANALYSIS IN CONTINUOUS TIME

Proof in Kühn (2016, Thm. 3.72). It follows for a one-dimensional standard Brownian

motion B and H ∈ L0 with E
[
t∫

0

H2
sds

]
< ∞ that E[H • Bt] = 0 and E[(H • Bt)2] =

E
[
t∫

0

H2
sds

]
∀t ∈ [0, T ] (Kühn, 2016, Korollar 3.74).

Doob’s martingale inequality states that for a martingale or a non-negative sub-
martingale (Mt)t≥0 which has to be right-continuous if p > 1 and T > 0, it holds∥∥∥∥∥sup
t≤T
|Mt|

∥∥∥∥∥
p

≤ p
p−1‖MT ‖p.

Theorem 59. If H is an adapted, càdlàg process, X and Y are semimartingales, and
(σn)n∈N is a sequence of random grids tending to identity, then it holds∑

i=1,...,kn

HTni−1
(XTni −XTni−1)(Y Tni − Y Tni−1)→ H− • [X,Y ] up, n→∞.

Proof in Kühn (2016, Thm. 3.75).

3.4 Lemma of Itō

After having constructed the stochastic integral, another aim of this chapter is to define
stochastic differential equations (actually: stochastic integral equations). For this, we
need something like a stochastic version of integration by parts. This is what the Lemma
of Itō tells us. Note that the

∫
-sign is also used for stochastic integrals. (Note that we

write Xi. to distinguish X2 from X2..)

Theorem 60 (Lemma of Itō). Let X = (X1., . . . , Xd.) be a d-tuple of semimartingales
and f : Rd → R be a twice continuously differentiable function. The Lemma of Itō (Itō’s
formula) states that f(X) again is a semimartingale, which is indistinguishable to

f(Xt) =f(X0) +
∑

i=1,...,d

(
∂f

∂xi
(X−)

)
•Xi

t

+
1

2

∑
1≤i,j≤d

(
∂2f

∂xixj

)
•
[
Xi., Xj.

]c
t

+
∑

0<s≤t

f(Xs)− f(Xs−)−
∑

i=1,...,d

∂f

∂xi
(Xs−)∆Xi

s


(Protter, 2005, Thm. II.32 and Thm. II.33). Especially, if d = 1, X is a semimartin-

gale, and f is a C2 real function, f(X) is a semimartingale, too, and it holds

f(Xt) =f(X0) +

t∫
0

f ′(Xs−)dXs +
1

2

t∫
0

f ′′(Xs−)d[X,X]cs
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+
∑

0<s≤t
[f(Xs)− f(Xs−)− f ′(Xs−∆Xs)].

If d = 1 and A is an adapted, càdlàg process with finite variation, Itō’s formula
reduces to

f(At) = f(A0) +

t∫
0

f(As)dA
c
s +

∑
0<s≤t

(f(As)− f(As−))

(Kühn, 2016, p. 54).
If X1.

t = t it holds [X1., Xj.] = 0 ∀j and ∆X1. = 0. If furthermore d = 2 and X2. is
a Brownian motion B, it holds (for f once differentiable in the first argument and twice
in the second),

f(t, Bt) = f(0, 0) +

t∫
0

∂1f(s,Bs)ds+

t∫
0

∂2f(s,Bs)dBs +
1

2

t∫
0

∂22f(s,Bs)ds

(Kühn, 2016, Bem. 3.78).

Theorem 61. If X is a continuous semimartingale and f ∈ C2(R), f(X) is a semi-
martingale again and it holds

f(Xt) = f(X0) + f ′(X) •Xt +
1

2
f ′′(X) • [X,X]t.

(Kühn, 2016, Korollar 3.79).
If d = 2, X1.

t = t, and X2.
t = X̃t, which itself is given via a so-called stochastic

differential equation X̃t = X̃0 +
t∫

0

asds +
t∫

0

bsdBs with existing integrals (this type of

equation is defined in the next section), we can use Itō’s formula to obtain

f(t, X̃t) =

∫ t

0

(
∂2f(s, X̃s)as + ∂1f(s, X̃s) +

1

2
∂22f(s, X̃s)b

2
s

)
ds+

∫ t

0
∂2f(s, X̃s)bsdBs

(Kuo, 2006, Thm. 7.4.3, p. 103).

Theorem 62. Let X be a semimartingale with X0 = 0. There exists exactly one
semimartingale Y that fulfills

Yt = 1 + Y− •Xt ∀t ≥ 0.

The process Y is given by

Yt = eXt−
1
2

[X,X]ct
∏

0<s≤t

(
(1 + ∆Xs)e

−∆Xs
)

= eXt−
1
2

[X,X]t
∏

0<s≤t

(
(1 + ∆Xs)e

−∆Xs+
1
2

(∆Xs)2
)
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where the product converges.

Proven in Protter (2005, Thm. II.37) (cf. Kühn, 2016, Thm. 3.81).

Definition 63 (Stochastic Exponential). Let X be a semimartingale with X0 = 0. The
unique solution of Zt = 1 + Z− •Xt ∀t ≥ 0 is called the stochastic exponential of X (or
the Doléans-Dade exponential of X). We write E(X) = Z, i.e., E(X)t = 1+E(X)− •Xt.

Definition 64 (Geometric Brownian Motion without Drift). Let Xt = σBt, t ≥ 0, σ ∈
R and B a Brownian motion. It holds E(σB)t = eσBt−

1
2

[σB,σB]t = eσBt−
σ2

2
t, which is

called a geometric Brownian motion (without drift).

Theorem 65. The stochastic exponential is with probability one positive if and only if
∆X > −1. If X is a local martingale, E(X) is a local martingale, too.

(Kühn, 2016, Bem. 3.84).

Definition 66 (Lévy Process). Let (Xt)t∈I (with an index set I = [0, T ] or I = R+).
We say that X has independent increments if for any n ∈ N≥3 and 0 ≤ t1 < t2 < . . . <
tn (≤ T or <∞), Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 are stochastically independent.

We say that X has stationary increments if for all h > 0 and all t1, t2 ∈ I s.t.
t1 + h, t2 + h ∈ I it holds Xt1+h −Xt1 ∼ Xt2+h −Xt2.

A process X is called stochastically continuous if for all ε > 0 and all t0 > 0 it holds
lim
t→t0

P(|Xt −Xt0 | > ε) = 0.

All stochastically continuous processes X with independent and stationary increments
with X0 = 0 a.s. are called Lévy processes.

Theorem 67. If X is a Lévy process and a martingale, E(X) is a martingale, too.

(Kühn, 2016, Bem. 3.84).

Theorem 68 (Lévy’s Theorem). The process X is a Brownian motion if and only if X
is a local martingale with X0 = 0 and [X,X]t = t ∀t ≥ 0

(Kühn, 2016, Thm. 3.86).

Definition 69 (Poisson Process). The process Nt =
∞∑
k=1

ISk≤t with Sk =
k∑
i=1

Ti and

(Ti)i∈N a sequence of independently and identically exponentially distributed random vari-
ables with parameter λ > 0 (the jump rate) is called Poisson process.

It holds that Nt is Poisson distributed with parameter λt.

Definition 70 (Compound Poisson Process). Let additionally to Def. 69 (Uk)k∈N be
an i.i.d. sequence of random variables that is independent of (Ti)i∈N. The process Yt =
∞∑
k=1

UkISk≤t is called compound Poisson process, the Uk’s are called the jump heights.
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Compound poisson processes are also called Poisson-driven processes. Important
examples of Lévy processes are the standard Brownian motion, Poisson processes, and
compound Poisson processes. Note that Lévy processes do not need to have continuous
paths. An example of a stochastically continuous process with potentially discontinuous
paths is the (compound) Lévy process: It holds

lim
t→t0

P(|Yt − Yt0 | > ε) ≤ lim
t→t0

P(|Yt − Yt0 | > 0) ≤ lim
t→t0

(
1− e−λ|t−t0|

)
= 0.

3.5 Stochastic Differential Equations

With the stochastic exponential, we have seen an example for a stochastic differential
equation (SDE). Note that SDE is only a name for a type of equation that is actually
a stochastic integral equation. There is a broad literature on SDEs to which we refer
the interested reader, for example Protter (2005, Chap. V.) and Applebaum (2009);
Øksendal (2003). Here, we just give a few basic results on SDEs. As known from ordinary
differential equations (ODEs), the Lipschitz property is important for solution results.
Thus, it is not surprising that we have to define Lipschitz continuity for stochastic
processes first. But, there is more than one possibility for this definition.

Definition 71 (Lipschitz). A function f : R+×Rn → R is called Lipschitz if there exists
k ∈ R s.t. |f(t, x) − f(t, y)| ≤ k‖x − y‖2 and t 7→ f(t, x) is càdlàg [sic!] (cf. Protter,
2005, pp. 255ff) for all x. We call f autonomous if f(t, x) = f(x), t ≥ 0 for all x.

A function f : R+ × Ω × Rn → R is called random Lipschitz if (t, ω) 7→ f(t, ω, x)
is in L for all fixed x and if there exists a finite random variable K s.t. for each (t, ω)
|f(t, ω, x)− f(t, ω, y)| ≤ K(ω)‖x− y‖2.

An operator F : Dn → D is called process Lipschitz if for all X,Y ∈ Dn and for
any stopping time T it holds XT− = Y T− ⇒ F (X)T− = F (Y )T− (where XT− is meant
component-by-component) and if there exists an adapted process K ∈ L s.t. |F (X)t −
F (Y )t| ≤ Kt‖Xt − Yt‖2 ∀ω.

An operator F : Dn → D is called functional Lipschitz if for all X,Y ∈ Dn and for
any stopping time T it holds XT− = Y T− ⇒ F (X)T− = F (Y )T− and if there exists an
increasing finite process K ∈ L s.t. |F (X)t − F (Y )t| ≤ Kt sup

s≤t
‖Xs − Ys‖2 ∀ω.

Theorem 72 (Stochastic Differential Equation I.). Let Z be a semimartingale with
Z0 = 0 and f : R+ × Ω × R → R random Lipschitz. Let X0 be a finite and F0-

measurable random variable. Then the equation Xt = X0 +
t∫

0

f(s, ω,Xs−)dZs(ω) has a

unique solution, which is a semimartingale.

Proven in Protter (2005, Thm. V.6).

Theorem 73 (Stochastic Differential Equation II.). Let Z be a d-dimensional vector
of semimartingales with Zi0 = 0 ∀i = 1, . . . , d. Let J ∈ Dn be a vector of processes and
let F ij : Dn → D be functional Lipschitz operators (i = 1, . . . , n, j = 1, . . . , d). The
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system Xi
t = J it +

∑
j=1,...,d

t∫
0

F ij (X)s−dZ
j
s has a unique solution in Dn. If J is a vector of

semimartingales, X is a vector of semimartingales, too.

Proof in Protter (2005, Thm. V.7).

The probably most important SDE is that one of a geometric Brownian motion
(GBM) with drift, which is given through

Xt = X0 +

t∫
0

µXsds +

t∫
0

σXsdBs,

where B is a standard Brownian motion, X0 ∈ R+ a.s. is the initial value, µ > −1 is the
drift, and σ > 0 is the volatility. Note that the X is continuous and, thus, Xs = Xs−.
By use of Itō’s formula, it can be obtained that

Xt = X0 · exp

((
µ− σ2

2

)
t+ σBt

)
,

which is a supermartingale for µ ∈ (−1, 0), a martingale for µ = 0, and a submartingale
for µ > 0. In all cases, the GBM is a semimartingale. The GBM is often used as the
price process in financial mathematics, e.g., in the Black-Scholes model, which is used for
option pricing (Black and Scholes, 1973). The GBM (as a semimartingale) can be used
as integrator and a predictable trading strategy as integrand to calculate the trading
gain via an integral.

Note that every càdlàg supermartingale and every submartingale is a semimartingale
(Protter, 2005, Thm. III.32 and Corollary). The GBM has the disadvantage that it is
a continuous process. However, on “real” stock markets, jumps happen, due to, e.g.,
new information or no trading on the weekend. Thus, Merton (1976) developed another
important price process given by the stochastic differential equation

Xt = X0 +

t∫
0

(µ− κλ)Xsds +

t∫
0

σXsdBs +

t∫
0

XsdNs,

which is called Merton’s jump diffusion model (MJDM). This is a generalization to the
GBM, where Nt is a compound Poisson process with jump rate λ > 0 and an i.i.d.
sequence of jump heights (Yk−1)k∈N with Yk > 0 a.s., Yk ≥ 0 and expected jump height
κ > 0. The solution of this SDE is given by Merton (1976) through

Xt = X0 · exp

((
µ− σ2

2

)
t+ σBt

) N∏
k=1

Yi.

Here, N is a Poisson distributed random variable with parameter λt, which denotes the
number of jumps up to time t. The term −λκ compensates the expected movement of
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the price due to the jumps s.t. µ is the drift of the price process again. A very detailed
solution of MJDM with explanations to jump processes can be found in the work of
Privault (2017).

Two other important price process models in stochastic finance are the Ornstein-
Uhlenbeck process, which is sometimes also called Vaš́ıček model, and the Cox-Ingersoll-
Ross model, which is an extension of the previous one. Both processes are mean revert-
ing, i.e., if the price is above the respective mean reversion level, the drift is negative
and vice versa. The Ornstein-Uhlenbeck process is given through the SDE

Xt = X0 +

t∫
0

θ(µ−Xs)ds+

t∫
0

σdBs,

where X0 ∈ R is the initial price, θ > 0 is the so-called mean reversion speed, µ ∈
R is the mean reversion level, σ > 0 is the volatility or diffusion level, and Bt is a
standard Brownian motion. Note that the diffusion term is independent of the price
level. Thus, the Ornstein-Uhlenbeck process has the disadvantage that it can become
negative. However, it has the advantage that one can compute the solution analytically
(but not without an integral), which is

Xt = X0 · exp(−θt) + µ(1− exp(−θt)) +

t∫
0

σ · exp(θ(s− t))dBs.

The Cox-Ingersoll-Ross model is given through the SDE

Xt = X0 +

t∫
0

θ(µ−Xs)ds+

t∫
0

σ
√
XsdBs,

with the same kinds of parameters as above. If additionally µ > 0 is satisfied, the process
avoids negative values. However, there is no analytical solution.

Now, we have finished the overview on stochastic calculus in finance. The most
important things we learned are the conditions under which a stochastic integral is well-
defined: The integrand has to be locally bounded and predictable, e.g., adapted and
càglàd, and the integrator has to be a semimartingale, which is càdlàg. Additionally, we
have learned about Itō’s formula, which allows us to solve (some) stochastic differential
equations, and we have seen some examples for stochastic processes, which are often
used as price models. At the very end of this chapter, we want to mention that the
stochastic integral used in the work at hand is called Itō integral and that there is
another possibility for defining stochastic integrals developed by R. L. Stratonowitsch,
which is not common in stochastic finance.
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Chapter 4

New Findings in Stochastic
Calculus

In this chapter, we present a few new findings in stochastic calculus, which were inspired
by the analysis of feedback trading rules. Besides the application to the investigation of
feedback trading strategies, these findings contribute to the theory of stochastic processes
or random variables.

4.1 Another Stochastic Fubini-type Theorem

As seen in the Cox-Ingersoll-Ross model, price processes are sometimes modeled via
SDEs that cannot be solved analytically. However, often an analytical solution of an
SDE is not needed at all since the expected value of the solution (as a function of time)
is enough for applications.

The aim of this section is to show that it is allowed to switch the expectation operator
and the Itō integral (under specific conditions). With this, we then apply the expectation
operator on both sides of an SDE to get a deterministic ODE for the expectation of the
solution. The main contribution of this section is the next theorem: It states that it
is allowed to switch the two integrals of interest, namely the Itō integral and E if the
integrator is linear in expectation.

Theorem 74. Let Z be a semimartingale with E[Zt − Zs] = ζ(t − s) ∀0 ≤ s ≤ t ≤ T .
Further let X ∈ D0 be integrable (i.e., E[|Xt|] < ∞ ∀t) and Zt − Zs independent of Xs

for all 0 ≤ s ≤ t ≤ T . Let Yt = X • Zt =
∫ t

0 Xs−dZs be integrable, too, and E[Xt]
continuous. Then it holds that

E[Yt] =

∫ t

0
E[Xs]ζds.

Proof. If X ∈ D0 it follows that X− ∈ L0. We define a sequence of random grids through
σn = (0, Tn ,

2T
n , . . . , T ), cf. Def. 49. Note that (σn)n tends to identity and that all σn are

45
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deterministic. We define the sequence of simple predictable processes Xn via

Xn(ω, t) =
∑

i=1,...,2n

X (i−1)T
2n

(ω, t)I] (i−1)T
2n

, iT
2n

](t).
With Thm. 50 it follows that Xn • Z → X • Z, up.

We choose a subsequence of Xn s.t. the convergence Xn • Z → X • Z is uniformly
in time and a.s. in ω (which is possible since the limit is in probability). Additionally,
we set all Xn(ω) ≡ 0 where either the convergence does not hold (because it is just a.s.)
or where the distance (as the supremum over t) between (Xn • Z)(ω) and (X • Z)(ω)
is ≥ 1. We rename this new sequence to Xn and note that nothing changes concerning
the convergence, besides that the convergence is dominated by the integrable function
|Yt|+ 1 (a).

The convergence Xn → X is pointwise in t for a.a. ω. For each t (and a.a. ω), we
can find an n∗ so that |Xn

t (ω) −Xt(ω)| < 1 for all n ≥ n∗. That means, we can treat
the convergence like it was bounded (with boundary |Xt|+ 1) (e).

Furthermore, we define for all Xn a sequence Xn,m (m ≥ n) of representations via

Xn,m(ω, t) =
∑

i=1,...,2n

∑
j=1,...,2m−n

X (i−1)T
2n

(ω, t)I] (i−1)T
2n

+
(j−1)T

2m
,
(i−1)T

2n
+ jT

2m

](t).
Note that Xn,n = Xn and that all Xn,m are just representations of Xn for all m ≥ n
(i.e., all Xn,m and Xn are exactly the same function; convergences are monotonous) (b).
It holds that Xu and Xn

u are independent of Zw − Zv for all 0 ≤ u ≤ v ≤ w ≤ T (c).
For shortening the notation, we insert a subscript t at the end of the formulae instead
of subscript ∧t in each random variable. Further, note that E[Xt] is bounded on [0, T ],
thus, for a sequence that converges to E[Xt] this convergence can assumed to be bounded
(with the same argument as above) (d).

This leads to:

E[Yt] =E[X • Zt]

=E
[

lim
n→∞

Xn • Zt
]

(a)
= lim

n→∞
E[Xn • Zt]

= lim
n→∞

E
[

lim
m≥n, m→∞

Xn,m • Zt
]

(b)
= lim

n→∞
lim

m≥n, m→∞
E[Xn,m • Zt]

= lim
n→∞

lim
m≥n, m→∞

E

 ∑
j=1,...,2m

Xn
(j−1)T

2m

(
Z jT

2m
− Z (j−1)T

2m

)
t
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(c)
= lim

n→∞
lim

m≥n, m→∞

 ∑
j=1,...,2m

E
[
Xn

(j−1)T
2m

]
E
[
Z jT

2m
− Z (j−1)T

2m

]
t

= lim
n→∞

 lim
m≥n, m→∞

∑
j=1,...,2m

E
[
Xn

(j−1)T
2m

]
· ζ

2m


t

= lim
n→∞

∫ t

0
E[Xn

s ]ζds

(d)
=

∫ t

0
lim
n→∞

E[Xn
s ]ζds

(e)
=

∫ t

0
E
[

lim
n→∞

Xn
s

]
ζds

=

∫ t

0
E[Xs]ζds

Next, we present an alternative proof, which is more constructive and does not use
Thm. 50.

Proof. Since Xt− is predictable we find a sequence of simple predictable processes (Hn
t )t

so that Hn → X, n → ∞, up and Hn • Z → X • Z, n → ∞, up. In the next step
we choose a subsequence so that Hn → X is uniformly in time and a.s. in ω (which is
possible since the limit is in probability). Note that the limit for the integral is still up.
For shortening the notation, we rename it to Hn again.

Now, Hn
t is of the form Hn

t (ω) =
∑

i=1,...,kn

Mn
i−1(ω)IKTni−1,T

n
i K(ω, t) with kn ∈ N,

(Tni )i=1,...,kn stopping times with 0 = Tn0 ≤ Tn1 ≤ . . . ≤ Tnkn = T and Mn
i FTni -measurable

random variables (i = 0, . . . , kn − 1) with |Mn
i | <∞.

We note that we can replace Mn
i−1 by XTni−1

. This is true since Mn
i−1 = Hn

Tni−1+

and on the interval KTni−1, T
n
i K the distance between Hn and X goes to zero (for a.a. ω

and n → ∞) and the distance between XTni−1
and Hn

Tni−1+ goes to zero (for a.a. ω and

n→∞). For clear, XTni
are FTni -measurable random variables (i = 0, . . . , kn − 1) with∣∣XTni

∣∣ <∞.

As a consequence, the new sequence of processes with XTni−1
instead of Mn

i−1 is a
sequence of simple predictable processes and still converges uniformly in time and a.s.
in ω to Xt− and still Hn •Z → X •Z, n→∞, up holds (with another rename for Hn).

Now we choose another subsequence (of that subsequence) so that the latter limit
is a.s. in ω, too. And we set all Hn(ω) ≡ 0 if the distances (as the supremum over t)
between Hn(ω) and X(ω) or between (Hn • Z)(ω) and (X • Z)(ω) is ≥ 1. And we set
Hn ≡ 0 for all ω where Hn does not converge to X or where Hn • Z does not converge
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to X • Z. These definitions do not change anything on the convergences, save that the
convergences are dominated now.

Since Hn • Z converges uniformly in t to Y a.s. and Y is integrable, we can use the
dominated convergence theorem (e.g., with boundary |Yt|+1) to obtain limn→∞ E[(Hn •
Z)t] = E[Yt]. Now we have to calculate E[(Hn • Z)t]. For each Hn

t , which is a simple
predictable process, we define a sequence (Hn,m)m of simple predictable processes via
Hn,m =

∑
j=1,...,2m H

n
(j−1)T

2m

I( (j−1)T
2m

, jT
2m

] (m ≥ 0).

With ϑn,m−i (ω) we denote the largest point of the grid { 0
2m ,

T
2m , . . . , T} with ϑn,m−i (ω)

≤ Tni (ω) and with ϑn,m+
i (ω) we denote the smallest point of the grid { 0

2m ,
T

2m , . . . , T},
with ϑn,m+

i (ω) ≥ Tni (ω). Without loss of generality, we choose m big enough s.t. all
jumps (that are not at the same point of time) of Hn(ω) are separated by the dyadic
grid (ω-by-ω). It holds, since Z is càdlàg:

sup
t∈[0,T ]

|(Hn,m • Z)(ω)t − (Hn • Z)(ω)t)|

≤ sup
t∈[0,T ]

 ∑
i=1,...,nk

∣∣∣(Hn
ϑn,m+
i

(ω)−Hn
ϑn,m−
i

(ω)
)(

Zϑn,m+
i

− ZTni
)∣∣∣

t

→ 0, m→∞

For all ω, Hn,m • Z converges to Hn • Z (m→∞), especially there exists an m∗ so
that the distance is smaller than 1 for all m ≥ m∗ (for all t). That means, again, we can
use the dominated convergence theorem (with boundary |Hn • Zt|+ 1) to get

E [(Hn • Z)t] =E
[(

lim
m→∞

Hn,m
)
• Zt

]
=E

[
lim
m→∞

(Hn,m • Z)t

]
= lim
m→∞

E [Hn,m • Zt]

= lim
m→∞

E

 ∑
j=1,...,2m

Hn
(j−1)T

2m

(
Z (j−1)T

2m
− Z jT

2m

)
t


= lim
m→∞

 ∑
j=1,...,2m

E
[
Hn

(j−1)T
2m

]
E
[
Z (j−1)T

2m
− Z jT

2m

]
t

= lim
m→∞

 ∑
j=1,...,2m

E
[
Hn

(j−1)T
2m

]
ζ

1

2m


t

=

∫ t

0
E [Hn

s ] ζds.
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Here, we used that X is independent of the increments of Z and thus Hn are also
independent. Putting these results together and using a third and a fourth time the
dominated convergence theorem (but these times for X with boundary |Xt|+ 1 and for
E[X] which is bounded on [0, T ]) completes the proof: E[Yt] = limn→∞ E[(Hn • Z)t] =
limn→∞

∫ t
0 E[Hn

s ]ζds =
∫ t

0 limn→∞ E[Hn
s ]ζds =

∫ t
0 E [limn→∞H

n
s ] ζds =

∫ t
0 E[Xs]ζds

(since X is càglàd).

