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0.1 The system

0 Introduction

0.1 The system

The time evolution of a collisionless plasma is modeled by the Vlasov-Maxwell system.
Collisions among the plasma particles can be neglected if the plasma is sufficiently
rarefied or hot. The particles only interact through electromagnetic fields created col-
lectively. We only consider plasmas consisting of just one particle species, for example,
electrons. This work can immediately be adapted to the case of several particle species.
For the sake of simplicity, we choose units such that physical constants like the speed
of light, the charge and rest mass of an individual particle are normalized to unity.
Allowing the particles to move at relativistic speeds, the three-dimensional Vlasov-
Maxwell system is given by

Of+Dp-0:f+ (E+DpxB)-0,f =0, (0.1)
O F — curl, B = — jy, (0.2)

OB + curl, E =0, (0.3)

div, E =p, (0.4)

div, B =0, (0.5)

ps =in [ £ d. (0.6)

js =tr [ 5t dp (0.7)

Here, the Vlasov equation is and the Maxwell equations of electrodynamics are
—. Vlasov and Maxwell equations are coupled via and . In particu-
lar, f = f (¢,x,p) denotes the density of the particles on phase space, and E = E (¢, z),
B = B(t,r) are the electromagnetic fields, whereby t € R, x, and p € R? stand for
time, position in space, and momentum. The abbreviation

p

;3:72
\/ 1+ [pl

denotes the velocity of a particle with momentum p. Furthermore, some moments of
f appear as source terms in the Maxwell equations, that is to say j; and p;y which
equal the current and charge density up to the constant 4.

Considering the Cauchy problem for the above system, we moreover demand

o

f(O,x,p) Zf(.%‘,p),E(O,$> :E(x)’B<va) :é(m),

where f >0, l:?, and B are some given initial data.

However, we have not readily explained the source term p in . If we would
demand div,E = ps this would lead to a seeming contradiction: Formally integrating
this equation with respect to = (and assuming F — 0 rapidly enough at oo) leads to
[ pf dz =0 and hence f = 0 by f > 0. This problem is caused by our simplifying
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restriction to one species of particles and is resolved by adding some terms to py, for
example a neutralizing background density, so that we have a total charge density p
with vanishing space integral.

Unfortunately, existence of global, classical solutions for general (smooth) data is an
open problem. In fact, the results of Section have not been verified yet in the case
of three dimensions. It is only known that global weak solutions can be obtained. For
a detailed insight concerning this matter see [14].

Therefore we only consider a two-dimensional’ version of the problem, in the following
sense: All functions shall be independent of the third variables x3 and p3. This
describes a plasma where the particles only move in the (z1, z2)-plane, but the plasma
extends in the zz-direction infinitely. To ensure that these properties are preserved
in time, we have to demand that the electric field lies in the plane and that the
magnetic field is perpendicular to the plane so that E = (E; (¢, z), Es (t,2),0) and
B = (0,0,B(t,x)). Here and in the following, let x = (z1,%2) and p = (p1,p2) be
two-dimensional variables. Hence the magnetic field is always divergence free. Now
the Vlasov-Maxwell system reads

Of +P-0uf + (E + (P2, —P1) B) - 9p.f =0,
OiEy — 0., B = — jy1,
OtE2 + 0z, B = — jy 2,

04 B + 0z, B — 0, 1 =0,

div, E =p,

(f.B. B)lumy = (/. B.B).

The goal is to control the plasma in a proper way. Thereto we add external currents U
to the system, in applications generated by inductors. These currents, like the electric
field and the current density of the plasma particles, have to lie in the plane and have
to be independent of the third space coordinate. Of course, there will be an external
charge density pext corresponding to the external current. It is natural to assume local
conservation of the external charge,

Btpcxt + lexU =0.

Hence we can eliminate peyt via

t
Pext = Pext */ div, U dr.
0

The initial value peyx; will be added to the background density. This total background
density will be neglected throughout this work.
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Therefore we consider the controlled Vlasov-Maxwell system

8tf JFZ’)\' 8a:f+ (E 71/7\J_B) apf :Ov
OtE1 — 05,B =—j1 — Un,
O Ey + 0y B=—jy2—Us,
OB + 0y, B2 — 0y, E1 =0, (CVM)

t
div, E =py —/ div, U dr,
0

(f»E7B)‘t:o = <f7EvB)

on a finite time interval [0, T] with given T' > 0; here we introduced the abbreviation

at = (—ag,a1)

for a € R2.

It is well known that L?-norms (with respect to (z,p), 1 < ¢ < o0) of f are preserved in
time by f solving the Vlasov equation since the vector field (ﬁ, E— ﬁLB) is divergence
free in (z,p). Therefore, especially, the L'-norm (with respect to z) of the charge
density py is constant in time.

The outline of our work is the following: In the first part, we have to prove unique
solvability of . Of course, some regularity assumptions on the external current
and the initial data have to be made in order to prove existence of classical solutions.
In the second part, we consider an optimal control problem. On the one hand, we
want the shape of the plasma to be close to some desired shape. On the other hand,
the energy of the external currents shall be as small as possible. These two aims lead
to minimizing some objective function. To analyze the optimal control problem, it is
convenient to show differentiability of the control-to-state operator first. After that,
we prove existence of a minimizer and deduce first order optimality conditions and the
adjoint equation.

0.2 Some notation and simple computations

We denote by B, () the open ball with radius » > 0 and center x € X where X is a
normed space. Furthermore, we abbreviate B, := B, (0).
For a function

g: [0,T] x R — R¥
we abbreviate
g(t):=g(t,-): R = RF

for0 <t <T.
Sometimes, denoting certain function spaces, we omit the set where these functions
are defined. Which set is meant should be obvious, in fact the largest possible set like
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[0,7] x R7 (including time) or R? (not including time).
We use the abbreviations

—2(+p) , _ —26-p
T Tare T TrpE
- —2(1- pt
2 |ﬂ)£+m7m_ (1-1a) €5
(1+p-¢)7° (1+p-¢°

We state some fundamental properties which will be used several times:

Remark 0.1. i) For |p| < r and [¢| < 1 we can estimate
10p (b3)[ 18y (e5)] , |Bp0e (bs)] , [Bp0 (es)] ) (b8)]

where C (r) > 0 is a constant only depending on r, since

L+p-&=1—pllg]>1-

(et)| < (r)

,
> 0.
V1412

ii) We compute

/lac—y<t—r \/(t_T)jy_ |3;‘— 2 :27T/0_Ts((t—7')2_82)2ds:2ﬂ'(t—7')

Yl

and
/t/ dydr
0 Jle—vl<t=r (¢ — 7)1 1 - |¢f?
_/f/ dydr
0 Setstr - ) Jie =) — o — P
—or /t (t—7)""Mdr < %T” =C(T,1) < 0o
0 -
for [ < 2.

iii) It holds that 25 = (t—7) " ¢; and 98 = ¢ (t—7) ",

0.3 Maxwell equations

We will have to consider first order and second order Maxwell equations. In three
dimensions, with general current and charge densities, they read

OtE — curl, B = — j,
0¢B + curl, E =0,

divy B =p, (1stME3D)
div, B =0,

(E,B) (0) = (E é) ,
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and
0?E — AE = — 0;j — Oup,
E(0) =E,
A,E (0) =curl, B — j (0),
02B — AB =curl,j,
B(0) =B,
8,B (0) = — curl, E,

(2ndME3D)

respectively. It is well known that both systems are equivalent for E, B € C?, p,
j € C' if the compatibility constraints

divE =p (0),
7=, (0) (CC3D)
divB =0
are satisfied and local conservation of charge holds, i.e.
Oep + divgj = 0. (LC)

Therefore, under these assumptions we may switch between first order and second
order Maxwell equations.

Moreover, the divergence equations of (1stME3D) are redundant if (CC3D)) and (LC)

hold, since then
O (dive E — p) = div, (curl,B — j) — Oyp = —0ip — div,j =0
and
Oydiv, B = —div,curl, EF = 0.

Applying these assertions to our ’two-dimensional’ setting with fields (E7, E9,0) and
(0,0, B) we conclude:

Lemma 0.2. Let E and B be of class C? and E, B € C?, and p, j € C'. If the
conditions

divE = p(0) (CC)
and
Orp+divyj =0 (LC)
are satisfied, then it holds that:
i) If
OBy — 05, B = — ju,
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OrE + 05, B = — jo,
OB + 0y, By — 0., E1 =0,
(B, B)(0) = (E,B),
we have divy E = p globally in time.
it) The systems of first order Mazwell equations
O Ey — 05, B = — 1,
O B> + 04, B = — jo,
OB + 0y, By — 0y, By =0, (1stME)
(B,B)(0) = (E,B),
and second order Mazwell equations
O?E — AE = — 05 — Oup,
E(0) =E,
KE (0) = (8., -0, B) = j (0),
O}B ~ AB =0y, 52 — 0,1,
B(0) =B,
8B (0) = — 0y, B + 0y, E,

(2ndME)

are equivalent.
We give a quite general condition that guarantees (LC).

Lemma 0.3. Let g € C, and f, d, and K of class C* with div,K = 0 and f (t,z,-)
compactly supported for each t € [0,T] and x € R%. Assume

If+Dp-Ouf+K-0pf =y,

/gdp:O

holds. Then p = py — fg divyd dt and j = j¢ + d satisfy 1)

Proof. Firstly,
t
Oy </ div,d dT) +div,d =0
0

is obvious. Furthermore, integrating the Vlasov equation with respect to p instantly
yields

and that

atpf + divxjf =0.
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Since (2ndME) consists of Cauchy problems for wave equations, we will need a
solution formula for the 2D wave equation. In two dimensions, the (in C? unique)
solution of the Cauchy problem

OPu— Au =f,
u(0) =g,
8tu (0) :h,

is given by the well known formula

1 [t
u(t,x) :—/ /
27 Jo |z—y|<t—T \/(
+i/ g(x+ty) +tVg(x +ty) -y +th(z+ty)
27 Jp, /1 _ |y|2

Unfortunately, for this to be a solution it is required that f, h € C?, and g € C®.
Nevertheless, such a solution formula can be obtained if the data are less regular:
Lemma 0.4. Let M := [0,T] x R?* and u € C* (M), f € C(M), g € C* (R?), and
heC (RQ) with

f(ry)

2 2
t=7)" =z -yl

dydt

dy.

O?u— Au =f,
u(0) =g,

Then u is given by

I f(my)
u(t,x) :%/0 /m_th_T \/(t = _;y dydr

2
|z —yl

+

1/ g(x+ty) +tVg(x +ty) -y +th(z+ty) ay
By

o
1— |yl
and we have
1
||UHLoo(M) < §T2 1flloe +Tllgllwr.c +T Al -

Proof. Let (t,z) € M and K, :={(r,y) e M |0 <7 <t | —y| <t— 7}, the closed
wave cone corresponding to (¢,x). Since K; , C M is bounded we may choose (uy) C
C> with up — u in CZ (K;,) for k — oco. Then we have (f) := (07ur — Auy),
(k) = (uk (0)), (hi) := (Grur (0)) € C= with fr — f in Cp(Kiz), gp — g in
C} (Bt (z)), and hy, — h in Cp (By (z)) for k — co. Applying the solution formula for
uy, yields

u(t,x) = kli_}rgo ug, (t, )
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1 t
= lim — / / U1GY) dydr
k—o0 270 0 J]z—y|<t—T \/(t _

2 2
) — |z —yl

1/ gr (x +ty) +tVgr (x + ty) -y + thy (v + ty) dy
By

1 f(Ty)
7%/0 /I:vy<tr \/(t — : duir

2 2
)" = |z —yl

i/ g(xz+ty) +tVg(z+ty) -y + th(z +ty) dy:

2 B /1 _ |y|2 ’

note that all kernels are integrable.

The estimate is derived straightforwardly. O

0.4 Control space for classical solutions
In the following let L > 0,

UeV:={de W (0,T;Cy (R;R?)) | d(t,z) =0 for |z| > L},
and let V be equipped with the W21 (0, T; Cf (R2; RQ))—norm.

1 Existence results

1.1 Estimates on the fields
1.1.1 A generalized system

The most important instrument to get certain bounds is to have representations of
the fields. One can use the solution formula for the wave equation and after some
transformation of the integral expressions Gronwall-like estimates on the density and
the fields can be derived. These bounds, for instance, will imply that the sequences
constructed in Section [1.3]converge in a certain sense. Having that in mind it is useful
not to work with the system but with a somewhat generalized one with second
order Maxwell equations:

Of+p O0uf +a(p)K-0pf =g,
O}E — AE = — 0;j; — Oyd — Oups + Oy /t div,d dr,
OB — AB =0y, jf.2 — Oz, g1 + O, da — O%dh
(f,E.B)(0) = ({.B.B),
O (0) = (83523, —c%lé) —j;—d(0),
OB (0) = — 0y, B + 0, En,

(GVM)
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with initial data f of class C} and E, B of class C2.

Now we assume that we already have functions f, K of class C', E, B of class C2, g
of class Cy, d of class C* (0, T, CE) and « of class C}} satisfying . Furthermore
we assume that div, K = 0 and that there is a » > 0 in such a way, that f (¢, z,p) =
g (t,z,p) =0if [p| > r.

1.1.2 Estimates on the density

Theorem 1.1. The density f and its (x, p)-derivatives are estimated by

g
. t
I @ < ]+ [ o llcar

if ge C and

i)
100f Ol < ([0 f]+ [ M09 ar)
o ([ 10ny @) (] )
if ge CL.

Proof. 1f g € C* we have (cf. [13], p. 14)
t
£ (tp) =1 (X P) Outizp) + [ g5, (X P) (s, t.2,9) ds,
0
t
0u (t.2.9) = (00 ) (CX.P) Orto,0)) 4 [ (@r0) (5. (X, P) (5,8,2)) s
0
t
- /0 (aﬂ%pf) (S’ (X’ P) (Srt’ Z)) (896117 (O‘K)) (57 (X7 P) (S’tv Z)) ds
(1.1)
where the characteristics of the Vlasov equation in (GVM) are defined via
X=P, P=a(P)K (s,X,P)

with initial condition (X, P) (¢,t,x,p) = (x,p). Thus the first estimate is obvious and
the second is a result of

1025 ()]l < || Oanf

t
[t 1o (e

+ /0 102,p.f ()l 10 (@) (7) [ o T
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and applying Gronwall’s inequality.
If g is only continuous, let (fi) C C* with fx — f in C}. This is possible since suppf
is compact as a consequence of f vanishing for |p| > r and ‘X ‘ < 1. Therefore we have
Oufk + D0z fi +aK -0, f, € C*. Applying (1.1) for fi we conclude
f (t7.’E,p) = lim fk (tu$7p)
k—o0

= lim (£ (0) ((X. P) (0.1..p))
+ / Oufi+ 5 0ufi + oK -0, fi) (5. (X, P) (s, t,, p)) ds
—F((X.P) (0.t,2.p)) + / (Of +-0uf +aK -0,f) (5. (X, P) (s.1,,p)) ds

. t
—F (X, P) (0,t,2,p)) + / 05, (X, P) (s,1,2,p)) ds
which implies 1). O

The p-support condition on f is satisfied if suppa C Bpg for some R > 0: Obvi-
ously for |[p| > max{R,r,70} (where supp,f C B,,) we have P (s,t,x,p) = 0, hence
P (s,t,x,p) = p and therefore f((X7 P)(0,t,z,p)) =g (s, (X, P)(s,t,z,p)) =0.

In the following we denote by C' > 0 some generic constant that may change from line
to line, but is only dependent on 7', 7, and « (i.e. its Cf-norm). All estimates for fixed
p are made under the tacit assumption |p| < r.

1.1.3 Representation of the fields

We can derive integral expressions for the fields F and B proceeding similarly to [6].
Here and in the following we omit the dependence on the variables of integration if
the functions to be integrated are evaluated at exactly these variables; for example,
we shortly write [a db instead of [ a (b) db.

Theorem 1.2. We have E = E° + ES + ET + ED and B = B° + BS + BT + BD
where E°, B are functionals of the initial data and d (0), and where

t , . } 4
ES, :/ / / (a0 (es;) +esjVa) - Kf + (es;) g dpdydr.
0 J|z—y|<t—7

V=) — o=y
_ ¢ (a0, (bs) +bsVa) - Kf + (bs) g .
Bs _/0 ~/|w—y<t—-r/ \/(t ey dpdydr,

2 2
)" =z -yl

¢ bt
BT = f dpdydr,
0 J]|z—y|<t—7 (t

— -1 — oy

ET; :/ot /|x_y<t_T/ (t—7) \/(t _etj f dpdydr,

10
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8d — | Oy,div,d d
bi== / / o o Or e b
R Y T —

/ / azld2 aCEle dyd’r
2o Secsr Ju e —la— P

Furthermore the estimate

I8 Ol + 150l < (|7]

o+ ldlwnsoren)

+C/O (LK D) 1 (Ml +1lg ()l o) dr

holds.
If additionally E’, Be C., and d is compactly supported in x uniformly in t, so are
also the fields.

Proof. Let
81: - gat

il

Confusion with the time T seems unlikely. The use of these differential operators will
be helpful because S turns up in the Vlasov equation and the properties of T' ensure
that an integration by parts with the wave cone as the integration domain will be nice
to handle. We can express t- and z-derivatives in terms of S and T"

S—\1-Ep-T

S:=0+p -0y, T :=

=

1+¢&-p ’
IRSCh m((l + &ap2) Th — &1D213) (1.2)
T — 1 +§Z/)\ 5
_525 + M( —&piTy + (1 + f1p1)T2)
o — 1+£

This can easily be seen; simply invert

1 }/7\1 162
—&

1
w—gw Vi-l¢?

—S2 0 1
Vi-le? Vi-le?

A crucial property of T is the following: For any h = h (7,y) of class C'! we have

h(Ta y) +9 o fjh(’]’, y)

Jicier) T\ 1o

11

ayj
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0y h(7,y) — &04h (T, .
_ % (1,9) £i0; (T y)+h(7,y) ayj 1 -0, 5

1- ¢ 1- ¢ 1- ¢
=T;h (1,y) (1.3)

since the bracket in the second line vanishes.
First we consider the magnetic field B. It satisfies an inhomogeneous wave equation
with certain initial conditions:

8,523 — AB =6I1jf72 — 8932.7']071 =+ 6931d2 — 812d1,
B(0) =B,
B (0) = — 0,, By + 0, .

Lemma [0.4] yields
B ZEO N i /t/ 8x1jf72 - 6552,]']071 + axldz - 8z2d1 dydT
o S - 1) — - yP

t ~ T~
:BO+2 p2az1f plaamf dpd dT+BD
pay
0 J]|z—y|<t—T (t

7)1 ¢

where B° satisfies
9?B° — AB° =0,
B° (0) =B,
0, B° (0) = — 0y, Ey + 0, Er

c;> '
Applying (1.2) we have

~ t dpdydr
B—B°—-BD =2
/0 /wy|<tf/ t—71)\/1— [P (1+€-D)
' (52 (515 +y1- €17 (1 + &) T1 — flﬁsz))
— D1 (525 +4/1— & (~&pi Ty + (1 + fl@)Tz))) f

:/t/ / 2 (&1p2 — &ap1) Sf
0 Jumar—r S \ -y i- 1P (e p)

and is a functional of the initial data with

2], <l

+[
g

12
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2 (ﬁ2+§2 |]3\|2> f 2 (ﬁ1 +& |]3\|2> Ta f
t—n(1+&p -1+ D)

ZZIS + IT1 + IT2.

