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Abstract

We consider economic model predictive control (MPC) without terminal conditions for time-varying
optimal control problems. Under appropriate conditions we prove that MPC yields initial pieces of approx-
imately infinite horizon optimal trajectories, and that the optimal infinite horizon trajectory is practically
asymptotically stable. The results are illustrated by two numerical examples, both motivated by energy
efficient heating and cooling of a building.
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1 Introduction

In classical model predictive control (MPC) the aim is to track an a priori known reference trajectory of the
system. The reference trajectory is either given by the control objective or prescribed by insight of the user
into the process and can for example be a steady state at which the system should be stabilized. This steady
state, in turn, may be computed via some form of optimization, e.g., as an optimal equilibrium of the system.

In contrast, in economic MPC the primary goal of the controller is not the stabilization of a pre-computed
trajectory or steady state but instead the optimal performance of the controller with respect to an economic
cost criterion, e.g. energy minimization or profit maximization. For time-invariant system dynamics this setting
has been studied extensively and a number of performance results and conditions for convergence to an optimal
steady state have been established both with [1] and without the use of terminal conditions [2].

It has been observed in various papers [3, 4, 5, 6] that even for time-invariant problems the optimal behaviour
of the system may occur not at a steady state but rather at a time-varying periodic orbit that the system traverses
cyclically. Consequently, it can no longer be expected that the system converges to a steady state but rather
to the periodic orbit. In this paper, we go one step further and consider problems with time-varying data, in
which the optimal behavior is a non-periodic time-varying trajectory.

In order to prove stability of model predictive controllers often terminal conditions are used in whose design
explicit knowledge of the reference trajectory enters. Already for periodic optimal behavior this can be difficult,



though for some problems it is in principle still doable as demonstrated in [7]. For general time-varying problems
the computation of the optimal reference is in general an even more difficult task. For this reason the focus of
research has turned to MPC schemes without terminal conditions.

In this paper we follow the same reasoning since we want to treat general time-varying systems that can
exhibit complex optimal steering behavior. We do not assume a priori knowledge of the resulting trajectory
of optimal operation — termed optimal trajectory in this paper — and thus entirely avoid the use of terminal
conditions. Instead, we rely on the model predictive controller to find the optimal trajectory by itself, without
providing it with any prior information about its location or structure. The questions to be addressed are under
what conditions we can guarantee approximate optimal performance of the MPC controller and whether the
trajectory generated by MPC converges to the optimal trajectory.

The paper is structured as follows. In the next section we introduce the mathematical formulation of the
problem making use of an optimality notion that allows us to consider unbounded cost functionals on the
infinite horizon and we define the optimal trajectory as a generalization of steady states or periodic orbits to the
time-varying setting. Section 3 explains the MPC algorithm. In Section 4 we state performance estimates from
a previous work [8] using two essential assumptions, the turnpike property and continuity of the optimal value
functions. The next section establishes convergence of the economic MPC solution to the optimal trajectory
which represents the main result of this paper. In the concluding section we give two examples that hint at a
practical application from energy efficient building control.

2 Problem statement

We consider the discrete-time time-varying dynamics

x(k + 1) = f(k, x(k), u(k)), x(0) = x, (1)

with f : N0 × X × U → X and state space X and control space U are normed spaces. Here k ∈ N0 denotes
time, x(k) ∈ X the state of the system at time k and u(k) ∈ U the control.

A trajectory of the system starting at time k from initial state x ∈ X controlled by u ∈ UN , N ∈ N is
denoted by xu(·; k, x). We may omit the initial time and simply write xu(·, x) when it is clear from the context.
We want to incorporate state and control constraints in the problem statement. The sets of admissible states
at time k will be denoted by X(k) ⊆ X and the sets of admissible control values for x ∈ X(k) by U(k, x) ⊆ U .
By UN (k, x) we denote the sets of admissible control sequences for initial state x ∈ X(k) up to time k +N , i.e.
control sequences u ∈ UN satisfying

u(j) ∈ U(k + j, xu(j; k, x)) and xu(j + 1; k, x) ∈ X(k + j + 1)

for all j = 0, . . . , N −1. The set U∞(k, x) denotes the natural extension of this definition to the infinite horizon.
Let ` : N0 ×X × U → R be the stage cost function and consider the cost functional

