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Abstract

The gravity-driven flow of a viscous film over an inclined surface is a fundamental problem in
fluid mechanics. This type of flow serves as a model to catch the physics behind a wide range of
technical and environmental processes which silently affect our lives. The most simplified case
of this basic hydrodynamic configuration is the flow of a viscous film over an infinitely extended
and perfectly flat substrate, which even has an exact analytical solution. However, in the real
world, the substrates on which the films move are frequently rough — either intentionally or ac-
cidentally. The great challenge arises that, in general, the flows over such inclined topographies
cannot be calculated analytically from the Navier-Stokes equations. The interaction between
the underlying topography and the fluid layer results in a complicated dynamical behavior and
gives rise to, e.g., the formation of eddies in the troughs and resonant standing waves at the
flow’s free surface. As already small substrate defects can significantly affect the film flows,
the requirement for predictable product and process properties in coating industries generated
considerable interest in improving the understanding of the associated flow mechanisms.

Since the interface between the liquid and the surrounding gas is a deformable boundary, waves
can appear spontaneously at the free surface if a critical volume flux is exceeded. These waves
are the reaction of the system to disturbances, like external forcing or ambient noise, and grow
or shrink on their way downstream. Dependent on the volume flux, the perturbation’s fre-
quency, and the interaction between the fluid and the topography a complicated topology of
stable (waves are damped) and unstable (waves are amplified) flow regimes appears. In medi-
cal and semiconductor industries, where uniformly thin coatings are essential, the formation of
these waves gives rise to great difficulties in the manufacturing processes. As a pure analytical
treatment of the vast majority of these hydrodynamic systems is impossible today, thorough
experimental investigations and comprehensive computational modelings are inalienable to im-
prove the understanding of the associated flow mechanisms.

The present dissertation deals with the effects of different types of topographies on the free
surface stability of gravity-driven viscous films. Comprehensive new experiments were combined
with all existing analytical, numerical and experimental findings on this complex problem. That
way, new flow phenomena were uncovered and attributed to the fundamental mechanisms which
determine the flow dynamics. The aim of the present study was to characterize these results for
the sake of unveiling a universally valid principle, being able to describe and unify all findings
on the stability of gravity-driven viscous film flows.

The first step in order to unveil whether the above-mentioned universal principle indeed exists
was to investigate whether the flows over different topographies can exhibit the same stabil-
ity behavior, or whether all systems are intrinsically different in terms of their stability. A
fundamental question arose from this thought: does the topography’s specific shape matter in
general for the linear stability of gravity-driven viscous films? In order to understand this com-
plex problem, five topographies of different shapes (e.g., sinusoidal and rectangular), but equal
amplitude, wavelength, and inclination against the horizontal were chosen as a model for the
different types of rough substrates in real-world film flows. For each topography, the basic flow
was characterized by measuring the flow field and the free surface contour. Experiments on the
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flow’s linear stability followed. That way, insights into how the topography’s specific shape can
manipulate both the basic flow and the linear stability of gravity-driven films were obtained.
In particular, as long as the steady-state free surface remained unchanged, modifications of the
topography’s specific shape were found to not affect the linear stability of this type of flow.

The subsequent parameter study went one step further in order to unveil the phenomena which
are decisive for the flow’s stability. In the experiments, the well-known Nusselt flow over a
flat incline was asymptotically left, either by gradually increasing the amplitude of sinusoidal
undulations or by decreasing the tip width of rectangular corrugations. Systematic variations of
the channel’s inclination, the fluid’s viscosity and the topography’s wavelength followed. That
way, nontrivial stability charts and phenomena far beyond the Nusselt flow were revealed. For
the sake of understanding these phenomena, the steady-state velocity fields of the respective
flows were measured. This comprehensive approach provided the exceptional opportunity to
unveil that the complex shape, which stability charts of films over inclined topographies exhibit,
can be attributed to the simultaneous presence of stabilizing as well as destabilizing effects, both
provoked by the topography. The stabilization of the flow due to an increased filim thickness
and the destabilization of the flow due to resonant standing waves were shown to be competing
effects. Which effect dominates in this competition depends primarily on the amplitude, tip
width, wavelength, and inclination of the topography and on the viscosity of the fluid.

The systematic parameter variations mentioned above uncovered a switching between different
types of stability isles, i.e. between stable and unstable regions in the linear stability charts.
This abrupt change of the flow’s free surface stability was detected for all system parameters
varied and gave rise to an intriguing question: Is there a universal principle, being valid to
describe the parametric evolution of the flow’s linear stability chart for variations of different
system parameters? In search of an answer to this question, all experimental and numerical
stability charts available in the literature were screened. New experiments were carried out
only to fill the gaps which remained in the combined parameter space of all precedent work.
Variations of the fluid’s viscosity and the topography’s specific shape, amplitude, wavelength,
tip width and inclination were considered. That way, a set of six characteristic patterns of
stability charts was identified to be sufficient and powerful enough to uniformly describe all
available linear stability charts of two-dimensional Newtonian films flowing over periodically
corrugated inclines. No counterexample was found, which did not fit to one of these six pat-
terns. Based on these six stability patterns, a universal pathway — the ’stability cycle’ — was
unveiled, along which the linear stability charts of all considered films evolved when the system
parameters were changed. The physical significance of the stability cycle is at hand, as it is a
universal guide on how to tune the linear stability of viscous films in a way which is desired.

The characteristic stability chart patterns and the stability cycle were found to be valid for all
two-dimensional Newtonian filins, which are perturbed by linear free surface waves, and flowing
down periodically undulated inclines. No contradicting observations are reported. Yet, it
remained an open question whether similar phenomena can also be found for other systems like,
e.g., non-Newtonian fluids, nonlinear waves, or three-dimensional channel flow with sidewalls.
By briefly considering these three exemplary systems, the study presented in the last part of
this thesis went beyond the linear stability of two-dimensional Newtonian films. New steady-
state flow phenomena were uncovered with their potential effects on the flow’s stability being
discussed. Although an in-depth investigation of these systems is beyond the scope of this
thesis, all results indicate that the characteristic stability chart patterns and the stability cycle
are, with some restrictions, still valid beyond the linear stability of two-dimensional Newtonian
films.



Zusammenfassung

Die schwerkraftgetriebene Stréomung eines viskosen Fliissigkeitsfilms iiber einen geneigten Un-
tergrund ist ein fundamentales Problem der Strémungsmechanik. Diese Klasse von Stromungen
dient als physikalisches Modell fiir eine Vielzahl von Prozessen in Natur und Technik, die ganz
im Stillen unser aller Leben beeinflussen. Der einfachste Fall dieser hydrodynamischen Grund-
konfiguration ist der Fluss eines viskosen Films iiber ein unendlich ausgedehntes und flaches
Substrat, fiir den es sogar eine exakte analytische Losung gibt. In der realen Welt sind die Boden,
auf denen sich die Fliissigkeitsfilme bewegen, jedoch hiufig rau — entweder aus Absicht oder
durch Zufall. Es stellt eine grofie Herausforderung dar, dass die Stromung iiber derartige To-
pographien im Allgemeinen nicht mehr analytisch berechnet werden kann. Die Wechselwirkung
zwischen der zugrunde liegenden Bodenstruktur und der dariiber flieBenden Fliissigkeitsschicht
fiihrt zu einer komplizierten Dynamik, die wiederum beispielsweise zu Wirbelbildung in den
Mulden und zu stehenden Oberflichenwellen fiihrt. Da bereits kleine Substratfehlstellen die
Fliissigkeitsfilme sehr stark beeinflussen kénnen, hat der Bedarf nach vorhersagbaren Produkt-
und Prozesseigenschaften in der Beschichtungsindustrie ein erhebliches Interesse an einem bes-
seren Verstindnis der zugrunde liegenden Strémungsmechanismen hervorgerufen.

Die Grenzfliche zwischen der Fliissigkeit und dem sie umgebenden Gas stellt eine verformbare
Grenze dar, an der es aufgrund von Triigheitseffekten bei Uberschreitung eines kritischen Vo-
lumenstroms zur spontanen Bildung von stromabwérts laufenden Oberflichenwellen kommen
kann. Diese Wellen sind die Reaktion des Systems auf Stérungen, wie beispielsweise exter-
ne Anregungen oder das allgegenwirtige Umgebungsrauschen. Abhingig vom Volumenstrom,
von der Frequenz der Stérung und von der Wechselwirkung zwischen der Fliissigkeit und dem
gewellten Boden tritt ein komplexes Gebilde aus stabilen (die Wellen werden gedampft) und
instabilen (die Wellen werden verstiarkt) Stromungsgebieten auf. In der Medizin- und Halblei-
terindustrie, wo es auf gleichméfig diinne Beschichtungen ankommt, gehen mit der Bildung
dieser Wellen allerdings grofie Schwierigkeiten in den Fertigungsprozessen einher. Da fiir die
iiberwiegende Mehrheit dieser hydrodynamischen Systeme eine rein analytische Behandlung
derzeit jedoch unmoglich ist, sind griindliche experimentelle Untersuchungen und umfassende
computergestiitzte Modellierungen unabdingbar, um das Verstindnis der zugrunde liegenden
Mechanismen zu verbessern.

Die hier vorliegende Dissertation beschéftigt sich mit den Auswirkungen gewellter Substrate
auf die Stabilitidt der freien Oberfliche schwerkraftgetriebener viskoser Filmstromungen. Um-
fassende neue Experimente wurden mit allen vorhandenen analytischen, numerischen und expe-
rimentellen Erkenntnissen iiber dieses komplexe Problem kombiniert. Auf diese Art und Weise
wurden neue Stromungsphinomene entdeckt und fundamentalen Mechanismen zugeschrieben,
welche die Dynamik der Stromung bestimmen. Ziel der vorliegenden Arbeit war es insbesondere,
die so gewonnenen Ergebnisse zu charakterisieren, um ein allgemeingiiltiges Prinzip zu entwi-
ckeln, das alle Erkenntnisse iiber die Stabilitdt schwerkraftgetriebener viskoser Filmstromungen
beschreiben und vereinheitlichen kann.

Der erste Schritt um herauszufinden, ob das oben genannte universelle Prinzip tatséichlich
existiert, bestand darin zu untersuchen, ob Stromungen iiber verschiedenartig gewellte Boden
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iiberhaupt dasselbe Stabilitdtsverhalten aufweisen kénnen oder ob alle Systeme hinsichtlich
ihrer Stabilitidt von sich aus verschieden sind. Aus dieser Uberlegung heraus ergab sich eine
grundlegende Frage: Ist die spezifische Form der Topographie im Allgemeinen fiir die linea-
re Stabilitdt schwerkraftgetriebener Filmstromungen von Bedeutung? Um dieses komplizierte
Problem zu verstehen, wurden fiinf Topographien unterschiedlicher Form (z.B. sinusférmig und
rechteckig), aber gleicher Amplitude, Wellenléinge und Neigung gegeniiber der Horizontalen als
Modell fiir die verschiedenen Arten rauer Substrate, die in den Filmstr6mungen der realen Welt
vorkommen konnen, gewéhlt. Fiir jede Topographie wurde die Grundstrémung durch Messung
sowohl des Stromungsfeldes als auch der Kontur der freien Fliissigkeitsoberfliche charakteri-
siert. Es folgten Experimente zur linearen Stabilitdt der Stromung. Auf diese Weise konnten
Erkenntnisse dariiber erzielt werden, wie die spezifische Form des gewellten Bodens sowohl die
Grundstromung als auch die lineare Stabilitit schwerkraftgetriebener Filmstrémungen beein-
flussen kann. Insbesondere konnte festgestellt werden, dass sich Anderungen der Topographie-
form nicht auf die lineare Stabilitdt dieser Art von Stromungen auswirken, solange die stationire
freie Oberfliche von diesen Verdnderungen im Wesentlichen unbeeinflusst bleibt.

Die anschlieffende Parameterstudie ging noch einen Schritt weiter, um diejenigen Phinomene
zu untersuchen, welche die Stabilitat einer Filmstromung bestimmen. Dazu wurden Experi-
mente durchgefiihrt, in denen die bekannte Nusselt-Stromung iiber eine flache geneigte Ebene
asymptotisch verlagssen wurde, indem entweder die Amplitude eines sinusférmigen Bodens stu-
fenweise erhdht oder die Breite der Spitzen eines rechteckigen Bodens verringert wurde. Es
folgten systematische Variationen der Kanalneigung, der Fliissigkeitsviskositit und der Wel-
lenlénge der Bodentopographie. Auf diese Art und Weise kamen nicht-triviale Stabilitdtskarten
und Phinomene ans Licht, die sich stark von denen der Nusselt-Stromung unterschieden. Um
diese Phianomene zu verstehen, wurden die Geschwindigkeitsfelder der zugehorigen stationiren
Stromungen gemessen. Durch diesen umfassenden Ansatz konnte belegt werden, dass die kom-
plexe Form, welche die Stabilitdtskarten von Filmstromungen iiber geneigten Topographien
aufweisen, auf das gleichzeitige Vorhandensein stabilisierender und destabilisierender Topogra-
phieeffekte zuriickzufithren ist. Die Stabilisierung der Stromung durch eine erhthte Filmdicke
und ihre Destabilisierung aufgrund der Resonanz der Stromung mit dem gewellten Boden er-
wiesen sich als konkurrierende Effekte. Welcher der beiden Effekte dominiert, hingt primér von
der Amplitude, Spitzenbreite, Wellenlinge und Neigung des gewellten Bodens sowie von der
Viskositat der Fliissigkeit ab.

Bei den oben genannten systematischen Parametervariationen konnte ein Hin- und Herschal-
ten zwischen verschiedenen Arten von Stabilitdtsinseln, d.h. zwischen abgeschlossenen stabilen
und instabilen Bereichen in den linearen Stabilitdtskarten, nachgewiesen werden. Diese Art
der abrupten Anderung der Stabilitit der freien Oberfliche konnte bei der Variation jedes
untersuchten Systemparameters beobachtet werden, was zu einer weiteren interessanten Fra-
ge fithrte: Gibt es ein universelles Prinzip, das die parametrische Entwicklung der linearen
Stabilitidtskarte einer Filmstromung fiir die Verinderung mehrerer Systemparameter gleicher-
maflen beschreibt? Zur Beantwortung dieser Frage wurden alle in der Literatur verfiigbaren
experimentellen und numerischen Stabilitdtskarten gesichtet. Die neu durchgefithrten Experi-
mente dienten ausschlieBllich dazu, die verbleibenden Liicken des kombinierten Parameterraums
zu schlieen. FEs wurden die Viskositit der Flissigkeit sowie die spezifische Form, Amplitude,
Wellenlidnge, Spitzenbreite und Neigung des Bodens variiert. Auf diese Art und Weise konn-
ten sechs charakteristische Muster von Stabilitdtskarten identifiziert werden, die in ihrer Ge-
samtheit ausreichend sind, um alle verfiigbaren linearen Stabilitdtskarten zweidimensionaler
Newtonscher Filmstromungen, die schwerkraftgetrieben iiber gewellte Béden flielen, einheit-



lich zu beschreiben. Es wurde nicht ein einziges Gegenbeispiel gefunden, welches nicht durch
eines dieser sechs Muster dargestellt werden konnte. Auf der Grundlage dieser Muster wurde
ein universell giiltiger Pfad — der Stabilitdtszyklus — entdeckt, entlang dessen sich die linearen
Stabilitdtskarten aller untersuchten Filmstromungen entwickeln, wenn die im Rahmen dieser
Arbeit betrachteten Systemparameter gefindert werden. Die physikalische Bedeutung des Sta-
bilitdtszyklus liegt auf der Hand, denn er ist ein universeller Leitfaden dafiir, wie die lineare
Stabilitdt viskoser Filme derart modifiziert werden kann, dass sie den Anforderungen der je-
weiligen Anwendung entspricht.

Die im Rahmen dieser Arbeit nachgewiesenen charakteristischen Stabilitdtskartenmuster und
der Stabilitdtszyklus gelten fiir alle zweidimensionalen Newtonschen Filmstromungen, deren
freie Oberfliche durch lineare Wellen gestort wird und die iiber periodisch gewellte, geneigte
Boden flieflen. Es gibt keinerlei Beobachtungen, die diese universelle Giiltigkeit widerlegen. Den-
noch bleibt die Frage offen, ob dhnliche Phinomene auch fiir andere Systeme, wie beispielsweise
nicht-Newtonsche Fliissigkeiten, nichtlineare Wellen oder dreidimensionale Kanalstrémungen
mit Seitenwinden, gefunden werden kénnen. Durch eine kurze Betrachtung dieser drei beispiel-
haften Systeme geht die hier vorliegende Arbeit iiber die lineare Stabilitit zweidimensionaler
Newtonscher Filme hinaus. Neue Phinomene wurden in den stationiren Stromungen entdeckt
und deren moglicher Einfluss auf die Stabilitdt der Strémung wurde kurz diskutiert. Obwohl
eine tiefergehende Untersuchung dieser Systeme {iber den Rahmen dieser Arbeit hinausgehen
wiirde, deuten alle bisherigen Ergebnisse darauf hin, dass sowohl die charakteristischen Stabi-
litdtskartenmuster als auch der Stabilitdtszyklus bis zu einem gewissen Grad iiber die lineare
Stabilitdt zweidimensionaler Newtonscher Filmstromungen hinaus Giiltigkeit besitzen.
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1. Introduction: From creeping flow to the
linear stability of films over topography

We encounter film flows in our everyday life as drops, bubbles, pearls, and waves [1], in our
bodies as tear film [2], in nature as avalanches [3], and in moving glaciers [4] as well as in biotech-
nological applications like biofilm growth [5] to name a few prominent examples. Moreover,
film flows play an important role in engineering-technical applications like heat transfer [6] and
coating [7,8], where also boundary effects caused by sidewalls are of particular interest [9]. For
the sake of optimizing these processes, a sound understanding of the physics of gravity-driven
films is needed.

In this introductory Chapter 1, the large body of precedent papers on the effects of topography
and inertia on gravity-driven film flows is summarized and discussed — beginning with the
creeping flow and going up to the stability of the flow over topography. Fingering and spreading,
non-Newtonian fluids, heated boundaries, porous media, multilayer systems, and surfactants
are excluded, i.e. considered only in the limits of the main topic. Gravity is the only driving
force considered, centrifugal and electromagnetic forces are left aside. With one exception,
the author refrains from discussing film flows over flat inclines without sidewalls, as their
dynamics was frequently reviewed, e.g., in the References [10-12]. The exception is the seminal
work of Wilhelm Nusselt [13], including its stability, which opened up this field of research.
Nusselt unveiled that a steady-state water flow down a flat incline features a parabolic velocity
profile. However, in technical and experimental systems a steady-state Nusselt flow is not always
present. An overview on how the interplay of bounding topography and inertia affects gravity-
driven films will be given in this introductory Chapter 1, which relies on the publication ”Films
over topography: from creeping flow to linear stability, theory, and experiments, a review” from
Aksel and Schorner [14].

To acknowledge the original papers, the author sticks to their nomenclatures in the present
Chapter 1 with the exception of the dimensionality of the substrate, which was not defined
uniformly in the literature. The substrates are denoted as one- or two-dimensional according
to the number of independent variables defining their geometry. The flow over one-dimensional
topography is usually considered as two-dimensional, though its potential instability may lead
to three-dimensional patterns. On the contrary, the flow over two-dimensional topography is
inherently three-dimensional.

1.1. Creeping film flow and films in lubrication approximation

The lubrication approximation is based on the asymptotic reduction of the governing equations
and boundary conditions to a simplified system which often consists of a single nonlinear
partial differential equation formulated in terms of the local thickness of the film [10]. The
unknown fluid velocity and the pressure are then determined via functionals of the solution of
that differential equation [10]. Formally, the lubrication approximation fails precisely at sharp
boundaries and must be replaced by the Stokes equation for creeping films, there [12]. For

13
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Figure 1.1.: Free surface profiles H(x) = h(x) + S(x) for the step-down (a) and the step-up (b) for the wall steepness
0 = 0.001 and different depths D. Note the presence of the capillary ridge right before the entrance to the step-down
and the capillary depression region right before the step-up. Their height increases as D increases. The dimensionless
length in streamwise direction is x = x*//, the capillary scale is | = hy/ Ca*/*, the dimensionless local film thickness
is h(x) = h*(x)/ho, the capillary number is Ca = uU/o, the characteristic velocity is U = pg sinah}/u, the film
thickness far from the feature is ho, the dimensionless topography shape is S = S*/ ho, the dimensionless wall steepness
is = 0”/l, and the dimensionless step depth is D = D*/I. The respective dimensional quantities are indicated by
stars (x). The fluid parameters are the density p, the dynamic viscosity p and the surface tension o. Modified and
reprinted with permission from Kalliadasis et al. [16]. (© AIP Publishing.

further details on the lubrication approximation and creeping flow conditions, please see Spurk
and Aksel [15]. For convenience, creeping film flow and films in lubrication approximation are
considered together in the following.

1.1.1. Two-dimensional flow

Kalliadasis et al. [16,17] used the lubrication theory to study the flow of a thin film over a
trench, as an example of a one-dimensional localized topographical feature. They found that
the dynamics of the film is governed by the depth, the width, and the steepness of the obstacle.
They showed that the free surface developed a ridge right before a step-down (Figure 1.1a)
and a depression region right before a step-up (Figure 1.1b) with the minimum film thickness
always being located near the concave corner of the profile. Moreover, they identified the
capillary ridge to be a manifestation of the effect of the capillary pressure gradient induced by
the substrate curvature. The numerical work by Mazouchi and Homsy [18] showed that the
magnitude and location of the ridge and the depletion region depended on the capillary number
and the step depth. The effect of capillarity and inclination angle on a film flow over an inclined
plane with an edge was studied analytically, numerically and experimentally by Aksel [19]. He
showed that capillary forces cause the free surface to develop a ridge before a downwards
edge. In particular, he studied the region of influence of the capillarity in dependence of the
inclination angle. This paper gave rise to an inverse problem in Heining et al. [20]. Gaskell
et al. [21] considered thin film flow over one- and two-dimensional (see Section 1.1.2) localized
topographies by means of finite element solutions of the Navier-Stokes equations and multigrid
finite difference predictions. In the one-dimensional case, Stokes solutions for the flow over a
wide trench were shown to be in excellent agreement with those of Mazouchi and Homsy [18],
and Navier-Stokes solutions revealed that the effect of increasing Reynolds number is to increase
the amplitude of the "bow wave.” The effects of inertia will be studied in Section 1.2.
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1.1. Creeping film flow and films in lubrication approximation
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Figure 1.2.: (a) Primary and secondary vortex of a film flow with waviness a = 97 /10 = 2.83, mean film thickness
h = 0.89, inclination angle o« = 45° and capillary number Ca = 1.6. The waviness is a = 2rA/), the dimensional
topography amplitude is A, the dimensional topography wavelength is A, the capillary number is Ca = nU/o, the
characteristic velocity is U = pgA?sina/(87%7), the dimensional mean film thickness is H, the dimensionless mean
film thickness is h = 2wrH/X. The fluid parameters are the density p, the dynamic viscosity 1 and the surface tension
o. Reprinted with permission from Scholle et al. [23]. (© Springer Nature. (b) Size of the primary and the secondary
vortex as a function of the film thickness and the peak-peak amplitude of the free surface. The distances of the vortex
core and of the separatrix to the center of the trough are shown as circles and squares, respectively. Computations [27]
are represented by filled symbols, experiments [26] by open symbols. The experimental data of the secondary vortex
were added from [26]. Modified and reprinted with permission from Nguyen and Bontozoglou [27]. (© AIP Publishing.

Wang [22] analytically studied a liquid film flowing slowly down a wavy incline. He found
that the amplitude and phase shift of the free surface depend, in a complicated manner, on
the surface tension and the wavelength and orientation of the wavy striations. The mean film
thickness was found to increase hand in hand with the waviness of the topography and, hence,
was larger than the corresponding Nusselt film thickness [23]. The idea that eddies generated
in the valleys of riblets act like fluidic roller bearings was considered by Scholle et al. [24]
with the method of holomorphy, previously demonstrated in [23]. They discussed the resulting
film elevation and reported that the presence of fluidic roller bearings may cause a small drag
reduction and improve material transport in creeping films.

Besides the free surface, periodic topographies also change the velocity field of a film flow. For
the free surface Stokes flow of a liquid film along an undulated incline, Pozrikidis [25] presented
an extensive parametric study for the case of sinusoidal topography. The effects of substrate
amplitude, inclination angle, flow rate, and surface tension were considered. Using integral
boundary method he reported on flow reversal in the troughs of different sinusoidal undulations
which appears when a sufficiently thick film flows over steep topographies. Experiments by
Wierschem et al. [26], the analytical approach by Scholle et al. [23] and numerics by Nguyen
and Bontozoglou [27] focused on this flow reversal in creeping films over strongly undulated,
harmonic bottom profiles. The References [23,26,27] show that the radius of curvature of the
crests and the film thickness are the decisive parameters for the creation and the evolution of
the vortices in the troughs. Multiple eddies were reported to form if the crests were sufficiently
deep and sharp [23] (see Figure 1.2). In films over undulated substrates the minimum radius
of curvature determines the size of the smallest eddy. The depth of the crests, their radius
of curvature, and the film thickness are finite and constitute characteristic lengths of the flow
problem. This limits the number of the kinematically induced eddies appearing in free surface
flows over topographies to a finite number as it prohibits similarity solutions. Hence, the eddies
appearing in films over topography are similar to but not identical with Moffatt eddies [28].
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1. Introduction: From creeping flow to the linear stability of films over topography
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Figure 1.3.: Flow of a thin water film over square topographies with w = 1.54, A = 1, and |ss| = 0.25. In the
three-dimensional views, the flow is from bottom-left to top-right: (a) trench; (b) peak. In the contour plots, the
flow is from left to right and the contours show the free surface height. Contour values are chosen to be equal in
magnitude but opposite in sign: (c) trench; (d) peak. The crossed dashed lines indicate the center of the topography
and the arrow indicates the direction of the flow. The dimensional topography parameters are the streamwise length
Lt in X-direction, the span width Wr in Y-direction, the amplitude S in Z-direction (So > 0: protrusion; Sp < 0:
depression) and the form S(X, Y). The dimensional trench amplitude is so = So/Ho with Ho = [3uQo/(pg sin 6)]*/3
being the dimensional film thickness of the fully developed undisturbed flow of the flux Q. The dimensionless velocity
in z-direction is w = W /(ely) with € = Ho/Lo, Uy = 3Qo/(2Ho) being the dimensional surface velocity of the fully
developed film, Ly = Ho/(6Ca)'/® being the characteristic in-plane length scale, Ca = plp/o being the capillary
number and W being the dimensional velocity in z-direction. The aspect ratio of the topography is A = w;//l;. The
non-dimensional coordinates are (x,y) = (X, Y)/Lo. The coordinate system (x*,y*) has its origin at the center of
the topography (x¢, y¢) with (x*,y*) = (x — x¢, ¥y — y¢) such that h*(x*, y*) = [A(x*, y*) + s(x*, y*) — 1] /so. The
dimensionless shape of the topography is s(x,y) = S(X, Y)/Ho. The fluid parameters are the density p, the dynamic
viscosity p and the surface tension o. Modified and reprinted with permission from Gaskell et al. [21]. (© Cambridge
University Press. Please compare to Figure 1.14 for the effect of inertia.

1.1.2. Three-dimensional flow

Pozrikidis and Thoroddsen [29] studied three-dimensional film flow down an inclined plane
over a particle in the asymptotic limit where the size of the obstacle is much smaller than
the film thickness. Using Green’s function and boundary-integral method for Stokes flow they
demonstrated that the presence of a moderated-sized two-dimensional localized topography
caused a marked deformation of the free surface upstream right before the obstacle, and a
surface response resembling to a surface wake downstream right behind it. The geometry of
the particle, the surface tension, and the inclination of the wall were found to be decisive for

16



1.1. Creeping film flow and films in lubrication approximation

the deflection of the free surface. The contribution of Hayes et al. [30] can be regarded as
an extension of the work of Pozrikidis and Thoroddsen [29] though their approach is different
in that from the outset they use a thin film approach to derive a lubrication approximation
specialized for the case of a viscous liquid flowing over a small topography. They developed
a Green’s function for the linearized problem and the solutions so obtained could be used
to analyze the effect of an arbitrary two-dimensional localized topography (wall defect) on
the coating applied to a substrate. Blyth and Pozrikidis [31] considered the low Reynolds
number flow of a liquid film down an inclined plane over a particle attached to the wall.
Results were presented for small particles following the earlier asymptotic analysis of Pozrikidis
and Thoroddsen [29], and for moderate-sized particles of different shapes. Their simulations
revealed that the free surface caused an upstream hump and a horseshoe type of deformation
downstream, whose intensity depended on the Bond number and was largely insensitive to the
specific shape of the particle.

Gaskell et al. [21] analyzed thin film flow over both one-dimensional (Section 1.1.1) and two-
dimensional localized topographies within the framework of the lubrication approximation,
where accurate numerical solution of the governing nonlinear equations was achieved using an
efficient multigrid solver. Their discussion of three-dimensional flow focused mainly on the flow
over a square trench (Figure 1.3a) or peak (Figure 1.3b). Particular thought was given to the
"bow wave’ and to the cause of the ’"downstream surge,” which was not present in the flow over
the corresponding one-dimensional topographies. Baxter et al. [32] studied three-dimensional
gravity-driven thin film flow over and around an obstacle on an inclined plane. They reproduced
previously published flow profiles for asymptotically small obstacles [29] and extended the small
free surface deflection assumption [31] to larger obstacles — either fully submerged or exhibiting
a contact line. Cylinders and hemispheres were considered. The curvature of the free surface
was calculated using both finite difference approximations and Hermitian radial basis function
interpolations. The resulting solutions were compared to each other. All free surface profiles
indicated an upstream peak, followed by a depression downstream of the obstacle with the peak
decaying in a horseshoe deformation. The flow profiles were mainly governed by the inclination,
the Bond number, the obstacle geometry, and, for not fully submerged obstacles, the contact
angle.