+ dpdydt

Obviously because of the Vlasov equation in (GVM) we can write
Sf=—aK-0,f+g=-V, (aKf)+Va Kf+g

where we used the assumption that K is divergence free with respect to p; hence
Is = BS after an integration by parts in p.

~ ~2
Next we consider I7,. With A := % and the use of (1.3) we get

t
(1707751)]“
= [ a5 (B0 i,
0 J]z—y|<t—7 Y /17‘€|2

Now it would be nice to integrate by parts with respect to (7,y). For this sake (note
that the integrand is singular at |z — y| =t —7) let 0 < ¢ < 1 and compute for fixed p

t
(15 07 _gl) f
AV(T) ) - 27 dydT
/0 /z—y|<(1—6)(t—7') ! m
t
(15 Oa 751) f

_ V(T“ )A . _— dydT

/0 /zy|<(16)(t7) ! 1- ¢

(la 0> _51) f

—i—/ A
le—y|<(1—e)t _ 1£]?
v Vi-1e’ /|,

L0, fl)f'(ﬁ,l—e) )
//E yl=(1—e)(t—7) \/1 \/1+(176)2 dydr. (1.4)

Here, the last term should vanish for e — 0 (this is the reason why we introduced T').

: (0707 _1) dy

Indeed, because of |£| = Iy wl =1—ecand \/1+ (1—¢)®>1 we can estimate

o () [t -0-oa

\/1f|g\ Vita-o? | Ji-a-e?

ly1 — 21| L I—el ly1 — a1
(=2 lly=al t=rl i

1
1—¢

—1+e€

13
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1—c¢€ 1

1—¢

IA

—14e=1/1-(1-¢>

1—(1—¢)?

Hence the last term of (1.4) converges to 0 (note that |A| < C (t — ) If] < HfH +
o
T ~
Jo llg (Ml dr =: C < 00):

/t/ 4 L0, &)f, (=1-9) dydr
0 Sey=0-9en | J1ojef 1 -e?
<cc\/i/ / o (t —7)" " dydr

(1—e)(t—7)

=20Cm\/1-(1—€¢?(1—e)t—=0 (1.5)

for € — 0. Now letting € — 0 in (1.4) and integrating over p we conclude

t 1 0 —_
I, = datay —/ / /V(T’y)A- (”751”( dpdydr,
0 J]z—y|<(t—7) /11— ‘§|2

where

1
dataq :—/ / 1,0, -&) f -(0,0,—1) dpdy,
|z—y|<t 2 (1 6)
7=0 .

|data | SCHfHOO/ (t2_|$—y|2>_%dy§CHfQ”OOa

lz—y|<t
is a functional of the initial data. After the computation of

1
§V(T’y)z4. . (1, 0, —51)

o Po+ & B D2+ &2 \ﬁ]Q
=On <t—T+§5~(y—rﬂ)> o (t—Tﬂ?'(y—x))

B (Pt &) & (- B T B - ) B+ & )
- (t—1+D-(y—2))°
&6 [p (1 + &) (P2 + & BT
(-1 (1+5-6)  (t-1) (1+p€)’
we finally get

§6lp® | (P1+61) (P2+£21PI*)

¢ ( 1+p€ (1+5-6) ) !
I, =data; + 2/ / / dpdydr.
0 J|z—y|<t—7 (t—7) \/(t _ 7_)2 _ 2

|z -y

14



1.1.3 Representation of the fields

Similarly we proceed with I, to derive

a&lpl® | (Pa+€2) (Pr+&11P1%)

¢ ( 1+p€ (14+p-€)* ) f
Ir, = datas — 2/ / / dpdydr.
0 Semvi<rS ) - - |

z—y|”
Therefore
Ir, + I, = data; + datas + BT,
and after defining
B .= RB° + dataq + datas
we finally get the desired representation
B=B"+1Ig+ Iy, + Iy, + BD = B° + BS + BT + BD

of the magnetic field.
Of course, the representations for the electric field E can be derived in a very similar
way. For example, one starts with
t
(r“)tQEl —AFE; = — 8tjf’1 — (r“)mlpf + 811 / div,d dr — 0ydq,
0
By (0) =F,
01y (0) =02, B — j;, — d1 (0).

Hence the solution E? of the homogeneous wave equation with these initial data is
estimated by

).
b

For the inhomogeneous part one can proceed similarly as before (cf. [6], p. 338 ff.).

The support assertion is an immediate consequence of the representation formula.
Physically, this is a result of the fact that electromagnetic fields can not propagate
faster than the speed of light. Furthermore, the remaining estimate is a consequence

of Remark O

28], < (el + 15
oo ct

Remark 1.3. If f (¢, x,-) is compactly supported for every ¢, x, but not necessarily
uniformly in ¢, z, nevertheless the fields are given by the formula above. For this, one
does not need the uniformity. However, the estimates can not be obtained.

15



1.1.4 First derivatives of the fields

1.1.4 First derivatives of the fields

The next step is to differentiate these representation formulas and deriving certain
estimates. The method is similar to the previous one.

The constant C' may now only depend on T, r, the initial data (i.e. their CZ-norms),
and Jla] ;.

Theorem 1.4. If g € C' and d € W! (O,T; C’g’), then the derivatives of the S-, T-,
and D-terms are given by

9, BS — / / /(a(“) b (bs) +bsVa) - (f0r, K + KOy, f) + bs0z,9 dpdydr,
le—y|<t—T

V=) e~y
¢ bt
Or BT :/0 /r—y|<t—7 / (t—71) \/(t — 7')2 — |z — 2 O

Yl

t Ja—
0y, BD :2i / / 092, d3 = 02,02, dydr,
o Jevicr i - 1) — o - yf?
¢
0, S :/ / / (a0, (es) +esVa) - (f0y, K + KOy, f) + €s04,9 dpdydr.
|z—y|<t—T

V= — ey
¢ et
0y, ET :/ / / Oy, [ dpdydr,
0 Jovi<ir ) (4o g) St 1) — o -y

Yl

0:0z,d — |, Op,0zdivd d
a%ED—2 / / ! “ Jo 0. 0sdiv > dydr,
L =

. K+ K
ﬁtBSZ// /a@,,(bs)—&—bsVa) (fO:K + KOif) + bsdig dpdydr
le—y|<t—7 \/(t—T)Q—\x—y|2
(ad, (bs) + bsV K©O)f+b 0
/ | / ad, (bs) + bs a)\T oK (0)f+bs| _,9(0) dpdy,
rz—y|<t

V= e =yl
t bt
0:BT :/ / / O f dpdydrt
0 Jo—vi<t=r S (4 1)\t = 1) — o =y

yl
/ / bt|7’ 0
lz—y|<t /12 —

t p—
0:BD :i/ / ataﬂhdZ at8x2d1 dydT
2 |o—y|<t—T

V= —le -y’
i a11d2 (0) — 612 dy (0) dy,

27 |z—y|<t

f dpdy,

2
— |z —y|

16



1.1.4 First derivatives of the fields

t .
3tES=/ / /(aap (es) + esVa) - (fOLK + KO, f) + esOig dpdydr
r=i<t=r V=) = fo—yP

(ad, ( Y 0) f 0
/ / ady (es) + es a)\T o K (0)f+ es|._yg(0) dpdy,
lz—y|<t

| 2

—lr—y

t
8, ET = / / / ct 8, f dpdydr
0 Jemstr L ny\Je =7 — o - P
I e
lz—y|<t /12 —

1 ‘ 7d— T i x
8tED:——// 07d — 0ydiv,d dydr
21 Jo \:c—y|<t—7- t _ 7.)2 — |z — y|2

Iz /Ix yl<t \/%

Furthermore the derivatives are estimated by

[ dpdy,

10,2 E (D)o + 1902 B (1)l <C (141K g + 1l + llgllc) (1 + 1K)

t
(e (10001 0) + [ 100nn ()

t
+C [ 1000 (e 7+ C s o 1.y

if 1Ko < o00. Here |[lallljg 7= supo<r<; la (7)]| -

Proof. For instance,

o[ S

Thus we can differentiate under the integral sign as a consequence of Remark|[0.1] which
leads to the given formula.

Firstly, we want to bound 0,,BS. The part with 0,,¢ is straightforwardly estimated
by C [ 1829 (7)|| . d7 and the part with f9,, K by C'||f]l. fo [0.K (7)]| dr. In the
remaining part with K0,, f, again we write 0, in terms of S and 7. For simplicity,
we only consider ¢ = 1; of course, one can proceed with i = 2 analogously. We split
the integral into three terms:

(00, (bs) + bsVa) - Ko, f
/ /Ix y|<t— T/ \/(t_7)2—|a:— > dpdydt

Y|

f{t—s,x+ z,p)dpdyds.

17



1.1.4 First derivatives of the fields

_ /t / / (ad, (bs) +bsVa) - K
0 Javl<t=r T (1456 (t—7) 1 - [¢)
: (fle +y1- €1 (1 + &2P2) Ty — £152T2) f) dpdydr

=:Jg + JT] + JTg'

With Sf = -V, - (aK f)+Va- K f+ g and after integrating by parts in p we conclude

’s :/olt /zy|<tf/ (t —ij%

K - (a0, (bs) + bsVa) adp (bs) + bsVa
K’<O‘f@”( T+5¢ )+ BRSO

(Va-Kf+g)>

and hence

75| <C / (K Ol I (M)l (14 [10,K (D))
FIE Ol (K Ol 1 e + g (]10)) dr

<C K| Hflloo/0 18p K ()l o d7 + C K|l (1£1lce (1 + 1K) + ll9ll0)

Next we consider Jr,. Define A := % and use (1.3) to derive

[ (1,0,-&) f
I _/0 /lacy<t7-/A ' KV(T7Z/) ’ ( m ) dpdydr.

Now Jr, has the same form as Iy, from the previous theorem. Hence we can pro-
ceed similarly as before. Note that [AKf| < C K| |fl.(t—7) " =Ct—-7)"",
therefore the surface term with | —y| = (1 —€) (¢t — 7) will vanish as well for e — 0.
Hence

/ /lw yl<i— T/V(Tm (A-K)- <(Hf) dpdydr

+/ / A~KM - (0,0, 1) dpdy.
o —yl<t 1— ¢

The second term is estimated by C || K| like data;. For the first term we have the
inequality (recall Remark

‘&4 _’a <<1+fzﬁz>ap<bs>)‘
or| | \t—1+p-(y—2)

7=0

18



1.1.4 First derivatives of the fields

P20y (bs) + (1 + &2P2) O (0 (bs)) € | (1 + &ap2) Op (bs) |

t—7)(t—7+D (y—x)) (t—7+p-(y—x))?
<C(t—-71)".
Similarly, the same estimate holds for ’g—;‘. Therefore we conclude

JIn| <C+C / (=7 21K (Dl + =) 100K (D) I (Dl

/ (1_|g|2)_E dydr
|lz—y|<t—T
t
<C+ 01l (1K1 + [ 10k ()l 7).

In the same way one can easily establish the same estimate for Jr, as well.
Secondly, we consider 0,, BT, and again, without loss of generality, only ¢ = 1. As
before, write

t
0., BT :/ / / bt O, f dpdydr
0 J|z—y|<t—T (t _ 7—) \/(t _ 7—)2 _

2
|z -y

B t bt
_/0 /x—y|<t—7/(1+ﬁ-§)(t—7)2m

: <£1Sf + /1= €7 (1 + &2p2) Tt — €152 T) f) dpdydr
:SLS —|— LT1 + LT2.

First the S-term is handled as always:

t & dpdydr bt bt (Va-Kf+g)>
= 8
bs /0 /zy|<tr/ (t—7)2 /1 — ‘§|2 (aKf g (1+ﬁ'§> - 1+p-§

and therefore

[Ls| < OBl 1 flloo + lglloo) -

; ; . _bt(1+&ps)
Next we proceed with Lz ,. Here the kernel is A := 215D

be careful because we can only estimate |A| < C(t —7) 2. This is too weak since
in an estimate like (1.5) we would arrive at fg (t — 7)~ " dr which is not finite. Thus
let 6 € ]0,t] to be chosen later and only consider the integral expression of Ly, for
7 € [0,t — §]. Here we are allowed to integrate by parts as before, and the crucial
surface term vanishes because now A is even bounded. Instead, we get an additional

Now we have to
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1.1.4 First derivatives of the fields

surface term at 7 =t — . Altogether we derive

t—38
/ / /ATlf dpdydt
0 |z—y|<t—T
t—§
(17 07 _gl) f
— VA | ———= | dpdydr
/O /m—y|<t—-r/ Y /1 — |§|2

/| |</< (1,0, 512f) (0,0, —1) dpdy
r—y|<t

=0

/I |5/( L0, 51;) -(0,0,1) dpdy.

T=t—90

Now, the second term is easily estimated by C and the third term by

2\ b
_ r—y _
cwﬂwm/léG—'y'> dy=Co2 | f]L, = C .
r—y|<

independently of §. For the first term we estimate
2] _|o, (s lrsmn )
or "\NEt-1){t—T7+D (y—1x))
_ | P2&ebt + (1 + €22) O¢ (bt) - & n (1 + &ap2) bt
(t=7)?(t—T+P-(y—2) (-7 (—7+P(y—=))
(1+ &pa) bt ‘
(t=7)(t—7+p (y— )’
<C(t—1)"

and similarly ’ ‘ < C(t—7)"°. Hence

/f 5/|x o T)/VT A ( t/(%f> dpdydr

_1 t—9
_ -3 _ 2 _ _ -1
<clfl [ @ [ (i) =i [ e-n e
=C|fll g

and after collecting the bounds we have

t—9
/ / /ATlf dpdydt
0 |lz—y|<t—T

20
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1.1.4 First derivatives of the fields

There remains the part where 7 € [t — §,¢]. Using the Vlasov equation we can estimate
for 7 <t

0cf (19, 0)| < C (L4 [IK [ o0) 1925 f 110, + 9]l

and thus

1

2

T3t (79,0 < (C O+ KN el + gl ) (1-168) 7

Therefore we conclude

t
/ / /ATlf dpdydt
t—6 J|z—y|<t—T

< (O 1K) 10210 + 19l / /
t—6 J|z—y|<t—T
= (CO+ I N0 p g + gl ) 6

Collecting the respective estimates it holds that

(t—7)2 (1 ] ) * dydr

t
L] < O+ IR + Wl + lall) (14105 + 100l 0.
Now choose ¢ := min {t, |||8w)pf|||[_01t]} to conclude in both cases the final estimate

Ly <C (14 K] + 1l + l9llo) (14104 (410000 W0 ))
<C (141K + 1 Floe + lglle) (14104 (11025£1110,))

since Iny (ta) < Inyt+Inya < C +1nga for a > 0. Of course, the same estimate
holds for Lz, as well.
Next, 0., BD is straightforwardly estimated by C Hd”lel(o,T;cg)'

Last but not least, we have ‘@,Iéo‘ < C because BO satisfies a homogeneous wave

equation with controlled initial data, and |0; zdata;| < C because, for instance, we
can compute

0y, data; = / / 1 0, 51)811f -(0,0,—1) dpdy
|z—y|<t |£‘

7=0

like 0., BT above.
All these considerations can be done for the electric field and its representation in the
same way. The only slight difference is that there appears d (0) in the initial conditions

for E° which leads to 8,5@570’ < C||0¢ 24|, which is no problem at all. Moreover,
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1.2 A-priori bounds on the support with respect to p

0, ED is estimated by C ||dHW1,1(O T03)-

Now there only remain the t-derivatives of the S-; T-, and D-terms. Each first
term is handled as before; for the S- and T-parts split 0; in terms of S and T
and proceed analogously. The latter terms of the S- and T-parts are easily esti-
mated by C'(1+ || K| + |lgll..). The latter terms of the D-parts are estimated by
C ”dHCl(O,T;C}}) <C HdHWZvl(O,T;CI}) and the first by C' HdHWZJ(O,T;Cf)'

Thus, after collecting all bounds, we finally get the desired estimate. O

1.2 A-priori bounds on the support with respect to p

The most important property that is exploited later while showing global existence of
a solution of (CVM)), is to have a-priori bounds on the p-support of f. This means:
If we have a solution (f, E, B) of on [0,T[ with f € C* and E, B of class C?,
we have to show that

P(t):=inf{a>0] f(r,z,p) =0forall [p| >a, 0<7<t}+3

is controlled, ie. P(t) < @ for 0 < t < T where Q > 0 is some constant only
dependent on 7', the initial data (i.e. their C}-norms and P (0)), L, and ||U],, (the
'+3’ in the definition of P makes no sense at first sight but will be convenient later
to estimate In P > 1, for instance). In the following the constants C' may also only
depend on these numbers. Note that, per definition, P is monotonically increasing and

that | f| < HfH . Moreover, P (t) < oo for each 0 < ¢ < T because we have an a priori
oo

estimate on the z-support of f via ’X‘ <1, so that supp, f C B, and on the compact

set [0,] x By the electromagnetic fields are bounded; hence the force field E — p* B is
bounded there. Furthermore, holds by Lemma Therefore and with Remark
we have the representations of the fields as given in Theorem Moreover, we
can also demand that (f, E, B) solves

Ohf+D0uf+ (E—Dp-B)-0,f =0,
OfE — AE = — 0§ — 0U — Oppy + Os /t div, U dr,
OB — AB =0,,jf2 — Opyjfa + 0, Us — gszla
(f.E,B)(0) = (f.E.B),
O (0) = (amé, —amé) —j;-U(0),

OB (0) = — 8y, Ey + 8, F
(CVM2nd)

instead of (CVM) since both systems are equivalent by Lemma
We use the notation
w = 7|y_9”‘, aAbi=arby — ashy, K := E—p-B
y—x
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1.2.1 Energy estimates

and follow [7].

1.2.1 Energy estimates

The consideration of certain energies corresponding to (CVM) will be an important
tool. Before that we have to state a theorem of Kato concerning linear symmetric
hyperbolic systems, cf. [12], Theorem I:

Lemma 1.5. Consider the problem

Oyu + z”: ;05,4 =g,

i=1

(LSHS)
u (0) =1
with u,g: [0,T] x R® = R™, a;: [0,T] x R* — R™*™,
Let s € N with s > & +1, 1 < s' <, and let the following assumptions hold for all
0<t<T,zeR" and1<1i<n:
i) a; € C(0,T; HY (R™;R™*™)),
i) |lai ()] gs < K,
i) a; (t,x) is symmelric,
w) g€ L (O,T;HS' (R”;Rm)) nc <O,T; a1 (R”;Rm)>,
v) 4 e H (R";R™).

