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Summary

Electronic transport properties of iron alloys under extreme conditions are critical
parameters for the generation of magnetic fields in terrestrial planets, and thus of great
importance for their evolution and habitability. Like many other material properties,
electrical resistivity is closely related to the atomic and electronic structure of the
material, both of which change with pressure and temperature. This thesis includes
three studies on the relationship between structural properties and electrical resistivity
of iron alloys at conditions of planetary cores.

In the first part of the thesis, we use density functional theory based molecular dynam-
ics simulations in combination with the Kubo-Greenwood formalism to self-consistently
determine atomic structure and electrical resistivity of potential core forming liquid
iron alloys, with several weight per cent of silicon, oxygen and sulfur. We observe that
with increasing compression and light element concentration, the temperature coeffi-
cient of resistivity decreases (for all alloys considered), eventually vanishes (Fe-Si) and
even changes sign (Fe-S). By analyzing optical conductivity using a Drude model, we
show that the electron mean free path approaches the interatomic distance, causing
resistivity to saturate due to a combined effect of temperature, compression and chemi-
cal composition. Differences in the degree of saturation between the different alloys are
explained by structural observations. In contrast to the interstitial-like incorporation
of oxygen, silicon randomly substitutes for iron atoms in the liquid. While the addition
of oxygen only marginally shortens the mean free path, silicon does so more efficiently
due to its larger scattering cross section. Since the covalent component of bonding
between sulfur and iron has been shown to strengthen under pressure, Fe-S alloys ex-
hibit an effective mutual repulsion of sulfur atoms, resulting in high coordination with
iron atoms. This leads to an even distribution of impurity atoms in the liquid with
less overlap of impurity scattering cross-sections, causing resistivity to saturate more
efficiently. A consequence of the saturation limit is the observation of a secondary
electronic effect that leads to a negative temperature coefficient of resistivity for high
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compression and sulfur concentration. In agreement with Mott’s theory, we find that
thermal broadening and the associated decrease of the d-electron density of states at
the Fermi level leads to a decreasing resistivity with increasing temperature.

Based on this analysis, we conclude that resistivity in the Earth’s core cannot exceed
100 µΩcm, largely independent of temperature. The evolution of a dynamo is therefore
only determined by the boundary conditions changed by a growing inner core and not
by a variation of the conductivity profile.

In the second part of the thesis, we describe the resistivity discontinuity of iron along
the melting curve, representative for potential inner core boundaries of terrestrial plan-
ets. Based on Ziman’s theory in the long-wavelength approximation, we derive an ex-
pression for the resistivity ratio of a coexisting solid and liquid phase of a metal at the
melting point, which only depends on the corresponding density and compressibility
ratios. Good agreement of the theory with experimental data for iron, cobalt and nickel
at ambient pressure provides the basis for assuming the validity of this expression at
high pressure. By using a thermodynamic model for density and compressibility and
a resistivity model for liquid iron based on first-principles computations, we calculate
electrical resistivity of solid iron along the melting curve. We find our model to be
in good agreement with studies using static and dynamic compression experiments at
conditions of the Earth’s core-mantle boundary and first principles computations at
conditions of the inner core boundary.

For pure iron, the resistivity discontinuity at pressures of the Earth’s inner core bound-
ary is found to be negligible, and only extreme differences in the chemical composition
between outer and inner core would be able to cause a considerable difference in resis-
tivity. Since silicon and sulfur—the elements with the largest influence on resistivity—
nearly equally partition between the Earth’s inner and outer core, this scenario is
highly unlikely.
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Zusammenfassung

Elektronische Transporteigenschaften von Eisenlegierungen unter extremen Bedingun-
gen gehen als kritische Parameter in die Erzeugung von Magnetfeldern terrestrischer
Planeten ein und sind deshalb von großer Wichtigkeit für deren Entwicklung und Be-
wohnbarkeit. Wie auch viele andere Materialeigenschaften hängt der spezifische elek-
trische Widerstand eng mit der atomaren und elektronischen Struktur des Materials
zusammen, welche sich mit Druck und Temperatur ändern. Die vorliegende kumula-
tive Dissertation enthält drei veröffentlichte Manuskripte, die die Zusammenhänge von
Struktureigenschaften mit dem spezifischen Widerstand von Eisenlegierungen unter
Bedingungen planetarer Kerne beschreiben.

Im ersten Teil der Dissertation benutzen wir Dichtefunktionaltheorie-basierte Moleku-
lardynamiksimulationen in Kombination mit dem Kubo-Greenwood Formalismus, um
auf selbstkonsistente Weise die atomare Struktur und den spezifischen Widerstand
von potentiell kernformenden, flüssigen Eisenlegierungen mit Silizium, Sauerstoff und
Schwefel zu bestimmen. Wir beobachten, dass der Temperaturkoeffizient des spezi-
fischen Widerstands mit zunehmender Kompression und Konzentration leichter Ele-
mente abnimmt (für alle untersuchten Legierungen) und schließlich verschwindet (Fe-
Si), oder sogar das Vorzeichen wechselt (Fe-S). Durch die Analyse der optischen Leit-
fähigkeit mit Hilfe eines Drude-Modells zeigen wir, dass sich die mittlere freie Elek-
tronenweglänge dem interatomaren Abstand annähert, was eine Sättigung des spezi-
fischen Widerstands aufgrund eines kombinierten Effekts von Temperatur, Kompres-
sion und chemischer Zusammensetzung zur Folge hat. Unterschiede im Sättigungs-
grad der einzelnen Legierungen werden mit Hilfe von strukturellen Beobachtungen
erklärt: Im Gegensatz zu der Zwischengitterplatz-ähnlichen Eingliederung von Sauer-
stoff ersetzt Silizium auf zufällige Weise Eisenatome in der Flüssigkeit. Während bei
Zugabe von Sauerstoff die mittlere freie Weglänge nur unwesentlich verkürzt wird,
ist Silizium aufgrund seines größeren Streuquerschnitts dabei effizienter. Da gezeigt
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wurde, dass der kovalente Bindungsanteil zwischen Schwefel und Eisen unter dem Ein-
fluss von Druck verstärkt wird, zeigen Fe-S-Legierungen eine effektive gegenseitige Ab-
stoßung von Schwefelatomen, was zu einer hohen Koordination mit Eisenatomen führt.
Das wiederum führt zu einer gleichmäßigen Verteilung der Fremdatome mit gerin-
gerem Überlapp der entsprechenden Streuquerschnitte und damit zu einer effektiveren
Widerstandssättigung. Aufgrund der erreichten Sättigung können wir einen elektro-
nischen Effekt höherer Ordnung beobachten, der bei hoher Kompression und Schwe-
felkonzentration zu einem negativen Temperaturkoeffizienten des spezifischen Wider-
stands führt. In Übereinstimmung mit Motts Theorie stellen wir fest, dass thermische
Verbreiterung und die damit einhergehende Abnahme der d-Elektronenzustansdichte
an der Fermikante zu einem abnehmenden Widerstand bei steigender Temperatur
führt.

Wir schlussfolgern aufgrund dieser Untersuchungen, dass der spezifische Widerstand im
Erdkern 100 µΩcm nicht überschreiten kann und weitgehend temperaturunabhängig
ist. Die Entwicklung eines Dynamos ist daher nur durch die Randbedingungen be-
stimmt, die sich durch das Wachstum eines inneren Kerns ändern, jedoch nicht durch
ein sich änderndes Leitfähigkeitsprofil.

Im zweiten Teil der Dissertation beschreiben wir die Diskontinuität des spezifischen
Widerstands von Eisen entlang der Schmelzkurve, stellvertretend für potentielle in-
nere Kerngrenzen terrestrischer Planeten. Basierend auf Zimans Theorie im Grenz-
fall langer Wellenlängen leiten wir einen Ausdruck für das Widerstandsverhältnis von
koexistierenden flüssigen und festen Phasen eines Metalls am Schmelzpunkt her, der
nur von den dazugehörigen Dichte- und Kompressibilitätsverhältnissen abhängt. Eine
gute Übereinstimmung der Theorie mit experimentellen Daten für Eisen, Kobalt und
Nickel bei Normaldruck ist die Grundlage für die Annahme, dass dieser Ausdruck
seine Gültigkeit auch bei hohem Druck behält. Mit Hilfe eines thermodynamischen
Modells für Dichte und Kompressibilität, sowie einem Widerstandsmodell für flüssiges
Eisen, das auf Kubo-Greenwood-Simulationen beruht, berechnen wir den spezifischen
Widerstand von festem Eisen entlang der Schmelzkurve. Wir stellen fest, dass unser
Modell gut mit statischen und dynamischen Kompressionsexperimenten unter Bedin-
gungen der Kern-Mantel-Grenze, sowie mit Simulationsergebnissen unter Bedingungen
der inneren Kerngrenze der Erde übereinstimmt.

Im Falle von reinem Eisen wird die Diskontinuität an der inneren Kerngrenze ver-
nachlässigbar; nur extreme Unterschiede in der chemischen Zusammensetzung zwi-
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schen äußerem und innerem Erdkern könnten bedeutende Unterschiede im spezifischen
Widerstand zur Folge haben. Da Silizium und Schwefel—die Elemente, die den Wider-
stand am meisten beeinflussen—einen nahezu identischen Verteilungskoeffizienten im
inneren und äußeren Erdkern aufweisen, ist dieses Szenario höchst unwahrscheinlich.
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1 Geophysical motivation

While the protoplanetary disk in the early history of the solar system was cooling
down, higher temperature condensates like silicates and metals coagulated and formed
the building blocks for terrestrial planets. Through accretion, they increased in size
and mass to form planetesimals and planetary embryos [Wetherill, 1990], until large
scale melting due to ongoing impacts, self-compression and radioactive decay allowed
droplets of molten metal to segregate from the less dense silicates and form a core
[Rubie et al., 2007]. Iron meteorites are regarded as samples of such core material and
mainly consist of an iron-nickel alloy [Buchwald, 1975].

Seismic observations reveal a shadow zone for shear wave propagation in the Earth’s
interior, indicating a core radius of ∼3500 km, which is—at least partly—in a liquid
state [Gutenberg, 1914]. Although an inner core with a radius of ∼1200 km has
been discovered more than 80 years ago by the observation of a seismic discontinuity
[Lehmann, 1936], multiply converted shear waves from the inner core unambiguously
showed that it is indeed in a solid state much later [Deuss et al., 2000]. In order to
match observed densities and seismic velocities in the core, the presence of several
weight per cent lighter elements is required in addition to iron and nickel [Birch, 1952].
At least one light element has to favor partitioning into the liquid over the solid, as
suggested by the disproportionately high density jump at the inner core boundary
[Shearer and Masters, 1990], that cannot solely be explained by the liquid-solid phase
transition.

Estimates for approximate proportions of light elements have been based on simultane-
ously matching density and acoustic velocity from laboratory experiments to seismic
reference models and, equally important, satisfying cosmochemical constraints [Mc-
Donough, 2003, Badro et al., 2015]. As those elements became enriched in the metal
during or after core formation, they must be abundant and/or siderophile at the pres-
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1 Geophysical motivation

sure and temperature conditions during differentiation and the present day core-mantle
boundary.

Silicon is both sufficiently abundant and soluble in iron at both low and high pressures.
Requiring reducing conditions during accretion, it is compatible with early core for-
mation [Poirier, 1994] and therefore one of the most likely major light elements in the
Earth’s core. Sulfur is both cosmochemically abundant and siderophile, and is found
in iron meteorites at high concentrations [Chabot, 2004]. The bulk Earth, however, is
depleted in sulfur compared to CI carbonaceous chondrites, which best represent the
solar abundances of moderately volatile elements [Dreibus and Palme, 1996]. While
estimates for the sulfur content in the Earth’s core based on this depletion fall below
2 wt.% [Dreibus and Palme, 1996], other terrestrial bodies like Mercury [Rivoldini
et al., 2009], Mars [Lodders and Fegley, 1997] and Ganymede [Rückriemen et al., 2015]
are expected to accommodate substantially more sulfur in their cores. Although low-
ering the overall density when alloying with iron, silicon and sulfur cannot account
for the higher density deficit in the outer core, as they have been shown to almost
equally partition between liquid and solid iron at inner core boundary conditions [Alfè
et al., 2002]. Since oxygen is hardly soluble in iron at low pressure, it is assumed to
have entered the core when the Earth had reached a considerable size, possibly by
reaction with the mantle [Poirier, 1994]. The presence of oxygen would explain the
larger density deficit of the outer core, due to its preferred partitioning into the liquid
[Alfè et al., 2002]. A ternary iron alloy with silicon and oxygen could satisfy both
seismological and geochemical constraints [Badro et al., 2015], and is consistent with
the experimental observation of increasing mutual solubility of Si and O in iron with
pressure [Tsuno et al., 2013].

Although experiments show the formation of iron hydrides [Fukai and Akimoto, 1983]
and carbides [Scott et al., 2001], hydrogen and carbon are too volatile to build up
in large amounts in the Earth’s core [McDonough, 2003]. Based on an extrapolation
of the volatility trend, their concentration in the core is likely below 0.2 %, which is
smaller by one to two orders of magnitude than the major candidates described in the
previous paragraph.

Physical properties of the core-forming alloys, like viscosity and electrical and thermal
conductivity have a strong influence on possibly active dynamos in terrestrial planets.
The Earth’s magnetic field is generated by a convection-driven magneto-hydrodynamic
(MHD) dynamo, converting the kinetic energy of a vortex pattern in the outer core
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into magnetic energy [Merrill et al., 1996]. Space missions revealed that also Mercury
and Ganymede exhibit an internally generated magnetic field [Ness, 1979, Kivelson
et al., 2002], and large remanence fields indicate that Mars must have had an active
dynamo, before it disappeared due to thermal death about four billion years ago [Weiss
et al., 2002]. A magnetic field is vital for the habitability of a planet, as it prevents
atmospheric erosion and protects the surface from highly energetic particles of the solar
wind [Lammer et al., 2009].

The balance of generation and dissipation of a magnetic field H in the context of MHD
dynamos, and in the presence of an external magnetic field Hext, is described by the
induction equation

∂H
∂t

= ρel
µ

∆H +∇× [v× (H + Hext)] . (1.1)

If the vorticity of the Lorentz force in a convecting fluid with velocity field v (pro-
portional to the second term on the right hand side of Equation 1.1) vanishes, the
magnetic field obeys a law of free diffusion (∝ ∆H), at a rate determined by electrical
resistivity ρel and magnetic permeability µ.

In that sense, electronic transport properties of core material is crucial for the evolution
of a planet. Since electrical resistivity determines the dissipation rate of the magnetic
field, it sets the timescale for the decay of a magnetic dipole and a lower limit for
the fluid velocity required for the generation of a magnetic field [Davies et al., 2015].
Thermal conductivity, generally related to electrical resistivity by the Wiedemann-
Franz law, determines the heat flux along the core adiabat and the thermal gradient
across the dynamo-active region, driving the convection necessary for a MHD dynamo
to emerge from Equation (1.1). Several computational and experimental studies of
recent years found high conductivity values of iron alloys at conditions of the Earth’s
core [de Koker et al., 2012, Pozzo et al., 2012, 2013, Gomi et al., 2013, Seagle et al.,
2013]. This has severe consequences for the energy budget of the dynamo, leading to the
conclusion that the Earth’s magnetic field cannot be generated by a purely thermally
driven dynamo. Instead, the buoyancy of exsolved light elements upon freezing of the
inner core is required for driving thermo-chemical convection and explains the present
day magnetic field [Olson, 2013].

A finite inner core resistivity has been found to have a stabilizing effect on the geody-
namo in simulations, decreasing the frequency of global field reversals [Dharmaraj and
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1 Geophysical motivation

Stanley, 2012]. Although these results are controversial [Wicht, 2002, Lhuillier et al.,
2013], electrical resistivity of the Earth’s inner core might be of some relevance for
a dynamo in terms of the magnetic boundary conditions during cooling of a planet.
Resistivity of solid iron differs from that of liquid iron at ambient [van Zytveld, 1980]
and low pressure [Secco and Schlössin, 1989], a discontinuity which has not yet been
rigorously investigated along the melting curve towards conditions of the Earth’s in-
ner core boundary. As the atomic structure influences electronic transport and the
stable phase of the Earth’s inner core is still under debate [e.g., Tateno et al., 2010,
Belonoshko et al., 2017], further research is required.

The scope of this thesis is to analyze structure-property relations for electrical resistiv-
ity of iron alloys at conditions of planetary cores, based on computations using density
functional theory. In the two following chapters, I give an overview over the methods
used and relevant aspects of their theoretical background (Chapter 2), and summarize
the published manuscripts on the topic (Chapter 3). The manuscript themselves are
included as Chapters 4–6.
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2 Methods and theoretical
background

2.1 Density functional theory based molecular
dynamics

The development of density functional theory (DFT) has been groundbreaking for
calculating physical properties of quantum many-particle systems. This mean-field
approach to electronic many-body interactions is based on the theorem of Hohenberg
and Kohn [1964], which states that

1. the total energy of an N -electron system is a unique functional of the electron
density n(r), and

2. that this functional takes a minimum (the ground state energy) if and only if
n(r) is the ground state density.

For determining the ground state energy, it is therefore not necessary to solve the
many body Schrödinger equation, but to find the density for which the total energy
becomes minimal. This is done by iteratively solving N single particle Schrödinger-like
equations, the Kohn-Sham equations (here in atomic units) [Kohn and Sham, 1965]:

(
−1

2∇
2 + veff(r)− εj

)
φj(r) = 0. (2.1)

In Equation (2.1), φj(r) are single particle Kohn-Sham wave functions, εj the corre-
sponding energy eigenvalues and

veff(r) = vext(r) +
∫ n(r′)
|r− r′|dr′ + vxc(r) (2.2)
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2 Methods

the effective potential acting on the electrons, decomposed in external potential vext(r)
(e.g., Coulomb field of the nuclei), the electrostatic interaction between electrons
(Hartree-term) and the exchange-correlation potential vxc(r). In DFT, the complexity
due to many body interactions is treated by making approximations to vxc(r). One
class of energy functionals uses the local spin density approximation (LSDA), where
vxc(r) depends on electron density at each point in space only and which, for example,
describes the energy of exchange and correlation by that of a homogeneous electron gas
of equal density. Although this approach has been applied very successfully for many
systems [Jones and Gunnarsson, 1989], taking density gradients into account generally
improves total and atomization energies [Perdew et al., 1993], and compensates for
overbinding in LSDA predictions of bond lengths [Ozolin, š and Körling, 1993, Stixrude
et al., 1994].

Starting from an arbitrary guess for n(r) (typically an overlap of atomic charge den-
sities), one can calculate veff(r), solve Equation (2.1) for εj and φj(r) and construct a
new density by summing over the probability density of all Kohn-Sham orbitals, i.e.,

n(r) =
N∑

j=1
|φj(r)|2 . (2.3)

This procedure is continued, until the total energy is minimal. Since we are interested
in physical properties of infinite systems (treated by finite simulation boxes with peri-
odic boundary conditions), plane waves provide a convenient choice for a basis set to
expand φj(r).