Lee et al. [33] modeled the gravity-driven continuous thin film flow over a plane, containing well-
defined single and grouped topographical features. They showed that for the accurate solution
of the associated lubrication equations, adaptive local mesh refinement and multigriding offers
increased flexibility together with a significant reduction in memory requirement. Automatic
grid refinement effectively restricted the use of fine grids to regions of rapid flow development,
e.g., the upstream capillary ridge, the downstream surge region, and the characteristic bow
wave. Sellier et al. [34] compared finite element method (FEM) and adaptive local mesh
refinement and multigriding for the flow of a liquid film, only several microns in thickness, over
an inclined plane. Although the adaptive multigrid approach was clearly found to be the most
efficient, with the two sets of solutions indistinguishable, FEM was found to offer an attractive
alternative to the non-specialist user. Both methods revealed that occlusions lead to many of the
features inherent in the flow of thin liquid films over fully submerged microscale topographical
features; namely, the presence of capillary ridges linked to ’bow wave’ plus ’comet-tail’ free
surface disturbances. The benefits of using a general Newton globally convergent flow solver
within a flexible and adaptive multigrid framework for solving the increasingly complex system
and number of equations that arise when thin film and droplet flows are subjected to additional
physical effects was addressed by Lee et al. [35]. Its advantages were demonstrated by solving
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1. Introduction: From creeping flow to the linear stability of films over topography
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Figure 1.4.: The free surface (a) for flow over wall topography (b) with hexagonal pattern. Positive levels are shown
as solid lines, negative levels are shown as dashed lines. The side length of the hexagonal lattice is L and h is the
mean film thickness. It is 2rh/L = 1, the capillary number is Ca = pU/y = +/2/4 and the inclination is 7/4.
The unperturbed surface velocity along the x-axis is U, the dynamic viscosity of the fluid is p, its surface tension 7o.
Modified and reprinted with permission from Luo and Pozrikidis [37]. (© Springer Nature.

two three-dimensional, gravity-driven free surface flows, involving the mixing of solute species
on rigid and flexible substrates and droplet flow past an occlusion. Using the same technique,
Lee et al. [36] explored the dynamics of thin film flow over flexible substrates and demonstrated
how substrate flexibility affects the practical issue of free surface planarization.

Luo and Pozrikidis [37] studied the effect of small-amplitude doubly periodic wall corrugations
on gravity-driven film flow down an inclined plane using a perturbation analysis for Stokes flow.
They observed that the shape of the free surface deviates significantly from that of the wall.
Figure 1.4 illustrates one of the topographies considered and the contours of the free surface of
the corresponding flow. Beyond, their results showed that two-dimensional corrugations reduce
the surface deformation by increasing the effective wave numbers and reducing the effective
capillarity, compared to their one-dimensional counterparts.

1.2. Inertial flow

1.2.1. Two-dimensional flow

The transition from creeping flow to inertial flow was studied numerically by Bontozoglou
and Serifi [38] for film flows along a vertical substrate with isolated, deep step changes, i.e.,
step-downs and step-ups. They showed that the capillary ridge before a step-down and the
capillary depression before a step-up change their streamwise length scale in the presence of
inertia. The way of change was directly predicted from an order-of-magnitude balance of gravity,
capillary, and inertia forces. The height of the capillary features was found to first grow with
the Reynolds number (Figure 1.5a), but eventually diminish when inertial forces overpower
capillary forces (Figure 1.5b). Downstream of a step-up, an inertial ridge appeared at the free
surface with increasing Reynolds number (Figure 1.5¢). The inertial ridge was attributed to
a liquid overshoot in the horizontal direction, and its height was shown to be restrained by
capillary forces at low Reynolds numbers and by inertial forces (a low-pressure region appears)
at high Reynolds numbers.

Wierschem et al. [39] studied the flow of a liquid down an incline with weak sinusoidal undula-
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Figure 1.5.: The free surface profiles in the vicinity of a step-down with D/H = 1, for Re = 1,20, 40,80 and (a)
Ca =0.01, (b) Ca=0.075 and for a step-up (c) with D/H = 1.5, Ca = 0.075 and Re = 1, 30, 60, 100. The Reynolds
number is Re = Q/v with Q being the volumetric flow rate per unit span. The capillary number is Ca = 3uU/o with
the mean velocity U = Q/H = gH?/3v, the film thickness H = (3vQ/g)*? and gravity g. The fluid parameters
are the dynamic viscosity p, the density p, the kinematic viscosity v = u/p and the surface tension o. Modified and
reprinted with permission from Bontozoglou and Serifi [38]. (© Elsevier.

tions. They showed how wavy bottom variations, which are long compared to the film thickness
or the corrugation amplitude, modify the flow with respect to that down a flat incline. The
effects of waviness, inclination angle, film thickness, and Reynolds number were considered
using different perturbation analyses. They compared these asymptotic results to measured
velocity profiles and film thicknesses. That way, they revealed the influence of inertia on the
surface shape and the deviation from the parabolic Nusselt profile. Subsequently, Wierschem
and Aksel [40] carried out experiments on the influence of inertia on the eddies that form in
gravity-driven films creeping over strongly sinusoidally undulated substrates. They found that
in the laminar regime the eddies became tilted as inertia became significant and that their size
increased as a function of the Froude number. Inertia-induced surface waves provoked an oscil-
lation and a breakup of the separatrix by the turnstile-lobe mechanism. This material exchange
between the eddy and the overlying film is still an open question. Scholle et al. [41] extended
previous work on the formation of eddies in creeping [26] (see Section 1.1.1) and inertial [40]
flow of gravity-driven films over sinusoidal undulations. They solved the governing equations
semi-analytically using a complex variable method for Stokes flow and numerically via a full
finite element formulation for the more general problem when inertia is dominant. The effect
of varying geometry (involving changes in the film thickness or the amplitude and wavelength
of the substrate) and inertia was explored separately. Persistent eddies, which existed even
for vanishingly thin films, occurred for sufficiently steep inclinations and corrugations. More-
over, they showed that the formation and presence of eddies can be manipulated in one of two
ways. A decrease/increase in the corrugation steepness led to the disappearance/appearance
of kinematically induced eddies (see creeping flows in Section 1.1.1). An increase/decrease in
inertia led to the appearance/disappearance of inertially induced eddies due to boundary-layer
separation (please see Figure 1.6). Beyond, they defined a critical corrugation steepness for
a given film thickness, demarking the transition from a kinematically to an inertially induced
local eddy flow structure and vice versa.

The inviscid free surface flow over a wavy substrate was analyzed by Bontozoglou et al. [42]
with a numerical method, based on the hodograph formulation (devised by Stokes in 1880).
They were the first to demonstrate that a series of resonances is possible between the sub-
strate undulations and the free surface. The steady, free surface profiles were calculated for a

19



1. Introduction: From creeping flow to the linear stability of films over topography
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Figure 1.6.: Effect of the local Reynolds number Res on the horizontal shift of the eddy center, |[AX|/A for
Rey = 228 and inclination a = 45°. The inlaid streamline plots illustrate the local flow structure for parameter
values corresponding to the points shown as black circles. The inlaid experimentally observed flow was taken from
[26]. The open circle marks the transition from a kinematically to an inertially induced eddy. The length AX is
taken as a measure of flow asymmetry and represents the horizontal shift of an eddy center relative to the same
centerline and hence the Stokes solution. The global Reynolds number is Rey = p*gH®sina/(277%), with H being
the corresponding Nusselt film thickness. For the flow structures in the vicinity of the substrate, the local Reynolds
number is Req = p?g/A%sina/(167°n%) with the topography wavelength A. The gravitational acceleration is g. The
fluid parameters are the dynamic viscosity n and the density p. Reprinted with permission from Scholle et al. [41].
© AIP Publishing.

wide range of undulation amplitudes and current velocities and were shown to be significantly
dimpled by higher harmonics. The flow field indicated that the free surface shape strongly
affects the velocities close to the substrate, leading to distributions which change dramatically
with current velocity. Some implications on the phenomena of wall dissolution or material
deposition, Bragg scattering of surface waves, and sediment transport in rivers were discussed
as well. The subsequent numerical work by Bontozoglou and Papapolymerou [43] considered
viscous, laminar film flow down an inclined plane with sinusoidal corrugations. They examined
the free surface amplitude and phase shift relative to the underlying topography. In a range of
Reynolds numbers, a resonance phenomenon was calculated, leading to an amplification of the
free surface amplitude. Trifonov [44] investigated viscous film flow down a vertical, harmonic
substrate based on both Navier-Stokes and integral equations. He performed calculations over
a wide range of Reynolds numbers and geometry characteristics of the substrate, taking into
account viscosity, inertia, and surface tension and unveiled resonance of the free surface with
the undulated bottom. Two qualitatively different regions in flow behavior were distinguished
within the studied range of Reynolds numbers. In the region of moderate Reynolds numbers,
the flow was found to be controlled significantly by the forces of surface tension, and in the
region of large Reynolds numbers by inertial forces. The comparison between the results ob-
tained on the basis of the integral model and the Navier-Stokes equations demonstrated that
the integral approach is correct in the area where the flow is defined mainly by surface tension
forces. Bontozoglou [45] extended the previous papers [42,43] to large-amplitude sinusoidal
corrugations by using a spectral spatial discretization method involving Fourier modes in the
streamwise direction and Chebyshev polynomials across the film. Free surface profile and flow
structure were studied as a function of the Reynolds number and the topography amplitude.
The minimum corrugation height for flow separation to occur was found to generally decrease
with the Reynolds number, but to attain larger values around the resonance conditions. Be-
sides, the distribution of the shear stress along the substrate and of the normal velocity gradient
close to the free surface was computed and related to heat and mass transport.
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1.2. Inertial flow

Figure 1.7.: Side views of resonant standing waves. (a) Hump at the flat side of the bottom undulation (h = 13.6 mm,
Re = 62). (b) Standing wave without a hump (h = 14.7 mm, Re = 79). The flow is from right to left. The inclination
angleis @ = 11.9° and Re = Ush/v denotes the Reynolds number with the surface velocity Us and the film thickness
h of the Nusselt solution. The kinematic viscosity of the fluid is v. Reprinted with permission from Wierschem and
Aksel [46]. © AIP Publishing.

Wierschem and Aksel [46] experimentally studied the flow of a viscous liquid down an inclined
channel with a sinusoidal bottom profile of moderate waviness. At low inclination angles, basins
appeared and, at the inflow of the basins, stationary hydraulic jumps formed as shock fronts
and surface rollers. A bistable region in which both jump phenomena exist depending on the
flow history was identified. The critical Froude numbers that confine the bistable branch were
found to depend on the inclination angle. At the low end of the bistable region, an instationary
regime of a shock with a fingering-like lateral modulation appeared. The bistability could be
traced back to that of a shock front with and without fingers. All experiments [46] indicated
that surface tension is important for the existence of the bistability. In thicker films, the surface
rollers were suppressed and standing gravity waves appeared, generated by resonant interaction
with the bottom undulation (Figure 1.7). At the rising edge of the resonance curves, humps
that were apparently due to a nonlinear resonance with the bottom contour were observed. In
a small regime of inclination angles, the humps and shocks were bistable. At the transition
between the surface rollers and the standing waves, a small region of periodic switching was
identified. Figure 1.8 shows an overview over the different flow regimes.

Nguyen and Bontozoglou [27] investigated steady flow of liquid films along sinusoidal, steeply
corrugated inclines by finite element simulation of the Navier-Stokes equations. They unveiled
resonant interaction between the wall and the free surface and used the resonance maximum to
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Figure 1.8.: Overview over the different flow regimes as a function of film thickness and inclination angle. The open
squares and diamonds indicate the maximum of the first and second Fourier mode of the standing wave, respectively.
Modified and reprinted with permission from Wierschem and Aksel [46]. (© AIP Publishing.
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1. Introduction: From creeping flow to the linear stability of films over topography

define a critical Reynolds number which separates the flow into two regimes. Steep corrugations
triggered extensive flow separation in both regimes. However, the separation characteristics —
most notably the limiting behavior for very thin and very thick films — varied because of
the different significance of the capillary forces in the two regimes. Wierschem et al. [47]
demonstrated linear resonance in viscous films on inclined wavy planes and identified different
behaviors for thin, intermediate and thick films. They applied a method previously used by
Anshus and Goren [48] for getting approximate solutions to the Orr-Sommerfeld equation for the
flow on a vertical substrate. In line with Anshus and Goren [48], Wierschem et al. [47] replaced
the velocity, usually a function of the distance from the bottom, by its value at the free surface
while the second derivative of the velocity is kept at its true value. These results supported the
view that the resonance phenomenon is associated with an interaction of the undulated film
with capillary-gravity waves traveling against the main flow direction. The resonance peak is
attained under conditions that render the wave phase velocity equal to zero in the laboratory
reference frame and thus permit direct exchange of energy between the steadily deformed film
and the free surface. The subsequent work of Heining et al. [49] studied nonlinear resonance
in viscous gravity-driven films flowing over sinusoidally undulated substrates. Numerically,
they solved the full, steady Navier-Stokes equations to follow the emergence of the first few
free surface harmonics with increasing corrugation amplitude, and to study their parametric
dependence on film thickness, inertia, and capillarity. They documented that, with increasing
dimensionless corrugation amplitude, higher harmonics were generated on the free surface and
the resonance becomes bistable. Analytically, they applied the integral boundary-layer method
and derived an asymptotic equation valid for rather thin films. The analysis revealed that
higher harmonics were generated by the nonlinear coupling of the topography with lower-order
harmonics of the free surface. Furthermore, their asymptotic analysis has also accounted for
bistable resonance in flows over steep bottom undulations. They showed that the solution of
a minimum model retaining the essential nonlinearities responsible for bistability is similar to
that of the driven nonlinear Duffing oscillator [50].

Numerics by Malamataris and Bontozoglou [51] considered viscous film flow down an inclined
plane with periodic but not harmonic corrugations using finite element method. The dimen-
sionless Navier-Stokes equations were solved in the whole range of the laminar flow regime and
the results were compared with available experimental data for very low Reynolds numbers.
Particular emphasis was given to free surface profiles, streamlines, velocity, and pressure dis-
tributions along the free surface and the substrate. The free surface shape was found to be
mainly influenced by the capillary number, its phase shift relative to the substrate undulations
by the Reynolds number. Resonance of the free surface with the undulated bottom appeared
at high Reynolds numbers and the amplification factor was found to decrease with the cor-
rugation amplitude. Besides, criteria for flow reversal in the troughs were established. The
gravity-driven film flow along a substrate with rectangular periodical corrugations was studied
numerically by Pak and Hu [52]. They used the volume of fluid method to show that the phase
shift between the free surface and the underlying topography increases with the Reynolds num-
ber. Deeper corrugations or smaller inclination angles raised the resonant Reynolds number.
Moreover, they calculated the streamlines and reported on vortical structures in the steady
flows, either produced by the interaction between capillary wrinkling and inertia, or by the
rectangular geometry. The vortices were closely related to the deformation of the free surface
and appeared either only in the troughs, or simultaneously in the troughs and on the crests
(see Figure 1.9). Vlachogiannis and Bontozoglou [53] performed experiments on the structure
of gravity-driven film flow along an inclined periodic substrate with rectangular corrugations.
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Figure 1.9.: Effects of inertia on the local flow structure for the relative wall depth ¢ = D,,/hy = 0.8 and inclination
¢ =5.4°. (a) Re =180, (b) Re =250, (c) Re =280 and (d) Re = 330. The depth of the corrugated wall is Dy,
the Nusselt film thickness is hy, the Reynolds number is Re = u,hn /v, the mean Nusselt velocity in x-direction is up,
the kinematic viscosity of the liquid is ;. Modified and reprinted with permission from Pak and Hu [52]. (© Elsevier.

They used a fluorescence imaging method to capture the evolution of film height in space and
time. Please see Section 1.4.2 for the time-dependent results. The steady flow was found to
exhibit a statically deformed free surface with the same wavelength as the bottom. Its prop-
erties, i.e. the amplitude, phase, and harmonic content, were correlated with the Reynolds
and Kapitza number. They interpreted their measurement in terms of the resonant interaction
between the substrate and the free surface proposed by Bontozoglou and Papapolymerou [43].
The gravity-driven film flow along an inclined periodic substrate with rectangular corrugations
was considered experimentally by Argyriadi et al. [54]. They studied the effect of corrugation
steepness on two-dimensional steady flow, three-dimensional steady flow (Section 1.2.2) and
traveling surface waves (Section 1.4). The steady inertial flow over the undulations led to a
static deformation of the free surface (Figure 1.10a), which had the same wavelength as the
wall, and was interpreted in terms of a resonant interaction [43] with maximum deformation
at a peak Reynolds number (Figure 1.10b, 1.10c).

Trifonov [44], Wierschem et al. [55], and Pak and Hu [52] reported on a coupling of the velocity
field and the free surface in films over inclined periodical structures, namely the suppression of
eddies. Trifonov [44] investigated viscous film flow down a vertical, harmonic substrate based
on both Navier-Stokes and integral equations. He found stagnation zones and studied their
transformation with increasing Reynolds number (Figure 1.11). Stagnation zones appeared
at both small and large Reynolds numbers. At intermediate Reynolds numbers, an eddy-free
window was found. This eddy suppression was considered in detail by the subsequent work of
Wierschem et al. [55]. They studied inertial film flow down a sinusoidally undulated incline
in both experiments and numerics. With increasing Reynolds number, eddies were found to
form in the troughs of the bottom undulation (Figure 1.12a, 1.12b). A further increase of
the Reynolds number led to a diminution of the eddies until they vanished completely (Figure
1.12¢). At even higher Reynolds numbers, they reappeared yielding an eddy-free window of
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Figure 1.10.: (a) The statically deformed free surface, h/L, at Reynolds number Re = 315 and inclination angle
¢ = 3.4°, for wall steepness B/L = 1/60 (crosses), 1/30 (circles), and 1/15 (triangles). The first curve has been
displaced from its true mean elevation for clarity. (b) The amplitude of the first (squares), the second (circles) and the
third (triangles) harmonics of the free surface profile as a function of Re for ¢ = 3.4° and wall steepness B/L = 1/30.
(c) Same as (b) for wall steepness 1/15. The mean film thickness is h. The wavelength of the rectangular corrugations
is L, their amplitude is B. The Reynolds number is defined as Re = gq/v, with g being the volumetric flow rate per
unit width and v being the kinematic viscosity of the fluid. Modified and reprinted with permission from Argyriadi et
al. [54]. © AIP Publishing.

Reynolds numbers (Figure 1.12d). Within this window, the free surface shape changed abruptly.
The change came along with a sudden decrease in the mean film thickness and an abrupt
transition of the surface shape type from anharmonic with a strong indentation to harmonic.
The anharmonic surface shape showed typical features of a hydraulic jump, which vanished
during the transition. The formation of the eddies was found to be suppressed at Reynolds
numbers where the first harmonic of the free surface contour was sufficiently strong regardless
of the exact surface shape. Hence, they identified eddy suppression to be a consequence of the
resonance of the free surface with the substrate undulations. Besides the eddies in the troughs,
eddies appearing on the crests of rectangular corrugations can be suppressed as shown by Pak
and Hu [52]. In their numerical study, the eddy on the crest first formed when the Reynolds
number was increased (Figure 1.9a, 1.9b), then disappeared (Figure 1.9¢) and reappeared again
at even higher Reynolds numbers (Figure 1.9d). The experimental verification of the appearance
and the disappearance of eddies on the crests of rectangular corrugations is still lacking.

An example for the physical significance of the above-mentioned findings is the optimization
of liquids flowing over structured packings. This type of technical application was studied,
e.g., by Valluri et al. [56]. They used integral boundary method with a parabolic velocity
profile to investigate films flowing over structured substrates of sinusoidal or doubly sinusoidal
shapes which resembled Mellapak® packings. Besides, in coating industry, the homogeneity of
a coating is decisive for its quality. In order to improve coating quality Varchanis et al. [57]
numerically studied the mechanisms leading to different types of air inclusions in the troughs
of steeply inclined substrates which featured periodical trenches of rectangular shape.

1.2.2. Three-dimensional flow

Decré and Baret [58] performed experiments on gravity-driven thin viscous films flowing over
both one- and two-dimensional non-periodic topographies. Steps, trenches, rectangular and
square topographies of different steepness were considered. They measured full two-dimensional
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Figure 1.11.: Contour lines of the streamline function. Film flow of a liquid with small viscosity over a corrugated
surface with amplitude A = 0.175 mm and wavelength L = 1.57 mm. The Reynolds number is defined as Re = Qo/v
with flow rate Qo and kinematic viscosity v. The calculations are based on the Navier-Stokes equations. Modified

and reprinted with permission from Trifonov [44]. (© Elsevier.

Figure 1.12.: Comparison of experimental pathlines to numerical streamlines. The image is rotated by the inclination
of the channel. The volume flux is continuously increased from (a) to (d). (a) Re = 9: no eddy at low Reynolds
numbers. (b) Re = 16: increasing inertia results in the generation of an eddy in the trough of the undulation. (c)
Re = 31: increasing inertia further, the eddy vanishes. (d) Re = 48: flow separation reappears at even higher
Reynolds numbers. Bottom contour: lower bright sinusoidal line; lines below and inversely bent lines in the upper
part of the pictures are reflections of the pathlines at the bottom and at the free surface. Channel inclination angle:
8°. The Reynolds number is defined as Re = /v with flow rate g and kinematic viscosity v. Modified and reprinted

with permission from Wierschem et al. [55]. (© AIP Publishing.
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Figure 1.13.: Schematic view of the interferometric setup used by Decré and Baret [58] to map the free surface shape
of a three-dimensional film flow over localized two-dimensional topography. Modified and reprinted with permission
from Decré and Baret [58]. (© Cambridge University Press.

maps of the free surface with phase-stepped interferometry. The interferometric setup is shown
in Figure 1.13. For one-dimensional topographies, the local curvature of the substrate caused
a standing capillary ridge upstream of the step-down topography, followed by an exponential
relaxation downstream of the topography. Also for two-dimensional topographies a capillary
ridge arose upstream of the step-down topography, please see the bow-shaped dark region in
Figure 1.14. For the two-dimensional topography, the localized pressure peak led to a negative
pressure gradient outwards in all directions, instead of along the x-axis only. A spanwise
perturbation was created that relaxed very slowly in the wake of the localized topography.
Hence, they showed that the disturbances induced by small-scale topography can persist over
length scales several orders of magnitude larger than the size of the topographical feature itself,
a finding relevant for coating applications. The experimental results by Decré and Baret [58]
were in good agreement with existing models for flow over both one-dimensional [16,17] and
two-dimensional [30] topography. The numerical work by Veremieiev et al. [59] studied gravity-
driven inertial flow of a thin viscous liquid over a trench. The problem was modeled via
a depth-averaged form of the Navier-Stokes equations, akin to the integral boundary-layer
approximation. The discrete analogue of the resulting set of coupled equations was solved
using full approximation storage and multigriding. For two-dimensional localized topography,
the free surface disturbance was found to be significantly affected by the presence of inertia.
As in the case of spanwise topography, inertia led to an increase in the magnitude of the
resulting capillary ridge and trough formation. The effects of inclination angle and topography
aspect ratio were similarly explored. In their subsequent work Veremieiev et al. [60] considered
gravity-driven three-dimensional flow over different types of two-dimensional topographies, i.e.
hemisphere and trench. The Navier-Stokes and continuity equations were solved within a finite
element framework for the case of surface tension dominated film flow, and a direct parallel
multifrontal solver was implemented along with out-of-core storage. That way, they were able
to predict the internal flow structure and the corresponding free surface disturbance. Their
results fitted well to those obtained by Baxter et al. [32] (hemisphere in Stokes flow, see Section
1.1.2) and Decré and Baret [58] (trench).

Argyriadi et al. [54] performed experiments on gravity-driven film flows along inclined peri-
odic substrates with transverse, one-dimensional rectangular corrugations of different steepness.
Beyond the peak Reynolds number, which corresponded to the maximum of the free surface
resonance amplitude of the two-dimensional flow (Section 1.2.1), a three-dimensional surface
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Figure 1.14.: False color representation of the free surface over a square. Comparison between experiment and theory.
All scales, lateral and vertical, are the same. Background red: h1/T = 0; dark red: h1/T > 0; dark green: h;/T < 0.
w/Lg =1.54, T /hoo = 0.25. The flow is from top to bottom. The trench depth in z-direction is T, and its width in
x-direction w. The dynamic capillary length is defined as Ly = hoo/Ca'’® = (vheo /(3pg sin @))!/® with ho, being the
film thickness far away from the topography. The fluid parameters are the surface tension v and the density p. The
gravitational acceleration is g, the inclination of the topography against the horizontal is «. Decré and Baret [58]
discussed dimensionless perturbation profiles hi(x,y)/T = (h(x,y) — ho)/T to remove the offset caused by the
asymptotic thickness ho. Reprinted with permission from Decré and Baret [58]. (© Cambridge University Press.

pattern established. This pattern consisted of transverse arrays of depressions along corruga-
tion valleys. Notably the peak Reynolds number and, hence, the onset of the three-dimensional
pattern, was insensitive to the steepness of the substrate and appeared at all inclinations tested.

The analytical study by Wang [61] was the first to consider three-dimensional films flowing
over two-dimensional doubly periodical sinusoidal undulations in the asymptotic limit of low
Reynolds numbers and small waviness. Perturbations on the primary variables and the complex
boundary conditions led to a system of successive equations. For undulations of small ampli-
tude, the free surface was found to have a similar structure as the bottom, but with a phase lag
and decreased amplitude. Both the free surface and the secondary transverse flow depended
on the topography’s wavelength and a combined surface tension-inclination parameter. More-
over, he showed that there exists an optimum aspect ratio of protuberances for maximal flow
rate. Luo and Pozrikidis [62, 63] studied the effect of inertia on gravity-driven film flow over
two-dimensional doubly periodic sinusoidal corrugations for finite Reynolds numbers. Their key
idea was to express the substrate’s geometry as a Fourier series, and then reconstruct the three-
dimensional flow in terms of the individual two-dimensional transverse and unidirectional flows
over the constituent oblique corrugations. They found that two-dimensional corrugations may
either reduce or amplify the surface deformation with respect to their one-dimensional coun-
terparts. The underlying mechanism was the simultaneous effect of the constituent oblique
components on the effective wave number, capillary number, and Reynolds number. The com-
bined analytical, numerical, and experimental approach by Heining et al. [64] scrutinized the
effect of inertia on gravity-driven free surface flow over different two-dimensional periodic cor-
rugations of sinusoidal shape. At bottom amplitudes which were large compared to the film
thickness complex free surface structures appeared, especially in cases where the topography
was not fully flooded by the liquid. In any case, a rich variety of pattern formation phenomena
and laminar mixing was reported, depending on the interplay between substrate geometry and
inertia (Figure 1.15).
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Figure 1.15.:  Streamlines of colored silicone oil (red) injected close to the bottom b(x,z) =

a[cos(2wx/A) + cos(2wz/A)] and close to the symmetry plane z = m (deepest point of the troughs). The lower
red lines show the experimental image, the numerical streamlines are the upper blue lines. Re = 8.2. The filled circles
indicate the global maxima while the open circles indicate the global minima of the topography. The flow direction is
from left to right (x-direction). The Reynolds number is defined as Re = g/v with the flow rate g and the kinematic
viscosity v. The topography has the amplitude a and the wavelength A. Reprinted with permission from Heining et
al. [64]. © AIP Publishing.

1.2.3. Inertial flow with sidewalls as bounding topography

In the real world of engineering and environmental systems, gravity-driven films are neither
purely two-dimensional (Figure 1.16a) nor are they infinitely extended in three dimensions.
The films are bounded by sidewalls, which can be interpreted as a special class of bounding
topographies. The increasing demand for thinner films in scientific and technological applica-
tions requires a better knowledge of the effects of the sidewalls on gravity-driven film flows. For
example, the recent work by Gugler et al. [9] discussed the operative limits of curtain coating
due to edges to demonstrate the importance of considering the sidewalls in technical applica-
tions. They summarized the existing theories on edge profiles in curtain coating and presented
methods to analyze edge issues in production.