Now, we apply this theorem to SDEs.

Theorem 75. Let Z be a d-dimensional vector of semimartingales with stochastically
independent and stationary increments, which implies that there are ζj ∈ R s.t. E[Zjt −
Zjs ] = ζj(t − s), and Zi0 = 0 ∀i = 1, . . . , d. Let F ij : Dn → D be linear operators
(i = 1, . . . , n, j = 1, . . . , d). Let J ∈ Dn be a vector of processes with E[Jt] = δt ∈ Rn.
We define

Xi
t = J it +

∑
j=1,...,d

t∫
0

F ij (X)s−dZ
j
s .

Let all Zj be independent of each other. If Xt is an integrable process, it holds with
E[Xi

t ] = ξit that

ξit = δit +
∑

j=1,...,d

t∫
0

F ij (ξs)ζ
jdt,

which is an ordinary differential equation (ODE).

Proof. First, note that if F ij : Dn → D are linear operators (i = 1, . . . , n, j = 1, . . . , d),

F ij are functional Lipschitz. Note that E[Zjt − Z
j
s ] = ζj(t − s) is justified since Z has

stationary increments. We note that Xi
t is independent of the increments Zjt+h−Z

j
t (due

to the SDE and the independent increments of Z). Further, note that ξi is continuous
since Z has stationary increments and due to the construction of the SDE (otherwise
supt∈[0,T ]|ξit| =∞). So we can apply the expectation operator on both sides of the SDE
and use Thm. 74.

Theorem 75 is very helpful in the case of SDEs (which fulfill the conditions of the
theorem) that cannot be solved analytically (or only with very high effort). When we
are interested only in the expectation of the solution, we do not need to solve the SDE,
instead we can apply the theorem.

Before coming to the next section, we mention that there exist several stochastic Fu-
bini theorems or Fubini-type theorems in the literature, e.g., the works of Hille (2014);
Van Neerven and Veraar (2005); Veraar (2012); Kailath et al. (1978); Berger and Mizel
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(1979) and Protter (2005, Thm. IV.64, Thm. IV.65). To the best of the authors knowl-
edge these settings are different to our assumptions. For example, they use different
probability spaces for the expectation and for the stochastic process or the measure is
time dependent and the integration is performed in time over that measure.

4.2 An Extension of Wald’s Lemma

Generally, the expectation of a sum equals the sum of the expected summands. However,
sometimes there is the problem that the expectation of a sum shall be calculated where
the number of summands is random (and also the summands). This case is analyzed by
the Lemma of Wald (1944).

Theorem 76 (Wald’s Lemma). Let X = (Xn)n∈N be a sequence of identically dis-
tributed and integrable random variables and let N be an N-valued, integrable random
variable, independent of X. It holds:

E

 ∑
n=1,...,N

Xn

 = E[N ]E[X1]

This is true since, if N is independent of X, we can calculate the conditional expected
value

E

 ∑
n=1,...,N

Xn

∣∣∣∣∣∣N = k

 = E

 ∑
n=1,...,k

Xn

 = kE[X1].

Thus, E

[ ∑
n=1,...,N

Xn

∣∣∣∣∣N
]

= NE[X1] and so

E

 ∑
n=1,...,N

Xn

 = E

E
 ∑
n=1,...,N

Xn

∣∣∣∣∣∣N
 = E[N ]E[X1].

Now, we modify this result to the product case. That means, we calculate the
expectation of a product where both the number of factors and the factors are random.

Theorem 77. Let X = (Xn)n∈N be a sequence of i.i.d. and integrable random variables
with E[X1] = x and let N be an N-valued, integrable random variable, independent of
X. It holds:

E

 ∏
n=1,...,N

Xn

 = E
[
xN
]
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Proof. If N is independent of X, we can calculate the conditional expected value

E

 ∏
n=1,...,N

Xn

∣∣∣∣∣∣N = k

 = E

 ∏
n=1,...,k

Xn

 = xk.

Thus, E

[ ∏
n=1,...,N

Xn

∣∣∣∣∣N
]

= xN and so

E

 ∏
n=1,...,N

Xn

 = E

E
 ∏
n=1,...,N

Xn

∣∣∣∣∣∣N
 = E

[
xN
]
.

Note that in general this is not equal to xE[N ]. In general, the computation of E
[
xN
]

is not an easy task. However, during this work we use this theorem for the case when
N is Poisson distributed and we see that in this specific case, the expected product can
be calculated.
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Chapter 5

Motivation of Feedback-based
Trading

Now, we have learned about market efficiency and about stochastic analysis. That
means, we know the basics to construct and analyze trading strategies and to discuss
the results. Next, we construct and analyze (technical) trading strategies. A literature
review giving the most important results concerning technical trading rules is given in
Chap. 6.

Like mentioned in Chap. 1, we want our strategies to be model-free. The idea
of model-free strategies is that a trader does neither need to assume a market model
nor to estimate parameters like the sign of the trend. Thus, a model-free strategy is
constructed without any assumptions on the market model and shall be robust against
disturbing influences and unknown parameters. Note that we use specific price models
at the beginning of Chap. 9 for analyzing the performance of our strategies, not for
constructing them. For this aim, we rely on control theoretic techniques to construct
trading strategies, which are called feedback trading strategies or, simply, feedback rules.

In general, any trader is buying and selling assets and tries to make a profit when
trading. For this, the trader determines the investment I, which generates the gain g.
That means, for all traders, the gain is a function of the investment (and of the price).
A feedback trader ` treats financial markets or, indeed, the portfolio (custody account)
like a machine. The trader controls the output of the machine (of the portfolio) by using
input variables. The input variable is the investment I`, which generates the overall gain
g`.

In the feedback case, the output determines the input, i.e. the investment. That
means, the investment is calculated as a function of the output, i.e., I` = h`

(
g`
)

for
some function h`. The price process p > 0 can be seen as a disturbance variable and is
used indirectly for determining I` through

g`t =

∫ t

0

(
I`

p

)
τ−
dpτ .
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Thus, feedback traders are chartists. Note that there are other types of chartist
strategies that use much more data that can be obtained by analyzing the chart, i.e.
the price history, and not only the own gain. Nonetheless, feedback traders are just one
special class of chartists that use gt (or in a wider setting gτ (τ ∈ [0, t])) instead of pτ
(τ ∈ [0, t]). In Fig. 5.1, the schematic interaction of a trader and the broker, who is the
manager of the portfolio, is depicted. The broker is an intermediate person between the
trader and the market, which produces the price. As mentioned above, for all traders,
the gain g is a function of the investment I (and the price p). If the trader is a feedback
trader, the investment is a function of the gain as well: I = h(g). It is because of this
feedback loop, that such trading strategies are called feedback strategies.

broker trader
g`t

I`t

pt

information information

Figure 5.1: Schematic interaction between broker and trader

There is still the question how the function h should look like. One basic feedback
trading strategy is the linear feedback long trader L with investment rule

ILt = I∗0 +KgLt ,

where I∗0 > 0 is the initial investment and K > 0 is the feedback parameter. When
following this strategy, the trader starts with the initial investment I∗0 and then adds
K times the trader’s own gain (the gain of this strategy, the so-called long side) to the
initial investment. Note that gL0 = 0. That means, the feedback parameter K specifies
how much of the earned money is reinvested in the asset. If K = 1, the trader is a
buy-and-hold trader, if K > 1, the trader is investing more money than earned, which
is called leverage. If the price process and the time scale are continuous, this trader is a
long trader, i.e., the investment fulfills It > 0 for all t ≥ 0, and a trend follower (since
K > 1 and pt > 0 the trader is buying if the price rises and vice versa). An investment
It is called long if It > 0 (or sometimes also It ≥ 0) and short if It < 0 (or It ≤ 0). If
K ∈ (0, 1) the trader is selling if the price rises though the investment is still rising due
to the value change.

Analogously to the linear long strategy, one can construct a linear feedback short
trader S with investment strategy

ISt = −I∗0 −KgSt ,

with gSt being the short side’s gain. This trader is (when time and price are continuous)
an anti trend following (depending on K only the investment rises or the trader is
really buying if the price falls) short investor who loses money when prices rise and
earns money when prices fall. These two strategies are analyzed extensively in the
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literature (e.g. Barmish and Primbs, 2011, 2016) for two reasons. On the one hand,
the investment formulae are easy to handle (because these strategies are mathematically
closed formulae), on the other hand, one can construct more complex strategies using
these two linear strategies. In the following, for reasons of shortening the notation we also
use the purely formal abbreviation “d” instead of writing stochastic integrals. A detailed
literature review containing the most important results concerning linear feedback rules
is given in Chap. 6.

A long trader makes money when the price rises and loses money when the price falls.
For a short trader this holds vice versa. As mentioned above, the trading strategy we
want to construct should be model free, that means especially, we do not want to need
an estimation whether the price rises or falls on average, i.e., we do not want to estimate
the trend. An idea for solving the problem that our strategies shall be model-free, i.e.,
especially they shall be constructed without an estimator for the trend, but that the
trend can be positive or negative (and depending on the sign of the trend the long or the
short rule would perform well—or not), is to take the superposition of the linear long
controller and the linear short controller: the simultaneously long short trading rule

It = ISLSt = ILt + ISt ,

which is schematically depicted in Fig. 5.2. Since the trader does not know whether
the price rises or falls it seems to be reasonable to invest simultaneously long and short.
However, one might guess that gains and losses may average out. Note that it is im-
portant that the gains of the long and the short side are calculated separately. That
means, we use two independently calculated feedback rules and analyze the gain of the
superposition, which is gSLSt = gLt + gSt .

So far, the SLS controller is just an idea. We do not know if it works. That it
is really reasonable to use the SLS rule, is shown in the following chapters, where we
show in an example that the gains and losses do not average out and where we give
several performance results on SLS trading (from the literature and new ones). Note
that this controller is model-free because there is no specific price model assumed for
constructing it. To enhance readability we often write I(t) and g(t) instead of ISLS(t)
and gSLS(t), respectively. When there are different strategies used (like in Sec. 9.4),
we again write SLS. In the SLS rule, the long side’s gain and the short side’s gain are
calculated separately and the same parameter values K > 0 and I∗0 > 0 are used for the
long and the short side. A flow diagram for the SLS rule is given in Fig. 5.3.

It is important to note that (e.g., for the long side) dgL(t) = IL(t) · dp(t)p(t) is short for

gLt =
∫ t

0

(
IL

p

)
τ−
dpτ . That leads to a strategy that is predictable. This is—in discrete

time—reached through ∆gLt =
ILt−1

pt−1
·(pt−pt−1) and ILt−1 = I∗0 +KgLt−1. When calculating

the limits for continuous time trading, this is a well defined integral if the price p is a
good integrator.
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broker
dgL(t) = IL(t) · dp(t)p(t)

dgS(t) = IS(t) · dp(t)p(t)

SLS trader
IL(t) = I∗0 +KgL(t)
IS(t) = −I∗0 −KgS(t)

g(t) = gL(t) + gS(t)

I(t) = IL(t) + IS(t)

p(t)

buying and selling
on the market

calculating the
investment

Figure 5.2: Schematic interaction between broker and SLS trader

×

×

×

×

dgL

gL IL

dgS

gS
-

IS-

dp
p

K I∗0

gSLS

Figure 5.3: Flow diagram for the SLS controller with disturbance variable return on
investment dp

p , i.e. price, and output variable gain gSLS . The SLS trader’s parameters
are K > 0 and I∗0 > 0



Chapter 6

Literature Review for Feedback
Trading

In Chap. 5, we have seen the construction of the SLS trading rule. However, it is not
clear why a trader should rely on this strategy and whether this strategy works well (e.g.,
has positive gains on average). In this chapter, we present the most important results
from the related literature to SLS trading and give a short overview on the feedback
trading literature in general. Empirical papers have found that technical trading (i.e.
chartist rules) can work well (like Avramov et al., 2017). However, these strategies are
still deemed as reading tea leafs, e.g., by p-hacking arguments. The aim of the feedback
trading literature is to put technical trading on a mathematical basis.

In this chapter, we consider different sets of underlying price models on which the
SLS rule is analyzed. Note that none of these models was originally used for constructing
the SLS strategy.

6.1 Continuously Differentiable Prices

The first set of prices considered in the literature and, thus, in this work is the set of
continuously differentiable prices, i.e., p ∈ C1([0, T ],R+). The analysis of this section is
following Barmish (2008, 2011); Barmish and Primbs (2012). We provide the analysis of
such market models although we know that continuously differentiable prices are rather
unrealistic. Still, there are at least two reasons for proceeding that way: First, the
result in this setting is much stronger than in other settings, second, the analysis is
deterministic and, thus, relatively easy. In continuous time settings we use (t) and in
discrete time settings a subscript t for distinguishing the different time scales.

We start with the SLS rule as introduced in Chap. 5. Note that in this setting

I(t) = IL(t) + IS(t),

IL(t) = I∗0 +KgL(t),
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IS(t) = −I∗0 −KgL(t),

gL(t) =

∫ t

0
IL(τ) · ṗ(τ)

p(τ)
dτ,

and

gS(t) =

∫ t

0
IS(τ) · ṗ(τ)

p(τ)
dτ.

Next, we analyze performance properties of the SLS rule—in this setting, we show
that the gain of the SLS rule is non-negative for all possible market developments and
zero only for a special case. We start this analysis with the long side. It holds:

İL(t) = KġL(t)

and

ġL(t) = IL(t) · ṗ(t)
p(t)

Putting these two formulae together leads to

İL(t)

IL(t)
= K · ṗ(t)

p(t)
.

Now we can integrate both sides, leading to:∫ t

0

İL(τ)

IL(τ)
dτ = K

∫ t

0

ṗ(τ)

p(τ)
dτ

⇔ ln IL(t)− ln IL(0) = K(ln p(t)− ln p(0))

⇔ ln
IL(t)

IL(0)
= ln

(
p(t)

p(0)

)K
and by use of the exponential operator

IL(t)

IL(0)
=

((
p(t)

p(0)

)K)

Putting this into the definition of IL(t) = I∗0 +KgL(t) and recalling that IL(0) = I∗0
gives us

I∗0

(
p(t)

p(0)

)K
= I∗0 +KgL(t)

and the long side’s gain

gL(t) =
I∗0
K

((
p(t)

p(0)

)K
− 1

)
.
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Substituting I∗0 by −I∗0 and K by −K directly leads to the short side’s gain

gS(t) =
I∗0
K

((
p(t)

p(0)

)−K
− 1

)
.

Knowing that g(t) = gL(t) + gS(t) lets us conduct

g(t) =
I∗0
K

((
p(t)

p(0)

)K
+

(
p(t)

p(0)

)−K
− 2

)
.

It is easy to see that g(t) = 0 if and only if p(t) = p(0) and that g(t) > 0 for all other
p(t) > 0. This is an arbitrage opportunity.

Theorem 78. If the price process is continuously differentiable, the SLS rule leads to
the gain/loss function

g(t) =
I∗0
K

((
p(t)

p(0)

)K
+

(
p(t)

p(0)

)−K
− 2

)
,

which is zero if and only if p(t) = p(0) and positive for all 0 < p(t) 6= p(0).

Next, we briefly state some further results of the respective SLS literature. Barmish
(2008) analyzes the SLS rule in the p ∈ C1-setting, introduces an SLS rule with saturation
(i.e. with a boundary for the investment Imax), and makes simulations with real stock
prices. Barmish (2011) discusses trading controllers with and without derivatives (the
latter ones are called differentiator-free), analyzes the SLS rule in the p ∈ C1-setting,
analyzes an SLS rule with reset (i.e., when either IL < Imin or IS > −Imin the SLS rule is
set back to I∗0 or −I∗0 , resp. That means, if the investment is close to zero, the controller
starts with its initial values. Since the expected gain is positive for all t (under a GBM
assumption), it is positive for all intervals until the restarts), and performs simulations
on real world stock data. Barmish and Primbs (2012) analyze the SLS rule in the p ∈ C1-
setting as well as in the CAPM, e.g., concerning the gain, the expected gain, and the
worst case loss, and also perform backtests on real stock data.

6.2 Geometric Brownian Motion

As mentioned above, continuously differentiable prices are a very hard assumption. This
is the reason why in the literature another market model is analyzed extensively, the
geometric Brownian motion (with drift). The GBM is a very common market model
and, e.g., used in the Black-Scholes model for option pricing (Black and Scholes, 1973).
In this section, we follow the analysis of the GBM market of Barmish and Primbs (2011,
2016). All the market models discussed in the feedback trading literature have to be
understood as so-called proving grounds: Using these theoretical models, performance
properties have to be proven before testing the strategy on real data.
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In a purely formal way the GBM can be formulated as

dp

p
(t) = µdt+ σdW (t),

with µ > −1 being the drift, σ > 0 the volatility, and W (t) a standard Brownian motion
(Wiener process). For the remainder of this work, if there is any trading strategy, we
assume that this strategy is predictable and locally bounded and all integrators, e.g.,
prices, are semimartingales. That means, we do not write t− in the subscript of the
integrands all the time, even if this is meant. To sum up, we choose all strategies
and prices so that all integrals are well defined. For the discrete time models analyzed
in the work at hand, we will see that all discrete time stochastic integrals are well
defined (especially that the strategy is predictable) and that the limits fit exactly to our
definitions of continuous time stochastic integrals.

Again, we first analyze the long side of the SLS rule. It holds

dgL(t) = IL(t) · dp
p

(t) = IL(t)(µdt+ σdW (t))

and with IL(t) = I∗0 +KgL(t) it follows

dIL(t) = KIL(t)(µdt+ σdW (t)),

i.e.,
dIL

IL
(t) = Kµdt+KσdW (t),

which is a GBM again.

The solution of this GBM is

IL(t) = I∗0e

(
µK−σ

2K2

2

)
t+σKW (t)

.

We know that gL(t) =
IL(t)−I∗0

K , gL(0) = 0, and that the solution of the GBM of the
price process is

p(t)

p(0)
= e

(
µ−σ

2

2

)
t+σW (t)

,

which together leads to a gain/loss function of

gL(t) =
I∗0
K

((
p(t)

p(0)

)K
e
σ2

2
(K−K2)t − 1

)
.

Substituting I∗0 by −I∗0 and K by −K leads to

gS(t) =
I∗0
K

((
p(t)

p(0)

)−K
e−

σ2

2
(K+K2)t − 1

)
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for the short side’s gain and finally to the next theorem.

Theorem 79. The gain/loss function of the SLS rule for GBMs is given through

g(t) =
I∗0
K

((
p(t)

p(0)

)K
e
σ2

2
(K−K2)t +

(
p(t)

p(0)

)−K
e−

σ2

2
(K+K2)t − 2

)
.

Note that this formula is meant path-by-path, i.e., if we know the development of p,
we know the development of gL. However, the formula for gL is not path dependent. In
the formula for gL we only have to know p(t) and the fixed initial price p(0). The path
on which the price develops to p(t) is not important and instead of a stochastic integral
in this gain/loss formula there is only one random variable, namely p(t).

In the case of a GBM, the SLS rule does not provide arbitrage. When, e.g., setting
p(t)/p(0) = 1 and K = 1, we get g(t) = I∗0 (e−σ

2t − 1), which is non-negative if and only
if −σ2t ≥ 0. That means, for all t > 0 the SLS rule made a loss.

However, recognizing that p(t)
p(0) is log-normally distributed, i.e.,

ln
(
p(t)
p(0)

)
∼ N

((
µ− σ2

2

)
t, σ2t

)
, and that ln

((
p(t)
p(0)

)K)
∼ N

((
Kµ− Kσ2

2

)
t,K2σ2t

)
allows us to compute the expected gain. It holds:

E

[(
p(t)

p(0)

)K]
= e

(
Kµ−Kσ

2

2
+K2σ2

2

)
t

and

E

[(
p(t)

p(0)

)−K]
= e

(
−Kµ+Kσ2

2
+K2σ2

2

)
t

This leads to:

E[g(t)] =
I∗0
K

(
e

(
Kµ−Kσ

2

2
+K2σ2

2

)
t
e
σ2

2
(K−K2)t + e

(
−Kµ+Kσ2

2
+K2σ2

2

)
t
e−

σ2

2
(K+K2)t − 2

)
=
I∗0
K

(
eKµt + e−Kµt − 2

)
In particular, the expected gain is zero if and only if µ = 0 and positive for all other

trends µ > −1 (∀t > 0).

Theorem 80. For the expected gain of the SLS rule when underlying prices follow a
GBM, it holds

E[g(t)] =
I∗0
K

(
eKµ + e−Kµ − 2

)
,

which is zero if and only if the trend is zero and positive for all other trends (∀t > 0).

The property E[g(t)] ≥ 0 and E[g(t)] > 0 whenever µ 6= 0 is called the robust
positive expectation property (RPEP). We emphasize that these results do not imply an
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arbitrage possibility in the classical sense, because an arbitrage strategy is a strategy π
with π0 ≤ 0 and π(t) ≥ 0 and P(π(t) > 0) > 0. However, it holds that the discounted
net gain is positive in expectation: e−µtE[g(t)] > 0 (µ 6= 0, t > 0) (with the discounting
factor e−µt).