Once the electronic ground state for a configuration of atoms has been found, forces can
be computed using the Hellmann-Feynman theorem [Feynman, 1939], and the atoms
can be displaced according to Newton’s equations of motion. This can be used to per-
form molecular dynamics (MD) simulations in the Born-Oppenheimer approximation,
in which the timescales of the atomic and electronic sub-systems are separated.

For this work, we use the Vienna Ab-initio Simulation Package (VASP) [Kresse and
Hafner, 1993, Kresse and Furthmüller, 1996a,b] with pre-computed atomic data files
within the projector augmented wave (PAW) method [Kresse and Joubert, 1999] and
the PBE generalized gradient approximation [Perdew et al., 1996]. Cubic cells con-
taining 128 atoms have been set up at constant volumes V (covering a pressure range
between 0 and 360 GPa) based on liquid structures from previous studies. The oc-
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2.2 Structure of liquids

cupation of electronic states obeys the Fermi-Dirac statistics at a fixed temperature
T . We performed MD simulations in the N -V -T ensemble using the Nosé-thermostat
[Nosé, 1984] at a time step of 1 fs and discarded the first few ps to allow for equilibra-
tion of the system. Computational parameters have been optimized with respect to
performance and all necessary convergence tests have been performed. Non-vanishing
slopes of the mean square displacement (MSD)

MSD(t) =
〈
|ri(t)− ri(t0)|2

〉
(2.4)

from the MD trajectories, where ri(t) is the position of particle i at time step t and
〈.〉 the average over varying origin times t0 and particles, prove that the systems are
indeed in a liquid state.

2.2 Structure of liquids

The radial distribution function gαβ(r) describes the density variation of particles of
type α (%α) as a function of distance from a reference particle of type β and is defined
such that 4πr2%βgαβ(r)dr is equal to the number of α-particles in a spherical shell
between r and r+ dr around a β-particle. In a perfect crystal, gαβ(r) has sharp peaks,
corresponding to crystallographic sites and their respective coordination with atoms of
a certain species. Since every atom can be reached by a set of symmetry operations on
a reference atom of the same crystallographic site, particle density still varies at long
distance from the reference atom. This long range order remains essentially unchanged
by thermal vibrations of the crystal lattice, except for an observed peak broadening in
gαβ(r).

Liquid and amorphous solid structures are characterized by the absence of long-range
order, as illustrated in Figure 2.1. The pair distribution function is zero up to an ef-
fective hard-sphere radius, exhibits several maxima and minima of decaying amplitude
and approaches unity (the limit of an ideal gas) for large r. Although the distributions
of first and second nearest neighbor shells overlap, we define the first coordination
number of β- around α-particles as

Cαβ = 4π%β
rmin∫

0

r2gαβ(r)dr, (2.5)
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Figure 2.1: Illustration of the atomic short range order in a liquid (with first and second
coordination shell in blue and red respectively) and its relation to the radial
distribution function.
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2.2 Structure of liquids

where the upper integration limit is the first minimum of gαβ(r). The individual
distributions are asymmetric, allowing for several possible definitions of the interatomic
distance: While we use the first maximum (mode) of the distribution in Chapter 5,
we decided to change the definition in favor of the median between zero and the
first minimum (Chapter 4). This definition better represents a typical bond length
in the liquid and is more consistent with our definition of Cαβ from Equation (2.5).
In our studies, gαβ(r) was computed by post-processing and time-averaging over all
equilibrated DFT-MD frames.

Equivalent information in momentum space is provided by the static structure factor
S(q), which is related to g(r) (here without the subscript, representing the case of a
monoatomic liquid) by

S(q) = 1 + %
∫

V
e−iq·rg(r)dr, (2.6)

where q = k − k′ is the momentum change of a particle scattering off the structure,
as for example, in neutron scattering experiments. In the limit of small scattering
wavenumbers q = |k− k′| (or long wavelengths), the value of S(q) is related to ther-
modynamic properties by fluctuation theory [March, 1990]

lim
q→0

S(q) = %kBTβT , (2.7)

where kB is Boltzmann’s constant and βT isothermal compressibility. In the analysis of
diffraction experiments and computations, this value cannot be directly determined,
due to geometrical limitations of the experimental setup and the finite size of the
simulation cell.

An analytic expression for S(q) exists for a hard sphere liquid [Wertheim, 1963,
Ashcroft and Lekner, 1966] in the form

S(q) =


1 + 4π%σ3

1∫

0

ds s2 sin (sqσ)
sqσ

(
α + βs+ γs3

)




−1

, (2.8)
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Figure 2.2: Static structure factor of liquid iron at different fractions of V0 = 11.82 Å3/atom
and temperatures from molecular dynamics simulations (dots), with correspond-
ing hard sphere fits (lines).
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when using the Percus-Yevick closure relation [Percus and Yevick, 1958] to the
Ornstein-Zernicke equation [Ornstein and Zernike, 1914]. The parameters α, β and γ
are functions of the packing fraction η = (π/6)%σ3:

α = (1 + 2η)2 / (1− η)4 (2.9)
β = −6η (1 + η/2)2 / (1− η)4

γ = (1/2) (1 + 2η)2 / (1− η)4 .

With only two free parameters, namely density % and effective hard sphere radius σ,
this expression can be used to fit S(q) from experiments or from MD data in order to
extrapolate to the long wavelength limit (Figures 2.2 and S4 of Chapter 6).

Both g(r) and S(q) depend on pressure and temperature; peaks sharpen and shift
to smaller r/larger q with increasing compression and broaden under the influence of
temperature (Figure 2.2).

2.3 Electrical resistivity

2.3.1 Drude-Sommerfeld theory

In the absence of an external field, Drude’s theory [Drude, 1900a,b] describes valence
electrons in a metal to behave as free particles between collisions with rigid ions.
Scattering events due to a yet unspecified mechanism occur instantaneously and, after
an average time τ , randomize the momentum of the scattered particle (relaxation time
approximation). In the presence of an electric field E, the random motion characterized
by collisions is superimposed by a net momentum, resulting in a current density j.
Based on these assumptions, Ohm’s law is recovered for a direct current (DC):

j = σ0E, (2.10)

with the DC conductivity (the inverse of resistivity ρel)

σ0 = nee
2τ

me

(2.11)
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and e, ne and me charge, number density and mass of an electron respectively. For an
alternating current (AC), conductivity depends on frequency ω

σ(ω) = σ0

1− iωτ . (2.12)

The real part
<[σ(ω)] = σ0

1 + (ωτ)2 (2.13)

represents the in-phase current component, which is responsible for Joule heating and
therefore for the dissipation of the magnetic field in Equation (1.1).

By taking into account that electrons obey Fermi-Dirac statistics instead of Boltzmann
statistics from classical kinetic gas theory, Sommerfeld resolved many shortcomings of
Drude’s original theory [Sommerfeld, 1928], including the temperature dependence of
electronic heat capacity and the Wiedemann-Franz law

λρel = L0T . (2.14)

With the Lorenz number from Drude-Sommerfeld theory,

L0 = π2

3

(
kB
e

)2

≈ 2.44 · 10−8 WΩK−2, (2.15)

experimental observations of thermal conductivity λ could be explained [Ashcroft and
Mermin, 1976].

Another consequence of Fermi-Dirac occupation of electronic states is that only elec-
trons in a environment of kBT around the Fermi energy EF contribute to conduction
and move through the metal at the Fermi-velocity vF =

√
2EF/me. The mean free

path of an electron, which is defined as the average distance between collisions, is then
simply

x = vF τ . (2.16)

Despite its simplicity, the free electron model of metallic conduction has been suc-
cessfully describing metals at room temperature in many ways, e.g., by predicting the
Hall coefficient, magnetoresistance, electrical conductivity and its relation to thermal
conductivity via the Wiedemann-Franz law [Ashcroft and Mermin, 1976].
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Figure 2.3: Schematic illustration of the static structure factor with the range of the integral
in Equation (2.17) marked by the yellow area.

2.3.2 Ziman theory for resistivity of liquid metals

Using a so-called nearly free electron model, Ziman [1961] developed a theory for
resistivity of liquid metals. It includes a more detailed consideration of the scattering
mechanism and the structure of the liquid, both of which are included in the explicit
evaluation of the collision integral in Boltzmann’s semi-classical transport equation.

The collision integral, which describes the changing rate of the distribution function
due to scattering, depends on the transition probability of an electronic state k to a
state k′ during a scattering event at an atomic potential U(q) and the spatial distri-
bution of scattering centers, represented by the static structure factor S(q). In the
relaxation time approximation, the collision integral is proportional to τ−1, which can
be substituted in Equation (2.11) to obtain

ρel = a0~
e2

4π3Z

a0kF

1
(2kF )4

2kF∫

0

S(q)|U(q)|2q3dq, (2.17)

where a0~/e2 ≈ 21.74 µΩcm is the atomic unit of resistivity, Z the number of valence
electrons, a0 the Bohr radius and kF the Fermi wavenumber.

This approach has successfully predicted the resistivity of simple liquid metals
[Ashcroft and Lekner, 1966] using model potentials for U(q) [Heine and Abarenkov,
1963, Abarenkov and Heine, 1965, Ashcroft, 1966], and explained the concentration
dependence of binary liquid alloys [Faber and Ziman, 1965] and the temperature coef-
ficient of resistivity (TCR) of liquid divalent metals [Güntherodt et al., 1976].
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The integrand in Equation (2.17) is weighted strongly towards the upper integration
limit ∝ q3, accounting for the fact that backscattered electrons (kF → −kF ) contribute
most to total resistivity. Therefore the valence is expected to determine the resistivity
value (Figure 2.3). Since peaks of S(q) broaden with temperature, the amplitude of
S(q) decreases at 2kF for divalent metals and explains the experimentally observed
negative TCR for e.g., Eu, Yb and Ba [Güntherodt et al., 1976].

However, the integral also depends on the relative positions of peaks of S(q), nodes
of U(q) and the value of 2kF . The sensitivity with respect to the choice of model
potentials, the change of 2kF with density and the complex electronic structure of
iron, not accounted for by the theory in this simple form, does not permit a reliable
determination of absolute resistivity values for our geophysical purposes. Efforts to
replace local model potentials U(q) by the T -matrix using a muffin-tin model were
more successful in describing resistivity of transition metals [Evans et al., 1971]. This
has also been applied for iron at conditions of the Earth’s core [Jain and Evans, 1971],
yielding resistivity values which are larger by ∼50% compared to the Kubo-Greenwood
results by de Koker et al. [2012].

Since predicting absolute resistivity values for iron alloys at high pressure/temperature
conditions is problematic within the basic theory, we investigate its applicability on
relative values at the solid-liquid phase transition. Ziman [1961] proposed that, as
a first order approximation, the integral in Equation (2.17) is proportional to S(0),
which is related to % and βT by Equation (2.7). By taking the ratio of resistivity in
the liquid and solid state at the melting point (Tm) and accounting for the density
dependence of kF by a free electron model, the following simple expression holds (for
derivation, see Chapter 6):

ρliquidel
ρsolidel

' βliquid
T

βsolid
T

(
%liquid

%solid

)−2

. (2.18)

2.3.3 Transport within density functional theory

In the Kubo-Greenwood theory [Kubo, 1957, Greenwood, 1958], electrical conductivity
is derived from the first-order response of the density matrix to an electric field. Using
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2.3 Electrical resistivity

the reformulation by Chester and Thellung [1959], it is possible to calculate σ(ω)
explicitly within DFT by

σ(ω) = ~e2

Vcell

∑

k′,k

[f(εk′)− f(εk)]δ(εk′ − εk − ~ω)〈ψk|v̂|ψk′〉〈ψk′|v̂|ψk〉, (2.19)

where ψk and ψk′ label electronic states with eigenvalues εk and εk′ , ~ denotes the
reduced Planck constant, Vcell the cell volume, v̂ = 1/~ · ∂H/∂k the velocity operator
with Hamiltonian H and µe the electronic chemical potential. Although electron-
electron scattering and dynamical screening are neglected by the approach, using Kohn-
Sham orbitals in Equation (2.19) yields the exact short-time dynamics in the semi-
classical limit [Dufty et al., 2018].

As simulation cells in DFT-MD simulations are comparatively small and a momentary
set of atomic coordinates can have a large impact on the electronic ground state, one
needs to sample representative configurations of the system. In order to ensure that
such snapshots are uncorrelated, we perform long DFT-MD runs and choose them
separated by time periods longer than the decay time of the velocity autocorrelation
function. Kohn-Sham wave functions ψk, their eigenvalues εk and the Cartesian gra-
dients of the Hamiltonian with respect to a shift in wave-vector ∂H/∂k are computed
using the Abinit software package [Gonze, 1997, Gonze et al., 2009, Torrent et al.,
2008]. Equation (2.19) is implemented in the conducti module for Abinit [Recoules
and Crocombette, 2005] and evaluated for each snapshot.

An average over σ(ω) from Equation (2.19) and independent snapshots are well repre-
sented by the Drude model (Equation 2.13), which is used for extrapolating to the DC
conductivity limit σ0 and to determine the relaxation time τ of the system (Figures
2.4 and S1 in Chapter 5).

2.3.4 Resistivity saturation in iron alloys

The Fermi level intersects both the 3d- and the 4s-band of iron, which strongly influ-
ences electronic transport. Due to the difference in effective mass, the Fermi velocity
is much lower in the d-band and therefore most of the current is transported by s-
electrons. Electronic transitions from s- into d-states can be induced by scattering
with phonons and are the reason for the high resistivity of transition metals [Mott,
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1972]: d-electrons have a high density of states at the Fermi level Nd(EF ) (Figure 2.5),
leading to a high probability for s-d-scattering according to Fermi’s golden rule, and

ρ ∝ Nd(EF ), (2.20)

as already considered by Stacey and Loper [2007] for resistivity models of iron at core
conditions.

The effective mean free path is already short in highly resistive transition metals, and
is expected to further decrease with the addition of impurities and compression. The
presence of impurity atoms, such as the predominant light elements in the Earth’s core
Si, S and O, introduces an additional scattering mechanism, while compression merely
increases the density of scattering centers.

If one assumes that electrons can only be scattered by phonons/ions, this trend can
only continue down to the typical interatomic spacing in the system [Ioffe and Regel,
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1960, Gunnarsson et al., 2003], causing resistivity to saturate. This concept has been
well-established in the solid state physics community [e.g., Mooij, 1973] and recently
adopted in resistivity models in the context of planetary cores [Gomi et al., 2013,
2016, Ohta et al., 2016]. As a consequence, the applicability of Matthiessen’s rule for
impurity resistivity and the Wiedemann-Franz law have been questioned.
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3 Synopsis and scope of the thesis

Until a few years ago, the accurate determination of electrical resistivity at elevated
pressure (P ) had been limited to conditions accessible with the large volume press
[Secco and Schlössin, 1989] or along the shock Hugoniot [Keeler, 1971, Matassov, 1977].
Recent years have seen substantial technological advances in the field of high pressure
research, both in experiments and computations: Resistivity calculations for liquids
within the DFT-MD framework require large supercells containing >100 atoms, which
has routinely become feasible using state-of-the-art supercomputers, and theoretical
and algorithmic developments [Burke, 2012, Beck, 2000, Román-Pérez and Soler, 2009].
The first of those studies on electrical and thermal conductivity of liquid iron alloys
predicted values much higher than previously assumed at conditions of the Earth’s
core, challenging the traditional view of a purely thermally driven dynamo. While first
principle studies consistently find thermal conductivity values above 140 Wm−1K−1 de-
pending on the composition [de Koker et al., 2012, Pozzo et al., 2012, 2013], traditional
theoretical estimates, based on a pressure-dependent model for electrical resistivity and
the Wiedemann-Franz law, yielded less than half of those values [Stacey and Ander-
son, 2001, Stacey and Loper, 2007]. Static compression at similar conditions can only
be generated in a diamond anvil cell (DAC), with the sample size restricted to a few
tens to a hundred microns. Although novel sample preparation techniques have made
static resistivity measurements feasible up to the megabar regime [Gomi et al., 2013,
Seagle et al., 2013], heating above the melting temperature of iron remains extremely
challenging in high P experiments and there are only few data on liquids. Some recent
studies have attributed the high electrical conductivity to resistivity saturation, and
used the concept for extrapolating DAC experiments to high T , where they found val-
ues consistent with the predictions by first principles computations [Gomi et al., 2013,
Seagle et al., 2013, Ohta et al., 2016].

As the spatial arrangement of atomic scattering potentials in a liquid is closely re-
lated to electrical resistivity [Ziman, 1961] (see Section 2.3.2), knowledge of the struc-
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3 Synopsis

ture can provide some insight into electronic transport properties. Radial distribution
functions g(r) and structure factors S(q) are easily accessible by post-processing of
DFT-MD trajectories. Even for cells containing ∼100 atoms, this does not require
very long simulation time (Section 2.1): About 1000 MD steps yield sufficiently good
statistics for smooth histograms. If adequate pair potentials are used1, the compara-
tively unlimited cell size in classical MD may open new perspectives for understanding
the structure of multi-component alloys, even at extreme conditions. Time-resolved
information on atomistic mechanisms and structural properties is beyond the reach of
traditional experimental diffraction methods and can only be provided by free electron
laser facilities with sub-nanometer resolution, such as the European XFEL in Hamburg
[Tschentscher et al., 2017].

The aim of the work presented in this thesis is to use DFT-MD results and theo-
retical considerations to investigate the relationship between electrical resistivity and
structure of iron alloys at planetary core conditions. We examine the effect of the geo-
physically relevant light elements Si, O and S (Section 3.1) on electrical resistivity and
explicitly show for the first time that the Ioffe-Regel condition for resistivity saturation
(Section 2.3.4) is satisfied for high concentrations of Si and S at high P and T . In the
saturation limit, Fe-S alloys exhibit a unique decrease of resistivity with temperature,
which we explain in terms of the electronic structure (Section 3.2). Finally, we quan-
tify the resistivity discontinuity of iron upon melting and infer resistivity of solid iron
along the melting curve (Section 3.3).

1As part of a side project, I fitted forces from DFT-MD snapshots of one P/T condition in order
to generate pair potentials within the embedded-atom-method, to be used in the force field code
LAMMPS. S(q) at very different P/T conditions were reproduced very well by corresponding
simulations performed in LAMMPS, with up to 106 atoms. In addition to computational efficiency
and better statistics, the more accurate representation of the long wavelength limit of S(q) is one
of the major benefits.
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3.1 Resistivity saturation

3.1 Resistivity saturation in liquid
iron–light-element-alloys

This section summarizes the following published paper included in Appendix 4:

F. Wagle, G. Steinle-Neumann & N. de Koker (2018), Resistivity saturation in liquid
iron–light-element-alloys at conditions of planetary cores from first principles compu-
tations, C. R. Geosci. (in press).

I analyzed previously published DFT-MD trajectories and resistivity results with re-
spect to structure-property relations for resistivity, and wrote a first draft of the
manuscript.

