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Abstract

This paper presents first results for the stability analysis of Model Predictive Control
schemes applied to the Fokker—Planck equation for tracking probability density func-
tions. The analysis is carried out for linear dynamics and Gaussian distributions, where
the distance to the desired reference is measured in the L2-norm. We present results for
general such systems with and without control penalization. Refined results are given
for the special case of the Ornstein—Uhlenbeck process. Some of the results establish
stability for the shortest possible (discrete time) optimization horizon N = 2.
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1 Introduction

In recent numerical simulations, Model Predictive Control (MPC) has proven to be an effi-
cient method for the control of probability density functions (PDFs) of controlled stochastic
processes [2, 3] M1l 29]. In this approach, the distance of the actual PDF to the desired
reference PDF, integrated or summed over several time steps into the future, is minimized
using the Fokker—Planck equation as a model for predicting the actual PDF. The first piece
of the resulting optimal control function is then applied to the stochastic system and the
whole process is repeated iteratively. For more details on MPC, we refer to [16] or [27], for
more information on the Fokker—Planck equation to [28§].

The optimal control problem to be solved in each step of the MPC scheme belongs to
the class of tracking type optimal control problems governed by partial differential equations
(PDEs) and the usual norm for measuring the distance to a reference in PDE-based optimal
tracking control is the L?mnorm [3I]. The L?-norm is advantageous because existence and
well posedness of the solution of the resulting optimal control problem for the Fokker—Planck
equation were recently established [12]. Moreover, the fact that L? is a Hilbert space signifi-
cantly simplifies, e.g., the computation of gradients, which is crucial for the implementation
of numerical optimization algorithms. In this paper, we thus follow the existing literature
and use the L?-norm as distance measure in our MPC optimal control problem.

So far, the efficiency of MPC for the Fokker—Planck equation was only verified by means
of numerical simulationsﬂ Particularly, it is not clear whether the process controlled by
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MPC—the so-called MPC closed loop—will converge to the desired reference PDF. This is
the question about the stability of the closed loop at the reference PDF. Moreover, it is
not clear how large the time span into the future over which the distance is optimized—the
so-called optimization horizon—must be in order to obtain stability. Clearly, the shorter
the optimization horizon, the less computationally demanding the numerical solution of the
optimal control problem in each MPC step, and in numerical examples, it was observed that
in a discrete time setting, a prediction horizon of one step into the future is often enough to
obtain a stable closed loop. It is the goal of this paper to establish rigorous mathematical
results that guarantee stability and in some cases also an upper bound on the necessary
optimization horizon. These results are based on general MPC stability and performance
guarantees from [I5], [I7] and [16, Chapter 6], which rely on appropriate controllability prop-
erties of the stage cost, i.e., the L? distance to the reference PDF in our setting, along the
controlled dynamics, i.e., along the solutions of the Fokker—Planck PDE.

While the Fokker—Planck MPC framework is in principle applicable to arbitrary nonlinear
stochastic control systems and arbitrary initial and reference PDFs, a rigorous analysis of
such a general setting appears out of reach to the moment. Therefore, as a first step, in this
paper, we restrict the analysis to a more limited setting in which we consider linear stochastic
dynamics and Gaussian PDFs. This class of systems often appears in engineering problems
and has the advantage that its controllability properties are well understood due to the recent
paper [6]. However, even with the availability of the results from [6] the analysis of the MPC
scheme is not straightforward, because the implications of these controllability properties for
the PDFs on the controllability of the L? stage cost are indirect and difficult to analyze. This
is the point where the use of the otherwise very convenient L? stage cost turns out to be
disadvantageous and a substantial part of this paper is thus devoted to an in-depth analysis
of this cost. Moreover, we will see that even in the simplifying linear and Gaussian setting of
this paper, the assumptions from [I5] [I7] and [16, Chapter 6] are not always satisfied. Hence,
for some of our results, we need to develop new arguments for proving stability of the MPC
closed loop, cf. Section [5.2.1

The remainder of this paper is structured as follows. The precise problem formulation
and assumptions are presented in Section[2] The principles of MPC and its stability analysis
are explained in Section Section [4| collects important auxiliary results for the L? stage
cost used in this paper. The main results of this paper are then presented in Section
The section is divided into results for general linear stochastic control systems in Section [5.]]
and results for the particular case of the Ornstein—Uhlenbeck process in Section [5.2] which
demonstrate in which sense the general results can be further improved for a particular form
of the stochastic dynamics. Section [f] finally concludes the paper.

2 Problem Formulation and Assumptions

We start with a continuous-time stochastic process described by the It6 stochastic differential
equation
dXt = b(Xt,t,u)dt—i—D(Xt,t)th, te (O,T) (1)

with initial condition X, € R?. Here, W; € R™ is an m-dimensional Wiener process,
b= (b1, ...,bq) is the vector valued drift function, and the diffusion matrix D(X;,t) € R¥*™
is assumed to have full rank.

Under appropriate assumptions, cf. [25] p. 227] and [26, p. 297], the evolution of proba-
bility density functions associated with is modeled by the Fokker—Planck equation, also



called forward Kolmogorov equation:
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The diffusion coefficients «;;: @ — R and the drift coeflicients b;: Q@ x U — R are given
functions for 4,5 = 1, ...,d. The domain of interest is given by @ = Q x (0,T), where either
Q2 =R? or Q c R? is a bounded domain with C! boundary. The function pg: Q — R>g is a
given initial probability density function (PDF) and p: @ — R>¢ is the unknown PDF. The
control u acting on the drift term may depend on time and/or space, e.g., u: Q — R. The
coeflicient functions a;; in are related to D via oy = Zk D Djy, /2. For an exhaustive
theory and more details on the connection between stochastic processes and the Fokker—
Planck equation, we refer to [28].

Since p is required to be a probability density function, it shall satisfy the standard
properties of a PDF, i.e.,

plxz,t) >0 V(x,t)eQ and / pla,t)yde =1 Vte (0,T). (4)
Q

Note that if the FP equation evolves on a bounded domain  C R?, e.g., in case of localized
SDEs [30], suitable boundary conditions on 9 x (0,7) have to be employed. A complete
characterization of possible boundary conditions for d = 1 can be found in the work of
Feller [9]. In the multidimensional case, one possible choice is the zero-flux boundary con-
dition n - j(x,t) = 0 on 9N x (0,T), where j denotes the probability flux and n is the unit
normal vector to the surface 092, see [3, [4]. With this, the conservation of mass property in
holds. Another possibility is to use homogeneous Dirichlet boundary conditions, which,
while appropriate in some scenarios [2] [, 2], in general, do not guarantee conservation of
mass in space. See also [I9, Chapter 5] for a comparison between the Gihman—Skorohod [14]
and the Feller classification of boundary conditions.

In this work, we consider Q = R? and natural boundary conditions, i.e., p(z,t) — 0 as
|z]] = oo for all t > 0, as we want to focus on Gaussian distributions. More precisely, we
look at solutions of of the form

pla i) = 22(t 0 exp (5o = e S o - i) 9

where p(t;u) € R? is the (controlled) mean and ¥(¢;u) € R4*? is the (controlled) covariance
matrix, which is symmetric and positive definite. For a matrix A € R?*¢ throughout the
paper, we write |A| := det(A4). We want to attain a Gaussian PDF

po) = 2552 oxp (50 = TE o - ) ) ©)

where fi and ¥ are the desired mean and state covariance, respectively.

While it is possible to work directly with the Fokker—Planck equation , see, for example,
[29, 1], in general, it is hard to find conditions on the diffusion and drift coefficients o and
b as well as conditions on the structure of the control u(x,t) that guarantee solutions of
of the form . Therefore, as a special case, let us consider linear stochastic systems of the
form

dXy; = AXdt + Bu(t)dt + DdW,, te€ (0,T),

X (t=0)=Xj as., (7)



where A € R4 B € R¥*! D € R¥™ and a control u(t) is defined by
u(t) := =K ()X + c(t) (8)
for functions K: R>g — R*? and ¢: R>o — R!. This results in

dX; = (A — BK(t)) Xidt + Be(t)dt + DdW, te (0,T), (©)
Xt(t = 0) = XO a.s.,

i.e., a stochastic process with constant diffusion D(X;,t) = D and a linear drift term
b(Xy, t;u) = (A — BK(t))X; + Be(t), cf. (1)), from which the coefficients for the associ-
ated Fokker—Planck equation can be derived. If X ~ N(f1,%) with mean /i € R? and
covariance matrix 3 € R4x4 > 0, then the corresponding initial PDF in is given by

pule) = 278 e (o= )T a =) ) (10)

Then, due to linearity of the process, the solution of the corresponding Fokker—Planck IVP
—7 p(z,t), is also a Gaussian PDF of form , cf. [26, 6 [5]. The same holds if A, B, and
D are time-dependent, cf. [28, Section 6.5]. In particular, for linear processes, the control
structure (8) is the appropriate choice to preserve Gaussian density functions.

In the rest of this paper, we consider linear stochastic systems of type @D with corre-
sponding initial PDF . While it is entirely possible to work in the PDE setting with a
control that is linear in space, i.e., u(z,t) = —K(t)x + c(t), we can alternatively characterize
these processes via the following ODE system for the corresponding mean u(t) and covariance
matrix X(t), see [B p. 117]:

(t) = (A - BE(8)u(t) + Be(t), u(0) = o

S(t) = (A— BK())S(t) + 2(t)(A — BK(t))T + DD, $(0) = 3. 1D

Note that even though the control enters through the drift term, cf. @, since it is linear
in space, both mean and covariance matrix are affected.