Scholle and Aksel [65] presented an exact solution of visco-capillary flow in an inclined, flat
channel bounded by sidewalls. Assuming that the flow is steady and unidirectional the surface
shape and the velocity profile were obtained as exact solutions of the Navier-Stokes equations,
valid for arbitrary Reynolds numbers. They unveiled a structural change in the velocity profile,
the ’velocity overshoot’ near the sidewalls, for cases with meniscus elevation higher than the
apex height of the flow (Figure 1.16¢). In their subsequent work, Scholle and Aksel [66] discussed
the special case of thin film limit and film rupture of the visco-capillary gravity-driven channel
flow. The shape of the free surface, the velocity field, and the flow rate were obtained from
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(a) Slip condition without capillary elevation (b) No-slip condition without capillary elevation

(corresponds to two-dimensional case)
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(c) No-slip condition with capillary elevation (d) Capillary corner flow

Figure 1.16.: Cross-sectional velocity field and flow configurations for different types of sidewall influence. The
velocity is color-coded: blue corresponds to slow and red corresponds to fast. The geometry is described by the
channel half width B and the film thickness at the center of the channel H. Modified and reprinted with permission
from Haas et al. [67]. Grayscale was converted to color. (© AIP Publishing.
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Figure 1.17.: Spiral-like pathline patterns similar to those in the vicinity of the sidewalls, where the vortex is deformed
into a spiral. The film flow was visualized by adding up a series of tracer images. The main flow direction is along
the mean inclination angle 45° of the substrate contour. The substrate wavelength is 20 mm, its amplitude is 9 mm,
and the film thickness is 11.35 mm. Reprinted with permission from Wierschem et al. [26]. (© AIP Publishing.

a pure analytical treatment. Rescaling the problem with a generalized capillary length they
payed particular attention to vanishingly thin films, where capillary effects become dominant.
Their calculations showed that the capillary effects caused an increased flow rate for both thin
and vanishingly thin films. Beyond, they identified a rupture criterion, defining the minimum
flow rate in order to avoid film rupture and capillary corner flow (Figure 1.16d). In their
combined analytical, numerical and experimental approach, Haas et al. [67] focused on the
influence of the sidewalls on thin gravity-driven films for the case of steady and draining flow.
They highlighted the competing effects of the no-slip condition and the velocity overshoot due
to capillary elevation at the sidewalls and discussed the deviations from the two-dimensional
reference system. Please see Figure 1.16 for the respective results on the cross-sectional velocity
field and the classifications of the flow configurations for the different types of sidewall influences.

To the author’s knowledge, the effects of corrugated sidewalls on films flowing down flat or
wavy inclines have not yet been addressed. Besides, no publication was found which considered
the influence of flat sidewalls on film flows over undulated inclines explicitly. Both problem
statements still remain as open questions. The only paper to mention in this context is the
experimental study by Wierschem et al. [26]. In their experiments, they considered the structure
of the vortices which formed in the troughs of deep sinusoidal undulations for gravity-driven
creeping flow conditions (Section 1.1.1). They briefly outlined a symmetry break, induced by
the presence of the sidewalls, the undulated bottom and a slight inclination along the channel
width. This symmetry break led to a deformation of the vortex into a spiral. Spiral-like
pathline patterns, similar to those shown in Figure 1.17, were observed. These patterns indicate
a mixing of the main flow with the recirculation zones in the vicinity of the sidewalls. This
mixing would not appear in infinitely extended, two-dimensional flow over inclined topography
without sidewalls.

1.3. The inverse problem

Film flows are often investigated in the usual cause-to-effect paradigm, the so-called direct
problem (Sections 1.1 and 1.2). It consists in finding the observable consequences of a set of
causes and conditions. For example, information about the underlying topography is given and
the free surface shape and the flow field are unknown. In the inverse problem the causes and
conditions of the flow are reconstructed from the knowledge of observable consequences. In
this effect-to-cause paradigm, the free surface is a signature of the flow which can be related to
unknown flow quantities, i.e., unknown boundaries, flow conditions or material properties [68].
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1. Introduction: From creeping flow to the linear stability of films over topography

Sellier [69] calculated an a priori unknown substrate shape from a given free surface by solving
the inverse problem for two-dimensional flow. He showed that the lubrication approximation,
which governs the flow of a thin liquid film down an inclined topography, can be explicitly
inverted. An exact analytical solution was found to reconstruct the bottom shape and the
corresponding flow field from the prescribed free surface. Two applications in coating industry
were mentioned: the reconstruction of the substrate from measured free surfaces and the pos-
sibility to infer the bottom topography for a target free surface profile. Heining and Aksel [70]
included the influence of inertia on the reconstruction of substrate topography in steady thin
film flow. They used the weighted-residual integral boundary-layer method (WRIBL) to model
the flow in an asymptotic approach for thin films and moderate Reynolds numbers. That way,
they were able to derive an explicit equation which allowed the reconstruction of the substrate
from a known free surface. They prescribed the free surface as a monofrequent periodic function
and discussed the influence of inertia, film thickness, and surface tension on the shape of the
corresponding substrate. Subsequently, Heining [71] presented a numerical algorithm for re-
constructing the velocity field of a viscous liquid flowing over unknown topography beyond the
borderline case of thin films. This approach was based on the full Navier-Stokes equations and
therefore was not relying on any simplifying assumption. The iterative algorithm relied on a
discretization of the transient kinematic boundary condition. For given fluid properties, he was
able to determine both the topography and the velocity field from the free surface shape. He
confirmed the results of previous computations in the thin film limit [70]. Besides, he compared
WRIBL and finite element method (FEM) and generalized the numerical solution to arbitrary
film thicknesses.

The inverse problem for two-dimensional gravity-driven free surface flows at vanishing Reynolds
numbers was addressed by Heining et al. [20]. In the framework of lubrication approximation
they demonstrated that the knowledge of the free surface velocity is sufficient to reconstruct the
free surface elevation, the film thickness, and the substrate’s geometry. In line with Aksel [19],
Heining et al. [20] showed that the wall shear stress can be inferred indirectly from a prescribed
free surface velocity. Being able to infer the wall shear stress from the mere measurement of the
free surface is potentially an extremely useful feat since the wall shear stress is responsible for
important mechanisms such as sediment transport and erosion in geophysical flows. With the
help of the integral boundary-layer approach, Heining et al. [72] showed that it is sufficient to
know one component of the free surface velocity to reconstruct free surface elevation, film thick-
ness, and substrate topography. They derived an explicit formula for bottom reconstruction,
which could be solved analytically with a Fourier series approach. The algorithm was found to
be robust against noisy input data, but its accuracy became limited when vortices appeared.
Anjalaiah et al. [73] considered the inverse problem in gravity-driven films of shear-thinning
fluids flowing down a substrate of unknown shape. They were interested in controlling the film’s
free surface using a suitable design of the bottom topography. Therefor, the authors assumed
a power-law fluid (power-law index n = 1 denotes Newtonian fluid, relevant for the present
consideration) and derived a WRIBL formulation analogous to the lubrication approximation.
The authors obtained a single partial differential equation which related the film thickness and
the free surface elevation. The problem could be approached from two directions: either finding
the topography for prescribed free surface (the inverse problem) or reverse (the direct problem).
For a weakly undulated, periodic free surface an exact expression for the required substrate
geometry was derived.

Usha and Anjalaiah [74] included the influence of a slippery substrate on bottom reconstruction,
relevant for technical systems incorporating superhydrophobic surfaces. Prescribing the free
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surface of a two-dimensional flow, their goal was to obtain the corresponding geometry of a
slippery substrate. Their approach followed the previous papers by Sellier [69] and Heining and
Aksel [70] and extended them to the reconstruction of slippery bottoms. In the steady case,
the model equations for the film thickness were derived under lubrication approximation for
creeping flow and using WRIBL for inertial flow. Particular emphasis was given to the analysis
of the effects of the slip parameter and the inertia on the shape of the reconstructed topography
for different prescribed shapes of the free surface, i.e., sinusoidal, trench, and bell-shaped.

Heining and Sellier [75] extended previous work [20] by presenting a method to reconstruct
the flow domain in three-dimensional, creeping, thin films under the action of gravity using an
inversion strategy of the lubrication equation. Their method was able to reconstruct the film
thickness, the internal pressure field, and the substrate with only the knowledge of the free
surface velocity. They derived the corresponding partial differential equation for each unknown
variable and solved them numerically. Besides, they showed that the inversion strategy is robust
with respect to external perturbations in the form of noisy input data.

In the last years, the understanding of free surface flows has grown tremendously with the
progress in mathematical modeling and numerical simulation. The inverse problem was not
left aside by this development. A comprehensive survey of the literature dealing with inverse
problems in free surface flows can be found in the recent review article by Sellier [68]. However,
despite all recent progress in this field of research, the inverse problem is inherently not well
posed. An uncertainty remains as the identifiability of the substrate’s shape is limited by
the fact that different topographies with the same amplitude and wavelength can exhibit only
barely distinguishable free surfaces when recirculation zones appear [76].

1.4. Stability of film flows

1.4.1. A brief review on the stability of films over flat inclines
Two-dimensional flow

For convenience, before beginning with the stability of gravity-driven films over topographies,
some issues on the stability of Nusselt films over flat inclines will shortly be recapitulated.
In their pioneering theoretical [77] and experimental [78] studies, Pjotr and Sergei Kapitza
unveiled that traveling free surface waves can appear spontaneously at the free surface of a
gravity-driven film of water, if a critical volume flux threshold is exceeded (Figure 1.18). A
few years later, Benjamin [79] and Yih [80] considered the formation of traveling free surface
waves on two-dimensional laminar liquid films flowing down inclined, flat planes. In their linear
stability analysis, they adapted the Orr-Sommerfeld equation [81-83] to thin film flows. They
found that all Newtonian films flowing over infinitely extended flat substrates, inclined by the
angle £ against the horizontal, become unstable at Reynolds numbers beyond Re. = (5/4) cot f5.
Their results were valid for linear, infinitely long free surface perturbations with wave numbers
k — 0 and infinitesimally small amplitudes. Above the critical Reynolds number Re, of this

Figure 1.18.: Two examples of silhouettes of traveling waves that appear at the free surface of a film of water flowing
down a flat incline. Figure taken from Kapitza and Kapitza [78].
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Figure 1.19.: Sketch of the film flow apparatus with variable inclination angle 8. The automated flow control system
with a ballast tank for noise reduction and the method of introducing periodic forcing of the input flow rate into the
entrance manifold are shown. The setups to measure the local, time-resolved film thickness and, hence, flow stability
are illustrated as well, i.e., laser beam deflection and fluorescence imaging. Reprinted with permission from Liu et
al. [87]. © Cambridge University Press.

long-wave primary instability the flow was denoted as ’'convectively unstable,” which means
that small free surface waves grow while traveling downstream.

Subsequent work, e.g., by Lin [84] and Gjevik [85], considered the dynamics of two-dimensional
films over inclined planes in the nonlinear regime — mainly built on the approach adopted by
Benney [86]: an evolution equation for the film thickness, which accounts for inertia, viscosity,
capillarity, and hydrostatic pressure. Lin [84] studied the finite-amplitude stability of a parallel
flow with a free surface by deriving a closed-form expression for the nonlinear development
of long-wave surface perturbations. He showed that in the neighborhood of the neutral curve
an exponentially growing infinitesimal disturbance may develop into saturated waves of small
but finite amplitude if the surface tension is sufficiently large. His results fitted well to those
of the Kapitza’s [77,78]. Gjevik [85] considered the finite-amplitude traveling waves which
appeared at the free surface of a viscous fluid layer flowing down an inclined plane. The
growth of a linear unstable periodic perturbation and its nonlinear interaction with higher
harmonics was studied. In line with the results published by Lin [84] he reported on a damping
effect of the surface tension in films flowing down a vertical plane, i.e. the appearance of
saturated finite-amplitude surface waves. About twenty years later, Liu et al. [87] and Liu and
Gollub [88] experimentally validated previous theoretical findings on the primary convective
instability [79, 80] and the development of saturated waves [84, 85] in two-dimensional film
flow over flat inclines. Liu et al. [87] measured the primary instability of thin liquid films
flowing over inclined planes with laser beam deflection. The setup they used is shown in
Figure 1.19 and was a prototype for further measurements, also over topography. Despite
their experiments dealing with waves of small but finite wave numbers, they were able to
locate the onset of the primary convective instability at the theoretically predicted critical
Reynolds number Re. = (5/4) cot . The evolution of the waves depended strongly on the initial
wave number (or the frequency f) as shown exemplarily in Figure 1.20a. Liu and Gollub [88]
performed experiments on both the linear stability of films flowing down inclined planes and
the dynamics of solitary waves that can form sufficiently far downstream. They showed how
the curve of the neutral frequency disturbances f. of the primary instability depends on the
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Figure 1.20.: (a) Dimensionless spatial growth rate of linear waves as a function of the wave number for glycerin-water
films flowing over a plane, inclined at the angle 8 = 4.6° against the horizontal. The Reynolds number is R = 23 and
the Weber number is W = 62. The solid line corresponds to the predictions computed with the method due to Anshus
and Goren [48]. The dashed line is the linear result of the Benney equation [86] (equation (5) in [87]). Reprinted
with permission from Liu et al. [87]. (© Cambridge University Press. (b) Phase diagram in frequency f and Reynolds
number showing various regimes of linear stability, nonlinear evolution, and secondary instabilities. The inclination
angle is 8 = 6.4°, and aqueous solutions of glycerin (54% by weight) were used. The circles are measurements of
the neutral stability frequency f. of the primary instability, below which the free surface is convectively unstable. The
upper solid line is calculated from linear stability theory. The triangles show measurements of the maximum amplified
frequency fn, and the solid line through them is also the result of linear theory. The bifurcation phase boundary
fs separates two types of nonlinear evolution [87] and is given by the diamonds with a dashed trend-line. Between
fs and f. saturated finite-amplitude waves with one maximum per period can be found. Below f, waves evolve
into multipeaked waveforms, including solitary waves, by strongly nonlinear mechanisms. Another phase boundary
f,, shown by squares, separates the sideband and subharmonic two-dimensional secondary convective instabilities of
periodic waves [89]. The sideband instability of the primary waves predominates above f;, and the subharmonic
instability at frequencies below the boundary (and close to f,). Reprinted with permission from Liu and Gollub [88].
© AIP Publishing. In (a) and (b), the Reynolds number is defined as R = houg /v, with the unperturbed film thickness
ho, the free surface velocity uy = gh? sin /(2v), the kinematic viscosity v and the gravitational acceleration g. The
Weber number is W = ~/(ph3g sin 3) with the surface tension 4 and the density p of the fluid.

Reynolds number. Besides, they discussed the bifurcation phase boundary fs; which separated
two types of nonlinear evolution [87]: the appearing of saturated finite-amplitude waves above
fs and multipeaked and solitary waves below. The respective results are shown in Figure
1.20b together with the phase boundary fs5, separating the sideband and subharmonic two-

dimensional secondary convective instability of periodic waves, previously described by Liu et
al. [87].

Three-dimensional flow

Three-dimensional instabilities of film flows over flat inclines were considered in experiment and
theory by, e.g., Liu et al. [90]. They showed a primary, two-dimensional wave (k, f) to interact
strongly with a pair of oblique waves (k1,f1) and (k2,f2) when they satisfy the conditions
of phase synchronism: k£ = ki + k2, and f = f1 + f2, where k£ is the wave vector. Both
synchronous and subharmonic three-dimensional instabilities were found. In the first case, the
spanwise deformations of adjacent wave fronts had the same transverse phase. In the second
case, where the instability appeared for frequencies close to the neutral curve f., the transverse

modulations were out of phase for successive wave fronts and herringbone patterns appeared
(Figure 1.21).
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Figure 1.21.: Stabilized herringbone patterns generated by subharmonic and detuned disturbances. The herringbone
patterns resulted from a broad band of subharmonic resonances. Liu et al. [90] superposed small periodic disturbances
at frequency f/2 4+ Af on the primary two-dimensional waves of frequency f at the entrance manifold, where f is
in the subharmonic three-dimensional region. They defined the 'detuning parameter’ p = |Af|/f. The inclination
is 3 = 4.0°, the Reynolds number is R = houo/v = 50.5 with the unperturbed film thickness hy and the free
surface velocity up. The frequency of the disturbance is f = 14.0Hz. The secondary perturbation frequencies are
(a) A =f/2=7.0Hz; (b) i = 6.5Hz. The corresponding detuning parameters are (a) x = 0 and (b) p = 0.0357.
Reprinted with permission from Liu et al. [90]. (© AIP Publishing.

Reviews and latest developments

The dynamics of traveling free surface waves in gravity-driven film flows over flat inclines were
thenceforth the object of interest to several authors. As the present work focuses on films over
undulated inclines, please see the reviews by Oron et al. [10] and Craster and Matar [12] for
a more profound discussion on wave evolution over flat inclines. The author refrains from a
detailed discussion of all more recent developments on this topic, e.g., the work of Trifonov
[91] who used direct Navier-Stokes computations and Floquet theory to compute the linear
stability and the nonlinear wave evolution for gravity-driven two-dimensional films flowing
down a vertical plate.

1.4.2. The stability of films over undulated topography
Localized topographies

The stability of gravity-driven free surface thin film flows over flat inclines exhibiting a localized
topographical feature was considered by Kalliadasis and Homsy [92] and Bielarz and Kalliadasis
[93]. Kalliadasis and Homsy [92] studied thin film flows over a step-down topography, the steady
states of which have been examined previously by Kalliadasis et al. [16,17]. The steady-state
flow over such a step-down develops a ridge at the free surface right before the entrance to
the step (please see Figure 1.1 in Section 1.1.1). Such capillary ridges have been observed in
the contact-line motion over a planar substrate and are a key element of the instability of the
driven contact line (please see Oron et al. [10] and Craster and Matar [12] for an elaborate
discussion on moving contact lines). Kalliadasis and Homsy [92] analyzed the linear stability
of the ridge with respect to disturbances in the spanwise direction. They showed that the
operator of the linearized system has a continuous spectrum for disturbances with wave numbers
less than a critical value above which the spectrum is discrete. Their main result was that,
unlike the driven contact line problem where an instability grows into well-defined rivulets,
the topography-driven ridge was stable for a wide range of pertinent parameters. The reasons
for the stability of the ridge were established through an energy analysis. The mechanism
responsible for the damping of the perturbations was found to depend on the wave number. At
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Figure 1.22.: Sketch of the experimental apparatus used by the group of Bontozoglou (e.g., in [53,54]) to measure
the critical Reynolds number for the onset of the primary instability in gravity-driven films over undulated inclines.
1: overflow tank which provides a constant head; 2: image grabbing system; 3: corrugated substrate; 4: UV light
source. Modified and reprinted with permission from Argyriadi et al. [54]. (© AIP Publishing.

small wave numbers, the stability of the capillary ridge was due to a rearrangement of the fluid
in the flow direction owing to the net pressure gradient induced by the topography. At moderate
to large wave numbers, the stability was due to the surface tension acting in concert with the
spanwise curvature. The results by Kalliadasis and Homsy [92] were sustained by the findings
of Bielarz and Kalliadasis [93], who numerically solved the lubrication equation for two- and
three-dimensional thin film flow over localized topography, i.e., step-down, step-up, trench, and
hump. They included the effects of inertia and intermolecular forces and demonstrated that
the free surface was remarkably stable against disturbances in the transverse direction and the
influence of inertia: the ridge recovered its original shape as soon as the disturbances traveled
downstream and trained out of the ridge. A destabilization of the free surface in transverse
direction could be achieved by large-amplitude free surface perturbations. Davalos-Orozco [94]
studied instabilities of gravity-driven thin films flowing over substrate deformations distributed
in a small space interval. He simulated a sinusoidal topography in a finite interval by smooth
functions and based his numerical work on a modified Benney equation [86,95]. His results
indicated that this type of smooth, localized topography can indeed have a stabilizing effect on
the flow, i.e., can act as a passive mechanism to filter time-dependent perturbations.

Weak periodical undulations

The free surface stability of films flowing over weak, periodical, rectangular substrate undu-
lations was studied in experiments by Vlachogiannis and Bontozoglou [53] and Argyriadi et
al. [54]. They used a fluorescence imaging method (Figure 1.22) to capture the evolution of
film height in space and time with an accuracy of a few microns. Aslong as the amplitudes of the
traveling disturbances remained small, they were dominated by the statically deformed free sur-
face (please see Section 1.2 for free surface resonance), and manifested only as small oscillations
in the amplitude and phase shift of the base pattern. Further downstream, they evolved into
large solitary waves and multipeaked humps. The traveling waves exhibited a regular frequency,
indicating that the spatial forcing imposed by the periodic corrugations resulted in a selection
process. In terms of flow stability, their key finding was a remarkable stabilization of the flow
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at high Reynolds numbers, which proceeded through the development of a three-dimensional
flow structure and led to both a temporary decrease in film thickness and a recession of solitary
waves. Argyriadi et al. [54] studied basically the same system and considered the effect of cor-
rugation steepness on steady (Section 1.2) and unsteady film flow. Their experiments showed
that the stability threshold, i.e., the critical Reynolds number, increased drastically with the
corrugation steepness. This result was anticipated analytically for sinusoidal undulations by
Wierschem and Aksel [96]. They performed linear stability analysis of a Newtonian liquid film
flowing down an inclined wavy plane of sinusoidal shape. Their theoretical method was based
on a long-wave approximation with small perturbation amplitudes. As for the flow over a flat
incline, a long-wave type primary instability was found, but the critical Reynolds number for
the onset of the traveling free surface waves increased with the waviness and the inclination of
the substrate. Their finding that the presence of a long-wave bottom undulation tends to sta-
bilize the flow was confirmed experimentally by Wierschem et al. [97] who considered the effect
of long undulated substrates on thin gravity-driven films, both experimentally and analytically
in the framework of Floquet analysis. They unveiled a stabilizing effect of weakly corrugated
substrates, i.e., a shift of the neutral curve (Figure 1.23a) and the critical Reynolds number
(Figure 1.23b). General consensus of these early approaches [53,54,96,97] was that a slightly
corrugated topography stabilizes the filmn flow compared to the corresponding Nusselt flow over
a flat incline. A minor shift of the critical Reynolds number was reported and the shape of the
neutral stability curve (a long-wave type primary instability) was found to remain qualitatively
unaffected.

Numerical investigations by Trifonov [98,99] considered the free surface stability of gravity-
driven viscous film flows along weak and moderate sinusoidal undulations over a wide range
of Kapitza and Reynolds numbers. His linear stability analysis of integral boundary-layer [98]
and full-scale Navier-Stokes approaches (including spectral analysis with Chebyshev polynomi-
als) [99] unveiled that substrate undulations stabilize the flow significantly if they provoke a
substantial increase of the average film thickness compared to the corresponding Nusselt flow.
Besides, the undulations had a destabilizing effect on the flow if their period 'matched” with
the period of the free surface perturbations. For the practically important case of the corru-
gation’s amplitude and the Nusselt film thickness being of about the same size, Trifonov [99]
demonstrated that the results given by a simplified integral approach were in good agreement
with those obtained by applying the Navier-Stokes equations in their full statement. Davalos-
Orozco [95] modified the Benney equation [86], which is a nonlinear evolution equation in the
small wave number approximation, to scrutinize the stability of two-dimensional gravity-driven
thin film flows over smoothly deformed substrates, i.e., the same system studied by Wierschem
and Aksel [96]. The equation described the film’s free surface deformation including the effects
of inertia, viscosity, and surface tension and had a forcing term that corresponded to periodic
time-dependent perturbations hitting on the free surface. He stated that the stabilizing effect
of a sinusoidal substrate can be increased by steepening its undulations.

Deep periodical undulations: surface tension effects on the stability threshold

Heining and Aksel [70,100] and D’Alessio et al. [101] considered the combined effect of surface
tension, inertia and topography steepness on the stability of film flows along inclines exhibiting
steep sinusoidal undulations. General consensus of these three approaches [70,100,101] was that
the flow can either be stabilized or destabilized by steep substrate undulations, depending on
the amplitude and wavelength of the substrate and the surface tension of the fluid. Heining and
Aksel [70] computed both the steady solution and, in an unconventional approach, the linear
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Figure 1.23.: (a) Experimental linear stability curve compared to theoretical predictions for wavy inclines according to
Wierschem et al. [97] and for a flat incline at the mean inclination angle. The thin dotted line shows the corresponding
result without considering the surface tension. In the experiment, the thin film parameter § = 2wh/\ varied between
0.065 and 0.073. The topography steepness was { = 2wa/\ = 27 - 0.05, the inclination was o = 45° and the inverse
Bond number 1/Bo = 4x%/2,/(A\®sina) = 0.002 with the capillary length Ic. = [o/(pg)]'/?. The topography’s
amplitude is a and its wavelength is A. The steady-state film thickness is h = [37Q/(pg sin@)]*/? with Q being the
flow rate. The surface tension of the fluid is o, its density is p and its dynamic viscosity is . The gravitational
acceleration is g. (b) Minimum critical Reynolds number as a function of the inclination angle. The experimental
values were obtained from an extrapolation to 0Hz; the theoretical curve for the wavy substrate is according to
Wierschem et al. [97]. The topography steepness was ¢ = 27 - 0.05. Modified and reprinted with permission from
Wierschem et al. [97]. (© Springer Nature.

stability of thin film flow over sinusoidal topography in the context of bottom reconstruction
(please see Section 1.3 for the inverse problem). From the solution of the inverse problem
they obtained a bottom profile, which itself served as starting point for the stability analysis.
Instead of studying the stability of the bottom topography, they computed the corresponding
free surface stability. They transferred the stability of the inverse problem to the stability of the
direct problem. They applied monodromy theory [102] to the linearized equations and reported
that the substrate undulations had, in general, a stabilizing effect on the flow. However,
when the surface tension was sufficiently large, a destabilization was observed. The approach
by D’Alessio et al. [101] was based on an extension of the modified integral boundary-layer
equations proposed by Ruyer-Quil and Manneville [103] for flows over even substrates to flows
over topography. A linear stability analysis of the steady flow was carried out by taking
advantage of Floquet-Bloch theory. Their main conclusion was that, in general, for weak to
moderate surface tension (large Weber numbers), bottom topography acts to stabilize the flow.
For stronger surface tension (small Weber numbers), bottom topography can destabilize the
flow provided that the wavelength of the substrate undulations is sufficiently short. While
the stabilizing effect of substrate topography on film flows has previously been reported by
Wierschem et al. [97] for weak surface tension and Balmforth and Mandre [104] for zero surface
tension, D’Alessio et al. [101] described the potentially destabilizing combined effect of bottom
topography and surface tension in line with the results by Heining and Aksel [70]. Heining
and Aksel [100] studied effects of inertia and surface tension on a thin film of a power-law
liquid flowing down an inclined wavy plane with sinusoidal topography (power-law index n =1
denotes Newtonian fluid, relevant for the present consideration). Based on the von Karmén-
Pohlhausen method [105,106] an integral boundary-layer model for the film thickness and the
flow rate was derived. For weakly undulated substrates, they solved the governing equation
analytically by a perturbation approach and found a resonant interaction of the free surface
with the wavy incline. A study on the inverse Bond number revealed that surface tension had
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Figure 1.24.: Examples of linear stability charts of gravity-driven Newtonian films flowing over steep sinusoidal
corrugations. (a) Dimensionless frequency w (according to [47]) of the neutral disturbance against the Reynolds
number for varying steepness £ = a/d of the topography. The amplitude of the topography was a and the steady-
state film thickness was d. The results correspond to Newtonian fluids with power-law index n = 1. The stress tensor
was defined as 7ij = 21a(2Dx Dii)"~V/2D;; according to Spurk and Aksel [15]. Data from [100]. (b) Frequency f of
the neutral disturbance against the Reynolds number. The graph shows a segmented stability chart with an unstable
isle (*). Data from [107,108]. Modified and reprinted with permission from Schérner and Aksel [114]. @© AIP
Publishing.

a significant impact on the stability of the film. For the case of Newtonian fluids, small inverse
Bond numbers always led to a stabilization, higher inverse Bond numbers to a destabilization
of the flow compared to the corresponding Nusselt flow over a flat incline.

Deep periodical undulations: stability chart patterns

Recent research [76,100,107-114] reinforced previous findings on flow stabilization and destabi-
lization due to topography effects and reported on severe changes of the entire shape of the linear
stability chart of gravity-driven Newtonian films flowing down steep periodical topographies.
Patterns of stability charts were described, differing significantly from the classical long-wave
type instability valid for free surface flows over flat inclines (Figure 1.24a, topography steepness
¢ = 0). Heining and Aksel [100] were the first to report on this phenomenon, i.e., the forma-
tion of an unstable isle in the stability chart of a Newtonian film flowing over deep sinusoidal
corrugations (Figure 1.24a, ( = 0.4). As their approach was actually not able to resolve, for
example, the formation of the eddies in the troughs of such steep undulations, the authors de-
clared the segmentation of the neutral curve to be an artifact of the linearization. Surprisingly,
subsequent measurements [107] and computations [108] provided the evidence that an unstable
isle can indeed exist in the stability chart of Newtonian films flowing over strongly sinusoidally
corrugated inclines (Figure 1.24b). The experimental work by Pollak and Aksel [107] reported
on crucial flow stabilization and multiple instability branches in the linear stability chart of
gravity-driven viscous films flowing down a wavy incline of sinusoidal shape. Decreasing the
viscosity of the liquid led to a transition from a long-wave to a short-wave type instability.
Increasing the viscosity led to a disjoining of the instability branches, i.e., the formation of
an unstable isle in the stability chart. Beyond, a destabilization of the flow compared to the
corresponding Nusselt flow and a very strong stabilization of the flow up to a factor of two
for arbitrary linear disturbances and even up to a factor of four for linear short-wave distur-
bances was observed when the viscosity was large. They also presented a first approach for
a topography shape, based on the shape of the eddy, which was optimized in terms of flow
stability — a finding of enormous potential for coating applications. Trifonov [108] performed
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direct Navier-Stokes computations and used Floquet theory to consider the free surface stability
of a viscous film flowing down steep sinusoidal undulations. His numerical algorithm allowed
the computation of both the steady-state solution of the nonlinear equations and the rates of
growing or damping in time of the arbitrary two-dimensional disturbances of the solution which
were bounded in space. The critical Reynolds number for the onset of the primary instability
was found to depend essentially both on the topography parameters and the liquid’s physical
properties. For different Kapitza numbers, inclination angles, and Reynolds numbers, regions
of topography parameters (amplitude and period) were obtained, where all two-dimensional
disturbances decayed in time. His numerical study was the first to validate the precedent ex-
perimental approach by Pollak and Aksel [107]. Cao et al. [109] studied the primary instability
of a liquid film flowing along steep periodical substrates of both sinusoidal or rectangular shape.
They provided the experimental evidence for a short-wave global mode in film flow along deep
periodic corrugations. They found that, with increasing inclination, an abrupt transition in the
instability mode is manifested: the classical long-wave instability, which is convective and thus
determined by the characteristics of externally imposed excitation, was replaced by a new short,
traveling mode, which was highly regular and strongly two-dimensional. The short-wave mode
introduced an intrinsic frequency which was insensitive to external excitation and appeared
to be a global mode. The exact shape of the corrugations (sinusoidal or rectangular) had a
leading-order effect on the inclination at which the new mode appeared and on its wavelength
at inception.