This work is based on published results for electrical resistivity in liquid Fe, Fe-Si, Fe-O
[de Koker et al., 2012] and Fe-S [Wagle et al., 2018] alloys. It provides an overview
over these results, explores their relation to structural properties of the binary liquid
alloys studied and puts them into a geophysical context.

With the addition of impurities to a metal, resistivity generally increases. They serve
as an additional source of electron scattering, which reduces the electron mean free
path as a function of their concentration. Although impurity resistivities are additive
in many cases (Matthiessen’s rule, see Section 2.3.4), this behavior has been shown to
break down if the system is close to saturation [Gomi et al., 2016].

While pure iron and Fe-O alloys retain a positive temperature coefficient of resistivity
(TCR) in the compression range studied, alloys with high concentrations of silicon
or sulfur exhibit constant resistivity, or even a negative TCR at high compression
(Figure 3.1). The decrease of the TCR is a consequence of resistivity saturation due
to compression and increasing impurity concentration, which we show by explicitly
calculating the electron mean free path (Section 2.3.1) and comparing it to the mean
interatomic distance. For Fe3S and Fe3Si at the highest compression, the mean free
path becomes equal to the interatomic distance, known as the Ioffe-Regel limit [Ioffe
and Regel, 1960]. This indicates a state of saturation, in which increasing T does not
lead to higher resistivity. The origin of the negative TCR observed in Fe-S alloys has
been explained in a separate paper (Section 3.2).
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Figure 3.1: Electrical resistivity of liquid iron and various binary iron alloys as a function of
temperature along isochores. The resistivity model fit for ρ(V, T ) (Equation 3.1)
is shown by dashed lines.

The spatial arrangement of atoms is crucial for electronic transport properties and
differs significantly between the liquid alloys studied:

• Based on the evaluation of nearest-neighbor peaks in gαβ(r), interaction radii of
silicon and iron are very similar. Silicon therefore incorporates well into the liquid
structure, randomly substituting for iron atoms. Fe-Fe and Fe-Si coordination
numbers equally increase slightly with compression.

• Sulfur has a slightly smaller interaction radius than iron and exhibits interstitial-
like incorporation at low P . Fe-S bonds have been shown to strengthen with
increasing P [Alfè and Gillan, 1998], which results in an increasing Fe-S coor-
dination number. This can be observed directly by the virtual absence of a
nearest-neighbor peak in gSS(r) at high compression, indicating an effective S-S
repulsion.

• Oxygen has a much smaller interaction radius than iron. The low Fe-O coor-
dination number shows that oxygen occupies interstitial-like sites in liquid iron
and it increases slightly with P . Oxygen incorporation remains interstitial even
at pressures of the Earth’s inner core.
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Resistivity saturation is more efficiently triggered by silicon and sulfur than by oxygen
(Figure 3.2), consistent with the classical theory of electron scattering: Impurity atoms
with large cross-sections lead to a high scattering probability and to a shorter mean
free path than smaller atoms. A possible reason why the negative TCR—and the high
degree of saturation necessary for its observation—occurs only in the Fe-S system, is a
smaller overlap of impurity scattering cross sections due to the effective S-S repulsion.

We conclude that saturation is a dominant effect at high P , limiting resistivity to
∼100 µΩcm at conditions of the Earth’s core. Resistivity profiles along adiabats are
independent of T and the evolution of a planetary dynamo is therefore not influenced
by the resistivity profile changing over time.
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3.2 Negative temperature coefficient of resistivity in
liquid iron–sulfur alloys

This section summarizes the following published paper included in Chapter 5:

F. Wagle, G. Steinle-Neumann & N. de Koker (2018), Saturation and negative tem-
perature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities
from first principles calculations, Phys. Rev. B 97, 094307.

I performed DFT-MD and linear response calculations at conditions previously not
investigated, analyzed the results in terms of transport properties, electron mean free
path and density of states, developed the resistivity model and wrote a first draft of the
manuscript.

Focus of this work is to investigate the influence of sulfur on electronic transport
properties of liquid iron, describe saturation mechanisms of electrical resistivity based
on first principles computations, and identify the reason for the negative TCR described
in Section 3.1.

Using DFT-MD over a wide P -T range, we produce representative configurations of
liquid Fe-S alloys and calculate electrical resistivity and thermal conductivity with the
Kubo-Greenwood formula. By fitting optical conductivity from the Kubo-Greenwood
results, we explicitly calculate an average electron mean free path for all P/T con-
ditions. The mean free path decreases with increasing T , compression and sulfur
concentration and asymptotically approaches the interatomic distance (Figure 3.2). In
the case of pure electron-ion scattering, this sets a lower boundary for the electron
mean free path, and is referred to as the Ioffe-Regel condition as discussed in Section
3.1.

In order to understand the complexity of resistivity behavior shown in Figure 3.1, one
has to consider the electronic structure of iron and its alloys (see Section 2.3.4). Most
of the electric current in 3d transition metals is carried by s-electrons. As d-electrons
have a high density of states (DOS) at the Fermi level and a comparatively low Fermi
velocity, resistivity is dominated by s-d scattering. Fermi’s golden rule implies that
resistivity is proportional to the d-electron density of states at the Fermi level [Mott,
1972], giving rise to two effects:
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• The d-DOS at the Fermi level drops substantially with increasing compression
(Figure 3.3a). This effect of band dispersion due to stronger interactions between
atoms is well known [Cohen et al., 1997], resulting in the observed resistivity
decrease in iron alloys upon compression.

• Broadening of the DOS with increasing T (Figure 3.3b) is less pronounced and
reflects dynamic changes of the short range order in the liquid. A larger amount
of thermal energy in the system allows for shorter interatomic distances, that are
also expressed by thermal pressure [Hunt et al., 2003]. As a consequence of the
corresponding decrease of Nd(EF ), resistivity decreases with increasing T . Since
this is a secondary effect in comparison to the increase of vibrational amplitudes
with T , the negative TCR is only noticeable once resistivity has saturated.
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Figure 3.3: (a) Broadening of site- and angular momentum-projected electron densities of
states for Fe3S at 4000 K with decreasing cell volume. (b) Broadening of site-
and angular momentum-projected electron densities of states with increasing T
(4000 K and 8000 K) for Fe3S at a cell volume of 7.09 Å3/atom.
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3.2 Negative temperature coefficient of resistivity

These observations lead us to revise the Bloch-Grüneisen-based resistivity model of
de Koker et al. [2012] in order to account for both saturation and the negative TCR
explicitly. We describe the resistivity behavior ρ(V, T ) by a parallel resistor model:

1
ρ(V, T ) = 1

ρBG(V, T ) + 1
ρsat(V ) + 1

ρel(T ) , (3.1)

where
ρBG = ρ0

(
V

V0

)a
+ ρ1

(
V

V0

)b T
T0

(3.2)

is the empirical expression used by de Koker et al. [2012] based on the Bloch-Grüneisen
formula.

ρsat = c
(
V

V0

) 1
3

(3.3)

is a term accounting for resistivity saturation proportional to the interatomic distance
and

ρel = d
T0

T
(3.4)

describes the effect of thermal broadening of the DOS proportional to inverse temper-
ature.

By transforming our results into P/T -space using an equation-of-state-fit for our MD
results [de Koker and Stixrude, 2009, Vlček et al., 2012], we find that resistivity satu-
rates at approximately constant 100 µΩcm across the Earth’s entire OC (Figure 3.4).
This is substantially higher than extrapolated estimates by Suehiro et al. [2017], based
on ambient T experiments on the ternary Fe-Si-S system. Using Matthiessen’s rule
and previous experimental results for the Fe-Si system [Gomi et al., 2013, 2016], they
find impurity resistivity of sulfur to be significantly less than that of silicon, contrarily
to our results. This discrepancy might stem from the violation of Matthiessen’s rule
in the limit of resistivity saturation [Gomi et al., 2016].
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Figure 3.4: Electrical resistivity of liquid Fe–S alloys as a function of pressure for Fe7S (top)
and Fe3S (bottom). Solid lines are best fits of a parallel resistor model to ρ(V, T )
(equation 3.1) converted from V -T to P -T conditions using an equation of state
fit. Results from an experimental study [Suehiro et al., 2017] along a model
areotherm (red line) and geotherm (blue line) as well as computational results
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included for comparison.
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3.3 Resistivity of solid iron at inner core boundary
conditions

This section summarizes the following published paper included in Chapter 6:

F. Wagle & G. Steinle-Neumann (2018), Resistivity discontinuity of iron along the
melting curve, Geophys. J. Int. 213, 237–243.

I compiled experimental data, reformulated Ziman’s approximation to account for the
density dependence, and wrote a first draft of the manuscript.

As a consequence of the transition from a crystalline to an amorphous structure, elec-
trical resistivity of metals generally increases upon melting. This discontinuity has
been observed for many metals at ambient P (for a comprehensive study see Rosenfeld
and Stott [1990]) and constitutes ∼8% for iron. A large volume press experiment by
Secco and Schlössin [1989], a recent DAC experiment by Ohta et al. [2016] and com-
putational studies by Pozzo et al. [2012, 2014] have shown that the resistivity jump
on melting persists up to conditions of the Earth’s core. In describing resistivity of
liquid iron at core conditions, experimental high pressure studies on ε-Fe have either
neglected the resistivity jump [Gomi et al., 2013] or assumed it to be as large as 20%
[Ohta et al., 2016].

Aim of this study was to test the validity of Ziman’s approximation (see Section
2.3.2),

ρliquidel
ρsolidel

(
%liquid

%solid

)2 (
βliquid
T

βsolid
T

)−1

' 1, (3.5)

on iron at ambient P and estimate resistivity in the solid (ρsolidel ), based on resistivity
in the liquid (ρliquidel ), and densities (%) and isothermal compressibilities (βT ) from a
thermodynamic model.

Experimental data for resistivity, density and compressibility of a variety of metals were
compiled just above and below the melting point at ambient P in order to calculate
the left hand side of Equation (3.5). The conversion of sound velocity measurements
(which yield adiabatic elastic properties) to isothermal compressibility is very sensitive
with respect to the choice of thermal expansivity α. For liquid iron, the value of α
has been topic of some debate over systematic errors occurring in different methods
of measurement [Nasch and Steinemann, 1995, Williams, 2009], yielding values below
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Table 3.1: Thermophysical data for pure iron at ambient pressure at the melting point
(Tm = 1808±5 K)a. Resistivities have been measured by Cezairliyan and McClure
[1974]a and van Zytveld [1980]b. If not reported directly, values measured by Dever
[1972]c, Basinski et al. [1955]d, Tsu et al. [1985]e, Drotning [1981]f and compiled by
Desai [1986]g have been extrapolated to Tm while using the misfit as uncertainty.
For the liquid phase, a scenario including values for % and α from Assael et al.
[2006]h has been tabulated for comparison. A column of properties for liquid Fe
from the thermodynamic model of Komabayashi [2014] has been included.

δ-Fe liquid Fe
Drotning Assael Komabayashi

ρel [µΩcm] 127.0± 0.6a 137.6± 1.0b
vp [km s−1] 4.73± 0.07c 3.98± 0.03e 3.98
vs [km s−1] 2.49± 0.06c
% [g cm−3] 7.29± 0.02d 7.017± 0.002f 7.04± 0.06h 7.09
α [10−5K−1] 6.5± 0.1d 8.8± 0.1f 13.2± 0.1h 9.0
cp [J g−1K−1] 0.80± 0.06a 0.84± 0.05g 0.82
βS [GPa−1] 1/(103± 6) 1/(111± 2) 1/(112± 2) 1/112
βT [GPa−1] 1/(91± 5) 1/(88± 2) 1/(70± 2) 1/87
ρliquid

el
ρsolid

el

(
%liquid

%solid

)2 (βliquid
T

βsolid
T

)−1
0.97± 0.05 0.78± 0.05 0.98± 0.05

9 · 10−5 K−1 (widely accepted by the geophysical community) or above 11 · 10−5 K−1

(NIST recommended value [Assael et al., 2006]). As the difference between those values
have a large effect on Equation (3.5), we chose an alternative way for determining βT ,
independent of the experiments previously discussed: Based on long wavelength ex-
trapolations of experimentally determined liquid structure factors [Waseda and Ohtani,
1974], we find values consistent with the thermodynamic model we use for % and βT
along the melting curve (Table 3.1).

We observe that Equation (3.5) is satisfied for simple metals (Na and Al, see Table S3 in
Chapter 6) and transition metals with partially filled d-bands (Fe, Co and Ni, see Table
S4 in Chapter 6), while it does not hold for noble metals (Cu, Ag and Au, see Table S5
in Chapter 6). Assuming the validity of Equation (3.5) for iron at high P , we use the
model fit for ρliquidel by de Koker et al. [2012], and % and βT from the thermodynamic
model of Komabayashi [2014] and calculate ρsolidel along the melting curve of iron. As
density and compressibility in liquid and solid iron become more similar with increasing
P , the discontinuity at inner core boundary (ICB) conditions is found to become
negligible (∼7%, see Figure 3.5). However, this might depend on the stable phase in
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the inner core: Based on experiments [Tateno et al., 2010, Anzellini et al., 2013] and a
first principles study by Godwal et al. [2015], we assumed hexagonal-close-packed iron
to be in equilibrium with the liquid at ICB conditions. This has been questioned most
recently by a computational study, showing a dynamically stabilized body-centered-
cubic phase using DFT-MD in a large simulation cell [Belonoshko et al., 2017]. Testing
the influence of this possible phase on the resistivity discontinuity predicted by Ziman’s
approximation would require an accurate equation of state, which is not available to
date.

Considerations based on Ziman’s theory and approximation can also serve as a predic-
tive tool for estimating electrical resistivity in the liquid, which is still challenging to
measure at high P , and provide a physically-based alternative to using ad hoc values
as in [Ohta et al., 2016].

While the influence of a conducting inner core on the geodynamo is still under debate
[Wicht, 2002, Dharmaraj and Stanley, 2012, Lhuillier et al., 2013], significant changes
of magnetic boundary conditions at the ICB can only be achieved if one assumes a
large difference in chemical composition due to partitioning of light elements between
liquid and solid portions of the core. Since silicon and sulfur—the elements with the
largest influence on resistivity—nearly equally partition between solid and liquid iron
at conditions of the Earth’s ICB [Alfè et al., 2002], this scenario is highly unlikely.
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3.3 Resistivity of solid iron

Figure 3.5 (preceding page): (a) Liquid to solid compressibility/density ratio for Fe along the
melting curve from the thermodynamic model of Komabayashi
[2014] used in our evaluation of Ziman’s approximation. The
lower x-axis label and ticks show pressure, the upper ones the
corresponding melting temperature. Pressure intervals indi-
cated correspond to core P in the terrestrial bodies of our solar
system (Ganymede, Mercury, Mars, Venus and Earth). The
vertical line represents the γ-ε-liquid triple point in the model
of Komabayashi [2014] (96 GPa and 3300 K). (b) Electrical re-
sistivities in the liquid (red curve) and the solid (black curve)
phases of Fe along the melting curve. For the liquid phase, the
modified Bloch-Grüneisen fit from de Koker et al. [2012] has
been evaluated along the melting curve, while the resistivity in
the solid has been calculated using the ratios shown in panel (a)
and applying Equation (3.5). The band widths take fitting un-
certainties of the original Kubo-Greenwood results by de Koker
et al. [2012] into account. Laboratory data (filled symbols) are
by Secco and Schlössin [1989] (S89) and Ohta et al. [2016] (O16)
from static experiments, and by Bi et al. [2002] (B02), Keeler
[1971] (K71) and Matassov [1977] (M77) from shock wave ex-
periments. For ρliquidel and ρsolidel , data by Secco and Schlössin
[1989] and Ohta et al. [2016] up to 51 GPa have been fitted lin-
early in the liquid and solid regions, respectively, and extrap-
olated towards Tm from both sides (see Chapter 6). For the
shock wave experiments, the lowest P point by Bi et al. [2002]
and the highest P point each by Keeler [1971] and Matassov
[1977] have been used, all for the solid phase. Temperatures
along the Hugoniot at these pressures are significantly below
melting [Brown and McQueen, 1986]. Open circles in the P -
range between 100 and 160 GPa show values calculated from
combined Bloch-Grüneisen/resistivity-saturation fit parameters
given in Ohta et al. [2016] and evaluated at Tm of Komabayashi
[2014]. G13 (open diamond) represents the high T extrapola-
tion of a room temperature DAC experiment reported in Gomi
et al. [2013]. At inner core boundary P , the Kubo-Greenwood
results by Pozzo et al. [2012, 2014] (P12 and P14) are included
for liquid and solid Fe, respectively. (c) Negative logarithmic
derivative −∂(ln ρel)/∂P for liquid and solid iron along its melt-
ing curve. While the P -gradient is significant in the liquid, it is
negligible in the solid, particularly for ε-Fe.
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1. Introduction

In the generation of Earth’s magnetic field by thermo-
chemical convection in the outer core (OC) (Merrill et al.,
1996), the electrical resistivity r of the convecting liquid
determines the dissipation of the magnetic field. It
constrains two critical aspects of the geodynamo: (i) the
timescale of dipole decay (Wicht, 2002), and therefore the
stability of the magnetic field in a specific polarity, and (ii)
the fluid velocity required for generating a given magnetic
field strength (Davies et al., 2015).

Resistivity and the energy budget of convection depend
on chemical composition, for which the current under-
standing inside Earth’s core is based on seismic observa-
tions in combination with cosmochemical constraints.

Both the solid inner core (IC) and the liquid OC are less
dense than pure iron or iron–nickel alloys, which requires
the presence of one or more lighter elements (Birch, 1952).
Furthermore, the density discontinuity at the inner core
boundary (ICB) is too large to be caused by a liquid–solid
phase transition alone, suggesting that at least one light
element preferentially partitions into the OC (Masters and
Gubbins, 2003). Light elements need to be sufficiently
abundant in the solar system and readily alloy with iron
under the conditions at which the Earth differentiated,
makingsilicon, oxygen and sulfur primary candidates
(Poirier, 1994). In addition to density, acoustic velocities
need to match those of a seismic reference model, such as
PREM (Dziewonski and Anderson, 1981), which cannot be
achieved by a binary alloy of one of those elements with
iron (Badro et al., 2015). As the Earth is depleted in sulfur
compared to chondritic composition (Dreibus and Palme,
1996), silicon and oxygen are assumed to be the major light
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elements in the core (Tsuno et al., 2013) with estimated
concentrations of 2–3.5% Si and 2.7–5% O (Badro et al.,
2015). The presence of carbon and hydrogen is likely
limited to below 0.2% due to their volatility (McDonough,
2003), and consequently these elements are not consid-
ered in the present study.

While the sulfur concentration in the Earth’s core has
been estimated to be below 2% (Dreibus and Palme, 1996),
other terrestrial planets are expected to contain substan-
tially more sulfur. Its high solubility in iron, its high
abundance in iron meteorites, the absence of a giant
impact that leads to a loss of volatiles from the Earth
(Halliday, 2004), and more reducing conditions during
planetary differentiation (Namur et al., 2016) support
models for the cores of Mercury (Hauck et al., 2013;
Rivoldini et al., 2009), Mars (Lodders and Fegley, 1997),
and Ganymede (Rückriemen et al., 2015) which assume
sulfur to be the sole light element.