Before coming to a simulation of GBMs and corresponding SLS trading, we briefly
summarize the related literature to this section. Barmish and Primbs (2011) analyze the
SLS rule in the GBM model, conduct formulae for the gain/loss function, the expected
gain, the variance of the gain, and the density function of the gain, and provide some
simulations. Barmish and Primbs (2016) analyze the SLS rule in the setting of con-
tinuously differentiable prices and for GBM prices and deal with formulae for the gain,
the expected gain, the variance of the gain, the density function of the gain, and the
probability of loosing. Additionally, SLS rules with a saturation boundary are analyzed
and the leverage problem is investigated, i.e., the amount of money an SLS trader needs
for investment related to how much money is in the trader’s account V . Further work
on SLS trading in GBM markets was done by Dokuchaev and Savkin (1998a,b, 2002,
2004); Dokuchaev (2012). Especially, Dokuchaev (2012, Thm. 4.3, Equations (4.16) and
(4.17)) provides a structurally similar formula for the expected trading gain of the SLS
rule within the GBM model as Barmish and Primbs (2011), just expressed differently:

E[g(t)] =
2I∗0
K

(cosh(Kµt)− 1) > 0 ∀µ 6= 0, t > 0

Barmish and Primbs (2014) analyze the standard SLS rule as well as the SLS rule with
saturation and especially discuss practical and basic topics like order filling, gain/loss
accounting, broker margin rate, simulation, short selling, and feedback loops. Malekpour
and Barmish (2013) analyze the risk of SLS trading in a GBM setting using drawdown,
i.e. the maximal loss in the account V (either absolute: Dmax(V ) = max0≤s≤t≤T (V (s)−
V (t)); or relative: dmax(V ) = max0≤s≤t≤T

V (s)−V (t)
V (s) ). The account value of a trader

is the initial account plus the gain V (t) = V ∗0 + g(t). That means, the drawdown of a
trading path is a number that states how much money a trader lost maximally during the
path (in several versions). This number is used for measuring how risky a trading rule
is. In that paper, another representation of SLS is used where the linear rules are IL =
KV L and IS = −KV S and formulae for the expected absolute drawdown and for an
upper boundary of the relative drawdown are derived. Malekpour and Barmish (2014b)
motivate some problems in feedback trading like controllers with delay, i.e., controllers
that do not take into account all past period gains, or moving averages (which are used
in many classical technical trading strategies (Ivanova et al., 2014)) and how the crossing
points of prices and moving averages can be calculated and how moving average strategies
and linear feedback strategies can be combined. Additionally, the importance of discrete
time models and of backtests is stated and drawdown is discussed. Barmish et al. (2013)
explain how to simulate SLS trading paths, Iwarere and Barmish (2014) analyze the
SLS strategy when prices are governed by a binomial or quadrinomial tree (Cox-Ross-
Rubinstein model), Malekpour and Barmish (2012) discuss how to optimally choose K
in the SLS strategy, and Malekpour and Barmish (2014a) deal with the problem of how



6.3. TIME-VARYING GEOMETRIC BROWNIAN MOTION 63

to measure risk for feedback trading strategies. Iwarere and Barmish (2010); Primbs and
Barmish (2012) analyze other feedback trading strategies and connect classical technical
trading rules to feedback trading. Malekpour et al. (2013) use a controller with an
integral part and Primbs and Barmish (2011) connect feedback trading to option pricing.

At the end of this section, we present two illustrating pictures on SLS trading in
a GBM market. For these pictures, we can only use a discrete time scale and, thus,
we have to discretize the price path and the strategy. In Fig. 6.1 we can see a path
of a Wiener process, i.e. of a Brownian motion, and the corresponding path of the
geometric Brownian motion with parameters µ = 0.1 and σ = 0.2. In Fig. 6.2 the
GBM is depicted together with the (discrete time) trading gain of an SLS strategy
with parameters I∗0 = 1 and K = 4 and with the investment levels of the short side
and the long side. Additionally, there is a circle for the theoretical trading gain (in a
continuous time model) from Thm. 79 and a triangle for the expected trading gain (also
in a continuous time model) from Thm. 80.
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Figure 6.1: A path of a Brownian motion (Wiener process) with the corresponding path
of the geometric Brownian motion (GBM) with parameters µ = 0.1 and σ = 0.2

6.3 Time-Varying Geometric Brownian Motion

Primbs and Barmish (2013, 2017) show that the robust positive expectation property
(RPEP; the property that the expected gain is non-negative and zero only for a null
set in the parameter space) also holds when the trend µ(t) as well as the volatility
σ(t) of the GBM are time dependent. A time-varying GBM (tvGBM) is described via
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Figure 6.2: The path of a geometric Brownian motion (GBM) from Fig. 6.1 together with
the trading gain of an SLS rule with parameters I∗0 = 1 and K = 4 and the investment
paths of the long and the short side

dp
p (t) = µ(t)dt+ σ(t)dW (t) with integrable functions µ and σ.

Theorem 81. For a time-varying GBM with trend µ(t) and volatility σ(t) and the SLS
trading rule it holds:

E[g(t)] =
I∗0
K

(
exp

(
K

∫ t

0
µ(s)ds

)
+ exp

(
−K

∫ t

0
µ(s)ds

)
− 2

)
.

It further holds E[g(t)] ≥ 0 and, whenever
∫ t

0 µ(s)ds 6= 0, it holds E[g(t)] > 0, too.

6.4 Controller with Delay and Constant Trend

Malekpour and Barmish (2016) note an interesting and especially practical problem of
the SLS rule. Since the SLS strategy is calculated by use of the overall gain, price be-
haviors that happened a long time ago have the same impact on the investment decision
of the trader as if they happened a few days ago. Consider a price development where in
the phase after the trader entered the market, the price rose a lot and then stayed nearly
constant for a long time. The trader’s long (short) side would have made (lost) a lot of
money in the first period and then stayed approximately constant. As a consequence of
the feedback loop, the investment of the trader is still very high and long, which seems
to be questionable since prices stayed nearly constant for a long time. Malekpour and
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Barmish (2016) introduce a new strategy called Initially Long-Short (ILS) with delay
as the superposition of a linear long rule with delay ILdt = I∗0 + K(gLdt − gLdt−m) and a
linear short rule with delay ISdt = −I∗0 − K(gSdt − gSdt−m). The strategy is defined and
analyzed in a discrete time setting with a time grid {0, 1, 2, . . .} with fixed time steps,
e.g., days. The word initially denotes the fact that (due to the discrete time grid) only
at the initial time one can be sure that the long (short) side is truly long (short). Among
other market requirements, the main assumption by Malekpour and Barmish (2016) is

E
[
pt−pt−1

pt−1

]
= µ 6= 0, which is needed to show that the positive robust expectation prop-

erty still holds. In the ILS strategy only the period gains of the last m days are taken
into account. While on the one hand the idea of not taking into account too old price
and gain developments makes the ILS rule of Malekpour and Barmish (2016) favorable
to the standard SLS rule, on the other hand the hard delay definition seems to be a
little bit problematic. Consider a price history where m days ago an important event
happened at the market, for example a sudden crash, which made the short side much
more important. Today, this event will be taken into account, tomorrow, this will not be
the case. That means, the strategy will change substantially only because an important
event happened exactly m days ago, where the number m is idiosyncratically chosen by
the trader. A point to think about that is not discussed in detail by Malekpour and
Barmish (2016) is that the trader is assumed to be a price taker. But the trader decides
to trade, e.g., daily and the expected return on investment on a daily basis is assumed to
equal µ. That means, the trader indirectly influences the expected return on investment
by choosing a trading frequency, which at a first glance may be contradiction to the
price taker property. However, this is not a problem, as shown in the work at hand (in
Sec. 9.3).

At the end of this chapter, we mention that there is much more work on technical
trading, e.g., the work of Calafiore and Monastero (2010, 2012); Calafiore (2008, 2009);
Cover (2011); Cover and Ordentlich (1996); Mudchanatongsuk et al. (2008); Taylor and
Allen (1992); Primbs and Sung (2009). However, since these papers do not use the same
market assumptions as in the work at hand and this chapter shall not be too lengthy,
we end the literature review here. In the next chapter, the market assumptions of this
work are explained in detail.
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Chapter 7

Market Requirements

Before starting the analytical work on the performance of the SLS rule, we discuss some
market requirements, which are in line with the related literature (Barmish and Primbs,
2011, 2016) and which have to be fulfilled in our work:

• Short Selling, i.e. the possibility for short selling: By construction of the SLS
strategy, the short side’s strategy requires for sure (and maybe also the long side)
the possibility for short selling, i.e. for a negative investment. If the stock under
trade is big enough, usually the trader can short the stock.

• Costless Trading: There are no additional costs associated with buying or selling
an asset, i.e., there are no trading costs on the market. The assumption of costless
trading was in the past a strong argument of the defenders of the efficient market
hypothesis to show that chartist strategies cannot work in practice (cf. Fama, 1991).
However, in times of flat-rate stock trading offers, this assumption might be less
problematic. We can say that it is approximately true for big trading companies
and highly liquid stocks.

• Adequate Resources: We assume that the trader has adequate resources, i.e., the
trader has always enough money for trading. In other words, the trader’s financial
resources are big enough so that all desired transactions can be executed and
there are no financial constraints, which could prohibit any desired transaction.
Again, this is plausible for big trading companies if the investment is not too high,
however, the maximum amount of the investment and the needed size of the trading
company depend on the particular case and cannot be specified in general. That
means, the adequate resources assumption is justified if the trader is big enough,
e.g., a mutual fund, and if the trader is not trading too much of the single asset
under trade.

• Price Taker Property: In the performance part of this work, Chap. 9, we assume the
price taker property. That means, the trader is not able to influence the asset’s
price, neither directly nor through buying or selling decisions, i.e., the trader’s
actions do not have any influence on the market, especially, they do not affect the

67



68 CHAPTER 7. MARKET REQUIREMENTS

stock price. This is approximately true if, again, the investment is not too high
compared to the size of the stock’s underlying firm. In the effects part of this work,
Chap. 10, we relax this assumption.

• Perfect Liquidity: There is neither a gap between bid and ask price nor any waiting
time for transaction execution, i.e., the trader can arbitrarily buy and sell stocks.
Stock prices do not change during one transaction. This is no strong assumption
for large companies’ stocks under trade.

To sum up, the market requirements are more or less true for a big, rich trader trading
small amounts of stocks of a big underlying firm. We need a few additional technical
assumptions for the analysis of the SLS rule.

• Time Scale: For some results we assume the continuous time scale [0, T ] and for
some the discrete one {0, 1, 2, . . . , T} or {0, h, 2h, . . . , Nh} with a variable mesh
size h. Other results are for sampled-data systems, i.e., we assume a continuous
time price process, but a discrete time trading strategy, which is likely the most
realistic assumption for the time scale.

• Bond: We assume that there is a riskless bond available and, which is a much
harder assumption, that the interest rate equals the margin rate. Additionally and
without loss of generality, we assume the margin and interest rate of the bond
to be zero. This can be done since we can use the bond (with a rate unequal to
zero) as numéraire. That means, all rates and trends are somehow relative to the
numéraire. If a stock is assumed to be risk neutral, i.e., if the stock’s trend equals
the rate of the riskless bond, in our setting, the trend of this stock was zero. In
a market model, which is completely risk neutral, the trends of all stocks would
equal zero. However, according to efficient market definitions involving risk, it is
plausible that a risky asset has a higher trend than a riskless one. Thus, excluding
the zero trend case from some results is justified.

• Real Number of Shares: We allow the number of shares a trader holds to be real. If
a trader buys stocks directly from the firm issuing it, the number of bought shares
is an integer. When buying via a broker (which is also needed for short selling),
the number of shares can be assumed to be rational—depending on the broker.
Hence, the assumption of a real number of shares is not too hard and commonly
accepted in stochastic finance.



Chapter 8

Small Example

In the next chapter, we analyze the performance of the SLS rule in detail. To give some
feeling how SLS trading works we first provide a few very small examples. For that
reason, we assume a market on the time scale {0, 1, 2} and a (not necessarily recombining)
binomial tree model, as shown in Fig. 8.1. The price process starts with the initial price
p0. In the time points i = 1, 2 the price goes up by the factor pui with probability
0 < qi < 1 and down by the factor pdi with probability 1− qi. For non-arbitrage reasons
it holds 0 < pdi < 1 < pui , since the rate is r = 1 throughout the whole work. We define

the trend at time i = 0, 1 as µi = E
[
pi+1−pi

pi

∣∣∣Fi] = pui+1qi+1 + pdi+1(1− qi+1)− 1.
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Figure 8.1: General binomial tree model with two periods
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In discrete time settings we calculate the gain of a strategy ` according to

g`i = g`i−1 + I`i−1

pi − pi−1

pi−1
.

That means, the amount of stocks held at time i is
I`i−1

pi−1
, which is known at time i− 1,

i.e., the strategy is predictable in a discrete time sense.

Note that even though the initial investment of the SLS rule is always zero (since
I0 = IL0 + IS0 = I∗0 − I∗0 = 0) this does not mean that the bond value of an SLS trader is
always zero: Depending on the price behavior, the trader has to borrow money from the
bank or put money on the bank. Especially, the account value of a trader is Vt = V0 + gt
where we assume V0 = gL0 = gS0 = 0. The difference of the account value and the
investment level It = ILt + ISt has to be cleared by the bond value B.

In the following, we calculate the trading behavior for SLS traders in a few exemplary
market models. In these examples market parameters or trader parameters vary. Thus,
we can get a feeling for the underlying mechanism of SLS trading and see the effects of
the parameters.

In the examples in Tabs. 8.1, 8.2, and 8.3 we set a constant trend with pu1 = pu2 = 1.1,
pd1 = pd2 = 0.8, and q1 = q2 = 0.5. The trader’s parameters are the fixed initial investment
I∗0 = 10 and varying values for the feedback parameter K = 2, K = 1, and K = 0.5.
Thus, we can see the effects of K. In Tab. 8.1 it holds K = 2, µ0 = µ1 = −5%, and
E[g2] = 0.1. In Tab. 8.2 it holds K = 1, µ0 = µ1 = −5%, and E[g2] = 0.05. And in
Tab. 8.3 it holds K = 0.5, µ0 = µ1 = −5%, and E[g2] = 0.025. So far, we could see that
reducing K reduces the expected gain but also the worst-case loss (from 0.8 via 0.4 to
0.2).

path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.1 12 1 -8 -1 0 -4

p0p
d
1 1 0.8 6 -2 -14 2 0 8

p0p
u
1p
u
2 2 1.21 14.4 2.2 -6.4 -1.8 0.4 -7.6

p0p
u
1p
d
2 2 0.88 7.2 -1.4 -11.2 0.6 -0.8 3.2

p0p
d
1p
u
2 2 0.88 7.2 -1.4 -11.2 0.6 -0.8 3.2

p0p
d
1p
d
2 2 0.64 3.6 -3.2 -19.6 4.8 1.6 17.6

Table 8.1: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.1, pd1 = pd2 = 0.8,
q1 = q2 = 0.5, I∗0 = 10, and K = 2

In the examples in Tabs. 8.1, 8.4, and 8.5 we fix pu1 = pu2 = 1.1, pd1 = 0.8, q1 = q2 =
0.5, I∗0 = 10, and K = 2. Now, we vary the trend through varying pd2 = 0.8, 0.65, 0.95.
In Tab. 8.4 it holds pd2 = 0.65, µ0 = −5%, µ1 = −12.5%, and E[g2] = 0.25. In Tab. 8.5
it holds pd2 = 0.65, µ0 = −5%, µ1 = 2.5%, and E[g2] = −0.05. Note that in Tab. 8.1
the trend is constant (and negative), thus, the sign of the trend does not change. Also
in Tab. 8.4 the sign of the trend does not change, though the trend varies. However in
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path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.1 11 1 -9 -1 0 -2

p0p
d
1 1 0.8 8 -2 -12 2 0 4

p0p
u
1p
u
2 2 1.21 12.1 2.1 -8.1 -1.9 0.2 -3.8

p0p
u
1p
d
2 2 0.88 8.8 -1.2 -10.8 0.8 -0.4 1.6

p0p
d
1p
u
2 2 0.88 8.8 -1.2 -10.8 0.8 -0.4 1.6

p0p
d
1p
d
2 2 0.64 6.4 -3.6 -14.4 4.4 0.8 8.8

Table 8.2: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.1, pd1 = pd2 = 0.8,
q1 = q2 = 0.5, I∗0 = 10, and K = 1

path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.1 10.5 1 -9.5 -1 0 -1

p0p
d
1 1 0.8 9 -2 -11 2 0 2

p0p
u
1p
u
2 2 1.21 11.025 2.05 -9.025 -1.95 0.1 -1.9

p0p
u
1p
d
2 2 0.88 9.45 -1.1 -10.45 0.9 -0.2 0.8

p0p
d
1p
u
2 2 0.88 9.45 -1.1 -10.45 0.9 -0.2 0.8

p0p
d
1p
d
2 2 0.64 8.1 -3.8 -12.1 4.2 0.4 4.4

Table 8.3: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.1, pd1 = pd2 = 0.8,
q1 = q2 = 0.5, I∗0 = 10, and K = 0.5

Tab. 8.5 the sign of the trend changes. In our examples, we can only expect a negative
gain in the case where the sign of the trend changes. This is generalized in the next
chapter, when the SLS rule is analyzed mathematically.

At the end of this small example chapter, we illustrate that for the SLS rule (indeed:
for an expected positive gain of the SLS rule) it is not important whether the trend is
positive or negative. For this reason, we compare Tab. 8.1 and Tab. 8.6 with pu1 = pu2 =
1.2, pd1 = pd2 = 0.9, q1 = q2 = 0.5, I∗0 = 10, and K = 2. In Tab. 8.6 it holds µ0 = µ1 = 5%
and also E[g2] = 0.1. Even this property, that it does not matter whether the trend is,
e.g., +5% or −5% is generalized in the next chapter.

Before analyzing the performance of the SLS rule in the next chapter, we give an
intuitive (heuristic) explanation why this strategy works well: The SLS strategy starts
with both investing equally long and short. When prices rise, the long side makes
money and the short side looses it, when prices fall, it is the other way round. But due
to compound interests, returns on investment of, e.g., three times 10%, generate a higher
gain on the long side than the loss on the short side is. And for returns of investment
of, e.g., three times -10%, the short side’s gain surpasses the long side’s loss, also due to
compound interests. Note that this is no proof but important for the intuition of SLS
trading.
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path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.1 12 1 -8 -1 0 -4

p0p
d
1 1 0.8 6 -2 -14 2 0 8

p0p
u
1p
u
2 2 1.21 14.4 2.2 -6.4 -1.8 0.4 -7.6

p0p
u
1p
d
2 2 0.715 3.6 -3.2 -13.6 1.8 -1.4 8.6

p0p
d
1p
u
2 2 0.88 7.2 -1.4 -11.2 0.6 -0.8 3.2

p0p
d
1p
d
2 2 0.52 1.8 -4.1 -23.8 6.9 2.8 24.8

Table 8.4: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.1, pd1 = 0.8,
pd2 = 0.65,q1 = q2 = 0.5, I∗0 = 10, and K = 2

path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.1 12 1 -8 -1 0 -4

p0p
d
1 1 0.8 6 -2 -14 2 0 8

p0p
u
1p
u
2 2 1.21 14.4 2.2 -6.4 -1.8 0.4 -7.6

p0p
u
1p
d
2 2 1.045 10.8 0.4 -8.8 -0.6 -0.2 -2.2

p0p
d
1p
u
2 2 0.88 7.2 -1.4 -11.2 0.6 -0.8 3.2

p0p
d
1p
d
2 2 0.76 5.4 -2.3 -15.4 2.7 0.4 10.4

Table 8.5: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.1, pd1 = 0.8,
pd2 = 0.95,q1 = q2 = 0.5, I∗0 = 10, and K = 2

path t p IL gL IS gS V B

p0 0 1 10 0 -10 0 0 0
p0p

u
1 1 1.2 14 2 -6 -2 0 -8

p0p
d
1 1 0.9 8 -1 -12 1 0 4

p0p
u
1p
u
2 2 1.44 19.6 4.8 -3.6 -3.2 1.6 -14.4

p0p
u
1p
d
2 2 1.08 11.2 0.6 -7.2 -1.4 -0.8 -4.8

p0p
d
1p
u
2 2 1.08 11.2 0.6 -7.2 -1.4 -0.8 -4.8

p0p
d
1p
d
2 2 0.81 6.4 -1.8 -14.4 2.2 0.4 8.4

Table 8.6: Example for SLS trading on a binomial tree with pu1 = pu2 = 1.2, pd1 = pd2 = 0.9,
q1 = q2 = 0.5, I∗0 = 10, and K = 2



Chapter 9

Performance of Feedback Trading
Strategies

In this chapter, we analyze the performance of the simultaneously long short (SLS)
feedback rule in more general market models than the models in the related literature.
It is commonly accepted that continuously differentiable prices are rather unrealistic.
However, there are also some critics concerning the use of the GBM. A first drawback
of the GBM is that the trend is fixed. As seen in the works of Primbs and Barmish
(2013, 2017) this can be generalized to time-varying GBMs. However, there are even
more points of critics. Despite of the continuous time scale, which seems to be a little
bit unrealistic, the biggest issue is that the paths of the GBM and even of the time-
varying GBM are a.s. continuous. But on real markets there are jumps, e.g., caused by
new information or by no trading times during the night or during the weekend. Thus,
in a first step we use a (continuous time) model that allows for jumps, Merton’s jump
diffusion model (MJDM).

The whole chapter is closely following the work of the author of this thesis on the
performance of feedback trading and especially of SLS trading (Baumann, 2017a,b; Bau-
mann and Grüne, 2016, 2017). The proofs are provided here since they are originally
done by the author of this work. However, the proofs can also be found in the respective
papers.

9.1 Merton’s Jump Diffusion Model

Neither continuously differentiable prices nor the GBM allow for price jumps. The
literature shows that in the context of option pricing jumps have a high influence on
hedging, namely, with jumps markets become incomplete (cf. Merton, 1973, 1976; Black
and Scholes, 1973). Hence, we can ask the question what happens to the SLS strategy’s
robust positive expectation property (RPEP) if there are jumps into the model, or more
precisely what happens to the SLS strategy’s RPEP in MJDM. This section follows
Baumann (2017b) and considers a stock price governed by Merton’s jump diffusion
model.
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The relative price change in Merton’s model is given through

dp(t)

p(t)
= µ̃dt+ σdW (t) + dN(t),

where W (t) is a Wiener process, N(t) is a Poisson-driven process with jump intensity
λ > 0 and jumps (Yi−1) i.i.d. with existing first moment (this is equivalent to E[Yi−1] <
∞). Note that a Poisson process is a special Poisson-driven process with Yi− 1 ≡ 1 and
that generally

∫ t
0 dNτ is discontinuous. We assume Yi > 0 for the reason of positive

prices and define κ := E[Yi − 1]. The parameter σ > 0 denotes the volatility and µ̃
denotes the trend. Note that we do not make any assumptions on the distribution of
the random variables Yi > 0. One possibility for the distribution of the Yis, which we
use only for the computer simulations, is lnYi ∼ N (µYi , σYi).

Summarizing, MJDM is somehow a generalization of the GBM. In this section, we
use p for MJDM and b for the GBM

db(t)

b(t)
= µ̃dt+ σdW (t).

The distinction between b and p is made for simplicity of the formulae. We set

µ̃ := µ− λκ

where parameter µ > −1 denotes the jumpless trend, i.e. the trend of MJDM without
any jumps, which is also a GBM. That means, if there were no jumps, the trend µ̃ is
exactly the jumpless trend µ. If the jumps are positive in expectation (E[N(t)−N(s)] =
λκ(t− s), t ≥ s; sometimes denoted by: E[dN(t)] = λκdt) the trend has to be adjusted
downwards (−λκ) and vice versa (to ensure that µ is the trend). Furthermore, we set
p(0) = p0 = b0 = b(0) which implies E[p(t)] = E[b(t)] for all t if µ = µ̃.

It can be shown, using Itō’s lemma (in the general form containing jump processes,
e.g., Poisson-driven processes) that the solution of MJDM is

p(t) = p0e

(
µ̃−σ

2

2

)
t+σW (t)

N∏
i=1

Yi = b(t)
N∏
i=1

Yi,

where µ̃ = µ − λκ, p0 > 0, N ∼ Poi(λt) and W (t), Yi, and N all are independently
distributed (cf. Merton, 1971, 1976; Kushner, 1972; McKean jr., 1969). Merton’s jump
diffusion model is a stochastic process with a countably infinite number of jumps for
t → ∞. The time between two jumps is independently and identically exponentially
distributed with parameter λ > 0. The number of jumps which occurred up to time t is
Poisson distributed with parameter λt. Between every two jumps the process follows a
GBM with jump-adjusted trend µ̃.

This model is in continuous time and we allow for continuous time trading. At every
point of time t > 0 the trader knows the own gain, the price, and is able to buy and
sell stocks to adjust the investment. Although in real markets traders actually cannot



9.1. MERTON’S JUMP DIFFUSION MODEL 75

trade continuously, in times of high-frequency-trading this assumption can be considered
approximately satisfied. Note that there is indeed another approach of how to bring
jumps in the model. In a discrete time model every price movement is a jump. However,
there is a well-known theory on SDEs and we firstly rely on a widely accepted jump
model in continuous time. Furthermore, the statistical characteristics of a discretized
GBM in general differ strongly from those of a discretized Merton’s jump diffusion model.