Experiments by Schorner et al. [76] addressed the question whether a segmented stability
chart, in particular the unstable isle found by Pollak and Aksel [107] and Trifonov [108] (see
Figure 1.24b), is a unique feature of deep sinusoidal undulations or a more general phenomenon.
Intriguing questions concerning the inverse problem (Section 1.3) and the origin of the unstable
isle arose. Subsequent experimental work by Schérner et al. [110] proved that the unstable
isle is a consequence of competing effects of the steady-state flow phenomena. Beyond, they
observed a switching between the unstable isle and a stable isle, i.e., the joining and disjoining
of instability branches, when the system parameters were changed. Numerics by Trifonov [111]
considered viscous liquid film flow down an inclined, sinusoidally corrugated substrate. The
calculations were performed using an integral model and the stability of nonlinear steady-
state flows to arbitrary perturbations was examined using Floquet theory. He showed that for
each type of corrugation there is a critical Reynolds number for which unstable perturbations
occur. This value greatly depended on the physical properties of the liquid and the geometric
parameters of the flow. In particular, he identified corrugation amplitudes and wavelengths for
which the film flow down a wavy substrate was stable to arbitrary perturbations up to moderate
Reynolds numbers. Such parameter values existed for all inclination angles he considered. In
his subsequent work, Trifonov [112] performed direct Navier-Stokes computations on the linear
and nonlinear stability of a gravity-driven film flow down a sinusoidally undulated incline.
He showed that the wavelength of the topography is decisive for the switching phenomenon:
At small topography wavelengths, an increase of the amplitude to wavelength ratio of the
topography provoked the formation of an unstable isle. At larger values of the topography’s
wavelength a stable isle appeared when the amplitude to wavelength ratio of the substrate
was increased. The combined experimental and numerical approach by Schérner et al. [113]
scrutinized the previously discovered [110] switching between different types of stability isles
in films over topography in-depth. Their work gave rise to a fundamental question: Is there a
universal principle, being valid to describe the parametric evolution of the linear stability charts
of gravity-driven Newtonian films flowing over inclined, periodic topographies for variations of
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Figure 1.25.: Experimental setup to determine the onset of the free surface instability with a conductivity technique.
Modified and reprinted with permission from Vlachogiannis et al. [115]. (© AIP Publishing.

different system parameters? The characteristic stability chart patterns and the “stability cycle’
identified by Schorner and Aksel [114] provided the answer to this intriguing question.

1.4.3. The stability of films with sidewalls as bounding topography

Until today, the influence of sidewalls on the free surface stability of a gravity-driven open
channel flow was only investigated experimentally. The author did not find any publication
dealing with the theory of this very demanding topic, i.e., the stability of three-dimensional
gravity-driven film flows with bounding sidewalls. Great technical difficulties arise in both
theory and experiment when considering this intriguing problem.

The experimental approach by Vlachogiannis et al. [115] studied the effect of a finite and vari-
able channel width on the primary instability of a gravity-driven viscous film flowing down
a flat incline. They compared the free surface heights at two different streamwise locations
by conductivity probes in the small wave number limit to detect the onset of the interfacial
instability. Please see Figure 1.25 for the experimental setup they used. When the channel
was narrow and not too steep, its finite width was found to have a stabilizing effect on the
flow and the deviation from the classical prediction [79,80] scaled inversely with the product of
the channel width and the sine of the inclination angle. Vlachogiannis et al. [115] tentatively
attributed the stabilizing effect of the sidewalls to their influence on the traveling disturbances,
which resulted in the downstream development of curved crestlines and a transverse variation
of wave characteristics — findings published shortly after by Leontidis et al. [116]. Their ex-
perimental paper documented the characteristics of the first waves that were observed beyond
the primary instability (convectively unstable but adjacent to the neutral curve) by applying
a fluorescence imaging technique. The crests of the waves attained a parabolic shape, which
was symmetric with respect to the channel’s centerplane. The apex curvature of the parabola
varied inversely with the channel width and the Reynolds number. The height of the wave
was maximum at the centerplane and decreased to zero at the sidewalls, irrespective of the
wetting properties. The subsequent work by Georgantaki et al. [117] provided the experimen-
tal evidence that the delay in the primary instability of gravity-driven film flows in inclined
channels of finite width scales with the ratio of capillary to viscous forces, i.e. the Kapitza
number (which depends on the properties of the liquid only). Compared to the corresponding
two-dimensional film, the flow in channels bounded by sidewalls was stabilized the more, the
higher the Kapitza number was (see Figure 1.26). They emphasized that the delay of the onset
of the primary instability correlated very satisfactorily only with the Kapitza number or the
capillary number, and not with other dimensionless parameters that are frequently used to
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Figure 1.26.: Dependence of the delay R* = Re./Re; of the instability in a flow bounded by sidewalls compared to
the corresponding two-dimensional flow as a function of the Kapitza number Ka for different inclination angles, fluids,
and channel widths W (upper curve: W = 100 mm; lower curve: W = 250 mm). The critical Reynolds number for
two-dimensional flow is ReZ, and the measured critical Reynolds number of the flow bounded by sidewalls is Re.. The
Kapitza number was defined as Ka = a/(pg1/3u4/3) with the gravitational acceleration g and the fluid's kinematic
viscosity v, density p and surface tension o (in mN/m). Modified and reprinted with permission from Georgantaki et
al. [117]. (© American Physical Society.

express the effect of surface tension, such as the Weber number or the Bond number. Besides,
the delay did not vary with the inclination, at least in the range tested. Experiments by Pollak
et al. [118] considered the effects of the sidewalls on the primary instability of gravity-driven
films flowing over flat inclines of finite width. They measured the neutral stability curves for
different sidewall distances (Figure 1.27) and contact angles between the fluid and the sidewall.
Both parameters had a remarkable influence on flow stability. The neutral curves in the near
vicinity of the sidewall combine both features of the boundary layer (short-wave instability)
and the free surface (high sensitivity to perturbations, hence low critical Reynolds number).
With increasing sidewall distance a transition from short-wave to long-wave instability takes
place. Furthermore, Pollak et al. [118] investigated the influence of the capillary elevation and
the velocity overshoot near the sidewalls on the stability of the flow. They found that the
velocity overshoot tends to destabilize the free surface. Based on the previous studies by Haas
et al. [67] and Pollak et al. [118], Guzanov et al. [119] performed experiments to characterize
the effects of the sidewalls on the transition from two-dimensional to three-dimensional wave
evolution in a film flowing over a vertical plate. The results so obtained allowed to determine
the boundaries within which the adequate comparison between modeling and experiments on
wave propagation in three-dimensional films is possible.

As in the case of steady inertial flow with sidewalls as bounding topography (Section 1.2.3),
the effects of corrugated sidewalls on the linear free surface stability of films flowing down flat
or wavy inclines have not yet been addressed. Besides, the author did not find any publication
which considered the influence of flat sidewalls on the stability of film flows over undulated
inclines. In steady-state flow over steep corrugations, the sidewalls were found to provoke a
symmetry break which led to a deformation of the eddies deep in the troughs into a spiral
when the free surface was perturbed with time-periodic traveling waves [26] (see Figure 1.17).
Penetration depths of the free surface disturbances which are as large as these indicate strong
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Figure 1.27.: Neutral stability curves for the contact angle 8° between the sidewalls and the liquid. The different
measurements correspond to different crosswise distances of the measurement positions from the sidewall. Lines
between the measurement points are linear interpolations to guide the eye. The dashed line indicates the neutral
stability curve for the plane flow of infinite extend. The channel was inclined by 41° against the horizontal. Modified

and reprinted with permission from Pollak et al. [118]. (© AIP Publishing.

sidewall effects at the free surface of gravity-driven film flows and concomitant on their free
surface stability. However, both experimental and theoretical work on this intriguing problem

is still waiting for its solution.
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2. Scope of this dissertation

The present dissertation deals with the effects of different types of topographies on the free
surface stability of gravity-driven viscous films. Comprehensive experiments were combined
with all existing analytical, numerical and experimental findings on this complex problem.
That way, new flow phenomena were uncovered and attributed to fundamental mechanisms,
which determine the flow dynamics. The aim of the present study was to characterize the
results so obtained for the sake of unveiling a universally valid principle, being able to describe
and unify all findings on the linear stability of viscous films flowing over inclined topographies.

The dissertation is structured as follows: After an introductory summary of the large body
of precedent publications on the effects of topography and inertia on gravity-driven film flows
in the foregoing Chapter 1, all the experimental systems and setups, which have been used in
this study, are presented in Chapter 3. In Chapter 4, new findings on the stability of gravity-
driven viscous films are presented. In particular, Section 4.1 considers the question whether
the topography’s specific shape matters in general for the linear stability of film flows. The
parameter study condensed in Section 4.2 describes stability phenomena far beyond the Nusselt
flow and identifies a competition between stabilizing and destabilizing flow phenomena. In the
subsequent Section 4.3, characteristic stability chart patterns and a universal pathway for the
stability of viscous films over inclined topographies are presented. Section 4.4 is devoted to
what is beyond the linear stability of the two-dimensional Newtonian films considered in the
previous sections of Chapter 4. Summarizing conclusions are presented in Chapter 5 and close
the present dissertation.
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3. Experimental systems and setups

3.1. Experimental systems

The gravity-driven flow of a viscous liquid film down an inclined open channel with a peri-
odic substrate topography was studied. The liquids, the flow facilities and the topographies
characterize the experimental systems.

3.1.1. Liquids

Three silicone oils from FElbesil were used as liquids. The oils were denoted as FElbesil 65,
Elbesil 100, and Elbesil 145 and had different viscosities but almost equal densities and surface
tensions. All three silicone oils showed Newtonian behavior within the temperature range and
shear rate considered. Their kinematic viscosity v, density p and surface tension o at the
temperature § = (24.0 +0.3) °C, where all experiments on film flows were performed, are listed
in Table 3.1.

The dynamic viscosity  and the density p were measured to determine the kinematic viscosity
v = n/p. The measurements of the dynamic viscosity 1 were performed with an Ubbelohde
capillary viscosimeter from Schott. Different capillaries type 501 were used, which were plunged
into a water bath. During these measurements, the temperature of the liquid was controlled
by a thermostat type CT' 52 from Schott. The precisions of the capillaries of the viscosimeter
were between 0.65 % and 0.80 % and the accuracy of the thermostat was 0.05°C.

The density p was measured with a Mohr Westphal balance from Kern with an accuracy of
0.3kg/m>. During these measurements, the temperature of the liquid was controlled by a
thermostat type ecoline RE204 from Lauda.

The measurements of the surface tension o were carried out with a ring-tensiometer type
TE1ICA-M from Lauda with a resolution of 0.1 mN/m. The temperature of the liquid was
controlled by a thermostat type RC' 6 CP from Lauda during these measurements.

The fluctuations of the measurement temperature § = (24.0 £ 0.3) °C during one experimental
run of the film flow measurements was the main error source for the errors of the liquid prop-
erties. Hence, 1, p and o were measured in the temperature range from 21.0°C to 26.0°C in
steps of 1.0°C to determine their absolute values at 8 = (24.0 = 0.3) °C and the corresponding
errors. Both are listed in Table 3.1.

The ratio of surface tension forces to inertial forces is represented by the Kapitza number [11]
o

- pgl/3,A73"
Please see Table 3.1 for the Kapitza numbers of Elbesil 65, Elbesil 100 and Elbesil 145.

Ka (3.1)

3.1.2. Flow facilities

The flow facilities and the flow circuit are sketched in Figure 3.1. A pump transported the
liquid from a temperature-controlled reservoir via a pipe and tube system with a bypass to a
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Notation v (mm?/s) p (kg/m?) o (mN/m) Ka
Elbesil 65 65.1 £1.0 958.5+0.4 19.91 £ 0.04 3.71+£0.08
Elbesil 100 100.3 £ 0.6 963.2 0.8 20.07 £0.06 2.09 +£0.02
Elbesil 145 144.2 £ 0.5 964.8 + 0.4 20.01 £0.10 1.28 £0.01

Table 3.1.: Liquid properties and Kapitza numbers of the three silicone oils used in the experiments at the main
measurement temperature § = (24.0 £0.3) °C.

tank at the inflow of an inclined, open channel. From there, the liquid flowed gravity-driven
down the channel and back into the reservoir.

Three different channels were used in the experiments. The channels were all bounded by
a flat aluminum bottom and transparent, planar Plexiglas® sidewalls. All channels had the
same width b, = (170 £ 1) mm in the crosswise y-direction but different overall lengths in
the streamwise z-direction. The length was 2.1 m for channel 1, 1.4m for channel 2, and
2.0m for channel 3. Each channel was mounted on a vibration isolating table. Exchangeable
substrates made of aluminum were mounted on the bottom plate of each channel, close to
the inflow. The substrates were at least 860 mm long, as wide as the channel and exhibited
different topographies. The inclination angle o of the channels against the horizontal could be
adjusted continuously between 0° and 90°. This angle was determined with a Mitutoyo Pro 360
Digital Protractor 950-315 with a reading precision of 0.1°. In the crosswise y-direction, the
channels were leveled with a spirit level type Pro 360, also from Mitutoyo, which was aligned
perpendicular to the sidewalls and had a precision of 0.1 mm/m per scale spacing.

Eccentric screw pumps from PF Jéhstadt, type AFJ 15.1B/2B for Elbesil 65 and type AFJ
40.1B for Elbesil 100 and Elbesil 145 provided a constant volume flux 1% up to 351/min with
fluctuations of less than +3 ¢cm?/s. The volume flux could be adjusted either in discrete steps
by changing the angular frequency of the pumps or, more precisely, by continuously varying
the valve of the bypass.

A thermostat type Thermo Haake TC300, coupled to a temperature sensor Almemo 4290-
7 via a custom made LabView program, maintained the temperature of the liquid at 6 =
(24.0+0.3) °C during all measurements. The temperature sensor was placed inside the channel
close to the outflow.

5 ﬁx ) lg

exchangeable inlay

channel

V liquid
{~~| ':§:' [ —<—— reservoir

flow meter bypass pump

Figure 3.1.: Sketch of the flow facilities and the flow circuit used in the experiments.
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a) b) Sin Saw Rec
SinMod SawRev Flat

Figure 3.2.: (a) Geometry and notations of the viscous film flow over the inclined topography. (b) Sketch of the
specific shapes of the topography, i.e. sinusoidal (shape = Sin), modified sinusoidal (SinMod), sawtooth-like (Saw),
reversely mounted sawtooth-like (SawRev), rectangular (Rec) and flat (Fl/at). The main flow direction is from left
to right. Modified and reprinted with permission from [114]. © AIP Publishing

3.1.3. Topographies

The substrate inlays placed in the channels as described in Section 3.1.2 exhibited different sur-
face topographies. A schematic view of the inclined topography with a liquid film is illustrated
in Figure 3.2a. The topography’s parameters are its specific shape, inclination «, amplitude
A, wavelength L, and tip width W.

The different specific shapes of the topographies are sketched in Figure 3.2b. All topographies
were either periodically undulated in the streamwise z-direction or exhibited a flat surface shape
(shape = Flat). The modified sinusoidal topography (SinMod) was obtained by replacing the
eddies, which form in the troughs of the sinusoidal topography (Sin) by a solid contour [76,107].
The non-smooth topography Rec had a rectangular shape and tips of the width W. The
topographies Saw and SawRev exhibited identical sawtooth-like shapes, but were oriented
differently against the main flow direction. Their edges were rounded and had a radius of
1.0 mm.

In the experiments, the inclination o was varied between 4.1° and 36.7°. For the corrugated
substrates, the amplitude A was varied from 2.0 mm to 12.0 mm, the wavelength L was varied
from 10 mm to 200 mm, and the tip width W was varied from 1 mm to 100 mm. The flat incline
was considered as either the borderline case A =0, L = 0, L = oo, or W = L of the periodically
undulated topographies.

3.1.4. Tracer particles and dye

The silicone oils were seeded with hollow glass spheres type 804601 from Dantec which served
as tracer particles and faithfully followed the flow dynamics. According to the manufacturer the
mean particle diameter was d, = 10 um and the density was p, = 2230kg/ m?. Additionally,
the volume weighted particle size distribution was measured with a Mastersizer 2000 laser
diffraction particle size analyzer from Malvern Instruments. The results are plotted in Figure
3.3a. The median particle size was dy 50 = 9.64 um and the grade of dispersity [120] was
€a = (dv,ga — dv.6)/(2dv 50) = 0.45. The quantities dy ; denote the particle sizes, which
were greater than or equal to j% of all particles. According to Happel and Brenner [121], the
sedimentation speed wseq = dp?g(pp—p)/(18n) of the spheres in the three silicone oils Elbesil 65,
100 and 145, listed in Table 3.1, was 1.0 x 1073 mm/s, 6.6 x 10~* mm/s, and 4.6 x 10~ mm/s,
respectively. These sedimentation velocities were several orders of magnitude smaller than the
typical flow velocities in the experiments. The sedimentation distance during one experimental
run never exceeded the median particle size.
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Figure 3.3.: (a) Particle size distribution of the tracer particles. (b) Photophysical properties of Quinizarin, which
was dissolved in Elbesil oil. Black solid line: absorption spectrum. Red dashed line: emission spectrum for excitation
at 450 nm (blue dotted line).

The fluorescent dye Quinizarin from Sigma-Aldrich was dissolved in the Flbesil oils. Quinizarin
is an organic compound derived from Anthroquinone and frequently used to color, e.g., gasoline
and heating oils. Both the absorption spectrum of the Quinizarin as well as its emission
spectrum for the excitation at 450 nm, which is the only excitation wavelength used throughout
the present study, are plotted in Figure 3.3b. The absorption spectrum was recorded with a
Lambda 750 UV /Vis/NIR spectrophotometer from PerkinElmer. The emission spectrum was
measured with a Cary Eclipse fluorescence spectrophotometer from Agilent. The data of both
spectra were recorded in steps of 0.5 nm.

3.2. Experimental setups

3.2.1. Flow rate

The overall volume flux V of the flow was measured by an ultrasonic flow meter type Deltawave
C from Systec controls with a maximum error of 0.21/min. The flow meter was mounted on the
pipe between the bypass and the inflow tank as illustrated in Figure 3.1. The measurements of
the ultrasonic flow meter were spot-checked with an analog flow meter type RW-RD 40 from
Aqua Metro, which was temporarily installed at the outflow of the channel.

The three-dimensional flow rate V' was measured to determine the Reynolds number [15]
hattsn 3V
Re = —nsn _ (3.2)

v 2ub,

of the corresponding Nusselt flow [13] with the parabolic velocity profile %(z), the film thickness
hy and the free surface velocity u, , given as

. gsina . s 3V [ 9V2g sin o
= 2hn - i) hn = TN s,n — T o, 19 .
i(z) 2v ( ?)ze gbe sin s, | 8ub.2 (3:3)

The definition (3.2) of the Reynolds number is only valid for the film flow over a flat incline
without sidewalls, where the two-dimensional flow rate ¢ = 1% /b is independent of the spanwise
y-coordinate and the characteristic length and velocity can be calculated analytically from the
Navier-Stokes equations as given in equation (3.3).

When sidewalls or undulated topographies are present, multiple length scales and velocities are
involved. For films over flat inclines which are bounded by sidewalls, the no-slip condition at
the sidewalls gives rise to a variation of the flow’s velocity in the crosswise y-direction. Please
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Figure 3.4.: Experimental setups for the measurements of the free surface shape (Section 3.2.2) and the flow field
structure (Section 3.2.3) of the film flow. The free surface was illuminated by a blue diode laser and recorded by
camera 1. The streamlines were visualized by a red diode laser and recorded by camera 2. The velocity field was
measured by particle image velocimetry (PIV). The PIV system consisted of a pulsed Nd:YAG laser and camera 2.
For the single particle tracking measurements a red diode laser illuminated the tracer particles in the fluid, which
where then recorded by camera 2. The inclination of camera 2 against the y-direction was adaptable. Modified and
reprinted with permission from [110]. © AIP Publishing

see Figure 1.16 and Haas et al. [67] for the influence of the sidewalls on the flow rate and
the cross-sectional velocity field in films over flat inclines. For films flowing down undulated
topographies, the local film thickness ho(z) and the local free surface velocity us(z) of the
steady-state flow vary in z-direction and, if sidewalls are present, additionally in y-direction.
To the author’s knowledge, there are no studies similar to [67] for films flowing over undulated
topography. Hence, due to the lack of a better definition of the Reynolds number, which is
globally valid for both film flow over flat and undulated inclines, the Reynolds number defined
in equation (3.2) was used throughout this study to characterize the ratio of inertial forces to
viscous forces.

3.2.2. Free surface shape

The description of the experimental techniques presented in this section relies on the publica-
tions by Schorner et al. [76,110] and Dauth et al. [122].

Steady-state flow

The free surface hg(z) of the steady-state flow was detected with the experimental setup
sketched in Figure 3.4. To portray hg(z), the fluorescent dye Quinizarin was dissolved in
the FElbesil oils. Please see Section 3.1.1 for the liquids and Section 3.1.4 for the dye properties.
The Quinizarin was excited in the z-z-plane at the center of the channel in y-direction by a blue
line laser type FP-L-450-40P-10-F210 from Laser Components. In order to obtain a narrow
laser line of the width! 0.3 mm and a length of 44 mm at the free surface of the flow, the laser

LAll line lasers used for the present thesis exhibited a Gaussian intensity distribution in y-direction. The full
width at half maximum of this intensity distribution was taken as a measure to quantify the line width.
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Figure 3.5.: (a) Exemplary image of the steady-state free surface of the flow over a sinusoidal topography. The
example corresponds to Elbesil 65, Sin, A= 8mm, L =20mm, a = 8° and Re = 20. (b) The ceramic calibration
plate that was used to correct the perspective distortion of the recorded images.

was mounted 25 cm above the free surface. The output power of the continuous laser emission
was 40 mW at the central wavelength 450 nm.

A Nikon D700 camera with a spatial resolution of 11 ym/pixel recorded the fluorescing fluid
and the dark air above (camera 1 in Figure 3.4). An optical longpass filter with a 50% cut-
off wavelength of 550 nm was mounted to the D700 to block the laser light scattered at the
substrate. Please find an exemplary image of the free surface recorded for the flow over a
sinusoidal topography in Figure 3.5a. The D700 was inclined with respect to the y-axis by 20°
to circumvent the capillary rise at the sidewalls. The calibration plate shown in Figure 3.5b was
recorded with the same camera and served as a reference to correct the resulting perspective
distortion for each acquired image of the free surface.

An edge-detection algorithm provided by Labview localized the interface between the bright
fluid and the dark air, which is the free surface ho(z), i.e. the upper boundary of the flowing
domain. The detection of hy(z) was similar to precedent approaches, e.g., Schérner et al. [76]:
The recorded images were converted to gray scale and a Gaussian filter was applied to each
image to eliminate high frequency noise (Figure 3.6a). For each pixel column of the resulting
image, the brightness distribution was read out as shown exemplarily in Figure 3.6b and its
first derivative was calculated (see Figure 3.6¢). The pixel coordinate of the maximum of
the brightness distribution was allocated to the corresponding position in the real-world z-z-
coordinate system with the help of the above-mentioned calibration plate type 59-210/00037
from Max Levy (see Figure 3.5b). This position was defined as the location of the free surface
ho{(z) of the steady-state flow. Subsequently, a Fast Fourier Transformation was performed to
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Figure 3.6.: Localization of the steady-state free surface of the flow. For the pixel column highlighted by a red
vertical line in the exemplary image (a), the brightness distribution and its first derivative are plotted in (b) and (c).
The maximum of the brightness distribution was defined as the location of the steady-state free surface ho(x).
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Figure 3.7.: lllustration of the method used to reconstruct the streamline patterns. About 50 individual images (a)
were superimposed to yield the streamline pattern (b). The lower bright sinusoidal line in (a) and the dashed line in
(b) correspond to the bottom contour. The dots and lines below the bottom contour are reflections of the particles
at the bottom. The example corresponds to Elbesil 145, Sin, A=8mm, L =20 mm, a = 10° and Re = 14.

receive the average film thickness hq, as well as the first and the second harmonic amplitudes
a1 and ag of the steady-state free surface.

Time-dependent flow

To record the time-dependent free surface h(x,t) the experimental setup for the detection of
the steady-state free surface ho(x) was slightly modified by exchanging the camera and the
laser. All other components of the setup and the post processing of the acquired images
remained unchanged. The Nikon D700 was replaced by a high-speed camera type CR600z2
from Optronis, which was mounted in exactly the same way. The frame rate was set to 200
frames per second and the spatial resolution in the z-z-plane at the channel’s center, where
all measurements were performed, was about 20 pm/pixel. Besides, the FP-L-450-40P-10-
F210 line laser was replaced by two brighter FP-MVmicro-450-70-10 line lasers, also from
Laser Components, which each provided a continuous laser emission of 70 mW at the central
wavelength 450 nm. The two laser lines were overlaid to obtain a higher fluorescence intensity of
the Quinizarin, necessary due to the short exposure times of the CR600z2 high-speed camera.

3.2.3. Flow field structure

The description of the experimental techniques presented in this section relies on the publica-
tions by Schérner et al. [76,110] and Dauth et al. [122].

Streamlines

The streamlines of the steady-state flow were visualized by portraying the scattering light of
tracer particles in the fluid. Please see Section 3.1.4 for the properties of the tracer particles.
The particles were illuminated by a red line laser from Laser Components type FP-L-635-30P-
10-F210, whose laser sheet was aligned parallel to the z-z-plane at the channel’s center. In order
to obtain a narrow laser line of the width 0.3 mm and a length of at least 44 mm within the film,
the laser was mounted 25cm above the free surface of the low. A CMOS camera type DBK
61BUCO2 from IC Imaging with a spatial resolution of 22 ym/pixel was mounted parallel to
the y-axis and collected the light scattered at the particles (camera 2 in Figure 3.4). To obtain
the streamline pattern, about 50 individual pictures (Figure 3.7a) & 0.1s exposure time were
superimposed (Figure 3.7b). Spatial calibration of the images was achieved with a calibration
plate as described in Section 3.2.2 for the free surface measurements. With the streamlines so

ol



3. Experimental systems and setups

(@) u(x,z) (mm/s) (b)

L — I S— i =
0 30 100 150 3 main flow direction

u(x,z) (mm/s)
0.1I : I1

12 14 6 8 10
X (mm)

12 14

Figure 3.8.: (a) Example of the steady-state velocity field of the main flow, revealed by particle image velocimetry
(PIV) and reduced to about 4 vectors/mm? for clarity. The dotted black lines indicate the streamlines. (b) Exemplary
image of the raw data of (a) with bright tracer particles. In the inlay, the bottom contour of the topography (yellow
dashed line) and the reflection of a tracer particle at this contour are highlighted. (c), (d) Example of the steady-state
velocity field in the troughs, revealed by PIV. The bold black line is the separatrix between the eddy and the overlying
main flow, determined from the streamline pattern. While (c) shows the vector field, reduced to about 30 vectors/mm?
for clarity, (d) illustrates the absolute value of the steady-state velocity u(x,z). The examples correspond to Elbesil
145, Sin, A=8mm, L =20mm, e = 10°, and Re =7 in (a) and (b), and Re =14 in (c) and (d).

obtained, the separatrix between the recirculating areas in the topography’s troughs and the
flowing domain above could be determined by visual judgment with an accuracy of +0.1 mm.
Together, the separatrix and the solid substrate constitute the lower boundary fo(x) of the
flowing domain of the steady-state flow.

Velocity field

The steady-state velocity field @(z, z) at the channel’s centerplane was revealed by particle im-
age velocimetry (PIV). The PIV system consisted of a pulsed laser, a camera and an Arduino
microcontroller, which synchronized both. The Nd:YAG line laser of type Solo 1I-15 from New
Wave was aligned in the z-z-plane at the center of the channel in y-direction and illuminated
the fluid with the entrained tracer particles. Please see Section 3.1.4 for the properties of the
tracer particles. The monochrome CCD camera type DMK 41BU02/72BUC02 from The Imag-
ing Source recorded the light scattered at the particles with a spatial resolution of 10 ym/pixel
(camera 2 in Figure 3.4). The camera could be inclined slightly against the y-direction to cir-
cumvent the distortions near to the free surface, provoked by the capillary rise at the sidewalls.
The recorded frames were split into interrogation windows, which overlapped each other. A
displacement vector was calculated for each window, either with an autocorrelation technique
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Figure 3.9.: Example image with tracer particles (black dots), overlaid with particle trajectories (colored lines). The
contour of the rectangular topography with A =8mm, L = 10mm, W = 1 mm, a = 10° is shown as a black line.
The liquid was Elbesil 100. Reprinted with permission from [122]. © AIP Publishing.

for the flowing film or a cross-correlation technique for the recirculating areas in the troughs of
the topography. The vector field so obtained had a density of at least 100 vectors/mm?. Please
see Figure 3.8a for an example of the measured steady-state velocity field and Figure 3.8b for
an exemplary image of the corresponding raw data.