There have been considerable advances in constraining
electronic transport properties in recent years, both
experimentally and computationally. First principles
calculations on liquid iron (de Koker et al., 2012; Pozzo
et al., 2012) first predicted resistivity at conditions of the
Earth’s core to be substantially lower than previous
estimates (Stacey and Anderson, 2001; Stacey and Loper,
2007). The results are consistent with dynamic compres-
sion experiments at high pressure (P) and temperature (T)
(Keeler, 1971), while r is underestimated at ambient (van
Zytveld, 1980) and low P conditions (Secco and Schlössin,
1989). Recently, similarly low resistivity values of hexag-
onal close packed iron at high P/high T have been reported
by Ohta et al. (2016), using a laser-heated diamond anvil
cell (DAC).

In addition to early static and dynamic compression
experiments (Bridgman, 1957; Matassov, 1977), resistivity
of Fe–Si alloys has been measured in large-volume press
experiments at low P and high T (Kiarasi and Secco, 2015),
and beyond 100 GPa in the DAC (Gomi et al., 2013; Seagle
et al., 2013). High-temperature extrapolations based on
DAC experiments at ambient T yield values consistent with
computational results at conditions inside Earth’s core.

Single-phase samples of iron alloys containing oxygen
and sulfur are challenging to synthesize (Mori et al., 2017);
therefore, resistivity data is scarce for compositions in these
systems. A recent study circumvented this problem by
calculating impurity resistivity of sulfur from measured
values of Fe, Fe–Si (Gomi et al., 2013, 2016) and the ternary
Fe–Si–S alloy using Matthiessen’s rule (Suehiro et al., 2017).

An important assumption in fitting experimental data
was that resistivity of iron and its alloys does not follow a
linear trend with T, as expected from the Bloch–Grüneisen
equation, but appears to saturate at high P/T conditions
(Gomi et al., 2013, 2016; Ohta et al., 2016). Resistivity
saturation occurs for highly resistive transition metal
alloys (Gunnarsson et al., 2003), where the electron mean
free path becomes comparable to the interatomic distance,
which is known as the Ioffe–Regel criterion (Ioffe and
Regel, 1960). First principles computations suggest a
decrease in the slope of r(T) for hexagonal-close-packed
iron at high compression (Pozzo and Alfè, 2016),
approaching saturation.

With the incorporation of light elements, resistivity
increases due to the additional impurity scattering
mechanism. For crystalline alloys, the concentration (c)
dependence of resistivity is generally described by Nord-
heim’s rule as r / c(1 � c) (Nordheim, 1928), but funda-
mental deviations from that relation have been observed in
liquid and amorphous alloys (e.g., Enderby and Howe,
1968).

Faber–Ziman theory (Faber and Ziman, 1965; Ziman,
1961) relates the dependence of resistivity for liquid alloys
on concentration to structural properties of the liquid, i.e.
to the microscopic short-range order described by partial
structure factors Sab(q). While qualitative features are
described well by Faber–Ziman theory, there is substantial
quantitative disagreement, especially for transition metal
alloys. Iron and iron alloys have a complex electronic
structure with partially filled d-bands at the Fermi level
and are therefore not well described by Faber–Ziman
theory, as far as absolute resistivity values are concerned.

We build our study on density functional theory-based
molecular dynamics (DFT–MD) trajectories and resistivity
results for liquid Fe, Fe–Si, and Fe–O alloys by de Koker
et al. (2012), and Fe–S alloys by Wagle et al. (2018). In this
paper, we consider in detail the relation between the liquid
structure and computed values of r for binary iron alloys
with the major light element candidates Si, O, and S. We do
so by calculating the effective mean free path from the
Drude response of optical conductivity, from which we
identify different saturation mechanisms and show
correlations with structural properties of the liquid.
Finally, we discuss implications on conductivity profiles,
and their influence on the dynamos of terrestrial planets.

2. Methods

DFT-MD simulations were performed on cells contain-
ing 128 atoms in the N–V–T ensemble, using the plane-
wave code VASP (Kresse and Furthmüller, 1996a,b; Kresse
and Hafner, 1993). Cubic cells in a volume range between
7.09 and 11.82 Å3/atom (V0)—covering the P-range of the
Earth—and light element contents of 12.5 (Fe7X) and
25 at.% (Fe3X) were set up by randomly replacing iron with
light element atoms (X) in molten configurations. Atomic
coordinates were updated using a time step of 1 fs, and T

was controlled by the Nosé thermostat (Nosé, 1984), with T

ranging from 2000 K to 8000 K. At each time step, the
electron density was computed using the projector-
augmented-wave (PAW) method (Kresse and Joubert,
1999) with the PBE exchange-correlation functional
(Perdew et al., 1996) and a plane wave cutoff energy of
400 eV. Electronic states were occupied according to
Fermi–Dirac statistics at T of the thermostat. Brillouin zone
sampling was restricted to the zone center. After
equilibration of P, T, and the total energy (E) had been
achieved (typically after a few hundred fs), the DFT–MD
simulations were continued for at least 15 ps.

We observe non-vanishing slopes of the atomic mean
square displacement at all simulation conditions, even for
T below the liquidus at high density. This indicates that the
liquid is metastable, i.e. cells are not frozen to a glass for
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which the mean square displacement would reach a
constant value after some simulation time.

Partial radial distribution functions gab(r) were obtai-
ned by a time average over all equilibrated configurations
from the DFT-MD trajectories. The unnormalized radial
distribution function Gab(r) = 4pr2%gab(r), with number
density %, describes how the particle density of species b
varies with distance to a reference particle of species a. We
define the properties of the first coordination shell by
Gab(r) up to the first minimum: the first coordination
number is then represented by the integral and the
interatomic distance by the median of the distribution.

For calculating electronic transport properties, at least
six uncorrelated snapshots were extracted from the MD
simulations (i.e. separated by time periods greater than
that required for the velocity autocorrelation function to
decay to zero) and Kohn–Sham wavefunctions ck, their
energy eigenvalues ek, and the gradient of the Hamiltonian
with respect to reciprocal wave vector @H=@k were
computed using the Abinit software package (Gonze,
1997; Gonze et al., 2009; Torrent et al., 2008). From those,
optical conductivity was calculated within the Kubo–
Greenwood formalism as

sðvÞ ¼ �he2

Vcell

X
k0 ;k

½ f ðek0 Þ�f ðekÞ�dðek0�ek��hvÞhckjv̂jck0 ihck0 jv̂jcki;

(1)

implemented in the conducti-module of Abinit (Recoules
and Crocombette, 2005). In Eq. (1), �h denotes the reduced
Planck constant, e the elementary charge, Vcell the cell
volume, v the frequency of the external field and v̂ ¼
1=�h�@H=@k the velocity operator.

By fitting the Drude formula

R½sðvÞ� ¼ s0

1 þ ðvtÞ2
(2)

to the Kubo–Greenwood results for each snapshot, we
extracted the DC limit of electrical resistivity r ¼ s�1

0 and
the effective relaxation time t. We averaged s and t over
the snapshots and took one standard deviation as
uncertainty. Calculations with denser grids of
2 � 2 � 2 and 3 � 3 � 3 k-points showed that s(v) is
sufficiently converged (to within 3%) using a single k-point
(Wagle et al., 2018).

The resulting r(V, T) values were fit with a parallel resistor
model to interpolate between results and extrapolate to

conditions not investigated:

1

rðV ; TÞ ¼
1

rBGðV ; TÞ þ
1

rsatðVÞ
þ 1

relðTÞ
; (3)

where

rBG ¼ r0

V

V0

� �a

þ r1

V

V0

� �b T

T0
(4)

is the empirical expression used by de Koker et al. (2012)
based on the Bloch–Grüneisen formula.

rsat ¼ c
V

V0

� �1
3

(5)

is a term accounting for resistivity saturation, similar to
expressions used by Gomi et al. (2013) and Suehiro et al.
(2017), and

rel ¼ d
T0

T
(6)

describes the effect of thermal broadening of the density of
states, which, for the Fe–S system, is analyzed in more
detail by Wagle et al. (2018). The fitting parameters are
listed in Table 1.

In order to describe electrical resistivity as a function of
P, suitable for comparison to experiments and for
applications in planetary models, we fit a thermodynamic
model to the DFT-MD results that is based on a separation
of the Helmholtz energy into ideal gas, electronic, and
excess terms (de Koker and Stixrude, 2009; Vlček et al.,
2012). The volume dependence of the excess term is
represented by Eulerian finite strain (f) with exponent
n = 2 and a similarly reduced T-term (u) with exponent
m = 0.79 and expansion orders Of ¼ 3 and Ou ¼ 2, param-
eters that best describe the results for liquid iron (de Koker
et al., 2012). The thermodynamic properties at reference
conditions are summarized in Table 2.

3. Results and discussion

3.1. Liquid structure

The results of our structural analysis in terms of gab(r),
interatomic distances and coordination numbers
(Figs. 1 and 2) for the binary alloys in the Fe–S, Fe–O,
and Fe–Si systems reveal the following key observations.

(i) Silicon incorporates substitutionally into liquid iron,
with average nearest-neighbor distances very similar

Table 1

Fit parameters of the models for r(V, T) (Eq. (3)) for the liquid iron–light-element alloys considered. As the individual terms (Eqs. (4)–(6)) for describing

resistivity results are difficult to separate, the fit is not well constrained and uncertainties in the fitting parameters exceed their values in most cases.

Parameters for Fe and the Fe–S alloys have been reported in a previous study (Wagle et al., 2018).

Fe Fe7O Fe3O Fe7Si Fe3Si Fe7S Fe3S

r0R [mV cm] 75.10 87.80 100.3 97.09 193.4 89.03 105.2

r1R [mV cm] 21.48 11.88 7.979 4.377 76.74 12.73 12.06

a 0.792 0.645 0.717 0.607 0.465 0.389 0.124

b 1.479 1.695 1.482 1.617 2.495 1.804 2.686

c [mV cm] 747.2 1823 7.771 � 105 6030 254.0 2077 6609

d [mV cm] 1405 4202 2.356 � 106 24810 2006 2829 2910
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for Fe–Fe, Fe–Si, and Si–Si (Fig. 1). Fe–Si alloys are in
the vicinity of the close-packing limit of a twelve-fold
coordination, which does not change with P (Fig. 2), in
agreement with previous results (Posner et al., 2017b).
Structural data from in situ X-ray diffraction show the
same trend in the low-P range (Morard et al., 2008;
Sanloup et al., 2002).

(ii) The average Fe–O distance is substantially shorter
than the Fe–Fe distance, and two oxygen atoms are
typically separated by one iron atom. This difference in
size has been attributed to account for the observation
that oxygen preferentially partitions into the liquid
over the solid (Alfè et al., 2002; Morard et al., 2014).
With increasing P, the six-fold coordination of iron

around oxygen at ambient conditions increases to
eight-fold at core conditions. The transition of the
compression mechanism from changing coordination
to shortening the interatomic distance has been
shown to affect diffusive transport for the Fe–O
system (Posner et al., 2017a,c).

(iii) Fe–S alloys at high P exhibit a net S–S repulsion, as
shown by the virtual absence of a typical nearest-
neighbor peak for gSS(r) between 2.0 and 2.5 Å and the
presence of a next-nearest neighbor maximum at
�3.5 Å (Fig. 1a). This has been linked to a strengthen-
ing of covalent bonds between Fe and S with
increasing P, resulting in high Fe–S coordination (Alfè
and Gillan, 1998). Fig. 2 shows increasing Fe–S
coordination with compression, suggesting sulfur to
shift from interstitial-like to substitutional incorpo-
ration in the liquid. At the highest compressions, Fe–S
approaches a close-packed short-range structure.

Table 2

Parameters of the modified thermodynamic model by de Koker and Stixrude (2009) for V0 = 11.82 Å3/atom and T0 = 2000 K (reference conditions). Values for

extensive variables are per mol of formula units. Parameters for Fe and the Fe–S alloys have been reported in a previous study (Wagle et al., 2018).

Fe Fe7O Fe3O Fe7Si Fe3Si Fe7S Fe3S

Pxs0 [GPa] �2.335 �1.186 5.534 0.846 5.534 0.846 5.534

KT,xs0 [GPa] 131.4 101.0 42.56 137.3 133.1 137.8 140.0

K 0T;xs0 5.161 5.706 9.223 5.031 5.122 4.694 4.736

aKT,xs0 [GPa/K] 8.822 � 10�3 5.939 � 10�3 1.252 � 10�3 8.363 � 10�3 6.138 � 10�3 8.620 � 10�3 7.194 � 10�3

V0
@aKT
@V

� �
T;xs0

[GPa/K] �1.563 � 10�2 �1.518 � 10�2 �2.131 � 10�2 �1.229 � 10�2 �9.111 � 10�3 �1.660 � 10�2 �1.327 � 10�2

T0
@aKT
@T

� �
T;xs0

[GPa/K] �3.348 � 10�3 �1.352 � 10�3 4.956 � 10�4 �3.288 � 10�3 �1.739 � 10�3 �2.376 � 10�3 �1.808 � 10�3

V2
0

@2aKT

@V2

� �
T;xs0

[GPa/K] 2.840 � 10�2 3.401 � 10�2 5.741 � 10�2 2.115 � 10�2 9.670 � 10�3 5.115 � 10�2 3.534 � 10�2

CV,xs0 [J/(mol K)] 18.50 183.1 100.5 189.5 102.3 185.1 92.90

V0
@CV
@V

� �
T;xs0

[kJ/(mol K)] 15.84 313.6 86.07 324.7 87.66 317.1 79.57

V2
0

@2CV

@V2

� �
T;xs0

[kJ/(mol K)] 2.113 � 10�2 1.626 � 10�1 1.193 � 10�1 6.850 � 10�2 �3.449 � 10�2 3.094 � 10�1 1.033 � 10�1

z0 [J/(mol K2)] 3.486 32.67 14.51 27.18 12.35 30.04 12.36

j 0.843 0.911 0.671 0.730 0.925 1.096 1.006

Fig. 2. First iron coordination numbers around an atom of species X. The

vertical scatter at each volume arises from including results for different

light element concentrations at different temperatures. Linear

regressions with propagated uncertainty bands are shown in matching

colors to guide the eye.
Fig. 1. Partial radial distribution functions for (a) Fe3S, (b) Fe3Si, and (c)

Fe3O at 8000 K and two unit cell volumes (V0 and V/V0 = 0.6).
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3.2. Resistivity saturation and electron mean free path

As a structural dependence of resistivity is expected
from transport theory of liquid metals (Faber and Ziman,
1965; Ziman, 1961), it is our goal to describe the
correlations between the observations made in
Section 3.1 and resistivity calculated from first principles
(Fig. 3).

Generally, r increases with T and c. Larger vibrational
amplitudes and shorter distances between impurity atoms
lead to a decrease in the effective electron mean free path
(xeff), approaching the Ioffe–Regel saturation limit, where
xeff becomes comparable to the interatomic distance.
However, the addition of the same mole fraction of
different light elements leads to resistivity increases by
different amounts, depending on volume and temperature.

For the low impurity concentrations considered (Fe7X),
resistivity can be described reasonably well by a linear T-
dependence above the Debye temperature (QD) (�1000 K
at low compression), consistent with Bloch–Grüneisen
theory. With compression, QD increases based on the
thermodynamic parameters from the DFT–MD simulation,
and the values of r decrease. This behavior is well captured
by the resistivity model (Eq. (3)).

For higher impurity concentrations (Fe3X), we find that
r is higher (Fig. 3) and that the Bloch–Grüneisen behavior
breaks down for Fe3Si and Fe3S. The temperature coeffi-
cient of resistivity (TCR) decreases with compression for all
alloys, vanishes within uncertainty for the three smallest
volumes of Fe3Si and changes sign for Fe3S for the smallest
two volumes we consider. We have previously explained
the negative TCR for Fe3S by changes in the electronic
structure that are only noticeable once the liquid has
reached the Ioffe–Regel condition (Wagle et al., 2018).

In order to illustrate resistivity saturation mechanisms
from a semi-classical picture of electron transport, we
calculate the effective electron mean free path as xeff ¼ vFt,
where vF ¼ ð�h=mÞ�ð3p2neff Þ

1=3
is the Fermi velocity,

neff = (ms0)/(e2t) the effective number density of conduc-
tion electrons, and m the electron mass. Fig. 4 reveals three
distinctive features.

(i) For ambient P volumes (V0 = 11.82 Å3/atom), xeff

approaches the mean interatomic distance asymptot-
ically with increasing T, consistent with the thermally
driven saturation process found in previous studies
(Mooij, 1973; Pozzo and Alfè, 2016).

(ii) At the lowest cell V considered (V = 7.09 Å3/atom), xeff

becomes shorter than at lower compression, due to the
increased density of scattering centers. At first glance,
this observation appears to be inconsistent with the
fact that r decreases with compression (Fig. 3), but can
be understood in terms of electronic structure (Wagle
et al., 2018).

(iii) With increasing light element concentration, xeff

decreases significantly. This reflects the expected
behavior of an increased probability of impurity-
caused scattering. For the highest compression, the
Ioffe–Regel condition is satisfied for Fe3Si and Fe3S as
xeff becomes equal to the mean interatomic distance
within uncertainty.

These observations match the resistivity behavior
shown in Fig. 3 and explain the temperature effect on
resistivity: while xeff in pure iron and Fe–O alloys is still
somewhat larger than the average spacing of scattering
centers, resistivity is not yet saturated, and its T-

Fig. 3. Electrical resistivity of liquid iron and various binary iron alloys as a function of temperature along isochores. The resistivity model fit for r(V, T)

(Eq. (3)) is shown by dashed lines.
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dependence is retained. High concentrations of Si and S in
the liquid iron alloy, on the other hand, drive the system
into the Ioffe–Regel limit, resulting in a vanishing TCR.

A possible reason for the short mean free path of Fe–S
alloys can be found in the S–S avoidance (Fig. 1) and high
Fe–S coordination (Fig. 2), leading to a quasi-ordered
short-range distribution of impurity scatterers in the
liquid. Sulfur is the only alloying element that leads to a
negative TCR. As saturation with compression is reached,
secondary electronic effects at the Fermi surface are
noticeable (Wagle et al., 2018). By contrast, silicon
substitutes for iron in a random fashion to a good
approximation, as shown by the similarity of pair
distribution functions and coordination numbers com-
pared to pure iron (Figs. 1 and 2). Impurity resistivity of
oxygen is the lowest among the light elements investigat-
ed. It occupies interstitial positions between iron atoms
and has the smallest scattering cross section, with little
influence on total resistivity.