One particular process of this form is the Ornstein—Uhlenbeck process. Besides the geo-
metric Brownian movement, it is one of the simplest and most widely used processes defined
by a stochastic differential equation. The multidimensional extension presented in Exam-
ple for instance, is a special case of modeling dispersion of particles in shallow water
[18]. Moreover, it can be used to obtain an n-factor Vasicek model [32} 22} 23] describing the
evolution of interest rates.

Example 1 (Ornstein—Uhlenbeck). (a) For given parameters 0, > 0 and v € R, the
uncontrolled one-dimensional Ornstein—Uhlenbeck process is defined by

dXtZG(V—Xt)dt+§th, Xt(t:()) :Xo.
Adding a control of type results in
dX; =—(0+ K(t)) Xedt + (Ov + c(t)) dt + <dWy,  Xi(t =0) = Xo.

By translating c(t), we can set v = 0 without loss of generality. Then the controlled
Ornstein—Uhlenbeck process is given by @ with

A=-0, B=1, and D=q.

To keep the properties of the process, we require that 6 + K(t) > 0, i.e., K(t) > —0.
We do not (need to) impose any constraints on c(t).



(b) An easy extension to the multi-dimensional case is made by considering

A = diag(—6,...,—04),
B=1,
D= diag(ﬁ, BER) gd)’ (12)

K(t) = diag(ky (£), . .., ka(t)),
c(t) = (cr(t), ..., calt)),

where, analogously, we require that k;(t) > —0;.

Let us assume that po is a Gaussian PDF with mean i € R? and covariance matric
Xo]ij = 5ijc°fi2, where §;; is the Kronecker delta. Furthermore, let us view the control co-
efficients (K (t),c(t)) as parameters for the moment and assume that they are constant,
i.e., ki(t) = k; and c;(t) = ¢, i=1,...,d. Then can be solved analytically, with

the mean given by

C; Cs _
i(t) = L °i - —(Oitki)t 13
Hi(t) 0i+ki+<'u 9i+ki>e (13)
and covariance matriz
%5 (t) = 61507 (1), (14)
where
2 S 2 §2 _2(9 +& )t (15)
t) = LI — v itk
O"L() 2(01_'_]{74)"— g; 2(01_’_]{;1) e
Moreover,

C; : -
tlggo wi(t) = m _; W =:jg; and tlgrolo Xi(t) = (Mﬁ =: % (16)

Due to the fixed form of the control, , in the following, we will use the term ”control”
for both u(x,t) and the pair of coefficients (K (¢), c(t)), depending on the context. Likewise,
our objective to steer the solution p(zx,t;u) to p(x) and remain there is equivalent to steer
the pair (X(t), u(t)) to (X, i) and maintain that state.

While in Example [1|it is easy to see that any desired state of type @ can be reached by
choosing appropriate functions (K (t),c(t)) and stabilized with constant (K,¢), in general,
this is not the case. To ensure the existence of controls (K (t), c¢(t)) such that at some given
time T > 0, p(x) is reached, it is necessary and sufficient to require (A, B) to be a controllable
pair, see [0, Sections II and III] or [5l Theorems 2.10.5 and 2.10.6]. After having reached p,
the aim is to stay there. In this work, we want to focus on stationary states that can be
stabilized by applying static-state feedback, i.e., with some constant (K,¢). In general,
not every desired state p can be stabilized in this manner. To this end, some conditions on
¥ and the dynamics were derived in [6, Section III-B]. Overall, we end up with the following
conditions, which we assume throughout the paper:

Assumption 2. (a) The pair (A, B) is controllable.

(b) The covariance matriz of the desired Gaussian PDF p(z), 3, is such that the equation
0=AY + A" + BXT + xB" + DD” (17)

can be solved for X.



(¢) A— BK is a Hurwitz matriz for K = —X7TS71 and X the solution of (7).

(d) The equation B
0=(A—-BK)i+ Be

has a solution (K,¢) with K as in .

As mentioned above, the first condition guarantees the existence of controls (K (t),c(t))
such that a given Gaussian PDF p, characterized by the pair (i, E)ﬁ7 can be reached. From
we see that Assumption is a necessary condition such that X can be stabilized using

a constant K: If it holds for a given X, then the algebraic Lyapunov equation
(A— BK)Y +%(A - BK)" = -DDT (18)

is satisfied with K = —XT%~1. If, additionally, Assumption holds for this K, then
¥ is an admissible stationary state covariance in the sense that it can be stabilized using a
constant control K. In order to stabilize a desired mean ji as well, in addition to the previous
assumptions, we require Assumption to hold. This condition is sufficient due to
and the fact that A — BK is Hurwitz according to Assumption For more details, see
[6].

Remark 3. (a) The solvability of is equivalent to the rank condition

I AL +3AT+DDT B\ _ [0 B
ran B 0 =ran B 0 ,

cf. [6] or [13, Proposition 1].

(b) Since X is positive definite, if the symmetric matriz DDT is positive definite, too, then
Assumption [4(c) is guaranteed. In the general case, in which DDT is only positive
semi-definite, however, this is not true, cf. Example [} Yet, a sufficient condition for
Assumption to hold is that the range of B is a subset of the range of D, i.e.,
R(B) C R(D), which one can verify without knowing K, cf. [6].

(¢) If one ignores the mean or assumes it is constant for all times, then one can drop

Assumption |4(d)

Example 4. Consider

13 11
2 T 0 3 1 = 3 2
ae () e (9 3) e () e (37),

for which holdsﬂ However, the matriz A—BK with K = —XT%71 is not Hurwitz since
one of the Eigenvalues of A — BK is zero.

To summarize, we consider stochastic processes @ with corresponding initial PDF .
Our objective is to steer to and remain at a certain stationary PDF @, which can be
characterized by its mean fi and covariance matrix %.. Therefore, we can equivalently study
the dynamics . With Assumption [2| we ensure the feasibility of the problem.

In a next step, we want to solve this problem. It can be formulated as an infinite horizon
optimal control problem with the objective to minimize

Too(p0,0) = / " Ut s po), u(t)) dt (19)

2Note also that D has full rank.



for a given stage cost £ with respect to u, subject to the dynamics — associated to the
stochastic process @ A common choice in PDE-constrained optimization is to penalize the
distance to the desired state in the L? norm and add some control cost function p(u(t)), e.g.,

o) =5 [ (oo tius ) = p(o)? do + plu(t).

We address this optimization problem using Model Predictive Control (MPC), which we
introduce in the following section.

3 Model Predictive Control

In this section, we briefly present the concept of MPC. A more detailed introduction can be
found in the monographs [16] and [27].

As we will describe below, in MPC the control input is synthesized by solving an optimal
control problem at discrete points in time tg, k& € Ny. It is therefore convenient to rewrite
the dynamics in discrete time form. Hence, suppose we have a process whose state z(k) is
measured at discrete points in time ¢, k € Ny, and which we can control on the time interval
[tk,tr+1) via a control signal u(k). Then we can consider nonlinear discrete time control
systems

2k +1) = f(z(k), u(k)), 2(0) = 2, (20)

with state z(k) € X C Z and control u(k) € U C U, where Z and U are metric spaces. State
and control constraints are incorporated in X and U, respectively. Continuous time models
such as the one presented in Section [2| are sampled using a (constant) sampling rate T > 0,
i.e., tp = to + kTs. Given an initial state zg and a control sequence (u(k))ren,, the solution
trajectory is denoted by z,(+; 20). Note that we do not require the control u(k) to be constant
on [tg,tg+1)—in general, u(k) can be a time-dependent function on [tg, tgp41).

Stabilization and tracking problems can be recast as infinite horizon optimal control
problems using a tracking type cost function . However, solving infinite horizon optimal
control problems governed by PDEs is, in general, computationally hard. The idea behind
MPC is to circumvent this issue by iteratively solving optimal control problems on a shorter,
finite time horizon and use the resulting optimal control values to construct a feedback law
F: X = U for the closed loop system

sr(k+1) = Flzr(k), F(zr (k). (21)

Instead of minimizing a cost functional

NE

Joo(207u) = E(Zu(k;ZO)au(k))v (22)
k=0
the finite horizon cost functional
N-1
JIn(z0,u) := 0z (K5 20), u(k)) (23)
k=0

is minimized, where N > 2 is the optimization horizon length and the continuous function
£: Z x U — Ry defines the stage cost, also called running cost. The feedback law F is
constructed through the following MPC scheme:

0. Given an initial value zx(0) € X, fix the length of receding horizon N > 2 and set
n=0.



1. Initialize the state zg = zx(n) and minimize subject to . Apply the first value
of the resulting optimal control sequence denoted by u* € UV, ie., set F(zx(n)) :=
u*(0).