When the steady-state velocity fields of the eddies in the troughs were measured, the distance
between the camera and the channel was reduced and both the spatial resolution and the
density of the vector field increased. Please see Figure 3.8¢ for an example of the measured
steady-state velocity field @(z, z) when an eddy is present and Figure 3.8d for the corresponding
absolute value u(zx, z) = |u(z, 2)|.

Spatial calibration of the acquired data was carried out with the calibration plate described
in Section 3.2.2. The accuracy of the measured velocity field (z, z) of each steady-state flow
configuration was improved by averaging the results over at least 400 experimental runs. With
these data in the fold, the local free surface velocity of the steady-state flow us(x) = |i(z, ho(x))|
and, by averaging along one period of the topography’s wavelength, the corresponding mean
free surface velocity @ could be determined.

Single particle tracking

Besides detecting the streamlines as described previously, the flow pattern in the z-z-plane at
the center of the channel was also visualized by single particle tracking (SPT) measurements.
Both the steady-state low and the flow that was perturbed by traveling free surface waves were
considered with this experimental technique. The respective setup is shown schematically in
Figure 3.4. An Optronis CR600z2 high-speed camera (camera 2 in Figure 3.4), a 110 mW laser
light sheet created by FP-L-635 line lasers from Laser Components and the nearly neutrally
buoyant tracer particles described in Section 3.1.4 were used. The central emission wavelength
of the laser was 635nm. The light sheet had a width of about 0.5mm in y-direction and
lay in the z-z-plane at the center of the channel to illuminate the entrained particles there.
The camera was aligned parallel to the y-axis and collected the light scattered at the particles
through the transparent sidewalls. At each experimental run, 5000 images with a resolution of
at least 40 ym/pixel were recorded. The frame rate was set to 900 frames per second.

The acquired data were post-processed with a SPT technique based on the widely used Crocker-
Grier algorithm [123], implemented and extended according to Python Trackpy [124]. In a
nutshell, the individual particles were first localized with sub-pixel accuracy in each image
and then the particle coordinates of subsequent images were linked to a trajectory. Finally,
the spatial calibration in real-world coordinates was achieved with the help of the ceramic
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Figure 3.10.: Experimental setup for the measurements of the convective free surface instability. Modified and
reprinted with permission from [76]. © AIP Publishing.

calibration plate shown in Figure 3.5b. An example image with tracer particles and their
trajectories is shown in Figure 3.9 for the steady-state flow over a rectangular topography.

3.2.4. Linear stability

The linear convective free surface instability of the film flow was carefully analyzed with an
experimental technique related to previous approaches, e.g., [87,97,107,118]. The measurements
were carried out in all three channels (see Section 3.1.2) with the setup shown in Figure 3.10. A
paddle was mounted close to the inflow of the channel, upstream of the topography. The paddle
was tight-fitting concerning the channel’s width and permanently dipped into the liquid. The
paddle oscillated continuously in the z-direction with an amplitude of A, = 0.5 mm or below,
either driven by a stepping motor type DC BCI 52.60 from EBM Papst or by a E1250-1P-
UC/VIRE linear motor device from LinMot. That way, the volume flux V of the steady-state
channel flow was periodically varied and small, time-periodic, traveling free surface waves of a
frequency between 0.9 Hz < f < 15.0Hz and an amplitude a < 0.1 mm [122,125] were imposed
to the free surface of the flow. In good approximation, these waves can be considered as linear
free surface disturbances [114,122,125].

In order to determine whether the disturbances were amplified or damped on their way down-
stream, the resulting time-dependent free surface amplitude of the traveling wave was probed
at the two different positions z; and z2 in streamwise direction (see Figure 3.10). Either two
He-Ne lasers type 1507-0 from JDS Uniphase or two diode lasers type FP-D-635-5-C-F from
Laser Components were used. The lasers were aligned parallel to each other in the y-z-plane
with an inclination of f = (20 &+ 2)° against the y-axis. The laser beams hit the free surface
at the center of the channel over the middle of a crest of the topography with an accuracy of
+0.5mm. Both laser beams were reflected at the free surface and reached a screen after an
optical path length of at least 3 m. Whenever a traveling free surface wave passed the reflection
points, the laser spots oscillated on the screen with an amplitude proportional to the amplitude
of the traveling linear free surface wave at the respective position in streamwise direction. More
precisely, the oscillation amplitude of a laser spot on the screen was proportional to the max-
imum slope 27a/A of the free surface contour of the traveling wave at the respective position
z;. Hence, the oscillation amplitude on the screen can be taken as a measure for the amplitude
a of a linear, traveling free surface wave of the wavelength X [118].

A CCD camera type DMK 31BU0S8 from IC Imaging recorded 512 images of each laser spot on
the screen at a frame rate of 30.0Hz. A Gaussian filter was applied to each picture to reduce
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image noise and the threshold was set to 80% of the brightest pixel of each image to obtain a
sharp-edged spot. The center of the area of each oscillating sharp-edged spot was determined
and calibrated in space to ensure that the results were not affected by the perspective distortion
of the views of the cameras or a slightly differing distance of the two cameras to the screen. In
the coordinate system z’-z’ of the screen (indicated in the inlays in Figure 3.10) the laser spot
positions were denoted as

pz(t) = (pa?’7i(t)7pz’,i(t))7 1= {172} (34)

Please see Figure 3.11a for a typical example of the recorded pathlines p;(¢) and Figure 3.11b
for an excerpt of the z'- and 2’-components of the time-dependent laser spot positions. Subse-
quently, the Fourier transformed signals

Bi(f) = (Bora(f), B3 (f) = (F(pari(t)), F(pa(1))) (3.5)

and their absolute values

Pi(1") = \JBor (1) + B () (3.6)

were calculated as described by Pollak et al. [118]. Please see Figure 3.11c for an example of the
absolute values p;(f’) of the two-dimensional Fourier transformed signals p,(f’). The dominant
peak corresponds to the fundamental excitation frequency f of the paddle. The peaks due to
higher harmonics or external noise sources are about two orders of magnitude smaller than the
dominant peak. Hence, the shape of the traveling free surface wave was mainly sinusoidal with
the fundamental frequency f of the paddle.

A Gaussian fit was applied to the main peak of the Fourier transformed signals p;(f') and the
amplitudes B; of the Gaussian fits were extracted. The amplitudes B; were proportional to the
amplitudes of the traveling free surface waves at the positions z; in streamwise direction. In
the experiments, the whole Reynolds number and frequency range considered was scanned with
small steps of both Re and f. At each measurement point (Re, f), the free surface amplitudes
a of the traveling waves, i.e. the amplitudes B; of the respective Gaussian fits, were evaluated.
In the present and in previous studies (e.g. [118]), the difference AB = By — B; was used
to compare the wave amplitudes at the positions z;. If a wave was amplified in streamwise
direction (AB > 0), the flow of the Reynolds number Re was denoted as convectively unstable
against the free surface perturbation of the respective frequency f. In the opposite case, when
the wave was damped in streamwise direction, the flow was denoted as stable (AB < 0). Stable
and unstable regimes in the stability chart are separated by the neutral curve, where AB = 0.
As an experiment only hit a neutral point by fortuity, the neutral curve was determined by a
linear interpolation of the neighboring measurement points: either f was kept fixed and Re was
varied or vice versa. That way, the neutral points were determined with a precision of +0.2 Hz
and +0.5Re.

Besides the binary information on the stability of the flow provided by the above-mentioned
experiments, the grade of the flow’s (in)stability deep inside the stable and unstable flow regimes
was determined in order to unveil the inner topology of the stability charts [110]. This approach
was based on the results of precedent studies which showed that linear free surface waves,
propagating along flat [87] or wavy inclines [125], grow exponentially in streamwise direction.
The exponential growth rate b of the amplitude of a linear free surface wave was defined as

1 By

In —= (3.7)

b= ;
z9—11 B

95



3. Experimental systems and setups

a) b)
150 - 3 2401 Ny
3 VA VAVAVAY,
= =
< 140 A ™ £ 200 1 .
g e \as® G x'-postion: —s— upper laser lower laser
k= 130 o g- z'-postion: —e— upper laser lower laser
2 ey 2 160
<! \3&6( @ ,’\\J
N 120 vt g -\..-A‘-...- f\..r’f\..rﬂ
‘ ‘ ‘ — 1201
210 220 230 240 250 7.0 7.5 8.0 8.5 9.0
x'-position (a.u.) time (s)
c) d)
14 9.9
""" R heak —— upper laser
12 !
~ amplitudes lower laser 9.8 1
R 9.7 4o :
o 81 0.4 first harmonic ° al poi /;
3 6l 4 - & 964 neutral point |
= 0.2 ] |
g 44 - 9.5 !
5] 700 04 | 3
0 Am— ; A— ‘ ‘ 93 L— : : , ; :
0 2 4 6 8 10 12 14 -4 2 0 2 4 6 8
f (Hz) AB (a.u.)

Figure 3.11.: (a) Positions of the spots of the upper laser (black) and the lower laser (rose) on the screen. (b)
Excerpt of the x’- and z'-components of the time-dependent positions (a) of the laser spots. (c) Absolute values of
the Fourier transformed signals of the laser spots of the measurement shown in (a) and (b). (d) Dependence of the
amplitude difference AB on the Reynolds number. The example shown in (a) - (d) corresponds to Elbesil 145, Rec,
A=8mm, L=20mm, W = 1mm and a = 21°. In (a) - (c), Re = 9.66 and f = 2.05Hz. In (d), the Reynolds
number was varied while f = 2.05Hz and all other system parameters were kept constant.

The neutral curve is represented by b = 0 in this notation. A two-dimensional linear interpo-
lation of the measured growth rates connected the densely settled measurement points in the
Re- f-plane.

The distances di and dy (see Figure 3.10) were chosen according to preliminary experiments
[107] to exclude inflow and outflow effects. During all measurements, only small traveling
waves with a ratio k = a/A of the perturbation’s amplitude a to its wavelength A smaller
than x = 0.01 were considered [118]. Additionally, the wave’s amplitude never exceeded 2%
of the steady-state flow’s local film thickness. For measurements which were performed deep
inside the unstable flow regime, the distance dy, between the two lasers was gradually decreased
until the criterion x < 0.01 was fulfilled. The results so obtained were counter-checked to
ensure that the measurements were not corrupted by an insufficient distance dy. Yet x < 0.01,
all physical experiments deal with perturbations of non-vanishing amplitude ¢ # 0. This
constitutes a fundamental difference to the theory of linear disturbances with ¢ = 0 in the
computations [113] and gives rise to a slight disparity of the numerical and the experimental
neutral curves [113,125]. Besides, due to the significantly differing topologies of the stability
charts, the exact value of a varied slightly between different experiments, even though £ < 0.01.
The effect of the sidewalls on the primary instability of the flow at the center of the channel
can be neglected in the present study according to the findings by Georgantaki et al. [117] (see

Figure 1.26), as the Kapitza numbers of the liquids used in the experiments were sufficiently
small (Ka < 3.8, see Table 3.1).
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4. Results and discussion

4.1. Does the topography shape matter in general for flow stability?

Countroversial findings were published on the effect of the topography’s specific shape on the
linear stability of gravity-driven film flows over undulated inclines. On the one hand, Cao et
al. [109] observed that the critical Reynolds number for the onset of the primary instability of
film flows over a sinusoidal topography differs from the critical Reynolds number of the flow over
a rectangular topography of the same amplitude and wavelength. On the other hand, Pollak
and Aksel [107] found a similar stability behavior of liquid films flowing over two topographies
of different specific shape, but equal corrugation amplitude and wavelength. At the specific
Reynolds number Re = 13, they measured the flow’s linear stability for both a sinusoidal
topography (Figure 4.1a) and the same sinusoidal topography, modified by replacing the eddies,
which formed in the troughs at Re = 13, by a solid contour (Figure 4.1b). Surprisingly, the flow
over the two different topographies showed the same stability characteristics at this particular
Reynolds number.

The above-mentioned controversial findings triggered a fundamental question, considered in the
present Section 4.1: does the topography’s specific shape matter in general for the linear stabil-
ity of gravity-driven film flows? In order to understand this complex problem, the topography’s
specific shape was varied while all other parameters of the system were retained as described
in Section 4.1.1. Experiments on the flow’s linear stability were carried out (Section 4.1.2) and
related to measurements of the flow field and the free surface contour of the basic flow (Section
4.1.3). That way, insights into how the topography’s specific shape can manipulate both the
linear stability and the basic flow of gravity-driven films were obtained (Section 4.1.4).

The present Section 4.1 relies on the publication ”Does the topography’s specific shape matter
in general for the stability of film flows?” from Schérner et al. [76].

4.1.1. Measured parameter space

The experiments have been carried out with the liquid Elbesil 145 flowing over undulated
substrates placed in channel 1, which was inclined by « = 10° against the horizontal. Please

Figure 4.1.: (a) Sinusoidal topography and (b) the same topography, modified by replacing the eddy in the trough
by a solid contour. The streamlines correspond to Ka = 1.279 and Re = 13. Reprinted with permission from [107].
© AIP Publishing.
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Figure 4.2.: Topographies S1 - Ss. Modified and reprinted with permission from [76]. © AIP Publishing.

see Section 3.1.1 for the physical properties of the liquid, Section 3.1.2 for a description of the
flow facilities including channel 1, and Section 3.1.3 for remarks on the substrate topographies.
In order to unveil whether the topography’s specific shape matters in general for the stability
of film flows five differently shaped substrates were used in the experiments. All substrates
were periodically corrugated in streamwise direction with the amplitude A = 8.0 mm and the
wavelength L = 20.0 mm. Concerning the specific shape of the substrates’ topography, the set
of five different systems 5] — S5 shown in Figure 4.2 was used. The sinusoidal topography S
(shape = Sin) with its previously studied stability behavior [107,108] was chosen as reference.
The modified sinusoidal (SinM od) topography So was obtained by replacing the eddies, which
form in the troughs of S7 at the Reynolds number Re = 13, by a solid contour. The non-smooth
topography S3 had a rectangular (Rec) shape and narrow tips of the width W = 1.0 mm. The
topographies Sy and S5 exhibited identical sawtooth-like shapes, but were oriented differently
against the main flow direction (Sy: Saw; Ss5: SawRev). In contrast to Ss, the topographies
S3 — S5 cannot be obtained by eddy configurations from any original topography. Hence,
including the reference Sy, the above-given set consists of five arbitrary topographies.

4.1.2. Stability and basic flow measurements
Stability measurements

Recent experimental [107] and numerical [108] studies unveiled the stability characteristics of
gravity-driven films flowing down the sinusoidally corrugated topography S; (see Figure 4.3,
solid black line). The present study went beyond this first approach by measuring the linear
stability charts of FElbesil 145 flowing over the five strongly differing topographies S; — Sy at
a = 10°. The results are shown in Figure 4.3. Surprisingly, all charts were equal, aside from
small deviations. For all five topographies, a destabilization of the flow compared to the critical
Reynolds number Re, = 7.1 [79,80] of the corresponding Nusselt flow was measured. At low

— N - huid —A! i

5

44 i
< 3 -
= i .
~ 5 3 .& i

1 vl

4 o ! .

1 194
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0 T T L

0 5 7.1 10 0

Re

Figure 4.3.: Stability charts of the Elbesil 145 oil for the flow over the five topographies S; — Ss and « = 10°. Stars
indicate convectively unstable regimes. Modified and reprinted with permission from [76]. © AIP Publishing.
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4.1. Does the topography shape matter in general for flow stability?

Figure 4.4.: Free surface and streamlines of the steady-state film flow of Elbesil 145 at Re = 12.7 and o = 10°
for (a) the sinusoidal topography S; and (b) the rectangular topography S;. The boundaries ho(x) and fy(x) of the
flowing domain are highlighted by dashed lines. Modified and reprinted with permission from [76]. (© AIP Publishing.

Reynolds numbers between Re ~ 5.0 and Re =~ 11.5, a separate long-wave instability isle
appeared. This unstable isle was accompanied by a long-wave type instability beyond Re ~ 14.
The two unstable flow regimes were separated by a flow configuration, which was stable against
small free surface perturbations of 0.9 Hz < f < 15.0 Hz.

Basic flow measurements

In order to understand why the specific shape of the topography has no major impact on flow
stability, the upper boundary ho(x) and the lower boundary fo(z) of the flowing domain were
measured for all five topographies S; — S5 at 4.5 < Re < 22.5. The upper boundary ho(z)
corresponds to the free surface of the steady-state low and was measured as described in Section
3.2.2. The lower boundary fy(z) consists of the solid substrate and the separatrix between the
eddies in the troughs and the flowing domain above (see Figure 4.4). The lower boundary fo(z)
was determined with the help of the streamline pattern as described in Section 3.2.3.

Examples of the boundaries ho(z) and fo(x) are given in Figure 4.5 for four Reynolds num-
bers. The five lower boundaries f,(S;, z) of the flowing domain vary considerably for all five
topographies S; (1 = {1,2,3,4,5}). This is a consequence of the dissimilar substrate shapes
as well as of the eddies, which form in the troughs of the topographies. On the other hand,
the five upper boundaries ho(S;, z) of the flowing domain are, at equal Reynolds number, very
similar for all steady-state flows over the strongly differing topographies S1 — S5.

4.1.3. Physical interpretation and discussion

The deviation of the free surfaces ho(S;, z) and the lower boundaries of the flowing domains
fo(S;, z) from those of the chosen reference S; was evaluated. The cross-correlation of fo(S;, )
and fo(S1,z) was calculated as

>k fo(S1,3) fo(Si, z — m)
S fo(S1,2) fo(S1, z)

K (fo(Si,z),m) = ; (4.1)

and its maximum as

K 5, (8i) = maz [K (fo(Si, ), m)] . (4.2)
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Figure 4.5.: Boundaries hy(x) and fy(x) of the flowing domains for the flow of Elbesil 145 over the topographies
51— Ss at four Reynolds numbers and @ = 10°. Modified and reprinted with permission from [76]. (© AIP Publishing.

The deviation
Dfo (SZ) =1- Kfo(Si) (4~3)

was taken as a measure to quantify the difference between the lower boundaries fo(.S;, ) and the
lower boundary fy(S1,z) of the flow over the sinusoidal reference S;. The deviation Dy, (S;) of
the upper boundaries was defined analogously. Both Dy, (5;) and Dp,(S;) are shown in Figure
4.6 for all five topographies S1 — S5 at Reynolds numbers 4.5 < Re < 22.5.

The deviations Dy, (S;) (¢ = {2,3,4,5}) of the upper boundaries were found to be three orders
of magnitude smaller than the deviations Dy, (S;) of the lower boundaries of the flowing domain.
Hence, severe changes of the topography’s specific shape provoke strong variations of fy(x) but
induce only modest changes to the flow’s free surface ho(z) (Figure 4.5). Since we face a free
surface instability, the experimental evidence for these highly similar free surfaces explains the
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Figure 4.6.: Deviation D(S;) of the boundaries of the flowing domains over S; — Ss of the reference flow over S; for
Elbesil 145 and o = 10°. D(S:) = 0. Modified and reprinted with permission from [76]. (© AIP Publishing.
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Figure 4.7.: Schematic illustration of a liquid film flowing over rectangular topographies of equal amplitude and
wavelength with (a) narrow and (b) broad tips.

almost equal stability charts (Figure 4.3) despite the significantly differing topography shapes
(Figure 4.2).

4.1.4. Conclusions

The stability behavior of gravity-driven films flowing over five differently shaped topographies,
which shared the same amplitude and wavelength, was measured while the fluid and the in-
clination angle were retained. Surprisingly, all stability charts were equal, aside from small
deviations (see Figure 4.3). In order to understand this astonishing finding, the upper bound-
ary of the flowing domain, constituted by the free surface ho(z), as well as the lower boundary
fo(z) of the flowing domain, defined by the substrate and the eddies in its troughs, were deter-
mined (Figures 4.4 and 4.5). The lower boundaries of the flowing domain differed decidedly for
the highly diverse topographies S; — S5. Despite this severe disparity of the lower boundaries
fo(z), the free surface ho(x) and concomitant the free surface instability remained unaffected.

Are the above-mentioned findings globally valid for all topographies of equal amplitude and
wavelength? Let us conduct a gedankenexperiment: for films flowing over rectangularly undu-
lated inclines, we retain the corrugation’s wavelength L and vary the tip’s width W as shown
schematically in Figure 4.7. For the system shown in Figure 4.7a, the no-slip condition induces
high shear rates only along the narrow tips, where the local filin thickness is small. Between the
tips, the flow has enough space to attune freely. In contrast to this, the respective constraints
imposed to the flow by the system shown in Figure 4.7b are much stricter. The no-slip condition
gives rise to high shear rates within the whole flowing domain. The flow resembles to the flow
over a flat incline, which features a long-wave instability beyond a critical Reynolds number.
With their narrow crests, the topographies considered in the present Section 4.1 (see Figure
4.2) resemble to the system shown in Figure 4.7a. We speculate that an increase of the tip’s
width changes the flow’s free surface and concomitant the flow’s free surface stability. First
indications supporting this educated guess were reported by Cao et al. [109] who found that
for rather large tips of the width L/2, the critical Reynolds number differs decidedly from the
one of the flow over the corresponding sinusoidal topography. A more detailed consideration
of the effect of the tip width W on the linear stability of gravity-driven filns is given in the
following Section 4.2 and reinforces this point of view.

Notwithstanding the above, the study presented in the present Section 4.1 provides the experi-
mental evidence that the free surface instability of gravity-driven films cannot be manipulated
in general by even strong variations of the topography’s specific shape. This result is of im-
perative importance for a wide range of technical applications like, e.g., curtain coating, where
the topography’s specific shape cannot be modified freely.
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4.2. Stability phenomena far beyond the Nusselt flow

The stability of gravity-driven viscous films over inclined topographies was found to feature
various nontrivial phenomena, which do not equally appear in the corresponding Nusselt flow
over a flat incline. For example, an unstable isle can form in the flow’s linear stability chart
(Section 4.1). Yet, an explanation how undulated topographies provoke these phenomena was
still lacking. The scope of the present Section 4.2 is to illuminate these findings and to identify
their underlying effects. For this sake, the well-known Nusselt flow was asymptotically left by
gradually steepening the topography, i.e. increasing the amplitude of sinusoidal undulations
or decreasing the tip width of rectangular corrugations. Variations of the inclination of the
channel, the viscosity of the liquid, and the wavelength of the topography followed as described
in Section 4.2.1. That way, nontrivial stability charts and phenomena far beyond the limits
of the Nusselt regime were revealed (Section 4.2.2). In order to understand these phenomena,
the steady-state free surfaces and velocity fields of the respective flows were measured (Section
4.2.3). This comprehensive approach provided detailed experimental data on how topogra-
phies can provoke the complex shape which linear stability charts of film flows over inclined
topographies can have — far beyond the Nusselt regime.

The present Section 4.2 relies on the publication ”Stability phenomena far beyond the Nusselt
flow — Revealed by experimental asymptotics” from Schorner et al. [110].

4.2.1. Measured parameter space

All experiments have been carried out with the liquids FElbesil 65, 100 and 145 flowing over
undulated substrates placed in the channels 1, 2 and 3. Please see Section 3.1.1 for the physical
properties of the liquids, Section 3.1.2 for an elaborate description of the channels and Section
3.1.3 for remarks on the substrate topographies.

The well-known Nusselt flow over a flat incline served as the starting point for the experiments.
The flat substrate was defined either as the borderline case A = 0 for the sinusoidal (harmonic)
topographies or as W = L for the rectangular (non-harmonic) topographies. The Nusselt case
was asymptotically left by either increasing the amplitude A of the sinusoidal undulations or by
decreasing the tip width W of the rectangular corrugations step by step as illustrated in Figure
4.8. For the steepest topographies, variations of the inclination angle «, the liquid viscosity
v and the topography wavelength L followed. For convenience, Figure 4.8 also displays the
variation of the topography’s specific shape, considered in Section 4.1.

4.2.2. Stability measurements
Linear stability at different corrugation amplitudes

The starting point for the experiments was a film of Elbesil 145 which flowed over an incline
of @ = 10°. The liquid, the inclination and the wavelength L = 20mm of the sinusoidal
topography were kept constant while the topography’s amplitude was gradually increased from
A = 0mm (flat substrate) to A = 8 mm (see Figure 4.8). For each corrugation steepness, the
Reynolds number was varied between 3 < Re < 22 and the stability of the basic flow against
linear free surface perturbations with 0.9 Hz < f < 8.0Hz was probed. The stability charts
measured at A = {0,2,4,8} mm are shown in Figure 4.9.

In good agreement with theoretical predictions [79,80], a long-wave type instability was found
for the flow over the flat incline. The higher the topography amplitude A was, the more the
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Figure 4.8.: The parameter space (A, L, W, a, v, shape) that was covered by the experiments.

flow with a Reynolds number between Re ~ 6 and Re ~ 11 was destabilized against long-
wave disturbances up to f ~ 3Hz. Concomitant, the critical Reynolds number was reduced
to Re =~ 6 which corresponds to a significant destabilization of the flow compared to the
corresponding Nusselt flow with the critical Reynolds number Re, = 7.1. On the other hand,
the substrate corrugations stabilized the flow over the steep topographies with A > 4mm at
Reynolds numbers between Re =~ 11 and Re ~ 15. There, the flow was stabilized the more,
the steeper the corrugations were. Both the destabilizing and the stabilizing effects can clearly
be attributed to the topography as they were the more pronounced, the higher the amplitude
A was. Yet, it seems as if a threshold for A has to be exceeded to provoke the significant
stabilization of the flow between Re ~ 11 and Re = 15 and the segmentation of the respective
instability branch. Together, the destabilizing and the stabilizing influence of the topography
give rise to the formation of the unstable isle at A > 4mm between Re ~ 6 and Re ~ 11,
which was found previously [107, 108]. The less wavy topography with A = 2mm induced
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Figure 4.9.: Evolution of the linear stability chart of the Elbesil 145 oil for shape = Sin, « = 10°, L =20 mm and
increasing amplitude A of the topography. Measurement points are shown as white dots. Bold black lines represent the
measured neutral stability curves. The yellow dashed lines indicate the theoretical neutral curve of the corresponding
Nusselt flow according to a numerical solution of the Orr-Sommerfeld equation [110]. The color code visualizes the
growth rates b of the free surface perturbations and the dotted contour lines are shown in steps of 0.5m~". Only
growth rates |b| > 2.5 m~" were not precisely quantifiable and set to the respective values. Modified and reprinted
with permission from [110]. (© AIP Publishing.

only a precursor of the unstable isle without a segmentation of the stability chart: The narrow
domain around Re =~ 8 and f ~ 1 Hz has a higher growth rate b than, e.g., Re =~ 10, f ~ 1 Hz.

Linear stability at different inclination angles

Increasing the inclination o at constant liquid viscosity v = 144.2mm? /s (Elbesil 145) and
fixed amplitude A = 8mm and wavelength L = 20mm of the sinusoidal topography (see
Figure 4.8) provoked a dramatic change of the entire shape of the linear stability chart (see
Figure 4.10). For the smallest measured inclination o = 10 °, as mentioned above and reported
previously [107,108], a long-wave instability isle ranging from Re =~ 6 to Re =~ 11 appeared
which was accompanied by a stable flow region from Re ~ 11 to Re ~ 15 and a long-wave
instability beyond Re = 15.

Steepening « led to a growth and distortion of the unstable isle with a short-wave instability
nose forming at a = 17° and Reynolds numbers between Re ~ 12 and Re =~ 15. A further
increase of « from 17° to 21 ° induced a merging of the unstable isle with the instability region
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Figure 4.10.: Evolution of the linear stability chart of the Elbesil 145 oil for Sin, A = 8mm, L = 20mm and
increasing inclination c. Convectively unstable regions are shaded. The bold black lines indicate the measured neutral
curves. Hatched markings denote measurement uncertainties. The red dashed lines represent the neutral curve of the
corresponding Nusselt flow according to a numerical solution of the Orr-Sommerfeld equation [110]. Modified and
reprinted with permission from [110]. (© AIP Publishing.

at higher Reynolds numbers. Thereby, a stable isle formed which shrank when a continued
to grow and finally had disappeared at o = 36.7°. With regard to technical applications of
film flows, the narrow Reynolds number regime between Re ~ 15 and Re ~ 16 at o = 17°
has to be highlighted. There, the substrate’s corrugations provoke a small process window
where all kinds of linear free surface perturbations are damped despite the Reynolds number
being up to four times higher than Re. = (5/4) cot . A steeper inclination « led not only to
a dramatic change of the entire shape of the stability chart as reported above, but also gave
rise to a transition of the onset of the primary instability from long-wave type at « = 10° to
clearly short-wave type at a = 23° and beyond. A similar phenomenon was observed by Cao
et al. [109] for more weakly, both rectangularly and sinusoidally, undulated inclines and for a
more than ten times less viscous liquid.