4. Resistivity profiles of the cores of Mars and the Earth

The significance of saturation mechanisms on resistivity
profiles of planetary cores is presented in Fig. 5, where we
show r(P) along proposed core isentropes of Mars (Fei and
Bertka, 2005) and the Earth (Kamada et al., 2012). The
simultaneous increase of T and P along an isentrope leads to
competing effects on resistivity (Section 3.2): r increases
with T and decreases with P, with a net effect of slowly
decreasing resistivity as a function of pressure. Fe–S alloys
exhibit a significantly shallower slope than pure Fe, Fe–O
and Fe–Si alloys at both low and high P conditions. This
results in a resistivity crossover of the corresponding silicon
and sulfur concentrations at conditions of the Earth’s OC, an

effect that is related to the ongoing coordination change in
the highly saturated Fe–S alloy. Considering that xeff is
similarly shortened in both Fe–S and Fe–Si alloys (Fig. 4),
the increase in Fe–S coordination with P (Fig. 2) and the
effective S–S repulsion (Fig. 1) leads to more efficient
impurity scattering than the randomly distributed Si atoms.

Fig. 5 contains datapoints for Fe–Si alloys, which have
been directly measured in dynamic compression experi-
ments or based on low-T static experiments. Shock data for
comparable Fe–Si alloys by Matassov (1977) show
somewhat larger values than our computed resistivity
profiles near the core–mantle boundary (CMB) pressure.
Although the temperature corresponding to these data
differs from the proposed isentrope by up to 1000 K, T is
expected to have a small effect on resistivity in the highly
resistive systems considered. We find our results to be in
excellent agreement with the extrapolation of Gomi et al.
(2013) at CMB pressure, and slightly higher at ICB pressure
(�10%).

Previous computational results for ternary liquid Fe–
Si–O alloys along a different core adiabat (Pozzo et al.,
2013) plot between our Fe3Si and Fe3O profiles, suggesting
that the presence of O in an Fe–Si alloy lowers resistivity
significantly. As a consequence of the Ioffe–Regel limit, the
difference in T between the different adiabats used here
and that in Pozzo et al. (2013) is not expected to have a
large effect on resistivity. For pure iron, without the effect
of saturation, their numbers along a hotter core adiabat
(TICB� 6350 K) are somewhat higher than ours.

Based on an analysis of experimental data for the Fe–Si–
S system, Suehiro et al. (2017) calculated substantially
lower and steeper resistivity profiles along the same
isentropes, and, in contrast to our results, find sulfur to
cause a smaller impurity resistivity than silicon. While the

Fig. 4. Electron mean free path for liquid iron with 12.5 at.% (top) and 25 at.% (bottom) light element content for two cell volumes, near ambient P (left) and

largest compression (right), obtained by a Drude fit to optical conductivity (Eq. (2)). The mean free path approaches the interatomic Fe–Fe distance in the

alloys (median, thick gray lines) with increasing temperature, compression, and impurity concentration. For Fe3Si and Fe3S at the smallest cell volume, the

Ioffe–Regel condition is satisfied.
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underlying extrapolated resistivity data for pure Fe and Fe–
Si alloys (Gomi et al., 2013, 2016) are consistent with the
DFT–MD-based results by de Koker et al. (2012) at
conditions of the Earth’s core, it is surprising that the
(inferred) conductivity profile of Fe80.8S19.2 is very close to
the computational results for pure iron. However, Mat-
thiessen’s rule—which Suehiro et al. (2017) use for
calculating the impurity resistivity of sulfur from pure
Fe, Fe–Si, and Fe–Si–S resistivity—has been shown to break
down in the saturation limit (Gomi et al., 2016), which
might in part account for the discrepancy.

As resistivity of a liquid iron alloy with a large amount
of light elements is saturated, and, as a consequence, the
resistivity profile is virtually independent of T, it is not
expected to change significantly over geological time as
the planet cools. This likely remains valid across the
melting point upon the formation of an inner core, for two
reasons. (i) Si and S, the elements that are mostly
responsible for resistivity saturation, partition almost
equally between the liquid and the solid (Alfè et al.,
2002). Oxygen, which preferentially remains in the liquid

portion of the core, contributes only little to total impurity
resistivity. (ii) The resistivity discontinuity across the
melting curve is expected to become negligible at high P

(Wagle and Steinle-Neumann, 2018).
The evolution of a magnetic field generated by a

convection-driven dynamo is therefore—to the first order—
determined by the vigor of thermo-chemical convection,
changing spatial constraints and magnetic boundary
conditions as the inner core grows, not by changes in
resistivity.

5. Conclusions

By using first principles simulations, we compute the
structural properties and the electrical resistivity of liquid
iron alloys up to pressure and temperature of the Earth’s
inner core, with different concentrations of silicon, oxygen,
and sulfur. We find correlations between short-range order
and the effective electron mean free path.

At high pressure, silicon and sulfur substitute for iron in
the liquid structure, and are found to substantially shorten
the mean free path, which is reflected by high coordination
numbers, near the close packing limit. As the mean free
path becomes comparable to the mean interatomic
distance, resistivity saturates. Once the system is close
to saturation, resistivity becomes independent of temper-
ature. Confirming results of previous studies, sulfur atoms
prefer to be isolated from one another (Alfè and Gillan,
1998; Morard et al., 2014) and therefore distribute more
evenly in liquid iron than silicon. Compared to a randomly
substituted configuration, electron scattering is then more
efficient, as scattering cross sections of impurity atoms are
less likely to overlap. In the saturation limit at high
densities and sulfur concentrations, this leads to a negative
temperature coefficient of resistivity due to secondary
electronic effects at the Fermi level, which cannot be
observed in the Fe–Si system.

Oxygen, which is incorporated into the liquid on
interstitial positions and has a considerably smaller
scattering cross section, does not affect the mean free
path compared to pure iron in a significant way.
Correspondingly, the Fe–O system is not close to the
Ioffe–Regel limit and retains a positive temperature
coefficient of resistivity throughout the pressure and
temperature range investigated.

Computed resistivity profiles along core adiabats for
Mars and the Earth are considerably shallower than
estimates based on experimental data using Matthiessen’s
rule. As liquid iron alloys with high concentration of sulfur
or silicon are in the Ioffe–Regel limit at high densities,
resistivity will be independent of temperature and is
therefore unlikely to change substantially with time
during core evolution.
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We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores,
computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of
resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path
from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high
sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes
sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi
level in response to thermal broadening.

DOI: 10.1103/PhysRevB.97.094307

I. INTRODUCTION

An understanding of the stability of planetary magnetic
fields and the thermal evolution of terrestrial planets is closely
related to the characterization of electronic transport properties
of liquid Fe and Fe alloys that make up the dynamo-active
portions of their cores. Recent years have seen significant
progress in this direction, and both electrical (σ ) and thermal
(λth) conductivities have been determined at high pressure P

and high temperature T by means of ab initio simulations [1–3]
and experiments [4–8]. While a consensus has emerged that σ

at conditions of planetary cores is significantly higher than
previously thought [9,10], there is considerable controversy
on values of λth [1–3,11,12] that includes a discussion of
the validity of the Wiedemann-Franz law that relates both
electronic transport quantities.

For the Earth’s core, Fe is likely alloyed with silicon
and/or oxygen [13,14], which have therefore been the focus of
previous studies [1,3–5]. By contrast, in the cores of Mercury
and Mars, sulfur is expected to be the dominant light element
alloying with iron [15,16]: It is cosmically abundant and shows
a high solubility in liquid iron due to its compatibility in
electronic structure and the similar atomic size of Fe and
S [17,18]. In the Earth’s core, sulfur is unlikely to play an
important role as the giant Moon-forming impact has probably
led to the loss of this moderately volatile element [19].

The observed decrease in conductivity (σ ∝ 1/T ) of liquid
metals in experiments [20,21] and computations, also at high
P [1], is consistent with the Bloch-Grüneisen law for solids
above the Debye temperature θD that describes the shortening
of the electron mean free path xeff ∝ 1/T . In the quasi-free-
electron model, scattering events in the liquid occur due to
the interaction of electrons with atomic potentials [22]. For
this scattering mechanism, the interatomic distance sets a
lower bound for the mean free path, which is known as the
Ioffe-Regel condition [23], leading to saturation. Resistivity

saturation has been found to be an important factor in highly
resistive transition metals and their alloys [24], in which
xeff is already short due to the following static and dynamic
effects:

(i) Experiments at ambient P reveal that a high concentra-
tion of impurities can shorten xeff sufficiently since the alloying
element introduces compositional disorder [25]. Chemically
induced saturation continues to take place at high P , as has
been shown for the Fe-Si-Ni system [6]. Gomi et al. [6]
combined diamond-anvil-cell experiments with first-principles
calculations and showed that Matthiessen’s rule [26] breaks
down close to the saturation limit.

(ii) Increasing thermal disorder also induces saturation, as
has been demonstrated by analyzing the temperature coef-
ficient of resistivity (TCR) in NiCr thin films [25]. Recent
computations [27] observe a sublinear trend of ρ(T ) = 1/σ

for hexagonal close packed (hcp) iron at P of the Earth’s inner
core.

(iii) In addition to impurities and T , pressure can lead to
saturation. This has been shown for the Fe-Si system in the
multi-anvil press [28].

Since electrical conductivity measurements of liquid iron
and its alloys at conditions of the Earth’s core are challenging
[29], high-P studies extrapolate ambient-T [5,8] or high-
T experiments [7] for the solid to the melting temperature
and the liquid phase, accounting for saturation by a parallel
resistor model. The extrapolation of their models supports low
values of ρ for the Earth’s core, consistent with computational
studies [1–3]. Here, we investigate the electronic transport
properties for liquid iron-sulfur alloys based on first-principles
simulations to complement the existing results for Fe [1,2] and
the Fe-O-Si system [1,3] and to compare to recent experiments
in the Fe-Si-S system [8]. The first-principles approach also
provides the opportunity to explore resistivity saturation in
terms of the Ioffe-Regel condition and the TCR by means of
the electronic structure.
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II. METHODS

We generate representative liquid configurations using
density-functional-theory-based molecular dynamics (DFT-
MD) simulations, for which we then perform electronic linear
response calculations to obtain transport properties.

A. Molecular dynamics simulations

DFT-MD simulation cells contain 128 atoms, and the
calculations are performed in the N -V -T ensemble using the
plane-wave code VASP [30–32]. Cubic cells in a volume range

between 7.09 and 11.82 Å
3
/atom (six equally spaced volumes,

covering the P range of the Earth) and sulfur contents of
12.5 (Fe7S) and 25 at % (Fe3S; ∼7.6 and ∼16 wt %) are set
up by randomly replacing Fe atoms in molten configurations

from previous simulations [1]. At 8.28 Å
3
/atom we also set up

Fe15S and Fe27S5 compositions to consider the dependence of
resistivity on composition in more detail. Atomic coordinates
are updated using a time step of 1 fs, and T is controlled
by the Nosé thermostat [33], with T between 2000 and
8000 K. At each time step, the electron density is computed
using the projector augmented-wave (PAW) method [34] with
the Perdew-Burke-Ernzerhof exchange-correlation functional
[35] and a plane-wave cutoff energy of 400 eV. Electronic
states are occupied according to Fermi-Dirac statistics at T

of the thermostat. Brillouin zone sampling is restricted to the
zone center. After equilibration of P , T , and the total energy E

is achieved (typically after a few hundred femtoseconds), the
DFT-MD simulations are continued for at least 15 ps.

B. Resistivity calculations

The kinetic coefficients in linear response to an electric field
E and a thermal gradient ∇T build up the Onsager matrix Lij

[36],

jel = L11E + L12∇T , (1)

jth = L21E + L22∇T , (2)

where jel and jth are electrical and thermal current densities,
respectively. Electrical conductivity and the electronic contri-
bution to thermal conductivity are then

σ = L11 (3)

and

λel
th = 1

e2T

(
L22 − L2

12

L11

)
. (4)

We extract at least six uncorrelated snapshots from the MD
simulations (i.e., separated by time periods greater than that
required for the velocity autocorrelation function to decay
to zero) and compute Kohn-Sham wave functions ψk , their
energy eigenvalues εk , and the Cartesian gradients of the
Hamiltonian with respect to a shift in wave vector ∂H/∂k
using the ABINIT software package [37–39]. From those, the
frequency-dependent Onsager matrix elements are calculated

with the Kubo-Greenwood equations,

Lij = (−1)i+j h̄e2

Vcell

∑
k′,k

[f (εk′) − f (εk)]δ(εk′ − εk − h̄ω)

×〈ψk|v̂|ψk′ 〉〈ψk′ |v̂|ψk〉(εk′ − μe)i−1(εk − μe)j−1,

(5)

as implemented in the CONDUCTI module of ABINIT [40].
In Eq. (5), h̄ denotes the reduced Planck constant, e is the
elementary charge, Vcell is the cell volume, ω is the frequency
of the external field, v̂ = 1/h̄ · ∂H/∂k is the velocity operator,
and μe is the electronic chemical potential.

By fitting the Drude formula for optical conductivity

�[σ (ω)] = σ0

1 + (ωτ )2
(6)

to the Kubo-Greenwood results for each snapshot, we extract
the dc limit of conductivity σ0 (used without subscript else-
where) and effective relaxation time τ . Thermal conductivity
is extrapolated linearly to the limit ω → 0 over a h̄ω range
of 2 eV. We average σ , τ , and λth over the snapshots and take
one standard deviation as uncertainty. Calculations with denser
grids of 2 × 2 × 2 and 3 × 3 × 3 k points show that σ (ω) is
sufficiently converged (to within 3%) in calculations using a
single k point (see Fig. S1 in the Supplemental Material [41]).

The resulting ρ(V,T ) and λth(V,T ) are fit with a physi-
cally motivated closed expression (Appendix A) to interpolate
between results and extrapolate to conditions not investigated.

C. Electron density of states

We compute the site-projected and angular-momentum-
decomposed electron densities of states (DOSs) with the
tetrahedron method [42,43], using a nonshifted 2 × 2 × 2 k-
point grid with small energy increments of 1.4 × 10−3 eV. The
radii of the atomic spheres, in which the angular-momentum
projections are evaluated, have been chosen to be space filling
and proportional to the radii of the respective PAW spheres
[34]. The DOS is computed for the same snapshots as those
used for the evaluation of the Kubo-Greenwood equations
and re-binned with an energy window of ∼1/2kBT to resolve
T -dependent features in the vicinity of the Fermi energy EF .
This results in a strongly varying DOS which is independent
of the smearing parameter.

III. RESULTS AND DISCUSSION

A. Electrical resistivity

For the low-impurity composition Fe7S, we find a de-
pendence of ρ on V and T similar to that predicted in
previous studies on pure Fe, Fe-Si, and Fe-O systems [1]
(Fig. 1 and Tables S1 and S2 in the Supplemental Material
[44,45]). Resistivity increases with V and T and can be
reasonably well described by a linear T dependence above �D

(∼1000 K at low compression based on the equation-of-state
parameters; see Appendix B and Table S3 in the Supplemental
Material [46]), consistent with Bloch-Grüneisen theory. With
decreasing V , �D increases based on the thermodynamic
parameters from our DFT-MD simulation, and values for ρ
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FIG. 1. Electronic transport properties of liquid Fe-S alloys as a function of temperature. The temperature coefficient of electrical resistivity
of liquid (a) Fe7S and (b) Fe3S decreases with compression due to saturation. For Fe3S, the temperature coefficient of resistivity becomes
negative along the smallest V isochores. Solid lines represent the best fit of Eq. (A1) to resistivity. The electronic contribution to thermal
conductivity of liquid (c) Fe7S and (d) Fe3S. Solid lines have been calculated from the best fits to ρ(V,T ) [Eq. (A1)] and the effective Lorenz
number L(V,T ) [Eq. (A5)]. Tabulated values for ρ, λth, and L are given in Tables S1 and S2 in the Supplemental Material [44,45].

decrease. This behavior is well captured with the resistivity
model in Appendix A.

Absolute resistivities for both compositions in the Fe-S
system are similar to those for Fe-Si with the same light-
element concentration [1] and higher than those for pure Fe and
in the Fe-O system [1,2]. This is in contrast to experimental
work [8] that estimatedρ for the solid phase in a ternary Fe-Si-S
system and calculated the S impurity resistivity by using
Matthiessen’s rule based on previous experimental results for
Fe [7] and Fe-Si [6]. Suehiro et al. [8] find that the influence
of S on resistivity is significantly less than that of Si [6].
The experiments had to rely on this indirect determination of
resistivity reduction due to sulfur, as S is hardly soluble in
solid Fe at ambient P , and it is therefore difficult to synthesize
a homogeneous phase as a starting material in experiments
[47–50]. Further, Matthiessen’s rule, applied in the analysis of
the data, does not hold for systems with saturated resistivity [6].

For higher sulfur concentration, we find that ρ increases
(Fig. 1; see Fig. S2 in the Supplemental Material [51]) and that
the Bloch-Grüneisen behavior breaks down. The temperature
coefficient of resistivity decreases with compression, up to the
extreme case where it changes sign and becomes negative for
Fe3S at the smallest two volumes we consider.

Negative TCRs have been observed for liquid and amor-
phous solid metals, for which the maximum momentum change
of a scattered electron 2kF falls in the region close to the
principle peak of the structure factor S(q), as in the case of
metals with two valence electrons, e.g., Eu, Yb, and Ba with
a 6s2 valence configuration [52], and Cu-Zr metallic glasses
[53]. It is one of the great successes of Ziman theory for
the resistivity of liquid metals [22,54] to explain the negative
TCR in these systems. Ziman theory cannot account for the

negative TCR that we predict for Fe3S at high compression.
Because for iron and the other Fe alloys considered by de
Koker et al. [1] 2kF is near the first minimum in S(q) (Fig.
S3 in the Supplemental Material [55]), thermal broadening of
the structure factor will lead to positive TCR over the entire
compression range. This suggests that the negative TCR is
a secondary effect, driven by changes in electronic structure
(Sec. III C) that are only noticeable once resistivity saturation
is reached by compression and impurities simultaneously.

B. Mean free path

In order to understand the effect of resistivity saturation
from a semiclassical picture of electron transport, we calculate
the effective electron mean free path asxeff = vF τ , wherevF =
(h̄/m)(3π2neff )1/3 is the Fermi velocity, neff = (mσ )/(e2τ ) is
the effective number density of conduction electrons, and m is
the electron mass. Figure 2 reveals three distinctive features:

(i) For ambient P volumes (V = 11.82 Å
3
/atom), xeff

approaches the mean interatomic distance asymptotically with
increasing T , consistent with dynamic resistivity saturation
[25,27].

(ii) At the lowest cell V considered (V = 7.09 Å
3
/atom),

the T dependence of xeff vanishes within uncertainty. In
addition, xeff becomes shorter than at lower compression due
to the increased density of scattering centers. At first glance,
this observation appears to be inconsistent with the fact that ρ

decreases with compression but can be understood in terms of
electronic structure (Sec. III C).

(iii) With increasing sulfur concentration, xeff decreases sig-
nificantly. This reflects the expected behavior of an increased
probability of impurity-caused scattering.
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FIG. 2. Electron mean free path for liquid Fe7S (top) and Fe3S
(bottom) for two cell volumes (near ambient P and largest compres-
sion) as a function of temperature, obtained by a Drude fit to optical
conductivity [Eq. (6)]. The mean free path approaches the interatomic
distance (solid lines, first peak position of the partial radial distribution
function) with increasing compression and impurity concentration.
For Fe3S at the smallest cell volume, the Ioffe-Regel condition is
reached.