2. Evaluate zz(n + 1) according to relation , set n:=n + 1 and go to step 1.

By truncating the infinite horizon, an important question is whether the MPC closed loop
system is asymptotically stable. One way to enforce stability is to add terminal conditions
to . In the PDE setting, this approach has been investigated, e.g., by [20, 8, [7]. Terminal
constraints are added to the state constraints X, while terminal costs influence the cost
functional Jy. However, constructing a suitable terminal region or finding an appropriate
terminal cost is a challenging task, cf. [16]. MPC schemes that do not rely on these methods
are much easier to set up and implement and are therefore often preferred in practice. In this
case, the choice of the horizon length N in step 0 of the MPC algorithm is crucial: Longer
horizons make the problem computationally harder; shorter horizon lengths may lead to
instability of the MPC closed loop system. Therefore, the smallest horizon that yields a
stabilizing feedback is of particular interest, both from the theoretical and practical points
of view. Finding it is the main task of this paper.

Similar to [I], the study in this work relies on a stability condition proposed in [I6]
that, together with the exponential controllability assumption below, ensures the relaxed
Lyapunov inequality, cf. [I6l, Theorem 6.14 and Proposition 6.17]. This inequality has been
introduced in [21I] to guarantee stability of the MPC closed loop solution.

Definition 5. The system 1s called exponentially controllable with respect to the stage
cost £ = 3C > 1,6 € (0,1) such that for each state z € Z there exists a control uz € U
satisfying

(s (3 2), (k) < C6" min (2, w) (24)

for all k € Np.

Using the stability condition from [I6], the minimal stabilizing horizon can be deduced
from the values of the overshoot bound C and the decay rate 6. For more details, see [1].
The most important difference in the influence of C' and ¢ for our study is that for fixed C,
it is generally impossible to arbitrarily reduce the horizon N by reducing 6. However, for
C =1, stability can be ensured even for the shortest meaningful horizon N = 2. Note that
condition depends on the stage cost ¢, which, in this paper, is given by

(k) (k) = 5 12(k) = 212 + L u() — al? (25)

for some weight v > 0 and some norm ||-||, where (2, @) constitutes an equilibrium of (20)), i.e.,
f(z,u) = z. Note that @ only makes z an equilibrium; it is not required that with u(k) = @
we converge towards zZ. However, we have ¢(Z,u) =0 and ¢(z,u) > 0 for (z,u) # (Z, 1),
which are necessary conditions for the following theorem resulting from [16, Theorem 6.18
and Section 6.6] to hold.

Theorem 6. Consider the MPC scheme with stage cost satisfying the exponential con-
trollability property from Deﬁm’tion@ with C > 1 and § € (0,1).

(a) Then there erists some optimization horizon N > 2 such that the equilibrium z is
globally asymptotically stable for the MPC closed loop for each optimization horizon
N >N.

(b) If C =1 then N = 2.



In both cases, the optimal value function Vy(zo) := inf,, Jn (20, ug) for is a Lyapunov
function for the closed loop, which in particular satisfies V(zr(n+ 1)) < Vy(zx(n)) when-
ever Vy(zx(n)) # 0.

This result states that the MPC closed loop has the same qualitative stability property
as the solution of the infinite horizon optimal control problem . In addition to this qual-
itative property, the results from [I6] also yield that the MPC closed loop is approximately
optimal for the infinite horizon functional , i.e., that they are quantitatively similar to
the infinite horizon problem. However, in order not to overload the presentation, we will
focus on the stability aspect in the remainder of this paper.

4 Design and Properties of the Stage Cost ¢

Before we turn to the analysis of the MPC problem, we take a closer look at designing
suitable stage cost £. In light of Theorem [6] the standard choice of using quadratic costs
in the state and the control penalization certainly appears to be viable. A common
choice of norms in PDE-constrained optimization problems is the L? norm, cf. [31], which is
meaningful for the term penalizing the state. However, since the control acts on the whole
domain = R? and is linear in space, using, e.g., ||u(t) — ﬂHiz(Rd) is not meaningful. Here,
4 is of form and can be characterized by its coefficients (K, ¢) that satisfy Assumption
Therefore, we penalize the deviation of the control coefficients (K (t),c(t)) from (K, &), which
results in

1 _2 Y =2 7 _2
Up,u) =5 |lp = pllL2mey + 5 ||[BKE = BK|| . + 5 [|Be — Bel; (26)
2 R T 9 2

for some weight v > 0 and where ||| . denotes the Frobenius norm. Using the Frobenius
norm for K € R*? fits well with the Euclidian norm used for ¢ € R!. We will use the
appearing B in in the following. Yet, for the Ornstein—Uhlenbeck process presented in
Example [1}it does not matter since B = I in that case.

In our setting, p = p(x, t; u) is a Gaussian PDF of form (5]) with mean u(t) and covariance
matrix X(¢). If we turn our focus from the Fokker-Planck IVP (2)-(3) to the associated
dynamics , it is sensible to depict the term penalizing the state in (26)) in terms of p and
Y. In the following, we may drop the argument u in p(z,t;u), X(¢; u) and p(t;u) for better
readability.

Lemma 7. Let p(x,t;u) and p(x) be given by and (6)), respectively. Then for all t > 0:

_ — _d 1 S — L
o8 = PO eqay = 2777 [[B(0)| % + |22

W=

1 _
2

) \(2@) 15| exp (—1 (ult) — )7 (S(0) + ) (u(t) - m)] @)

We recall that |A| = det(A) for A € R¥*4,

Proof. We split the L? norm into

112 2 12 _
lo(t) = pllL2may = 12022 ey + 12l L2 (Ray — 2 /Rd p(t)pdze (28)

and consider the three terms separately. Since only spatial integrals are involved while the
time ¢t remains fixed, in the following, we may drop the argument whenever it is clear from
the context, i.e., instead of p(z,t) we write p(x).



We can apply standard results regarding integrals of Gaussians, cf. [24], Section 8.1.1], to
p(a)? =273 "L exp (—(z — )27 (& — p))

to get

1
1 3
27 (22)‘ = 2_dﬂ_%|2|_%.

2 _
P72 ey = 12757
Analogously, we have
2 —d_—4d\a—-1
112 gay = 2772 2] 2.
The last term in is a bit more involved. First, we note that

pp = 225|278 exp H(m WS e )~ o~ BTSN - )
(29)

- 1
= 27|~ #[275] 2 e exp [2@: — )8 @ = pe) |

where the second equality holds with
yolhi=nteut
po = (ST +ET)TH(ET e+ 27 0),

1 1 el 21 E—ivelre— S | _ _Te_1-
C:: §(MTZ 1+//LTZ 1)(2 1+E l) 1(2 1M+E 1/-1/)_5(MTE 1M+MTE 1,“/)7

cf. |24, Section 8.1.7]. Now, we can apply the standard results from above to in order
to get

/ ppdx = |2r%| 7 278|227 8, |2 €
Rd

1

= @m) RS (BT S T e
= (@2m) 3[R RS R E el
_ _ 1
=@2n) 2 (T 42T B2 eC
= (21) "2 [S + x| %O
1
1 7=
=2 dr% 2(2+2)‘ e
Therefore, it is left to show that
1 T oy —1 -
C=—gu—p) E+2)"(u-p)

To this end, we note that, since both ¥ and ¥ are symmetric positive definite and in particular
invertible,

SHEI 4 ) Il (242 E) T = (B4 n) (30)

Furthermore, we have that

a1y —1

THET+ETN) ST -2 = (245

10



due to ) )
SHETT+EN) ST -2 4 (24 8)

s (el Tyt nt s (s s ) e
= [(2‘1 +E) (= + i—l)’l - 1} v l=0.

These two results allow us to calculate C'. We have

—_

PP gl
C= WS+ 8 )E T +8 ) S+ ) - ("2 u+ 5TE )

2 2
1 - 1_ e _ _
_ §MT2_1(2_1+E_1)_12_1M+iﬂTE_l(Z_l+E_1)_1E_1[L

1 _ =1 1 _ _ e

_§(MT2 1M+MT2 1,U/)+§,LLTZ I(Z 1+2 1) 12 1/1/

:(E+i)*l

1 _ _

+ gﬂT E—I(E—l + 2_1)_12_1/,6

=(S+5)-1

_ %MT [EtEt+s ) st on

=—(Z4+%)-!

i {2—1 (2—1 n i—l)*l $-1_ 2—1} i+l (E+8)

=—(Z+%)-1!

1 - 1
= - E+Y) - p B+ D) e+ (24 8)

which concludes the proof. O

In the course of this work, it will be useful to restrict the target PDF p of form @ to
_ —d/2 L 7
pz) = (2m) exp | —ga x|, (31)

ie,i=0€cR?and ¥ =1 € R™? Then, due to Assumption we have that B¢ = 0, cf.
(11). Therefore, expressing the stage cost in terms of the state (X, 1) and control (K, ¢)
using Lemma [7] leads to

(2, ), (K, ¢)) = 27 4p=4/2

s 1 ~s 1
Z|_2+1—2’2(E—|—I)’ exp (—QMT(E—l—I)_lM)]
(32)

Y 112 Y 2
+5 | BE = BK | + 5 |Bell;
This restriction on p does not affect the generality of this paper, see the following lemma.

Lemma 8. We can assume (X, ji) = (I,0) without loss of generality in the following sense:
Any statement that holds for the special case (%, i) = (I,0) with stage cost also holds
for general symmetric and positive definite matrices ¥ and vectors fi € R% with the modified

11



stage cost
2

S 1lp = pllfea) + 5 |5 7F (BK - BR) 54

_ 1 2
HZ_E [(A— BK)fi+ Bc]HQ.