We deduce formulae for the gain/loss function and examine the expected gain and the
standard deviation of the gain for MJDM analytically. This analysis starts analogously
to the calculations of Barmish and Primbs (2016). However, due to the possibility of
jumps our calculations are more lengthy and we have to use more results from the
mathematical literature like the theorem of Fubini-Tonelli.

Now we derive a formula for the gain g(t) of an SLS trader in Merton’s jump diffusion
model. Therefore, we set

a := exp
(

(K−K2)σ2t
2

)
and c := exp

(
−(K+K2)σ2t

2

)
.

Theorem 82. For the SLS trading strategy and a stock price following MJDM, it holds
that

g(t) =
I∗0
K

((
b(t)
b0

)K
a
∏N
i=1(1 +K(Yi − 1))

+
(
b(t)
b0

)−K
c
∏N
i=1(1−K(Yi − 1))− 2

)
=

I∗0
K

((
p(t)
p0

)K
a
∏N
i=1(Y −Ki +KY −Ki (Yi − 1))

+
(
p(t)
p0

)−K
c
∏N
i=1(Y K

i −KY K
i (Yi − 1))− 2

)
.

Proof. We decompose g(t) = gL(t) + gS(t) with gL(t) and gS(t) given by g`(t) =∫ t
0 I

`(τ−) · dp(τ)
p(τ−) (and skipping the minus in “(τ−)”). At first, the long side’s gain

is considered. The change of the gain is described by the SDE

dgL(t) = IL(t) · dp(t)p(t)

=
(
I∗0 +KgL(t)

)
((µ− λκ)dt+ σdW (t) + dN(t)).

With IL(t) = I∗0 +KgL(t) it follows

dILt = K((µ− λκ)dt+ σdWt + dNt)I
L
t

and

dIL(t)
IL(t)

= (Kµ− λKκ)dt+KσdW (t) +KdN(t)
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= (Kµ− λKκ)dt+KσdW (t) + dÑ(t).

We remark that Ñ(t) again is a Poisson-driven process with jump intensity λ > 0 but
with jumps (XL

i −1) with XL
i := 1+K(Yi−1). It holds E[XL

i −1] = Kκ and IL(0) = I∗0 .
Thus, it follows (cf. Merton, 1976)

IL(t) = IL(0)e

(
Kµ−λKκ−K

2σ2

2

)
t+KσW (t)∏N

i=1X
L
i .

The resubstitution of IL(t) = I∗0 +KgL(t) ⇔ gL(t) = 1
K (IL(t)− I∗0 ) leads to

gL(t) =
I∗0
K

(
e

(
Kµ̃−Kσ

2

2

)
t+KσW (t)

a
∏N
i=1X

L
i − 1

)

=
I∗0
K

((
b(t)
b0

)K
a
∏N
i=1(1 +K(Yi − 1))− 1

)
=

I∗0
K

((
p(t)
p0

)K
a
∏N
i=1(Y −Ki +KY −Ki (Yi − 1))− 1

)
.

Now, let us consider XS
i := 1−K(Yi− 1) and note E

[
XS
i − 1

]
= −Kκ. Substituting K

and I∗0 by −K and −I∗0 , respectively, leads to the short side’s gain

gS(t) =
I∗0
K

((
b(t)
b0

)−K
c
∏N
i=1X

S
i − 1

)
=

I∗0
K

((
p(t)
p0

)−K
c
∏N
i=1(Y K

i −KY K
i (Yi − 1))− 1

)
.

Together, this finishes the proof.

This is a first theoretical result concerning the performance of SLS trading in MJDM.
The formula tells us that the gain does not depend on the diffusion part (the GBM part)
of the price process. Only b(t) at time t and the jumps (Yi)i=1,...,N up to time t are of
importance. Moreover, only a countable number of random variables is present since
(b(t))t is not used but just b(t). Next, we analyze what we can expect for the gain at
arbitrary time t.

9.1.1 Expected Gain in MJDM

In this section, we focus on a result concerning the expected gain. We obtain:

Theorem 83. The expected gain of the SLS trading strategy with a stock price following
MJDM is

E[g(t)] =
I∗0
K

(
eKµt + e−Kµt − 2

)
.

In particular, for all t > 0, µ 6= 0, the expected gain of the SLS trading strategy is
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positive, i.e.,
E[g(t)] > 0,

for all λ > 0, (Yi)i∈N > 0.

Proof. In order to calculate the expected gain E[g(t)] we consider Thm. 82. Remem-
bering that b(t), N , and (Yi)i are all independent and ln b(t) ∼ N

(
µ̃− 1

2σ
2, σ2

)
we can

transform

E[g(t)] =
I∗0
K

(
E
[(

b(t)
b0

)K]
aE
[∏N

i=1(1 +K(Yi − 1))
]

+ E
[(

b(t)
b0

)−K]
cE
[∏N

i=1(1−K(Yi − 1))
]
− 2

)
=

I∗0
K

(
eKµ̃tE

[∏N
i=1(1 +K(Yi − 1))

]
+ e−Kµ̃tE

[∏N
i=1(1−K(Yi − 1))

]
− 2

)
.

Here, we used that if Z is a random variable with lnZ ∼ N (µZ , σ
2
Z) the identity

E
[
ZK
]

= eKµZ+
1
2K

2σ2
Z holds.

The next step makes use of the theorem of Fubini-Tonelli. We assume that Yi is
defined on ΩYi , N is defined on ΩN , ΩY := ΩY1×ΩY2×ΩY3×. . ., and Y := Y1⊗Y2⊗Y3⊗. . ..
Since ∫

ΩN

∫
ΩY

∏N
i=1(1 + 2K +K(Yi − 1))dPY dPN

=
∑∞

n=0
(λt)n

n! e−λt
∫

ΩY

∏n
i=1(1 + 2K +K(Yi − 1))dPY

=
∑∞

n=0
(λt)n

n! e−λtE[1 + 2K +K(Y1 − 1)]n

= e−λt
∑∞

n=0
(λt(1+2K+Kκ))n

n! = eλKt(κ+2) <∞

we can apply Fubini-Tonelli for calculating the expected values, because it holds
1 + 2K +K(Yi − 1) ≥ max{|1 +K(Yi − 1)|, |1−K(Yi − 1)|}:∫

ΩN×ΩY

∏N
i=1(1 +K(Yi − 1))d(PN ⊗ PY )

=

∫
ΩN

∫
ΩY

∏N
i=1(1 +K(Yi − 1))dPY dPN

=
∑∞

n=0
(λt)n

n! e−λt
∫

ΩY

∏n
i=1(1 +K(Yi − 1))dPY = eλtKκ

and analogously ∫
ΩN×ΩY

∏N
i=1(1−K(Yi − 1))d(PN ⊗ PY ) = e−λtKκ.
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It follows that

E[g(t)] =
I∗0
K

(
eKµ̃teλtKκ + e−Kµ̃te−λtKκ − 2

)
=

I∗0
K (eKµt + e−Kµt − 2)

for all λ > 0, (Yi)i∈N > 0.

To show that the expected gain is positive if µ 6= 0 and t > 0, we note ex+e−x−2 > 0
for all R 3 x 6= 0.

The formulae in Thm. 83 do not depend on the jumps’ specifications, i.e., they neither
depend on the jumps’ intensity λ nor on the jumps’ distribution Yi (E[Yi − 1] <∞).

Note that g(t) is the total profit while dg(t) is the periodical profit. The probability

that exactly k jumps occurred up to time t is Poiλt(k) = (λt)k

k! e−λt > 0. Nonetheless,
E[g(t)] does not depend on the jump statistics. This can be explained as follows: In
Thm. 83 all jump parameters disappear since the term −λκ was added in MJDM for
fixing the trend, which is defined through the expectation operator. The expected value
of the price depends only on the time and on the trend. Thus, it is plausible that this
trend adjustment also makes the expected trading gain independent of the jumps.

Another way of proving the theorem uses Thm. 77 as follows:

Proof. The proof is nearly the same as above except for the calculation of

E

[
N∏
i=1

(1±K(Yi − 1))

]
.

It holds with Thm. 77 since all random variables are stochastically independent and

E[1 +K(Yi − 1)] = 1 + κK that E
[∏N

i=1(1 +K(Yi − 1))
]

= E
[
(1 + κK)N

]
.

In general, this is not easy to compute. However, if X is Poisson distributed with
parameter λ and r is a real number, we know that

E
[
rX
]

=

∞∑
i=0

ri · λ
i

i!
e−λ = eλ(r−1).

This leads to E
[∏N

i=1(1 +K(Yi − 1))
]

= eλtκK and analogously to

E
[∏N

i=1(1−K(Yi − 1))
]

= e−λtκK .

9.1.2 Variance in MJDM

After having studied the expected value we now look at the variance of the SLS trader’s
gain V[g(t)] or, equivalently, at the standard deviation S[g(t)].

Theorem 84. The standard deviation of the gain of the SLS trading strategy with a
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stock price governed by MJDM is

S[g(t)] =
I∗0
K ((e2Ktµ + e−2Ktµ)(eK

2t(σ2+λζ) − 1)

+ 2(e−K
2t(σ2+λζ) − 1))

1
2

if the second moment of the jumps’ distribution exists. Here we abbreviated ζ :=
E[(Yi − 1)2] <∞.

Proof. Analogous to the calculation of the expected value, it can be shown that∫
ΩN

∫
ΩY

N∏
i=1

((1 + 4K + 4K2) + (2K + 4K2)(Yi − 1) +K2(Yi − 1)2)dPY dPN <∞.

This allows for using Fubini-Tonelli. Note:

(1 + 4K + 4K2) + (2K + 4K2)(Yi − 1) +K2(Yi − 1)2

≥ max{|1 + 2K(Yi − 1) +K2(Yi − 1)2|,
|1− 2K(Yi − 1) +K2(Yi − 1)2|,
|1−K2(Yi − 1)2|}

It holds∫
ΩN×ΩY

N∏
i=1

((1 + 2K(Yi − 1) +K2(Yi − 1)2))d(PN ⊗ PY ) = eλt(2Kκ+K2ζ),

∫
ΩN×ΩY

N∏
i=1

((1− 2K(Yi − 1) +K2(Yi − 1)2))d(PN ⊗ PY ) = eλt(−2Kκ+K2ζ),

and ∫
ΩN×ΩY

N∏
i=1

((1−K2(Yi − 1)2))d(PN ⊗ PY ) = e−λtK
2ζ .

A well-known transformation for the variance is V[g(t)] = E[g(t)2]−(E[g(t)])2. According
to this alternative representation, we first calculate the second moment of the gain:

E[g(t)2] =
I∗20
K2E

[((
b(t)
b0

)K
a
∏N
i=1(1 +K(Yi − 1))

+
(
b(t)
b0

)−K
c
∏N
i=1(1−K(Yi − 1))− 2

)2]
=

I∗20
K2

(
e2µ̃tK+σ2K2tE

[∏N
i=1(1 + 2K(Yi − 1) +K2(Yi − 1)2)

]
+ e−2µ̃Kt+σ2K2tE

[∏N
i=1(1− 2K(Yi − 1) +K2(Yi − 1)2)

]
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+ 4− 4eKµt − 4e−Kµt

+ 2e−K
2σ2tE

[∏N
i=1(1−K2(Yi − 1)2)

])
=

I∗20
K2

(
eK

2t(σ2+λζ) (e2Ktµ + e−2Ktµ
)

+ 2e−K
2t(σ2+λζ) − 4

(
eKµt + e−Kµt − 1

))

With this and the formula for the expected gain, it follows

V[g(t)] =
I∗20
K2

(
eK

2t(σ2+λζ)
(
e2Ktµ + e−2Ktµ

)
+ 2e−K

2t(σ2+λζ) −
(
e2Kµt + e−2Kµt + 2

))
which implies the claimed formula for S[g(t)].

Note that for using Fubini-Tonelli not only the first but also the second moment of
Yi must exist. One interesting observation is that the variance of g(t) depends on the
jump intensity and the second moment of the jumps, but not on their first moment, i.e.
on the expected height of the jumps. We see that the variance is strictly increasing in
λ and in ζ, i.e., if the jumps’ intensity or the jumps’ variance grows, the gain’s variance
grows, too. It seems plausible that the more jumps occur, the more volatile the gain is,
as well as the higher the variance in the jumps height is, the higher the volatility in the
gain becomes.

We end this section with a discussion of the variance of the gain for the jumpless
case (i.e. geometric Brownian motion). There are two possibilities to obtain the jumpless
geometric Brownian motion from Merton’s jump diffusion model. First, we can set λ = 0,
i.e., the probability that a jump occurs is zero, or, second, we can define Yi ∼ δ1 where
δd is the Dirac distribution (degenerate distribution) with parameter d, i.e., jumps do
not affect the price process (that means, the jump height is zero). In the second case it
follows that ζ = 0. Since in the equation for V[g(t)], λ and ζ only occur as product λζ,
we can set λζ = 0 to derive the variance formula for the jumpless case.

9.1.3 Simulations and Plots

In Figs. 9.1 and 9.2, the dependencies of the expected gain and the standard deviation
on the feedback parameter K and the jumpless trend µ are illustrated. In the graphs,
one of the parameters K or µ, resp., varies while all other parameters are fixed.

We can see that E[g(t)] is increasing in K and in |µ|. The standard deviation is
increasing faster in K and |µ|. From these findings we can conclude two facts. First,
if a trader is searching for an optimal K there are two opposed arguments for choosing
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Figure 9.1: Dependency of the expected gain and of the standard deviation on K (∈
(0, 4]). All other parameters respectively: I∗0 = 1, µ = 0.1, σ = 0.02, t = 1, λ = 2,
µYi = 0.02, and σYi = 0.05
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Figure 9.2: Dependency of the expected gain and of the standard deviation on µ (∈
[−10%, 30%]). All other parameters: I∗0 = 1, K = 2, σ = 0.02, t = 1, λ = 2, µYi = 0.02,
and σYi = 0.05

K. A large K leads to higher expected gains but also to a higher variance of the gain
and, thus, to higher risk. We conclude that the more risk-averse a trader is, the smaller
the chosen K should be and vice versa (see Fig. 9.1). Second, we see that it does not
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matter whether −1 < µ < 0 or µ > 0, i.e., it does not matter if the trend is positive or
negative. Hence, a trader does neither need to estimate the trend nor its sign since in
all cases the SLS strategy leads to a positive expected gain (see Fig. 9.2). Furthermore,
we notice that the standard deviation is increasing in λ and σ.

Note that for creating the graphs so far no stochastic process was simulated and
no (pseudo) random number was generated. Thus, let us finally have a look at the
histograms obtained from simulating the gains for 1,000 realizations of the underlying
stochastic price process, shown in Figs. 9.3 and 9.4. These two histograms show two
interesting facts. On the one hand, one can see that the trading results obtained by
simulated real trading on stochastic processes with discrete time (gT ; Fig. 9.3) and the
results calculated via the formula with the continuous time assumption (gF ; Fig. 9.4)
do not differ very much. A slight difference is caused by the fact that the simulation is
performed using a discretization in time while the formula assumes continuous trading.
On the other hand, the histograms show that the gains are highly skewed (which is in line
with Malekpour and Barmish (2012) and Malekpour and Barmish (2014a)), especially,
the gains have a so-called fat tail to the positive side. That is, a negative gain with a
small loss is more likely than a positive gain, but a high gain is more likely than a high
loss. All in all, this leads to a positive mean. Note that p(t), N , and Yi are the same
for both graphs. For all simulations the jumps are lognormally distributed, like it is
recommended by Merton (1976) with lnYi ∼ N

(
µYi , σ

2
Yi

)
.

At the end of this section, we show a path of a price process governed by MJDM
and of SLS trading on this path. In Fig. 9.5 a price path is depicted and the jumps are
marked with ×-signs. In Fig. 9.6 we see the price path of Fig. 9.5 and the investment
paths of a linear long controller and of a linear short controller (with I∗0 = 1 and K = 4)
as well as the SLS trading gain of these two linear controllers. The theoretical gain—
calculated via Thm. 82—for the continuous time case is depicted with a circle and the
expected gain with a triangle (Thm. 83).

9.2 Essentially Linearly Representable Prices

This section generalizes the RPEP of the SLS rule and follows Baumann and Grüne
(2016) closely. For the trend of a GBM p it holds

E
[
dp(t)

p(t)

]
= µdt

with µ > −1. Note that this is again a purely formal notation. Furthermore, Barmish
and Primbs (2011) show for this case that

E[g(t)] =
I∗0
K

(
eKµt + e−Kµt − 2

)
,

which is positive for all t > 0 and µ 6= 0, holds for SLS trading.

In Sec. 9.1, we have seen that the RPEP does not only hold for the GBM but also



9.2. ESSENTIALLY LINEARLY REPRESENTABLE PRICES 83

Histogram of g^T

g^T, mean(g^T) (square), E(g) (triangle)

Fr
eq
ue
nc
y

-5 0 5 10

0
10
0

30
0

50
0

Figure 9.3: Histogram of the trading gain of 1,000 runs of SLS with a discretized MJDM
with grid {0, 0.001, 0.002, . . . , 1}. The square marks the mean of the gains and the
triangle the expected gain

for a discontinuous price model. More precisely, in this discontinuous price model prices
follow MJDM, defined by the SDE

dp(t) = (µ− λκ)p(t)dt+ σp(t)dW (t) + p(t)dN(t),

where N(t) is a Possion-driven process with jumps Yi − 1 > −1, jump intensity λ, and
an expected jump height κ. In MJDM, µ has the same functionality as the trend in the

GBM (E
[
dp(t)
p(t)

]
= µdt). It is shown that

E[g(t)] =
I∗0
K

(
eKµt + e−Kµt − 2

)
> 0

holds for all prices governed by MJDM, too. That means that the expected SLS trading
gain neither depends on the jumps’ intensity nor on their height or kind. Moreover, the
expected gain is positive for all µ 6= 0 and t > 0.

That means, the results for the GBM and for MJDM are the very same and depend
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Figure 9.4: Histogram of the trading gain of 1,000 runs of SLS with MJDM in continuous
time [0, 1]. The square marks the mean of the gains and the triangle the expected gain

only on I∗0 and K, which are the strategy’s parameters, as well as on µ, which has the
same functionality in both models. This leads us to the conjecture that a specific price
model is not important to show the RPEP as long as the regularity for the trend holds.

Knowing this, we are now going to verify the robust positive expectation property
for a rather large class of models including GBM and MJDM. We would like to mention
that while this set contains the GBM and MJDM as special cases, our result does not
make the literature addressing SLS trading for these price models obsolete because in
these special cases there more (other) results are given. The models used in this section
are still in continuous time, i.e., at every point of time t ∈ [0, T ], the trader has all
information available up to t and adjusts the investment level I(t).

To verify that the property of positive expected gain can be generalized from GBM
and MJDM to a larger set of price models, a proper candidate set needs to be defined.

Definition 85. We define the set of essentially linearly representable prices

P :=
{
p
∣∣∣ p is a solution of an SDE of the form:
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Figure 9.5: A simulation of a price process following Merton’s jump diffusion model.
The ×-signs mark the position of the jumps and, like for all simulations, the jumps are
lognormally distributed. Parameters: T = 1, increment τ = 0.001, p0 = 1, µ = 0.1,
σ = 0.2, λ = 5, µYi = −0.1, σYi = 0.2

dp(t) =
m∑
i=1

aip(t)dS
i(t) +

n∑
j=1

bj(t, p(t))dZ
j(t)
}
,

with ai ∈ R, Si(t) stochastic processes (that are good integrators) with E[dSi(t)] ≡ sidt,
with si ∈ R, bj L1-functions, and Zj(t) stochastic processes (that are good integrators)
with E[dZj(t)] ≡ 0. That means E[Si(t) − Si(u)] = si(t − u) and E[Zj(t) − Zj(u)] = 0
for all t ≥ u. All the processes (Si)i, (Z

j)j are assumed to be stochastically independent
and Si(t) resp. Zj(t) are assumed to be stochastically independent of Si(t)− Si(u) resp.
Zj(t) − Zj(u) for all t > u ≥ 0. Moreover, we require that the parameters are chosen
such that (p(t))t > 0 a.s. and (p(t))t ≥ 0. The integrators and integrands have to be
in a form s.t. the integrals exist (since p is the solution of an SDE it is obvious that a
solution of the SDE representing p exists). Furthermore, we assume that this solution is
unique. With p ∈ P we denote a specific price model, i.e. the prices given by one of the
SDEs in P with fixed parameters.

It is important that the parameters are chosen in a way that (p(t))t > 0 a.s. is
garanteed. For instance, if S2(t) is a Poisson-driven process with lognormal minus one
jumps, parameter a2 has to be in (0, 1]. The set P is called the set of essentially
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Figure 9.6: A simulation of SLS trading on MJDM. Price, investments of the long and
the short side, and the SLS trading gain. The price path is exactly that one of Fig. 9.5.
The trading parameters are I∗0 = 1 and K = 4

linearly representable prices because in the SDE representing p, all terms corresponding
to processes with non-zero expectation, i.e. the essential ones, are linear in p(t) and
E[dSi(t)] = const.dt, i.e., one could call Si(t) expectedly linear. Note that p(t) resp.
bj(t, p(t)) is stochastically independent of Si(t)−Si(u) resp. Zj(t)−Zj(u) for all t > u ≥ 0
(and the very same is true for the SLS investment I instead of p).

For obtaining a GBM we set m = 1, a1 = µ, S1(t) = t, n = 1, b1(t, p(t)) = σp(t),
and Z1(t) = W (t) (with W being a Wiener process). For the MJDM we have to set
additionally resp. change m = 2, a1 = µ− λκ, a2 = 1, and S(t)2 = N(t). We also have
E[dt] = 1dt, E[dW (t)] = 0, and E[dN(t)] = λκdt.

Calculating the expected value E[pt] for a price model p ∈ P is rather uncomplicated
when using the SDE representing p and the stochastic independencies assumed above.
We apply the expectation operator on both sides of the SDE, use Thm. 75, and get

dE[pt] =
m∑
i=1

aiE[pt]sidt.

It follows that
E[pt] = p0e

t
∑m
i=1 aisi .
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We define
m∑
i=1

aisi =: µ,

which again is the trend of the price process.
We remark that from this identity and the fact that E[dNt] = λκdt in MJDM it

becomes obvious why the term −λκ in the specification a1 = µ − λκ in MJDM is
needed. Next, we derive a formula for the expected gain that holds for all p ∈ P and see
that this expectation value is non-negative and moreover positive for a non-zero trend.
In the following, it is shown that the expected gain of an SLS trader does not depend
on a specific price model out of set P.

Theorem 86. Given µ > −1, for all price models p ∈ P satisfying
∑m

i=1 aisi = µ the
formula

E[gt] =
I∗0
K

(
eKµt + e−Kµt − 2

)
holds, implying E[gt] > 0 if µ 6= 0 and t > 0.

Proof. Let p ∈ P. It follows

dpt =
m∑
i=1

aiptdS
i
t +

n∑
j=1

bj(t, pt)dZ
j
t

and by means of dILt = K · I
L
t
pt
dpt it holds

dILt =
m∑
i=1

KaiI
L
t dS

i
t +

n∑
j=1

K · I
L
t

pt
bj(t, pt)dZ

j
t .

Using the expectation operator together with the assumptions on the coefficients of the
SDEs in P and Thm. 75 leads to

dE[ILt ] =

m∑
i=1

KaiE[ILt ]sidt

and, thus,
E[ILt ] = I∗0e

Kt
∑m
i=1 aisi = I∗0e

Kµt.