For the highest compression the Ioffe-Regel condition is
reached for Fe3S as xeff becomes equal to the mean interatomic
distance within uncertainty.

C. Electronic structure

Most of the electric current in transition metals is trans-
ported by s electrons, which can scatter into d states with a
far lower Fermi velocity [56]. Partially filled d bands with a
high DOS at the Fermi level lead to a high probability of s-d
scattering events, which dominate resistivity over s-s processes
[57].

Site-projected and angular-momentum-decomposed local
densities of states (LDOSs) show similar changes in response
to compression and T (Figs. S4 and S5 of the Supplemental
Material [58,59]). Generally, peaks broaden, and the Fe d

LDOS at EF decreases, resulting in fewer states available
for s electrons to scatter into. The response of the electronic
structure to compression is a dominant feature as dispersion
of electronic bands increases significantly due to stronger
interactions [60] (Fig. S4 in the Supplemental Material [58]).

For increasing T , changes in the DOS are less pronounced
(Fig. S5 in the Supplemental Material [59]) and reflect dynamic
short-range changes in the liquid structure that can lead to
smaller interatomic distances [61] that are also expressed by
thermal pressure [27]. This is a small effect, and the negative
TCR can be observed only when compression and chemical
saturation in the system have been reached.

Electronic states of iron dominate the DOS of the liquid
Fe-S alloys near EF . The densities of states for Fe and Fe3S
are quite similar at the same V and T (Figs. S4 and S5 in
the Supplemental Material [58,59]), and the broadenings in
the vicinity of EF due to compression and T , respectively, are
almost identical. Therefore, sulfur contributes to the overall
resistivity behavior in the Fe-S systems only by shortening xeff

through impurity scattering, as discussed in Sec. III B (Fig. 2).
In comparison to silicon and oxygen, sulfur appears to be more
efficient in doing so due to its similar atomic size and the
efficient bonding with iron, resulting in high Fe-S coordination
numbers [17].

D. Thermal conductivity

Since lattice vibrations play only a minor role in heat
transport through metals, the electronic contribution to thermal
conductivity λel

th represents total conductivity λth to a good
approximation [26]. Similar to the results for ρ, we find the
Kubo-Greenwood values for λth (Fig. 1) to be consistent with
the ones for liquid Fe-Si alloys and somewhat larger than
those of Fe-O liquids from previous computations with the
same light-element concentrations [1]. Contrary to electrical
resistivity, we do not see any sign of saturation in λth, putting
the validity of the Wiedemann-Franz law with a constant
value of the Lorenz number L0 ≈ 2.44 W�/K2 from Drude-
Sommerfeld theory in question. Indeed, thermal conductivity
is significantly overestimated by using L0 and the resistivity
model (Appendix A) compared to the values computed directly
with the Kubo-Greenwood equations [Eq. (5)].

Recently, electron-electron scattering has been suggested
to contribute significantly to λth of hcp iron at high P but
not to ρ [12], an effect that is ignored in the independent
electron approximation of the Kubo-Greenwood approach.
However, it remains an open question to what degree this
contribution affects thermally disordered systems. Electronic
transport critically depends on the electronic structure at
the Fermi level, which is quite different for a high-density
liquid at high T compared to a perfect crystal. Until the
influence of electron-electron scattering on transport properties
of disordered 3d transition metals and their alloys is better
understood, values for λth from the Kubo-Greenwood approach
should be used with caution.

E. Application to planetary interiors

We convert resistivity values and fits in V -T space
(Appendix A and Table I) to ρ(P,T ) by using the self-
consistently obtained equations of state for Fe7S and Fe3S
(Appendix B and Fig. S6 and Table S3 in the Supplemental
Material [46,62]). Resistivity values for Fe7S and Fe3S (Fig. 3)
are substantially larger than the corresponding ones for pure
iron. While resistivities for Fe7S along different isotherms
continue to show distinctive P trends, they become indistin-
guishable for Fe3S at high P due to the combined saturation
effects discussed in Sec. III B. For Fe3S, resistivity saturates at
∼100 μ� cm, a value which remains approximately constant
and T independent over the P range of the Earth’s outer core,
similar to the behavior of Fe3Si [1].
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TABLE I. Fit parameters of the models for ρ(V,T ) [Eqs. (A2)–
(A4)] and L(V,T ) [Eq. (A5)] for liquid Fe, Fe7S, and Fe3S. Uncer-
tainties of the fit parameters are large and exceed their values in most
cases.

Fe Fe7S Fe3S

ρ0R (μ� cm) 75.10 89.03 105.2
ρ1R (μ� cm) 21.48 12.73 12.06
a 0.792 0.389 0.124
b 1.479 1.804 2.686
c (μ� cm) 747.2 2077 6609
d (μ� cm) 1405 2829 2910
LR (W �/K2) 2.005 2.105 1.991
e −0.097 −0.106 −0.228
f 0.041 −0.027 −0.022

There is a large discrepancy between our results and the
high-T extrapolation of experimental resistivity [8] reported
along model adiabats in the cores of Mars and the Earth [49,63].
Despite the similar compositions between the work presented
here and the experiments (which fall between Fe3S and Fe7S,
towards the higher sulfur concentration), the experimental
profile for Earth’s core shows significantly lower values, more
consistent with the Kubo-Greenwood results for pure Fe [1,2].
Model values of Suehiro et al. [8] in the P range of the Martian

ρ
μ
Ω

60

80

100

120

7

P

77.7 22.3

80.8 19.2

60

80

100

120

3

FIG. 3. Electrical resistivity of liquid Fe-S alloys as a function of
pressure for Fe7S (top) and Fe3S (bottom). Solid lines are best fits of
a parallel-resistor model to ρ(V,T ) [Eq. (A1)] converted from V -T to
P -T conditions using the equation-of-state fits (Appendix B). Results
from an experimental study [8] along a model areotherm (red line)
and geotherm (blue line) as well as computational results for pure Fe
[1] between 2000 and 8000 K (gray area) are included for comparison.

core are closer to our results (Fig. 3), but the slope (∂ρ/∂P )S
in the model based on experiments is significantly larger than
in our work.

A small contribution to the difference between the exper-
imental data and our results may come from the fact that
the experiments have been performed for the solid and the
simulations for the liquid, and resistivity increases discontin-
uously across the melting point for metals and their alloys
at both ambient [64] and high P [65–68]. However, based
on the Ziman approximation [22], this difference is expected
to decrease with P if the density and compressibility of the
coexisting solid and liquid phases become more similar. For
pure iron, for example, this discontinuity is likely to become
negligible at conditions of the Earth’s core [69]. Rather than
the difference decreasing with P as expected, it increases
between the experimental data [8] and our computational
results (Fig. 3).

IV. CONCLUSIONS

We presented electronic transport properties of liquid Fe-S
alloys from DFT-MD simulations at conditions relevant for
the cores of terrestrial planets. We find absolute values of
electrical resistivity and thermal conductivity to be consistent
with those of other Fe-light-element alloys reported in pre-
vious work [1,70], ranging from 75 to 125 μ� cm and 30 to
220 W m−1 K−1. Fe alloys with low S content exhibit a positive
TCR along isochores, which gradually decreases upon com-
pression. We show that this is due to a compression-induced
resistivity saturation by comparing the electron mean free path
to interatomic distances. For high S concentrations (Fe3S),
the mean free path is further shortened by increased impurity
scattering, sufficient to reach the Ioffe-Regel condition at the
lowest volumes, resulting in a saturation of resistivity. At
these conditions the TCR becomes negative, which is caused
by a decrease in the Fe d density of states at the Fermi
level.

For applications in planetary physics, we provide models
for ρ(V,T ) and λth(V,T ) (Appendix A), which, in combina-
tion with a self-consistent thermodynamic equation of state
(Appendix B), can be translated to the P -T conditions of
planetary cores.
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APPENDIX A: MODEL FOR ELECTRICAL
AND THERMAL CONDUCTIVITY

We describe the resistivity behavior ρ(V,T ) with a parallel-
resistor model:

1

ρ(V,T )
= 1

ρBG(V,T )
+ 1

ρsat(V )
+ 1

ρel(T )
, (A1)

where

ρBG = ρ0

(
V

V0

)a

+ ρ1

(
V

V0

)b
T

T0
(A2)

is the empirical expression used by de Koker et al. [1] based
on the Bloch-Grüneisen formula.

ρsat = c

(
V

V0

) 1
3

(A3)

is a term accounting for resistivity saturation, and

ρel = d
T0

T
(A4)

describes the effect of thermal broadening of the DOS. The
assumptions entering equations (A1)–(A4) are as follows:

(i) Sources of resistivity contributions in Eq. (A1)
are independent, and therefore, conductivities are
additive.

(ii) In the limit of high T , the Bloch-Grüneisen formula is
linear in T . Both residual resistivity [first term in Eq. (A2)] and
the material-dependent prefactor of the second term are well
described by a power law in V/V0.

(iii) Saturation resistivity [Eq. (A3)] is proportional to in-
teratomic distance and therefore increases ∝(V/V0)1/3. This is
consistent with the saturation resistivities for pure Fe reported
by Ohta et al. [7].

(iv) Since the effect of thermal broadening on the DOS
at EF can be attributed to a resistivity contribution due
to thermal pressure (Fig. S5 in the Supplemental Material
[59]), we describe ρel in Eq. (A4) as inversely proportional
to T .

Rather than fitting a model for λth directly, we compute an
effective Lorenz number L at each simulation and fit L(V,T )
as [1]

L(V,T ) = LR

(
V

V0

)e(
T

T0

)f

. (A5)

Fit parameters are listed in Table I.

APPENDIX B: EQUATION-OF-STATE MODEL

In order to describe electronic transport properties as a
function of P suitable for comparison to experiments and
for applications in planetary models, we fit a thermodynamic
model to the Fe7S and Fe3S results that is based on a separation
of the Helmholtz energy in an ideal gas, electronic and excess
term [71,72]. The volume dependence of the excess term is
represented by Eulerian finite strain f with the exponent n = 2
and a similarly reduced T term � with the exponent m = 0.79
and expansion orders Of = 3 and O� = 2, parameters that
describe the results for liquid iron well [1]. Figure S6 in
the Supplemental Material shows the quality of the fit for
E, P , and the electronic entropy Sel of the DFT-MD results
[62]. Thermodynamic parameters at reference conditions are
summarized in Table S3 of the Supplemental Material [46].
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TABLE S1. Calculated values for pressure, electrical resistivity, thermal conductivity and Lorenz

number of Fe7S from first principles computations, with reference volume V0 = 11.82 Å3/atom.

Uncertainties of P due to the equation of state fit are below 1 GPa.

V/V0 T [K] P [GPa] ρ [µΩcm] λth [Wm−1K−1] L [10−8WΩK−2]

1.0

2000 3 93 ± 1 38 ± 1 1.77 ± 0.05

3000 12 95 ± 1 62 ± 1 1.94 ± 0.05

4000 22 100 ± 2 80 ± 2 1.98 ± 0.06

6000 41 105 ± 1 116 ± 2 2.02 ± 0.04

8000 62 111 ± 3 147 ± 4 2.04 ± 0.07

0.9

3000 33 94 ± 1 70 ± 1 2.19 ± 0.04

4000 44 97 ± 2 92 ± 2 2.23 ± 0.06

6000 66 101 ± 2 126 ± 3 2.11 ± 0.06

8000 89 103 ± 2 159 ± 2 2.05 ± 0.04

0.8

4000 83 90 ± 1 100 ± 2 2.26 ± 0.04

6000 108 93 ± 2 138 ± 3 2.14 ± 0.06

8000 134 97 ± 1 170 ± 2 2.07 ± 0.04

0.7

2000 118 80 ± 2 46 ± 2 1.82 ± 0.08

3000 136 81 ± 1 77 ± 2 2.08 ± 0.05

4000 152 82 ± 1 104 ± 1 2.13 ± 0.04

6000 184 84 ± 1 150 ± 3 2.09 ± 0.04

8000 214 85 ± 2 195 ± 2 2.08 ± 0.05

0.65

3000 189 77 ± 2 82 ± 2 2.10 ± 0.07

4000 209 78 ± 2 111 ± 2 2.16 ± 0.06

6000 244 80 ± 1 161 ± 3 2.13 ± 0.05

8000 277 82 ± 2 204 ± 4 2.10 ± 0.07

0.6

4000 288 75 ± 2 119 ± 2 2.21 ± 0.06

6000 328 75 ± 1 174 ± 4 2.18 ± 0.06

8000 365 77 ± 2 220 ± 6 2.12 ± 0.07

8

5 Wagle et al. (2018), Phys. Rev. B 97, 094307
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TABLE S2. Calculated values for pressure, electrical resistivity, thermal conductivity and Lorenz

number of Fe3S from first principles computations, with reference volume V0 = 11.82 Å3/atom.

Uncertainties of P due to the equation of state fit are below 1 GPa.

V/V0 T [K] P [GPa] ρ [µΩcm] λth [Wm−1K−1] L [10−8WΩK−2]

1.0

4000 25 113 ± 3 70 ± 2 1.96 ± 0.07

6000 41 118 ± 2 97 ± 2 1.91 ± 0.06

8000 59 124 ± 3 121 ± 3 1.87 ± 0.06

0.9

2000 27 111 ± 3 40 ± 1 2.20 ± 0.08

4000 46 109 ± 4 81 ± 2 2.22 ± 0.10

6000 66 113 ± 2 111 ± 1 2.09 ± 0.04

8000 85 117 ± 1 133 ± 2 1.95 ± 0.03

0.8

3000 73 108 ± 3 64 ± 2 2.29 ± 0.09

4000 85 107 ± 4 85 ± 2 2.29 ± 0.10

6000 107 107 ± 2 121 ± 2 2.14 ± 0.06

8000 129 108 ± 2 151 ± 3 2.03 ± 0.05

0.7

2000 126 103 ± 4 34 ± 1 1.75 ± 0.10

3000 141 102 ± 2 59 ± 1 2.01 ± 0.06

4000 155 101 ± 2 85 ± 3 2.15 ± 0.08

6000 181 100 ± 3 129 ± 2 2.15 ± 0.07

8000 206 100 ± 2 170 ± 4 2.13 ± 0.07

0.65

3000 196 102 ± 2 62 ± 2 2.08 ± 0.08

4000 211 99 ± 2 86 ± 2 2.15 ± 0.07

6000 240 96 ± 2 136 ± 3 2.17 ± 0.07

8000 267 96 ± 3 178 ± 5 2.14 ± 0.08

0.6

4000 291 96 ± 2 91 ± 4 2.18 ± 0.10

6000 323 95 ± 2 141 ± 3 2.23 ± 0.07

8000 352 91 ± 2 189 ± 3 2.16 ± 0.06

9
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TABLE S3. Parameters of the modified thermodynamic model by de Koker and Stixrude71 for

V0 = 11.82 Å3/atom and T0 = 2000 K. Values for extensive variables are per mol of formula units.

Fe Fe7S Fe3S

Pxs0 [GPa] -2.335 0.846 5.534

KT,xs0 [GPa] 131.4 137.8 140.0

K ′T,xs0 5.161 4.694 4.736

αKT,xs0 [GPa/K] 8.822·10−3 8.620·10−3 7.194·10−3

V0

(
∂αKT
∂V

)
T,xs0

[GPa/K] -1.563·10−2 -1.660·10−2 -1.327·10−2

T0

(
∂αKT
∂T

)
T,xs0

[GPa/K] -3.348·10−3 -2.376·10−3 -1.808·10−3

V 2
0

(
∂2αKT
∂V 2

)
T,xs0

[GPa/K] 2.840·10−2 5.115·10−2 3.534·10−2

CV,xs0 [J/(mol K)] 18.50 185.1 92.90

V0

(
∂CV
∂V

)
T,xs0

[kJ/(mol K)] 15.84 317.1 79.57

V 2
0

(
∂2CV
∂V 2

)
T,xs0

[kJ/(mol K)] 2.113·10−2 3.094·10−1 1.133·10−1

ζ0 [J/(mol K2)] 3.486 30.04 12.63

ξ 0.843 1.096 1.006

71N. de Koker and L. Stixrude, Geophys. J. Int. 178, 162 (2009)
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S U M M A R Y
Discontinuous changes of electrical resistivity ρel (increase), density � and isothermal com-
pressibility βT (decrease) occur across the melting temperature of metals and can be directly
related by Ziman’s theory in the long-wavelength approximation. By evaluating experimental
data at ambient pressure, we show that Ziman’s approximation holds for iron and other simple
and transition metals. Using a thermodynamic model to determine βT for γ -, ε- and liquid
Fe and a previously published model for ρel of liquid Fe, we apply Ziman’s approximation
to calculate ρel of solid Fe along the melting curve. For pure Fe, we find the discontinuity in
ρel to decrease with pressure and to be negligibly small at inner core boundary conditions.
However, if we account for light element enrichment in the liquid outer core, the electrical
resistivity decrease across the inner core boundary is predicted to be as large as 36 per cent.

Key words: Electrical properties; High pressure behaviour; Core.

1 I N T RO D U C T I O N

Electrical resistivity ρel of liquid metals and alloys under extreme
conditions is a critical parameter for the stability and evolution of
planetary dynamos. In particular, the magnetic fields of the Earth,
Mercury and Ganymede are thought to be generated by a self-
sustained dynamo in the convecting liquid portions of their cores,
which are composed of mainly iron and a variety of lighter elements
(Merrill et al. 1996; Sarson et al. 1997; Anderson et al. 2011). In
that context, the role of the inner core (IC) in magnetic field gener-
ation remains a subject of controversy (Olson & Amit 2014). Ini-
tial geodynamic studies (Hollerbach & Jones 1993; Glatzmaier &
Roberts 1995) reported evidence that finite electrical resistivity in
the Earth’s solid IC has a stabilizing effect on the magnetic field
and therefore leads to a decrease in the frequency of global field re-
versals. Subsequently, however, there have been conflicting results
regarding this argument, ranging from support of the initial infer-
ence (Dharmaraj & Stanley 2012), no influence (Wicht 2002), to
an increased number of excursion in the presence of a conducting
IC when compared to results with an insulator at the centre of the
planet (Lhuillier et al. 2013). For conducting ICs, these studies have
relied on conductivity values of the IC being the same as for the
outer core (OC), while one would expect that resistivity changes
across the IC boundary (ICB) for two reasons: (i) The structure of
solid and liquid are quite different and resistivity changes across
the melting temperature (Tm) and (ii) light elements will not equally
partition between the OC and the IC. In the current manuscript we
look at these two effects with the goal to provide values of ρel for
use in geodynamo simulations that may help to better assess the
effect of the IC on magnetic field generation.