Then (LSHS) has a solution u € C (O,T; e (R”;Rm)> nct (o,T; HY 1 (R";Rm))

which is unique in the bigger class C (O7 T;H' (R™, R’”)) net (O7 T;L? (R™; Rm)). Fur-
thermore the estimate

T
[u (@)l gy < exp (CKT) (IIfLIHr + C/O g (Tl v dT)

with C = C (n, s) holds for 0 <r <.

The lemma above is not the full version of Kato’s theorem, but enough for our
purpose.
Note that the so-called 'Local Sobolev Spaces’ are defined as

H; (R R) = {55 R B |2l 5= 500 2l < o0 -

The following lemma is the key lemma of this section:

Lemma 1.6. Let 0 < R <T. The estimates
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1.2.1 Energy estimates

i)

1 1
sup / ( B> + =B +47r/f 1+ |p2dp> dy < C,
zeR? J |y—z|<R 2 2

t
1 1

sup// ((E-w)z—l—(B—I—w/\E)2

zeR?2JO J|y—z|=t—7+R 2 2

+ 47T/f 1+p|2(1+ﬁ-w)dp) dS,dr < C,
iii)

3
sup / p; dy < C,
z€R? Jly—z|<R

3

sup dp| dy<C

Lol 7=
z€R? J|y—z|<R 1+ |p|2

hold for all t € [0,T1.

Proof. We split the electro-magnetic fields into internal and external fields; precisely,
they are defined by
atEinml - amgBint = - jf,17
at-Eint:,Q + aazl Bint - - jf,27
0t Bint + Oz, Fint,2 — Oy Eine,1 =0,

(Biuis Bin) (0) = (B, B)
and

Ot Eext,1 — Oy Bext = — Un,

OtEext,2 + Opy Bext = — Ua,
Ot Bext + Oy Eext,2 — Oz, Fext,1 =0,
(Bext, Bext) (0) =0.

Indeed, the existence of (Eoxt, Bext) =: u is guaranteed by Kato’s theorem (n = 2,
s = s’ = 3) since there is a solution of

2 *Ul
8tu+2ai6$iu= -Us |,
i=1 0
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1.2.1 Energy estimates

u (0) =0
with
0 0 O 0 0 -1
ap=10 0 1], ax= 0 0 O
01 0 -1 0 O
Because of U € V we have Eeyg, Bexy € C (0,T; H*)NC! (0,T; H?) C C; furthermore
T
[(Eexts Bext) ()]l o < O l(Bexts Bext) (8) ]| g2 < C/O U ()|l gy dr < C U]y, = C;

here we needed the support condition on U. Because of the linearity of the Maxwell
equations it holds that Fi, := F — FEeyt and Biys := B — Byt solve their equations
mentioned earlier and are of class C''. Now let

€int 1= % | Eine|* + %B?nt + 4W/f 1+ |p|*dp
which is physically the energy density of the internal system and
1 g 1 5 2
e::§\E| +§B +47r/f 1+ |p|“dp.
We have
O¢eing + divy <_BintEjtt +4m / Ip dp)
=Fint - Ot Eint + BintOt Bint + 47 / O fr/1+ \p|2dp + Eint 20z, Bint + BintOz, Eint 2
— Eint, 102, Bint — Bint Oy Eint 1 + 47r/3xf -pdp
— B Js — 4 [ K0,/ + lodp
=— By jy +47E - /fa,,\/1 + |p|dp + 47rB/fdinpJ‘dp

= ext'jf

where we made use of the respective Vlasov-Maxwell equations, d,1/1 + |p|2 =p, and

divppJ- = 0. We integrate this identity over a suitable set and arrive at

i
/ / Eoy - ]f dydT
0 J]|y—z|<t—7T+R

t
_ / / (afeim +div, (—BmtE;t +dr / fpdp)) dydr
0 J|y—z|<t—7+R

25



1.2.1 Energy estimates

= — / €int (O ’y) dy +/ €int (t7y) dy
ly—z|<t+R ly—z|<R

/ / <emt+w <BimE§1t+47r / fpdp))dSydT (1.7)
ly—z|=t—T7+R

after an integration by parts in (7, y). The integrand of the last integral is non-negative
because of (note that 1 +p-w>1—1-1=0and |w| =1)

1 1 ~
0 <dint 1= 3 (Bing -w)2 + 3 (Bint + w A Eint)2 + 47r/f 1+ |p|2 (1+p-w)dp

1 1
:iEﬁlmw% + 2E12nt o3 + QBmt + Bintwi Fing,2 — Bintwa Fing,1 + 3

1
+ Elntlw2+47r/f 1+|p| dp+w 47(-/fpdp

2 2
Einmwl

E12nt E12nt 2 + Bmt +4m / f 1+ ‘P| dp + wlBintEint,Q - w2BintEint,1
+w -4 / fpdp
=€int + w - <_BintEiJﬁt + 47T/fp dp) . (18)

The left hand side of (1.7) has to be investigated. The external fields are bounded by
C, so

t t
By dydr| <C [ i)l pdr <€ [ oy (e dr < €
0 0

(1.9)

y—x|<t—7+R

since the L'-norm of p is constant in time.
Now we can prove the assertions using (1.7), (1.8), and (1.9):

i) We have
/ eintdyé/ €int(0,y)dy+0§C(R+t)2+C§C
ly—z|<R y—z|<t+R

since t, R < T. Together with
€ S 2eint + |Eext|2 + |Bext‘2 S 26int + C

we conclude

/ edy<C+CR*<C.
ly—z|<R
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1.2.1 Energy estimates

ii) Similarly,

t
I/ diur dS,dr < V2 eint (0,9)dy +C < C
0 Jy—z|=t—7+R ly—z|<t+R

and
d::%(E~w)2+%(3+w/\E)2+47r/f 1+ p*(14p-w)dp
<2dint + 2| Boxt|* + [Bext|* < 2dins + C
yield

t
// d dS,dr < C+Ct(t+ R)* < C.
0 J|y—z|=t—7+R

iii) For r > 0 it holds that

pf:4ﬂ'/fdp:47r/ fdp—|—47r/ fdp
lp|<r lp[>r

<Cr?+ 47Tr_1/ A1+ \p|2dp <C (7"2 + r_le) .

lpl>r

Now choose r := e3 > 0 to derive pr < Ce3 (if e = 0 then also py = 0) and hence
3
/ p; dy <C edy <C.
ly—z|<R ly—z|<R
iv) Similarly,

/ / 1 1 / 2
————=dp<C dp + fy/1+ [p["dp
/\/1+Iz92 Ipl<r /1 + |p|? 1T ptar

ds+ri2e§C(r+r*26) < Ce

wl=

<C / s
- 0o V142
for again r := es which yields

3

f
S S— ) R c/
/|yz|<R / /1+|p|2 ly—z|<R

edy <C.

Next we have to establish an important inequality:
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1.2.2 Estimates on the S-terms

Lemma 1.7. The inequality
(PAw)® <2(145-¢)
holds (for €] <1).
Proof. On the one hand we have with |w| =1
1+ [pl* = (p- w)® =1+ [p|* — plw] — 2pipowriws — piws
=1+ pPw? + p2w? — 2p1powiws = 1+ (pAw)® > (p Aw)?

and on the other hand

VI+p?—p-w <1+ pf* + [p| < 24/1+ |p|*.

Putting these two estimates together we conclude

~ 1+pP? = (p-w)? Aw)?
L+ P +7-w) =1 P4 pw= =@ PAW)

Vit —p-w  2¢/1+p)
1 .
=§(19/\W)2 V1+Ip

and therefore
(PAw)’<2(1+p-w). (1.10)
Since
Elp-w=p-&,

p-w and p- £ have the same sign. If they are negative, then p-w < p - £ because of
|¢] < 1 which, together with (1.10)), implies the assertion. If they are > 0, then

FAw)’ <P lwf<1<2(1+5-€)

holds. O

1.2.2 Estimates on the S-terms

The crucial problem is to estimate the fields in a proper way. Unfortunately, the
estimates of Section[1.1]can not be applied because, of course, we can not assume that
P (t) is controlled. The first step is to estimate the respective S-terms.

Lemma 1.8. We have

/ s dpdydr.

I+t =1 = o=y

t
|E51|+|ESQ|+|BS|§C//
0 J]

—y|<t—T
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1.2.2 Estimates on the S-terms

Proof. First it holds that

ly—z[—(t—71) N
€ —wl=y—= =1-[<1-pll§|<1+p-¢€. (1.11)
| | s | [Pl
For the estimate on BS compute
§1p2 — &opa

1
5K -9, (bs) =K -9,

i+l +5-¢
K- <<m+p~§> fL—(§1p2—§2p1)(ﬁ+f)>

2
( 1+ p/* +p- E)

K- (1+D-§E —EAD(D+Y))

1Pt

= L(E,B) (1.12)

V1+Ipl (L +p-8)7°

where the linear function L: R® — R (for fixed p and &) is defined as

L(E,B):=(1+4p-§)(ENE—-Bp-§) = (EAD)(E-P+E-{+ BEAD).

Note that E A E = E - and EAp = —& - pt. The set {(w,()) , (wl-, 1) , (wl-, 71)} is
an orthogonal basis of R? because of

(W 2)w+ (WA 2)wh = (wizg +wier,wize +wiz) = 2
for each z € R?. Hence we can write
L(E,B) = (L (w,0) (w,0) + %L (wh,1) (wh,1) + %L (wh, —1) (wh, —1)) -(E,B)
=: (A (w,0) + Ay (w, 1) + A3 (W™, =1)) - (E, B) .

The only thing remaining now is to estimate the coefficients 4;. With éAw = w*-& = 0,
wlé| =&, & w=[¢, and the use of (1.11) and Lemma[1.7] we have

(A =[EAP(w-Prw-O = [¢]lwAPl[E] +w Pl <[] =1+ 1+P &+ (w—E) Dl
SL=[+1+p-E+1-5<3(1+p-¢),

2]4s] =1 5)(£Aw —p- &) —EAD (W PHEAD)|
<2(1 )+ (L +]E) (wAD)? <6(L+DP-€),
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1.2.2 Estimates on the S-terms

and
2[As| =|(14D-&) AW +D-&) —EAD(wh-P—EAD)]
=[(1+p- &l -14+1+p-& —EADP(L— [€)wAD
<2(1+5-)*+ (1 - [N (wAp)? <4(1+5-6)°.
These estimates yield
+2(1+}/7\§)2|(UJL,—1)(E,B)‘
<B(1+5-&)(E-wl+|[B+wAE)+2(1+p-8) (|| +B]).

Together with (1.12) this implies the desired estimate on BS. Similarly, one can
proceed with ESk. Details can be found in [7], p. 362 ff. O

Lemma 1.9. Let

S e rver

for || < 1. Then the estimate

0<og< Cp(t)min{P(t),<1 - §|2)§}

holds.
Proof. We have

0<og

<c/ dp
lpI<P(®) \/1+Ip (1+p-¢

_C/ t)/ m(l—u|§|cos<p)

dodu

and

" 1 ™ T
— dp= < _ (1.13)
/o 1—ul¢|cosp \/1_a2‘§|2 V1-ale]
since @ |¢| < 1. For an estimate on the last term compute

1 V1 + u? \/1+u2(\/1+u2+u\§|) 2(1+u?)
A VIEE -l e (1) e (1)
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1.2.2 Estimates on the S-terms

1 2 -1
<2min { 14 u?, 5 Tu 5 :2min{1+u2,<1—|§|2) }
1= e+ (1 1¢P)
(1.14)
which leads to
" -3
/ ————— dp < C'min \/1+u2,(17|§|2> .
o 1—u|€|cosp
Hence, on the one hand we can estimate
P(t)
USSC/ u du = CP (t)?
0
and on the other hand
_1 P(t) ” _%
os <C(1-1¢f) — L _dau<cr@)(1-g?) .
O

The next step is to further estimate the S-terms.

Lemma 1.10. It holds that

/t/ os (Bl B NED (0 < opmymp ().
0 vl e — o - yP

Proof. Denote
Ky (Ty,w) := |E(7,y) - w| + |B(1,9) + w A E (8, y)|
and have in mind that
K?<2|E-w*+2|B+wAE[.

Now rewrite the integral above substituting ¢ := % (t — 7 — s) and later r := t —7—21:

/ t / 75Ky dydr
0 J|z—y|<t—7 \/(t _

2 2
)" =l —yl

- /t /t—‘l'/ USK(]
0 Jo lz—y|=s /(t _ 7-)2 — 52

t pz(t=7) oK
B =% dS,didr
/O ‘/0 /x—ylzt—f—w Vovt—T1—1 Y

dS,dsdr
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1.2.2 Estimates on the S-terms

7 [t osK,
_ = dSydrdv
/ / ~/|;IJ yl=t—7—29 \Fv t—71— Y

t—20 o's t—r 2¢,y,7+2w) g (t—1—2,y,w)
dS,drdi.
/ / /|x yl=r er—i— v w

Let 0 <e< % to be chosen later and split the ¢-integral. Firstly, consider ¢ € [e, %}
Lemma [1.9] yields with |y —z| =7

1

(t_ ) “\ copin = )7
s(t=r=2op ) <opu—r—20) (1 T
_CPW(r+20) _ CPW)(r+2)

< = (1.15)
(7’+2w)2—r2 2V + 4
Furthermore we have
t—2¢
/ / Kg (t—r—2¢,y,w)dS,dr
0 |z—y|=r
t—2¢
:/ / Kg2 (1,y,w) dS,dr
0 |z—y|=t—7—29
t—2¢
SC/ / ds,dr
0 |z—y|=t—7—29
t—29
+c/ / (E-w)2+(B+w/\E)2) ds, dr
0 |lz—y|=t—7—29
(1.16)

where we used Lemma ii) (with R = 0) for the term in the fourth line. The
inequalities (1.15) and (1.16) together with Holder’s inequality imply

/ /t 27/1/ US t—T 21y, r+2w> g(t—r =20,y w) 48, drdi
r
le—yl=r ’

VoV T T

2 T+ 29
c - Y48 drd
< P“)// /y x\_rKg“ T B ) gy Bvdrdd

=ert /</t 2’”/ | st—r =2y, )der>
et
[/ ’”ifﬁ,)) ) o
<CP<t>/f</0t wxdr)de
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1.2.2 Estimates on the S-terms

| t
<CP(t —dp=CP(t)In| —|.
<cr@ [* L av=crim(y)
Secondly, consider 1 € [0, €] and estimate with Lemma [1.9]

os (t—r w,y, ><C’P(t—r 20)2 < CP (t)°.

4 21

An analogue Holder estimate as before leads to

€ -2 os (t—r—2w,y,%) Ky(t—r—2¢,y,w)
/ / / A5, drdy
|z—y|=r

VOV + 1)

1

<CP(t / (/t w/y 3 r+w) s dr) dip

<CP (1) /O 6 (;) * b < OP (i Ve

Collecting the bounds we arrive at

/Ot /H,QT Ji- :;ngv — dyir < CP (1) <1n (21) +P () ﬁ) .

Y|

Now choose € := min {P (t)f2 %} which completes the proof because on the one hand,

if e="L < P(t)"% we have
cp()(m( ) ) Pt '<CP@#)lnP (1),
<

and on the other hand, if e = P (t) 2 we have

CP (1) <1n (; ) +P( )\/> —CP (1) (m <;P(t)2) +1)

<CP (1) <1n+ <;) +2mP () + 1> <CPHWP().

Nl

Note that in both cases the definition of P is convenient since In P > 1. O

Collecting the previous lemmata we get the following Gronwall-like estimate on the
S-terms:

Lemma 1.11. We have

|ES1| + [ESz| + [BS| < CP (1) In P (t) +C/O B (M)l + 1B (1)l o) dr-
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1.2.3 Estimates on the T-terms

Proof. Lemmatall.8] and imply

|ESy| + |ESs| +|BS|

¢
f dpdy
< [Qe@le+iBol [ f ar
" st Py P
+CP(@t)InP(t).
Since by Hoélder’s inequality and Lemma iv) (with R=t—1)
/ / (1,9, p) dpdy
al<t=r ] J1 4y ppf? W—T o=y’
1
3 3 2

< /y et /\/ﬁ </Iy|<t7 ((tfr) Iz—y\) i y>3

§C</Ot7r<(t7)2r2) f‘dr)S <Cct-ni<c,

the assertion is proved. O

1.2.3 Estimates on the T-terms
Next we have to take care of the T-terms.

Lemma 1.12. Let

or (t2.6) = [ £ (tp) leta] + leta] + o) (&,1) dp
for |€] < 1. Then the estimate

v (ta,§) < Cmin {P (1) P(O)F e(ta)* (1 - J¢) 7}

holds.

Proof. First, the inequality

€ +B" = 1€” +1p” + 2p- € <2+ 2 ¢
yields together with Lemma
2(-5t).
(L+p-&)°
C (1 - m?) (1+p-)7%. (1.17)

leti| + leta| + |bt] = |61 + P1| + |&2 + D2| + [E A D))
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1.2.3 Estimates on the T-terms

On the other hand we have with 1)

/” L / o< —C (1.18)
0 (]_—u|£|cossp \/l—u 1_/“‘5'00590 _1_a|£| '
which implies for 0 < R < P (t) with the use of (1.14)
1 —u
/ (1_@)(14‘?5 2dp / / ) 5 dpdu
lpl<R 1—U|§|cow)2
u
gc/ — dugc/ u du = CR%. 1.19)
o T+a1—al) ; (
Hence, (1.17) and (1.19) lead to
or < C (1 - W‘) (1+5-6) 2dp < CP(t)? (1.20)
lp|<P(t)

which is the first part of the assertion. For the second part, first note that

L—p* = (1+1p) A —[p)) <21 —[pl 1)) <2(1+5-&).
This and Holder’s inequality yield together with (1.18) and (1.14)

/ F-)aspo tap e [ FUp©
R<|p|<P(t) R<|p|<P(t)
<2 id 1450 tdp)
B </p>Rf p) </p<P<t>( pe) p)

P(t) T R s %
<C <\/1+7R2/f L+ p] dp) (/O U/O (1=l cosp) dedp>

2 2 Pt u % 7% 2
<Ce3sR 3 31— 3, 1.21
<CeiR-} /O g ] <ceiR F-1e?) P (1.21)

Putting (1.17), (1.19), and (1.21) together, we conclude that for 0 < R < P () the
estimate

wvo

aTgc(R2+e§R§ (- 17) ! ()g)

holds. If e% (1 — ¢ ) : (t)% < P(t) choose R as the left hand side to get the
desired estimate

35



1.2.3 Estimates on the T-terms

ool

If et (1 - |§|2)_ P (t)% > P (t) simply use (1.20) to conclude

1
or < CP(t)? < Ce? (1 - \g|2) Pz,
Lemma 1.13. The T-terms satisfy the inequality

\ETy| + |ETy| + |BT| < CP (t)In P (t).

Proof. First note that

t
\ET1|+|ET2|+|BT|§// or(1,y.§) dydr.
R e O RVA TR R

In the following let 0 < § <t and 0 < € < 1 to be chosen later and split the integral
into several parts. Firstly, Lemma yields

t—94
/ / ar (Tayag) dydT
0 Jasgun<ie-vi<ior (1= 1)\ (=) o — yP?