Analogously, by substituting K 7→ −K and I∗0 7→ −I∗0 we obtain for the linear short
trader:

E[ISt ] = −I∗0e−Kµt

It follows that

E[gLt ] =
I∗0
K

(eKµt − 1)

and

E[gSt ] =
I∗0
K

(e−Kµt − 1).
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Combining this leads to:

E[gt] =
I∗0
K

(eKµt + e−Kµt − 2)

Note that this formula for the SLS trader’s gain holds for all p ∈ P satisfying
∑m

i=1 aisi =
µ and does not depend on the specific price model. The inequality

E[gt] > 0

directly follows for all µ 6= 0 and t > 0.

To illustrate the statement of Thm. 86 we consider an arbitrary p ∈ P, e.g.,

dpt = (µ+ ζ)ptdt+ aptdNt + σ
√
ptdWt

with µ being the risk-free interest rate, ζ a parameter making p satisfying the condition
on µ, a ∈ (0, 1], σ > 0, Wt a Wiener processes, and Nt a Poisson-driven process with
intensity λ and jumps (Yi − 1). For the jump distribution we assume Yi ∼ Exp(λYi).
We define κ := E[Y − 1] = 1

λY
− 1. It holds that E[pt] = p0e

(µ+ζ+aλκ)t. All parameters
have to satisfy p(t) > 0 a.s. Thus, we set ζ := −aλκ. The expected SLS trading gain
is given through Thm. 86. Although our example market model is an unusual extension
of the MJDM with a square root in the diffusion part and an a in the jump part, it falls
into the class P for which Thm. 86 is valid. Thus, we do not have to solve the SDE to
derive the expected value of the SLS trading strategy. Instead, we can apply Thm. 86.

9.3 Constant Trend Model in Discrete Time

So far, we analyzed the SLS rule in price models that were given through SDEs, ei-
ther specific ones like the GBM or MJDM or for a whole set of SDEs. Now, we go a
step further and do no longer rely on specific price models but instead define general
requirements for models. We see that this is enough to show the robust positive expec-
tation property. Furthermore, we see that our results do not depend on any model but
only on the trend. At first, this analysis is done in discrete time, then we move on to
sampled-data systems and continuous time. The main assumption in this section is that
we have a constant trend. In Sec. 9.4, we relax this assumption. The GBM and MJDM
are special cases for the general requirements of this section when calculating limits for
continuous time. Before analyzing the SLS strategy in this setting, we have to specify
the price processes of interest and the time grid on which we define the price processes.

We assume discrete time trading, i.e., at every point of time t ∈ T = {0, h, 2h, . . . , T}
with T = Nh and h > 0, the trader has all information available up to t and adjusts the
investment It.

Definition 87. Given h > 0 and T from above, the price processes of interest have the
following properties:

• Stochastic Prices: the price process (pt)t∈T is a stochastic process
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• Positive Prices: the price pt is positive for all t ∈ T

• Fixed Start Price: The start price p0 ∈ R+ is deterministic

• Independent Multiplicative Growth: for all k ∈ N and all t0 < t1 < . . . < tk ∈ T it
holds:

pt0 ,
pt1
pt0

,
pt2
pt1

, . . . ,
ptk
ptk−1

are stochastically independent

• Constant Trend: the expected relative return is constant, i.e., there is µh > −1
such that for all t ∈ T \ {0} it holds:

E
[

1

pt−h
· pt − pt−h

h

]
= µh

Note that this assumption is inspired by “ E
[
dp(t)
p(t)

]
= µdt” and that it is equivalent

to:

E
[
pt
pt−h

]
= µhh+ 1

If h > 0 is not fixed but considered to be a parameter of the trader (determined by
the trading frequency), this appears to be a contradiction to the definition of µh since
the relative return may then depend on the trading frequency. Section 9.3.2 shows why
this is not a contradiction.

Theorem 88. For t = nh, a price process fulfilling Def. 87 has the expected value

E[pt] = p0 · z
(
µh,

1
h

)t
,

with z(x,m) : R× R+ → R given by z(x,m) 7→
(

1 +
x

m

)m
.

Proof. This can be proven by calculation using Def. 87:

E[pt] = E
[
p0 ·

ph
p0
· p2h

ph
· · · pt

p(n−1)h

]
= p0 ·

n∏
i=1

E
[

pih
p(i−1)h

]
= p0 · (µhh+ 1)n = p0 ·

(
(µhh+ 1)

1
h

)t
Now the definition of the function z proves the theorem.

When defining (Ft)t∈T as the family of σ algebras containing the available informa-
tion, with a very similar proof one can show that it holds:

E [pt2 |Ft1 ] = pt1 ·
(

(µhh+ 1)
1
h

)t2−t1
= pt1 · z

(
µh,

1
h

)t2−t1
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The next question that may arise is which processes fulfill Def. 87. Theorem 89 gives
us one possibility to construct such processes.

Theorem 89. Let (Xt)t∈T ⊂ R be a Lévy process. Especially, this stochastic process
has the following properties:

• Independent Growth: for all k ∈ N and all t0 < t1 < . . . < tk ∈ T it holds:

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtk −Xtk−1
are stochastically independent

• Identically Distributed Growth: for all t1, t2, t3, t4 ∈ T with t2 − t1 = t4 − t3 it
holds:

Xt2 −Xt1 ∼ Xt4 −Xt3

• Start at zero: X0 = 0

Then for every p0 ∈ R+ it holds that

pt := p0 · eXt ∀t ∈ T

fulfills Def. 87.

Proof. Obviously, pt is a stochastic process which is positive and has a fixed start price.
The independent multiplicative growth of pt follows from the independent growth of
Xt and of X0 = 0. It remains to prove the constant trend: From the identically

distributed growth it follows Xt1 − Xt1−h ∼ Xt2 − Xt2−h and thus e
Xt1

e
Xt1−h

∼ e
Xt2

e
Xt2−h

.

Particularly, E
[

e
Xt1

e
Xt1−h

]
= E

[
e
Xt2

e
Xt2−h

]
holds for all t1, t2 ∈ T . This shows that µh :=(

E
[

e
Xt1

e
Xt1−h

]
− 1
)
h−1 is well-defined.

9.3.1 The Robust Positive Expectation Property

Now, after having understood the price dynamics we analyze the SLS trading strategy’s
performance in such a market. At first, we have a look at the linear long trader:

ILt = I∗0 +KgLt

We recall that

gLt =
∑

τ∈{h,2h,...,nh}

ILτ−h ·
pτ − pτ−h
pτ−h

.

So it holds:

ILt − ILt−h = K · (gLt − gLt−h) = K · ILt−h ·
pt − pt−h
pt−h

,

ILt − ILt−h
h · ILt−h

= K · pt − pt−h
h · pt−h

,
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and

It
It−h

= K ·
(

pt
pt−h

− 1

)
+ 1

This directly leads to

E

[
ILt − ILt−h
h · ILt−h

]
= Kµh

and with an analogous proof to that one of Thm. 88 to Thm. 90.

Theorem 90. For the investment of a linear long trader it holds:

E
[
ILt
]

= I∗0 · z
(
Kµh,

1
h

)t
From the closed form formula for the expected investment of the linear long trader

we derive a similar formula for the expected gain of the linear long trader when using
the definition of the linear long feedback rule:

E
[
gLt
]

=
I∗0
K
·
(
z
(
Kµh,

1
h

)t − 1
)

By substituting I∗0 7→ −I∗0 and K 7→ −K we get for the short side’s investment and
gain:

E
[
ISt
]

= −I∗0 · z
(
−Kµh, 1

h

)t
and

E
[
gSt
]

=
I∗0
K
·
(
z
(
−Kµh, 1

h

)t − 1
)

Recalling that gt = gLt + gSt , we obtain Thm. 91.

Theorem 91. The expected gain of the SLS feedback trading strategy for prices defined
by Def. 87 is:

E[gt] =
I∗0
K
·
(
z
(
Kµh,

1
h

)t
+ z

(
−Kµh, 1

h

)t − 2
)

Next, we show that the expected gain is positive for all T 3 t > h.

Theorem 92. The expected gain of the SLS feedback trading strategy is non-negative
and is zero if and only if t = 0 or t = h.

Proof. We calculate:

E[g0] = 0
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and

E[gh] =
I∗0
K
· ((1 +Kµhh) + (1−Kµhh)− 2) = 0

For t = nh with n ≥ 2 the proof becomes a little more tricky:

E[gt] =
I∗0
K

((1 +Kµhh)n + (1−Kµhh)n − 2)

=
I∗0
K

((
n∑
i=0

(
n

i

)
· (Kµhh)i

)
+

(
n∑
i=0

(
n

i

)
· (−Kµhh)i

)
− 2

)

=
2I∗0
K

bn2 c∑
i=1

(
n

2i

)
·
(
(Kµhh)i

)2
> 0,

which shows the claim.

9.3.2 A Sampled-Data System: Discrete Time Trading of Continuous
Time Price Processes

In practice, the price of a stock is not only defined at the discrete trading times t ∈ T ,
which are chosen by the trader. Ideally, one would model p(t) as a continuous time
price process, which is defined for all t ∈ R+

0 . We recall that in order to distinguish the
continuous time from the discrete time case, we write the time argument in brackets
for continuous time processes, i.e. p(t) instead of pt. In a control theoretic notion,
the discrete time controller derived in the last section is implemented as a sampled-
data controller with sampling time h > 0. Hence, the sampling time h > 0 becomes a
parameter of the trader and that appears to be a conflict between the fact that the trend
µh depends on the trading frequency via h while on the other hand Chap. 7 demands
the price taker property, i.e., that the trader is not able to influence the price.

In the following analysis we show that this contradiction can be resolved by assuming
the price taker property for the continuous time returns rather than for the discrete time
returns. To this end, we show that Def. 87 and the price taker property (see Chap. 7)
can be met if we consider a constant trend µ for the continuous price model that is not
influenced by the trader and a trader who trades on a discrete time grid with parameter
h > 0, where h and µ are independent. For all t2 > t1 ≥ 0 we assume:

E [p(t2)|Ft1 ] = p(t1) · eµ(t2−t1),

which corresponds to Def. 87. This property is true, e.g., for the geometric Brownian
motion and for Merton’s jump diffusion model. It implies:

E [p(t)] = p0 · eµt
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and

E
[

p(t)

p(t− h)

∣∣∣∣Ft−h] = eµh ∀h > 0, t ≥ h

Since eµh is deterministic and thus independent of the realization of p(t−h) it follows:

E
[

p(t)

p(t− h)

]
= eµh ∀h > 0, t ≥ h

and thus

E
[
p(t)− p(t− h)

h · p(t− h)

]
=
eµh − 1

h
=: µh

Hence, for all h > 0 we can appropriately choose µh. We note that with L’Hôspital’s
rule it is easily verified that µh → µ for h → 0. Moreover, we can see that 0 < h and
µ > −1 implies µh > −1.

From Thm. 92 it thus follows that for a continuous time process satisfying the first
four properties of Def. 87 and E [p(t2)|Ft1 ] = p(t1) · eµ(t2−t1) with µ > −1, the discrete
time SLS trading strategy with 0 < h yields positive expected gain E[gt] > 0 whenever
t ≥ 2h. We emphasize that this means that the important qualitative property, i.e.
positive expected gain for a.a. parameters, holds independently of the length h > 0 of
the sampling interval. This is in contrast to, e.g., stabilizing controllers, for which it is
known that asymptotic stability of the closed loop may be lost if the sampling time is
chosen too large (Nešić et al., 1999, 2009; Chen and Francis, 1991).

9.3.3 Limits for Continuous Time Trading

We end Sec. 9.3 by analyzing what happens if the trading frequency tends to infinity,
i.e., if the time h > 0 between two trading times tends to 0. Clearly, this question only
makes sense if p(t) is a continuous time process, as in the previous section. As mentioned
before, in order to obtain a meaningful limit we have to make sure that the stochastic
Itō integral with respect to dp(t) exists.

As in the previous section we assume

E [p(t2)|Ft1 ] = p0 · eµ(t2−t1).

It directly follows:
E [p(t)] = p0 · eµt

Now, Thm. 92 can be applied. All results and definitions obtained so far can be trans-
formed into similar results for continuous time trading when using

lim
m→∞

z(x,m) = ex.
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Considering the formula for the gain with ti = ih, n = t/h and letting h→ 0 we obtain:

g`(t) =

∫ t

0

I`(τ)

p(τ)
dp(τ)

E
[
IL(t)

]
= I∗0 · eKµt,

E
[
IS(t)

]
= −I∗0 · e−Kµt,

E
[
gL(t)

]
=
I∗0
K

(
eKµt − 1

)
,

E
[
gS(t)

]
=
I∗0
K

(
e−Kµt − 1

)
,

and last but not least

E [g(t)] =
I∗0
K

(
eKµt + e−Kµt − 2

)
> 0,

which is the desired formula for the expected gain E[g(t)].

When using the common and purely formal notation of stochastic differential equa-
tions, it holds

E
[
dp(t)

p(t)

]
= µdt,

dIL(t)

IL(t)
= K · dp(t)

p(t)
,

E
[
dIL(t)

IL(t)

]
= Kµdt,

and

E
[
dIS(t)

IS(t)

]
= −Kµdt.

The conditions used here are exactly the same as in the continuous time setting in
Barmish and Primbs (2011, 2016), which ensure the robust positive expectation property.
Hence, in the limit for h → 0, we recover the known results from the continuous time
literature, but for a much more general class of price processes.

Actually, the continuous time limit of the expected gain is the same as given by
Barmish and Primbs (2011, 2016). Thus, in the limit, our results are consistent with
those for the continuous time SLS strategy analyzed in these references. The formula
for the expected gain (Equation (4.16)) in Thm. 4.3 in the work of Dokuchaev (2012) is
structurally similar to our expected gain’s formula, which can be written as

E[g(t)] =
2I∗0
K

(cosh(Kµt)− 1) > 0.

The main difference of our results to these references is that our market model is much
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more general because the analysis in Barmish and Primbs (2011, 2016); Dokuchaev and
Savkin (1998a,b, 2002, 2004); Dokuchaev (2012) are limited to stock prices governed by
geometric Brownian motions.

9.4 Time-varying Trend Model in Discrete Time

The main feature of control-based trading strategies is that although market parameters
like the expected return on investment are used when analyzing the strategies, the trader
does neither have to know nor to estimate them for trading. Properties of the strate-
gies hold for a.a. settings of the parameter values (given a measure on the parameter
space that is absolutely continuous to the Lebesgue measure on this space). The subse-
quent analysis follows Baumann and Grüne (2017) but takes into account the ideas of
Malekpour and Barmish (2016), who state that investment decisions should not rely (too
much) on market behavior long ago, Primbs and Barmish (2013, 2017), who consider
time-varying trends and volatilities, and Barmish and Primbs (2011, 2016); Baumann
(2017b), who calculate expected gains and variances.

After having discussed market efficiency and control-based trading strategies, espe-
cially SLS trading, we construct a new, more general type of an SLS rule, which combines
all the ideas above: the discounted SLS rule. The discounted SLS strategy is a class of
trading rules that contains the standard SLS rule. The construction process as well as
the analysis is based on refinements of the underlying time grids: Starting with discrete
time price processes and thus discrete time trading, we end with continuous prices and
continuous trading. The standard SLS rule is generalized by a discounting factor δ, the
price process allows for time-varying parameters, and the analysis takes risk-adjusted re-
turns into account. The mathematically proven results—either concerning all discounted
SLS rules (including the standard rule) or only the standard SLS strategy—build a puz-
zle to market efficiency. Note that the construction of the discounted SLS rule is just
the implementation of an idea, probably relevant for practical considerations. The gen-
eralization to time-varying trends (and volatilities) is the main feature of this section
because there are new theoretical findings.

9.4.1 The Robust Positive Expectation Property

A controller with delay as presented by Malekpour and Barmish (2016) has the feature
that too old (older than m days) events do not have any influence on the strategy,
but it has a questionable feature, too: An event that is m days old is taken fully into
account today but vanishes from the calculations tomorrow (i.e. after m+1 days). As an
alternative controller type, we introduce the discounted SLS controller with discounting
factor δ ∈ (0, 1] (SLSδ). The main, and indeed the only, difference of a discounted rule
to the standard rule ` ∈ L, S is that instead of the gain g`t a discounted gain

f `δt =

n∑
i=1

I`δ(i−1)h ·
pih − p(i−1)h

p(i−1)h
· δ−(i−1)h
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on a discrete time grid {0, h, 2h, . . .} with h > 0 and t = nh is used. That means, the
discounted SLS rule is

ISLSδt = ILδt + ISδt

with
ILδt = I∗0 +KfLδt

and
ISδt = −I∗0 −Kf

Sδ
t .

A flow diagram for the discounted SLS rule is given in Fig. 9.7. Note that for δ = 1 this
strategy is exactly the standard SLS strategy. The discounting factor δ specifies to which
extent past information is used for calculating the current investment (cf. other economic
discounting factors like, e.g., the game theoretic discounting factor in repeated games).
Actually, in contrast to other examples we do not rate old information lower, but we
rate new information higher. The higher δ is, the more influence past information has;
for δ = 1 all available information is equally weighted, for δ close to zero only the last
available information is important. The discounted SLS strategy has, similar to the SLS
strategy with delay, the advantage that (if δ < 1) old information is not as important as
new one. However, in contrast to the delay strategy the old information loses its weight
gradually and not instantaneously. Note that if δ = 1, the discounted SLS strategy is
exactly the standard SLS rule and, thus, all results for SLSδ also hold for the standard
SLS strategy, which is SLS1.

After having introduced the discounted SLS rule, we come to the basic novelty of
this section: Different to the work in Sec. 9.3 is that we allow for a time-varying trend
now:

E
[
pt − pt−h
h · pt−h

]
=: µh;t−h

(For the reason of non-negative prices,
pt−pt−h
h·pt−h ≥ −1 and µh;t−h > −1 has to hold for

all t and h.) This generalization is similar to that one done by Primbs and Barmish
(2013, 2017) when extending the results for standard GBMs. Analogously to Baumann
and Grüne (2017) and Sec. 9.3, we also assume positive, stochastic prices (pt)t∈T > 0
(T = {0, h, 2h, . . . , T}, T = Nh, t = nh), p0 ∈ R+, and independent multiplicative
growth, i.e., for all k ∈ N and all t0 < t1 < . . . < tk ∈ T it holds that

pt0 ,
pt1
pt0

, . . . ,
ptk
ptk−1

are stochastically independent. This is the weak form of the market efficiency hypothesis
(cf. Chap. 2). Note that this stochastic independence holds when applying any measur-
able function on the growth rates, too. Again, there seems to be a contradiction to the
price taker property: While on the one side h is chosen by the trader, on the other side
the trend µh;t depends on h. But, as shown in Sec. 9.3, this problem can easily be solved
either by use of so-called sampled-data systems or by calculating the limits for h→ 0.

In the following, we show that the positive robust expectation property does not hold



9.4. TIME-VARYING TREND MODEL IN DISCRETE TIME 97

×

×

×

×

×

×

×

dgLδ
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dgSδ

gSδ

-

ISδ-

dp
p

K I∗0δ−1

δ−t

gSLSδ

fLδ

fSδ

Figure 9.7: Flow diagram for the discounted SLS controller with input (or disturbance)
variable return on investment dp

p (i.e. price) and output variable gain gSLSδ . The SLSδ
trader’s parameters are K > 0, I∗0 > 0, and δ ∈ (0, 1] (or δ−1 ∈ [1,∞))

in general anymore (an example is given later in this section), but at least in two special
cases. Note that in this time-varying setting, the robust positive expectation property
does not hold in general even for δ = 1. That means, not the novelty of discounting the
strategy is the problem, but the time-varying trend.

First, we note that for the expected price it holds

E [pt] = E

[
p0 ·

n∏
i=1

pih
p(i−1)h

]
= p0 ·

n∏
i=1

(
µh;(i−1)hh+ 1

)
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and

E [pt2 |Ft1 ] = pt1 ·
n2∏

i=n1+1

(µh;(i−1)hh+ 1).

We start the analysis of the discounted SLS strategy with its long side. By the definition
of ILδt and fLδt it follows

ILδt − I
Lδ
t−h

h · ILδt−h
= Kδ−(t−h) · pt − pt−h

h · pt−h

and so

E

[
ILδt − I

Lδ
t−h

h · ILδt−h

]
= Kδ−(t−h)µh;t−h.

It follows

E
[
ILδt

]
= I∗0 ·

n∏
i=1

(
Kδ−(i−1)hµh;(i−1)hh+ 1

)
.

Again by the definition of ILδt it follows:

E
[
fLδt

]
=
I∗0
K

(
n∏
i=1

(
Kδ−(i−1)hµh;(i−1)hh+ 1

)
− 1

)

By substituting I∗0 7→ −I∗0 and K 7→ −K the formula for E
[
fSδt

]
follows.

Next, we investigate whether E
[
fLδt + fSδt

]
is positive or not. The reader may ask

why we are interested in the expected sum of the discounted gain of the short and the
long side of the discounted SLS strategy. We can rewrite the undiscounted gain in the
following way:

g`δt =
(
f `δt − f

`δ
t−h

)
δt−h +

(
f `δt−h − f

`δ
t−2h

)
δt−2h + . . .+

(
f `δh + 0

)
· 1

=f `δt δ
t−h + f `δt−hδ

t−2h
(

1− δh
)

+ . . .+ f `δh

(
1− δh

)

Since it holds
E
[
gSLSδt

]
= E

[
gLδt + gSδt

]
and the expectation operator is linear, we conclude: When E

[
fLδt + fSδt

]
> 0 for all t,

then E
[
gSLSδt

]
> 0, too. And this is what is really of interest: It is the positive robust

expectation property. That means, we want to know whether E
[
gSLSδt

]
> 0. For this,

we have to calculate E
[
fLδt + fSδt

]
> 0. In the case δ = 1 it holds E

[
f `1t

]
= E

[
g`1t

]
.
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Unfortunately, E
[
fLδt + fSδt

]
> 0 is not true for all t, all δ ∈ (0, 1], and all (µh;t)t.

This can be seen by rewriting

E
[
fLδt + fSδt

]
=
I∗0
K

( n∏
i=1

(
Kδ−(i−1)hµh;(i−1)hh+ 1

)
+

n∏
i=1

(
−Kδ−(i−1)hµh;(i−1)hh+ 1

)
− 2

)
=

2I∗0
K

∑
α⊂{1,...,n}
|α| even
|α|6=0

∏
j∈α

Kδ−(j−1)hµh;(j−1)hh.

When assuming a time-varying trend in discrete time, it is easy to find an example
where this sum is negative. This is not a problem of discounting the SLS strategy, it is a
problem of the time-varying trend if the time axis is non-continuous even in the standard
SLS case, i.e., when δ = 1. When setting n = 2, i.e., T = {0, h, 2h}, with µh;0 > 0 and
µh;h < 0, which is the time-varying trend, and δ = 1, i.e. (even) in the standard SLS

case, it holds E
[
fLδ2h + fSδ2h

]
= 2KI∗0h

2δ−hµh;0µh;h < 0 and E
[
fLδh + fSδh

]
= 0. It follows

that E
[
gSLSδ2h

]
= E

[(
fLδ2h + fSδ2h

)
δh
]

+ 0 < 0.

However, there are (at least) two special cases where E
[
fLδt + fSδt

]
> 0 holds:

(i) First, when n > 1 and µh;t ≥ 0 for all t and µh;t > 0 for at least two points
of time t or when µh;t ≤ 0 for all t and µh;t < 0 for at least two points of time t
(since |α| is even). That means, whenever

(
µh;(n−1)h

)
n∈{1,...,N} is non-negative (non-

positive), E
[
fLδt + fSδt

]
is non-negative. When there additionally exists ν ⊂ {1, . . . , N}

with |ν| ≥ 2 so that
(
µh;(j−1)h

)
j∈ν is positive (negative), it holds that E

[
fLδt + fSδt

]
is positive. The settings of Baumann and Grüne (2017) and Malekpour and Barmish
(2016), i.e. µ or µh const. and non-zero, are a special case of case (i).