In general, metals exhibit a distinct increase in electrical resis-
tivity upon melting. For iron, it increases by ∼8 per cent at ambient

pressure (P; van Zytveld 1980; Table 1), a value that remains ap-
proximately constant up to 6 GPa as determined in large volume
press experiments (Secco & Schlössin 1989; see Supporting Infor-
mation Fig. S1). In similar experiments, Ezenwa & Secco (2017b)
recently determined a jump of similar magnitude for another tran-
sition metal, Co, while for the closed d-shell metals, Zn and Cu,
the discontinuity is significantly larger (Ezenwa & Secco 2017a;
Ezenwa et al. 2017). These data are of very high quality and deter-
mine the jump across Tm with great precision. At higher P, static
experiments using the diamond anvil cell (DAC) are more scarce
and the small sample size and potential temperature (T) gradients
inside a DAC make high P–T experiments challenging, especially
close to Tm (Dobson 2016), resulting in large uncertainties of the
data and consequently the determination of a potential resistivity
discontinuity. Ohta et al. (2016) recently reported T-dependent re-
sistivities for the solid and the liquid phase of iron up to 51 GPa
measured in the DAC, and they describe an increase by as much as
∼20 per cent across melting (see Supporting Information Fig. S2).
At higher P, Ohta et al. (2016) relied on resistivity measurements
for the solid hcp (ε) phase of Fe only, and in order to estimate ρel

for the liquid, they used a Bloch–Grüneisen fit—taking resistiv-
ity saturation into account—to their data to extrapolate to Tm and
added 20 per cent to account for the increase of ρel upon melting
in an ad-hoc fashion. Gomi et al. (2013) performed measurements
of ρel for hcp Fe up to 100 GPa at room T only, and argue along
the theory of Mott (1972) that iron at core conditions is close to
saturation resistivity and therefore the increase of ρel on melting
should be negligible. In the development of their model resistivity
and its application to the Earth’s core, Gomi et al. (2013) do not
distinguish between the solid and liquid phase.

Complementary to experiments, electronic transport properties
at high P have been calculated by evaluating the Kubo–Greenwood
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Table 1. Thermophysical data for pure iron at ambient pressure at the melting point (Tm = 1808 ± 5 K)a. Resistivities have been
measured by Cezairliyan & McClure (1974)a and van Zytveld (1980)b. If not reported directly, values measured by Dever (1972)c,
Basinski et al. (1955)d, Tsu et al. (1985)e, Drotning (1981)f and compiled by Desai (1986)g have been extrapolated to Tm while using
the misfit as uncertainty. For the liquid phase, a scenario including values for � and α from Assael et al. (2006)h has been tabulated
for comparison. A column of thermodynamic properties for liquid Fe from the model of Komabayashi (2014)i has been included.
Compressibilities βS and βT have been calculated using eqs (6) and (7).

δ-Fe Liquid Fe
Drotning Assael Thermodynamic modeli

ρel [μ	 cm] 127.0 ± 0.6a 137.6 ± 1.0b

vp [km s−1] 4.73 ± 0.07c 3.98 ± 0.03e 3.98
vs [km s−1] 2.49 ± 0.06c

� [g cm−3] 7.29 ± 0.02d 7.017 ± 0.002f 7.04 ± 0.06h 7.09
α [10−5 K−1] 6.5 ± 0.1d 8.8 ± 0.1f 13.2 ± 0.1h 9.0
cp [J g−1K−1] 0.80 ± 0.06a 0.84 ± 0.05g 0.82
βS [GPa−1] 1/(103 ± 6) 1/(111 ± 2) 1/(112 ± 2) 1/112
βT [GPa−1] 1/(91 ± 5) 1/(88 ± 2) 1/(70 ± 2) 1/87

ρ
liquid
el

ρsolid
el

(
�liquid

�solid

)2
(

β
liquid
T

βsolid
T

)−1

0.97 ± 0.05 0.78 ± 0.05 0.98 ± 0.05

(KG) formula for the Onsager kinetic coefficients on results of
density functional theory (DFT)-based molecular dynamics (MD)
simulations (Vlček et al. 2012; de Koker et al. 2012; Pozzo et al.
2012, 2013, 2014), a computationally expensive approach. For pure
liquid iron at conditions of the Earth’s ICB, these studies agree on
values of resistivity slightly above 60 μ	 cm (de Koker et al. 2012;
Pozzo et al. 2012), while for ε-Fe at similar densities, T-dependent
values of ρsolid

el = 53–57 μ	 cm have been reported (Pozzo et al.
2014). These results suggest that a change in ρel on melting—albeit
small—persists to core conditions.

The determination of electronic transport properties of metals
under extreme P and T is challenging both experimentally and com-
putationally, and remains a topic of a controversial discussion. In
this study, we address the question of electrical resistivity of solid
Fe close to Tm along the melting curve by a different approach:
We use Ziman’s theory to relate electronic and elastic properties
upon melting, which we test on experimental data of Fe at ambient
pressure. We then apply this method along the melting curve and
infer resistivities of the solid phase at high P based on previously
published values for the liquid and discuss the influence of light
element alloying and partitioning at crystallization of the IC, as it
is relevant for cores of terrestrial planetary bodies.

2 M E T H O D S

The Ziman formula for electrical resistivity (Ziman 1961)

ρel = a0�
e2

4π 3 Z

a0kF

1

(2kF )4

2kF∫
0

S(q)|U (q)|2q3dq (1)

has been widely applied to determine ρel for metallic liquids up
to the warm dense matter regime (e.g. Burrill et al. 2016). In this
model, quasi-free conduction electrons of momentum �k scatter off
screened ionic potentials U(q), where q = |k − k′| is the scattering
wavenumber. The spatial arrangement of scattering centres is de-
scribed by the static ion–ion structure factor S(q) in reciprocal space
and incorporates an implicit dependence on density � and T. The
pre-factor a0�

e2 ≈ 21.74 μ	 cm is the atomic unit of resistivity (with
a0 being the Bohr radius, � the reduced Planck constant and e the
elementary charge), Z the number of valence electrons and kF the
Fermi wavenumber. Due to conservation of momentum, scattering
takes place from and into states at the Fermi level. Therefore, the

largest possible change of momentum upon an elastic collision is
2kF for a backscattered electron (k → k′ = −k) which determines
the upper integration boundary.

In the derivation of eq. (1), several approximations have been
made. (i) The Fermi surface is assumed to be isotropic. For liq-
uids and amorphous solids, this is always the case. For many
crystalline solids it is a good approximation as has been shown
for bcc and fcc metals (Papaconstantopoulos 1986). In addition,
if one is interested in resistivity of a polycrystal, the Hashin–
Shtrikman (HS) bounds (Hashin & Shtrikman 1963) for ρel are
very narrow for the group 8 elements Ru and Os, that crystallize in
the hcp phase at ambient P (Volkenshteyn et al. 1978; Schriempf
1968) (see Supporting Information Table S2). (ii) Higher frequency
(ω) moments of S(q, ω) have been omitted, since they are dom-
inated by interionic contributions which are generally very small
(Cheung & Ashcroft 1978). Furthermore, for T above the Debye
temperature (θD), the ω-dependence due to the distribution func-

tion �ω

kB T /(e
�ω

kB T − 1) = �ω

kB T /[(1 + �ω

kB T + . . .) − 1] ≈ 1 (with the
Boltzmann constant kB) can be neglected. (iii) The spread of the
Fermi–Dirac distribution (kBT) is larger than the maximum en-
ergy transfer by phonons (kBθD) at these conditions. Therefore, it
is reasonable to treat electron scattering in solids at high T quasi-
elastically.

By means of eq. (1), Ashcroft & Lekner (1966) calculated re-
sistivities for a number of liquid metals by using different model
potentials and an analytical expression for the hard sphere structure
factor Shs(q) (Wertheim 1963). Their results agree reasonably well
with experimental values at ambient P. Taking �-dependence of
Shs(q) into account, the Ziman formula has been applied to P of the
Earth’s OC by Jain & Evans (1971), who constrained the resistivity
of liquid iron at the core–mantle boundary to be 104 ± 6 μ	 cm at
3473 K. The KG approach yields values of about two thirds of this
number at comparable P and T, which may indicate a breakdown of
the hard sphere approximation at high densities.

As the ionic potential U(q) does not change across Tm, the in-
crease of ρel upon melting occurs due to the transition from a crys-
talline into a disordered structure, which is reflected by changes in
S(q) and �. As a first order approximation, Ziman (1961) proposed
to replace the integral in eq. (1) by the integrand’s value at q = 0.
While S(q) contains implicit information on density, other factors in
eq. (1) depend on � explicitly: U by its normalization to −2/3· EF at
q = 0 (EF being the Fermi energy), and the Fermi radius kF. For the
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Resistivity discontinuity of iron along the melting curve 239

free electron gas, they scale as EF ∝ �2/3 and kF ∝ �1/3, respectively.
While Fe is not a free electron metal, its Fermi level shows the same
dependence on volume (Supporting Information Fig. S3). Combin-
ing k−5

F in the pre-factor with E−2
F from the integrand, resistivity

decreases ∝�−3. If one considers the ratio of resistivities in the
liquid and the solid phase at Tm, in the Ziman approximation the
following relation holds:

ρ
liquid
el

ρsolid
el

� S(0)liquid

S(0)solid

(
�liquid

�solid

)−3

. (2)

On the other hand, the distribution of atoms in condensed matter
determines bulk elastic parameters. Since the thermodynamic limit

lim
q→0

S(q) = �kB TβT (3)

is known from fluctuation theory (March 1990), the structure factor
ratio in eq. (2) can be reformulated in terms of isothermal com-
pressibilities, thermodynamically defined as βT = −�∂(1/�)/∂P,
and Ziman’s approximation becomes

ρ
liquid
el

ρsolid
el

� β
liquid
T

βsolid
T

(
�liquid

�solid

)−2

(4)

or

ρ
liquid
el

ρsolid
el

(
�liquid

�solid

)2
(

β
liquid
T

βsolid
T

)−1

� 1. (5)

Jain & Evans (1971) inserted a model for �, T and βT of the Earth
into eq. (3), which fully defines the variation of Shs(q) with P and
T. While we do not calculate absolute resistivity values, we use the
long-wavelength approximation to eq. (1) as a method to estimate
the relative increase of ρel from ρ

liquid
el to ρsolid

el across the melting
curve based on thermodynamic parameters.

The application of eq. (4) is not limited to this direction. High P
experiments such as those performed by Gomi et al. (2013) or Ohta
et al. (2016) for the solid could make use of it to convert ρsolid

el to
ρ

liquid
el or cross-check their data.

3 R E S U LT S A N D D I S C U S S I O N

3.1 Ambient pressure

We assess the validity of relation (5) for iron at ambient P by
compiling experimental data for ρel, � and βT right above and
below Tm. Electrical resistivity of iron in the solid state has been
measured up to 1800 K (Cezairliyan & McClure 1974) and for
the liquid starting at 1808 K (van Zytveld 1980), with a ratio of
ρ

liquid
el /ρsolid

el = 1.08 ± 0.01 (Table 1).
To obtain compressibilities, we rely on ultrasonic measurements

of the longitudinal and transverse acoustic velocities (vp and vs,
respectively), which are related to isentropic compressibility βS via

v2
p − 4

3
v2

s = 1

�βS
, (6)

with vs = 0 for the liquid. To convert βS to βT, one has to apply the
thermodynamic relation

βT = βS + α2T

�cp
, (7)

with cp being the heat capacity at constant P and α the coefficient
of thermal expansion. If not directly reported, we extrapolated the
thermophysical quantities in eq. (7) to Tm (see Table 1).

To the best of our knowledge, no data exist on acoustic velocities
for the δ-phase of iron (in the bcc structure) which is in equilibrium
with the liquid at ambient P. Instead, we use single crystal elastic
constants of the α-phase (also in the bcc structure) from Dever
(1972) above 1050 K, calculate vp and vs from a Voigt–Reuss–Hill
polycrystalline average and linearly extrapolate to Tm (Table 1).
This approach is well justified as any magnetic contribution to βT

vanishes above the Curie temperature (1043 K), and the α- and
δ-phase stability region can be viewed as belonging to the same
stability field that is connected at negative pressure (Komabayashi &
Fei 2010). In order to apply eq. (7), we use values for � and α from
the X-ray diffraction study of Basinski et al. (1955) and cP from
Cezairliyan & McClure (1974).

Thermodynamic parameters for liquid iron are more controver-
sial. Measured sound velocities range from 3820 to 4052 m s−1

(Nasch et al. 1994; Casas et al. 1984) and � from 6937 to
7120 kg m−3 (Blumm & Henderson 2000; Hixson et al. 1990).
For vP we choose the measurements by Tsu et al. (1985) (Table 1)
that are most consistent with values computed with the thermody-
namic model of Komabayashi (2014). Density values are closely as-
sociated with those of thermal expansivity α which has the strongest
influence on the determination of βT from βS, as it enters in quadratic
form in eq. (7). As for the solid phase, values of � and α should
be chosen consistently, i.e. come from the same underlying data of
�(T). Thermal expansivity of liquid iron has been the topic of a
long-standing controversy (Williams 2009) with either values be-
low 0.9 × 10−4 K−1 (e.g. Drotning 1981; Nasch & Steinemann
1995; Blumm & Henderson 2000) or larger than 1.1 × 10−4 K−1

(e.g. Kirshenbaum & Cahill 1962; Saito et al. 1969; Hixson et al.
1990). With the exception of the dilatometer work of Blumm &
Henderson (2000), the former data stem from γ -ray attenuation
studies and the latter from constant mass setups (e.g. Archimedean,
maximum bubble pressure, levitation techniques). Following
Assael et al. (2006), Williams (2009) argued for the larger α on
the basis of potential systematic errors due to the sample geometry
in γ -ray attenuation. However, constant mass methods may under-
estimate effects of wetting, surface tension and viscosity (Drotning
1981; Nasch et al. 1994), which could also account for the dis-
crepancy. Using the values recommended by Assael et al. (2006),
βT = 1/(70 ± 2) GPa−1, with � and α from Drotning (1981),
βT = 1/(88 ± 2) GPa−1. Only for the βT value based on � and α of
Drotning (1981), the Ziman approximation (eq. 5) holds (Table 1).

The thermodynamic limit of S(q) (eq. 3) provides an alternative
route to the determination of βT independent of α. We have fitted
measured S(q) of liquid iron (Waseda & Ohtani 1974) by means
of a Percus–Yevick hard-sphere expression in the long wavelength
limit (see Supporting Information Figs S4 and S5) and find, despite
considerable uncertainty, a compressibility value that is consistent
with the acoustic-velocity-based value using � and α of Drotning
(1981), supporting the validity of Ziman’s approximation for iron
at ambient P. Model parameters for liquid iron from Komabayashi
(2014) also agree well with the S(q)-based βT and satisfy eq. (5) in
combination with the experimental data of δ-Fe (Table 1).

A similar evaluation of eq. (5) for other metallic elements can
be found in the Supporting Information (Tables S3– S5). We find
that the resistivity ratio is well represented by the right hand side
of eq. (4) for the simple metals Na and Al, and the 3d transi-
tion metals Co and Ni. For Zn and the noble metals Cu, Ag and
Au—all metals with closed d-shell—it is systematically underesti-
mated by a factor of ∼1.5, that is, the increase in ρel across melting
(left-hand side of eq. 4) is significantly larger than the ratio of ther-
modynamic properties (right-hand side of eq. 4). For Co, Cu and Zn,
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the resistivity jump at ambient P is consistent with the experiments
up to 5 GPa (Ezenwa & Secco 2017a,b; Ezenwa et al. 2017).

3.2 High pressure

In order to obtain the right hand side of eq. (4) at high P for Fe, we
compute � and βT on both the liquid and the solid side of the melt-
ing curve with the model of Komabayashi (2014) (Fig. 1a). For the
liquid, the model yields a value for �liquid which is consistent with
experimental work by Tateyama et al. (2011) at 4.3 GPa and shock
experiments up to ∼440 GPa (Brown & McQueen 1986; Brown
et al. 2000) (see Supporting Information Fig. S6). The thermody-
namic model by Komabayashi (2014) has been designed to repro-
duce results from DAC and multi-anvil experiments for the solid
phases. The applicability of this model in the geophysical context
is further supported when comparing its ratio of adiabatic com-
pressibilities at the ICB (β liquid

S /βsolid
S = 1.02) with that of PREM

(β liquid
S /βsolid

S = 1.03) (Dziewonski & Anderson 1981).
Fig. 1(b) shows both ρ

liquid
el and ρsolid

el for pure Fe as a function of
P, covering conditions up to 360 GPa, the pressure in the Earth’s
centre. Resistivities in the liquid phase have been calculated from
the modified Bloch–Grüneisen model by de Koker et al. (2012) and
ρsolid

el has been computed by means of eq. (5). We predict ρsolid
el for

iron in the range of 69–71 μ	 cm at conditions of the cores of Mars,
Mercury and Ganymede, while ρ

liquid
el ≈ 78 − 88 μ	 cm.

The KG results by de Koker et al. (2012) underestimate ρ
liquid
el

at ambient conditions and low P compared to experiments, and
this mismatch suggests that ρsolid

el should also be considered with
caution there. Two effects contribute to this discrepancy. (i) The
underlying equation of state overestimates density at ambient P
by ∼20 per cent, similar to the small volume at zero pressure re-
ported for liquid iron from DFT–MD simulations by Ichikawa et al.
(2014). Smaller volumes lead to reduced resistivity values. (ii) Re-
cent results of Drchal et al. (2017) indicate that there is a possible
contribution of spin disorder to ρel at high T, which has not been
taken into account by previous computational studies. At higher P,
however, resistivity values of de Koker et al. (2012) are in good
agreement with shock wave data (Keeler 1971; Matassov 1977;
Bi et al. 2002).

Stacey & Anderson (2001) have argued that ρel remains constant
along the melting curve. In their derivation of ∂(ln ρel)/∂P = 0,
they express the Grüneisen parameter in terms of an average lattice
frequency, and they do not distinguish between the liquid and the
solid phase. Since the melting point defines an extreme case of
anharmonicity, it is not clear to what degree their conclusion is
applicable to the liquid phase. Indeed, in contrast to a relatively
strong change of −∂(ln ρel)/∂P along the melting curve for liquid
Fe (Fig. 1c), the corresponding slopes for both the fcc (<10−3

GPa−1) and hcp phases (<4 × 10−4 GPa−1) are small, supporting
the hypothesis of Stacey & Anderson (2001) to first order for the
solid phases.