The idea of the proof is to first consider and work with the corresponding stage cost
and then encompass arbitrary target normal distributions p characterized by some mean
i € R? and covariance matrix 0 < ¥ € R?¥¢ by transforming the dynamical system and
modifying the stage cost in a suitable way. For example, it should make no difference in
cost and in the control sequence whether we steer the expected value of a normal distribution
from 10 to zero or from 11 to 1.

Proof. Starting from the SDE @D and some arbitrary target normal distribution p char-
acterized by some p € R? and 0 < ¥ € R¥? we introduce a new random variable
Y; := 712 (X; — i). Then, due to linearity of the expected value, we get

py(t) =E[Y] =E [V (X, — )] = S7V2(B[X,] - 1) = S7V/2 (u(t) - )
and with

Yo —py (8) = £ (X — i) — py (1) = S7Y2 (X — (1))

we get

Sy (H) =B [(¥ = iy () (Vi = v ()"
=B [S7V2 (X, - () (X, — (1) 72
= STV (X, () (X0 — ()| 272 = SRR
Transforming into the new variables (Xy, uy) yields

fiy (t) = 572 (A = BK(1))S"?py (t) + S~/ [(A = BK (1)) + Be(t))],

py(0) = SV (i —p)

Sy (t) = S7V2(A - BK(1))SV25y (1) + Sy (H)EY?(A — BK(t))TS71/2 (34)
+ 2" 12ppTe-1/2,

Sy (0) = £1/255-1/2,

Therefore, steering the system (34) to (Zy,iy) = (I,0) is equivalent to steering (I1]) to
(2, @i). In particular, if Assumption holds for , then (34) can be steered towards (1, 0).

For the moment, let us assume that (3, /i) = (Z,0). Then the stage cost results in
. We claim that any statement that holds for the special case (X, i) = (I,0) with stage
cost (26]) also holds for general (¥, /) if using the modified stage cost (33) instead. The
idea is to compare the system in the special case (X, 1) = (1,0) to (34) and adjust the
stage cost accordingly. For instance, £~ 1/2(A — BK (£))S1/? takes the role of (A — BK(t))F]
Instead of Be(t), we have ©~1/2 [(A — BK (t))fi + Be(t)]. Therefore, we adjust the stage cost
accordingly:

_ 2
1Bell3 ~ | £72 (4 - BE)R + Bl

3To see this in the equation for Ey(t), it is helpful to use , which holds due to Assumption E

12



and

|BK — BK|[3, = ||(A - BK) — (A BK)||%.

—_ 1 — 1 — 1 _—12 — 1 _ =1
~ |[Et (- BR)SE -7 (a-BR) S| = |57} (BK - BR) =

I
The only term left to adjust is llp— ﬁ||2LQ(Rd). Since L(t) = L1280y (1)EY2 and B(t) + X =
$1/2(Dy (t) + 1) £/2, we have

(0172 = [£Y°Sy V272 = D72 [Sy ()] 72,

‘;(E(t)jti)‘_é

1

- [ w0z

Furthermore, since /i = 0 and therefore py (£) = £~ 2 (u(t) — i) = £~ 2 u(t), we have

SO 2 - 2|50+ 5)| e (g0 + 5

=53 [|Zy(t) T 412 ‘;(Zy(t) +I)‘_2 exp (—;My(t)T(zy(t) +1)—1uy(t)>] :

This together with explains the last necessary adjustment, namely the factor |§_J\% in
front of the term penalizing the state in (33). O

In the special case of u(t) = fi, i.e., if the target mean is reached and stays at the target,
the restriction to X = I gives rise to the following result.

Lemma 9. Let u(t) = i and ¥ = 1. Define A(t) := diag(A1(),...,Aq(t)), where \;(t),
i=1,...,d, are the Eigenvalues of X(t). Then

oo 8) = P2 qmay = 277 2 F (ML)
with

—1/2
FA) =1+ |A7Y2 -2 ‘;(A +1)

Proof. Since ¥ = I and u(t) = [i, the state cost becomes

lo(-8) = P17 (gay = 27~/ 5

5673 +1 -2 ‘1(2(15) +1)‘_2] .

If A1(2), ..., Aa(t) are the Eigenvalues of 3(t), then A\;(t)+1,¢=1,...,d, are the Eigenvalues
of X(t) + I. Since |3(t)| = |A(t)] and |2(t) + I| = |A(¢) + I], the assertion follows. O

5 Minimal Stabilizing Horizon Estimates
In this section, we want to study the behavior of the MPC closed loop system that emerges
when we use Model Predictive Control. More precisely, we are interested in estimating min-

imal horizon lengths N such that our desired equilibrium p, respectively (3, i), is asymptot-
ically stable for the MPC closed loop.

13



Whether we consider the Fokker-Planck IVP — with state p or, equivalently, the
dynamics with state (X(t), u(t)), they are always sampled in order to obtain the discrete
time system described in Section [3] That is, if ($(t), u(t)) is the solution trajectory of (1I)),
then we denote by 3 (k) the evaluation of 3(t) at time t = t; := to + kT, where k € Ny and
Ts > 0 is the sampling rate.

In order to prove asymptotic stability, we can use the exponential controllability property,
cf. Theorem @ A suitable stage cost £ is given by or . In both cases, the state p is
penalized in the L?-norm, which is well suited for PDE-constrained optimization as explained
in Section However, expressing the stage cost in terms of the state (X(t), u(t)) instead
of p(z,t) leads to rather uncommon expressions, cf. Lemma [7] Yet, we strive to show that
MPC does cope with these types of cost in this setting.

To this end, in Section we present results for general stochastic processes @[) with
Xo ~ N(f, E), i.e., general dynamics of type (11)). Then, in Section we try to improve
these results for a special case, namely the Ornstein—Uhlenbeck process that was introduced
in Example

5.1 General Dynamics of Type @[)

In this section, we consider general dynamics given by with control , leading to the
controlled linear dynamics @ and the equivalent dynamics for the Fokker—Planck equa-
tion . We start with the most simple case, in which there are no state constraints, no
control constraints and no control costs.

Theorem 10. Consider the system associated to a linear stochastic process defined
by (@ with a Gaussian initial condition (10) and a desired PDF p(x) given by @ Let
the stage cost be given by {(p) == 1 ||p— ﬁHL?(Rd): which corresponds to with v = 0.
Then the equilibrium p(x) is globally asymptotically stable for the MPC' closed loop for each

optimization horizon N > 2.

Proof. In absence of state or control constraints, it is obvious that any system of type (11))
that satisfies Assumption can reach any desired state p(x), which is characterized by
some mean i € R? and some covariance matrix ¥, in an arbitrarily short time 7. In
particular, in the continuous time setting, one can choose a control coefficient K (t) such that
the desired covariance ¥ is reached in T/ 2 time units. At that point in time, we switch to
K and use an appropriate control coefficient &(t) to arrive at the desired mean fi.

In the sampled system, in order to arrive at the desired state within one sample time
step, the control (K, &) from the continuous time needs to be discretized adequately, i.e., the
coefficients (K(0), ¢(0)) may be time-dependent functions on [tg,¢1). In the next MPC time
step, due to Assumptions we may switch the control to (K, ¢), thus staying at p
and invoking zero cost from then on. O

Remark 11. While non-constant coefficients (K(0),c(0)) are no issue in theory, in practice
the discretization of the control sequence u(k) is often coupled with the discretization of
the dynamics, leading to control sequences that are comstant in every MPC time step. If
the system cannot be steered towards the desired state within one MPC step using constant
(K(0),c(0)), then one should adjust the discretization of the control in time. Furthermore,
one might need to carefully select an initial guess for the NLP solver used to numerically
solve the (arising) non-linear optimization problem.

Now, we turn to the more interesting case where v > 0 and/or control constraints are
present. In this case, in general, we cannot guarantee that the target p(z) is asymptotically
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stable for N = 2. Yet, we can recover the asymptotic stability by choosing N > 2 sufficiently
large, cf. Theorem In the proof thereof, however, we need the following result.

Lemma 12. Consider for K(t) = K. Then
[26) . < e [20) — 5, (30
for some constants C,k > 0.
Proof. Due to Assumption [2, A — BK is a Hurwitz matrix and holds. Therefore,
Y(t) = (A - BK)X(t) + 2(t)(A — BK)" + DD”
(A— BE)(S(t) — %) + (3(t) — £)(A - BR)".
Defining M := A — BK and Z(t) := £(t) — ¥, we can rewrite the above equation to
Z(t)=MZ@t)+ Z(t)MT.
Then we vectorize this equation by going through the matrix Z(t) row by row, i.e., for

Zn(t) e Zld(t)
2=\ -]
Zd1 (t) e de(t)

we define yet another variable

Z(t) = (Zu(t), ey Z1d(t)7 Zgl(t), ey ng(t), N ,Zdl(t), ey de(t))

and arrive at

2(t) = Az(t)
with A € RE*? defined by
mu(t)I . mld(t)f M
A= : S -
mq1 (t)[ N mdd(t)f M

Let s(M) be the set of all Eigenvalues of M. Then one can calculate that the set of all
Eigenvalues of A, s(A), consists of all possible sums A" + A5*, where A\T*,\5" € s(M). In
particular, s(4) C C_ since s(M) C C_. Therefore,

l2(®)]l < Ce™"" |20}l
for some constant C, s > 0. Since ||z(t)||, = [|Z(t)|| = ||S(t) — SHF, we arrive at (36). O