(ii) Second, when letting h → 0 (i.e. n → ∞) one can use the continuously com-
pounded interest rate formula, which is a Vito Volterra style product integral, to see
that

E
[
fLδt + fSδt

]
=
I∗0
K

(
exp

(∫ t

0
Kδ−sµ(s)ds

)
+ exp

(∫ t

0
−Kδ−sµ(s)ds

)
− 2

)
,

which is non-negative and additionally positive whenever µ̄δ :=
∫ t

0 δ
−sµ(s)ds 6= 0.

In the continuous time case we proved that the robust positive expectation property
still holds (since only for specific values of µ̄δ the expected discounted gain and, thus, the
expected gain is zero), cf. Figs. 9.8 and 9.9 for contour plots of the expected discounted
SLSδ trading gains as a function of K > 0 and µ̄δ. In Figs. 9.10 and 9.11 the expected
discounted gains for different SLSδ rules are depicted as functions of µ̄δ. Note that
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exp(x) + exp(−x)− 2 ≥ 0 ∀x and equals zero if and only if x = 0.

The setting of Primbs and Barmish (2013, 2017) is a special case of case (ii) (δ = 1)
and all other results using GBMs or MJDM are also special cases of the case (i) (in the
limit; δ = 1). In the case (ii), µ(t) has to be a Riemann integrable function.
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Figure 9.8: Contour plot of the expected discounted gain of the SLSδ strategy for K ∈
(0, 10] and µ̄δ ∈ (−1, 5]. The expected discounted gain is positive for all (K, µ̄δ) with
µ̄δ 6= 0

During every time interval with positive expected returns or negative expected re-
turns, a trader using the discounted SLS rule has expected positive gains. Only when
the expected return µ switches from rising to falling prices or vice versa the trader has
to expect a loss. When increasing the trading frequency to continuous trading—which
is nearly a realistic assumption in times of high frequency trading—and µ(t) is Riemann
integrable, the measure of time points when µ is switching its direction goes to zero.

Mostly, in market efficiency literature, it is assumed that the price process is a
random walk around its fundamental value. When allowing the fundamental value to
be non-constant and assuming it to be not too wild, i.e., δ−tµ(t) (δ ∈ (0, 1]) has to be
Riemann integrable and µ̄δ =

∫ t
0 δ
−sµ(s)ds 6= 0, the SLSδ trader can—when trading

fast enough—expect a positive gain for all t and all discounting factors δ ∈ (0, 1]. This
should not be true in an efficient market.

9.4.2 Comparison to a Buy-and-Hold Rule

In this section, we compare the expected gain of the SLS rule to the expected gain of a
buy-and-hold strategy. To keep the notation simple we rely on the standard SLS rule
only, i.e., δ = 1.

When comparing the expected gain of the SLS rule with that one of a buy-and-hold
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Figure 9.9: Contour plot of the expected discounted gain of the SLSδ strategy for K ∈
(0, 10] and µ̄δ ∈ [−0.1, 0.2]. The expected discounted gain is positive for all (K, µ̄δ) with
µ̄δ 6= 0
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Figure 9.10: Expected discounted gain of different SLSδ strategies with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 1

2 ,
1
4 (from top to bottom). The average trend is in µ̄δ ∈ (−1, 2]

strategy (bnh), which is exactly the trader Lδ with δ = 1, K = 1, and I∗0 > 0, it
turns out that if K > 1 for all t with µ̄(t) ∈ (−1, 0) ∪ (Beg (K, µ̄) ,∞) the SLS rule
is the dominant one and if K ≤ 1 it still holds that for all t with µ̄(t) ∈ (−1, 0) the
SLS rule is dominant to the bnh rule (see Figs. 9.12, 9.13, 9.14, and 9.15 for graphs
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Figure 9.11: Expected discounted gain of different SLSδ strategies with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 1

2 ,
1
4 (from top to bottom). The average trend is in µ̄δ ∈ [−0.1, 0.2]

of the expected SLS gain and the expected bnh gain and contour plots of the expected
difference of these strategies). The value Beg (K, µ̄) depends on K and µ̄ and it holds:
Beg (K, µ̄)→ 0 for K →∞. Note that µ̄(t) 6∈ [0, Beg (K, µ̄)] does not mean that the SLS
is only dominant for special price paths, which would not be a result deserving attention.

Since µ̄(t) :=
∫ t

0 µ(s)ds with µ(t)dt = E
[
dp(t)
p(t)

]
is the expected return of the price path

that depends on changes in the fundamentals and all results so far concern expectations,
the price paths are allowed to be random walks around the fundamental value when µ̄(t)
satisfies the condition µ̄(t) 6∈ [0, Beg (K, µ̄)].

9.4.3 Risk-Adjusted Expected Return of SLS and Buy-and-Hold

For sure, there are some points to think about concerning the result about the robust
positive expectation property in Secs. 9.4.1 and 9.4.2. The assumption that there are
short time trends in expected returns (that can be caused by changes in fundamentals)
is reasonable. The argument that the trader in practice has to achieve a positive gain on
average when there are trading costs, is not really a solution of the puzzle (of positive
expected gains in an efficient market) in times of flat-rate trading offers, especially when
noticing that the difference of the expected gains of the SLS rule and of the bnh rule goes
to infinity if K →∞ when µ̄δ 6= 0 or µ̄δ →∞ when K > 1 and trading costs in a highly
liquid market can be assumed to be bounded. The same is true for the continuous trading
assumption when considering high frequency trading. However, there is one argument
against the robust positive expectation property of the SLS rule that puzzles us: the
risk-adjustment.

Classically, the risk argument is given by the defenders of the market efficiency
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Figure 9.12: Expected gain of different SLS strategies (solid lines) with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 1

2 ,
1
4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. The average trend
is in µ̄ ∈ (−1, 2]
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Figure 9.13: Expected gain of different SLS strategies (solid lines) with I∗0 = 10 and
K = 16, 8, 4, 2, 1, 1

2 ,
1
4 (from top to bottom) compared to the risk-adjusted return of a

simple buy-and-hold strategy (dashed line) with initial investment 10. The average trend
is in µ̄ ∈ [−0.1, 0.2]
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Figure 9.14: Contour plot of the expected difference of the gain of the SLS strategy and
the bnh rule for K ∈ (0, 10] and µ̄ ∈ (−1, 5]. The expected difference is positive for all
(K, µ̄) in the left as well as in the upper-right area
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Figure 9.15: Contour plot of the expected difference of the gain of the SLS strategy and
the bnh rule for K ∈ (0, 10] and µ̄ ∈ [−0.1, 0.2]. The expected difference is positive for
all (K, µ̄) in the left as well as in the upper-right area

hypothesis when someone finds an external variable that allows for estimating higher
expected returns of an asset. Then it is said that this external variable is just a better
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proxy for measuring risk and so it is concluded that the asset under investigation is more
risky, which allows the asset to be more profitable (on average) without being a counter
example to market efficiency. In the setting of this chapter, this is not applicable since
there is only one asset under analysis. Even the discussion about the momentum effect
(Moskowitz, 2010), i.e., higher momentum is related to higher risk, is not applicable to
our setting because we do not have assumptions on the stock under trade. Here, only
different trading strategies are considered. The only way to apply the risk adjustment
argument to the SLSδ rule is to use volatility, which we do next. As a proxy for volatility
we use the standard deviation, which is not a risk measure in the sense of mathematical
finance. At the end of this chapter and at the end of this thesis, the risk of the SLS rule
and other definitions of it (cf. skewness) are discussed again. But for now, we use the
most common choice.

For the remainder of this section, the analysis is restricted to the standard SLS
rule, i.e., we set δ = 1. For calculating the standard deviation of the SLS strategy, an
assumption on the volatility of the underlying price process is needed. Analogous to the
definition of the trend, it is set

E

[
1

h

(
pt − pt−h
pt−h

)2
]

=: σ2
h;t−h > 0.

Note that also here a market parameter, namely σ2
h;t, depends on h, which is chosen

by the trader. However, the same argument as for µh;t holds (cf. Baumann and Grüne,
2017).

With this assumption it follows

E
[
p2
t

]
= p2

0 ·
n∏
i=1

((
σ2
h;(i−1)h + 2µh;(i−1)h

)
h+ 1

)
and

E
[
p2
t2

∣∣Ft1] = p2
t1 ·

n2∏
i=n1+1

((
σ2
h;(i−1)h + 2µh;(i−1)h

)
h+ 1

)
.

Again, we start the analysis of the SLS strategy with its long side. Using the definition
of ILt and gLt leads to:

1

h

(
ILt − ILt−h
ILt−h

)2

=
K2

h

(
pt − pt−h
pt−h

)2

and

E

1

h

(
ILt − ILt−h
ILt−h

)2
 = K2σ2

h;t−h
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It holds

E
[(
ILt
)2]

= I∗20 ·
n∏
i=1

((
K2σ2

h;(i−1)h + 2Kµh;(i−1)h

)
h+ 1

)
.

Again by the definition of ILt it follows:

E
[(
gLt
)2]

=
I∗20

K2

(
n∏
i=1

((
K2σ2

h;(i−1)h + 2Kµh;(i−1)h

)
h+ 1

)
− 2

n∏
i=1

(
Kµh;(i−1)hh+ 1

)
+ 1

)

By substituting I∗0 7→ −I∗0 and K 7→ −K, the formula for E
[(
gSt
)2]

follows. For calcu-

lating the standard deviation of the SLS strategy’s gain, the mixed expectation of the
long and the short side E

[
gLt g

S
t

]
are needed, too. It holds:

1

h

(
ILt − ILt−h
ILt−h

)(
ISt − ISt−h
ISt−h

)
= −K

2

h

(
pt − pt−h
pt−h

)2

and

E

[
1

h

(
ILt − ILt−h
ILt−h

)(
ISt − ISt−h
ISt−h

)]
= −K2σ2

h;t−h

With that it follows

E
[
ILt I

S
t

]
= −I∗20 ·

n∏
i=1

(
−K2σ2

h;(i−1)hh+ 1
)
.

By the definitions of ILt and ISt it follows:

E
[
gLt g

S
t

]
=
I∗20

K2

(
n∏
i=1

(
−K2σ2

h;(i−1)hh+ 1
)
−

n∏
i=1

(
Kµh;(i−1)hh+ 1

)
−

n∏
i=1

(
−Kµh;(i−1)hh+ 1

)
+ 1

)

Now, all components needed for the calculation of

E
[(
gSLS(t)

)2]
= E

[(
gL(t)

)2]
+ 2E

[
gL(t)gS(t)

]
+ E

[(
gS(t)

)2]
and

V
[
gSLS(t)

]
= E

[(
gSLS(t)

)2]− (E [gSLS(t)
])2

are known. To keep the computation simple, we calculate the limit for continuous time
trading h → 0 and recall that µ̄(t) = µ̄1(t) =

∫ t
0 µ(s)ds and define σ2(t) :=

∫ t
0 σ

2(s)ds
(of course, σ2(t) has to be Riemann integrable as well). By use of the Vito Volterra style
product integral, it follows:

E
[(
gSLS(t)

)2]
= E

[(
gL(t)

)2
+
(
gS(t)

)2
+ 2gL(t)gS(t)

]
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=
I∗20

K2

(
exp

(
K2σ2(t) + 2Kµ̄(t)

)
− 2exp(Kµ̄(t)) + 1

+ exp
(
K2σ2(t)− 2Kµ̄(t)

)
− 2exp(−Kµ̄(t)) + 1

+ 2
(
exp

(
−K2σ2(t)

)
− exp(Kµ̄(t))− exp(−Kµ̄(t)) + 1

))

Combining the results for E
[
gSLS(t)

]
=

I∗0
K (exp(Kµ̄(t)) + exp(−Kµ̄(t))− 2) and

E
[(
gSLS(t)

)2]
leads to the formula for the SLS rule’s variance:

V
[
gSLS(t)

]
=
I∗20

K2

((
exp

(
K2σ2(t)

)
− 1
)

(exp(2Kµ̄(t)) + exp(−2Kµ̄(t)))

+ 2
(
exp

(
−K2σ2(t)

)
− 1
))

This expression fits exactly the results obtained in Sec. 9.1 and by Baumann (2017b) for
MJDM (and the GBM).

After having derived the formulae for the expected gain and the variance of the SLS
rule, next, we compare the results with the corresponding formulae for a simple buy-
and-hold trader. It is easy to see that for the expected gain of a simple buy-and-hold
strategy with initial investment I∗0 it holds

E
[
gbnh(t)

]
= I∗0 (exp(µ̄(t))− 1)

and for the respective variance

V
[
gbnh(t)

]
= I∗20 exp(2µ̄(t))

(
exp

(
σ2(t)

)
− 1
)
,

for example by using the results for gL(t) and setting K = 1 (and δ = 1).

For any strategy ` let

rar(`; t) :=
E
[
g`(t)

]√
V [g`(t)]

=
E
[
g`(t)

]
S [g`(t)]

be the risk-adjusted return of this strategy at time t. It is clear that rar(SLS; t) >
0 ∀t > 0, µ̄(t) 6= 0, cf. Figs. 9.16 and 9.17 for contour plots of the risk-adjusted returns
of the SLS strategy.

As suggested similarly by Malkiel (1973), we compare the risk-adjusted returns of
the SLS rule with that of a buy-and-hold strategy. For all t with µ̄(t) ∈ (−1, 0) the SLS
rule is the dominant one. If K ≥ 1 the bnh rule is dominant if µ̄(t) > 0. If K < 1 and
µ̄(t) > 0 for some pairs (K, µ̄(t)) the SLS rule is dominant and for some the bnh rule,
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Figure 9.16: Contour plot of the risk-adjusted return of the SLS strategy for K ∈ (0, 10]
and µ̄δ ∈ (−1, 5]. For risk-adjustment we use the standard deviation. The risk-adjusted
return is positive for all (K, µ̄δ) with µ̄δ 6= 0

risk-adjusted return (SLS)

mu_bar

K

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20

0
2

4
6

8
10

Figure 9.17: Contour plot of the risk-adjusted return of the SLS strategy for K ∈ (0, 10]
and µ̄δ ∈ [−0.1, 0.2]. For risk-adjustment we use the standard deviation. The risk-
adjusted return is positive for all (K, µ̄δ) with µ̄δ 6= 0

see Figs. 9.18, 9.19, 9.20, and 9.21 for graphs of the risk-adjusted returns of the SLS
rule and the bnh rule (for varying σ2) and Figs. 9.22 and 9.23 for contour plots of the
difference of the risk-adjusted returns of the SLS rule and the bnh strategy.
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Figure 9.18: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10
and K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return

of a simple buy-and-hold strategy (dashed line) with initial investment 10. All returns
are adjusted with the respective standard deviation. The average trend is in µ̄ ∈ (−1, 5]
and the average volatility is σ2 = 1%

Now, the question is whether the risk-adjustment and (at the same time) the com-
parison to the bnh rule is the solution to the conflict of the robust positive expectation
property of the SLS rule to market efficiency. However, it is not. If a market as a whole
(i.e. on average) is risk-neutral but not every single stock, a trader investing in a ran-
domly selected portfolio (and this is what Malkiel (1973) actually suggests) can expect
zero gain and therefore the risk-adjusted return is zero, too. If the trader uses the SLS
rule stock-by-stock and there is only one single stock that is not risk-neutral (and it does
not matter if the stock’s expected return is too high or too low) the expected trading
gain as well as the risk-adjusted return are positive.

For a practical application, there still remains the question how to choose K. If
µ̄ < 0, it does not matter whether K > 1 or K < 1 (in a qualitative manner) because
expected gains and risk-adjusted returns are positive and even when compared to the
bnh rule, for both the expected gains and risk-adjusted returns the SLS rule is dominant.
When µ̄ > 0, it also does not matter how to choose K when relying on expected gain
or risk-adjusted return. However, when compared to the bnh rule it might be better
to choose K > 1 when expected gain is the target function and to choose K < 1 when
it is the risk-adjusted return. Note again that the comparison to the bnh strategy is
questionable because the bnh rule is only better in specific cases for a single asset:
A randomly selected portfolio should have a trend (and also a risk-adjusted trend) of
exactly the bond’s rate, i.e. of zero. A bnh trader faces the risk of a negative trend—an
SLS trader does not.
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Figure 9.19: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10
and K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return

of a simple buy-and-hold strategy (dashed line) with initial investment 10. All returns
are adjusted with the respective standard deviation. The average trend is in µ̄ ∈ (−1, 5]
and the average volatility is σ2 = 2%

9.5 Discussion of the Performance of SLS Trading

In the past, most puzzles for market efficiency came from empirical data and statistical
methods. The puzzle presented in this chapter is a purely theoretical, mathematical one.
We proved that for all price processes, which are random walks, it holds:

• If the price process is governed by Merton’s jump diffusion model, the SLS rule
lets the trader a.s. expect a positive gain.

• If the price process is in the set of essentially linearly representable prices, the
robust positive expectation property holds.

• In discrete time, when the trend is constant and non-zero, the expected gain is
positive.

• For a continuous time process with constant trend and discrete time trading, which
is a sampled-data system, the expected gain is a.s. positive and does not depend
on the trading interval, i.e. the sampling time.

• In discrete time, the expected gain of the discounted SLSδ strategy for all discount-
ing factors δ ∈ (0, 1], which includes the standard SLS rule (δ = 1), is positive when
(µ̄h;t)t ≥ 0 and (µ̄h;t)t > 0 for at least two points of time or when (µ̄h;t)t ≤ 0 and
(µ̄h;t)t < 0 for at least two points of time.
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Figure 9.20: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10
and K = 1

16 ,
1
8 ,

1
4 ,

1
2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return

of a simple buy-and-hold strategy (dashed line) with initial investment 10. All returns
are adjusted with the respective standard deviation. The average trend is in µ̄ ∈ (−1, 5]
and the average volatility is σ2 = 5%

• In continuous time, the expected gain of the discounted SLSδ strategy for all dis-
counting factors δ ∈ (0, 1], which includes the standard SLS rule (δ = 1), is positive
when µ̄δ(t) 6= 0.

• The expected gain of the standard SLS rule surpasses the expected gain of a
simple buy-and-hold strategy for all t > 0 with µ̄δ(t) 6∈ [0, Beg(K, µ̄)] if K > 1,
with Beg(K)→ 0 for K →∞, and all µ̄δ(t) 6∈ R+

0 if K ≤ 1 (in continuous time).

• The risk-adjusted return of the standard SLS rule is positive for all K > 0, −1 <
µ̄ 6= 0, and σ2 > 0.

• The risk-adjusted return of the standard SLS rule exceeds the risk-adjusted return
of a simple buy-and-hold strategy for all −1 < µ̄ < 0 and if K ≤ 1 for some 0 < µ̄.

That means, an SLS trader can expect positive gain (even in discrete time) on all
arbitrary small intervals where the trend is not changing its sign. Only for that points of
time where the trend changes its sign, the SLS trader is facing negative expected gains.
Note that the price path itself can change its slope arbitrarily often. When the trend
path is to some extent smooth and trading frequency is increased, the points of time
where the trend changes its sign do carry less (or, when going to continuous time, even
no) weight.

Clearly, there are some assumptions to discuss. Trading costs, for example, would
decrease the expected gain of the SLS rule. However, as can be seen in Figs. 9.12 and 9.13,
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Figure 9.21: Risk-adjusted return of different SLS strategies (solid lines) with I∗0 = 10
and K = 1
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2 , 1, 2, 4 (from top to bottom) compared to the risk-adjusted return

of a simple buy-and-hold strategy (dashed line) with initial investment 10. All returns
are adjusted with the respective standard deviation. The average trend is in µ̄ ∈ (−1, 5]
and the average volatility is σ2 = 10%
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Figure 9.22: Contour plot of the difference of the risk-adjusted returns of the SLS rule
and of a bnh rule. The average volatility is 1%. The SLS rule is dominant in the left
and in the lower-right area
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Figure 9.23: Contour plot of the difference of the risk-adjusted returns of the SLS rule
and of a bnh rule. The average volatility is 1%. The SLS rule is dominant on the left
side

the gap between the expected returns of the SLS and the buy-and-hold rule is widening
heavily when increasing K (and the interval of µ̄ where the SLS rule is dominated tends
to zero if K →∞). Thus, trading costs are not that important. Continuous time trading
is a hard assumption. But since the results of this work do not rely on any price path
but only on the trend process and there are high frequency trading possibilities, only a
very hard non-trending assumption could invalidate these results. For example, one had
to assume that for every point of time with a positive (negative) price trend, for every
arbitrary small interval after that point of time, there has to be another point of time
where the price trend is negative (positive). However, this would also imply that there
are absolutely no identifiable trends in fundamental values. Adequate resources, perfect
liquidity, short selling, and the price taker property can be seen as justified on modern
stock exchanges when both the trader and the traded asset are big enough and I∗0 and
K are chosen small enough (cf. Chap. 7).

If one asked us to solve the puzzle, the only—more or less—satisfying answer we could
give is that the risk measure is inappropriate (maybe skewness would be better). But
there are two problems: First, this idea only works when market efficiency is defined via
risk-adjusted returns only (and not when it is defined via expected gain). And second,
we would run in a problem very similar to the joint hypotheses problem: We conjecture
that for nearly every trading strategy one could find a risk measure so that the risk-
adjusted return is high and one so that it is low. And the other way around, we also
conjecture that for nearly all risk measures one can find a trading strategy that beats
the market and one that is beaten by it. No one could say whether the risk measure
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or the market efficiency hypothesis is wrong. Thus, we rely on a standard definition of
risk-adjustment.

To sum up, there are three possibilities how to solve the problem whether the SLS
rule is beating the market (for a big, rich trader that trades small amounts of highly
liquid stocks of big underlying firms) or not. First, if we assumed that all assets are
risk-neutral—and not only the market as a whole—the results would not hold. However,
that would mean that in every point of time the trend of every single stock is exactly
the trend of the bond, no matter how volatile the stock is. (Note that it is reasonable
to assume that a high-volatile stock is riskier and, hence, should have a higher trend.)
Second, and a little bit weaker than the first argument, if the trends (the trends and
not only the price paths) of the stocks jump in every (infinitesimal small) interval from
positive to negative or vice versa, again the results would not hold. And finally, third,
that we cannot adequately measure risk. This leads to a risk including joint hypotheses
problem, because there is not one risk measure everyone relies on. No one can say whether
the used risk measure or the efficient market hypothesis is wrong. The last point is the
most satisfying answer we can give. At the very end of this chapter, we mention that the
robust positive expectation property is not an arbitrage possibility. The gain is not sure,
it is only in expectation. And it needs potentially a very high number of experiments,
i.e. of trading processes, to realize a positive expected gain on average.



Chapter 10

Effects of Technical Trading Rules

In Chap. 9, we analyzed the performance of technical trading rules, actually of SLS
trading. At this point, we answer the question wether SLS trading or especially the
long side of SLS trading is weakening financial stability. In the sections above, this did
not matter since there we assumed the price taker property. However, when relaxing
the price taker property and assuming a market model were buying decisions lead to
increasing prices, positive trend following seems to produce bubbles: A trader who is
investing long makes money if the price rises. If the trader is a trend follower, the trader
buys, which leads to even more rising prices (and so on). We answer if in such a non-
price-taker model, positive linear feedback trading for sure leads to a financial crisis, i.e.
to a bubble, and if there are market internal mechanisms that prevent a bubble. Note
that we are interested in the long side only because the short side of the feedback rule
would push a price to zero (if it made a lot of money), which is not as dramatic as a
bubble (from a macroeconomic point of view). If the long side made a lot of money, the
short side’s investment would be close to zero and the long side would (maybe) cause a
bubble.