Linear stability at different viscosities

Figure 4.11 shows the measured evolution of the linear stability chart when the viscosity v was
decreased in two steps while the amplitude, the wavelength, and the inclination of the sinusoidal
topography were retained as illustrated in Figure 4.8. As reported previously by Pollak and
Aksel [107], the onset of the primary instability changes from long-wave to short-wave type
with decreasing viscosity. In addition, an unstable isle was found for Elbesil 100 and 145 and
a short-wave instability nose for FElbesil 100 above Re = 15. However, measurements beyond
Re =~ 15 for Elbesil 100 and Re = 11 for Elbesil 65 were error-prone or not possible at that
time.
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Figure 4.11.: Evolution of the linear stability chart for Sin, « =10°, A=8mm, L =20 mm and decreasing viscosity
v. Convectively unstable regions are shaded. The bold black lines indicate the measured neutral curves. Hatched
markings denote measurement uncertainties. The red dashed lines represent the neutral curve of the corresponding
Nusselt flow according to a numerical solution of the Orr-Sommerfeld equation [110]. The blue dotted lines represent
numerical results by Trifonov [108]. The stability chart of the Elbesil 65 oil contains the contour lines of the experi-
mentally determined growth rate b of the free surface disturbances with steps of 2m~!. Modified and reprinted with
permission from [110]. © AIP Publishing.

Compared to Pollak and Aksel [107], the experimental setup was improved in the present study
and allowed measurements of the flow’s stability at higher Reynolds numbers and perturbation
frequencies. The results so obtained provided the experimental evidence that the unstable isle
indeed exists at all three viscosities v = {65.1,100.3,144.2} mm?/s. The measurements proved
that the short-wave instability nose found for the Elbesil 100 0il can merge with the unstable
isle by a further decrease of the viscosity to Elbesil 65. The contour lines of the measured
growth rates b of the linear free surface disturbances confirm this statement (see Figure 4.11).
The junction of the two instability branches led to the formation of a stable isle in the stability
chart of Elbesil 65, where long-wave perturbations are damped far beyond the critical Reynolds
number of the corresponding Nusselt flow.

Linear stability at different corrugation tip widths

As described in Section 4.2.1, the Nusselt case was asymptotically left by either increasing
the amplitude of the sinusoidal undulations or decreasing the tip width of the rectangular
corrugations. Now, the latter alternative is discussed. Beginning with W = L = 20mm (flat
substrate) the tip width was gradually decreased to W = 1 mm while the inclination « = 10°,
the amplitude A = 8 mm and the wavelength L. = 20 mm of the rectangular topography as well
as the liquid viscosity v = 144.2 mm? /s were kept unchanged as illustrated in Figure 4.8.

The measured evolution of the linear stability chart with decreasing tip width W is shown in
Figure 4.12 and resembles to the chart’s evolution when the topography amplitude a is increased
(please compare the Figures 4.9 and 4.12). The smaller the tip width W was, the more the
flow with a Reynolds number between Re =~ 6 and Re = 11 was destabilized against long-
wave disturbances up to f ~ 3Hz. Concomitant, the critical Reynolds number was reduced
to Re =~ 6, which corresponds to a significant destabilization of the flow compared to the
corresponding Nusselt flow. On the other hand, between Re =~ 11 and Re = 15, the flow was
stabilized the more, the sharper the tips were. Both the destabilizing and the stabilizing effects
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Figure 4.12.: Evolution of the linear stability chart of the Elbesil 145 oil for Rec, « =10°, A=8mm, L =20 mm
and decreasing tip width W. Convectively unstable regions are shaded. The bold black lines indicate the measured
neutral curves. The red dashed lines represent the neutral curve of the corresponding Nusselt flow according to a
numerical solution of the Orr-Sommerfeld equation [110]. The blue dotted lines represent numerical results [113].
Modified and reprinted with permission from [110]. © AIP Publishing.

can clearly be attributed to the steepness of the topography as they were the more pronounced,
the smaller the tip width W was. Yet, it seems as if a threshold for W has to be undershot to
provoke the global stabilization of the flow between Re =~ 11 and Re =~ 15 and the segmentation
of the respective instability branch. The tips with W = 10 mm provoked only a ’dip’ in the
neutral curve at 11 < Re < 15. This dip can be interpreted as a precursor of the unstable
isle, similar to the precursor of the unstable isle which appeared in the stability chart of the
moderately undulated sinusoidal topography with A = 2 mm shown in Figure 4.9.

Linear stability at different corrugation wavelengths

The scheme shown in Figure 4.8 will now be completed by increasing the wavelength L of
the rectangular topography at constant inclination « = 10°, amplitude A = 8§ mm, tip width
W = 1mm and viscosity v = 144.2mm?/s. The measured evolution of the linear stability
chart is shown in Figure 4.13. When the topography wavelength was increased, the primary
instability changed from long-wave to short-wave type. In addition, an unstable isle was found
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Figure 4.13.: Evolution of the linear stability chart of the Elbesil 145 oil for Rec, a =10°, A=8mm, W = 1 mm and
increasing wavelength L of the topography. Convectively unstable regions are shaded. The bold black lines indicate
the measured neutral curves. The red dashed lines represent the neutral curve of the corresponding Nusselt flow
according to a numerical solution of the Orr-Sommerfeld equation [110]. The blue dotted lines represent numerical
results [113]. Modified and reprinted with permission from [110]. (© AIP Publishing.
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Figure 4.14.: Examples of the steady-state free surface and the velocity field of films of Elbesil 145 flowing over four
sinusoidal topographies of different amplitudes A but equal wavelength L = 20 mm and inclination a = 10°. Left:
Re =7.0. Right: Re = 16.0. The solid black lines indicate ho(x). The local flow velocity u(x, z) is color coded. The
dotted lines indicate streamlines (black: main flow; white: eddy). The white dashed line corresponds to the separatrix
of the eddy at Re = 16.0 and A = 8 mm. Modified and reprinted with permission from [110]. © AIP Publishing.

at all three topography wavelengths L = {20,30,40} mm and a short-wave instability nose
appeared for L > 30 mm above Re =~ 20. In contrast to the variations of the liquid’s viscosity
(see Figure 4.11), which also provoked a short-wave instability nose, no merging of the nose
with the unstable isle could be observed when L was changed. It remained an open question
whether the merging appears when L is increased further.

4.2.3. ldentifying stabilizing and destabilizing flow phenomena

Figures 4.9 - 4.13 comprise astonishing new experimental results on the linear stability of films
flowing over sinusoidally undulated inclines. The stability charts shown there exhibit a high
complexity, which grew hand in hand with the amplitude of the topography (see Figure 4.9).
Consequently, the first topic to be addressed is how substrate undulations of growing depth
affect the stability of film flows. For this sake, the free surface ho(z) and the velocity field
i(z, z) of the steady-state flow of Elbesil 145 along the four sinusoidal topographies of increasing
amplitude A = {0,2,4, 8} mm but equal wavelength L = 20 mm and inclination « = 10° were
measured. Examples of the detected steady-state free surfaces and velocity fields are given in
Figure 4.14. The more the amplitude A grew, the more the flow field differed from the strictly
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Figure 4.15.: Steady-state velocity field of films of Elbesil 145 flowing over the sinusoidal topography with A = 8 mm,
L=20mmand a = 10° at (a) Re = 7.0 and (b) Re = 16.0. The color code visualizes u(x, z) (left), ux(x, z) (middle),
uz(x, z) (right). The solid black lines indicate the free surface ho(x). The dotted lines indicate the streamlines (black:
main flow; white: eddy). The white dashed lines in (b) correspond to the separatrix of the eddy. The figures showing
u(x,z) in (a) and (b) were modified and reprinted with permission from [110]. (© AIP Publishing.

unidirectional Nusselt flow @(z) = u,(2)€; defined in equation (3.3) and the stronger the local
flow velocity ii(x, z) changed within one period of the substrate’s wavelength. Examples of the
variation of @(z, z), including its z-component uz(z, z) and z-component u,(x, z), are given in
Figure 4.15 for demonstration purpose.

In Section 4.1 the free surface, not the flow field or the topography’s specific shape far below
the free surface, was identified to be decisive for the linear stability of film flows (please also
see Schorner et al. [76]). Hence, the steady-state free surface ho(x) and the steady-state free
surface velocity us(x) were evaluated as described in the Sections 3.2.2 and 3.2.3. Figure 4.16a
shows that the mean film thickness hy, grew with increasing Reynolds number and amplitude
A of the topography. For deep corrugations with A > 4mm, h,, was significantly higher than
the corresponding Nusselt film thickness h,. Figure 4.16b demonstrates that the amplitude
aq of the first free surface harmonic featured a maximum at Re ~ 8. This maximum of a;
was the more pronounced, the higher the amplitude of the topography was. Above Re =~ 11,
a1 had significantly decreased compared to the respective maximum value. The amplitude as
of the second free surface harmonic versus the Reynolds number is plotted in Figure 4.16c¢.
Increasing A led to a growth of ay at Reynolds numbers below Re ~ 11. Beyond Re ~ 11 the
flow exhibited a harmonic free surface shape as ao — 0 within the limits of the accuracy of the
measurements. Both a; and as quantify the size of the resonant standing waves [47,49] which
appeared in the steady-state flows over the uneven substrates. Altogether, it can be said that
the deeper the undulations were, the thicker the film was and the bigger the resonant standing
wave was.

The above-mentioned influence of the topography on the free surface ho(z) did not remain
without consequences for the steady-state free surface velocity us(z). Examples of us(z) are
given in Figure 4.17a. They show that the deviations of us(x) from the corresponding Nusselt
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Figure 4.16.: Measurements of the steady-state free surface of films of Elbesil 145 at a = 10° flowing over the
four sinusoidal topographies of different amplitudes A but equal wavelength L = 20 mm shown in Figure 4.14. (a)
Mean film thickness h,,, (b) first free surface harmonic amplitude a; and (c) second free surface harmonic amplitude
ap, each versus the Reynolds number. The shaded area indicates the unstable isle in the flow’s stability chart for
A =8mm (see Figure 4.9). Modified and reprinted with permission from [110]. (© AIP Publishing.

velocity s, grew hand in hand with the amplitude A of the topography. Compared to the
corresponding Nusselt case, a reduced mean velocity us at the free surface of the flow was
measured (Figure 4.17b), which can be attributed to the increased film thickness hg, mentioned
above. Low Reynolds numbers and deep corrugations intensify the decrease of u;. Besides, the
changes of ug(x) over the course of the substrate’s wavelength were carefully considered. To
quantify these variations, the free surface velocity gradient Vu, was defined as

Vi, = Usmazr — Usmin : (4.4)
$(us,min) - x(us,max)

with wsmer = maxug(z)] and ugmin = minjug(z)]. Figure 4.17c shows how the Reynolds
number and the undulation’s amplitude affect Vus. The deeper the corrugations were, the
stronger ugs(x) varied within one period of the topography and the higher Vug, was. The
biggest resonant standing waves appeared below Re = 11. Hence, Vu, reached its maximum
there.

a) b) c)
350 T T 1.00 TR 14
TN I'...A:AA::: 121 v A (mm)
3001 0.96 ....-' AAAAVVvva‘- v vv = 0.0
— : A v 10 1 e 20
= 250 ! - “ v N v oaas, Y 4 40
: & 0.92 K P L Y
B = 07 g » v —
= 200 _A % bn AAA v g 6 AA ,
Na¥ v o®%00, X J
o 1501 v ] 0881 vv ;1 . ° AA‘I"
° °%d
100 T T T 0.84 < y y 0 S
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
x (mm) Re Re

Figure 4.17.: Measurements of the steady-state free surface velocity of films of Elbesil 145 at o = 10° flowing over
the four sinusoidal topographies of different amplitudes A but equal wavelength L = 20 mm shown in Figure 4.14.
(a) Local free surface velocity us(x), exemplarily shown for Re = 7.0 (solid lines) and Re = 16.0 (dashed lines). (b)
Ratio Ts/us,» of the mean free surface velocity s and the free surface velocity us, of the corresponding Nusselt flow.
(c) Free surface velocity gradient Vus. The shaded area indicates the unstable isle in the flow's stability chart for
A =8mm (see Figure 4.9). Modified and reprinted with permission from [110]. (© AIP Publishing.
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Figure 4.18.: Measurements of the steady-state free surface of films of Elbesil 145 at a = 10° flowing over the three
rectangular topographies of different tip widths W but equal amplitude A = 8 mm and wavelength L = 20 mm. (a)
Mean film thickness h,,, (b) first free surface harmonic amplitude a; and (c) second free surface harmonic amplitude
a», each versus the Reynolds number. The shaded area indicates the unstable isle in the flow's stability chart for
W = 1mm (see Figure 4.12).

The complexity of the linear stability charts shown in the Figures 4.9 - 4.13 can only be
explained by the presence of stabilizing as well as destabilizing effects which do not equally
appear in the corresponding Nusselt flows. Those are the above-mentioned increased mean film
thickness (Figure 4.16a), the curved steady-state free surface (Figures 4.16b, 4.16¢), and as a
consequence of both, the modified free surface velocity of the flow (Figure 4.17).

The mean film thickness hg, was shown to increase hand in hand with the amplitude A of the
topography. This led to a decreased flow velocity s, which is reported to have a stabilizing
effect [99]. If the flow over wavy inclines is stabilized due to hqy > hyp, why is there nevertheless
an unstable isle at low Reynolds numbers which provokes a global destabilization of the flow,
e.g., in Figure 4.97 The present study unveiled that resonant standing waves give rise to
the unstable isle. For films of Elbesil 145 flowing along a sinusoidally undulated incline with
a=10° A > 4mm and L = 20mm, the unstable isle appeared at exactly the same Reynolds
numbers where the free surface curvature, quantified by a; and ao, reached its maximum.
The more the topography’s amplitude A grew, the stronger the resonance was and the more
pronounced the formation of the unstable isle was (please compare the Figures 4.9 and 4.16).
This is not a coincidence, but can be attributed to strong velocity gradients Vug at the free
surface of the flow (see Figure 4.17c) which have a destabilizing effect, similar to weak hydraulic
jumps [55]. For the less undulated topography with A = 2mm, the resonance was weaker and
provoked only a precursor of the unstable isle around Re ~ 8 and f = 1 Hz (see Figure 4.9).

Besides increasing the topography’s amplitude beginning with A = 0 as described above, the
topography’s tip width was decreased in the experimental asymptotics from W = L = 20 mm to
W = 1 mm while all other system parameters were kept constant (see Figure 4.8). The measured
stability charts exhibited a high complexity (Figure 4.12), which grew when the tip width was
reduced, i.e. the flow had more space to attune freely (please see the gedankenexperiment in
Section 4.1.4). The overall evolution of the stability charts was found to be similar when either
A was increased or W was decreased (please compare the Figures 4.9 and 4.12). As discussed
in Section 4.1, the steady-state free surface ho(z) is decisive for the shape of the stability chart.
Hence, in order the unveil whether the same stabilizing (h4, increased) and destabilizing (free
surface resonance) effects are present when either A or W is varied, the steady-state free surface
ho(z) was measured for the three tip widths W = {1,10,20} mm. The results are plotted in
Figure 4.18. Indeed, decreasing W and increasing A had basically the same effect on the
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Figure 4.19.: First free surface harmonic amplitude a; of the steady-state film flows over corrugations with A =8 mm
versus the Reynolds number. Filled symbols indicate the core of the unstable isle in the stability chart of the respective
flow. (a) Dependence on the inclination « of the topography at fixed viscosity v = 144.2mm?/s and wavelength
L = 20mm of the sinusoidal topography. (b) Dependence on the viscosity v at fixed inclination « = 10° and
wavelength L = 20 mm of the sinusoidal topography. (c) Dependence on the wavelength L of the rectangular
topography at fixed viscosity v = 144.2 mmz/s, inclination a = 10° and tip width W = 1 mm. The dashed lines
highlight the maxima of a;. (a), (b) Modified and reprinted with permission from [110]. (© AIP Publishing.

steady-state free surface as a comparison of the Figures 4.16 and 4.18 shows. In both cases, the
mean film thickness h,, was increased at all Reynolds numbers compared to the corresponding
Nusselt flow. Besides, a maximum of the first free surface harmonic amplitude a; appeared
at Re = 8, where the core of the unstable isle of the corresponding stability charts (Figures
4.9 and 4.12) is located. Moreover, the second free surface harmonic amplitude as — 0 above
Re =~ 11, i.e. at Reynolds numbers beyond the unstable isle. Hence, the stabilizing (increased
mean film thickness) and destabilizing (free surface resonance) effects provoked by variations
of the corrugation parameters A and W appear to be the same. The sharper the tips were,
the stronger the resonance was and the more pronounced the formation of the unstable isle
was (see Figure 4.12). At W = 10mm the resonance was weak (see Figure 4.18b) and only a
precursor of the unstable isle appeared in the stability chart around Re ~ 8 (see Figure 4.12).

As long as the inclination, the viscosity and the topography wavelength were not changed, the
maximum of resonance of the steady-state free surface and, hence, the unstable isle stayed at
Reynolds numbers between Re ~ 6 and Re =~ 11 (Figures 4.9, 4.12, 4.16, 4.18). Variations of
the inclination (Figure 4.10), the viscosity (Figure 4.11) or the topography wavelength (Figure
4.13) led to a shift of the maximum of the first free surface harmonic amplitude a; and thus of
the unstable isle as indicated in Figure 4.19.

4.2.4. Conclusions

The stability charts of gravity-driven film flows over corrugated inclines were found to exhibit a
high complexity, which grows hand in hand with increasing amplitude or decreasing tip width
of the topography (Figures 4.9 and 4.12) and depends in a nontrivial way on the inclination
angle, the liquid’s viscosity and the topography’s wavelength (Figures 4.10, 4.11 and 4.13).
Measurements of the steady-state free surfaces and velocity fields attributed the complex shape
of the measured stability charts to the simultaneous presence of stabilizing as well as desta-
bilizing effects provoked by the topography. The stabilization of the flow due to an increased
mean film thickness and the destabilization of the flow due to resonance of the steady-state free
surface were shown to be competing effects. For films of Elbesil 145 flowing over moderately
inclined topographies (« = 10°, L = 20mm) which exhibited either steep sinusoidal undula-
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tions (A > 4mm) or sharp rectangular corrugations (W = 1mm, A = 8 mm) the resonance
phenomenon dominated. This reduced the critical Reynolds number compared to the corre-
sponding Nusselt flow and provoked an unstable isle in the linear stability chart. Decreasing
the inclination or the viscosity, or increasing the topography wavelength shifted the resonance
maximum and thus the unstable isle to higher Reynolds numbers. That way, the stabilizing
effect of the increased film thickness dominated at low Reynolds numbers and the flows were
more stable against long-wave perturbations than the corresponding Nusselt flows. Hence, the
interplay between the topography’s amplitude, wavelength, inclination and tip width as well as
the liquid’s viscosity determines whether the stabilizing or the destabilizing effect prevails.

The above-mentioned interaction between competing effects cannot be approximated properly
by the well-known Nusselt solution: reducing a film flow over deep corrugations to a Nusselt
flow would disregard the significantly differing steady-state flow phenomena which govern the
flow’s stability — far beyond the limits of Nusselt’s theory.
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4. Results and discussion

4.3. Patterns and universal pathway of the linear stability

The thematic priority of precedent work on the linear stability of gravity-driven viscous films
flowing down corrugated inclines was to unveil and scrutinize specific stability phenomena,
provoked by the interplay of the fluid and the topography (please see the Sections 4.1, 4.2
and the References [76,107,108,110,112,113,122]). For a plenty of very different individual
systems the specific shape, inclination «, amplitude A, wavelength L and tip width W of the
topography as well as the viscosity v of the liquid were varied and the linear stability of the flow
was scrutinized in both theory and experiment. Similarities were observed, e.g., an increase
of a or a decrease of v had a similar effect on the stability chart (please see the Figures 4.10
and 4.11 in Section 4.2). Moreover, a switching between different types of stability isles was
observed when «, v, L, A or W were varied [110,113]. However, no universal principle was
found behind the changes, being valid to describe the evolution of the flow’s stability chart for
variations of all the parameters o, v, L, A, W and shape. This lack of information constituted
a problem for, e.g., technical applications of film flows. There was no possibility to predict
how a system reacts on a change of one of the above-mentioned parameters unless the stability
chart of the specific system was measured or calculated.

The scope of the study presented in the present Section 4.3 is to provide a universal guide on
how to tune the linear stability of a gravity-driven Newtonian film flowing over an inclined
topography in a way which is desired or required. In other words, the fundamental question ”Is
there a universal principle, being valid to describe the parametric evolution of the flow’s stability
chart for variations of different system parameters?” was considered. For this sake, in a first
step, all corresponding stability charts available in the literature [76,107,108,110,112,113,122]
were screened. In a second step, experiments were performed to fill the gaps which remained
after the parameter spaces of the independent investigations were combined. That way, a set of
six characteristic patterns of stability charts was identified to be sufficient to describe and unify
all previous results on the linear stability of Newtonian films flowing over undulated inclines.
Finally, a universal pathway — the stability cycle — was unveiled along which the linear stability
charts of all considered Newtonian films flowing down periodically corrugated inclines evolved
when the fluid or the topography was changed.

The present Section 4.3 relies on the publication ”The stability cycle — A universal pathway for
the stability of films over topography” from Schorner and Aksel [114].

4.3.1. Parameter space and methodology

The study presented in Section 4.3 condenses all linear stability charts of Newtonian films
flowing over inclined topographies available in the literature [76,107,108, 110,112,113, 122].
New experiments [114] were carried out only to fill the gaps in the combined parameter space
of all precedent work on this topic. That way, parallel strains of step-by-step variations of
each considered parameter of the system were obtained while all other parameters were kept
constant. The system parameters are the specific shape, inclination a, amplitude A, wavelength
L and tip width W of the topography as well as the kinematic viscosity v of the liquid (see
Figure 3.2a). The three silicone oils Elbesil 65, 100 and 145, used by previous authors [76,107,
108,110,112,113,122] and described in Section 3.1.1, were chosen as liquids. Their kinematic
viscosities v ranged from 65 mm?/s to 144 mm? /s (see Table 3.1). The different specific shapes
of the topography, i.e. Sin, SinMod, Saw, SawRev, Rec and Flat, are illustrated in Figure
3.2b. The inclination o was varied between 4.1° and 36.7°. For the corrugated substrates the
amplitude A was varied from 0.4 mm to 14.4 mm, the wavelength L from 10 mm to 200 mm, and
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the tip width W from 1 mm to 100 mm. The flat incline was considered as either the borderline
case A=0,L=0,L=o00or W=L. A detailed list of all parallel strains of the variations of
a, v, L, A, W and shape is given in the respective tables in Appendix A. Please see Table A.1
for the variations of «, Table A.2 for v, Table A.3 for L, Table A.4 for A, Table A.5 for W and
Table A.6 for shape.

The experimental methodology to measure the flow’s linear stability was introduced in Sec-
tion 3.2.4. The numerical method of the steady-state solution’s computation and the stability
analysis used by previous authors was described in detail in the literature [44,98,99,108,112,113].
In a nutshell, their theoretical analysis was based on the Navier-Stokes equations in their full
statement without asymptotic approximations. The computed neutral curves were given either
as Q(Re) or f(Re), with @) being the Floquet parameter and f being the frequency of the
disturbance. The Floquet parameter () describes the exponent in the ansatz for the solution
of a periodical system. Please see, e.g. Trifonov [99, 108], for details on @ and Schorner et
al. [113] for the relation between @ and f. In the present work, the computed neutral curves
Q(Re) of [108,112] are shown only if the corresponding curve f(Re) has not been published.
Even though the respective axes of Q) and f slightly differ, the overall pattern of the stability
chart remains the same in both representations. Please see [108,113] for details and examples.

4.3.2. Characteristic patterns of stability charts

The present approach condenses all experimental and numerical linear stability charts of Newto-
nian film flows over undulated inclines available in the literature [76,107,108,110,112-114,122].
The respective data are summarized in the Appendices A.1 - A.6. This holistic approach made
it possible to identify the six characteristic patterns of stability charts sketched and described
by key-words in Figure 4.20. All available stability charts can be assigned to one of these six
patterns, as described below.

Pattern I represents the classical long-wave type primary instability of the flow over a flat
incline [11,80]. Pattern II is a long-wave type primary instability with a dip. Pattern IIT exhibits
two disjoined long-wave instability branches. The unstable isle at low Reynolds numbers and
the long-wave instability at higher Reynolds numbers are separated by a stable flow regime
where all disturbances are damped. Pattern IV has two disjoined instability branches with a
short-wave type instability nose as illustrated in Figure 4.20. Pattern V is a short-wave type
primary instability with an unstable bridge above the stable isle. Pattern VI characterizes the
short-wave type primary instability.

This set of the six characteristic stability chart patterns, defined in Figure 4.20, was found to
be sufficient and powerful enough to uniformly describe all available linear stability charts of
Newtonian films flowing over corrugated inclines. No counterexample was found which did not
fit to one of these six patterns.

4.3.3. Transitions between different patterns of stability charts

In Figure 4.21, all available linear stability charts were assigned to the six characteristic sta-
bility chart patterns I - VI defined in Figure 4.20. The data were grouped in a way to obtain
parallel strains of step-by-step variations of single fluid or topography parameters. Hereby, one
parameter was varied while the others were kept fixed. The arrows represent the transitions
between different patterns of stability charts which appeared when the inclination ¢, the vis-
cosity v, the wavelength L, the amplitude A or the tip width W were increased. Hence, each
one of the vertical strains in Figure 4.21 illustrates schematically how the stability chart of
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Figure 4.20.: (a) Typical examples of measured stability charts. The bold black line is the neutral curve. The growth
rate b of the linear free surface disturbances is color-coded (red: unstable, blue: stable) and the contour lines are shown
as dashed lines in steps of Ab. The exemplary measurements correspond to a = 10° and |: Flat, v = 144 mm2/s,
Ab=05m~ % 1I: Sin, v = 144 mmz/s, A=2mm, L=20mm, Ab=05m"% Ill: Sin, v = 144 mmz/s, A=12mm,
L=20mm, Ab=1.0m"%; IV: Rec, v = 144 mmz/s, A=8mm, L=30mm, W=1mm, Ab=1.0m"% V: Sin,
v =65mm?/s, A =8mm, L =20mm, Ab = 2.0m ' and VI: Rec, v = 100mm?/s, A = 8mm, L = 40mm,
W = 20mm, Ab = 1.0m™!. Data of the example of |, Il and V taken from Schorner et al. [110]. (b) Characteristic
stability chart patterns | - VI. Modified and reprinted with permission from [114]. (© AIP Publishing.

the respective system, labeled by the Arabical numeral ¢, evolves with an increase of one of
the parameters o, v, L, A, W while all others were kept constant. The parameter space and
the raw data are given in the Appendices A.1 - A.6. For example, data on the increase of the
inclination a were available for five different systems, labeled by the Arabical numerals 1 - 5 in
Figure 4.21, listed in Appendix A.1.1 and plotted as raw data in Appendix A.1.2. If no arrow
is shown, e.g., for system number 5 in the variations of «, changes of the respective parameter
did not lead to a different stability pattern. Furthermore, modifications of the specific shape
of the topography were found to have only a minor effect on the stability chart if the free
surface remained unchanged [76]. Additional findings for varying shape of the topography were
not explicitly included in Figure 4.21, yet summarized in Appendix A.6 for convenience and
completeness.

Variations of «, v, L, A or W provoked transitions between the different stability chart patterns
either along the pathway I — II — IIT - IV -V — VI — IT — I or reverse. The direction
of the transitions between two specific stability patterns, represented by the arrows in Figure
4.21, was the same for all systems {shape, a,v, L, A, W} as long as only one specific parameter
was modified.

Changes of o and v never provoked a transition between pattern I and II (see Figure 4.21). This
transition is not possible as pattern 1 was defined as the classical long-wave type instability
of films flowing over flat inclines, valid for all viscosities v and inclinations 0 < a < 7/2.
Moreover, changes of A and W never resulted in a transition between pattern III and IV (see
Figure 4.21). Concerning the tip width W, pattern IIT or IV corresponds to the minimal tip
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Figure 4.21.: Schematic evolution of the linear stability chart of film flows when «, v, L, A or W are increased
in the direction of the arrows (red: top — down; blue: bottom — up). The illustration comprises all precedent
work [76,107,108,110,112,113,122] and the new measurements from [114]. The parameter configurations {shape,
a, v, L, A, W} are specified in the respective Tables A.1 - A.5 in Appendix A. The Arabical numeral i denotes the
system and corresponds to the same number in the respective table. All corresponding stability charts are given in
the Appendices A.1 - A.5. Modified and reprinted with permission from [114]. (© AIP Publishing.

width. A further reduction beyond the geometric constraint W — 0 is impossible. The tip
always remains as an obstacle with W #£ 0. Concerning the amplitude A, there is no geometric
constraint prohibiting A — oo. It remains an open question why variations of A never induced
transitions between pattern III and IV.

4.3.4. The stability cycle — A universal pathway for the linear stability

The results in Figure 4.21 and the pathway I — II — IIT - IV -V — VI — II — I can be
formed to a circle which will be called the ’stability cycle’. For convenience, it is separated in
three cycles as illustrated in Figure 4.22.

A certain degree of symmetry is visible in Figure 4.22. In an antagonistic way, « and v are
decisive for the influence of the inertia on the film flow. That way, both parameters provoke the
same transitions along the pathway with either being increased or decreased. The same is valid
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Figure 4.22.: The stability cycle. The direction of the arrows is color-coded as in Figure 4.21 and corresponds to the
pathway of the transitions between different patterns of stability charts, when one of the parameters «, v, L, A or W
is increased. Modified and reprinted with permission from [114]. (© AIP Publishing.

for A and W which are decisive for the curvature of the steady-state free surface [40,110] and,
hence, the segmentation of the stability chart [110] (please see Section 4.2.3). No counterpart
appeared for the wavelength L. On grounds of L being a geometric length the counterpart
should be an intrinsic length, namely the capillary length. This hypothesis could not be proven
in the present approach since the surface tension was not changed in the experiments.