J∞(k, x, u) =

∞∑
j=0

`(k + j, xu(j; k, x), u(j)) (2)

The goal in our setting is to find a feasible control sequence u ∈ U∞(k, x) that minimizes J∞(k, x, u). How-
ever, we first need to clarify what we mean by ”minimizing” because for infinite optimal control sequences it
is not obvious that J∞(k, x, u) will attain a finite minimum at all. In fact with general stage cost the value
of J∞(k, x, u) may be infinite for all control sequences, so it is not directly possible to compare two control
sequences based on their costs.
In the following we introduce a suitable notion of optimality that goes back to Gale[9] in the context of mathe-
matical economics. The key idea is to consider not the total cost of two control sequences but instead to look at
the difference of the costs. Although both control sequences in themselves generate infinite costs, the difference
between the two can still be finite. A control sequence is considered to be optimal if its cost is overtaken by the
cost of any other control sequence at some point.

Definition 1 (Overtaking optimality). Let x ∈ X(k) and consider a control sequence u∗ ∈ U∞(k, x) with
corresponding state trajectory xu∗(·; k, x). The pair (xu∗ , u

∗) is called overtaking optimal if

lim inf
K→∞

K−1∑
j=0

`(k + j, xu(j, x), u(j))− `(k + j, xu∗(j, x), u∗(j)) ≥ 0 (3)

for all u ∈ U∞(k, x).
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Definition 1 provides us with the ability to decide which of two infinite control sequences is better when
starting at a fixed initial value x. The minimization in the following problem is to be understood in this
overtaking optimal sense:

minimize
u∈U∞(k,x)

J∞(k, x, u) (4)

In the next definition the requirement of a fixed initial value is removed. This means we now look at all possible
feasible trajectories that satisfy the dynamics of the system and pick from those the one that is optimal in the
sense of Definition 1.

Definition 2 (Optimal operation). Let x ∈ X(k) and consider a control sequence u∗ ∈ U∞(k, x) with corre-
sponding state trajectory x∗ = xu∗(·; k, x). We say the system (1) is optimally operated at (x∗, u∗) if

lim inf
K→∞

K−1∑
j=0

`(k + j, xu(j, x′), u(j))− `(k + j, x∗(j), u∗(j)) ≥ 0 (5)

for all x′ ∈ X(k) and u ∈ U∞(k, x′).

We will refer to the trajectory pair (x∗, u∗) as the optimal trajectory. For the remainder of this paper we
will assume that an optimal trajectory of the system always exists. Similarly, we assume a solution of problem
(4) exists, which will be denoted by u∗∞.

The optimal trajectory can be considered a generalization of an optimal equilibrium or an optimal periodic
orbit that may be present in the case of time-invariant systems, see e.g. [3]. In the classical time-invariant
setting there may for example exist an optimal equilibrium at which the system can be operated at minimal
cost for an infinite horizon. Then for any given initial condition we want to find a control sequence that brings
the state to the optimal equilibrium.

In the same way in our setting an optimal trajectory exhibits the best performance in the long run. The
question is how it connects to the solution of problem (4). In Section 4 we will introduce the turnpike property
for infinite horizon. This key assumption guarantees that the solution of problem (4) converges to the optimal
trajectory. This means we can reach the optimal operating behavior for a system by solving an infinite horizon
optimal control problem. However, in general this is a very hard problem. In the following section we will
introduce model predictive control as a method that aims to solve this problem by reduction to a finite horizon.

3 Economic model predictive control

In this paper we want to show that an approximate solution to problem (4) can be obtained by using model
predictive control (MPC). The idea is introduced in the following: Instead of solving the problem on the infinite
horizon we fix N ∈ N and consider the following cost functional.