<C’P(t)2/0t (t—T)l/(t " grar=ctP)* 1 (1 -

1—e)(t—7) (t _ 7—)2 —r2

<CP(t)* Ve (1.22)

Secondly, with Lemmata[1.12}[1.6]i) (with R = (1 —¢) (¢ — 7)), and Hélder’s inequality
we estimate

ts
/ / ar (Ta Y, 5) dydT
0 Ja—yl<-a(t-1) (4 — 1) \/(t |-y
s (o)
<CP(1)? / / : - dydr
0 Jeyl<0=90-7) (1= 1) (b= ) — o — g

=5 3
/ (t— T)_l / e dy
0 lz—y|<(1—e€)(t—7)

1
2

1
-2
(1- 1)
/ 5 5 dy dr
le—yl<(1—e)(t—7) (t = 7)" — |z —y]

t—3§ . (1—e)(t—7) (t _ T) r
(t—1) dr | dr
Y. (-7 )

Nl

<CP (1)

N

<CP(1)

(M
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1.2.4 Conclusion

N

<CP(t)? ((1 —(1- 6)2)

3t
—1) / (t—7)"tdr
0
t

~Tln-. 1.2
ns (1.23)

Thirdly, with Lemma we have

' or (7,9, €)
/t—6 /z—y|<t—r —7) \/(j _ 7_)2 — |z — 2 dyar

yl
gCPﬁf/)

t t—T1
(t—1) /
v/ (t— 7' —r2?
Combining , , and we arrive at

|ET)| + |ETy| + |BT| < C (P(t)2ﬁ+P(t)% el +P(t)26) .

mb—‘

<CP(t)2 e

—— drdr = CP (t)*4. (1.24)

0

Now first choose § := min {P O ,t}. If § = P (t)"" then the right hand side above

equals
C(PW* Vet PO Hm(tP (1) +P (1)),
if 6 = ¢ it equals
C(P(t)2\/E+P(t)2t) < C(P(t)2ﬁ+P(t)).
Hence in both cases the estimate
[ETy| + |ET| + BT < C (P (1) Ve + P()F e T ((1+0) P (1) + P (1))

holds (again, here and in the following, have in mind that P > 3). Now choose
4 4
e:=P () >(InP(t)? (note that a=2 (Ina)? < a3 < 1 for a > 3) which yields

\ETy| + |ET| + |BT]
<C (P () (P ()% + P ) (InP () 5 In((1+1t)P 1)+ P(t))
<C(+In(t+1)+1+1)PE) (P ()5 <CPt)InP(1).

1.2.4 Conclusion

Altogether, we now have estimated the S- and T-terms of the fields. Having a look at
the representation formula we notice that the terms E°, B%, ED, and BD still have
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1.2.4 Conclusion

to be considered. Fortunately, this is quite easy. By Lemma we have ‘EO‘ < C.
Furthermore we can also estimate |data;| by C; see 1) and note that the constant
there only depends on H f H , P(0), and T. Analogously, we proceed with EY; again, a

slight difference is that there is ||U (0)||, additionally in the estimate, but this term is
also controlled by C. Furthermore we straightforwardly estimate (recall Remark

|EDI,|BD| < C Ul (0,1:02) < C-

Now we can finally prove:

Theorem 1.14. The a-priori bound P (t) < @Q holds, where Q is only dependent on
T, the Cy-norms of the initial data, supp, f (which basically coincides with P (0)), L,
and U],

Proof. Collecting all bounds on the fields we arrive at

1E(®)llo + 1Bl <C+CP ()P (t)+ C/Ot (E (Dl + 1B (7)) dr-
This implies

IE ()]l + I1B )]l <C+CP () InP(t) + C/Ot (B (Moo + 1B (T)ll0) dr
for 0~ <t <t<T. Now applying Gronwall’s inequality for ¢ € [O,ﬂ and then setting
t =1t yield

IE (#)]l. + 1B (#)|l, < C+CP(#)InP(t). (1.25)

lloo
Have a look at the characteristics
X=D, P= (E - ﬁlB) (s,X), (X,P)(t,t,2,p) = (z,p)

which are well defined. We have

POt 2ol [ PGt o= [ B+ 1B ds

Z|pCC/tP(s)1nP(s)d5
0
which yields with f (¢, z,p) = f((X7 P)(0,t,z,p)) that
t t
P(t)SP(O)—i—C—f—C/ P(s)lnP(s)dszC—f—C/ P(s)InP (s)ds.
0 0

Hence we conclude

P (t) <exp(exp(Ct)InC)
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1.3.1 The iteration scheme

because the right hand side solves the respective integral equation. Finally this leads
to the desired estimate

P(t) <Q:=exp(exp(CT)InC). (1.26)
O

1.3 Existence of classical solutions

In the following we want to construct a solution of (CVM).

1.3.1 The iteration scheme

We now work with initial data f > 0 of class C2, E, B of class C3, and control
U € V that satisfy , i.e.o divE :Qp i Uflfortuneately, vove have to apporoximate
these functions, so let fr — f in Cg, E, - F and B, — B in Cg’ with fr € C

Ey, B € C*, and furthermore Uy, — U in V with U, € C* (note that C*° is dense
in V). Without loss of generality we can assume that H ka <2 H f H and likewise

for Ek, Bk, and Uy, and that supp, fk C Baq w1th the @ obtamed from the previous
section. The strategy to obtain a solution of (| is the following: By iteration
we construct densities fr and fields Ej, By in Such a way that these functions will
converge in a proper sense and that we may pass to the limit in . However, it
is more convenient to work with a modified system. As the previous section suggests,
it is crucial to control the p-support of f. For this reason we first consider a cut-off
system on [0,7] where we modify the original Vlasov equation and use the second
order Maxwell equations ( and need not hold for the iterates):

Ouf +7-0uf +a(p) (BE~pB) - 0,f =0,
OfE — AE = — 0§y — OU — Oupy + Os /t div, U dr,
O}B — AB =0,,j 2 — Opyjfa + O0pUs — ;IQUl,
(f,£.B)(0) = (f.B.B).
KE (0) = (8B, - 00, B) — j; ~ U (0),

0B (0) = — 8y, 5 + 0y, 1.
(VM)

Here, let the cut-off function v be of class C2° (R?) with o (p) = 1 for |p| < 2Q. The
property of the constant Q will imply that a Solutlon of l) is also a solution of
(CVM). The generic constants C' > 0 may now depend on T, ’ ez’ B‘ "

b

P(0), L, |U|y, Hoz||cb1, and @ (in fact, on the one hand, o can be chosen in such a
way that ||aHCb1 < 1, and on the other hand, @ only depends on the initial data, T, L,

39



1.3.2 Certain bounds

and [|U||y; hence the dependence on ||a||cg and @ can be neglected).

We start the iteration with fy (¢, z,p) := fo (x,p), Eg (t,x) := o (x), and By (t,z,p) :=
By (). The induction hypothesis is that fi, Ej, and By, are of class C*° and that the
fields are bounded. Given fr_1, Fx_1, and B_1, we firstly define fj as the solution

of
Oifx +D- Oufr +a(p) (Ekfl - ﬁLkal) “Opf :00’ (1.27)
fx (0) =fk,

namely

fk (t,l‘,p) = fk (Xk (05 t,.’I},p) aPk (O7t7xap>)

with the characteristics defined by

Xk :ﬁkv Xk? (t,t,x,p) =,

Py =a(Py) (Ek—l - ngJ,_Bk—l) (5, Xk) Py (t,t, 2, p) =p.
We apply a result of Hartman, cf. [3], Corollary 4.1, which roughly says that the
dependence on initial conditions of solutions of an ordinary differential equation is as
regular as the right hand side of the differential equation. We conclude that X} and
Py are of class C'* in all four variables by the induction hypothesis. This yields that
even fr € C*°. Since « is compactly supported the p-support of fi is controlled by a

constant C. Hence, py, and js, are well defined as C°° N C}-functions.
Secondly, we define E}, and Bj as the solution of

t

8752Ek _AEk :_8tjfk _atUk _8xpfk +8:8 dlvak dT7
0
OBy — ABy =04, 52 — Ouydfin + 0u,Ur2 — OuyUp1,
(Ex, By) (0) = (Ek,ék) : (1.28)

0B (0) = (0. Br, 02, Br ) = iy, — U (0),
OBy, (0) = — 8y, By + 3z2Ek,1-

Indeed, we can solve these wave equations by applying the solution formula given
before Lemma Since the right hand sides of the above equations are of class C'*
and bounded, so are also Ej and Bjy.

1.3.2 Certain bounds

Now we apply Theorems and [1.4] to get nice estimates which will allow us
to conclude that, indeed, there is a solution of (@VM)). The first goal is to show
that (fx, Fx, Bi) is bounded in the ||~||C[1—norm uniformly in k. In the following write

K} := Ej, — p*- By, for simplicity. We have
O fx +]/9\' Opfr +aKp_y - apfk =0,
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1.3.2 Certain bounds

t
O}E, — AEy = — Oy, — OUy, — Oupy, + az/ div, Uy, dr,
0

2By, — ABy =04, jfr 2 — Ouslifet + On Uz — u,Un 1,
(fx, Bx, Br) (0) = (Jgkvékaék> ,

B (0) = (02, By, ~00, Br) — i, — Uk (0),
atBk (0) = — &Clﬁ’m + awZEQ'kJ.

Applying Theorems and then we get

I Wl < 4| <c

and
1Bk ()] + 1B (0],
<0 ([ + 18, + 8] oy + 100w i)
e Wt 1B (Dl 4 1Boor () e () dr
<c+c 1B (Dl + 1B (7))
Hence

1Bk ()l o + 1B ()]l <C
which is a consequence of the following lemma:

Lemma 1.15. i) Let (ax) satisfy

¢

ay, (t) <C1 + 02/ ag—1 (T)dT for k>1,
0

ag (t) <Cy

fort €10,T]. Then we have
ay (t) < Cre®T.

i1) Let (bfc) be non-negative and satisfy

t
bl (t) gch+c/O bl (r)dr for k,0>1,
by, (t) <C
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1.3.2 Certain bounds

fort € [0,T] and assume 2., — 0 for k,l — oo (i.e. Ye >0 3IN € N Vk,l > N :
|zL| < €). Then we have

b (t) =0, k1 — oo
uniformly in t.
Proof. 1) It is sufficient to show via induction that

Citt
()<clz 22! .

=0

The estimate obviously holds for £ = 0. If it is true for k£ — 1, then we also get

t t C k C%ti
ar (1) <C1+Co | ap_1 (7)dr < Cp + Oy CIZ il TZClZ il
0 0 '

=0 : =0

ii) We show

m—

b (t) < C (1 +1) Z cr /O(tT_)l)! b (1) dT

= (m

for 1 < m < min{k,[} via induction. The case m = 1 is part of the assumption
and the iteration step works as well:

m—1

ii t o m—1
()<C (1+1¢) Z Z +C’m/ ubl—m (r)dr
0

— (m — 1)1 k—m

m—1 341 m—1 T
b [ t=T7) —(m+1)
> +Cm /0 W/o (zk + b (1) (s)) dsdr
m—1 ~; . t m—1
C't t—1)
C(1+1) ml (] ¢ (7 d
+1) 2 ; ] +C"T(1+t)z /0 m 1) T
t
t - —(m
Cm“/o / ™) dr bi_((mi)) (s)ds
S Cll" mat [ E=8)" 1t
CL+t)zy —+C +1/0 S ) () ds.
=0
Therefore
bt — T)m_l
bl(t) <C(1+T)efT2 M/ -7 d
() <CA+T)e" 2z, +CC =) T
m+1Tm

for k,l — oo (with now m := min {k,[}) uniformly in ¢.
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1.3.2 Certain bounds

The second part of the lemma above will be needed not until later.
With the knowledge that (fi, Ex, By) is bounded in the ||-||  -norm we can now apply
Theorem [1.4] to conclude

1000 Bx () + 1900 Bi Dl
<c (1 (AT (10 Bar (Dl + 1000 B (D) dr) .
Now Theorem yields
g (11020l

<in, (c exp (c +C / (19 B 1 (7)o + 19 Bi s W'oo””))

t
<, C+C+C / (102 Ex1 (7)o + 10s Bi_1 (7)) .
0

Putting these last two estimates together we have

t
10t,2 Bk (D)l o + 10,0 B (D)oo < C + C/ (19t.0Br—1 (1)l + 1000 Br-1 (7)ll,) dr
0

which implies with Lemma that the left hand side is bounded by C'. Hence also
1025 fr (t)||, is estimated by C, and so is the t-derivative of fi as a consequence of
the Vlasov equation.

Furthermore we would like to bound (f%, Fx, Bx) in the ||-||C§—norm. For this sake we

have to differentiate the system (VM) with respect to x; and then p;. On the one
hand we derive the system

aKy_q- apaacifk = - O‘axiKk—l : apfka

afamiEk — A0, B, =— 5tj62ifk — 0105, Uy, — 3zpazifk + 0, /ot div, 0., Uy, dr,
020, By, — AO,, By, =02,J0,, 1,2 — 02200, fr1 + Ou, 02, Uk 2 — 03,04, Ug 1,
(Ox; fis O, Bk, O, Bi) (0) = (@jkﬁxiﬁkﬁwiék) ;
80, Ey, (0) = (amzaxiék, —amlaxiék) —Jo, i, — 0Tk (0),

0,0, By (0) = — 85,0, By + 82,0, By
(1.29)

which has the form of (GVM)) with the unknowns 9y, fi, Oz, E, and 9,, By, and on
the other hand

0:0p, fr + D 00p, fr + K1 - Op0p, fro = — Op,D - Ox fr — Ki—10p, - O i,
— adp,pBi_1 - Op fr, (1.30)
apifkr (0) :8177;]$k-
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1.3.2 Certain bounds

Theoremyields (note that the corresponding force field a K1 is already controlled
in C} and use the already known bounds)

00y i (D]
<crof (10200, By ()l + 10000 B s (7)o + 1000y (7)) 7
and
orst e Ol <O+ [ 02,50 0] o
together
102 fx (O]
<c+tc / (102 )]+ 2B (DL + 102,51 (7)) dr

which yields via Gronwall’s inequality

t
82,8 O <€ +C [ (2B (DIl + |02Bi (D] ) dr
0
and hence
t
101c0n05 Ol < C+C [ (2B ()] + 02Bics (7)) dr
0

by the Vlasov equations of (1.29)) and (1.30).
Furthermore with Theorem applied to (1.29), we can estimate (note again that
K} is controlled and Iny a < a)

10,02 Ei (£), + 190,002 (1)
<C+C 11020 filll o

| o0

t
+ C/ (191200 B -1 ()|l o0 + 10,200 Bi-1 (7)o + 1042000 p fi (T)l| ) d
0

t
<c+C / (194205 Exr (1), + 191,00 Byr (1)) dr-
0

In the estimate above, it is important that we have four space derivatives of U so that
H&DU;CHWM(O o) is controlled by C. Hence again, 0, ,0,E), (t) and 0, ,0, By, (t) are
Ly

bounded by C uniformly in ¢ and therefore also 0y 5 p0s pfx (t). Furthermore, on the
one hand, recalling system , we find that also 0?Ej, and 0? B, are bounded by
C. On the other hand, with this knowledge we conclude that the same holds for the
92-derivative of f since

O fx + D 00ufro + @0 Kj—1 - Op fre + aKy—1 - 0,0, fr =O0.

Therefore, the iterates are bounded in W2,
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1.3.3 Convergence of the iteration scheme and regularity of the solution

1.3.3 Convergence of the iteration scheme and regularity of the solution

Now, having all desired bounds together, we somehow have to show that our sequences
converge in a suitable sense. For this sake, define f. := fi — f; and likewise for the
fields and subtract the equations of the [-th step from those of the k-th step:

Ofl+ P Ouft+ aKyoy - Opft = — aKih - 9,1,
OBy — AE}, = — 8jy — OUL — Oupyt + 0, /Ot div, U} dr,
07 B}, — AB}, =04, 1 o — Onyligt 1 + 02, Uk s — 00, Uj 1,
(fhs EL BL) (0) = (L B1L B
OB} (0) = (02, B~ 02, BL) — i — UL(0),
0By (0) = = 04, Ej o + 01, B} .

o [ty [ty + It s i

together with the known bounds

U || £
Denote z;, := ka’

t
17 O < 2+ C/o (1B ) + 1B (L) ar
and then
12 0]l + 1B @)l

<o+ [ (Il +IEL O+ 1B L) ar

t
<cs+c [ (1B @l + 1B ()LL) o

Thus, as a consequence of Lemma ii), (Fx) and (Bj) and hence also (fy) are
Cauchy sequences in the ||-|| -norm. The respective limits, denoted by E, B, and f,

are, of course, the candidates for the solution of 1)
It would be nice if we had Cauchy sequences also with respect to the C}-norm. For

this reason now subtract the systems (1.29) and (1.30) for step I from those of the step
k so that we have

aKy_1 - 0p0s, ft = — aKL - 0,0, fr — a0y, KLY - 0 fr — a0, Ki—1 - O, fi,

t
070:, Ej, — DOy, By, = = dij, g1 — 0002,Uj, — Oupy, 1 + On / div,0,,U} dr,
) 0
81528%3;@ - AaMBllc :8I1j8mif}v,2 - 6$2j8,,if}c,1 + 8116$1 Ullc,2 - 6962830@ Ullc,la
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1.3.3 Convergence of the iteration scheme and regularity of the solution

0u0z B} (0) = (02,00, B, 02,00, BL) — o, 1 — 0, UL(0),
010z, B}, (0) = — 0z, 0, Bl + 0,0, B}y
and
010, f1. + D+ 020y, f1. + aKi—1 - 0p0p, fl. = — K| - 0p0y, fi — Op, P~ Oufi
— (Kk—10p,00 — a0y, p" Br—1) - O [
— (K210, = a0t BiZh) - Op i,
apifllc (0) =0y, fllc
As before, Theorem (and the estimates above) imply

t
15 0llgy < 0+ [ (I8 Ollgy + 1B Oy + 1B @ley) ar

so by Gronwall’s inequality

t
7 Olly < cst+¢ [ (1B gy + 1B 0y ar
On the other hand Theorem yields
1EL @)l + 1B @)

t
< +C [ (I @y + B Oy + 1B gy ar

t
<C:ltC / (1B Dl gy + 1B Dl )

Applying Lemma we conclude that (fy, Fx, By) (t) are Cauchy sequences in the
C}-norm uniformly in ¢. Exactly the same can be done for the ¢-derivatives starting
with

O2fL + D~ 0z0fh +
aKj_1-0,0ift = — OéK;l;ll - O0pOr fr — aatK;l;ll - Opfr — @O0 K1 - O, fL,
t
OROE} — A EL = — 0o g1 — ORUL — Duppy g1 + s / div, 0,01 dr,
0
070: By, — A0y By, =0s, o, 1t 2 — Ouslo, 11 + Oy OeUj 5 — 02, 04U}, 1,
8tfl£: (O) = _]/9\' Bxfllc - O‘f{kfl : ap.fllc - a]%]lc:ll 'apfcl,
atE,llc (O) = (8mzéllw 7ax1éllc) - jf}i - Ullc (0) )
8tBllc (0) = aml‘éllc,Q + azszD‘Ilc,l,
O2EL (0) =AEL — 4x /ﬁ(ﬁ A fl+a (f’(k_l 0L+ K7L a,,fl)) dp
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1.3.3 Convergence of the iteration scheme and regularity of the solution

- 8tUIl§ (0) - axpffc’
07 Bj, (0) =ABj, + Ot o = Onsdi 1 + Oy U2 (0) = 82,U 1 (0) -

The initial conditions for the 9?-terms are a result of and (1.28).