This chapter provides a market model that does not only allow prices to be influenced
by the traders but also that the price is completely determined by the traders’ investment
decisions. We rely on a so-called heterogeneous agent model, i.e., all traders influence
the price process and possibly indirectly each other, too. The model is discussed and
different trading strategies are established. This section is based on Baumann (2015);
Baumann et al. (2017).

10.1 Motivation for Our Heterogeneous Agent Model

Financial market bubbles have repeatedly caused major economic problems, a very
prominent example for this was the crisis of 2007/2008 (Reinhart and Rogoff, 2009).
An important strand of the financial crises literature focuses on the question of whether
specific behavior of market participants is responsible for price bubbles. In particular,
heterogeneous agent models (HAMs) analyze how heterogeneous traders, esp. chartists
and fundamentalists, are able to determine asset price movements (Hommes, 2006a).

115
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Chartists, for example trend followers, trade based only on information about the
price process, that is, they assume that all important information is present in the asset
price. Here, the first question arises. When we assume that there is only one active trader
in the market, who trades with a market maker, and this trader is a long investing trend
follower, does the combination of a market model where prices rise when traders buy
and a single trader who buys even more when prices rise for sure lead to a bubble?
Note that the market maker is a special trader (and not counted as active trader), who
satisfies all buying and selling decisions, i.e., who clears the market, and sets new prices.
In the literature it is often stated that trend followers magnify the current trend, either
positively or negatively, because their trading is based on the philosophy that the greater
the absolute value of the slope of the price process is, the more should be bought or sold
(Covel, 2004).

In contrast to chartists, fundamentalists have some fundamental value in mind and
trade based on perceived over- or undervaluation of the underlying asset. In particu-
lar, fundamentalists buy (sell) when the price is below (above) the fundamental value,
thereby pushing the asset price toward its fundamental value.

All traders act out of self-interest with the intention of making a profit, and give little
thought to how their actions impact prices. As a consequence of the two different in-
vestment strategies, the presence of chartists can cause exploding prices (De Long et al.,
1990b), whereas fundamentalists are associated with a stabilizing influence on assets.
Thus, the following question arises: Are the balancing effects of fundamentalists strong
enough to compensate the destabilizing impacts of chartists? Heterogeneous agent mod-
els are increasingly employed in search of an answer to this question (Gaunersdorfer and
Hommes, 2005; Hommes, 2002; Lux, 1995, 1998; Lux and Marchesi, 1999, 2000). These
studies provide useful explanations for many stylized facts, including excess volatility,
high trading volume, temporary bubbles, trend following, sudden crashes, mean rever-
sion, clustered volatility, and fat tailed distribution returns. For an excellent overview
regarding HAM see the work of Hommes (2006a). The models typically use bounded
rational agents, (imperfect) heuristics or rules of thumb, and nonlinear dynamics (which
might be chaotic). Some studies find that the stabilizing effects of fundamentalists are
not necessarily strong enough to stabilize markets (Hommes, 2006a). However, the re-
sults are usually obtained via simulations and are not analytically proven (Hommes,
2006a). An exception is the work of De Long et al. (1990b) which investigates the ef-
fect of positive feedback traders and informed speculators, who evaluate and consider
the needs of the other market participants, especially the growing needs of the positive
feedback traders, in a three-period market model facing fundamentalists. De Long et al.
(1990b) show that the interaction of these two trader types pushes the price away from
the fundamental value under specific assumptions and despite the fundamentalists’ sta-
bilizing behavior. This chapter differs from the work of De Long et al. (1990b): We do
not investigate how two types of traders, positive feedback traders and informed spec-
ulators, jointly push up the price but instead look only at trend followers, nor do we
assume a predetermined end of the market. This leads to the question: Is it possible
to analytically prove that chartists’ behavior can lead to exploding prices irrespective of
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fundamentalists’ compensatory effects?

The main contribution of this chapter is a mathematically rigorous proof that the
behavior of chartists, specifically the behavior of linear feedback traders without ratio-
nal expectations and without information about the market (e.g., fundamental value,
trading volume, or even prices), can overcome the stabilizing effects of traders with ra-
tional expectations of the fundamental value. Put differently, prices explode because
the stabilizing effects of fundamentalists are outweighed by linear feedback traders. As
shown in the proof, thresholds for model-inherent values can be computed that make
the occurrence of a bubble certain. Furthermore, there are specific values of external
parameters that allow the thresholds of the inherent values to be met. The analysis
reveals that even fundamentalists without any liquidity constraints and with perfect in-
formation about the price, the fundamental value, and the market’s characteristics are
not sufficient to stabilize a simply constructed market based on (excess) demand if the
feedback trader’s initial investment is large enough.

10.2 Model Structure

The model consists of a one asset market and is populated with different types of het-
erogeneous agents, e.g. fundamentalists (F ), chartists (C), and noise traders (N). For
simplification of the analysis, we assume that there is only one feedback trader, that is
we treat all existing feedback traders as one big, average feedback trader. There is indeed
no difference between one feedback trader with an initial investment IC0 and fixed K and

n feedback traders with initial investments
IC0
n and the same K. In the same manner,

we identify all fundamentalists with the fundamentalist and all noise traders with the
noise trader. We analyze four cases: A market with either only a noise trader, only a
feedback trader, only a fundamentalist, or the most interesting case where a fundamen-
talist and a feedback trader are trading simultaneously. The case of a feedback trader
and a noise trader acting simultaneously is analyzed by Baumann (2015). Note that
the chartist used in this section is exactly the linear long feedback trader as introduced
in Chap. 5. However, since the price dynamics in this section is totally different to the
previous sections (especially, there is no price taker property anymore) also the trading
dynamics strongly differs. This is the reason, why we use C instead of L in this section.
Even if the chartist’s/linear feedback trader’s strategy is the same, the results obtained
for trader C differ from those for trader L, due to the usage of HAMs.

At the beginning of every period t ∈ {0, 1, . . . , T}, each active agent ` ∈ {C,F,N}
decides how to invest based on the respective investment strategy, where T is unknown or
even ∞. Each investment strategy I`t is guided by a different heuristic (rule of thumb).
Based on the strategy chosen, each agent then allocates the own financial resources
among the asset market, which consists of one asset and one zero rate bond. The trader
is aware of past market data and of expectations of future fundamental values E[ft+1].
The resulting changes in the investments, denoted by ∆I`t or, better, the buying or selling
decisions D`

t (demand function), are cleared by a market maker who adjusts asset prices
according to (excess) demand. After the traders have observed the price change ∆pt+1,
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and hence their own gains or losses ∆g`t+1 in the recent period, they use this information
in making their next investment decision. For all processes αt we set ∆αt = αt−αt−1 as
the change of the underlying process, e.g., ∆g`t is the period profit while g`t is the overall
gain/loss of trader `. The timeline of the traders’ and the market maker’s decisions and
interactions is shown in Fig. 10.1.

time

Market
Maker

Trader `

t− 1 t t+ 1

announces:
pt−1,∆g

`
t−1

announces:
pt,∆g

`
t

announces:
pt+1,∆g

`
t+1

computes:
pt,∆g

`
t

computes:
pt+1,∆g

`
t+1

knows:
(I`τ )τ≤t−2,(g`τ )τ≤t−1,
(pτ )τ≤t−1,(fτ )τ≤t−1,E[ft]

knows:
(I`τ )τ≤t−1,(g`τ )τ≤t,
(pτ )τ≤t,(fτ )τ≤t,E[ft+1]

determines:
D`
t−1 and I`t−1

determines:
D`
t and I`t

Figure 10.1: Timeline of the traders’ and the market maker’s decisions and interactions
with ∆g`t = I`t−1 ·

∆pt
pt−1

In the feedback trading literature, the price is usually determined through a certain
price process, for example, a geometric Brownian motion (GBM), which is exogenously
given (Barmish and Primbs, 2016). This implies that the traders are not able to influence
the price. As explained in Sec. 10.1, agent-based price models have evolved in the
academic economics literature (Hommes, 2006a) to avoid this price taker property. Note
that the price taker property is a strong restriction. According to agent-based models,
the price is a function of traders’ investment decisions. Note that noise traders are
important in the HAM literature to explain, e.g., stylized facts. However, in this chapter
we only use them to show that our HAM is a generalization of the GBM.

We denote the sum of all traders’ buying and selling decisions at time t with Dt =∑
`D

`
t . Based on the idea of interacting agents, Baumann (2015) constructs a pricing

model that fulfills the law of (excess) demand, similarly to

• pt+1 = pt, if Dt = 0,

• pt+1 →∞, if Dt →∞,

• pt+1 → 0, if Dt → −∞, and

• pt+1 strictly increasing in Dt.

Actually, Baumann (2015) uses ∆I instead of D, which does not change the dynamics
substantially. The choice of Baumann (2015) is a little bit more unrealistic because
value change caused by price changes in the previous period—and not by buying/selling
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decisions—cause price changes in the current period. However, the computation of the
investment formulae is much shorter for ∆I. Here, we rely on the more realistic model,
which uses D.

For simplification, we assume an infinite supply. Infinite supply is, for example,
given for synthetic assests, betting slips, etc. These assets are produced by the market
maker without any restriction. Thus, the market maker can clear the market for sure.
It follows that the market maker sets the new asset price according to the asset demand
only (without use of any external information). The buying/selling decision of trader `
is given trough

D`
t := I`t −

pt
pt−1

· I`t−1

for t ≥ 1 and D`
0 = I`0. The second term pt

pt−1
· I`t−1 is the investment of trader ` at

time t before the trader bought or sold anything, because I`t−1 is the investment at time
t− 1 and pt

pt−1
denotes how much this old investment has in- or decreased through price

changes. The first term I`t denotes the investment at time t according to the trader’s
strategy. As a consequence, the difference has to be bought or sold.

The model requirements are, e.g., fulfilled by the exponential function:

pt+1 = pt · eM
−1Dt

= p0 · eM
−1Bt

where M > 0 is a scaling factor expressing the trading volume of the underlying asset
and Bt =

∑t
i=0Dt is the amount of bought or sold assets up to time t (measured in

currency units).

This pricing rule is similar to that one Batista et al. (2017) use. The works of Batista
et al. (2017) and Baumann (2015) were developed independently. Unless otherwise
stated, for simplicity of the notation M is set to M = 1. As mentioned above, our
pricing model is cleared through a market maker (Drescher and Herz, 2012), cf. Fig. 10.2.
We recall that the market maker acts as a privileged trader who sets prices according
to (excess) demand (see Fig. 10.2) and hence ensures market clearing (cf. the role of a
broker in stock markets) (Hommes, 2006a,b). Possible profit making by and survival of
the market maker is not of interest for the work at hand.

This market model is a generalization of the GBM. This is easy to see when we
define a noise trader (N). Noise is, according to Black (1986), essential for the function
of markets. A noise trader’s strategy (we model all noise traders as one big noise trader),
is random but should follow a certain distribution, i.e., is not arbitrary. We set

DN
t := M ·

((
µ− σ2

2

)
+ σ ·∆Wt

)
,

where M > 0 is the scaling parameter for volumes of trade, µ ∈ R is interpreted as a
saving deposit per time step, σ > 0 specifies the volatility of the market, ∆Wt

iid∼ N (0, 1)

is a random walk that brings noise into the market and −σ2

2 can be interpreted as risk
aversion (note that ∆t = 1). Such a demand function can be interpreted as a noise trader
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who has the right idea for the trend of the market in mind, but who’s behavior is noisy
and who is risk-averse: The noisier the behavior the less the trader is investing. The term
µ is a target amount of money the noise trader wants to save. This construction of noise
traders leads to the result that the presented market model is a natural generalization
of the geometric Brownian motion (GBM).

Theorem 93. If the noise trader is the only trader on the market, for all M > 0 the
paths pt of the price process follow the paths of the geometric Brownian motion.

Proof. If there is only one trader that is a noise trader it holds Dt = DN
t and

pt+1 = pt · eM
−1DNt = pt · e

((
µ−σ

2

2

)
+σ·∆Wt

)
,

with ∆Wt
iid∼ N (0, 1). This is exactly the formula of a discretized GBM with trend.
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Figure 10.2: Schematic representation of the role of the market maker with k traders

So far, we constructed an HAM and analyzed the case when there is only a noise
trader. Next, we investigate what happens if there is only a chartist (a linear long
feedback trader) on the market.

10.3 Feedback Traders

When specifying their strategy, feedback traders take into account only their own gains
and losses. The strategy, thus, depends on price changes and on their previous invest-
ments, that is, feedback traders are chartists because gains or losses, respectively, are a
function of the price but not of any fundamental value. In calculating a certain trader’s
gain, the market maker takes into account the trader’s investment and the asset price.
Therefore, for feedback traders not only is it true that the investment affects the gain,
but also that the gain determines the investment.
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We rely on the (positive) linear feedback strategy

ICt := IC0 +K · gCt

where the linear feedback trader calculates the own investment ICt at time t as a linear
function of the gain/loss function gCt using the initial investment IC0 > 0 and a feedback
parameter K > 0. This is the long side of the SLS rule. We rely on the long side only
because this is the side possibly causing financial bubbles. In Fig. 10.3 a feedback loop
between the gain or loss gC of a linear feedback trader and the respective investment IC

is shown. By calculating the gain or loss of a specific trader (or group of traders) ` via

g`t =
t∑
i=1

I`i−1 ·
pi − pi−1

pi−1
,

where pt denotes the price process and I`t the trader’s investment at time t, it follows
that linear feedback traders are trend followers given ICt > 0. The relative price change
pt−pt−1

pt−1
is called return on investment (ROI). A trader is called a trend follower (cf.

Covel, 2004) if the trader is buying when prices are rising and selling when prices are
falling. Note that the particular demand at time t ≥ 1 is given by

DC
t = ICt −

pt
pt−1

ICt−1

= ICt−1 +K · ICt−1 ·
pt − pt−1

pt−1
− pt
pt−1

ICt−1

= (K − 1) · ICt−1 ·
pt − pt−1

pt−1
,

whereas ICt denotes the total investment at time t of feedback trader C.

market
maker

linear
feedback
trader

gCt = gCt−1 + ICt−1 ·
pt−pt−1

pt−1

ICt = IC0 +K · gCt

information

Figure 10.3: Schematic interaction between market maker and linear feedback trader

Note that

∆ICt = ICt − ICt−1
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= ICt−1 +K · ICt−1 ·
pt − pt−1

pt−1
− ICt−1

= K · ICt−1 ·
pt − pt−1

pt−1
.

This means that DC
t = K−1

K ∆ICt and thus BC
t = K−1

K ICt . If K 6= 1, the trader is not
only a buy-and-hold trader, but is really buying and selling. We can rewrite

DC
t = KBC

t ·
pt − pt−1

pt−1
.

Now, we always assume K > 1, i.e., a trader who is buying more and more when making
profit (because this is the interesting case for bubble investigation).

Rising prices lead to increasing gain for the linear feedback trader if ICt > 0 and,
thus, the trader buys. Analogously, falling prices lower the gain and the trader sells.

Here, markets with purely linear feedback traders are studied, that means I`t ≡ 0 for
all ` 6= C. In this case, the feedback-based investment strategy is given by

DC
0 = IC0 > 0,

DC
1 = (K − 1) · IC0 ·

(
eM

−1IC0 − 1
)
, and

DC
t = (K − 1) · ICt−1 ·

(
eM

−1DCt−1 − 1
)
, t ≥ 2.

This leads us to the following theorem.

Theorem 94. If in our market maker model there is only one trader, a linear feedback
trader C, trading with the market maker, the price dynamics (for t ≥ 2) is:

∆BC
t = KBC

t−1 ·
(
eM

−1∆BCt−1 − 1
)

Baumann (2015) shows in a very similar model that in the event only one feedback
trader is acting on the market with the price process described in Sec. 10.2, it holds that

ICt > 0 ∀t,
DC
t > 0 ∀t, and

DC
t > DC

t−1 ⇒ DC
t+1 > DC

t .

We prove this in the remainder of this section.

Theorem 95. If the investments of all other traders are zero, the investment ICt and
the demand function DC

t of the linear feedback trader are positive.

Proof. The theorem is proven by induction. Because of IC0 > 0 and eM
−1IC0 > 1, the

initial inequality DC
1 > 0 is true. It follows IC1 = IC0 (eM

−1IC0 − 1) + DC
1 > 0. The

induction step follows, as eM
−1DCt−1 > 1 and ICt = ICt−1(eM

−1DCt−1 − 1) +DC
t > 0.
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It holds that DC
t > 0 because of IC0 > 0. This means that feedback traders’ invest-

ment increases prices and thus also their gain, leading again to positive buying decisions
and so on. But this does not necessarily have to end in a bubble. We say that a bubble
occurs if ∃t∗ : ∆pt+1 > ∆pt ∀t ≥ t∗. Note that if there are only chartists it holds

that pt = pt−1e
M−1DCt−1 , i.e., ∆pt = pt−1

(
eM

−1DCt−1 − 1
)

. Two typical demand paths

can be identified in the scenario where only one feedback-based trader is acting on the
market. The two paths are shown in Fig. 10.4 and Fig. 10.5 where the asset price pt is
indicated with a solid line and the feedback trader’s investment with a dashed one. If
IC0 lies below a specific threshold, ICt converges (Fig. 10.4). If it is above this threshold,
the investment explodes (Fig. 10.5). Baumann (2015) provides a non-closed formula
determining the threshold. Specific values can be derived through a simulation like that
one in Figs. 10.4 and 10.5 and by algorithmically localizing the threshold. That means,
the demand function and, thus, the price can converge to some value.

Theorem 96. If the investments of all other traders are zero and ∃t∗ ∈ T : ∆DC
t∗ > 0

then
∆DC

t > 0

holds for all t ≥ t∗. That means, the bought amount of stocks DC
t of the feedback trader

is strictly increasing for all t ≥ t∗.

Proof. The induction step

DC
t > DC

t−1 ⇒ DC
t+1 > DC

t , t ≥ 1,

has to be shown. This is true because of

DC
t+1 > DC

t ⇔ ICt ·
(
eM

−1·DCt − 1
)
> ICt−1 ·

(
eM

−1·DCt−1 − 1
)
,

DC
t > 0 from which it follows ∆ICt > 0, and the induction hypothesis.

This is important as it is shown that, together with the results of Sec. 10.6, the price
explosion effects of feedback traders that would possibly occur in absence of fundamen-
talists can be compensated by fundamentalists at least to a certain degree.

10.4 Fundamentalists

As explained in the introduction, Chap. 1, fundamentalists buy when the price is below
the fundamental value ft > 0 and sell when the price is above the fundamental value. If,
for example, the fundamental value is below the asset price, fundamentalists conclude
that the price decreases in the long run, not necessarily in the next step. So they
possibly do not sell so much that their investment becomes negative, but they reduce
their investment. Thus, it is of particular interest how much fundamentalists buy or sell
in the respective cases. For deterministic fundamental values ft, i.e., the fundamental
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Figure 10.4: Demand of feedback trader is indicated with a dashed line, development of
the asset price pt is indicated with a solid line. The initial investment IC0 is below a spe-
cific threshold: DC

t (dashed line) converges {p0 = 1,M = 1, T = 250, IC0 = 0.191,K = 2}
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Figure 10.5: Demand of feedback trader is indicated with a dashed line, development
of the asset price pt is indicated with a solid line. The initial investment IC0 is above a
specific threshold: ICt (dashed line) diverges {p0 = 1,M = 1, T = 250, IC0 = 0.192,K =
2}

value is a function in t, one way of determining the demand rate is

DF
t = M · ln ft+1

pt
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(cf. Drescher and Herz, 2012). In this case, fundamentalists do not need to estimate the
fundamental value because it is fixed and certain for the future period. Traders follow-
ing this demand rule could be called strong fundamentalists because their investment
strategy could push the price back to its fundamental value at any time.

Theorem 97. If the strong fundamentalist is the only trader buying/selling at time t,
then for any pt > 0 and ft+1 it follows:

pt+1 = ft+1

Proof.

pt+1 = pt · e
ln
ft+1
pt

= pt ·
ft+1

pt

= ft+1

Section 10.5 presents the case of a fundamentalist trading based on a distorted fun-
damental value. It turns out, however, that this distortion does not affect the general
behavior of the market model.

10.5 Expectations and Noise

Some types of traders, for example informed speculators (De Long et al., 1990b), base
their trading decisions on rational expectations. Is this the case for feedback traders and
fundamentalists?

In general, for feedback traders and trend followers, the answer is “no,” as they
only assume the existence of a trend. For example, based on the current slope of asset
price development (pt − pt−1) they forecast the future direction of the asset. However,
fundamentalists are assumed to have rational expectations (see, e.g., Drescher and Herz,
2012). Generally, they pursue the strategy

DF
t = M · ln E[ft+1|Ft]

pt
.

Even a casual observation of real markets makes clear that price fluctuations are not
always purely rational. There is always noise and uncertainty in the market, a factor
considered essential by many economists (see, e.g., Black, 1986; De Long et al., 1990a).
Some reasons for noise include that traders make mistakes, trade on unreliable (noisy)
information, or simply enjoy trading and are not overly concerned with being rational
about it.

Here, we do not assume that traders are making mistakes, as this could lead to unsys-
tematic behavior, i.e., we do not want to take noise traders into account (a market with a



126 CHAPTER 10. EFFECTS OF TECHNICAL TRADING RULES

linear feedback trader and a noise trader is analyzed by Baumann (2015)). Furthermore,
both feedback traders and fundamentalists do follow a specified strategy. Thus, the only
way noise could enter the market is through noisy information. However, the traders’
investments as well as the price, announced by the market maker (see Fig. 10.1), are
not distorted. The only information that could be noisy is that about the fundamental
value. In this case, the fundamentalist has to estimate ft+1 at time t and trade according
to E[ft+1|Ft]. Since it is unreasonable that |ft+1 − E[ft+1|Ft]| becomes arbitrary large
but exploding prices imply |pt − ft| → ∞, the effects of noisy information do not play
a decisive role. Therefore, we a priori consider ft a deterministic fundamental value in
this chapter of the presented work.

10.6 Proof of Limitations of Fundamentalists’ Stabilizing
Effects

In this section we demonstrate analytically and mathematically rigorously that funda-
mentalists are not always able to stabilize markets through their trading actions. Instead
of using simulations, we inductively prove that effects of linear feedback traders dominate
those of fundamentalists and destabilize markets.

Since we have already defined the pricing model and the traders, the next task is to
check whether fundamentalists defined according to Sec. 10.4 are able to stabilize the
price when trading simultaneously on the market with linear feedback traders following
Sec. 10.3. To simplify the notation, we set ft ≡ 1. This is one special case, but if we
can show the destabilizing effects of feedback traders’ investment strategy for this case,
it proves that fundamentalists do not always have market stabilizing effects. The proof
proceeds without using technical trading restrictions, for example, limits on feedback
traders’ investment amount.

The two trader types linear feedback trader C and fundamentalist F are suitable
for analyzing the question of destabilizing effects of linear feedback traders because if it
turns out that prices explode for appropriately chosen parameters IC0 and K of linear
feedback traders even when acting on a market with fundamentalists, who are employing
an investment strategy that could bring prices close to the fundamental value at every
point of time, it is strong evidence that chartists’ rules, in this case the linear feedback
strategy, are able to overcome the effects of strong fundamentalists in various market
situations. Why it is enough to consider only linear feedback traders and fundamentalists
and no other type of traders, some of which are presented by Ivanova et al. (2014),
becomes obvious when taking into consideration that if feedback traders’ investment goes
to infinity which means prices explode, then also the absolute value of fundamentalists’
investment goes to infinity. Thus, compared to the exploding investments of feedback
traders and fundamentalists, the relatively small investment of other possible traders
may be neglected at least for our analysis.