Definition 3 (MPC cost functional). The MPC cost functional is defined as

JN (k, x, u) =

N−1∑
j=0

`(k + j, xu(j; k, x), u(j)). (6)

Then in each step of the MPC algorithm the following optimization problem is solved.

Definition 4 (MPC optimal control problem and optimal value function). Consider the problem

minimize
u∈UN (k,x)

JN (k, x, u). (7)

The corresponding optimal value function is defined by

VN (k, x) := inf
u∈UN (k,x)

JN (k, x, u).

We will assume that the minimizer of this problem always exists and denote it by u∗N , or else u∗N,x in
case we want to stress the dependence on the the initial state x. Note that the optimal control satisfies
VN (k, x) = JN (k, x, u∗N,x).
We remark that here we use the classical notion of optimality again since for finite horizon the cost functional
cannot attain an infinite value. As a general rule we will need overtaking optimality only when optimizing over
an infinite horizon, otherwise the usual notion of optimality suffices.
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The model predictive control algorithm given in Algorithm ?? produces an approximate solution to problem
(4).

The trajectory of the system generated in this way is called closed loop. We will denote it by xµN
(·, x) for

initial value x = x(k0) ∈ X(k0). The cost of the closed loop for L time steps is defined by

JclL (k0, x, µN ) =

L−1∑
j=0

`(k0 + j, xµN
(j, x), µN (k0 + j, xµN

(j, x))).

The aim of this paper is to study how good the approximation generated by the MPC algorithm is compared
to the exact solution of the infinite horizon problem. In particular we want to address the following questions:

• How does the cost of the MPC closed loop compare to the cost of the solution on infinite horizon?
This question is of special interest for problems in an economic setting. Here the behavior of the state
trajectories is of secondary importance, instead we are more interested in finding a solution that generates
the lowest possible costs. This question will be dealt with in Section 4.

• Does the closed loop converge to the optimal trajectory?
We also want to find out under what conditions we can establish convergence not only of the cost but
also of the state. This is of particular interest since the optimal trajectory does not appear in the MPC
problem from Definition 4. Instead, the algorithm finds the optimal trajectory by itself. In this respect,
economic MPC differs from classical stabilizing MPC approaches, which require a priori knowledge about
the optimal trajectory. An answer to this question will be given in Section 5.

4 MPC Performance estimates

In this section we will deal with the question whether the cost of the MPC closed loop approximates the cost
of the optimal trajectory on the infinite horizon. The key idea to bring together the trajectories of the MPC
problem and the problem on an infinite horizon is to look at the turnpike property. It states that optimal
trajectories converge on both finite and infinite horizon against the optimal trajectory (x∗, u∗). An illustration
of this can be found in Figure 1. The bound on the distance to the optimal trajectory is written in terms of a
comparison function as defined in the following.

Definition 5 (Comparison functions). We define the following classes functions:
K := {α : R+

0 → R+
0 | α is continuous and strictly increasing with α(0) = 0}

K∞ := {α : R+
0 → R+

0 | α ∈ K unbounded }
L := {δ : R+

0 → R+
0 | δ is continuous and strictly decreasing with limt→∞ δ(t) = 0}

KL := {β : R+
0 × R+

0 → R+
0 | β is continuous, β(·, t) ∈ K, β(r, ·) ∈ L}

For the distance between two pairs (x1, u1), (x2, u2) ∈ X × U we will use the notation

|(x1, u1)|(x2,u2) := ‖x1 − x2‖+ ‖u1 − u2‖

and similarly for x1, x2 ∈ X
|x1|x2

:= ‖x1 − x2‖.