Theorem 13. Consider the dynamic system (L1)) associated to a linear stochastic process
defined by @D with a Gaussian initial condition and a desired PDF p(x) given by .
Let the stage cost be given by with v > 0. Moreover, we impose the following state
constraints: For the Figenvalues \;i(t), i = 1,...,d, of X(t), we require that 0 < e < \; <1/e
for some € ejO, 1). Likewise, we need bounds on the mean, i.e., —é < < % Then there
exists some N > 2 such that the equilibrium p(x) is globally asymptotically stable for the
MPC closed loop for each optimization horizon N > N.
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Proof. We want to prove exponential controllability of the system w.r.t. the stage cost
defined by 7 cf. Definition Then our assertion follows from Theorem @ Having As-
sumption in mind, a natural control candidate to prove exponential controllability is (K, ¢).
We will use this control candidate throughout the proof. In this case, our stage cost reduces
to the term penalizing the state, 3 ||p(k) — ﬁHiQ(Rd)- To prove exponential controllability, we
show that

lo() = llz2(gay < Ce™™ 11p(0) = plIZz (gay (37)

in continuous time for some x > 0 and define § := e~*T5 to arrive at . Due to ,
proving is equivalent to showing

F2(1), u(t)) < Ce™™ f(3(0), u(0)),

FE@. ) = 1501 +1-2 {50+ D] o (=~ puT 0 + 070 9

Let A;i(t), ¢ = 1,...,d, be the Eigenvalues of %(t). Then \;(t) + 1 are the Eigenvalues of
Y(t)+ I and ﬁ are the Eigenvalues of (X(t) +I)~!. Since 0 < ¢ < \;(t) < 1/e, we have

1 1 5

1> > = .
AN)+1 7 141 41

Then we can bound the exponential term of f in :

IO < p0 (50 + D7) < ).
Therefore,
1= exp (5 0 ) < 1= exp (=507 (50 + ) uto))
< 1o (~3 Iu0E)

Since

(S =I8"24+1-2 ‘;(z + I)‘_2 +2 ';(2 +1) h {1 — exp <uT(2 + I)lﬂﬂ ,
we can bound f(X(t), u(t)):

Fi(S0), 1) < FS0), 1l0)) < Fu(S0), 1(0)) (39)

where

pEa = s r-2fgeen| Crzfgean| e (g )|

puE = ot vz fsean| velpeen| 1o (<5 u8)]
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Let A := diag (A1,...,Aq), where A\;, i = 1,...,d are the Eigenvalues of 3. Then f;(X,u) =
fi(A, p) and f, (2, 1) = fu(A, 1). Moreover, since

d d
1 1 A +1
Yl=Al=]N d [=zEZ+D|=|z(A+1)| = ,
Bl= =[x wnd |5 n|=|50+0) 115
we can view the functions f; and f, as functions of a vector A := (A1,..., ;) instead of a

matrix A and calculate for all j =1,...,d:

_1
2

¢ i o Aj ! . '
or, i) = 5 (H 2“) (57) o (-5 k) - (H&> o

LD +1 € €

i=1

Denoting by I the d-dimensional vector of ones, we get
fi1,0)=0, 95, fu(1,0) =0, 8, £i(1,0)=0
and, analogously,
fu1,0) =0, 8y, fu(1,0)=0, 8, fu(1,0)=0.

As a consequence, no constant or linear terms appear in the Taylor expansion of either f;(\, p)
or fy(A p) around (1,0). Thus, there are symmetric positive definite matrices Py, P €
R24%2d gych that for all 0 < e < \; < 1/e and —é <p; < é:

(>‘ - Tnu‘)Tpl(A - Tnu) < fl(>‘a,u‘)7
()\ - Ta :U‘)TPZ(A - Ta lu) > fu()\a:u‘)'

All in all, then, we have:

A TP~ L) < i) 2 50 D fuhm) < (0= Tu)TPa(A— L), (40)
Due to equivalence of norms, there are constants C7,Cy > 0 such that

=T, )7 P(A —T,0) < Goll(A— T, w3, (41)

[0 = L)l < 5O = TP~ T, (12)

Since A— BK is a Hurwitz matrix and fi = 0, B¢ equals zero, cf. Assumption Therefore,
it is easy to see from the dynamics that there exist some constants C3, k1 > 0 such that

ln@)lly < Cae™™** [|u(0)], - (43)

Due to Lemma we have ||E(t) — I||z < Cye™ "2 ||E(0) — I|| for some Cy, ko > 0. Fur-

thermore, ||X(t) — I||» = [|A(t) — I||z = | A(t) — T||2, where the first equation holds because
Y (t) — I is a real and symmetric and therefore normal matrix and the Eigenvalues of 3(¢) — T
coincide with those of A(t) — I. Consequently,

IAE) = Tll2 < Cae™™=*A0) = Tl2. (44)
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With C5 := max {C3,C4} and k := min {k1, k2 }, we finally have that
(40)

FEO0) S )~ ) P — L)

T Gl - T o)
= (1A - T+ ls)13)

L 0y (03 M) ~ T3 + G o) )
< o0 (JA0) — T + (o)1)
= O (AO) ~ T, (0)]3
S 2000 - Tu0) T RON0) ~ T (0)
2R (30),1(0),

concluding the proof. 0

As mentioned in Chapter [3| one can derive N from the values of C' and & in the proof of
Theorem [13] see [16].

5.2 The Ornstein—Uhlenbeck Process

For more specific dynamics, the results from Theorem can be improved by determining
the constants C' and x or at least (tighter) estimates of those. To this end, we look more
closely at the Ornstein—Uhlenbeck process introduced in Example [1} i.e., we consider
with 4, B,D,K(t),c(t) as in (12). We recall that, as in Example [ we impose control
constraints k;(t) > —0;.

Due to Lemmalg] we assume that the target probability density function is characterized
by (2, 2) = (I1,0), i.e., p(z) is given by . The stage cost is given by .

Numerical simulations suggest that (X, ) = (I,0) is globally asymptotically stable for
the MPC closed loop for the shortest possible horizon N = 2 also for v > 0. Although
performance degrades with shorter N and depends on the sampling time T, the stability
property is maintained for various initial conditions p, sampling times T and weights v > 0,
cf. also the examples in this section. If we could prove exponential controllability of the system
with respect to stage cost with C = 1 independent of the weight «y, then Theorem |§|
would confirm our conjecture drawn from numerical findings. A canonical control candidate
in this matter is (K, ¢) because it induces no control cost. However, as shown in the following,
this simple solution often does not work.

The rest of this section is divided into two parts. In the first, we state results for general
weights v > 0. In particular, for the one-dimensional Ornstein—Uhlenbeck process, we prove
that (2, i) = (I,0) is globally asymptotically stable for the MPC closed loop for N > 2. The
multi-dimensional case is more involved and thus, we consider the special case v = 0 in the
second part. Note that although control costs are eliminated, this scenario is not covered by
Theorem [10| due to control constraints k;(t) > —6;.

5.2.1 The Case of v >0

To simplify the notation, in this part, we focus on control sequences that are constant in
every MPC step, i.e., for fixed k € Ny, K (k) and ¢(k) are constant. These piecewise constant
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control sequences fit well with the notation of X (k) introduced in the beginning of Section
All simulations were carried out with such controls. Otherwise one should specify how to
evaluate the stage cost in every MPC step. For instance, one could integrate over time,

e.g., use ftt:“ |BK(t) — BK’H; dt or discretize this integral according to one’s method of
choice. The results presented in this part extend to controls that are not piecewise constant
if the above integral is used.

We start by illustrating the problems when using the canonical control candidate (K, ¢),

see the following example.

Example 14. Consider the 1D Ornstein—Uhlenbeck process with (model) parameters
A=-0=-4, B=1, D=¢=v6, (4,%)=(14,12), (3,%)=(0,1)
and some v > 0. From , , and we can calculate the constant control
(K,2) = (%/(2%) — 6,0) = (<*/2 —0,0) = (—1,0)

that can be used to converge to and stabilize (X,fi). We set the MPC horizon N to 2,
the sampling rate Ty to 0.1, and use the stage cost . In Figure (1| (left), we illus-
trate the cost Jo((u(k),S(k)), u(k)), cf. @3), for u(k) = (K,e) =: @ (blue circle) and
for optimal controls u(k) = (K*(k),c*(k)) =: u*(k) with v = 0.015 (red cross) as well
as v = 107° (green diamond). For a high enough weight v > 0, even the optimal se-
quence u*(k) leads to temporarily increasing cost. Since for optimal controls u*(k) we have
Jo((u(k), B(k)), u* (k) = Va((u(k), 3(k)), cf. Theorem[d, the figure also shows that the op-
timal value function Vo grows. In particular, this function cannot be a Lyapunov function
for N = 2. Hence, based on this numerical evidence, Theorem [6] implies that exponential
controllability with C =1 cannot hold.
Yet, from Figure (right), which depicts the normalized Fuclidean distances

_ o _ (12 o S
Ap) = llp—aly /i =l and AE) =T -S| /I - £ (45)

of u(k) (filled) and the variance (k) (empty) from the respective target values for (K,¢)
(blue circle) and optimal controls (K*(k),c*(k)) for v = 0.015 (red square) and v = 107>
(green diamond), we see that the target is reached in all cases.