Altogether, (fi, Ex, By) is a Cauchy sequence in the whole C}-norm.

For later considerations it will be convenient that the density and the fields are even C?.
Since all second derivatives are bounded in L> ([0,7] x R7) (j = 4 or 2 respectively)
they converge, after extracting a suitable subsequence, in the weak-*-sense. Of course,
these limits have to be the respective weak derivatives of f, F, and B. The remaining
part is to show that the weak derivatives just obtained are in fact classical ones. For
this sake, have a look at the representation formula for 9,0, By; use system
and Theorem

-0

t
- " 01,02, fi dpdydr
R O NV R R
t bs) + b Oy fr0y K
+/ / /(oﬁp( s) + bsVa) - Op, fr0u, K1 dpdydr
0 Jiestet—r V=) = fo—yP

N /t/ / (adp (bs) + bsVa) - Ki_10,,04, fr dpdydr
0 it V=) =z —yP

B /f / /(bs)aéxiaijk_l-ﬁpfk dpdydr
0 Jemr—r L\ -7 - P

_/t/ /(bs)aazijl-aziapfk dpdydr
0 Jamvist=r S [ =) o - yP

+ i /t/ 817181’7, Uk,Q - aﬂ?zaﬂh Uk,? dydT.
2o Slevictmr\f— 1) — o — P

Here, Ei is the "B?’ of system and converges to the respective expression without
indices (recall Lemma [0.4| and the definition of data;).

We are allowed to pass to the limit in the integral expressions because all kernels are
integrable, (fi, E), By) converge in C}, the second derivatives weak-* in L>°, and U
in V. Hence we can omit the indices in the equation above or equivalently

0p,0p, B — 0y, B"

¢ bt
_ / / / 00,0,  dpdydr
0 Jz—y|<t—7 (t _ 7.) \/(t _ 2

2
)" — |z -yl
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1.3.3 Convergence of the iteration scheme and regularity of the solution

/ /x yl<t— T/ = (\/)(:_bj_;a) e (K00, ) dpdydr

—yf®
/ / / (bs) Oy, (0, K - 0y f) dpdydr
fe=gl<i=r (t*T)Q*Iw*y\
/ / 8$1U2 0z, U1 dydr
T2 o e - 7)? = |z —y?

and conclude that d,,0,; B is continuous which is an immediate consequence of U € V/
and the following lemma:

Lemma 1.16. Denote M = {(s,2) € [0,T| xR" | 0<s<T, |z| <s} and let h €
C ([0, T] x R*™™) with uniform support in p € R™, i.e. supp,h C B, and let w €
CY (M x B,) and~y € {t,z1,...x,}. Furthermore let one of the following options hold:

i) h e Wb ([0,T] x R™™) and w € L* (M x B,),
i) h € Wh(0,T; L (R™™)) if 5 = t or h € L™ (0,T; Who° (R™™)) if v =

respectively, and
/ / |w (s, z,p)| dpdz — 0
s—d<|z|<s J B,

for d — 0 uniformly in s € [0,T].
Then

t
H(t2) = / / / (0sh) (7,9, p) w (t — 7.y — z, p) dpdydr
0 J]z—y|<t—T

¢
:/ / / (O4h) (t — s,z + z,p) w (s, z,p) dpdzds
0 Jz|<s

is continuous in (t,r) € [0,T] x R™.

Proof. Let v = x; and € > 0 be given. For (¢,2) € [0,7] x R™ and d > 0 define

t
I; (¢, x) ::/ / e /(awh) (t—s,x+z,p)w(s,z,p)dpdzds
s <|z|<s

and estimate in case i)

T
Ly (t,2)] < (180, ], / / / lw (s, 2, p)| dpdzds — 0
0 s—d<|z|<s J B,

and in case ii)

T
|Id<t7x>|s/ 1021 (5)]], ds m/ / w (s, 2,p)| dpdz|| 0
0 s—d<|z|<s /B,

o0
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1.3.3 Convergence of the iteration scheme and regularity of the solution

for d — 0 uniformly in (¢, ). Thus we can choose d so that |I (t,z)| < §{ for all (¢, z).
For now fixed d consider the remaining integral and integrate by parts

t
Ja (t, ) ::/ / /(&Jih) (t—s,x+z,p)w(s,zp)dpdzds
0 J|z|<s—d

t
=/ / / (0,h) (t — s,z + z,p)w (s, z,p) dpdzds
0 J|z|<s—d

t
:7/ / /h(tf5,517+Z,p)aziw(s,z,p)dpdzd5
0 Jlz|<s—d

t
1
+/ / /h(t—s,x—i—z,p)w(s,z,p)—dpdSzds
0 J|z|=s—d \/5
s [ [he )tz dpe
|z|<t—d

This is allowed because the integration domain is away from the possibly singular set
|z| = s. For that very reason Jy is obviously continuous by the standard theorem for
parameter integrals, so if (0, dz) is small enough (with ¢ + 6t € [0,T]) we have

|Jg (t+ 0t,x + 6z) — Jg (t,2)] < g
Finally with H = I + J; we conclude
|H (t 4 o0t,x + dx) — H (t, )|
<|g(t+6t,x +ox)| + |Ig (t, )| + |Ja (t + 6t,x + 6x) — Jqg (t,7)] < e
Analogously, one proves the assertion for v = t. O

This lemma is applicable since f has uniform support in p, 0, f, 0, f, and 0, K are
of class W1, |bs|, |bt| < C (r), and by Remark[0.1]
Next, we have a representation formula for 9,0, ; By, according to Theorem Anal-
ogously we conclude that 0,0, B is continuous. For this, note that the terms without
an fot -integral are easy to handle since there only initial values appear.
The procedure for F is nearly the same. The only critical point is to ensure that

yart
0 J]z—y|<t—7 \/(

2 2
t—7)" =z -yl

is continuous for U € V. To this end, we can apply Lemma with h = 0;0,,Ux
where x = x (p) € C2° (R?) with [ x dp = 1. Note that 8,0,,U is continuous and of
class W1 (0,T;L°°) by U € V, and that

1
/ ——— dz = 27\/28d — d®1,54 < 27VTVd.
s—d<|z|<s

52— |2
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1.3.4 Uniqueness

So there only remain the 97-derivatives of E and B. By the known convergence, we
can pass to the limit in so that the Vlasov equation holds everywhere and the
Maxwell equations almost everywhere. With this knowledge and the just proven fact
that the second space derivatives of the fields are continuous, we conclude that also the
d2-derivatives are continuous. Now the fact that the weak derivatives are continuous
instantly implies that they are classical ones. Therefore the fields are of class C2. Thus
the characteristics

X=DP, P=a(P) (E - ﬁLB) (s, X), (X,P)(t,t,2,p) = (z,p)
are well defined and of class C? in (¢, ,p) (see [3] again). Hence

f(tl‘,p) = f((X7 P) (O,t,m,p))

is also of class C2.

We have solved (aVM), but actually (CVM) is to be solved: Obviously, (VM) coin-
cides with (CVM2nd) as long as f vanishes for |p| > Q. But this property is guaranteed

by Section Therefore (f, E, B) is a solution of (CVM2nd) and hence of (CVM)

by equivalence.

In the following we also may neglect o in the equations for the iterates because of
a =1 on By and fi — f uniformly; thus f vanishes for |p| > 2Q if k is large
enough.

We collect some properties of (f, E, B):

Theorem 1.17. There is a solution (f, E,B) of (CVM)) with:
i) f, E, and B are of class C?,

it) f wvanishes for |p| > Q or |x| > R+ T (where Q only depends on T, the initial
data (their C}-norms and P (0)), and ||U||},, and where supp, f C Br),

iii) K, B vanish for |z| > R+L+R+T if their initial data are compactly supported,
i.e. supp E, supp B C B,

iv) the C’g—norms of the solution are estimated by a constant only depending on T,
the initial data (their CZ-norms and P (0)), L, and ||U||;,.

Proof. For ii) note that ’X ‘ < 1, for iii) recall the representation formula of the fields,

and iv) holds because it holds for all iterates, they converge in C} and their second
derivatives weakly-* in L°°. O

1.3.4 Uniqueness

We prove uniqueness of the solution.

Theorem 1.18. The obtained solution (f, E, B) of (CVM) is unique in C* x (02)2,
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1.3.4 Uniqueness

Proof. Let (f, E, é) (with the above regularity) solve too and define f := f—f
and so on. Then we have the system
OF +- 0.7+ (E~p*B) -0, =~ (E~p"B) - 0,/,
OB — 02, B = — jg 4,
OBz + 0, B = — jg 4,
OB+ 0y, Ey — 05, E1 =0,
(£.E,B) (0) =0.

Theorem [1.1] yields
7Ol < 106 | (B @]+ B dr
0
and Theorem [1.2] implies
B+ Bl <@ (1+|E]|_+|B|_+18.71..)
[ FOl @+ B i

since the assertions of Section especially Theorem , hold both for f and f,
and since the p-integral of the right hand side of the Vlasov equation vanishes so that

(LC) holds for the system above by Lemmal0.3] L
These two estimates and Gronwall’s inequality instantly yield ( i E, B) = 0; note that

[ € C} and that HEH and HEH are finite because of (1.25) and (1.26). O

Moreover, it is possible to show that the solution is unique in an even larger class.
Here, the constructed solution satisfies the conditions if F and B are compactly sup-
ported.

Theorem 1.19. A solution (f, E,B) of (CVM) with the properties
i) f, E, and B are of class WH* N H' N H* (O,T; L2),
ii) suppf C [0,T] x B2 for some r > 0,

is unique (here, ’solution’ means that (CVM)) holds pointwise almost everywhere).

Proof. Let (f, E, E) (with the above properties) solve (CVM) too and define f :=

f — f and so on. Then we have the system

Of+p-Ouf + (E—ﬁLE) Opf =— (E—=p"B) - 0,f,
8tE1 - 5'952? = 7].?’17
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1.3.4 Uniqueness

8,5E2 + 83:1§ = - .jfygv
atE + azlﬁg - 8I2E1 :O,
(f.E.B)(0) =
Note that initial values make sense because of H' (O, T; L2) — C (0, T; L2). We have
1,-= 2
Lol
t
:/ //f@J dpdzxdT
0
t ~ ~ — — —
:/ //7 —ﬁ-aj— E—ﬁLB) -0,f — (E - p*B) -a,,f) dpdzdr
=[] ] (- (7°) - g, (B-5B) F) -7 E-5B) -0t

dpdzxdr

///pr 8fdpdxd7'
<o [ WOl (Bl + B2 i

which implies
t
7Ol < Wl | Bl + B )]2) dr
via the quadratic version of Gronwall’s inequality, cf. [2], Theorem 5. Similarly,
1= 2 Ly e — b — —
SIBOI :/ /B&tB dxdT:/ /B(—8x1E2+8x2E1)dsz
0 0
¢
. / / (B00, B — F10,,B) dudr
0

:/Ot/(—E-atE—E-jf>dxdT.

Note that in the integration by parts no surface terms appear because of E, B € H'.
This computation leads to

t
3 (PO +BO) = [ [~F i dear

< [ 1B 70 <€) [ B @ 41BN 17 0]
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2.1 Lipschitz continuity

Here, the last inequality holds because f vanishes as soon as |p| > 7. Now again, the
quadratic Gronwall lemma implies

B @+ IB Ol <C0) [ F0]00r

<C(r,T) | fllyy1. / (IOl + B 2) dr.

This yields (E, E) = 0 and hence also f = 0. O

2 The control-to-state operator

From now on the initial data always stay fixed with 0 < f € C? and E, Be C3, and
divE =p - As a result of the last section we may define the control-to-state operator
via

S:V =Cp ([0,T] x R*) x Cf ([0,T] x R*R?) x CF ([0,T] x R?),
U~ (f,E,B).

The goal is to show that S is differentiable with respect to suitable norms.

2.1 Lipschitz continuity

First we have to investigate whether S is Lipschitz continuous; to be more precise,
locally Lipschitz continuous. Let U, 6U € V and denote (f, E, B) = S (U), (f, E, B) =

S (U +0U), and (f, E, E) =S(U+46U)— S (U). We arrive at the system

Of +- 0] + (E—p*B) - 0,] == (E~p*B) - 0,7,
O Ey — 0, B = — jiz, — UL,

0Es + 0, B = — iz, — 6Us, (2.1)
8t§ + 8951.@2 — 8@@1 =0,
(7.E.B) (0) =0,

which is equivalent to the system with second order Maxwell equations because of
Lemmata [0.2] and

Note that the z- and p-support of the density and the C}-norm of the solution is
controlled by a constant dependent on 7, the initial data, L, and the V-norm of the
control, see Theorem Therefore we can perform the same estimates also on the
-solution with a constant dependent on 7', the initial data, L, and ||U||,, because, for
instance, for [[0U||,, < 1 we have ||U + 6U|,, < ||U||,, + 1. Hence we will only show
the locally Lipschitz continuity of S. Now we apply the results of Section

7ol < [ (@] +[E3], )
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2.1 Lipschitz continuity

and

|Fo] (B o]

oo

SC’/Ot ( ‘f(T)Hoo + HE(T)HOO + HE (7')HOO> dr +C ”(SUHWL](O,T;Cg)

<c [ (|E@||_+[B@| )ar+crevi,
which yields
[Fo||_+|E®|_+||Bo|_<clu.
Differentiating with respect to z and then to p implies
000s, f+ P+ 000u, f + (E = F"B) - 0,05, f = = (0, B — P02, B) - 0, f
(00, B = 5-0.,B) - 0,]
~(E-5"B) - 0,0..7.

0¢0p, By — 8,04, B =—j — 8,001,

8, fi1
0102, By + 02,05, B = — j, 5, — 02,06Ua,
8,04, B + 8,0, Fy — 0,0, F1 =0,

(awif, 0,.E, awié) (0) =0,
and
0i0p [+ 000p, [+ (E =P B) - 0,05 f = — 0.0~ 0uf + 0,0 B -, f
- (E - ﬁLé) 0,0y, F + 0, P B - 0,7,
Oy, [ (0) =0.

The estimate of Theorem|[1.2]is not directly applicable because some terms need not be
regular enough. But these two systems somehow also hold for the iterates (U + 0U),
denotes the smooth approximation of U + 6U):

00, i + - 000u, i +
(Ek71 —ﬁLkal) ‘ 5p3zij?k == ((%iEk*l _ﬁla““kal) .apfk
_ (@ciﬁk—l 71’7\J‘5zi§k_1> Oy
- (Ek—l —ﬁLék—l) 'apawjkv
0700, Ex — Ay, By = = Oejy_ 7, — 00, (U +0U), = Ux) = upy, 7,
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2.1 Lipschitz continuity

t
+ 0, / div, 0y, (U +5U), — Uy) dr,
0

0700, By, — DNy, By =00y, 7, 5~ Oualiy, fun + 0 0s, (U +8U), = Ui),

- alzall ((U + 5U)k - Uk)l y
(0w, Bk, 0z, By) (0) =0,
905, Er (0) = — 0, (U + 5U)k —Uk) (0),
ataacquk (0) =0

and
0uDp, i + B+ 0uyp, fic +
(Ex—1 — p*Bi-1) - 0p0p, f = — 0p, P Oufic + Op, P Br—1 - Opfi
- (Ek—l *ﬁLEkA) - 0p0p, Fi + Op, P Bi—1 - O,
d,, f (0) =0.

Therefore we get the estimates

. gC/Ot (Hﬁ(r)\

i

i

Bt (0], +[| B ()]
c;JrH -1 (T) + k-1 (7T)

) dr
Cy

) dr,
Cy

o

which yields

o =0 [, ([B ol + B o

and

’ at,mEk (t)Hoo + ‘

<C/Ot<\fk(7)\cbl

+C H(U + 6U)k - k”Wl»l(O,T;CS)

012, (t)H

o0

+ |0y Brs (T)H + ]

O 2Bu_1 (T)Hm) dr

< [ (|preBirs 0] + [orBecs 0] ) ar-+ vy

hence with Lemma i)
|7 )

+’E’ +H§,H < C||sU|;, -
o e Flo 16Ul

Since the iterates converge in C} to the respective functions, the inequality above also

holds without indices. With this knowledge and the Vlasov equation of 1 we even
conclude

I(7 E,E)HC; <c|sull, .

Thus we have proved:

55



2.2 Solvability of a linearized system

Theorem 2.1. S: V — C} ([0,T] x R*) x C} ([0, 7] x R2)3 is locally Lipschitz con-
tinuous.