Trend followers invest a lot when prices rise strongly and fundamentalists disinvest
a lot when the price greatly exceeds the fundamental value, i.e., the investment of trend
followers goes to infinity and that of fundamentalists goes to minus infinity. For traders
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Figure 10.6: A typical situation in a market involving feedback traders and funda-
mentalists. Price and feedback trader’s demand converge, i.e., fundamentalists’ effects
predominate; parameters {p0 = 1,M = 1, T = 25, ft ≡ 1, IC0 = 5.19,K = 2}

who neither predicate their investment on the distance of fundamental value and price
nor on the slope of the price it is unreasonable that their investment goes to (minus)
infinity. Simulations reveal two typical price developments (see Figs. 10.6 and 10.7).

In Fig. 10.6, fundamentalists’ effects predominate and the price stabilizes around the
fundamental value. In Fig. 10.7, however, market development is not that obvious. At a
first glance, the figure might suggest that prices explode. But as the simulation software
reaches its limits, it becomes unclear whether or not prices level out in these simulation
scenarios. We therefore need an analytical examination. In cases like those shown in
the simulated Fig. 10.7, the proposition of Thm. 99 determines with certainty whether
the bought amount of assets of the feedback traders is in fact exploding, or whether this
only seems to be the case due to simulation insufficiencies and the portfolio eventually
stabilizes, but with a greater amplitude as, for example, in Fig. 10.6.

To simplify the expressions in the model, we assume in addition to ft ≡ 1 that
p0 = 1 in all upcoming equations. This choice is just one possible scaling but does not
change the model’s dynamics in general. We define a process αt as (αt)t∈Z ⊂ R with
αt = 0 ∀t < 0. Furthermore, we define the ∆-operator as ∆kαt := ∆k−1αt −∆k−1αt−1,
∆1αt := ∆αt = αt − αt−1, and ∆0αt := αt. A price process pt is strictly positive, i.e.,
(pt)t > 0 for all t ≥ 0. It holds:

DF
t = M · ln ft+1

pt

= −M · ln eM−1Bt−1

= −Bt−1
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Figure 10.7: Another typical situation in a market involving feedback traders and fun-
damentalists. Price and feedback trader’s demand diverge, i.e., feedback traders’ effects
predominate; parameters {p0 = 1,M = 1, T = 25, ft ≡ 1, IC0 = 0.521,K = 2}

= −BC
t−1 −BF

t−1

⇒ BF
t = −BC

t−1

⇒ DF
t = −DC

t−1

With this, we can specify the demand of the feedback traders:

DC
t = K ·BC

t−1

(
eM

−1(DCt−1+DFt−1) − 1
)

= K ·BC
t−1

(
eM

−1(DCt−1−DCt−2) − 1
)

= K ·BC
t−1

(
eM

−1∆DCt−1 − 1
)

Theorem 98. If there are exactly one linear feedback trader C and one fundamentalist
F trading with the market maker, it holds:

∆BC
t = K ·BC

t−1

(
eM

−1∆2BCt−1 − 1
)

Theorem 99 tells us conditions for the feedback trader’s cumulated demand BC for
which prices explode. Note that the following implication holds:

∆kαCt−1 > a ∧ ∆k+1αCt > b ⇒ ∆kαCt > a+ b.
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We obtain this directly from the definition of the delta operator which is equivalent to

∆kαCt = ∆k+1αCt + ∆kαCt−1.

Note that DC
t = ∆BC

t and analogously for the derivatives.

Theorem 99. For the demand function resp. for the bought and sold assets of the
positive linear feedback trader interacting with a strong fundamentalist on our market
model, under conditions

∆3BC
t > M · ln 2,

∆2BC
t > M · ln 2

∆BC
t−1 > 0, and

BC
t−2 > 0

for some t ≥ 2, it follows that

∆kBC
t+1 > M · ln 2 ∀k ∈ {0, 1, 2, 3}.

Theorem 99 is proven by induction in the following.

Proof. It is enough to prove the proposition for k = 3 as all other inequalities can then
be derived from the definition of the ∆-operator.

1

K
∆3BC

t+1 =
1

K

(
∆2BC

t+1 −∆2BC
t

)
=

1

K

(
∆BC

t+1 − 2∆BC
t + ∆BC

t−1

)
= BC

t

(
eM

−1∆2BCt − 1
)

− 2BC
t−1

(
eM

−1∆2BCt−1 − 1
)

+BC
t−2

(
eM

−1∆2BCt−2 − 1
)

=
(
BC
t−2 + ∆BC

t−1 + ∆BC
t

) (
eM

−1∆2BCt − 1
)

− 2
(
BC
t−2 + ∆BC

t−1

) (
eM

−1∆2BCt−1 − 1
)

+BC
t−2

(
eM

−1∆2BCt−2 − 1
)

= BC
t−2

(
eM

−1∆2BCt − 1
)

+ ∆BC
t−1

(
eM

−1∆2BCt − 1
)

+ ∆BC
t

(
eM

−1∆2BCt − 1
)

− 2BC
t−2

(
eM

−1∆2BCt−1 − 1
)
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− 2∆BC
t−1

(
eM

−1∆2BCt−1 − 1
)

+BC
t−2

(
eM

−1∆2BCt−2 − 1
)

= BC
t−2

(
eM

−1∆2BCt − 2eM
−1∆2BCt−1 + eM

−1∆2BCt−2

)
(∗)

+ ∆BC
t−1

(
eM

−1∆2BCt − 2eM
−1∆2BCt−1 + 1

)
(∗∗)

+ ∆BC
t

(
eM

−1∆2BCt − 1
)

(∗ ∗ ∗)

We evaluate these summands separately:

(∗∗) = ∆BC
t−1

(
eM

−1∆2BCt−1+M−1∆3BCt − 2eM
−1∆2BCt−1 + 1

)
= ∆BC

t−1

(
eM

−1∆2BCt−1

(
eM

−1∆3BCt − 2
)

+ 1
)

> ∆BC
t−1

(
eM

−1∆2BCt−1(2− 2) + 1
)

> 0

(∗ ∗ ∗) =
(
∆BC

t−1 + ∆2BC
t

) (
eM

−1∆2BCt − 1
)

> 0 +M · ln 2

(∗) = BC
t−2

(
eM

−1∆2BCt−2+M−1∆3BCt−1+M−1∆3BCt

− 2eM
−1∆2BCt−2+M−1∆3BCt−1 + eM

−1∆2BCt−2

)
= BC

t−2e
M−1∆2BCt−2

(
eM

−1∆3BCt−1

(
eM

−1∆3BCt − 2
)

+ 1
)

> BC
t−2e

M−1∆2BCt−2

(
eM

−1∆3BCt−1(2− 2) + 1
)

= BC
t−2e

M−1∆2BCt−2

> 0

As a result, we obtain
K−1∆3BC

t+1 > M · ln 2

and since K > 1
∆3BC

t+1 > M · ln 2.

This means, the feedback trader’s bought and sold assets, the demand, the slope of
the demand, and the curvature of the demand are strictly greater than M · ln 2 for all
t ≥ t∗ for some t∗. All in all, this is a fast exploding demand, which leads to an equally
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quickly exploding price.

pt+1 = pt · eM
−1·(DFt +DCt )

= pt · e
ln
ft+1
pt · eM−1·DCt

= ft+1 · eM
−1·DCt

Theorem 100. If there are exactly one fundamentalist F and one chartist C (a linear
long feedback trader), the price dynamics satisfies for t > 0:

pt = fte
M−1DCt−1

Recall that D`
t = ∆B`

t . As an interpretation, note that since DF
t = −DC

t−1, fun-
damentalists always respond one period later with minus the demand of the feedback
traders. Theorem 99 tells us that the feedback trader’s cumulated demand increases, the
demand itself increases, and the first and second derivative increase, too. Furthermore,
all of these growth rates are bounded from below. Since the fundamentalist’s demand
is minus the demand of the feedback trader from one period before, the ratio of the
bought and sold amounts is strictly increasing, that is the feedback trader’s exploding
effect predominates the fundamentalist’s stabilizing one.

That the conditions of Theorem 99 for the endogenous variables BC
t−2, ∆BC

t−1, ∆2BC
t ,

∆3BC
t may be fulfilled for some t (and some parameter assignment) is shown in Table

10.1 in which the demand development of the feedback trader is listed for IC0 = 0.521,
K = 2, and M = 1. In short, there are exogenous variables that lead to a price explosion.
This demonstrates that feedback traders’ effects are able to overcome fundamentalists’
effects.

BFT
t ≈ ∆BFT

t = DFT
t ≈ ∆DFT

t ≈ ∆2DFT
t ≈

t = 0 5.210000 · 10−1 5.210000 · 10−1 0.000000 · 100 0.000000 · 100

t = 1 1.233426 · 100 7.124264 · 10−1 1.914264 · 10−1 0.000000 · 100

t = 2 1.753872 · 100 5.204459 · 10−1 −1.919805 · 10−1 −3.834069 · 10−1

t = 3 1.141150 · 100 −6.127224 · 10−1 −1.133168 · 100 −9.411878 · 10−1

t = 4 −4.062233 · 10−1 −1.547373 · 100 −9.346507 · 10−1 1.985175 · 10−1

t = 5 8.715681 · 10−2 4.933801 · 10−1 2.040753 · 100 2.975404 · 100

t = 6 1.254431 · 100 1.167274 · 100 6.738944 · 10−1 −1.366859 · 100

t = 7 3.667613 · 100 2.413181 · 100 1.245907 · 100 5.720125 · 10−1

t = 8 2.183026 · 101 1.816265 · 101 1.574946 · 101 1.450356 · 101

t = 9 3.019914 · 108 3.019913 · 108 3.019913 · 108 3.019913 · 108

Table 10.1: The boxed table entries fulfill the conditions of Thm. 99 for t = 8 for
which prices explode; market parameters are as in Figure 10.7 (Note: ln 2 ≈ 0.6931472)
{p0 = 1,M = 1, T = 25, ft ≡ 1, IC0 = 0.521,K = 2}
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On the other hand, Table 10.2 sets out a situation where the price would explode
when only feedback traders are acting on the market. The conditions of Thm. 96 hold
for the feedback traders, so, according to Baumann (2015) resp. Thm. 96, their demand
causes a bubble in the absence of any other traders. However, if fundamentalists enter
the market, price explosion is prevented, as the demand rates tend to 0 at time t = 73
in Table 10.2. Clearly, the conditions of Thm. 99 for feedback traders are not satisfied.

BFT
t ≈ ∆BFT

t = DFT
t ≈ ∆DFT

t ≈ ∆2DFT
t ≈

t = 0 0.1920000 1.920000 · 10−1 0.000000 · 100 0.000000 · 100

t = 1 0.2732815 8.128148 · 10−2 −1.107185 · 10−1 0.000000 · 100

t = 2 0.2159966 −5.728489 · 10−2 −1.385664 · 10−1 −2.784784 · 10−2

t = 3 0.1600990 −5.589755 · 10−2 1.387332 · 10−3 1.399537 · 10−1

t = 4 0.1605436 4.445293 · 10−4 5.634208 · 10−2 5.495475 · 10−2

· · · · · · · · · · · · · · ·
t = 73 0.1788845 0 0 0

Table 10.2: The table shows a situation where the price would explode without fun-
damentalists but is stabilized by them. The investment parameters are the same as
for Figure 10.5 where prices explode. The boxed cells fulfill the conditions required by
Thm. 96 {p0 = 1,M = 1, T = 250, ft ≡ 1, IC0 = 0.192,K = 2}

In summary, even a strong fundamentalistic demand rule, that is a strategy without
any restrictions and involving a possibly infinitely large demand, is not able to stabilize
the market when a trader using a very simple linear feedback strategy with an adequate
initial investment is acting on the market, too. Market failures can happen, prices may
explode, and the trading behavior of strong fundamentalists cannot prevent this.

10.7 Discussion of Effects of Linear Feedback Trading

Our analysis indicates that trend followers may cause price explosions regardless of
fundamentalists’ investment decisions. Specifically, Thm. 99 and its proof analytically
show that a fundamentalist’s investment strategy, that is a strategy that pushes prices
toward their fundamental values, can be insufficient to dominate linear feedback trading
strategies. However, the potential for feedback traders’ to create a bubble appears to be
lower (Thm. 99) when fundamentalists are active in the market (cf. Thm. 96). Although
the results indicate that fundamentalists have a stabilizing effect, this effect is limited
up to some threshold value (cf. Table 10.2).

Given our results and the fact that financial bubbles are associated with high eco-
nomic costs, an important question arises: Seeing that fundamentalists do not appear
to be an adequate market stabilizing force, is there another type of trader that would be
able to stabilize prices in a market-appropriate way and, if so, what would such a trader
look like? Generally, our analysis supports the view that intervention measures or at
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least some kind of incentive system is necessary to stabilize asset markets and prevent
financial bubbles. Such measures could, for example, be the direct intervention of some
control authority, progressive transaction costs, or trading restrictions.
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Chapter 11

Conclusion

In this work we learned about and discussed the hypothesis of efficient markets. An
introduction into the basics of stochastic processes and integrals was given and another
stochastic Fubini theorem was proven. Feedback trading, especially simultaneously long
short (SLS) trading, was motivated and introduced. An overview of the most important
works on feedback trading was given, some examples were calculated, and the corre-
sponding market assumptions were discussed. Finally, in Chap. 9, the so-called robust
positive expectation property (RPEP), which is the property that the expected gain for
a.a. parameters is greater than zero (given a measure on the parameter space that is
absolutely continuous to the Lebesgue measure on this space), has been generalized to
Merton’s jump diffusion model—which is interesting because jumps cause great problems
in many fields of financial mathematics (cf. option pricing and hedging). Via essentially
linearly representable prices the RPEP was further extended to discrete time models and
sampled-data systems with constant trend and to discrete models with variable trend
that is greater or lower zero and finally to continuous time markets in which a Riemann
integrable trend must exist. In Chap. 10 we have seen that linear long feedback traders
(as a part of the SLS strategy) can cause financial crises (i.e. bubbles) and this cannot
necessarily be prevented by very powerful fundamentalists (who are commonly said to
have a stabilizing effect).

The detailed discussions of the results on the performance and the impact of our
linear feedback strategies are given in Sec. 9.5 and Sec. 10.7. In this chapter we debate
on the questions whether and why strategies can exist in efficient markets that have the
RPEP. One possibility to resolve this puzzle is to assume that all assets’ prices are risk
neutral. Then the expected profit would always be zero. It is reasonable to assume that
traders do not know the expected chart of a price. However, it would be a very strong
assumption that really all assets have the same trend as the bond (in expectation).
This may be subjectively true for the trader, but not necessarily for the unknown real
market measure. Another way to solve the dilemma is to consider a comparison with
a buy-and-hold strategy. As we have already seen in Sec. 9.5, there are trends s.t. the
expected profit of the SLS trader is worse than that of a buy-and-hold trader. However,
the expected profit is still positive for a.a. trends, but the expected profit of the buy-
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and-hold strategy is only positive for positive trends. It is not a satisfactory answer
that there is another strategy (the buy-and-hold rule) that is a little better for some
trends (although for these trends the SLS rule still has expected positive gains), but
much worse for other trends. And a comparison with a randomly selected buy-and-hold
portfolio provides even less answers, since the market (on average) should always have
a trend equal to the bond (which we have assumed to be zero) and, thus, any randomly
selected portfolio should also have an expected trend of zero (otherwise the bond would
be incorrect). Even an examination of risks and risk-adjusted returns does not provide
any real answers. All risk-adjusted returns are still positive. The question about the
right measure for risk arises. Maybe, skewness would be better than standard deviation,
as the simulations and histograms suggest. However, one would run into a problem very
similar to the joint hypothesis problem, namely that one does not know whether the risk
measure or the hypothesis of efficient markets is wrong (we call this the “risk including
joint hypotheses problem”).

It only remains to rethink the assumptions and link them to the classic arguments
of the defenders of the market efficiency hypothesis, actually, to the argument that if
this strategy really works well, every trader would use it, which should destroy the
good performance. In theory, this is also true for the long side of SLS trading, since
the liquidity assumption would be destroyed: If considering that all traders were trend
followers (because we assumed that it worked in the past) and now the price is rising,
everyone would want to buy at the same time but nobody would sell. Thus, the stock
would not be liquid and the strategy does no longer work. Hence, the same explanation
holds for the (complete) SLS rule. The question arises why this does not happen in
reality. The answer we suspect is the risk. As we have seen, the distribution of SLS profits
is highly skewed, which means that the trader loses money with very high probability
(like in the lottery, but with a positive expected gain—unlike to the lottery). That
means that a trader would possibly need a very high number of experiments to realize
the expected positive gain, which is connected to a high risk because maybe the trader’s
resources end before making the positive gains. This risk prevents many traders from
using the SLS rule, which means that for those who use it, the liquidity assumption
remains fulfilled at least for a short time. In the long term, even a few traders can
self-destroy the market assumptions, for example, when the prices rise and they want to
buy more and more, the liquidity and possibly also the adequate resources assumption
will fail. On short horizons the SLS strategy works well (in expectation, i.e. on average)
only if many other traders do not use it. This leads us to an interesting question for
future research: Who makes the losses? The fundamentalists? The noise traders? Or
the market maker or somebody else . . .

There are two other approaches to resolve the problem—both rather non-mathema-
tical. On the one hand, one could think about whether it is possible to construct a
strategy that systematically exploits SLS traders. Then the performance of the SLS rule
would be destroyed. When many traders use the SLS rule, many other traders would
use this exploiting strategy, which would again decrease the number of SLS traders.
Another explanation, rather from the field of behavioral finance, is that SLS traders
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or generally feedback traders may (too soon) want to lock in their profits. We think
of a trend follower who makes profits and a still rising trend. However, at some point
of time the trader gets afraid of possibly falling prices and sells to lock in the profits,
which leads to less rising or even falling prices. Other traders would follow and sell, too,
cf. herd behavior. Note that this only happens if humans decide and not computers,
cf. the growing popularity of robo-advisors in the financial industry. It would also be
interesting to model this “fear” in heterogeneous agent models. We think that the answer
lies somewhere in between these explanations.
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D. Applebaum. Lévy processes and stochastic calculus. Cambridge university press
(2009).

R. A. Ariel. A monthly effect in stock returns. Journal of Financial Economics, 18(1),
pp. 161–174 (1987).

R. A. Ariel. High stock returns before holidays: existence and evidence on possible
causes. The Journal of Finance, 45(5), pp. 1611–1626 (1990).

D. Avramov, G. Kaplanski and H. Levy. Talking numbers: technical versus fundamental
investment recommendations. Journal of Banking and Finance (2017).

D. H. Bailey, J. M. Borwein, M. Lopez de Prado and Q. J. Zhu. Pseudo-mathematics
and financial charlatanism: the effects of backtest overfitting on out-of-sample per-
formance. Notices of the AMS, 61(5) (2014). URL www.ams.org/notices/201405/

rnoti-p458.pdf.

R. W. Banz. The relationship between return and market value of common stocks.
Journal of financial economics, 9(1), pp. 3–18 (1981).

B. R. Barmish. On trading of equities: a robust control paradigm. IFAC Proceedings
Volumes, 41(2), pp. 1621 – 1626 (2008). ISSN 1474-6670. doi:https://doi.org/10.
3182/20080706-5-KR-1001.00276. URL http://www.sciencedirect.com/science/

article/pii/S1474667016391844. 17th IFAC World Congress.

B. R. Barmish. On performance limits of feedback control-based stock trading strategies.
In IEEE American Control Conference (ACC), pp. 3874–3879 (2011). ISSN 0743-1619.
doi:10.1109/ACC.2011.5990879.

B. R. Barmish and J. A. Primbs. On arbitrage possibilities via linear feedback in an
idealized Brownian motion stock market. In IEEE Conference on Decision and Control
and European Control Conference (CDC-ECC), pp. 2889–2894 (2011). ISSN 0743-
1546. doi:10.1109/CDC.2011.6160731.

B. R. Barmish and J. A. Primbs. On market-neutral stock trading arbitrage via linear
feedback. In IEEE American Control Conference (ACC), pp. 3693–3698 (2012). ISSN
0743-1619. doi:10.1109/ACC.2012.6315392.

143

www.ams.org/notices/201405/rnoti-p458.pdf
www.ams.org/notices/201405/rnoti-p458.pdf
http://www.sciencedirect.com/science/article/pii/S1474667016391844
http://www.sciencedirect.com/science/article/pii/S1474667016391844


144 BIBLIOGRAPHY

B. R. Barmish and J. A. Primbs. Stock trading via feedback control. In J. Baillieul and
T. Samad (Ed.), Encyclopedia of Systems and Control, pp. 1–10. Springer London
(2014). doi:10.1007/978-1-4471-5102-9 131-1.

B. R. Barmish and J. A. Primbs. On a new paradigm for stock trading via a model-free
feedback controller. IEEE Transactions on Automatic Control, 61(3), pp. 662–676
(2016). ISSN 0018-9286. doi:10.1109/TAC.2015.2444078.

B. R. Barmish, J. A. Primbs, S. Malekpour and S. Warnick. On the basics for simula-
tion of feedback-based stock trading strategies: an invited tutorial session. In IEEE
Conference on Decision and Control (CDC), pp. 7181–7186 (2013). ISSN 0743-1546.
doi:10.1109/CDC.2013.6761028.

J. d. G. Batista, D. Massaro, J.-P. Bouchaud, D. Challet and C. Hommes. Do investors
trade too much? A laboratory experiment. Journal of Economic Behavior & Organi-
zation, 140, pp. 18 – 34 (2017). ISSN 0167-2681. doi:https://doi.org/10.1016/j.jebo.
2017.05.013.

M. H. Baumann. Effects of linear feedback trading in an interactive market model.
In American Control Conference (ACC), 2015, pp. 3880–3885. IEEE (2015). doi:
10.1109/ACC.2015.7171935.

M. H. Baumann. Beating the market? A mathematical puzzle to market efficiency.
technical report, University of Bayreuth (2017a). Preprint.

M. H. Baumann. On stock trading via feedback control when underlying stock returns
are discontinuous. IEEE Transactions on Automatic Control, 62(6), pp. 2987–2992
(2017b).

M. H. Baumann, M. Baumann and A. Erler. Limitations of stabilizing effects of funda-
mentalists facing positive feedback traders. technical report, University of Bayreuth
(2017). Presented at The 49th Money Macro and Finance Annual Conference, London.
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List of Abbreviations

B bought (and sold) amount of assets (in currency units)
bnh buy-and-hold (strategy)
C chartist (i.e. trend follower / feedback trader)
CAPM Capital Asset Pricing Model
D` demand
δ discounting factor
∆ difference (operator)
D/P dividend yields
E/P earnings per price
f `δ discounted gain
F fundamentalist
g` gain (i.e. gain/loss)
GBM geometric Brownian motion
HAM heterogeneous agent model
I` investment
ILS initially long short (strategy)
K feedback parameter
` dummy for trader
L long (i.e. linear long strategy / long side)
MJDM Merton’s jump diffusion model
N noise trader
NA no-arbitrage
ODE (deterministic) ordinary differential equation
RPEP robust positive expectation property (i.e. positive expected gains)
S short (i.e. linear short strategy / short side)
SDE stochastic differential equation (i.e. stochastic integral equation)
SLS simultaneously long short (strategy)
SLSδ discounted simultaneously long short (strategy)
tvGBM time-varying geometric Brownian motion
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Brüdern, Manfred Johann Baumann und me. Wolfgang Karl Baumann, bedanken.

Ich bedanke mich bei der Hanns-Seidel-Stiftung, die mich ideell weitergebildet und
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