In light of Example it is apt to explore other means of proving (global) asymptotic
stability of the MPC closed loop (for N = 2). Already in the proof of Theorem [13| we needed
to treat the mean p(t) and the covariance matrix X(t) separately. For the dynamics given by
the Ornstein—Uhlenbeck process, we can indeed decouple these two. Note that the (multi-
dimensional) Ornstein—Uhlenbeck process from Example [1] satisfies the requirements of the
following proposition due to the constraints on K (¢), i.e., k;(t) > —6; fori=1,...,d.

Proposition 15. Consider the system (L1]) associated to a linear stochastic process defined
by @ with a Gaussian initial condition and a desired PDF p(x) given by . Assume
that A — BK (t) is a negative definite diagonal matriz for all t > 0 and that B is a square
and invertible matriz. Furthermore, let the stage cost be given by with v > 0. Then
each component of the mean u;(t) converges exponentially towards fi; = 0 in the MPC closed
loop for each optimization horizon N > 2.

4We remind that 2(k) corresponds to the evaluation of $(t) at ¢t = .
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Figure 1: Objective function for N = 2 with stage cost given by (left) and normal-
ized differences (right) for Example

Proof. Let N > 2. If we express the stage cost in terms of (X, u), cf. , then the
objective function can be written as

IN((E, ), (K ¢)) = Y 6(B(k), n(k)), (K (k), c(k))) (46)
k=0
with -
C(B(k), p(k)), (K (k) c(k))) = 27 2 U5 (k) + Lk (k)
where

[N

b (1) = (90| 1= 2| 509+ exp (— 5B (20 + D7), (47a)

Uko(k) = | BK(k) — BE|[% + | Be(k)|3 (47b)

cf. (32). Let (K*(k),c*(k))k=0,...,N—1 be the optimal control sequence that, together with
the corresponding state trajectory (X*(k), u*(k))g=0,...,N—1, minimizes (46| given some initial
value (3, 1)

Looking at the continuous time dynamics (L1)), we note that K (¢) influences both the
mean p(t) and the covariance matrix 3(t), while ¢(t) has an impact on p(t) only. There-
fore, we are able to control the mean u(t) independently of the covariance matrix 3(t).
Moreover, since A — BK(t) =: M(t) is a (negative definite) diagonal matrix, i.e., M(t) =
diag(mq(t),...,mq(t)), deﬁnlng é(t) := Be(t) yields

fi(t) = mi(pi(t) + ¢i(t),  wi(0) = f1;

fori=1,...,d. This ODE can be solved to obtain the sampled system

byt trg s
wi(k+1) =exp / m;(s)ds wi(k) + / ¢i(s)exp | — /mi(é) dé | ds
th tr
€(0,1) >1
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for: =1,...,d. In the case of piecewise constant controls, this simplifies to

pll4 1) = exp (ma(T) () + 40 (1 exp (i)
eﬂ%i(k:)Ts_
= i OIT ) () — 1’ (48)
€(0,1) T

where we remind that Ty = t541 — L.
To prove our assertion, it is sufficient to exclude two things in the sampled system:

1. It is optimal to not approach or to deviate from the target zero in any component of
the mean at any time, i.e., 3k € {1,...,N — 1}, j € {1,...,d}:

pilk) > pwi(k—1)  if pi(k—1) >0, (49a)
wi(k) < pi(k—1)  ifpi(k—1) <0, (49b)
pik) £y (k—1)  if pr(k—1)=0. (49¢)

2. It is optimal to overshoot the target zero in any component of the mean at any time,
ie,dke{l,..., N—-1},j€{1,...,d}:

wi(k) <0 if pi(k—1) >0, (50a)
wi(k) >0 if pi(k—1) <o0. (50b)

Due to , we may look at one component p; at a time For a given j € {1,...,d}, let k
be the smallest k € {1,..., N — 1} for which either (49) or (50 holds. Analogous to é(t), we
define ¢*(k) := Bc*(k). Due to m;(k) < 0 we see from 1.| that with ¢;(k) = 0 we always
get |uj( )| < \,u]( —1)|, with equality if and only if p;(k — 1) = 0. For any given 3(k), a
lower |p;(k)| yields a lower state cost 5 ,(k), cf. Moreover for any given M (k) (and
thus K (k)), choosing é;(k) = 0 is optimal with respect to the control cost £k (k).

With these preliminary considerations in mind, let us first assume that holds for k.
In the following, we construct a control sequence that performs btrictly better, contradicting
optimality of the current control sequence and thus excluding (5 . To this end, we note
that there exists some &;(k — 1) =: cj O(k — 1) such that yu;(k) = 0, cf. ([@8). Since |B| # 0,
there is a sequence (¢**(k))g=0,.. N-1 such that

Ok—1), i=jAk=k-1,
& (k) =40, i=jiNk>k, i=1,....d, k=0,...,N—1. (51)

¢i(k), otherwise,

From (48) we see that \69(15 -1 < |5j(l:: — 1)].  Thus, the new control sequence
(K*(k), c**(k))k=0,... n—1 outperforms the optimal control sequence in terms of (total) control
cost:

:EK*,C*(I{.)7 k:07...,]‘%—2,
e eoe (k) § <o oo (k), k=k—1,
SgK*7C*(k)7 k:];, . 7]\/v—l
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For the corresponding state trajectory (£**(k), u**(k))k=0,.. . n—1 and all k € {0,..., N —1},
we have ¥**(k) = ¥*(k) and

- 0, i=jnk>k,
s (k) = N .
wui(k), otherwise.

Therefore, we have reduced the (total) state cost as well:

:gE*,,u*(k)7 k:O 7k715
Uy (K) { < by e (B), k= F,
< Uy e (k), k=k+1,...,N -1
In conclusion, ) )
IN((E, ), (K7, ™)) < In((5, a), (K7, c7)), (52)

which contradicts optimality of (K*(k), ¢*(k))k=0,....n—1 and thus excludes .
To exclude , we proceed in a similar manner. Assuming holds for k, we can find
a sequence (¢**(k))g=0,... . n—1 such that

) =4 TTIARER L k=0, N-1.
¢r(k), otherwise,

From the preliminary considerations above we know that does not occur with ¢;* (I;:) =0,

Le., ¢} (k) # 0. Thus, the new control sequence exhibits a lower (total) control cost. As above,
we denote the corresponding state trajectory by (£**(k), u**(k))k=o,... n—1 and once again
¥ (k) = X*(k). Clearly we have pu7*(k) = pj(k) for k =0,...,k — L and [p;* (k)| < [ (K)|,

which results in
:E *o* k’ 3 ]f 0
Usee yoe(R) S~ 50H (k) -
<Als- u+(k), k=k.

k-1,

In addition, we can make sure that £y« (k) < f- - (k) for k =k +1,...,N — 1: Using
the new control sequence, there are three distinct cases that can occur in the next time step
k+1 for the j-th component. If (49 . ) holds, then we repeat this procedure, reducing the cost
also for k + 1. If . ) holds, then we construct another control sequence analogous to ,
arriving at a lower cost overall. If neither nor (50) hold, then |u**(/€ +1)| < |,u] (k+ 1)|

since |u} (k)| < |uj( )|, cf. (48)), which again results in a reduced state cost for k + 1. This
can be done iteratively until we arrive at . thus excluding (4

Therefore, we have shown monotone convergence of p;(t) to ;. Since the ODE for p(t)
in is linear, the convergence is indeed exponential. O

We note that the proof of Proposition is the same if we include box constraints on
é(t) = Be(t), ie., ¢ < é(t) < é, with ¢ < 0 < ¢&,. Furthermore, Proposition [15] extends to
other stochastic processes where the dynamics are given by provided that

e cach component of the mean can be controlled separately and

e we can approach the target (in each component) invoking zero control cost (with respect
to Be(k)) regardless of how K (k) is chosen.

While it is debatable whether the first ingredient is really necessary, Example [I6] illustrates
what happens if the second property is violated.
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Example 16. Consider a shifted version of Example .' instead of (@, 1) = (0,14), we
consider (fi, ft) = (1,15). The other model parameters remain the same. In order to take the
control constraint K (t) > —0 into account, we set K (t)+60 > € withe = 1078 in our numerical
simulation. Due to (16)), we have (K,¢) = (—1,3). In this example, we specifically use the
original stage cost not the modified cost . Looking at Figure (1| from Ezample
for low enough values of v we expect the variance to increase at the beginning, which indeed
is the case for v = 107°. Howewver, the mean u(k) also grows in time, cf. Table which
is due to : with ¢ = 3, the mean does not converge to its target for all admissible K (k).
This results in a PDF that is drifting away from its target rather than converging towards it,
as desired.

k| 0 1 2 3 4 5 6 7 ... 200
(k) 15 15.23 1547 157 1593 16.15 16.38 16.61 ... 72.38
S(k) 12 12.6 13.2 13.8 144 15 15.6 16.2 ... 1314
Kk) |e—4 e—4 e—4 e—4 e—4 -4 e—4 e—4 ... e—4
c(k) 2.34 2.32 2.3 2.29 2.28 2.27 2.27 2.26 ... 3
Va(k) | .362 .361 .359 357 .356 .354 .353 351 L. .307

Table 1: State, control, and corresponding cost for Example

Of course, using the modified stage cost restores the second key property: we can
again approach the target (in each component) invoking zero control cost with respect to
Be(k) for any admissible K (k). Needless to say, rerunning the numerical simulation of
Example [I6] with the modified stage cost, we end up with the exact same behavior as in
Example

Having established exponential convergence of the mean in Proposition we can confirm
our numerical findings in the one-dimensional case.