2.2 Solvability of a linearized system

To show even differentiability of S we will have to analyze a linearized system of the
form

Of +P0uf +G-0pf =(E~p"B) g +a,
OiE1 — 0z, B=—jp1+ ha,
OpEz + 0y, B = — jy2 + ho, (LVM)
0B + 81-1E2 — 8x2E1 =0,
(f7EvB> (O) =0
with already given functions a € L! (O,T; LQ), G € C? with div,G =0, g € C} with
g = 0,9 for some g € C¢ and g (t,x,p) = 0 for |z| > r or |p| > r for some r > 0, and
h € V. We call (f,E,B) a solution of (LVM) if f, E, and B are of class C N H!,
the equalities hold pointwise almost everywhere, and f vanishes for |p| > R for some

R >0.
A crucial estimate is the following;:

Theorem 2.2. Let (f, E, B) be a solution of (LVM). Then

1F @Olle +[1E @l 2 + 1B @)z < C (R 9l ,T)/O (la (Dl g2 + 117 (Tl 2) dr-

Proof. The proof is very similar to that of Theorem First we have

1
5 I1f DIz

/Ot//fatf dpdzdt

:/Ot//f(_ﬁ-amf—e-apﬂ(E—ﬁLB)-g+a)dpda:dr
/Ot// <;divm (f?) f%divp (Gf?) + f (E—p*B) ~g+fa> dpdzdr
:/Ot//(f(E—ﬁLB)~g+fa)dpdxdr

<C(R)(1+ IIQIIOO)/O 1 gz (LB (Dl g2 + 1B (1)l 2 + lla (7)]l 2) d7,

which implies

IF @z < C(R) (1 + IIQIIOO)/O UE )lle + 1B (D)l Lz + lla(7)] =) dr
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2.2 Solvability of a linearized system

via the quadratic version of Gronwall’s inequality. Similarly we have
1 t t
5 ||B(t)||2Lg :/ /BatB dzdr = / /B(*aﬁlEg + Oy, 1) dadr
0 0
t
:/ /(EgamlB—ElamB) drdr
0

t
:/ /(—E~8tE—E~jf—E-h)dsz
0

Note that in the integration by parts no surface terms appear because of E, B € H'.
This computation leads to

(IO +1B0R:) = [ [~E-5~B-hdear
< [ 1B @l (lir Ols + 18 ]2) dr
0

SC(R)/O WE Lz + 1B (Dl L2) (LF (P2 + 17 (T)]] 2) dr-

Here, the last inequality holds because f vanishes as soon as |p| is big enough. Now
again, the quadratic Gronwall lemma implies

£ @Oz + 1B (Ol 2

SC(R)/O UF Oz + 1A ()] 2) dr

<C (R |9l 7T)/01 B (2 + 1B (Dl g2 + lla (Pl g2 + [1h (1) 2) dr-

This yields

IE @)l + 1B @)l < C (R gl ,T)/O (la (Pl gz + 17 (T 2) dT

and then also

LF @Ol < C (R, 9l 7T)/0 (la (Dl L2 + [P ()]l 2) dr-

O

We approximate G, g, and h with smooth functions Gg, gi, and hy which are
converging to G, g, and h in CZ and V respectively, and define g := 8,g,. Without
loss of generality we may assume that ||GkHC§ <2 HG”cgv Hngcbl <2 Hchg, helly <
2||h]ly, and that hy (t,x) = 0 for |x| > 2L and gy (t,x,p) = 0 for x| > 2r or |p| > 2r.
These properties will often be used in the following. The constant C' may now depend
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2.2 Solvability of a linearized system

on T, L, v, [|Gllcz, llgllcy, and ||h]ly. To show solvability of (LVM) for a = 0 we
proceed similarly as before. Define fy = Ey1 = Ep2 = By = 0 and solve in the k-th
step

Ofe +D Oufr+ Gr Opfi = (Er—1 — D" Bi-1) * g
fr (0) =0
by defining

t
fk (taxap) = /0 ((Ekfl _ﬁLkal) . gk) (Xk (Ovtaxap) 7Pk (O,t,np)) dr

with the characteristics
Xk :ﬁk; Xk (t,t7$,p) =z,
Pk :Gk (57X/€aPk)7 Pk (t7t7x7p) =D,

and then solving

t
O?E), — AFE), = — Ojr, — Ochi — Ozpy, + am/ divghy dr,
0

atsz - ABk :3m1jfk,2 - 8I2jfk,1 + axlhk,Q - amghk,17
(Ek, Bi) (0) =0,
OtEx (0) == Uy (0),
atBk (0) :0
All iterates are of class C*° as in Section Furthermore, the characteristics are
independent of the solution sequence (fx, E, By). Thus we instantly have ‘Pk’ <,
so |Pr — p| < CT. Having a look at the formula for f; we conclude that fj vanishes
as soon as
p| >2r +CT =: Q (2.2)

since then the integrand vanishes as a result of

The same can be done for the z-coordinate starting with ‘Xk’ < 1; hence f, (t,x,p) =

0 for |z| > 2r + T. The assertions of Section are directly applicable. We do
not have to insert some « because of the already known bound on the p-support of
fr. Therefore holds for the iterated system and we can thus switch between
first order and second order Maxwell equations; note that (Ek_l — ;Z)\J-Bk_l) SOk =
divy, ((Eg—1 — DT Br—-1) Gk)-

Now we proceed like in Section and first want to bound C}-norms. We find

15 (D0 < C/O (1Ex—1 (Ml + 1 Be-1 (1)l ) d7
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2.2 Solvability of a linearized system

and
1Bk ()]l + 1 Br ()]l <C + C/O (e (Tloo + 1Ek=1 (Tl + [1Br—1 (7)ll ) d7

<Cc+cC / (1Bt (P oo + [ Bos (7)) dr
’ (2.3)

which implies that Ej,, By, and hence fj, are bounded in ||-|| . For the first derivatives
we arrive at

t
102 pfx (W)l oo < C + C/O 102 Ex—1 (")l + 102 Br-1 (1)l ) d7

and
10t,2 Bk ()| o + 10,2 Bk (8[| o

t
<C+Cny (1102 fillo9) +C / (1020 Erms ()]l oo + 1010 Bir (7)ll) dr

t
<C+ C/ (10t Er—1 ()l + 1022 Bi—1 (7)ll.,) dT-
0

Thereby and by the Vlasov equation all first derivatives of fi, Ex, and By are bounded
by C.

Note that the assumptions on G, h, and g were exploited. On the one hand we could
estimate HGk”cga |hklly, and ”916”0; by C, on the other hand the source terms of the

Vlasov equations vanish for |p| > 2r uniformly in k.

Next we have to show some Cauchy properties of the sequences. Use the notation

like in the previous section, but now denote Kj := Ey — p- By, and 2} = HG%CHC2 +
b

|7l + |9k]| o2 - Then we have the system
b

Oft+D 0uft+Gr-0pft =—GL -0 fi + KLY - gr + K11 - g,
8,5E,l€71 - 8@31[@ = jf}c,l - hf’c,lv
OBy + 811312 =- jf}C,Q - h§€727

01 B}, + 0y, Ex 2 — 0, E1q =0,
(f&» Bk, Br) (0) =0

which yields the estimates

t
Il <cs+c [ (15 @l + 1B L) i
and on the other hand

1B: @)l + 118 Ol
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2.3 Differentiability

t
<o+ [ (1Al +1ES Ol + B2 0L )
<ci+o [ (1B @l + 1B o)) dr

These are the same estimates as in Section so we conclude again that ( fx, Fx, Bk)
is a Cauchy sequence in the Cp-norm.

Unfortunately, we can not show the Cauchy property with respect to the C}-norm.
For this we would first have to bound second derivatives of fr which would require
control of second derivatives of gi. This, on the other hand, would require a smoother
g. But for the later application we will not have more regularity of g than C’l}.

Thus we have to proceed differently: Since fy, Ej, and By are bounded in the C}-
norm, their first derivatives converge, after extracting a suitable subsequence, to the
respective derivatives of f, F, and B in L* in the weak-*-sense. Because of

[ ] [ -outo=G-ausoriviz

S/OT//|GkG|3,,fk|<ﬁ|dpdxd7+ /OT//G(apfkapf)sodpd:pdT
/OT//G (Opfr — Opf) ¢ dpdadr

for k — oo for any test function ¢, (f, E, B) satisfies pointwise almost every-
where; the other terms are obviously easier to handle. Altogether we have found a
solution of of class C' N W1, Furthermore it is also of class H' because all
sequence elements have compact support with respect to z, p or x respectively uni-
formly in t and k; for the fields recall the representation formula.

For uniqueness, let (f1, E1, B1) be a solution of too and define fy := f — f1
and so on which yields

<C|Gr = Gl el + =0

Ofo+D 0ufo+G-0pfs=(E2—p-Bs) - g,
OtBoy — 02y Bo = — jy, 1,
OiFo 2 4 0y, Ba = — jy, 2,

0y Bo + 0y, B2 — 0y, Fa 1 =0,
(f2, E2, B2) (0) =0.

Applying Theorem this instantly implies that f, E, and B vanish.

2.3 Differentiability

We want to study the differentiability of S: V — C (0, T; L? (R4)) xC (0, T; L? (RQ))?’.
Let U € V and let 6U € V be some perturbation. In the following denote (f, E, B) =

60



2.3 Differentiability

S(U) and (f,E,B) = S(U 4 6U). The candidate for the linearization is S’ (U) §U =
(6f,0F,5B) where the right hand side satisfies

OOf +P-0,6f + (E—p B)-9,0f =— (6E —p-0B) - 9,1,
Ot0F) — 0,,0B = — jsp1 — U,
D10Ey 4 0,,0B = — jsp0 — 0Us,
D16B + 8,,0Fy — 0,,0 B =0,
(6f,0E,0B) (0) =0.

Indeed, this system can be solved because of G := E—pB € C? (note that div,G = 0),
g :=—0,f € C}, and h := 6U € V. First we note that S’ (U) is linear and that by
Theorem

T
|K5ﬁ5ﬂu53nhmewasz{L 18U (8)] 2 dt < C 6Tl (2.4)

which says that S’ (U) is bounded. The last inequality holds because of supp 06U (t) C
Br.
The next step is to show that S (U +6U) — S(U) — S’ (U)oU is ’small’. Defining
f:=f—f—46f and so on and subtracting the respective equations yield
Of+p-0.]+(E-p"B)-0,] =— (E~5"B) - 0,f
~(E-E B-5) 5, (),
OB — 02, B =—j; 4,
atE2 + azlé = - jﬁgv
0B + 0y, By — 8y, E1 =0,
(ﬁ E, E) (0) =0.
Applying Theorem [2.2] we conclude
|(7.£.5)

e

T
<c [ Jald
0
where
w=—(E-E—5*(B-B)) 0,(F—1).
Here we have to exploit the Lipschitz property of S. Theorem yields

la@®llz> < C([E = Bl + B = Bl ) [F = fle; < ClI8UI-

Note that for the first inequality the fact was used that f and f have compact support
in # and p uniformly in ¢ and independent of ||§U||,, for, for instance, ||§U|,, < 1
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2.3 Differentiability

(recall Theorem and the reasoning in Section [2.1]).
Finally we arrive at

|(7..5)

which proves part of i) of the following theorem:

< CleUl, (2.5)

HC(O,T;L2

Theorem 2.3. i) S:V - W :=C (O,T;L2 (R4)) x C (O,T;L2 (RQ))?’ 18 continu-
ously Fréchet-differentiable.

it) ®:=poS1: V= C (O, T; L? (Rz)), U — py is continuously Fréchet-differentiable.
iii) ® = poSy: V — C (O, T; L' (RQ)), U — p¢ is continuously Fréchet-differentiable.

Proof. For part ii) define
' (U) U = pss. (2.6)

Now it is crucial to bound the p-support of f, f, and Jf by a constant C' > 0 only
depending on T, the initial data, L, and ||U||,,. We first consider 6 f. The control
of the p-support in holds for all iterates and hence for df. The constant there
only depends on T, |G|, = HE fﬁJ-BHOO, the p-support of d,f, and L. Because
of Theorem the absolute values of the fields £ and B and the p-support of f
are controlled by some constant only depending on 7', the initial data, L, and ||U||,, .

Hence we have together with (2.4)
2\ 2 1
dx> <C (//|5f|2dpdac> <clsuf,

93y (D2 = (/'/cv dp

which implies that @ (U) is bounded. Furthermore the p-supports of f and f only
depend on T, the initial data, L, and ||U]||,, (for again ||6U||,, < 1 for example). Hence

the same assertion holds for f = f — f — §f and therefore with (2.5)
Y > \4
e (/‘/fdp da:) gc(//m dpd:c) <clsu? .

Together with the equality
O (U +0U) =@ (U) - @' (U)0U = py — ps — pss = Py

(20

this instantly yields that ®' (U) is indeed the Fréchet-derivative of ® in U.
Part iii) is an instant consequence of ii) and the support assertions discussed above.

The derivative of ® is given by (2.6) as before.
To show continuity of S’, let 6V € V' with [|[6V]|,, < 1. We have to investigate

(f.E,B) = (f',E",B") — (f° E°,B°) :== 5" (U +6U)§V — " (U) §V.
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3.1.1 Control space

Applying the previously given formula for S’ we arrive at
nf+p-0.f+(E—-pB)-0,f =— (E—p"B)-0,f — (E°—p"B°) -9, (f - f)
—(E-E-p*(B-B)) 0,f°,
atEl - aCL‘QB = jﬁla
atEg + (%CIB = — jf,2’
0B + 0y, i — D, iy =0,

(F.E.B) (0) 0.
By (2.2) and the conclusion after (2.3) we know that the p-support of f* and the
absolute values of E° and B° are controlled by a constant only depending on T,
the initial data, L, ||U||;,, and [[6V],, (the latter can be neglected, of course). The
dependence on some terms in f, E, and B can be eliminated like in the beginning
of this proof. Hence, proceeding as before and using Theorem and the locally
Lipschitz continuity of .S, we conclude
where C only depends on T, the initial data, L, and ||U||,,. This leads to

15" (U +0U) = 8" (W)l v,wry < C 0Ty,

which says that S’ is even locally Lipschitz continuous.
Using the assertions for the p-support of f and f! (controlled by a constant only
depending on T, the initial data, L, and ||U]|,, if ||6U|,, < 1) we conclude

prHC(O,T;L2) ' prHC(o,T;Ll) = Hf|‘C(O=T?L2) < CloUlly

as before. This implies that ®' and T are locally Lipschitz continuous. O

3 Optimal control problem

Now we consider some optimal control problems. We want to minimize some objective
function that depends on the external control U and the state (f, E, B). The control

and the state are coupled via (CVM)) so that (CVM) appears as a constraint.

We first give thought to a problem with general controls and a general objective func-
tion. Then we proceed with optimizing problems where the objective function is ex-
plicitly given and where the control set is restricted to such controls that are realizable
in applications concerning the control of a plasma.

3.1 General problem
3.1.1 Control space

Until now we have worked with the control space

V={UewW?>'(0,T;Cy (R*R?)) | U (t,z) =0 for |z| > L}.

63



3.1.2 Existence of minimizers

To apply standard optimization techniques it is necessary that the control space is
reflexive. Hence we choose (y > 2)

U:={UeH?0,T; W (R} R?)) | U (t,z) =0 for |z| > L}

equipped with the H? (O,T; WS’“’)—norm. By Sobolev’s embedding theorems, U is
continuously embedded in V.
In accordance with Theorems and we have already proved that there is a
continuously differentiable control-to-state operator
S:V - (cg (10,7) x RY) x CF ([0, T] x R%;R?) x CF ([0, T] x R?), ||-|IC(O’T;L2)) :
U H (f’ E’ B) )
such that (CVM) holds for (f, F, B) and control U. Furthermore, the map
U py

is continuously differentiable with respect to the C (07T; Lz)— and C (O,T; Ll)—norm
in the image space. Moreover, the C’E—norm and the z- and p-support of (f, E, B) are
controlled by a constant only depending on 7', L, the initial data, and ||U]|,,.

By U — V, these assertions also hold with U/ instead of V.

3.1.2 Existence of minimizers

We consider the general problem

min o(f,E,B,U)
(f.B,B)e(C?*nH)* Ueu (GP)

st. (f,E,B)=S(U).
We have to specify some assumptions on ¢:
Condition 3.1. i) ¢: (C2NH')® xU — RU {0} and ¢ # oo,

i) ¢ is coercive in U € U, i.e. in general: Let X, Y be normed spaces; ¢: X XY — R
is said to be coercive in y € Y iff for all sequences (yx) C Y with |lyxlly — oo,
k — oo, then also 9 (xg, yr) — 00, k — oo, for any sequence (zx) C X,

ili) ¢ is weakly lower semicontinuous in the following sense: if (f, Ex, Bx) — (f, E, B)
in H* and U, — U in U, then ¢ (f, E, B,U) < liminf,_, . ¢ (fx, Ex, Bk, Ug).

These assumptions allow us to prove existence of a (not necessarily unique) mini-
mizer. We will first prove a lemma that will be useful later:

Lemma 3.2. Let (Uy) C V be bounded and (fi, Ex,Br) = S (Ug). Then, after ex-

tracting a suitable subsequence, it holds that:

i) The sequences (fy), (Ex), and (Bg) converge weakly in H' and H' (0,T;L?),
weakly-* in W1, and strongly in L? to some f, E, and B.
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3.1.2 Existence of minimizers

it) There is v > 0 so that f, E, B, and, for all k € N, fr, E, and By vanish if
lz| =7 or |p| = 7.

1) If additionally U — U in the sense of distributions for some U € V' for k — oo,
then (f,E,B) =S (U) and f, E, and B are of class C%.

Proof. By Theorem on the one hand, (fx, Ex, By) is bounded in the C}-norm.
On the other hand, fj vanishes as soon as |p| is big enough uniformly in k. Moreover,
f&, Ex, and By, vanish as soon as |z| is big enough. Hence (fi, Ex, By) is also bounded
in H' and in H' (0,T;L?). Together with the boundedness in C}, (fi, Ex, Bx) con-
verge, after extracting a suitable subsequence, to some (f, F, B), namely weakly in H*
and H' (0,T; L?), and weakly-* in W'°°. This proves ii) and part of i).

For the remaining part of i) (strong convergence in L?) we have to exploit some com-
pactness. This compactness is guaranteed by the theorem of Rellich-Kondrachov. By
the reasoning above, (fx, Ex, By) are bounded in H' and in fact, only a bounded sub-
set of the z- and p-space matters. Hence (a subsequence of) (fx, Ex, Br) converges
strongly in L? to the limit (f, E, B).

For iii), we have to pass to the limit in . First, the initial conditions are
preserved in the limit since H' (0,7 L?) < C (0,T;L?). Furthermore the Vlasov
and Maxwell equations hold pointwise almost everywhere for the limit functions: The
only difficult part is the nonlinear term in the Vlasov equation. To handle this, we
have to make use of the strong convergence in L? obtained above. We find for each
@ € C (]0,T[ x R*) that

T
/0 // ((Er — p*Br) - 0pfr — (E = p*B) - 0,f) ¢ dpdudt

<

/()T//(E_ﬁLB)'(apfk—c'?pf)cp dpdxdt

T
119l / / / (I — E| + | B — B)) || dpddt.
0

Both terms converge to 0 for k — oo since fx — f in H', E, — E, By — B in
L? and fy is bounded in C}. Therefore, altogether, (CVM)) holds pointwise almost

everywhere. Now we can apply Theorem to conclude (f, FE, B) equals S (U) and
is hence of class C7. O

Theorem 3.3. Let ¢ satisfy Condition , Then there is a minimizer of (GP).

Proof. We consider a minimizing sequence (fx, Ex, Bk, Ux) with (fx, Ex, Br) = S (Ug)
and

kli)ngo(b(fkaEkaBkak):m:_ ¢(f,E,B,U) € RU{~o0}.