An interesting feature of the model is the predicted decrease
of ρsolid

el at the γ -ε-liquid triple point. Resistivity generally de-
creases with increasing charge carrier density: ρel scales with �

between ∝ �−3 (eq. 2) and ∝ �−2 (eq. 4), depending on the
implicit �-dependence of S(q). In Ziman’s long wavelength ap-
proximation (eq. 2), this behaviour is captured both directly (in-
crease in �) and indirectly, by βT decreasing from the γ to the ε

phase.
Although measurements of Ohta et al. (2016) confirm an increase

of ρel upon melting up to 51 GPa within large uncertainties, their

Figure 1. (a) Liquid to solid compressibility/density ratio for Fe along
the melting curve from the thermodynamic model of Komabayashi (2014)
used in Ziman’s approximation (right-hand side of eq. 4). The lower x-axis
label and ticks show pressure, the upper ones the corresponding melting
temperature. Pressure intervals indicated correspond to core P in the ter-
restrial bodies of our solar system (Ganymede, Mercury, Mars, Venus and
Earth). The vertical line represents the γ -ε-liquid triple point in the model of
Komabayashi (2014; 96 GPa and 3300 K). (b) Electrical resistivities in the
liquid (red curve) and the solid (black curve) phases of Fe along the melting
curve. For the liquid phase, the modified Bloch–Grüneisen fit from de Koker
et al. (2012) has been evaluated along the melting curve, while the resistiv-
ity in the solid has been calculated using the ratios shown in panel (a) and
applying eq. (4). The band widths take fitting uncertainties of the original
Kubo-Greenwood results by de Koker et al. (2012) into account. Laboratory
data (filled symbols) are by Secco & Schlössin (1989) (S89) and Ohta et al.
(2016) (O16) from static experiments, and by Bi et al. (2002) (B02), Keeler
(1971) (K71) and Matassov (1977) (M77) from shock wave experiments.

For ρ
liquid
el and ρsolid

el , data by Secco & Schlössin (1989) and Ohta et al.
(2016) up to 51 GPa have been fitted linearly in the liquid and solid regions,
respectively, and extrapolated towards Tm from both sides (see Supporting
Information Figs S1 and S2). For the shock wave experiments, the lowest P
point by Bi et al. (2002) and the highest P point each by Keeler (1971) and
Matassov (1977) have been used, all for the solid phase. Temperatures along
the Hugoniot at these pressures (Brown & McQueen 1986) are significantly
below the melting point. Open circles in the P-range between 100 and 160
GPa show values calculated from combined Bloch–Grüneisen/resistivity-
saturation fit parameters given in Ohta et al. (2016) and evaluated at Tm of
Komabayashi (2014). G13 (open diamond) represents the high T extrapola-
tion of a room temperature DAC experiment reported in Gomi et al. (2013),
also taking resistivity saturation into account. At inner core boundary P,
the Kubo–Greenwood results by Pozzo et al. (2012, 2014) (P12 and P14)
are included for liquid and solid Fe, respectively. (c) Negative logarithmic
derivative −∂(ln ρel)/∂P for liquid and solid iron along its melting curve.
While the P-gradient is significant in the liquid, it is negligible in the solid,
particularly for ε-Fe.
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absolute values suggest ρel to increase as a function of P for the
γ -phase along Tm. This is neither consistent with an expected de-
crease of ρel ∝ �−2. . . − 3, nor in quantitative agreement with KG
results. Resistivities computed with the Bloch-Grüneisen/resistivity
saturation model of Ohta et al. (2016) for ε-Fe at P > 100 GPa,
where ε-Fe coexists with the liquid along the melting curve, show the
expected decrease of ρsolid

el with P within the uncertainties. Absolute
values, however, are significantly smaller than KG results, estimates
from Ziman’s approximation and shock wave experiments (Bi et al.
2002; Keeler 1971; Matassov 1977; Fig. 1). Gomi et al. (2013) re-
ported ρel of ε-Fe based on DAC experiments at 300 K. Although
their model also takes resistivity saturation into account, their pre-
dicted value at core mantle boundary pressure plots significantly
higher than those of Ohta et al. (2016) and is consistent with our
model.

The resistivity contrast across the ε-liquid phase boundary
decreases gradually towards higher P. For ICB pressure and
Tm = 6382 K (Komabayashi 2014), Ziman’s approximation yields
a value of 58 ± 2 μ	 cm for solid ε-iron, which is only marginally
different from the 62 ± 2 μ	 cm in the liquid phase (increase
on melting by 7 per cent). At comparable T (6350 K), Pozzo et al.
(2014) computed solid resistivity values slightly lower than our re-
sult for pure iron (57 μ	 cm), which—in combination with their
value for liquid Fe of 64 μ	 cm (Pozzo et al. 2012)—yields a
discontinuity of 12 per cent.

As no reliable thermodynamic model for Co is currently available,
we are not able to test whether the recently reported resistivity data
by Ezenwa & Secco (2017b) follow the relation of eq. (5) at high
P as well as it does at ambient pressure (Supporting Information
Table S4).

3.3 Influence of light element partitioning

With the addition of light element impurities, such as Si, O, S
or C, resistivity will increase with impurity concentration. Al-
though Matthiessen’s rule will be violated close to saturation re-
sistivity (Gomi et al. 2016), this general behaviour continues to
hold for compositions in the Fe–O–Si system for both the liquid
(de Koker et al. 2012; Pozzo et al. 2013) and the solid (Pozzo
et al. 2014). Since light elements can dissolve in higher concentra-
tion in the liquid than in the solid and lead to a depression of the
liquidus T in the binary system (Anderson & Ahrens 1994; Alfè
et al. 2002), our method cannot be easily applied to the Earth’s
core.

We can, however, compare the estimated ρsolid
el of pure Fe and

ρ
liquid
el of selected alloys. As a result of light element segregation

into the liquid OC, the resistivity contrast is significantly enhanced
compared to pure iron. When we combine our estimate for ρel of
solid Fe at the ICB pressure of ∼58 μ	 cm with that of liquid
Fe0.82Si0.10O0.08 of 79 μ	 cm (Pozzo et al. 2014) or 75 μ	 cm for
liquid Fe7Si (de Koker et al. 2012), resistivity in the OC would be
larger than in the IC by 29-36 per cent.

Although the influence of IC resistivity on the frequency of global
field reversals is controversial as we discuss in the Introduction, a
change of ρel at the ICB provides an important constraint on the
boundary conditions of dynamo simulations. By using the discon-
tinuity of ρel, its possible effect on the magnetic field could be
explored for terrestrial planets up to the pressure of the Earth’s IC.
It is worth noting that the applicability of the model is neither lim-
ited by the size of the IC nor the P at the ICB, which makes it viable
for models that include a growing IC.

4 C O N C LU S I O N S

Having analysed data for isothermal compressibility and electrical
resistivity at ambient P, we find that the increase of electrical resis-
tivity of iron upon melting can be represented by a change of � and
S(q) in the long-wavelength limit to first order. High P experiments
(Secco & Schlössin 1989; Deng et al. 2013; Ohta et al. 2016) and
the computational work of Pozzo et al. (2012, 2014) indicate that a
change of electrical resistivity persists along and across the melting
curve. Knowing five out of six quantities on both sides of the melt-
ing curve in Ziman’s approximation (eq. 5), this observation allows
for a first order estimate of the remaining quantity. We combine
DFT-MD results for ρ

liquid
el (de Koker et al. 2012) and the compress-

ibility/density ratio in eq. (4) from a thermodynamic model of Fe
(Komabayashi 2014) to compute ρsolid

el along the melting curve of
iron up to 360 GPa.

For planetary cores, the difference in electrical resistivity is likely
to be amplified by differences in chemical composition across an
ICB, since light elements prefer to remain in solution in the OC.
This difference might be as large as 36 per cent for the Earth’s core.
As long as the pressure of a growing IC does not cross a solid-solid
phase boundary, ρsolid

el at the ICB remains approximately constant,
as suggested by Stacey & Anderson (2001).
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Supplementary data are available at GJI online.

Figure S1. Electrical resistivity as a function of T for pure iron at
high P as reported by Secco & Schlössin (1989). Thick vertical lines
indicate Tm from the model of Komabayashi (2014). Dashed lines
represent the linear fit in both liquid and solid, which has been used
to extrapolate towards Tm and determine the discontinuity there.
Figure S2. Electrical resistivity as a function of T for pure iron
at high P as reported by Ohta et al. (2016). Thick vertical lines
indicate Tm from the model of Komabayashi (2014). Dashed lines
represent the linear fit in both liquid and solid, which has been used
to extrapolate towards Tm and determine the discontinuity there.
Figure S3. Fermi level from DFT-MD simulations of liquid Fe as
a function of (V/V0)−2/3. The offset at zero density is due to the
ambiguity of the energy zero in DFT-MD.
Figure S4. S(q) of liquid Fe in the long wavelength region at ambient
P and three different T, measured by Waseda & Ohtani (1974). The
solid lines represent a fit to the data up to 1.5 Å−1 with a Percus-
Yevick expression of the structure factor of a hard sphere liquid.
Figure S5. Isothermal bulk modulus KT as a function of T. Red
circles have been obtained by fitting a Percus-Yevick expression of
the hard-sphere structure factor up to 1.5 Å−1 to data by Waseda
& Ohtani (1974), and extrapolating to the thermodynamic limit
limq → 0S(q) = �kBT/KT (Figure 4). They agree well with the model
of Komabayashi (2014) (red line) within the error. Considerable
uncertainties due to the extrapolation towards q → 0 propagate to a
large uncertainty for KT at Tm. However, the S(q)-based data provide
strong support for a thermal expansivity α of ∼0.9 · 10−4 K−1, as

long as two physical constraints are met: (a) ∂KT/∂T < 0 in the
liquid and (b) K liquid

T < K solid
T (black square) at Tm. The other red

symbols refer to values of β
liquid
T (Table 1 in the paper), obtained by

different datasets for density � and thermal expansivity α of liquid
Fe at Tm and ambient P.
Figure S6. Relative deviations [%] of densities from shock wave
experiments (Brown & McQueen 1986; Brown et al. 2000) from
the liquid Fe model of Komabayashi (2014). For P larger than 260
GPa, the Hugoniot lies in the liquid stability field of iron.
Table S1. Electrical resistivities of Fe along the melting curve based
on extrapolation of high P data, as shown in Figures 1 and 2. Lower
P values correspond to data of Secco & Schlössin (1989), higher
P values to data of Ohta et al. (2016). Uncertainties have been
determined from errors of the linear fit towards Tm.
Table S2. Single crystal electrical resistivity of the group 8 elements
Ru (Volkenshteyn et al. 1978) and Os (Schriempf 1968) at room
temperature, Hashin-Shtrikman bounds (Hashin & Shtrikman 1963)
for their polycrystal resistivity and maximum relative error due to
anisotropy.
Table S3. Thermophysical properties of simple metals at Tm. The
resistivity ratio is in good agreement with the long-wavelength ap-
proximation to Ziman’s formula (equation 5). References are la-
beled as follows: Sobolev (2011)a, Faber (1972)b, Fritsch et al.
(1973)c, Blairs (2006)d, Peng et al. (2015)e, Mills (2002)f, Tallon &
Wolfenden (1979)g.
Table S4. Thermophysical properties of transition metals with par-
tially occupied d −bands at Tm. The resistivity ratio is in good
agreement with the long-wavelength approximation to Ziman’s for-
mula (equation 5). References are labeled as follows: Faber (1972)b,
Hess et al. (1994)h, Tsu et al. (1985)i, Schramm (1962)j, Brillo &
Egry (2003)k, Owen & Yates (1936)l, Desai (1987)m, Alers et al.
(1960)n.
Table S5. Thermophysical properties of metals with fully occupied
d-bands at Tm. The resistivity ratio is systematically underestimated
by Ziman’s long-wavelength approximation (equation 5). Refer-
ences are labeled as follows: Faber (1972)b, Blairs (2006)d, Owen
& Yates (1934)l, Chang & Himmel (1966)o, Kanai & Tsuchiya
(1993)p, Grønvold & Stølen (2003)q, Ledbetter (1977)r.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

Downloaded from https://academic.oup.com/gji/article-abstract/213/1/237/4725044
by Universitat Bayreuth user
on 26 April 2018

6 Wagle & Steinle-Neumann (2018), Geophys. J. Int. 213, 237–243

84



submitted to Geophys. J. Int.

Supporting Information for ”Electrical resistivity

discontinuity of iron along the melting curve”

Fabian Wagle1

Gerd Steinle-Neumann1

1 Bayerisches Geoinstitut, Universität Bayreuth, Germany

Contents of this file

(i) Figures S1 to S6

(ii) Tables S1 to S5

Additional Supporting Information (File uploaded separately)

(i) Wolfram Mathematica R© notebook

Introduction

The Supporting Online Material contains the following information:

• Two figures (Figures S1 and S2), showing published experimental results of ρel(T ) at

high P in order to determine the resistivity discontinuity at the melting point (Tm).

• One figure (Figure S3), showing the free-electron-like volume dependence of the Fermi

level of liquid Fe.

• One figure (Figure S4), showing S(q) at ambient P and three different T in the long-

wavelength region.

• One figure (Figure S5), showing the isothermal bulk moduli (KT ) from the thermo-

dynamic limit of the structure factor S(q → 0) in comparison to KT from the model of

Komabayashi (2014) and KT from other experiments at ambient P .

• One figure (Figure S6), comparing densities from shock experiments with the model of

Komabayashi (2014) for liquid Fe.

• One table (Table S1), presenting resistivities of Fe at the melting point based on extrap-

olation of high P data, as shown in Figures S1 and S2.
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• One table (Table S2), presenting single crystal resistivities of Ru and Os and their poly-

crystal bounds.

• Three tables (Tables S3-S5), presenting a systematic evaluation of equation (5) for some

simple, transition and noble metals.

• One Wolfram Mathematica R© notebook in which the thermodynamic model of Komabayashi

(2014) used in the manuscript is implemented.
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Figure S1. Electrical resistivity as a function of T for pure iron at high P as reported by Secco &

Schlössin (1989). Thick vertical lines indicate Tm from the model of Komabayashi (2014). Dashed lines

represent the linear fit in both liquid and solid, which has been used to extrapolate towards Tm and

determine the discontinuity there.
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Figure S2. Electrical resistivity as a function of T for pure iron at high P as reported by Ohta et al.

(2016). Thick vertical lines indicate Tm from the model of Komabayashi (2014). Dashed lines represent

the linear fit in both liquid and solid, which has been used to extrapolate towards Tm and determine

the discontinuity there.
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Table S1. Electrical resistivities of Fe along the melting curve based on extrapolation of high P data,

as shown in Figures S1 and S2. Lower P values correspond to data of Secco & Schlössin (1989), higher

P values to data of Ohta et al. (2016). Uncertainties have been determined from errors of the linear fit

towards Tm.

P [GPa] Tm [K] ρliquidel [µΩcm] ρsolidel [µΩcm]
ρliquid
el

ρsolid
el

2.48 1873 120± 7 110± 2 1.09± 0.07

3.84 1910 120± 15 108± 4 1.12± 0.14

5.26 1951 103± 12 100± 4 1.03± 0.12

5.84 1965 104± 15 95± 6 1.10± 0.18

26 2405 113± 22 101± 12 1.1± 0.3

51 2798 134+16
−24 107± 25 1.3± 0.3

Table S2. Single crystal electrical resistivity of the group 8 elements Ru (Volkenshteyn et al. 1978)

and Os (Schriempf 1968) at room temperature, Hashin-Shtrikman bounds (Hashin & Shtrikman 1963)

for their polycrystal resistivity and maximum relative error due to anisotropy.

ρ
||
el ρ⊥el ρupperel ρlowerel ρavgel rel. deviation

[µΩcm] [µΩcm] [µΩcm] [µΩcm] [µΩcm] [%]

Ru 5.15 6.65 6.15 6.06 6.11 0.8

Os 6.32 9.48 8.43 8.13 8.28 1.8

6 Wagle & Steinle-Neumann (2018), Geophys. J. Int. 213, 237–243
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Table S3. Thermophysical properties of simple metals at Tm. The resistivity ratio is in good agreement

with the long-wavelength approximation to Ziman’s formula (equation 5). References are labeled as

follows: Sobolev (2011)a, Faber (1972)b, Fritsch et al. (1973)c, Blairs (2006)d, Peng et al. (2015)e, Mills

(2002)f, Tallon & Wolfenden (1979)g.

liquid solid
ρliquid
el

ρsolid
el

(
%liquid

%solid

)2
(
βliquid
T

βsolid
T

)−1

Na

vp [km s−1] 2.53a

1.1

% [g cm−3] 0.93a 0.95a,b

α [10−5 K−1] 25.4a

cP [J g−1K−1] 1.43a

βT [GPa−1] 1/5.3 1/6.5c

Tm [K] 371b

ρliquidel /ρsolidel 1.45b

Al

vp [km s−1] 4.56d

1.0

% [g cm−3] 2.29e 2.56f

γ 1.45d

βT [GPa−1] 1/34 1/56g

Tm [K] 933b

ρliquidel /ρsolidel 2.20b
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Table S4. Thermophysical properties of transition metals with partially occupied d−bands at Tm.

The resistivity ratio is in good agreement with the long-wavelength approximation to Ziman’s formula

(equation 5). References are labeled as follows: Faber (1972)b, Hess et al. (1994)h, Tsu et al. (1985)i,

Schramm (1962)j, Brillo & Egry (2003)k, Owen & Yates (1936)l, Desai (1987)m, Alers et al. (1960)n.

liquid solid
ρliquid
el

ρsolid
el

(
%liquid

%solid

)2
(
βliquid
T

βsolid
T

)−1

Fe see table 1 1.0

Co

% [g cm−3] 7.90h 8.28h

0.9
βT [GPa−1] 1/103i 1/109j

Tm [K] 1765i

ρliquidel /ρsolidel 1.09b

Ni

% [g cm−3] 7.93k 8.07l

1.1

α [10−5 K−1] 6.83l

cP [J g−1K−1] 0.70m

βS [GPa−1] 1/147n

βT [GPa−1] 1/102i 1/121

Tm [K] 1726i

ρliquidel /ρsolidel 1.33b

6 Wagle & Steinle-Neumann (2018), Geophys. J. Int. 213, 237–243
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Table S5. Thermophysical properties of metals with fully occupied d-bands at Tm. The resistivity ratio

is systematically underestimated by Ziman’s long-wavelength approximation (equation 5). References

are labeled as follows: Faber (1972)b, Blairs (2006)d, Owen & Yates (1934)l, Chang & Himmel (1966)o,

Kanai & Tsuchiya (1993)p, Grønvold & Stølen (2003)q, Ledbetter (1977)r

liquid solid
ρliquid
el

ρsolid
el

(
%liquid

%solid

)2
(
βliquid
T

βsolid
T

)−1

Cu

% [g cm−3] 8.10d 8.44b,d

1.4
βT [GPa−1] 1/67d 1/91o

Tm [K] 1356b

ρliquidel /ρsolidel 2.10b

Ag

% [g cm−3] 9.33d 9.68b,d

1.5
βT [GPa−1] 1/52d 1/66o

Tm [K] 1233b

ρliquidel /ρsolidel 2.10b

Au

% [g cm−3] 17.3d 18.2b,d

1.4
βT [GPa−1] 1/76d 1/116o

Tm [K] 1336b

ρliquidel /ρsolidel 2.30b

Zn

vp [km s−1] 2.85p

1.6

% [g cm−3] 6.53p 6.92l

α [10−5 K−1] 14.3p 11.3l

cP [J g−1K−1] 0.51q 0.47q

βS [GPa−1] 1/53 1/61r

βT [GPa−1] 1/43 1/52

Tm [K] 693b

ρliquidel /ρsolidel 2.20b
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