Proposition 17. Consider the one-dimensional Ornstein—Uhlenbeck process from Ezam-
ple[d] i.e., with A=—-0<0,B=1,D=¢>0, K(t) > —0 and c(t) € R. Assume that
the desired PDF p(x) is given by . Furthermore, let the stage cost be given by with
v > 0. Then the MPC closed loop converges to the equilibrium p(x) for each optimization
horizon N > 2 and each initial condition.

Even though the process in Proposition [I7]is one-dimensional, the proof is very technical
without providing more insight and can therefore be found in the Appendix. In the multi-
dimensional case, however, even if ;(0) = i, we face again the issue of increasing cost, see
the following example.

Example 18. Consider the 2D Ornstein—Uhlenbeck process with (model) parameters
A = diag(3.1,11), B = I, D = diag(0.2,+/20), i = 0 = 1, ¥ = diag(0.02,200), ¥ = I,
and some v > 0. We set the MPC horizon N to 2, the sampling rate Ts to 0.2, and use the
stage cost (26). As in Ezample we depict the cost Jo((u(k), 2(k)), u(k)), of. [@3), for
u(k) = (K,¢) =: a (blue dash-dot) and for optimal controls u(k) = (K*(k),c*(k)) =: u*(k)
with v = 0.0005 (red dash) as well as v = 1075 (green dot). As above, the figure also shows
that the optimal value function Va grows, implying that exponential controllability with C = 1
cannojtzlhold. Yet, like in Example the target is reached in all cases, as Figure |q (right)
shows

5In Figure [2| (right) we have depicted the normalized differences ([45) only for the first 10 steps as there
are no visual changes afterwards.
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Figure 2: Objective function for N = 2 with stage cost given by (left) and normal-
ized differences (right) for Example

As a consequence, similar to Example [[4] for a sufficiently large weight v > 0, the
exponential controllability property does not hold with C' = 1. Moreover, in contrast to
the mean, cf. Proposition numerical simulations illustrate that we can neither expect
monotone convergence of each component ¥;; to 1 nor monotone convergence of || X(t) — I||
to zero.

In order to get more insight on how to develop alternative methods to circumvent this
issue, we focus on the state cost by setting v = 0.

5.2.2 The Case of y=0

Setting v = 0 allows us to focus on the state cost . We recall that we still impose the
control constraints k;(t) > —#6;, cf. Example Hence, Theorem does not apply. These
restrictions affect the dynamics as follows. Assuming 3 is a diagonal matrix as in Example
one can show from and that, while ¥;;(¢) can be decreased to an arbitrarily smaller
positive value in one time step, there is an upper bound. More precisely, with Ts = 511 —tx
one can show that

0< Eii(thrl) < Z”(tk) + 2TS<’£2' (53)

In light of Example we want to focus on steering this variance. Since v = 0 and there
are no restrictions on ¢(t), we can assume that u(t) = [ since i can be reached in one time
step, cf. Theorem [T0]

Even though we consider the Ornstein—Uhlenbeck process, most of the content in this
section extends naturally to general dynamics with (3, ) = (1,0) if we assume that
the target mean [i is already reached or, alternatively, that there are no constraints on c¢(¢).
This is due to Lemma [9] which depicts the state cost in terms of the Eigenvalues \;(t)
of X(t). Therefore, in order to keep this generality, instead of looking at 3(t), we look at its
Eigenvalues \;(t) collected in the matrix A(t) = diag(A;(¢), ..., Aq¢(t)). Likewise, instead of
, we consider only the relevant part of the state cost, namely .

The goal of this section is to understand better the L? cost and to show that for v = 0
the MPC closed loop is stable with N = 2, cf. Corollary Regarding the former, we will
look at the level sets of . Regarding the latter, we proceed as follows. First, we show
in Proposition that going in the direction of the target I is profitable in terms of cost.
Second, since there might be other directions that are more profitable in the short term—and
with NV = 2 we only look one step ahead—we need to rule out that we drift away from the
target indefinitely.
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We start by studying the equivalent state cost . As in the proof of Theorem (13| we
can interpret the matrix A = diag(A1,...,Aq) as a vector A = (\q,...,Ag). In this case, we
write f(\) instead of f(A). Then the gradient of f(\) is given by

d —1/2 1 d —1/2
A +1 Aj+1 1
[s) - () ()
i=1 i=1

Figure gives an impression of the level sets and gradients of f(\) in the two-dimensional
case and illustrates the problem that occurs in Example [T§

VI =

NN N N NN N

L N N4 S N N N N N2 N N N N N N

/
/
/
/
{
/
/
4

T T T
0 0.1 0.2 0.3

Figure 3: Level sets and gradient of f(A) in the two-dimensional setting (left) and the
trajectory (blue dash) from Example [1§] (right)

First, we note that in the Ornstein-Uhlenbeck process under consideration, 3(t) is diago-
nal and therefore A;;(t) = X;;(¢). Then, due to and , each component X;; respective
A; converges monotonously to 1 when using K. In particular, if A\; and Ay are both greater
than 1 or both smaller than 1, the costs do not rise when using K and one can prove exponen-
tial controllability with C' = 1 by applying the proof of the one-dimensional case, cf. Proposi-
tion[17] to each component. However, we may run into problems if sign(A; —1) # sign(A2—1)
as in Example Moreover, as can be seen by the arrows representing the gradient of f(\)
in Figure |3} the optimal control sequence calculated in one MPC iteration might drive the
state into the problematic region even if starting from, e.g., A\; > 0, i« = 1,2. Therefore, the
sets {(ANER? | Vi=1,....,d: \; >1}and {\ € R? | Vi=1,...,d: \; < 1} are not forward-
invariant. Hence, showing the exponential controllability property only for these sets is not
fruitful.

In the following, we therefore follow a different path to prove that with N = 2, a stable
MPC closed loop is obtained.

Proposition 19. Let A # I. Then, for f(A) defined in , I — A is a descent direction.
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Proof. We show that Df(A)(I —A) <0 for all A # I. Let A, H € R¥™<. Due to
D(det A)H = det(A)tr(A™ H) = |Altr(A™1H),

p (det (;(A+I))> H%
t ((3n4n) "n)

=2tr((A+1)~1H)

cf. [24] Section 2], we have

Df(MNH = — %\A|‘3/2D (det(A)) H + ’;(A +1)

— %\A|*3/2\A|tr(A*1H) 41 ‘;(A +1)

~1/2

. —;A|‘1/2tr(A‘1H)+‘;(A+I) te((A+ 1) H).

Therefore,
—1/2
tr((A+ 1)1 (I — A))

—1/2
tr((I+A"Y)"Y(A = 1)),

Df(A)(I = A) = —%|A|_1/2tr(A_1(I —A) + ‘; (A+1)

= %|A|f1/2 [—tr(A1 —I)+2 ‘; (I+A7h)

Defining © := %(I + A~Y) = diag(¥q, .. .,94) with ¥; > %7 we have that
Df(M(I—-A) <0

1 —-1/2
—(I+A"t
5 +A7)
& —2r(6 — 1) + 2|07 ((20)71 (20 — 21)) < 0

& |0]Y24r(e — 1) > tr(071 (O — 1))

s —tr(AT 1)+ 2‘ tr(I+AH AP =1) <0

d

d 12 g
o (Hﬂz) S W - 1) >Z<1)
i=1 i=1 i=1
For each i = 1,...,d, the inequality ¥; —1 > 1 ﬂi holds, with equality if and only if ¥; = 1.
In particular, Z(ﬁl —1) <0 implies > (1 - E) < 0. It is therefore sufficient to show that
(a) [[9: <1,if > (% — 1) <0 and

(b) TT9: > 1, 1f2(1——) > 0.
First, we show @ To this end, we have

d

> Wi-1) Zj: i

i=1

&\Qv

Due to 9; > 0, by using the inequality of arithmetic and geometric means we get

(fin) <%
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from which the assertion [[¢; <1 follows, again due to ¥; > 0.
To show [(b)} we recognize that

Z<1—$>zo & Zv%gd.

K2

In particular, due to we get [] % < 1, from which the assertion in follows. O

Corollary 20. The equivalent state cost f(A) defined in has a unique stationary point I,
which is the global minimum with f(I) = 0. Moreover, the level sets L. := {A : f(A) = ¢},
where A = diag(A1, ..., \q) with A; > 0 for eachi=1,...,d, are connected.

Note that this is not enough to prevent effects similar to the ones observed in Example 16}
i.e., we cannot exclude that the MPC closed loop solution drifts away indefinitely (albeit with
monotonously decreasing cost), not even for v = 0. This is due to possibly unbounded level
sets, which we characterize in the following lemma.

Lemma 21. The level sets from Corollary[20 are bounded for ¢ < 1 and unbounded otherwise.

Proof. We first show that the level sets are unbounded for ¢ > 1:
—1/2

1
f<A>s1<:>|A|-1/2—z‘2<A+z> <0

1
o ‘2(A+I)‘ < 4|A|

& [(A+1)] < 2772]A

d d
A +1 1 Ai+1
o 9dt2 > v =1+ = !
_};[1 Ai ( Jr)\1>1—[ Ai

d
A4
SN\ > <2d+2H1—1>
i=2 Ai

In particular, we can find some A\; > 0 such that f(A) = 1 even as A\; — o0,i = 2,...,d.
Clearly, the indexes are interchangeable, i.e., we have lower bounds on each J\;, but no upper
bound.