= inf
veu,(f,E,B)=S(U)

By coercivity in U, cf. Condition ii), (Ug) is bounded in U and therefore in
V. Hence we may extract a weakly convergent subsequence (also denoted by Uy)
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3.1.3 Occurring problems

since H? (0,T;W?7) is reflexive. The weak limit U is the candidate for being an
optimal control. Of course, by weak convergence, U vanishes for |z| > L; hence
U € U. Because of Y — L' we also get U, — U in L' and hence U, — U in
the sense of distributions. Lemma yields (fi, Ex, Br) — (f,E,B) in H' (after
extracting a suitable subsequence) and (f, E,B) = S(U). Together with the weak
lower semicontinuity of ¢, see Condition iii), we instantly get ¢ (f, E,B,U) = m
which proves optimality. O

3.1.3 Occurring problems

In order to be able of examining some problem that is somehow application-oriented,
we first have to think about possible problems concerning the conditions on the ob-
jective function ¢. Especially the coercivity in U will make some trouble since the
U-norm is pretty strong. One can try to guarantee these conditions in various ways.
We give two examples and comment their disadvantages:

e The objective function contains some cost term of the control in the full Z/-norm
(or even a stronger norm), so that for example ¢ (f, E, B,U) = ¢ (f,E,B) +
lu ||i{ Then ¢ is obviously coercive in U € U. But typically in applications,
such a strong cost term makes no sense. For instance, the energy in the external
current U can be measured by its L2-norm (with respect to x). Therefore, a
cost term containing derivatives of even fifth order in space has no physical
motivation. Even if we ignore physical backgrounds and establish first order
optimality conditions for such a ¢ we would arrive at an equality containing all
derivatives controlled in . This means, we would have to solve a nonlinear
partial differential equation including z-derivatives of the optimal control up to
tenth order and additionally mixed with t-derivatives. A numerical approach
would hardly be successful.

e We add another constraint ||U||,, < K for some K > 0. Then %(f,E,B, U) =

& (f,E,B,U)+ xB, (U) (where x4 (a) = 0, ac4 for some set A) is coer-
0o, a¢ A

cive in U € U if for example ¢ > 0 (typically ¢ is indeed non-negative). Ignoring
the physical reasonableness of that constraint and rather concentrating on math-
ematical aspects we note that this approach would lead to first order optimality
conditions in which a Lagrange multiplier with respect to the new constraint will
occur. This Lagrange multiplier will be an element of the dual space of U which
is very irregular since U is very regular. Again, from a numerical point of view,
these conditions will be hard to handle.

On the other hand, we can not simply use a less regular control space. Firstly, we
need U — V to ensure that the control-to-state operator is differentiable; this will be
useful later. Secondly, U needs to be reflexive to extract (in some sense) converging
subsequences from a minimizing sequence. Here we should remark that we also could
demand W?P-regularity in time for p > 1 instead of H2-regularity which would allow
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3.2.2 Formulation

more controls if 1 < p < 2. However, working in a H?-setting (at least in time) is
more convenient.

3.2 An optimization problem with realizable external currents
3.2.1 Motivation

As the previous considerations suggest it would be nice if we somehow eliminated the
variability of the control with respect to the space coordinate. This can be achieved
by only considering controls of the form

N
Ult,z) =Y u;(t) 2 (R(a;)x + b))
=1

where the functions 0 # z; € Cf (R* R?) with z; vanishing for |z| > r; > 0 are fixed
and we only vary the functions u; € H?([0,77]), the angles of the rotation matrices
R (aj) = <C9S @7 TS Cand the translation vectors b; € R2.
sina;  cosay

From a physical point of view, this model describes an ensemble of N inductors with
'size’ r; that can suitably be placed in space initially by changing «; and b; but that
stay fixed in time. Since the size of a laboratory is limited, we assume |b;| < r for
some r > 0. Therefore, U is an element of V' if we set L =r+max{r; |j=1,...N}.
Each inductor generates a current z; at full capacity that is tangential to the plane
and that extends infinitely in the third space dimension. We control the system by
turning these inductors on whereby the capacity u; is suitably adjusted as a function
of time. Hence we will have to consider an additional constraint |u;| < 1. Physically,
the consideration only of controls of the above form is no substantial restriction at all
because only such control fields are realizable in applications.

3.2.2 Formulation
The problem to be considered is the following:
. 1

min =

(£.B.B)e(C?nH")’ e H? (j0,1)N, 2
aeRN be(R?)"Y

N
2 ﬂ 2
ls = Pallre o myxeey + 5 doc (H“J'HB([&TJ)
j=1

2
+61 ||at“j||iz([o,T]) + B2 Hf)f“me([o,T])) (P1)

N
j=1
luj|] < 1,065 <rj=1,....,N

where ¢; 1= ||2j]| 2 g2 g2y We give some comments on the objective function:
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3.2.3 Existence of minimizers

e The charge density shall be as close as possible to some given desired density
pa = pa (t,z) € L? ([0,T] x R?). One could consider the L*-norm of some f — fy
instead but the space coordinates of the particles are of actual interest rather
than their momenta.

e Furthermore, the cost term containing the control shall be as small as possible.
We have to use the full H?-norm of the u; in the regularization term because

thereby the objective function is coercive in u € H? ([0, T])N. On the other hand,
from a practical point of view, one would like to have the u; nearly constant
rather than oscillating and therefore having to turn the inductors on and off
quite often. However, the L2-norms of the u; itself are more interesting than the
ones of their derivatives. Hence it is suitable to choose 0 < 1, 82 < 1.

e The parameter 8 > 0 indicates which of the two aims mentioned above shall
rather be achieved.

3.2.3 Existence of minimizers
Section is useful for showing existence of minimizers of (P1).
Theorem 3.4. There is a minimizer of (P1).

Proof. The objective function, abbreviated by ¢ = ¢ (f, E, B,u,«,b) = ¢1 (f) + ¢2 (u
(let ¢1 be the term with py — pg and ¢2 be the sum), is coercive in u € H? (jo, TN
because of

o(f,E,B,u,a,b) >

™

min {1, 81, Bo} min{c; | j =1,..., N}|[ullty2)

N L L

where [Jul| g2y = 3254 ||uj||H2([0 r))- Hence, considering a minimizing sequence

ks Bk, B, u”, o, we use upper indices for u*, o an o avoid confusion
Ey, By, u*, o, bk indi f koak d okt id fusi

with their components) with (fx, Fx, Bx) = S (Eévzl u?zj (R (a?’) -—I—b?)), uﬂ <1,

and ’bﬂ < r, we conclude that:

e (u*) is bounded in (H2)N; hence v* — v in (HQ)N for some u € (HQ)N for
k — oo,

e (a*) is bounded in R since we may assume a? € [0, 27] without loss of gener-
ality; hence a® — o in RY for some o € RY for k — oo,

e (b*) is bounded in (R2)N; hence b* — b in (RQ)N for some b € (RQ)N for
k — oo,

possibly after extracting a suitable subsequence. The constraints |u;| < 1 and |b;| < r
are obviously preserved by weak and strong convergence, respectively, and the fact
that closed convex subsets (of normed spaces) are weakly closed.
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3.2.4 Differentiability of the objective function

Furthermore, the sequence (Uy) := (Ejvzl ubzj (R (af) - —i—b?)) is bounded in V be-
cause of H? ([0, T]) — W?21([0,T]) and Hz] (R (a;?) . +b;?) Hcg = ”Zjncg‘

Now we would like to apply Lemma To show U, — U := Zjvzl u;jz; (R (aj) - +b;)
in the sense of distributions, let ¢ € C¢° (]0, T[ x RQ). We have by Holder’s inequality

/OT/(Uk—U)cpd:Cdt
2

il e VP f 4 R (o)) 3 Rz 1))

/oT (1 =) /Zj (R () x +b;)  dawdt

Here, the first term converges to 0 for k¥ — oo because of u¥ — w in (H2)N. The

same holds for the second term since (uf) is bounded in L? and Zj (R (af) . —&—bf) —

zj (R (a) - +bj) in L for each j = 1,...,N; the last property is a consequence of
a®f — a and b¥ — b since we have by the mean value theorem

/|zj (R (af) erb?) -z (R(oy)z+ bj)| dx

<UDzl [ (1R (05) Rl ol + o~ by o
<Dzl 7L (IDR|| o L + 1) (|of — o] + 0¥ = b;]) .

Therefore, Lemma [3.2]is applicable and delivers some f, E, and B so that (CVM) is
preserved in the limit. The remaining part is to show that U is indeed an optimal

control. Firstly, v* — w in (HZ)N instantly implies ¢ (u) < liminf,_, o @2 (uk)
Secondly, by Lemma([3.2] all f; and f have compact support with respect to p uniformly
in k, and fi — f in L?. These properties yield p e — Py in L? by Hoélder’s inequality
and therefore ¢ (f) = limy,_, o ¢1 (fx). This finally proves the desired optimality. O
3.2.4 Differentiability of the objective function

Next we study the differentiability of the objective function. To this end we like to
exploit Theorem First we have to prove some technical lemmata:

Lemma 3.5. i) Let K C R™ be open and bounded. Then the map

H:R™" x R" =C! (K;R™),
(A,c) »A - +c

is continuously Fréchet-differentiable for each | € Ny.
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3.2.4 Differentiability of the objective function

it) Let g € C§+2 (R™;R™) and K C R™ be open. Then the superposition map

My: Cf (K R™) —=CF (K;R™)
h—goh

18 continuously Fréchet-differentiable for each | > k.

i11) Let g € Cf” (R™;R™) and K C R™ be open and bounded. Then the map

Gy: R x R™ »OF (K;R™),
(4,¢) =g (A +c)

1s continuously Fréchet-differentiable with derivative
Gy (A, c) (0A,6c) = Dg (A - +c) (0A - +dc).

Proof. Note that H is well defined by K being bounded. For this very reason H is a
bounded linear operator and hence of class C! with derivative

H' (A, c)(6A,6c) =5A - +éc.
For part ii), let
M, (h)6h = Dgoh-5h
be the candidate for the linearization. My (h) is bounded because of
IDg o h-dhlcy < € (gl Il ) 18l

Furthermore, we have by mean value theorem
1
M, (h+6h) — M, (h) — M; (h) 6h = / (Dg (h(-) +toh (-)) — Dg (h(-)))dt-6h(-).
0

The C,f—norm of this expression can be estimated by

2
C (lglagse s Wl ) 190113

since D7g is Lipschitz continuous for 0 < j < k. Hence M, is differentiable. To prove
continuity of M, we examine

M, (n) 6h — M, (h) 6h = (Dgoh—Dgoh) - 65h.
Again, by Lipschitz continuity of D¢ we conclude
| M (R 61 — My () 68 o < € (llglcpes ) I1E = B oy Nollcy

which proves even Lipschitz continuity of M.
Part iii) follows from i) and ii) by a simple application of the chain rule. O
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3.2.4 Differentiability of the objective function

Lemma 3.6. The map

Q: W2 ([0,T]) x Cy (R?) =V,
(h,q) —hgq,

is continuously Fréchet-differentiable with derivative

Q' (h,q) (6h,0q) = q6h + hdq.

Proof. @ is bilinear and bounded. O

Now we can apply the chain rule to conclude:

Theorem 3.7. i) The solution map

=: (H2([0,7])" xRN x (R?)Y = (0,T; L% (R*)) x C (0,T; L* (R?))?,
(u,,b) = (f, E,B) = S (Zum - +b; ))

is continuously Fréchet-differentiable and Z' (u,a,b) (du,da, 0b) = (6f,0F,0B)
satisfies

OSf+D-0,6f + (E—p'B)-0,0f =— (§E —p-0B) - 9,,
0By — 9,,0B = — jsp1 — 0Uy,
016 Fy + 0, 0B = — Jsf2 — 0Us,
O10B + 0,,0Fy — 8,0 E1 =0,
(6f,6E,86B) (0) =0

where
N
Z u; Dz (R () - +bj) (R (aj) dayj - +6b;) + zj (R (rj) - +bj) du;).
The maps
v (H2([0,7)))" xRN x (R?)Y - (0,T; L* (R?)),
(’LL, a, b) —=pf
and

T (H2(0,7])" xRN x (R?)Y =C (0,T; L' (R?)),
(u,,b) —py

are continuously Fréchet-differentiable and ¥’ (u, o, b) (du, dcr, 6b) = pss with the
Of from above.
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3.2.5 Optimality conditions

i11) The objective function

é: (H*(0,7)" x RN x (R?)™ SR,
N
I 8
() =3 oy = pallfe + 5 " ¢ (Ilusll
j=1

61 1005 50 + B || 0P .

1s continuously Fréchet-differentiable and

N

@ (u,0,b) (6,80, 8b) = (pr — pa, psg) = + B> s (g, 0uz)
j=1

+ 51 (8tuj, 8t5uj>L2 + ﬂz <6t2uj, 8§5uj>L2)
with the 6 f from abowve.

Proof. For i), using the chain rule, Theorem Lemmata (with K = Byp; recall
that all possible controls vanish for || > L) and 3.6} and the formula for the respective
derivatives given there, and the obvious fact that 5 +— R (f) is differentiable leads to

= (u, a, b) (du, da, 6b) = 8" (U) U

where
N
U= uz(R(ay) +b))
and
N
0U = Q' (uj, 2 (R(ay) - +b))) (5%‘, G, (R(ey), b)) (R () 504j75bj))-

The formulas of ® and ® in Theorem imply ii).
Part iii) is simple computation; note that C' (0,7’; L* (R?)) < L? ([0, T] x R?). O

3.2.5 Optimality conditions

Now we want to deduce first order optimality conditions for a minimizer of (P1). First
we write (P1) in the equivalent form

N
. 1 2 B 2
min — | ¥ (u, ,b) — pq + = c~(u»
we? (0.1, 2 W ( )—p ||L2([0,T]><]R<2) 2 ; 5 J||L2([0,T])

N
aERN,bE(]R2) (Pl’)
By |)? 02 ||
8110wl 2 o, 77 + B2 I t“JHLz([o,T])

s.t. —Uj+1ZO,UJ'-F].ZO,’Ij—lbj‘z20,j:17...,N.
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3.2.5 Optimality conditions

Here, the objective function ¢ = ¢ (u, o, b) = ¢ (Z (u, @, b) , u, a, b) is a function of only
the control.

The constraints will lead to corresponding Lagrange multipliers. In general, to prove
their existence, some condition on the constraints is necessary. On this account we
state a theorem of Zowe and Kurcyusz, see [18], which is based on a fundamental work
of Robinson, [15]:

Lemma 3.8. Let X, Y be Banach spaces, C C X non-empty, closed, and convex,
K CY a closed convex cone (K is a ‘cone’ means 0 € K, x € K = Ax € K VA > 0),
¢: X — R Fréchet-differentiable, and g: X — Y continuously Fréchet-differentiable.
Denote for A C X (and similarly for ACY)

At ={2* e X*|2*a>0Vac A}
and denote forx € X andy €Y

Cz)={A(c—xz)|ceC,)>0},
K(y)={k—Xy|keKA=>0}.

Let T € X be a local minimizer (i.e., a local minimizer of the objective function re-
stricted to all feasible points) of the problem

min ¢ ()

reX
st.xeC,g(x) € K,

and let the constraint qualification
g @C@-K@)=Y (CQ)

hold.
Then there is a Lagrange multiplier y* € Y™ for the problem above at T, i.e.

i) y* € KT,
i) y*g(T) =0,
iii) § () —y* og ()€ C@)".

This lemma is applicable to our problem (P1): By Theorem our objective
function is differentiable from

X = (B2 ([0,7])" xRN x (R?)"

to R. Writing

,u” a’ b) )

x
C =X,
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3.2.5 Optimality conditions

Y =(C([0,1))*" x RN,
K={(w,c) €Y |w; >0,1<i<2N;¢; >0,1<i< N},

g (x) :(—ul+1,...7—uN+1,u1—|—1,...,uN—|—1,r2— |b1|2,...,r2—|bN|2),
our constraints read
reC,g(x) e K.

Of course, K is a closed convex cone and g is continuously Fréchet-differentiable. The
crucial condition on the constraints can be verified for each feasible z = (u, o, b) € X
(not necessarily a minimizer). In fact, this is quite easy since the constraints are
harmless. It holds that

g (x) 6x = (—=du, du, —2by - 6by, ..., —2by - Sbn); (3.1)

note that H? ([0,7]) — C ([0,T]).
To show (CQ) we have to find dz = (du,da,db) € X, A € Rsg, and (07,07,1) €

2
((C’([O,T]))N) x RN with 9;-', 0; >0, and n; > 0, satisfying
(—0u, du, —2by - by, ..., —2by - 6by) — (67,07, n)

+A (—u—i— Lu+1,7% - |b1\2,...,7“2 — |bN|2) = (w+,w_7c) (3.2)

2
where (wt,w™,c) € ((C’ ([O,T]))N> x R¥ is given. First note that the choice of da
is arbitrary since it does not appear in the equation above. Next, we abbreviate

91 := max HerH ,
i=1,... N " oo
Y7 = max sz_H .
i=1,..,N 0

Now let

0F = (9" —u;+1) 0 — ],
9; :(19_+uj+1)0— i
1
du; :—5(19+(u3+1)+197(u]—1))0

with o > 1 to be chosen later. Obviously, A > 0 and du; is of class H?. Furthermore,
0;, 0; € C([0,7]) and are > 0 by choice of 9T, 97, and feasibility of x. Thereby, the
equation

(=0u,6u) — (67,607) + A(—u+Lu+1)= (v, w")
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3.2.5 Optimality conditions

can easily be verified and implies part of (3.2). For the remaining part, let

1
o> — max |c;|+1

r2 j=1,..,N
and consider two cases for each j = 1,...,N. If b; = 0 choose §b; arbitrarily and
nj = Ar? —¢;. If b; # 0 choose b; := —%lbbﬁ and 7; == A (7'2 — \bj|2). In both

cases, 1; > 0 either by choice of ¢ or by feasibility of =, and moreover
721)3 . (;bj — 77j + )\ (T2 — |bj|2) = Cj.

Altogether we conclude that, indeed, holds and hence is satisfied for any
feasible x € X.

We should remark that for convex constraints, commonly, the less general Slater’s
condition is verified. For this, there has to be an interior point of the cone K; to be
more precise, Slater’s condition demands the existence of x € X with g (z) € intK. In
our problem, the existence of such a point is guaranteed by the fact that the cone of
positive functions has a non-empty interior in C ([0, T7).

Furthermore, it will be more convenient that we have C ([0, T]) in the first components
of Y instead of H?([0,T]) because under this condition a corresponding Lagrange
multiplier is an element of the dual space of C ([0, T]) which is more regular than that
of H2([0,T]). It would be even better if we could use L? ([0, T]) instead of C ([0, T]),
but in such a setting the construction above does not work since ||w|| ., is not finite in
general for a L?-function w. Also Slater’s condition is not satisfied since the cone of
positive functions has empty interior in L2

With Lemma,3.8/ we can deduce the following KKT-conditions for a minimizer of (P1’).
We denote by M ([0,T]) = C ([0, T])" the set of regular Borel measures on [0, 7).