Definition 6 (Turnpike property). Consider a trajectory pair (x∗, u∗) at which the system (1) is optimally
operated. We say that an optimal control problem has the turnpike property at (x∗, u∗) if the following hold:
There exists σ ∈ L such that for each k ∈ N0, each optimal trajectory xu∗N (·, x), x ∈ X(k) and all N,P ∈ N
there is a set Q(k, x, P,N) ⊆ {0, . . . , N} with #Q(k, x, P,N) ≤ P and

|(xu∗N (M,x), u∗N (M))|(x∗(k+M),u∗(k+M)) ≤ σ(P )

for all M ∈ {0, . . . , N} \ Q(k, x, P,N).
The definition can be extended to the infinite horizon. Here an optimal control problem has the turnpike property,
if there exists ρ ∈ L such that for each k ∈ N0, each optimal trajectory xu∗∞(·, x), x ∈ X(k) and all P ∈ N there
is a set Q(k, x, P,∞) ⊆ N0 with #Q(k, x, P,∞) ≤ P and

|(xu∗∞(M,x), u∗∞(M))|(x∗(k+M),u∗(k+M)) ≤ ρ(P )

for all M ∈ N0 \ Q(k, x, P,∞).
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Figure 1: Illustration of the finite horizon turnpike property for time-varying systems.

Assumption 1 (Turnpike property for MPC problem). We assume the MPC problem from Definition 4 has
the turnpike property.

Assumption 2 (Turnpike property for problem on infinite horizon). We assume the optimal control problem
(4) has the turnpike property on infinite horizon.

While the turnpike property is a very convenient assumption it is at the same time not unreasonable.
Turnpike properties of optimal control problems can be numerically observed for many practical problems. In
addition, there are results that prove the existence of turnpike behavior for dissipative systems, see e.g. [10].

Note that the infinite horizon turnpike property can also be regarded as a convergence assumption of the
solution of the infinite horizon problem (4) to the optimal trajectory. This is evident because the turnpike
property requires that the distance between the optimal trajectory and the trajectory generated by u∗∞ can
only be large for a finite number of points but this can only hold for a convergent trajectory.

The second ingredient for proving performance estimates for the MPC closed loop is continuity of the optimal
value function. Before defining this continuity notion we first introduce a shifted stage cost function obtained
by subtracting the cost of the optimal trajectory, as well as the corresponding cost functionals and optimal
value function.

Definition 7 (Shifted cost). We define the shifted stage cost as

ˆ̀(k, x(k), u(k)) := `(k, x(k), u(k))− `(k, x∗(k), u∗(k))

and the shifted cost functional as

ĴN (k, x, u) :=

N−1∑
j=0

ˆ̀(k + j, xu(j; k, x), u(j)).

The corresponding shifted optimal value function is given by

V̂N (k, x) := inf
u∈UN (k,x)

ĴN (k, x, u).

In the same way for the infinite horizon we define

Ĵ∞(k, x, u) :=

∞∑
j=0

ˆ̀(k + j, xu(j; k, x), u(j)).

and

V̂∞(k, x) := inf
u∈U∞(k,x)

Ĵ∞(k, x, u).

We will formulate our results in terms of this shifted function. The reason for this change is that the optimal
value function of the infinite horizon problem does not necessarily attain a finite value but it can be shown that
under the turnpike assumption the shifted optimal value function V̂∞(k, x) is finite for all x ∈ X(k), see [8].

It should be noted that the solution of the shifted problem coincides with the solution of the MPC problem
(7). This is important for practical considerations since it means we do not need to know the optimal trajectory
(x∗, u∗) in order to solve the problem.
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Assumption 3 (Continuity property of the optimal value function). We assume that the optimal value function
V̂N is (approximately) continuous at x∗ in the following uniform way: for each k ∈ N0 there is an open ball
Bε(x∗(k)), ε > 0, around x∗(k) and a function γV : R+

0 × R+
0 → R+

0 with γV (N, r)→ 0 if N →∞ and r → 0,
and γV (·, r), γV (N, ·) monotonous for fixed r and N , such that for all x ∈ Bε(x∗(k)) ∩ X(k) and all N ∈ N the
inequality

|V̂N (k, x)− V̂N (k, x∗(k))| ≤ γV (N, |x|x∗(k))

holds.
Moreover, we also assume approximate continuity of the optimal value function on the infinite horizon: for

each k ∈ N0 there is an open ball Bε(x∗(k)), ε > 0, around x∗(k) and a function ωV ∈ K∞ such that for all
x ∈ Bε(x∗(k)) ∩ X(k) it holds

|V̂∞(k, x)− V̂∞(k, x∗(k))| ≤ ωV (|x|x∗(k)).