As for the other claim, we have

—1/2

FOA) =14 [A]7V2 = 2';(A+1)

1 ~1/2
2
—1+ (1 - 21+d/2) A+ IV = h(A).

>1—|—|A+I‘1/2—2’ (A+1)

In particular, the sublevel sets of f are contained in those of h, i.e., {A] f(A) <c} C
{A | h(A) < c¢}. Moreover, for 0 < ¢ < 1, we have

h(A) < ¢ & (1 - 21+d/2) A+I7V2<c—1

1_21+d/2
S A4 IV
1 =+l (54)
1 — 9l+d/2 2 d
) SIA+T = s
(F55) zmen=Toe+.

i=1
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2
which results in upper bounds \; < %) —1=:r,v2=1,...,d. Note that the last

equivalence in holds due to both sides being positive. Moreover, r € (0,00) for fixed
c €[0,1). Since \; > 0, the (sub)level sets of h and, consequently, those of f, are contained
in the d-dimensional hypercube [0, 7]". O

Combining the last three results, we arrive at the following.

Corollary 22. Consider the (multi-dimensional) Ornstein—Uhlenbeck process from Exam-

ple |1}, i.e., with A, B, D, K(t),c(t) as in and a desired PDF p(z) given by (31).
Furthermore, let the stage cost be given by with v = 0. Assume that

(a) f(A(0)) <1 or
(b) €§A1§%f0r50m65>0.
Then the equilibrium p(x) is globally asymptotically stable for the MPC closed loop for N = 2.

Since the properties of f(A) were derived disregarding the dynamics of the system, Corol-
lary [22| can be extended to other systems (11)), with one caveat: In each discrete time step,
we need to be able to reduce the state cost, i.e., there must exist some admissible control
K(t) such that f(A(tk+1)) < f(A(tg)). In the Ornstein—Uhlenbeck process, this can be
guaranteed, cf. (53)).

6 Conclusion

In this paper, we have analyzed the stability of the closed loop generated by Model Predictive
Control schemes applied to tracking problems involving the Fokker—Planck equation. We have
considered a setting involving linear dynamics and Gaussian PDFs. Even in this relatively
simple setting, the use of the L? cost, which is standard in PDE tracking problems, leads to a
rather involved analysis. Particularly, stability does not always hold for the shortest possible
horizon N = 2. Even in some cases where it does hold, the usual exponential controllability
condition without overshoot (i.e., with C' = 1) is not satisfied and a different technique for
the stability analysis had to be developed. Future research will address classes of nonlinear
dynamics and should also investigate whether distances other than L? could facilitate the
analysis.
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Appendix
Proof of Proposition[I7 Due to Proposition we can assume that [ is arbitrarily close
to i = 0. For || sufficiently small, we argue below that the exponential controllability

condition with respect to stage cost holds with C' = 1 for the control candidate
(K,¢). Then we apply Theorem |§| to conclude the assertion.
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First, due to g = 0, we have that ¢ = 0. Then, due to ¥ =1 we see from , , and
that applying (K, ¢) results in

u(t) = e 20+t and Bt =14 (E _ 1) e—20+K) S (.
We define i i
0:=0+ K >0.
Then the stage cost can be written as

_1
2+ (E — 1) e~20t] 7 20— 20t
exp | — - — |
2 Pl e

1
2

f(t) =1+ [1 + (z — 1) 6—29t}_ _9

cf. Lemma 1 3 }

Our aim is to show f(t) < e " f(0) for some x > 0 (for sufficiently small 4?). Then
holds with overshoot bound C' = 1 and decay rate § = e *7>. We claim that f(t) < e~**f(0)
with

0
K:=—=——>0.
Y41

To this end, we prove f'(t) + rf(t) < 0. First, to shorten the notation, we introduce

> 20t i’
=X -1 -1 =e 0,1 =
a €(-1,00), T:=e €(0,1], x (a7+2)*0’
+2)\*? 1 4v/2xe X/ (a + 2)
.— 9 /2e~X/2 _ ] dar =1— _
a V2e <m_+1 , and ap (ar 1 1) (ar 1 2)72
Then we can express f/(t)g”f(t) by — (a'r+2];§;—2)(a+2)’ where

h(7) := a1 (ar(a + 2) 4+ at + 2) — ag(ar + 2)%/2,

which means we have to show that h(7) > 0. We consider the two cases 3 > 1 respective
a >0 and ¥ < 1 respective a < 0. The case ¥ =1 is trivial.
First, let us assume a > 0. In this case, we set /1> = ca for some £ > 0. Then

h(7) =ay (at(a+2) + ar + 2) — az(a7 + 2)3/2
> ay (ar(a+2) 4 a + 2) — az(ar + 2)3/2

with

1 1 4y/2xex/? S
as:=1-— — a
3 (ar +1)3/2  (ar +2)1/2 2

due to a4+ 2 > ar + 2. If a; > 0, which we prove below, then

h(1) > ay (at + 2) + ara7(a + 2) —as(ar + 2)*/?
—_———
>arat(at+2)
> (at + 2)(a1 + a1aT — agvar + 2)
———

>0

= (a7 + 2)(a1(aT + 1) — agVar + 2),
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i.e., it is left to show that a(at 4+ 1) — agv/ar + 2 > 0. Furthermore, if a3 > 0, then

ai(at +1) —azvar +2 > ai(at+ 1) — a3 (2(17/-5 + \/5)

=ay(ar +1) — V2as (% + 1)
=ay(ar + 1) — V2as3 (a7 + 1) + %\/iagaT
(at +1)(ay — V2a3),

v

reducing the problem further to
a; — \/5043 > 0. (55)

Since a; > 0 follows from , we only need to prove and az > 0. Regarding the latter,
with @ := a7 € [0,00) and for £ € [0, 3], we have

1 1 4\&){6’”2
aa =1 — _
° (at +1)3/2  (ar +2)1/2
1 4v/2ea ca
=1-— - = exp | —o———=%
@+10°2  (a+2)" 2(a+2)

1 2v/2a a
>1-— - T ) >
= T G2 G122 P < i@+ 2)) =0,

where the first inequality follows since a3 is monotonically decreasing in € for € € [0, 3]:

Oug _ 220 (5“> e — 2(a + 2)] < 0.

9 (a+2)5/2 20a+2) ) — 2
<0

>0

Now, we can turn our attention to 7 which we claim holds for ¢ € [0, ﬂ With @ = ar as
above, we get

st () (10 258) () Ao ).

which unfortunately is not monotone with respect to e. We know, however, that

(a1 — V2a3)ja—0 =0 and (a1 — v2a3) — i/\é? —(V2+1),a — oo, (56)

where the limit is positive for ¢ € [0, %] Moreover, in the special case € = 0, we see that

d(al—\/é(lg) 3 1 \/i a -
_ 1 — _ | >0 >0 >0 o7
da ez \V e var) 20T e 20 60

which, together with , proves that h(r) > 0 for e = 0. In general, we have

d(a1 - \ﬁag) o 3
T o —e. (58)

N
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A similar but more involved argument can be made to show that the derivative has at most
one root for @ > 0 and arbitrary but fixed € € [0, 1]. Then from and follows that
h(t) > 0 for € € [0, 1] and a > 0.

For a € (—1,0), we cannot choose 12 = ea. Instead, we set i> = ¢ € [0, 1] and note that
at € (—1,0). Then

h(7) = ay (at(a+ 2) + a7 + 2) — as(ar + 2)3/2
> a1 (at(a+2) + at + 2) — ag(ar + 2)3/2

with
1 4y/2ye~X/?
(at +1)3/2  (ar +2)3/2

due to a < 1. If a1, a4 <0, then due to ar € (—1,0), we have

a4::1—

ay (a7 4+ 2) + ara7 (a + 2) —ag(ar + 2)*% > a1 (a7 + 2) + arar — ag(ar + 2)%/?
M~ N———
>0 >1
= 2a;(ar + 1) —ay (a7 + 2)*/% > 2(ar + 1) (a1 - \/§a4) .
_~

20 >2\3(ar+1)

Note that (ar+2)3/? > 2¢/2(ar+1) only holds for ar € (—1,0). We only show a; —v/2a4 > 0
and a; < 0, since aq < 0 then follows. Regarding the latter, with /1> = &, we have

3 3

+2)\°2 eT ar+2\?
— 92 x/2_ (YT T2 L9 /5 sty _ (2T
a1 =2v2e <a7’ +1 V2exp 2(at + 2) art +1

3
2 2
§2f—(m+ > <.

ar +1

In the last step, we prove a; — v/2ay > 0:

a1—v2a4 = 2V2 exp (2(;12)) <1+ (;ﬁiT))(Z:i)ﬁ(lwil))

One can set ¢ = —a € (0,1) and use @ = a7 to obtain a function depending only on one
variable and prove the assertion directly. An alternative approach is to show that a; —v/2ay is
monotonously decreasing in ¢ for € € (0,1), which is easy to show. Recall that this property
did not hold in case of a > 1. Consequently, it suffices to consider € = 0, for which

(a1 — V2a4)|c—o = (a1 — V2a3) 0.
In particular, we can use . Since the derivative is negative for a < 0 and the first equation
in holds, we have h(r) > 0 for a < 0. O
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