Theorem 3.9. Let T = (E, a, 5) be a minimizer of 1) Then there are Lagrange
multipliers /\j (corresponding to the constraint u; < 1), \; € M ([0,T]) (correspond-
ing to u; > —1), pu; € R (corresponding to |b;| <r), j=1,...,N, satisfying:

i) (Primal feasibility):
|ﬂj| <1, |E]| <.
ii) (Dual feasibility):
+ —
)\] 7A] Z 0;
i.e.
+ —
/\j v, )\j v>0
for allv e C([0,T]) with v >0, and

pj = 0.
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3.2.5 Optimality conditions

iii) (Complementary slackness):

w) (Stationarity): For all (§u,dc, 6b) € (H? ([O,T]))N x RN x (RZ)N it holds that

<Pf - pdaP6f>L2

N
+ B e (W, 0u5) 12 + B1 (04T, 0pbu;) o + B2 (075, 07 0u;) )

j=1

N

j=1

where 6 f is obtained by solving

OSf+P-0.6f + (E—p'B) 0,0f =— (6E —p0B) - 9,f,
0i0E — 0.,0B = — jsp1 — 0Uy,
O0Es + 05,0B = — jsf2 — 0Us,
00 B + 0,02 — 0,01 =0,

(6f,0E,6B) (0) =0

N
oU = Z (ﬂjDZj (R (aj) . -l-E]) (Rl (aj) (SCVJ' . —‘r(sbj) + z; (R (aj) : +B]) 5Uj)

and (?, E, E) satisfying
0uf +0-0uf + (E—~p*B) - 9,f =0,
OWE = 0:,B =~ j7, — U,
OFy + 0, B = — Jj,g —U,,
0B + 0y, Ey — 0,,FE1 =0,
(7.5.5) 0 - (/.£.5)
with

o N
U= Zﬂﬂj (R (@) - +b;)-
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3.2.5 Optimality conditions

Proof. First, i) simply states the feasibility of the minimizer.
The assertions ii)-iv) correspond to i)-iii) of Lemma The Lagrange multiplier
y* € Y* obtained there can be written as

y*: ()‘rv"°7>\E7)\177"'a)‘]7\/'7/1‘17"'31uN)
with )\jf, A7 € (C([0,77))" = M([0,T]), and u; € R. The acting on some y =

(wf‘,...,wj\',,wl_,...,w&,cl,...,cN) €Y is given by

N
yry = Z ()\;w;f + )\;w; + ,ujcj).
j=1

Therefore y* € KT implies ii) by only considering some (0, . ,(),wj+7
(O,...,O,wj_,O,...,O)7 or (0,...,0,¢;,0,...,0).
Next, y*g () = 0 leads to

0,...70), or

N
> ()\j (=) + A7 (@ +1) + py (7"2 —~ ]Bj\z)) =0.
j=1
By i) and ii), all summands are non-negative and therefore have to vanish which implies
iii).
Fi)nally, 8 (Z) —y*og (z) € C(z)" leads to iv) because of
C(@)" =X+ = {0},
Theorem [3.7)iii), and (3.1)). O
Conversely, we can ignore the constraint g () € K and define the feasible set

C::{x:(u,o&,b)eX||U]|S1,|bJ|ST,]:1,.,N}

which is a convex and closed subset of X. Now we can instantly apply Lemma [3.8] (to
be precise, put K =Y = {0} and g = 0 there). Only part iii) delivers a non-trivial
assertion:

Theorem 3.10. Let T = (E, a, 5) be a minimizer of , Then it holds that:
1) (Feasibility):
;| < 1,[b;] <.
i) (Stationarity): For all (u,a,b) € C, and defining
(du, dav, 6b) := (u—U,a —@,b—g) ,
we have

0< <Pf— pd7P6f>L2
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3.2.6 Adjoint equation

N
+ ﬁzcj (U, 0u;z) 1o + Br (04, 0pbus) o + Ba (075,07 0uy) )

j=1
where 6 f is obtained by solving
OSf+P-0,6f + (E—p'B) 0,0f =— (6E —p'0B) - 9,f,
OOE) — 0,,0B = — jsg1 — OUL,
016 F + 0,,0B = — Jsf2 — 6Us,
010 B + 0,0y — 0,01 =0,
(6f,0E,6B) (0) =0

N
0U = (u;Dz; (R (@) - +b;) (R’ (@;) 6oy - +6b;) + 2; (R (@) - +b;) 6u;)

and (?, E, E) satisfying

Of +0-0:f+ (E—DpB) - 0, =0,
WEr = 0:,B =~ g7, — U,
02+ 0, B = — jj, — Us,

0B + 0y, B3 — 0, E1 =0,

(?7E7§) (0) = (foa-évé)
with

o N
U= Zﬂjzj (R () - +b;).

3.2.6 Adjoint equation

Considering the optimality conditions above, we note that we have to compute a/ and
thus the whole derivative Z’ at an optimal point Z. However, there is a more efficient
way, the adjoint approach.

Considering a general setting, we let y be the state and x the control. Furthermore
write the differential equation in the form F'(y,z) = 0 € Z where Z is a Banach
space. Moreover assume that there is a differentiable solution operator y (-) so that
F(y(z),z) = 0. Finally, let the objective function be given in the form ¢ (z) =
6 (y (), 2).

Assuming in the following that all derivatives exist in a proper sense, we first compute

/!

¢ (2) =0y0 (y (x),2)y () + 0.0 (y () ,2) =y (2)" 0yo (y () ,2) + 020 (y (2) , ).
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3.2.6 Adjoint equation

Therefore, we only need y' (z)* 9,6 (y (z),z) and not the whole derivative 3’ (). On
the other hand, differentiating F’ ( (z),x) =0 yields
) =

0=0,F (y(z),2)y (x) + 0. F (y(z),2) = ¢ (2)" 9, F (y (x),2) + O, F (y (x) ,z) .
Now we define the adjoint state ¢ € Z* as the solution of the adjoint equation

OyF (y(x),2)" q= -0, (y(z), ).

Of course, the solvability of this linear, inhomogeneous differential equation (system)
has to be examined.
Thus we conclude

0xF (y (z), )" q =q0. F (y (v) ,2) = —q (¥ (2)" 0, F (y (x) , 7))
=—y' (2) ( W (y (z) )" q)
=y ()" 0y (y () , ).

Therefore, following the adjoint approach, we firstly solve the adjoint equation

O F (y(x),2)"q=—0,¢(y(z),z)
and secondly compute

/

5 (‘T) =0 F (y (x)vx)*Q+aw¢ (y (x),x) (33)

In order to apply these considerations to our problem we have to define F' suitably.
Here, ’'suitably’ means that the differentiability of F' and the differentiability of the
control-to-state operator E have to fit together. In other words, F'(y,x) should be
differentiable with respect to the C (0, T; L2)—norm in the state variable y = (f, E, B).
In the following let

Mg :={(f,E,B) € C2([0,T] x R*) x C2 ([0,T] x R*R?) x CZ ([0,T] x R?) |
f(t,z,p) =0 for all [p| > R}
for some R > 0, and let Mg be equipped with the C' (O, T L2)—norm. Here, the index

'¢’ means ’compactly supported with respect to « and p’ (or = respectively).
Furthermore let X be as in the previous section and

Z = H' (0, 7] x R*) x (H" ([0,7] x R2)*)3 x L2 (R x (12 (R2)*)3
Now define
Fr: Mpx X - Z
via

Fr ((fanB) y (uvavb)) (gvh17h2vh3valva2va3va4)
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3.2.6 Adjoint equation

< / // 09+ 0rg + (E— D' B) - 0pg) f dpdudt

+(9(T), F(T)) 2 — {9 (0), F(0) 2

/0 / (—E10:hy + By, hy + jpahy + Urhy) dzedt
+ (ha (T), Ev (T)) 2 = (h1 (0), E1 (0)) 12,

/OT / (—=E20;ha — B0y, ho + jf,2ha + Ushs) dadt
+ (h2 (T), B2 (T)) 2 — (h2(0), E2 (0)) 2,

/T / (=Bdyhs — B2, hs + E10,,hs) dzdt

T),B(T )> 2 = (h3(0), B(0)) 2,

hs (
// (/) = /) ar dpda, /(El (0)~ Er ) az dm,/ (B2(0) - B) as da,
/ (B(0) - é) ay dw)

where
U= Zujzj - +b;).

After several integrations by parts, it is obvious that (f, E, B) solves with
control U iff Fr ((f, £, B) , (u,a,b)) =0 for any R > 0 with supp, f C Bg.

Since no derivatives of the state y = (f, F, B) appear above and the state is of class
Cy, 0, FRr exists and is given by

8,Fr ((f,E,B), (u,a,b)) (8f,0E,8B) (g, h1, ha, h3, a1, as, az, as)

( / // ((0eg+D 09+ (E—P"B) - 0,9) 6f + (0E — p*0B) f - 9,9) dpdxdt
(T),0f (1)) 2 = (9(0),6f(0)) 2,

/O / (—8E10;hy + 8By, hy + jspah) dedt

+ {7 (T),0E1 (T)) 2 = (m1(0),6E1 (0)) 2,

/OT / (=6 E20;ha — 6 B0y, ha + jsy,2h2) dudt

+ (7 (T),0E> (T)) 2 — (h2(0),6E2 (0)) 2,

T
/ / (—6Bath3 - 5E28I1h3 + 5E18m2h3) dxdt
0
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3.2.6 Adjoint equation

+ (s (1), 0B (T)) 2 = (h3 (0),0B(0)) 12,

/ / 5F(0)ar dpda, / 5By (0) as da, / 5By (0) as da, / 5B (0) as dx)

for (6f,0E,0B) € Mp. Note that it is crucial that f vanishes for |p| > R so that for
i = 1,2 the linear map

(f,E,B)H/T/jf,i-dxdteHl ([0,7] x R?)"
0

is bounded by

T
/ /jfﬂhl dxdt
0

and hence differentiable.
On the other hand we have

ay¢((faEvB)7(uvaab)) (5fa5Ev(SB) = <pf _pd7p5f>L2 .

< C(T, R) [ fll 0,2 Nhill g

Here again, the support condition given in the definition of Mg is important to estimate

T
‘/ /(Pf — pa) psy dxdt
0

< C(T,R)llps = pallp2 16flco,riz2)

and

T
| [ s deat < @R 16512 0 -

Now we search for an adjoint state

q= (gvh17h27h37a17a'27a'37a'4)

ez* = H" ([0,T] x RY) x (H" ([0,T] x R?))® x L* (RY) x (L* (R?))’
satisfying

8yFR(y(x)vx)*q: - y¢(y(x),x)

In other words, after integrating by parts once,

T
— / // (Og+D- 09+ (B fﬁJ‘B) - Opg — AT (Prhy + P2he)) 0 f dpdzdt
0

T
+/ / (—at]h + Oz, hs + /gc’)plf dp) 0F dxdt
0
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3.2.6 Adjoint equation

T
+/ / (-athz — 8m1h3 + /gamf dp) 5E2 dxdt
/ /( Oshs + Ogyh1 — Oy, ha — /gpi-a,,f dp) 0B dxdt

(g(T),6f(T)) 12— (9(0) —a1,6f(0)),2+ (h1 (T),0E1 (T)) =
< 1(0) —a2,0E1(0)) 2 + (ha (T) , 6 B2 (T)) 2 — (h2 (0) — as, 62 (0)) 1
+ (h3 (T),6B(T)) > — (h3 (0) — as,0B(0)) 1

,/0 //M(pffpd)af dpdzdt (3.4)

for all (0f,0F,5B) € Mg. Therefore the adjoint state solves the adjoint system

hg+D-0z9+ (E *ﬁLB) - Opg =47 (D1h1 + D2h2) + 47 (py — pa) ,

Oy — Duyhs — / 40y, dp,
Ohs + Ogy hs = / 90y f df, (Ad)

~1
8thfS - afEth + axth = - /9]3' . apf dplv
(9, h1, hay hs) (T) =0

for |p| < R. Since R > 0 (with supp,f C Bg) is arbitrary, it is natural to demand
(Ad) holds globally on [0,T] x R*. Conversely, if (Ad) holds for all p, then (3.4) holds
for for all (6f,0E,0B) € Mg for any R > 0 if we simply set a; = g (0), (ag,ag,a4)
(h1, ha, hs) (0). The latter equations are unsubstantial and will be ignored.

In accordance with (3.3), we compute the derivative of ¢ via

& (u,a,b) (Su, 5, 5b) / / (6U1hy +6U2h2)dxdt+52c] (uj, 0u;)

Jj=1

—|—61 <8tuj', at(suj>L2 + 62 <a152uj7 8?6UJ>L2)

where

oU = Z (UjDZj (R (Ozj) . -H)j) (R/ (Oéj) daj - +0bj) + z; (R (aj) . —l—bj) 5Uj).

j=1

System has to be investigated. It is a final value problem which can easily be
turned into an initial value problem via §(t,z,p) = g (T —t, —x, —p) and h(t,z) =
h(T —t,—x), so that the left hand sides of the differential equations in do not
change. In other words, the hyperbolic system is time reversible.

To show unique solvability of , one can proceed similar to the dealing with .
Yet there are some differences. Firstly, the source terms in the Maxwell equations are
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3.3.1 Formulation

not the current densities induced by g but some other moments of g. Additionally, even
in the fourth equation of a source term appears. Hence we have to prove analogues
of Theorems and[1.4]with more general source terms. Secondly, the right hand side
of the Vlasov equation (and hence a solution g) does not have compact support with
respect to p. But this will not cause any problems since in a representation formula
for h there will appear a factor 0, f (or first derivatives of 9, f). Because of the known
fact that f is compactly supported with respect to p uniformly in ¢, x, we do not have
to demand that g has this property. In Section we had to assume this property
for the density since the integral defining the current density induced by this density
contains the factor p which is obviously not compactly supported in p.

Instead of examining the solvability of further, we consider another optimization
problem.

3.3 The problem of keeping the plasma in a certain container
3.3.1 Formulation

In real applications, like controlling a plasma in a fusion reactor, the actual goal is
to keep the plasma in a certain container, for instance a torus. Furthermore, one
can hardly determine a best appropriate shape pg. Thus, it is suitable to impose a
constraint on the charge density py which only allows densities that are zero or, better,
nearly zero, on a forbidden (measurable) set A C R2. For example, A could be the
complement of the torus. The new constraint to be considered is

T
/ / pr dxdt < e.
0o Ja

Simultaneously, we abolish the term with py in the objective function.
Now, the question arises how to choose €. In order to guarantee existence of feasible
points, we define (recall the notation py = U (u,,b) € C (0, T; Ll))

T
e::inf{/ /@(u,a,b)dazdﬂ luj| <1, by Sr,jzl,...,N}+€
0 Ja

where € > 0 is chosen small. In fact, one will hope that the infimum above equals zero,
but this will not further be investigated.
Therefore, our new problem reads

N

. 2 2 2
wer (0.17) D5 (g0 + B 100 3oy + B2 08 | o g0)
aeRN,be/(RZ)N =t

st Ju| <1,|bj| <rj=1,...,N,

T
/ / U (u, , b) dodt < e.
0 Ja

(P2)
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3.3.3 Optimality conditions

3.3.2 Existence of minimizers

Theorem 3.11. There is a minimizer of (P2).

Proof. The proof is very similar to the proof of Theorem Note that feasible points
exist by definition of €. Additionally, we only have to show that the new constraint

/0 ! /A T (u, o, b) dadt < ¢ (3.5)

is preserved in the limit. Because of f; — f in L? and f; having compact support
with respect to x and p uniformly in k, we conclude that f;, — f also in L'. Hence
pf. — pr in L' which instantly implies that 1’ is preserved in the limit. [

3.3.3 Optimality conditions

The new nonlinear and non-convex constraint in |i including the state is harder to
handle than the constraints on the control. First we note that

H: X SR,
T _

(u, a, b) n—>/ / U (u, o, b) dadt
0o Ja

is continuously Fréchet-differentiable by Theorem ii) and C (0,T;L" (R?)) <
L' ([0, T] x R?) with derivative

T
H' (u, a, b) (du, dar, 6b) = / / U (u, a, b) (u, Scv, 6b) dadt.
0o Ja

We proceed similarly as before. Writing
C:={rx=(u,a,b) € X | |uj] <1,|b;] <r,j=1,...,N}
our constraints are
z€C, g(x)=€e— H(z) € Rxg.
Note that g is of class C*.
Again, we want (CQ) to be satisfied at an optimal point T = (@, @,b). However, a
problem arises if H (Z) = € and H' (T) = 0 since then
9 (@) X — (Rzo — Rx0g (7)) = R<o # R.

Hence (CQ) can not be satisfied.
In all other cases we can show (CQ). Let d € R be given. Firstly, if g (Z) > 0 define

ox :=0,
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3.3.3 Optimality conditions

_ |
g (@)’
ki=|d| —d > 0.

Secondly, if H' (%) # 0 let éx € X with H' (Z) 0z = —d and set k = A = 0.
In both cases we arrive at

g (T)ox — (k- \g(T)) =d.

Thus (CQ) is satisfied.
This leads to:

Theorem 3.12. Let T = (u,@,b) be a minimizer of (P2). Then 1) or 2) holds:

1) There is p € R such that the following assertions hold:
i) (Primal feasibility):

mj‘ <1,

T
5| gr,/ /@(a,a,g)dxdtge.
0 A

ii) (Dual feasibility):

iii) (Complementary slackness):

p=0

T
/ / W (u,, b) dodt = e.
0o Ja

i) (Stationarity): For all (u,a,b) € C, and defining

or

(du, da, 6b) := (u—ﬂ,a—a,b—b)7

we have

N
Z Cj (<Uj, 5uj>L2 + 61 <8tﬂj, 8t5uj>L2 + ,82 <8?ﬂj, 67525uj>L2)

j=1
T
Zu/ /p(;fdxdt
0o Ja

where § f is obtained by solving

O0f +D0.6f+ (E—p"B)-0,0f =— (0E —p'0B) - 0, f,
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3.3.3 Optimality conditions

0By — 05,68 = — jss1 — 8UL,
040 + 05,08 = — jsp2 — 6Us,
0,6B + 8y, 6Ey — 0,,0E; =0,
(6£,6E,5B) (0) =0

with

oU = (ﬂjDZj (R (aj) . +Bj) (R, (a]) (50(3‘ : +6b]) + 25 (R (aj) . +bj) (SUJ)

M-

Jj=1

and (?, E, E) satisfying
Ouf +P-0uf + (E—~p*B) - 8,] =0,
atE1 - aﬁEQE = j?’l - Ula
O Ez + 0y, B =~ j7, — Us,
8t§ + 8301E2 — 8I2E1 =0,
(7.E.B) (0) = (f.£,B)
with

. N
U=) 1tz (R(@) +b).

Jj=1

2) It holds that:
i)

T
/ / U (u, o, b) dedt = €.
0o Ja

i) For all (du,dc,db) € X we have

T
/ / pspdxdt =0
0 JA

where 6 f is obtained by solving

OSf+D-0:0f + (E—p-B)-0,0f =— (0E —p*0B) - 0,7,
00 By — 0,08 = — jsp.1 — OU,
0i0F2 + 04,0B = — jsg2 — 0Ua,
0,08 + 0y, 0F — 03,01 =0,
(6f,6E,86B) (0) =0
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3.3.3 Optimality conditions

with
N p— p—
oU = Z (ﬂjDZj (R (@) . -‘rbj) (R/ (aj) 5aj : +(5b]) + 25 (R (aj) : +bj) (S’U,j)
j=1
and (?, E, E) satisfying

Of + P 0uf + (E ~p*B) - 9, =0,
HE1 —0,,B =~ j7, — Un,
OEs+ 0., B = — j?’g - U,,

0B+ 0y, Fy — 0, E1 =0,

(?7F’§) (0) = (f,ED], B)

with

Proof. If 2) does not hold, then (CQ) is satisfied and Lemma|3.8|implies 1).
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