The stability cycle shown in Figure 4.22 can be considered as a universal pathway for the
stability, describing the parametric evolution of the linear stability charts of Newtonian films.
All experimental and numerical findings can be assigned to the six characteristic stability chart
patterns and all reported transitions between these patterns fit to the pathway. No contradicting
observations are reported, falsifying this interpretation. It does not matter which specific shape,
amplitude or wavelength the corrugations have, how viscous the Newtonian fluid or how steep
the inclination is. One of the six patterns described above characterizes the stability chart of
each system {shape, a,v, L, A, W}. Taking the respective stability pattern as a starting point,
the stability cycle predicts how the pattern changes when one of the parameters of the system
is modified. In other words, it tells the reader how to adapt the system to obtain, for example,
pattern IIT with a stable flow regime at Reynolds numbers far beyond Re. = (5/4) cot c.

4.3.5. Conclusions

Is there a universal principle, being valid to describe the parametric evolution of the flow’s
linear stability chart for variations of different system parameters? In search of an answer
to this fundamental question, all experimental and numerical stability charts available in the
literature were screened. In a second step, experiments were performed to fill the gaps which
remained after the parameter spaces of the independent, precedent investigations were combined
(Appendix A). That way, the set of six characteristic stability chart patterns shown in Figure
4.20 was identified to be sufficient to describe and unify all previous results on the linear stability
of Newtonian films flowing over undulated inclines. Variations of the fluid’s viscosity or the
topography’s specific shape, amplitude, wavelength, tip width or inclination led to transitions
between these six patterns. These pattern transitions shift unstable and stable flow regimes
and can provoke crucial flow stabilization at high Reynolds numbers, important in physical and
technical applications. By considering the whole set of transitions (Figure 4.21) a universal
pathway — the stability cycle — was unveiled, along which the linear stability charts of all
considered Newtonian films flowing down periodically corrugated inclines evolved when the
above-mentioned system parameters were changed (Figure 4.22). The stability cycle can be
interpreted as a universal guide on how to tune the linear stability of two-dimensional gravity-
driven Newtonian films flowing over inclined topographies in a way which is desired or required.
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4.4. Beyond the linear stability of two-dimensional Newtonian films

The characteristic stability chart patterns and the stability cycle presented in Section 4.3 were
found to be valid for all two-dimensional Newtonian film flows, which are perturbed by linear
free surface waves and flowing down periodically undulated inclines [114]. No contradicting
observations are reported. However, it remained an open question whether similar phenomena
can also be found beyond the linear stability of two-dimensional Newtonian films. Are the
characteristic stability chart patterns and the stability cycle still valid for, e.g., non-Newtonian
fluids (Section 4.4.1), nonlinear waves (Section 4.4.2) and three-dimensional channel flow with
sidewalls (Section 4.4.3)?

4.4.1. Non-Newtonian fluids

For the practical issue of flow stabilization in engineering-technological applications the intrigu-
ing question arises whether the characteristic stability chart patterns and the stability cycle,
both described in Section 4.3 for films of Newtonian fluids, are still valid for films of non-
Newtonian fluids. To the author’s knowledge, the only work to mention in this context is the
numerical study by Heining and Aksel [100], who calculated linear stability charts of power-law
liquids flowing down sinusoidal topographies of different steepnesses £ = A/h,. Figure 4.23a
shows the stability charts for £ = 0.4 and power-law index n = 0.8 (shear-thinning), n = 1.0
(Newtonian) and n = 1.2 (shear-thickening). Please see the caption of Figure 1.24 for the
definition of the stress tensor including the power-law index n.

The linear stability charts of the non-Newtonian fluids shown in Figure 4.23a can be attributed
to the same stability patterns which also describe the stability of Newtonian fluids (see Figure
4.20), but the pathway of the transitions exhibits a turning point at n = 1.0 (see Figure 4.23b).
Clearly, more experiments and computations on the linear stability of non-Newtonian films
flowing down periodically undulated topographies are required to shed light on this complex
problem. It will be interesting to see if the linear stability charts of non-Newtonian films match
to the characteristic stability chart patterns of Newtonian films in general.

0
=
W

b)

.

3
22t
s i I
= n=08 / fn=12
2 (pattern V) { (pattern VI){
s ‘bridge’ } ishort-wave™,
% Ir : - =1.0 n increased 1T
& . (pattern IV)

00 /. ﬁ L L .-.“'"'-. é y -

Reynolds number

Figure 4.23.: (a) Linear stability charts of two-dimensional films of power-law liquids flowing down a sinusoidally
undulated incline of the steepness £ = 0.4. The stability charts of the shear-thinning (power-law index n = 0.8)
and the shear-thickening (n = 1.2) fluid can be attributed to the same stability patterns defined on grounds of the
Newtonian films (n = 1.0; see Section 4.3.2). Data taken from Heining and Aksel [100]. (b) In contrast to the
parameters «, v, L, A, W studied in Section 4.3, the pathway of the transitions between the stability chart patterns
exhibits a turning point at n = 1.0, when n is increased. This turning point can be considered as a new feature, which
did not appear at any parameter variation in the pathway of the stability of Newtonian film flows (please compare to
Figure 4.22).
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Figure 4.24.: Computed (a = 0; black dashed line) and measured (a = 0.03 mm; red solid line) linear stability chart
for Elbesil 100, Sin, « = 10°, A =8mm and L = 20mm. Data taken from [113]. The experimental neutral points
at Re = 10 were determined from Reck and Aksel [125] and correspond to the different perturbation amplitudes
a~ 0.03mm, 0.3mm and 0.7mm. The vertical arrows indicate the shift of the neutral point at Re = 10 with the
perturbation amplitude a being increased, i.e. with a transition from linear to nonlinear waves [125].

4.4.2. Nonlinear disturbances

How nonlinear disturbances affect the stability of two-dimensional Newtonian films flowing
over inclined topographies is still an open question of imperative importance for real-world
applications of film flows, where the traveling waves are usually not linear. What happens
when the disturbances are not strictly linear but weakly or even strongly nonlinear with their
free surface amplitude a not being small compared to the film thickness? Are the characteristic
stability chart patterns and the stability cycle (see Section 4.3) still valid for nonlinear free
surface perturbations?

The scope of this section is to briefly discuss the qualitative effects of nonlinear disturbances
on the neutral curves of films over topographies and to highlight specific low phenomena for
demonstration purpose, without claiming universality and completeness. For this sake, we
begin with a discussion on the term ’linear free surface disturbance’ and its different meaning
in theoretical and experimental approaches. Subsequently, the free surface amplitude and the
nonlinear character of the traveling free surface wave is gradually increased. Both weakly and
strongly nonlinear disturbances are considered and their impact on the flow’s stability chart is
briefly outlined.

From linear to weakly nonlinear disturbances

All real-world systems and all physical experiments deal with perturbations of non-vanishing
amplitude a # 0. This constitutes a fundamental difference to the theory of linear disturbances
with ¢ = 0 in the computations and gives rise to a slight disparity of the numerical and the
experimental neutral curves [113]. For traveling free surface waves with @ # 0 and a — 0
in the experimental limit, which are denoted as ’linear disturbances’ in the experiments, the
unstable regimes in the flow’s stability chart slightly shrink compared to the corresponding
computational results [113]. Please see the example given in Figure 4.24 for a = 0 (theory;
black color) and ¢ = 0.03mm (linear stability measurements; red color), where the neutral
points shift to lower perturbation frequencies f with a being increased. According to the
experimental findings by Reck and Aksel [125], this shift is the more pronounced, the larger
a is (please see Figure 4.24 at Re = 10). Beyond, Reck and Aksel [125] evaluated the wave
number spectra at Re = 10 and ¢ ~ 0.03mm, 0.3 mm and 0.7mm. At ¢ ~ 0.03 mm, which is
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Figure 4.25.: (a) Stability charts of the four systems which exhibit a different stability pattern in theory (a = 0; black
dashed lines) and experiment (a = 0.03mm; red solid lines). Hatched markings denote measurement uncertainties.
The computed neutral curve in (3) is shown as Q(Re) as no relation between the Floquet parameter Q and the
perturbation frequency f was published (see Section 4.3.1). The examples correspond to Sin, L = 20mm and (1)
Elbesil 100, « = 10.0°, A =8mm; (2) Elbesil 100, o = 24.9°, A = 8 mm; (3) Elbesil 100, « = 10.0°, A =4 mm; (4)
Elbesil 145, o = 36.7°, A = 8 mm. (b) The pattern transitions Il — VI — V — IV, which appear in (a) when the
amplitude a of the free surface perturbation is slightly increased, fit to the stability cycle defined in Section 4.3.4.

the same perturbation amplitude used for the linear stability measurements shown in Figure
4.24, one dominant peak appeared at the fundamental wave number of the excitation and
they denoted these waves as ’linear waves’, in line with the nomenclature used in this thesis.
Despite this notation, their results showed that the traveling free surface waves in real-world
experiments are intrinsically not strictly linear but weakly nonlinear, as external noise sources
and non-vanishing amplitudes of higher harmonics are always present (see Section 3.2.4 and
Figure 3.11c). In other words, the difference between the computed and the measured neutral
curves can be interpreted as a first indication of how a stability chart changes when not strictly
linear but weakly nonlinear disturbances are imposed to the flow.

As described above, the perturbation amplitudes ¢ ~ 0.03 mm in the linear stability measure-
ments were very small compared to the film thickness. For the vast majority of the systems
considered in the present study, the measured and computed neutral curves were in good agree-
ment (see Appendix A). Only four out of a total of over 70 systems exhibited a clearly different
stability pattern in theory and experiment (see Figure 4.25a). For all other systems the dif-
ference in a between theory and experiment was too small to provoke a pattern transition.
To the author’s knowledge, no other comparable stability charts f(Re) of gravity-driven films
over inclined topographies, perturbed by nonlinear waves, are published. Hence, the results
shown in Figure 4.25a can be interpreted as the first indications of how the stability patterns
of viscous film flows over inclined topographies can change when weakly nonlinear disturbances
are imposed to the flow. Indeed, when the perturbation amplitude a is increased and weakly
nonlinear effects appear, all observed transitions between different stability chart patterns still
follow the ’stability cycle’ (see Figure 4.25b). Clearly, this statement is based on a small sample
and cannot claim universality. Further work on the evolution of nonlinear waves over inclined
topographies is needed to shed light on this complex problem. For technical applications of
film flows, it will be interesting to see if the stability charts for weakly nonlinear disturbances,
faced in the real world of engineering, match to the characteristic stability patterns and the
'stability cycle’ in general.
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Figure 4.26.: Variation of the free surface during one period of the traveling wave (A. = 8mm, f = 1.0Hz). (a) -
(c): rectangular substrate with L = 10mm. (d) - (f): rectangular substrate with L = 20mm. (g) - (i): sinusoidal
substrate with L = 20 mm. The other system parameters are: A =8mm, a = 10°, v = 100.3mm?/s and for (a) -
(f) W =1mm. (a), (d) and (g): The free surfaces are plotted for one recorded second with 200 frames per second.
This leads to a band which represents the maximum and the minimum local height of the free surface. (b), (e) and
(h) show the free surface enlarged for every fifth time step. (c), (f) and (i) show the evolution of the free surface
for the same excerpt over time for each second time step. (f) and (i) show the depletion region in front of the wave
crest. Modified and reprinted with permission from [122]. (© AIP Publishing.

Strongly nonlinear disturbances

For strongly nonlinear traveling free surface waves, the linear stability chart is no longer ade-
quate to describe the wave dynamics as large shifts of the neutral points appear (see Figure 4.24,
a =~ 0.7mm). In particular, for traveling free surface waves of large free surface amplitudes,
i.e. @ > 1lmm in the present study, the disturbances couple to the underlying flow field and
give rise to new flow phenomena, as recently outlined in the publication ”What makes the free
surface waves over topography convex or concave? A study with Fourier analysis and particle
tracking” [122]. The present discussion on how strongly nonlinear disturbances can affect the
stability of film flows relies on this publication.
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Figure 4.26 shows how the free surface of the flow of Elbesil 100 varied over time at a fixed
position in streamwise direction when a saturated wave (4, = 8.0mm, f = 1.0Hz) passed.
Please see Section 3.2.2 for the experimental setup used for the time-dependent measurements
of the free surface of the flow. The inclination angle and the topography amplitude were
set to a = 10° and A = 8 mm respectively. The Figures 4.26a - 4.26¢ correspond to the
rectangular substrate with L = 10mm and W = 1 mm, the Figures 4.26d - 4.26f correspond
to the rectangular substrate with L = 20mm and W = 1 mm, and the Figures 4.26g - 4.26i
correspond to the sinusoidal substrate with L = 20mm. One period of the traveling wave
corresponds to 200 time steps. The time is color coded. The bold black contour lines in the
Figures 4.26a, 4.26b, 4.26d, 4.26e, 4.26g and 4.26h highlight the local maximal and the local
minimal height of the free surface during one period of the traveling wave. The width and the
shape of the resulting band indicate how large the traveling wave was compared to the whole
film and how uniform the local film thickness changed within one period of the corrugation
while the wave passed.

The rectangular substrate with L = 10 mm shows a narrow and flat band. Hence, the penetra-
tion depth of the disturbance, i.e. the traveling wave, is small. For the rectangular substrate
with L = 20mm, the free surface is heavily disturbed by the traveling wave. A similarly
strong disturbance is visible for the sinusoidal substrate. Moreover, for the two substrates with
L = 20mm, a depletion region in front of the wave is visible [125]. The rectangular substrate
with L = 10 mm does not show a depletion region.

In order to show the aforementioned interaction between the traveling nonlinear surface wave
and the underlying flow field single particle tracking measurements were carried out as described
in Section 3.2.3. The pathlines of tracer particles were compared for the steady-state flow as
well as for the flow perturbed by linear (¢ < 0.1mm, f = 1.0Hz) and strongly nonlinear
(a > 1.0mm, f = 1.0 Hz) traveling free surface waves. The experiments were performed for the
three different substrates shown in Figure 4.26: the sinusoidal one with I = 20 mm and the
two rectangular ones with L = 10 mm and 20 mm.

Figure 4.27 shows the measured pathlines and free surfaces of the flows over the three topogra-
phies shown in Figure 4.26. Both the steady-state flow (Figures 4.27a - 4.27¢) and the strongly
perturbed flow (Figures 4.27d - 4.27f) are shown. The results obtained when linear free surface
perturbations (¢ < 0.1 mm) were imposed to the flow are not shown separately, as they differ
too little from the steady-state configuration to be distinguishable with the eye: no variation
of the structure of the flow pattern was visible and the changes of the free surface amplitude
over time were smaller than the width of the bold black line which represents the steady-state
free surface in the Figures 4.27a - 4.27c. Hence, the Figures 4.27a - 4.27c represent both the
steady-state flow and the flow perturbed by small, linear free surface disturbances.

In the Figures 4.27d - 4.27f, nonlinear free surface perturbations of large amplitudes a were
imposed to the flow (¢ > 1.0mm, f = 1.0Hz). Hardly any interaction of the traveling wave
with the stationary flow is visible in Figure 4.27d for the flow over the rectangular topography
with L = 10 mm. In contrast to this, the rectangular substrate with L = 20 mm showed strong
interaction for the case of nonlinear disturbances, which can be seen in Figure 4.27e. The
steady-state eddy, shown in Figure 4.27b, broke up when the traveling wave passed and mixed
with the fluid of the traveling wave. Hence, the disturbance is not restricted to the free surface,
as it is the case for small, linear waves. The penetration depth is large and the whole film flow
is heavily disturbed by the wave traveling over the substrate. For the sinusoidal substrate, the
strength of the interaction between the large traveling surface wave and the underlying flow
field lies qualitatively between one of the two rectangular topographies (see Figure 4.27f).
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Figure 4.27.: (a) - (c) Particle tracking images for the steady-state flow over three different topographies. With
the eye, the steady-state free surface and flow pattern are indistinguishable from the results obtained when linear
disturbances (Ae = 0.5mm, a < 0.1 mm, f = 1.0 Hz) were imposed to the flow. For convenience, only the steady-state
results are shown. (d) - (f) Particle tracking images for the flow perturbed by nonlinear disturbances (A. = 8.0 mm,
a>1mm, f = 1.0Hz). The yellow band indicates the variation of the free surface during one period of the traveling
wave according to Figure 4.26. The main flow direction is from left to right. (a), (d) Rectangular substrate with
L = 10mm. (b), (e) Rectangular substrate with L = 20mm. (c), (f) Sinusoidal substrate with L = 20mm. The
other system parameters are: A=8mm, a = 10°, v = 100.3mm?/s and for (a), (b), (d), (¢) W = 1 mm. Modified
by adding new measurement data and reprinted with permission from [122]. (© AIP Publishing.

A comparison of the flow patterns and the free surface contours shown in the Figures 4.27a
- 4.27c (steady-state flow & linear disturbances) and in the Figures 4.27d - 4.27f (nonlinear
disturbances) illustrates that there are large differences. Dependent on the topography’s specific
shape, new phenomena arise when nonlinear waves perturb the flow. An eddy breakup is visible
and the mixing provokes a drag force by flinging particles from the underlying steady-state flow
into the traveling wave (Figures 4.27e, 4.27f). This mixing was found to be strongly dependent
on the specific shape of the topographies (at equal topography amplitude and wavelength),
resulting in a different shape and propagation of the traveling wave [122]. This constitutes
a fundamental difference to the evolution of the linear free surface waves considered in the
experiments on the flow’s linear stability (Sections 4.1 - 4.3). For linear disturbances, the
specific shape of the topography did not matter in general for wave propagation, i.e. flow
stability (see Section 4.1).

The above-described finding that the topography’s specific shape is decisive for the evolution of
large-amplitude nonlinear waves crucially affects the validity of the stability cycle for nonlinear
waves. First, the stability cycle was based on the method of the parallel strains of the variations
of only the parameters «, v, L, A and W (see Section 4.3.3, Figure 4.21). This method cannot
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Figure 4.28.: Problem statements for the three-dimensional flow with sidewalls.

be equally applied when also the topography’s specific shape is decisive for wave propagation.
Second, it remains an open question if the flows’ stability charts still match to the characteristic
stability chart patterns defined in Section 4.3.2 when large-amplitude nonlinear free surface
waves perturb the flow. Hence, the characteristic stability chart patterns and the stability
cycle presented in Section 4.3 are not universally valid for film flows which are perturbed by
strongly nonlinear large-amplitude traveling free surface waves.

The evolution of nonlinear traveling waves over inclined topographies is a highly demanding
problem and has only been addressed sparsely, yet. As outlined above, this problem is insep-
arably coupled to the material exchange between the eddy and the flowing film above. Both
issues remain challenging questions.

4.4.3. Three-dimensional flow with sidewalls

Real-world film flows always deal with channels of finite width, i.e. channels bounded by
sidewalls. However, as the computational costs are high and the experiments are demanding,
the effects of the sidewalls on both the steady-state channel flow as well as its stability were
discussed only sparsely in the literature (please see the Sections 1.2.3 and 1.4.3). The intriguing
question arises whether the characteristic stability chart patterns and the stability cycle (see
Section 4.3), valid for two-dimensional flow over inclined topography, change when sidewalls
are added to the system. Are the stabilizing and the destabilizing effects (Section 4.2) still the
same in the vicinity of the sidewalls? Does the topography’s specific shape (Section 4.1) still
not matter in general for the flow’s stability in the vicinity of the sidewalls?

In order to answer these intriguing questions, four different problem statements have to be
distinguished when sidewalls are added to the system, as both the bottom of the channel and
the sidewalls can be either flat or corrugated (see Figure 4.28). Although an all-embracing
study of this great diversity of systems is beyond the scope of the present consideration, some
examples are given below in order to outline the nontrivial effects which sidewalls can have on
the steady-state channel flow and its linear stability.

Flat inclines & flat sidewalls

For two-dimensional gravity-driven flow, the linear stability of a viscous film flowing over a
flat incline is represented by the classical long-wave type instability, i.e. the stability pattern
I. Please see Figure 4.20 for the classification of the stability patterns. As long as the incline
remains flat and infinitely extended, no pattern transitions are possible for the two-dimensional
flow [11,80].

When flat sidewalls are added to the system, the situation changes drastically as the symmetry
is broken and two different cases have to be distinguished. On the one hand, as long as the
Kapitza numbers are small [117] and the distance to the sidewalls is large compared to the
intrinsic length scales [67], the effects of flat sidewalls on the linear stability of films flowing
down flat inclines can be neglected, i.e. the flows can be considered as two-dimensional at the
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Figure 4.29.: (a) Linear stability charts for a Newtonian film flowing down a flat channel, inclined by 41° against the
horizontal and bounded by flat sidewalls. The measurements were performed at the channel’s center (y = 0) and at
the off-center positions y = 55mm and y = 75 mm (near to the sidewall). Data taken from [118]. (b) According to
the classification presented in Figure 4.20 the pathway of the transitions between the different patterns is | — Il —
VI and fits to the stability cycle of two-dimensional film flows defined in Section 4.3.4.

channel’s center. On the other hand, when the distance to the sidewall is reduced, a transition
from a long-wave to a short-wave instability was reported by Pollak et al. [118] (please see
Figure 4.29a). Indeed, their observations correspond to the pattern transitions I — II — VI
along the stability cycle (please see Figure 4.29b).

The physical significance of this finding is its relevance for technical applications of film flows:
at an adequate volume flux, the resulting short-wave type instability (pattern VI) corresponds
to a band-pass, filtering long-wave and short-wave disturbances. This filtering can be achieved
by simply narrowing a flat channel without the need to mount an undulated bottom. That way,
the manufacturing of undulated substrates can be avoided and there are no troughs in which,
for example, the fluid of biomedical flows can be trapped in recirculation zones for a long time
until it finally degenerates.

Corrugated inclines & flat sidewalls

The effects of flat sidewalls on the linear stability of films flowing down corrugated inclines have
not been addressed by any publication. It remains an open question if small Kapitza numbers
are still sufficient to neglect the influence of the sidewalls on the flow’s stability at the channel’s
center in general, as it is the case for the flow over a flat incline [117]. Moreover, in contrast to
the flow over a flat incline, a curved contact line between the fluid and the sidewall appears due
to the curved free surface of the steady-state flow over topography. It still remains in the dark
how this free surface curvature affects the competing effects at the sidewalls' and concomitant
the linear stability of the flow in the vicinity of the sidewalls.? Two intriguing questions arise,
which will be considered in the following:

1) Are the measured linear stability charts presented in the Sections 4.1 - 4.3 significantly
distorted by the presence of the sidewalls in the channels used in the experiments?

This question can be denied. The measured linear stability charts are in good agreement with
the corresponding numerical results [108,112,113] (please also see Appendix A). The small

!For the flow over a flat incline, flat sidewalls give rise to a competition between the no-slip condition and the
velocity overshoot due to the capillary elevation at the sidewalls [67].
2The shape of the steady-state free surface is decisive for the linear stability of the flow (Sections 4.1 and 4.2).
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Figure 4.30.: (a) Measured steady-state flow patterns at four different crosswise distances y to the channel’s center
(y = 0). The sidewalls are located at y = 85 mm. The arrows indicate the direction of the flow. The main flow
is from left to right. The example corresponds to Elbesil 145, Sin, A= 8mm, L = 20mm, a = 10° and Re = 30.
At y = 40 mm, the eddy is closed and the pattern corresponds to the one at the channel's center. At y = 70 mm,
the eddy breaks up and spiral-like pathlines indicate that material pours into the eddy (inflow). At y = 84 mm,
material pours out of the eddy into the main flow (outflow). The inflection point between inflow and outflow was
at y = 78 mm, where both phenomena appeared. (b) Scheme of the three-dimensional structure of the eddy. Gray:
closed eddy. Blue: inflow. Red: outflow.

disparities between theory and experiment were attributed to the differences in the problem
statements between theory (perturbation amplitude ¢ = 0) and experiment (a # 0) as discussed
in Section 4.4.2. As the calculations were performed for a two-dimensional system, the matching
of the results of the numerical and the experimental approach indicates that the linear stability
charts measured at the center of the channels were not distorted significantly by the presence
of the sidewalls in the present study.

2) Are the sidewall effects qualitatively equal for both flat and corrugated inclines or do new
phenomena appear, which significantly affect the steady-state flow and its linear stability?

To the author’s knowledge, no precedent experimental or theoretical approach studied the
effects of flat sidewalls on the steady-state flow over undulated inclines and its linear stability
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Figure 4.31.: (a) Measured steady-state flow patterns at four different crosswise distances y to the channel’s center
(¥ = 0). The sidewalls are located at y = +85mm. The arrows indicate the direction of the flow. The main flow
is from left to right. The example corresponds to Elbesil 145, Sin, A= 8mm, L = 20mm, a = 10° and Re = 10.
At y = 50 mm, the eddy is closed and the pattern corresponds to the one at the channel's center. At y = 70 mm,
the eddy breaks up and spiral-like pathlines indicate that material pours into the eddy (inflow). At y = 84 mm,
material pours out of the eddy into the main flow (outflow). The inflection point between inflow and outflow was
at y = 78 mm, where both phenomena appeared. (b) Scheme of the three-dimensional structure of the eddy. Gray:
closed eddy. Blue: inflow. Red: outflow.

in-depth. In the following, first experimental findings on the effects of flat sidewalls on films
over undulated inclines are presented with their relevance for the flow’s linear stability being
discussed.

According to the results presented in the Sections 4.1 and 4.2, the flow’s linear stability is
inextricably linked to the steady-state flow pattern, i.e. the steady-state free surface, which
attunes as a consequence of eddy formation in the troughs. In order to figure out possible
differences between the two-dimensional flow and the three-dimensional flow with sidewalls,
the steady-state flow pattern in the vicinity of the sidewalls was visualized by measuring the
pathlines of tracer particles at different y-positions between the channel’s centerplane (y = 0)
and the sidewall (y = 85 mm). Please see Section 3.2.3 for the corresponding measurement

88



4.4. Beyond the linear stability of two-dimensional Newtonian films

a) closed eddy c)

b
) O closededdy M inflow
O in- & outflow @ outflow

main flow direction

A M
o | 0 [poosoody |-
AEELA It
y o ) '
channel center sidewall channel center

Figure 4.32.: Schematic side-view (a) and top-view (b) of the steady-state flow shown in the Figures 4.30 and 4.31.
The mixing was found to be single-periodic in streamwise direction. The in- and outflow were found to be equal in
each trough, i.e. to not alternate between consecutive troughs. (c) Dependence of the dimensionless mixing height
(Hin— Hout)/ hav on the Reynolds number and the crosswise y-position. Near to the sidewall, the height of the outflow
band Hou: reached up to 20% of the average film thickness h,, at the channel’s center.

technique to visualize the streamlines. The flow of FElbesil 145 over a sinusoidal topography
(A =8mm, L = 20mm, o = 10°) was chosen for demonstration purpose. As illustrated in
Figure 4.30 for Re = 30, the flow pattern changes drastically in the vicinity of the sidewalls.
Near to the center of the channel, the eddy remains closed and unaffected by the sidewalls. No
material exchange between the eddy and the overlying main flow was visible. In the vicinity of
the sidewalls steady-state mixing of the eddy and the main flow was observed. The symmetry
break, induced by the presence of the sidewalls, led to a deformation of the vortex into a spiral.
Spiral-like pathline-patterns, similar to those observed by Wierschem et al. [26] for creeping
flow conditions (see Section 1.2.3), manifested.?> Dependent on the distance to the sidewall
either a closed eddy appeared, material poured into the eddy (inflow), material poured out of
the eddy (outflow), or both inflow and outflow appeared.

In a first approach, the heights of the inflow band and the outflow band in z-direction at x =
{0, L} were chosen as a simple geometric measure to characterize the intensity of the material
exchange between the eddy and the main flow. These heights were denoted as the mixing
heights H;, (inflow) and H,: (outflow), as illustrated in Figure 4.30a and 4.31a. Both Hy, and
H,,: significantly depended on the crosswise y-position. In the close vicinity of the sidewall,
H,,; reached its global maximum with max(H,,;) >> H;, Vy. Decreasing the Reynolds number
to Re = 10 provoked a shrinking of the eddy at the channel’s center and the material exchange
between the eddy and the main flow near the sidewall was lessend (see Figure 4.31). The overall
structure of the three-dimensional flow pattern remained qualitatively unchanged for Re = 10,

3Despite the significantly differing boundary conditions, similar spiral-like pathline patterns were reported for
the laminar flow through plane-symmetric sudden expansions [126].
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Figure 4.33.: Measured steady-state flow patterns at the two different crosswise positions y = 70 mm and y = 85 mm
(at the sidewall) for the flow over sawtooth-like topographies with sidewalls. The examples correspond to Elbesil 145,
A=8mm, L =20mm, a = 10°, Re =30 and Saw (left) and SawRev (right). The main flow is from left to right.
Please note the inverted inflow and outflow regions for the Saw and the SawRev topography.

although the sidewall effects had a lower range in y-direction than for Re = 30 (please compare
the Figures 4.30b and 4.31b). For Re < 6 no eddies and no mixing appeared at any crosswise
position. However, as long as eddies were present, the range of the influence of the sidewalls
on the steady-state flow was more than ten times larger than the generalized capillary length
20/(pgcosa) =~ 2mm [67] (please see, e.g., Figure 4.30b). Hence, the effects of flat sidewalls
on the steady-state flow over the sinusoidal incline, which was considered for demonstration
purpose, are significantly stronger than in the corresponding flow over a flat incline.