Using the turnpike and continuity properties one can prove the next result. Here we avoid duplicating the
preliminary lemmas that lead to this results and also will not give the proofs. These can be found in [8].

Theorem 1 (see Theorem 1 in [8]). Let Assumptions 1 and 3 hold. Then for each k ∈ N0 and each sufficiently
large N ∈ N the closed loop cost satisfies

ĴclL (k, x, µN ) ≤ V̂∞(k, x)− V̂∞(k + L, xµN
(L, x)) + Lδ(N)

with a function δ ∈ L.

As outlined in the discussion following the proof of the theorem in [8], this implies that the MPC closed
loop trajectory approximates the cost of the infinite horizon optimal trajectory at least on finite horizons. More
specifically, consider a control sequence that consists for the first L steps of the MPC feedback solution and
after that of the solution of the infinite horizon problem starting in x̃ = xµN

(L, x) at time k + L:

ū(j) :=

{
µN (k + j, xµN

(j, x)), j = 0, . . . , L− 1

u∗∞,x̃(j), j ≥ L

According to the theorem the cost of this control sequence is (up to the error term Lδ(N)) comparable to the
cost of the optimal control sequence that solves the infinite horizon problem (4).

5 MPC trajectory convergence

In this section we show that not only the cost of the MPC trajectory approximates the cost of the infinite
horizon optimal trajectory, but we can also establish convergence of the trajectory itself. This is formalized by
using the notion of P-practical asymptotic stability and Lyapunov functions. For the definition of stability we
substitute the feedback for the control in system (1), i.e. we consider the feedback controlled system

x+ = f(k, x, µN (k, x)) =: g(k, x). (8)

The following definitions and the theorem are taken from [11].

Definition 8 (Forward invariance). We say a family of sets Y (k) ⊆ X, k ∈ N0 is forward invariant if
g(k, x) ∈ Y (k + 1) for all k ∈ N0 and all x ∈ Y (k).

Definition 9 (Uniform P-practical asymptotic stability). 1 Let Y (k) be a forward invariant family of sets
and let P (k) ⊂ Y (k) be subsets of Y (k). Then we say that a trajectory x∗ with x∗(k) ∈ Y (k) is P-practically
uniformly asymptotically stable on Y (k) if there exists β ∈ KL such that

|x(k; k0, x0)|x∗(k) ≤ β(|x0|x∗(k0), k − k0) (9)

holds for all x0 ∈ Y (k0) and all k0, k ∈ N0 with k ≥ k0 and x(k; k0, x0) /∈ P (k).

Uniform asymptotic stability is ensured by the existence of a Lyapunov function.

Definition 10 (Uniform time-varying Lyapunov function). 2 Let subsets S(k) ⊆ X and define S := {(k, x)|k ∈
N0, x ∈ S(k)}. A function V : S → R+

0 is called uniform time-varying Lyapunov function on S(k) if the
following conditions are satisfied:

1cf. Definition 2.17 in [11]
2cf. Definition 2.21 in [11]
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1. There exist functions α1, α2 ∈ K∞ such that

α1(|x|x∗(k)) ≤ V (k, x) ≤ α2(|x|x∗(k)) (10)

holds for all k ∈ N0 and all x ∈ S(k).

2. There exists a function αV ∈ K such that

V (k + 1, g(k, x)) ≤ V (k, x)− αV (|x|x∗(k)) (11)

holds for all k ∈ N0 and all x ∈ S(k) with g(k, x) ∈ S(n+ 1).

Theorem 2 (P-practical asymptotic stability). 3 Consider forward invariant families of sets Y (k) and P (k) ⊂
Y (k), k ∈ N0, and x∗(k) ∈ P (k). If there exists a uniform time-varying Lyapunov function V on S(k) =
Y (k) \ P (k) then x∗ is P-practically asymptotically stable on Y (k).