To ensure that the above-mentioned mixing was not provoked by a slight inclination of the
channel against the y-axis, the pathline patterns were recorded on both sides of the channel,
i.e. for y > 0 and y < 0. The structure of the flow pattern was found to be the same on both
sides of the channel, e.g., at both sidewalls (y = £85mm). Beyond, the main flow and the
mixing phenomenon were single-periodic in the streamwise z-direction as illustrated in Figure
4.32a for side-view and in Figure 4.32b for top-view.

Although the three-dimensional flow pattern remained qualitatively unchanged by variations
of the Reynolds number as long as eddies appeared at the channel’s center, the dimensionless
mixing height (Hj, — Hoyut) / hay depended on both the Reynolds number as well as the y-position
(see Figure 4.32¢). Near to the sidewalls, it reached about 20% of the average film thickness hg,
at the channel’s centerplane. This significant increase of the local flow rate has the potential to
affect the free surface of the steady-state flow. As the steady-state free surface was found to be
decisive for the flow’s linear stability (see Sections 4.1 and 4.2), intriguing stability phenomena
might appear as a consequence of the effects of the sidewalls.

Moreover, in contrast to the flow over the flat incline, where the stability pattern I is always
present at the channel’s center, the flow over undulated inclines can exhibit any of the stability
patterns II - VI, there. It remains an open question how these stability patterns change when
the distance to the sidewalls is reduced. Will the respective linear stability charts still follow
the ’stability cycle’ as it is the case for the flow over the flat incline in the vicinity of a flat
sidewall?
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4.4. Beyond the linear stability of two-dimensional Newtonian films
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Figure 4.34.: Classification of the different flow regimes of the steady-state flow of Elbesil 145 over the Sin (left),
Saw (middle) and SawRev (right) topography of the amplitude A = 8 mm, the wavelength L = 20 mm and the
inclination @ = 10°. Dependent on both the Reynolds number and the crosswise y-position (channel center: y = 0;
sidewall: y = 85mm) either no eddy (white), a closed eddy (gray), or an eddy breakup with inflow into the eddy
(blue), outflow out of the eddy (red) or both in- and outflow (yellow) were determined. In contrast to Figure 4.32c,
the charts shown in the present figure contain no information about the intensity of the mixing between the eddy
and the main flow. They serve only to illustrate the qualitative similarities and differences of the flow patterns in the
vicinity of the sidewalls, when the specific shape of the topography is altered.

The main result of Section 4.1 was that, as long as the steady-state free surface remains un-
changed, the topography’s specific shape does not significantly affect the linear stability of
two-dimensional films flowing over undulated inclines. Is this result still valid for the three-
dimensional flow in the vicinity of flat sidewalls? As illustrated in Figure 4.33, the mixing
characteristics significantly differ when the specific shape of the topography is altered without
changing its amplitude or wavelength. While for the Sin and Saw topography the inflow and
outflow regions remained qualitatively similar, they differed decidedly for the SawRev topog-
raphy (see Figure 4.34). For the SawRev topography, the inflow (not the outflow) occurred

inflow outflow downstream eddy outflow
upstream eddy + downstream eddy
(®inflow eye) inflow upstream eddy (®outflow eye)

Figure 4.35.: Measured steady-state flow pattern of Elbesil 145 at Re = 30 flowing over a rectangular topography
(A=8mm, L =20mm, W = 1mm, a = 10°) in the close vicinity of the sidewall (y = 85 mm). For convenience,
the different flow regimes are color coded. The arrows indicate the direction of the flow.
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4. Results and discussion

in the close vicinity of the sidewalls. For the Rec topography (W = 1 mm), the mixing phe-
nomenon is even more complex (see Figure 4.35) as multiple eddies can appear in the troughs
at the channel’s center (see Figure 4.4b and 4.5). Following the same argumentation as in the
previous paragraph, it will be interesting to see how the different types of mixing in channel
flows over inclined topographies affect the steady-state free surface and thereby also the linear
stability of the flow in the vicinity of the sidewalls. As real-world systems are always bounded
by sidewalls, these findings would be appreciated, e.g., in the manufacturing of microelectronic
devices or optical coatings.

Flat or corrugated inclines & corrugated sidewalls

The effects of corrugated sidewalls on films flowing down flat or corrugated inclines have not yet
been addressed. Neither the steady-state solution of this problem, nor its stability against time-
dependent free surface perturbations have been considered, although these highly demanding
problem statements are closest related to real-world systems in the nature and in engineering
technological applications of film flows. It will be interesting to see how the great challenge
of calculating or measuring the time-dependent, fully three-dimensional free surface flow with
corrugated sidewalls will be overcome.

4.4.4. Conclusions

The characteristic stability chart patterns and the stability cycle presented in Section 4.3 were
found to be valid for all two-dimensional Newtonian films, which are perturbed by linear free
surface waves and flowing down periodically undulated inclines. Yet, it remained an open
question whether similar phenomena can appear beyond the linear stability of two-dimensional
Newtonian film flows, e.g., for non-Newtonian fluids, nonlinear waves and three-dimensional
channel flows with sidewalls as bounding topography. In the present Section 4.4, these three
exemplary systems were briefly considered for demonstration purpose to unveil what can be
beyond the linear stability of two-dimensional Newtonian films. For this sake, the sparse
literature on this topic was studied and new experiments were performed. As the results
presented in the Sections 4.1 and 4.2 provided the experimental evidence that the flow’s stability
is inextricably coupled to the phenomena of the steady-state flow, both were considered together
wherever the available literature and the experimental setups permitted it. That way, new
phenomena like, e.g., a mixing between the eddies in the troughs of the undulations and the
overlying main flows were uncovered, with their effects on the flow’s stability being briefly
discussed. Although an in-depth investigation of non-Newtonian films, nonlinear disturbances
and sidewall effects on channel flows is beyond the scope of the present dissertation, all available
findings indicate that both the characteristic stability chart patterns and the stability cycle are,
with some restrictions, still valid beyond the linear stability of two-dimensional Newtonian film
flows.
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5. Summary and Conclusions

The present thesis provides new insights into the effects of topographies on the stability
of gravity-driven viscous film flows. Particular focus lies on the influence of periodic, one-
dimensional topographies on the linear stability of two-dimensional Newtonian film flows, which
are solely driven by gravity. Comprehensive and thorough experimental investigations unveiled
new stability phenomena far beyond the well-known Nusselt regime and associated these phe-
nomena to the structure of the underlying steady-state flow. The new experimental results
were combined with all existing analytical, numerical and experimental findings on this com-
plex problem. That way, the flow phenomena could be attributed to fundamental mechanisms,
which determine the flow dynamics. The aim of the present study was to characterize all
these results for the sake of unveiling a universal principle, being able to describe and unify all
findings on the stability of viscous films flowing over inclined topographies.

First, the linear stability of gravity-driven two-dimensional Newtonian films flowing over five
differently shaped topographies was measured, while the liquid and the inclination angle were
retained. All topographies shared the same amplitude and wavelength but exhibited different
specific shapes, e.g., sinusoidal, rectangular or sawtooth-like. Despite the significantly differing
topography shapes, all linear stability charts were equal, aside from small deviations. In order to
understand this astonishing finding, the associated flow fields of the corresponding steady-state
flows were scrutinized. The upper boundary of the steady-state flowing domain, constituted
by the free surface, as well as its lower boundary, defined by the substrate and the eddies in
the troughs, were determined. The lower boundaries of the flowing domain differed decidedly
for the five highly diverse topographies. Despite this severe disparity of the lower boundaries
of the flowing domain, the free surface and concomitant the free surface stability remained
unaffected. However, this statement cannot be true for all topographies of equal amplitude
and wavelength. A gedankenexperiment led to the conclusion that when, e.g., the tip width
of the rectangular undulations increases and finally reaches the wavelength of the topography,
both the free surface shape and the flow’s linear stability have to change, as the flow then
corresponds to the flow over a flat incline. Consequently, the topography’s specific shape does
not matter in general for the linear stability of film flows, as long as the free surface remains
unchanged. In other words, the free surface stability of gravity-driven film flows cannot be
manipulated in general by even strong variations of the topography’s specific shape. Indeed,
this finding is of imperative importance for a wide range of technical applications of film flows,
ranging from coating industries to energy-converting systems, where the specific shape of the
topography over which the fluid moves cannot be modified freely.

In the subsequent parameter study, the linear stability charts of gravity-driven film flows over
inclined topographies were found to exhibit a complex inner topology. The formation of stable
and unstable isles in the linear stability chart and transitions from long-wave to short-wave
instabilities are only a few of many examples. In order to illuminate these findings, the scope
of the experiments was significantly enhanced compared to all previous approaches: either
the depth of sinusoidal undulations was gradually increased or the tip width of rectangular
corrugations was gradually decreased. Variations of the inclination of the channel, the viscosity
of the liquid and the wavelength of the topography followed. This comprehensive approach
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5. Summary and Conclusions

provided detailed experimental data on the stability charts as well as on the free surface shapes
and the velocity fields of the corresponding steady-state flows. The complexity of the shape
of the linear stability chart was found to grow when either the amplitude of the topography
was increased or its tip width was decreased. Besides, it depended in a nontrivial way on
the viscosity of the liquid and on the wavelength and inclination of the topography. The
measurements of the steady-state free surfaces and velocity fields attributed the complex shapes
of the stability charts to the simultaneous presence of stabilizing as well as destabilizing effects
provoked by the topography. The stabilization of the flow due to an increased mean film
thickness and the destabilization of the flow due to resonance of the steady-state free surface
were shown to be competing effects. In particular, the unstable isle in the linear stability charts
of gravity-driven viscous films over inclined periodical structures was attributed to the above-
mentioned resonance phenomenon: the core of the unstable isle appeared at the same Reynolds
number, where also the maximum of the first free surface harmonic amplitude was located.
Decreasing the inclination or the viscosity, or increasing the topography wavelength shifted the
resonance maximum and thus the unstable isle to higher Reynolds numbers. That way, the
stabilizing effect of the increased mean film thickness dominated at low Reynolds numbers and
the flows were more stable against long-wave perturbations than the corresponding Nusselt
flows. Hence, the interplay between the topography’s amplitude, wavelength, inclination, and
tip width as well as the liquid’s viscosity determines whether the stabilizing or the destabilizing
effect prevails. This interaction between competing effects cannot be approximated properly by
the well-known Nusselt solution of the unidirectional flow over a flat incline: Reducing a film
flow over deep corrugations to a Nusselt flow would disregard the significantly differing steady-
state flow phenomena, which govern the flow’s stability — far beyond the limits of Nusselt’s
theory.

The aim of the next part of the present thesis was to provide a universal guide on how to tune
the linear stability of gravity-driven two-dimensional Newtonian films flowing over inclined
topographies. In other words, a fundamental question was considered: Is there a universal
principle, being valid to describe the parametric evolution of the flow’s linear stability chart for
variations of different system parameters? For this sake, first, all experimental and numerical
stability charts available in the literature were screened. In a second step, experiments were
performed to fill the gaps which remained after the parameter spaces of the independent,
precedent investigations were combined. That way, a set of six characteristic stability chart
patterns was identified to be sufficient to describe and unify all previous results on the linear
stability of viscous films flowing over undulated inclines. Variations of the liquid’s viscosity or
the topography’s amplitude, wavelength, tip width or inclination against the horizontal led to
transitions between these six patterns. The pattern transitions shift unstable and stable flow
regimes and can provoke, e.g., crucial flow stabilization at high Reynolds numbers, important
in physical and technical applications like coating or biofilm formation. By considering the
whole set of transitions a universal pathway — the stability cycle — was unveiled, along which
the linear stability charts of all considered film flows evolved when the above-mentioned system
parameters were changed. Hence, the stability cycle can be interpreted as a universal guide
on how to tune the linear stability of gravity-driven viscous films in a way which is desired
or required, e.g., by energy-converting systems like falling-film heat exchangers, or by coating
applications in medical, optical, biochemical, or semiconductor industries.

The characteristic stability chart patterns and the stability cycle were found to be valid for
all two-dimensional Newtonian films which are perturbed by linear free surface waves and
flowing down periodically undulated inclines. There are no contradicting observations reported,
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falsifying their universal character. However, it remained an open question whether similar
phenomena can appear for differing systems with, e.g., non-Newtonian fluids, nonlinear waves,
or three-dimensional channel flow with sidewalls as bounding topography. In the last part
of the present dissertation, these three exemplary systems were briefly considered to unveil
what is beyond the linear stability of two-dimensional Newtonian films. For this sake, the
sparse literature on this topic was studied and new experiments were performed. As the results
presented previously in this thesis provided the experimental evidence that the flow’s linear
stability is inextricably coupled to the phenomena of the steady-state flow, both were considered
together wherever the available literature and the experimental setups permitted it. Phenomena
like an eddy breakup due to traveling free surface waves were uncovered with their effects on the
flow’s stability being briefly discussed. Although an in-depth investigation of non-Newtonian
films, nonlinear disturbances and sidewall effects is beyond the scope of the present work, all
available findings indicate that both the characteristic stability chart patterns and the stability
cycle are, with some restrictions, still valid beyond the linear stability of two-dimensional
Newtonian films. However, as this statement is based on a small sample of studied systems, it
cannot claim the same universality and completeness as the findings on the linear stability of
two-dimensional Newtonian films over inclined topographies. Yet, these observations can serve
as first indications for what is beyond the linear stability of two-dimensional Newtonian films.
As the computations and the experiments dealing with non-Newtonian fluids, nonlinear waves
and three-dimensional channel flows are highly demanding, it will be interesting to see how the
great challenge of exploring the limits of the validity of the stability cycle will be faced in the
future.

As a final remark, the author would like to highlight the physical significance of the characteris-
tic stability patterns and the universal stability cycle: both together can indeed be interpreted
as a universal guide on how to tune the stability of viscous films flowing over inclined topogra-
phies in a way which is desired or required by the application. With the results presented in
the present dissertation, previous limitations can be circumvented and the huge potential of
structured substrates for passive flow stabilization is ready to be exploited.
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A. All available systems and stability charts

A.1. Variation of the inclination angle « of the channel

A.1.1. Table of all available systems for variation of «

Nr.  v(mm?/s) shape A(mm)  L{mm)  W{mm) a(deg)

1 100 Sin g 20 - 117, 5.0, 8.0, 10.0, 14.0, 18.0, 21.0%, 24.9, 36.7*
2 144 Sin 8 20 - 7.0%, 10.0, 14.0, 17.0, 21.0, 23.0, 36.7

3 65 Sin 8 20 — 4.1*, 8.5*, 10.0

4 144 Sin 4 20 - 10.0, 17.0*

5 144 Flat - - - 10.0%, 14.0, 17.0, 21.0, 23.0, 36.7

Table A.1.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different inclination angles a of the channel. Data taken from [76,107,108,110,113,122]. New experiments [114]
are marked by a star (x). The numbers on the left-hand side correspond to the numbers in the Figures 4.21 and A.1.
Modified and reprinted with permission from [114].

A.1.2. All available stability charts for variation of «
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Figure A.1.: Linear stability at different inclination angles a. The charts include experiments (E) and numerics (N)
taken from [76,107,108,110,113,122] and new experiments (%) from [114]. Hatched markings denote measurement
uncertainties. Computed neutral curves are shown as Q(Re) if no relation between Q and f was published. Modified
and reprinted with permission from [114]. (© AIP Publishing.
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A. All available systems and stability charts

A.1.3. Pathway of the stability for variation of «

neutral curve: —s—experiment, ——numerics convectively unstable *: new measurements  [76]: data taken from [Ref. 76]

a) =70 —— 10.0° — 17.0° ———— 21.0° —— 36.7° —K~ experimental limitations
f(Hz) 1%

[76,107,110,113] |[110,113] [110,113] [110,113]
10 |
5 (J / (} ( viscosity v changed in b)

b) a=41" —= 50° —+= 100° —= 140° —= 21.0° ——=  36.7°
* [113] [107,110,113,015] [[113] * *

10 20 30 10 20 30 0 20 30 10 20 30 10 20 30
Re Re Re Re Re

el | X [ f—— [l }— [V }— [V }—[VI}——[0] X [1]

inclination o increased

Figure A.2.: Evolution of the stability chart with the inclination « increasing from left to right inside (a) and (b)
while all other parameters shape, v, L, A, W were kept constant. The given examples correspond to Sin, A =8 mm,
L = 20mm and (a) v = 144mm?/s or (b) v = 100 mm?/s. The measured stability charts shown in (a) and (b)
were assigned to the schematic chart patterns | - VI defined in Figure 4.20. The red arrows symbolize the transitions
between different patterns of stability charts which occurred when a was increased. Transitions between pattern | and
Il are not possible (red cross) as explained in Section 4.3.3. Hatched markings denote measurement uncertainties.
Contour lines of the growth rate b are shown as dashed lines in steps of Ab = 0.5m™" for a = 4.1° in (b). Modified
and reprinted with permission from [114]. (© AIP Publishing.

A.2. Variation of the viscosity v of the liquid

A.2.1. Table of all available systems for variation of v

Nr. a(deg) shape A(mm) L(mm) W (mm) v(mm? /s)

1 10.0 Sin 8 20 - 65, 80, 100, 110, 123, 144
2 4.1 Sin 8 20 - 65*, 100*

3 21.0 Sin 8 20 - 100*, 144

4 36.7 Sin 8 20 - 100*, 144

5 10.0 Rec 8 20 1 100, 144*

6 10.0 Rec 8 40 1 100*, 144>

7 10.0 Sin 4 20 - 100*, 144

8 10.0 Sin 2 20 - 65%, 144

9 10.0 Rec 8 10 1 100*, 144>
10 10.0 Rec 8 30 1 100*, 144~
11 10.0 Rec 8 20 10 100*, 144>
12 10.0 Saw 8 20 - 100*, 144*
13 10.0 Flat - - - 65%, 100*, 144*

Table A.2.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different viscosities v of the liquid. Data taken from [76,107,108,110,112,113,122]. New experiments [114] are
marked by a star (x). The numbers on the left-hand side correspond to the numbers in the Figures 4.21 and A.3.
Modified and reprinted with permission from [114].
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A.2. Variation of the viscosity v of the liquid

A.2.2. All available stability charts for variation of v
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Figure A.3.: Linear stability at different viscosities v. The charts include experiments (E) and numerics (N) taken
from [76,107,108,110,112,113,122] and new experiments (%) from [114]. Hatched markings denote measurement
uncertainties. Computed neutral curves are shown as Q(Re) if no relation between Q and f was published. Modified
and reprinted with permission from [114]. (© AIP Publishing.
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A. All available systems and stability charts

A.2.3. Pathway of the stability for variation of v
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Figure A.4.: Evolution of the stability chart with the viscosity v increasing from right to left inside each of the figures
(a) - (d), while all other parameters shape, a, L, A, W of the system were retained. The measured stability charts
were assigned to the schematic chart patterns | - VI defined in Figure 4.20. The red arrows symbolize the transitions
between different patterns of stability charts which occurred when v was increased. Transitions between pattern |
and Il are not possible (red cross) as explained in Section 4.3.3. The given examples correspond to Sin, A = 8 mm,
L =20mm and (a) @ = 4.1°, (b) @ = 10.0°, (c) @ = 21.0° and (d) @ = 36.7°. Hatched markings denote
measurement uncertainties. Contour lines of the growth rate b are shown as dashed lines in steps of Ab = 0.5m~!
for v = 100 mm?/s in (a). Modified and reprinted with permission from [114]. (© AIP Publishing.

A.3. Variation of the wavelength L of the topography

A.3.1. Table of all available systems for variation of L

Nr. v(mm? /s) a(deg) shape A(mm) W (mm) L(mm)

1 144 10.0 Rec 8 1 0%, 107, 207, 30%, 40%, oo

2 100 10.0 Rec 8 1 0*, 10*, 20, 30*, 40*, 100*, co*
3 144 10.0 Sin 8 - 0%, 20, 30, 40, oo™

4 100 10.0 Rec 8 L2 0%, 20*, 40%, 200*, co*

Table A.3.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different corrugation wavelengths L. Data taken from [76,107,108,110,113,122]. New experiments [114] are marked
by a star (x). The numbers on the left-hand side correspond to the numbers in the Figures 4.21 and A.5. Modified
and reprinted with permission from [114].
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A.3. Variation of the wavelength L of the topography

A.3.2. All available stability charts for variation of L
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Figure A.5.: Linear stability at different corrugation wavelengths L. The charts include experiments (E) and numerics
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uncertainties. Modified and reprinted with permission from [114]. (© AIP Publishing.
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A. All available systems and stability charts

A.3.3. Pathway of the stability for variation of L
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Figure A.6.: Evolution of the stability chart with the wavelength L of the topography increasing from left to right
inside each of the figures (a) - (d), while all other parameters shape, o, v, A, W of the system were retained.
The measured stability charts were assigned to the schematic chart patterns | - VI defined in Figure 4.20. The red
arrows symbolize the transitions between different patterns of stability charts which occurred when L was increased.
The given examples correspond to A = 8mm, a = 10.0° and (a) Rec, v = 144mm?/s, W = 1 mm, (b) Rec,
v = 100mm?/s, W = 1mm, (c) Sin, v = 144mm?/s and (d) Rec, v = 100mm?/s, W = L/2. Modified and
reprinted with permission from [114]. (© AIP Publishing.

A.4. Variation of the amplitude A of the topography

A.4.1. Table of all available systems for variation of A

Nr. v(mm? /s) a(deg) shape L{mm) W (mm) A(mm)

1 144 10.0 Sin 20 - 0.0%, 1.0, 2.0, 4.0, 8.0, 12.0%
2 100 10.0 Sin 20 - 0.0%, 2.0, 4.0%, 8.0, 12.0*
3 65 10.0 Sin 20 - 0.0%, 0.4, 1.0, 2.0%, 8.0

4 65 10.0 Sin 36 - 0.0%, 0.8, 1.8, 3.6, 14.4

5 144 10.0 Sin 36 - 0.0%, 1.8, 3.6, 7.2, 14.4

6 144 17.0 Sin 20 - 0.0, 4.0, 8.0

7 100 10.0 Sin 15 - 0.0%, 1.5, 2.9, 5.8

Table A.4.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different corrugation amplitudes A. Data taken from [76,107,108,110,112,113,122]. New experiments [114] are
marked by a star (x). The numbers on the left-hand side correspond to the numbers in the Figures 4.21 and A.7.
Modified and reprinted with permission from [114].
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A.4. Variation of the amplitude A of the topography

A.4.2. All available stability charts for variation of A
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Figure A.7.: Linear stability at different corrugation amplitudes A. The charts include experiments (E) and numerics
(N) taken from [76, 107,108, 110,112,113, 122] and new experiments (%) from [114]. Hatched markings denote
measurement uncertainties. Computed neutral curves are shown as Q(Re) if no relation between Q and f was
published. Modified and reprinted with permission from [114]. (© AIP Publishing.
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A. All available systems and stability charts

A.4.3. Pathway of the stability for variation of A
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Figure A.8.: Evolution of the stability chart with the amplitude A of the corrugation increasing in the direction of the
red arrows inside each of the figures (a) - (c), while all other parameters shape, «, v, L, W of the system were retained.
The measured stability charts were assigned to the schematic chart patterns | - VI defined in Figure 4.20. The red
arrows symbolize the transitions between different patterns of stability charts which occurred when A was increased.
No example for a transition between pattern Il and IV was found (red cross). The given examples correspond to Sin,
a=10.0° and (a) v = 100 mm?/s, L = 15mm, (b) v = 100 mm?/s, L = 20mm and (c) v = 65 mm?/s, L = 20 mm.
Hatched markings denote measurement uncertainties. Computed neutral curves are shown as Q(Re) if no relation
between Q and f was published. Modified and reprinted with permission from [114]. (© AIP Publishing.

A.5. Variation of the tip width I/ of the topography

A.5.1. Table of all available systems for variation of W/

Nr. v(mm?/s) a(deg) shape A(mm) L(mm) W (mm)

1 144 10.0 Rec 8 20 1*, 10*, 20*

2 100 10.0 Rec 8 20 1, 6, 10*, 20*
3 100 10.0 Ree 8 40 1*, 20*, 30*, 40*
4 100 10.0 Rec 8 30 1*, 10*, 30*

5 144 10.0 Rec 8 30 1*, 10*, 30*

Table A.5.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different tip widths W of the rectangular corrugations. Data taken from [76,110,113,122]. New experiments [114]
are marked by a star (). The numbers on the left-hand side correspond to the numbers in the Figures 4.21 and A.9.
Modified and reprinted with permission from [114].
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A.5. Variation of the tip width W of the topography

A.5.2. All available stability charts for variation of W
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Figure A.9.: Linear stability at different tip widths W of the corrugation. The charts include experiments (E)
and numerics (N) taken from [76,110,113,122] and new experiments (%) from [114]. Hatched markings denote
measurement uncertainties. Modified and reprinted with permission from [114]. (© AIP Publishing.

A.5.3. Pathway of the stability for variation of W
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Figure A.10.: Evolution of the stability chart with the tip width W of the rectangular corrugation increasing in the
direction of the red arrows inside each of the figures (a) - (c), while all other parameters shape, a, v, L, A of the
system were retained. The measured stability charts were assigned to the schematic chart patterns | - VI defined in
Figure 4.20. The red arrows symbolize the transitions between different patterns of stability charts which occurred
when W was increased. No example for a transition between pattern |1l and IV was found (red cross). The given
examples correspond to Rec, A = 8mm, a = 10.0° and (a) v = 144mm?/s, L = 20mm, (b) v = 100 mm?/s,
L =20mm, (c) » = 100 mm?/s, L = 40 mm. Modified and reprinted with permission from [114]. (© AIP Publishing.
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A. All available systems and stability charts

A.6. Variation of the specific shape of the topography

A.6.1. Table of all available systems for variation of shape

Nr. v(mm?/s) a(deg) A(mm) L({mm) W (mm) shape

1 144 10.0 8 20 1 Sin, SinModjs, Saw*, SawRev*, Rec*
2 100 10.0 8 20 1 Sin, SinMod}q, Saw™, Rec

3 144 10.0 8 30 1 Sin, Rec*

4 144 10.0 8 40 1 Sin, Rec*

Table A.6.: Systems for which the linear stability of a gravity-driven film flow over topography was investigated at
different specific shapes shape of the corrugations. Data taken from [76,107,108,110,113,122]. New experiments [114]
are marked by a star (x). The numbers on the left-hand side correspond to the numbers in Figure A.11. The modified
sinusoidal geometry SinMod is the sinusoidal geometry Sin, modified by replacing the eddies, which appear in the
troughs at the specific Reynolds number Re = 13 or Re = 19, by a solid contour [76,107]. Modified and reprinted
with permission from [114].

A.6.2. All available stability charts for variation of shape
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Figure A.11.: Linear stability for different specific shapes shape of the corrugation. The charts include experiments
(E) and numerics (N) taken from [76,107,108,110,113,122] and new experiments (x) from [114]. Hatched markings
denote measurement uncertainties. Modified and reprinted with permission from [114]. (© AIP Publishing.
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p (kgm™?)
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o (Nm_l)

6 (°C)

Inclination angle of the channel

Inclination angle of the lasers used for the
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Dynamic viscosity

Wavelength of the traveling free surface
wave

Kinematic viscosity

Liquid density
Particle density
Surface tension
Temperature
Topography steepness
Grade of dispersity
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Amplitude of the traveling free surface
wave
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Paddle amplitude; excitation amplitude
Exponential growth rate of linear waves
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at the positions z; and x-

page list

46-48, 50-53, 56-60,
62-72, 74-84, 87-91,
97, 98, 100, 102,
104-106, 112

54

45, 47
54, 56

45, 46, 48, 62-67, T2
74-79, 82, 84, 97-100,
102, 104-106, 112
45-47, 90

47

45, 46, 90

45, 46, 114

79

47

47, 50-53, 56, 58,
62-84, 87-91, 97, 98,
100, 102-106, 112
54-56, 66, 80-84, 87

51, 69-72
51, 69-72

54, 82-84

55, 56, 64, 66, 76, 98,
100

55

95

46, 48
55

55, 56

107



List of Symbols

symbol (unit) description

Ab (m~1)
D

dy (m)
do (m)
dr, (m)

dp (m)
dy 16 (m)

dy 50 (m)
dy g4 (m)

dy,; (m)
f s
S (57
fo (m)

Flat
g (ms™?)

108

Step width of the exponential growth rate
of linear waves

Deviation from the maximum value of the
cross-correlation function K

Inflow distance

Outflow distance

Distance between the lasers 1 and 2 in the
stability measurements

Particle diameter

Particle size, which is greater than or
equal to 16% of all particles

Median particle size

Particle size, which is greater than or
equal to 84% of all particles

Particle size, which is greater than or
equal to j% of all particles

Unity vector in z-direction

Paddle frequency; excitation frequency

Frequency

Lower boundary of the steady-state
flowing domain

Flat topography shape

Gravitational acceleration
Time-dependent local film thickness
Local film thickness of the steady-state
flow; upper boundary of the steady-state
flowing domain

Mean film thickness

Inflow height

Nusselt film thickness

Outflow height

Cross-correlation function

Kapitza number

Ratio of the travelling wave’s free surface
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Fourier transformed laser spot position of
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Si
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