We will show that a modified optimal value function related to the optimal value function of the original
MPC problem is a Lyapunov function for the feedback controlled system. An essential assumption we make is
strict dissipativity of the system as introduced in the following.

Assumption 4 (Strict dissipativity). The system (1) is strictly dissipative with respect to the supply rate

s(k, x, u) = ˆ̀(k, x, u) and the optimal trajectory (x∗, u∗), i.e. there exists a storage function λ : N0 × X → R
bounded from below on X and α ∈ K∞ such that for all k ∈ N0 and all (x, u) ∈ X(k) × U(k, x) the following
holds:

λ(k + 1, f(k, x, u))− λ(k, x) ≤ s(k, x, u)− α(|(x, u)|(x∗(k),u∗(k))) (12)

holds for all k ∈ N0 and all (x, u) ∈ X(k)× U(k, x).

Using the storage function λ from the previous definition we introduce a modified MPC stage cost.

Definition 11 (Modified MPC cost functional). The modified stage cost ˜̀ is given by

˜̀(k, x, u) = ˆ̀(k, x, u) + λ(k, x)− λ(k + 1, f(k, x, u)). (13)

The modified MPC cost functional is defined as

J̃N (k, x, u) =

N−1∑
j=0

˜̀(k + j, xu(j; k, x), u(j)). (14)

Definition 12 (Modified MPC optimal control problem). We consider the modified MPC problem

min
u∈UN (k,x)

J̃N (k, x, u) (15)

and the corresponding modified optimal value function

ṼN (k, x) := inf
u∈UN (k,x)

J̃N (k, x, u). (16)

In the following we will state several assumptions for this modified problem in order to facilitate the proofs.
In addition to the turnpike property from Assumption 1 we demand that the modified problem also has the
turnpike property.

Assumption 5 (Turnpike property for the modified MPC problem). The modified optimal control problem
from Definition 12 has the turnpike property. For the modified problem we will denote the set Q by Q̃ and the
bound σ by σ̃.

Moreover, we make two assumptions for the modified stage cost and the modified optimal value function.

Assumption 6 (Modified cost bounded from above). We assume there exists αu ∈ K∞ such that the modified
stage cost satisfies

˜̀(k, x, u) ≤ αu(|(x, u)|(x∗(k),u∗(k))) (17)

for all k ∈ N0 and all (x, u) ∈ X(k)× U(k, x).

3cf. Theorem 2.23 in [11]
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Assumption 7 (Continuity of ṼN at x∗). We assume there exists γṼ such that for each k ∈ N0, N ∈ N and
x ∈ X the following holds

|ṼN (k, x)− ṼN (k, x∗(k))| ≤ γṼ (|x|x∗(k)) (18)

Remark 1 (Modified cost along optimal trajectory). From Assumptions 4 and 6 it follows that the modified
cost along the optimal trajectory pair (x∗, u∗) satisfies

˜̀(k, x∗(k), u∗(k)) = 0 (19)

for all k ∈ N0. This also implies that
ṼN (k, x∗(k)) = 0 (20)

for all k ∈ N0 and for every N ∈ N.

Remark 2 (Difference between different continuity assumptions). Note the difference between the two continuity
assumptions from Assumption 3 and Assumption 7. The continuity assumption for the modified problem is
independent of the horizon N .

The following preparatory lemma shows that the initial cost (up to some time instant M) of two optimal
trajectories with different horizon length of the modified problem is nearly identical.

Lemma 1. Let Assumptions 5 and 7 hold. Then

J̃M (k, x, ũ∗N ) = J̃M (k, x, ũ∗N+1) +R5(k, x,M,N)

where the error term satisfies |R5(k, x,M,N)| ≤ 2γṼ (σ̃(P )) for all k ∈ N0, all N ∈ N, all P ∈ N sufficiently

large, all x ∈ X(k) and all M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)).

Proof. Let ũ∗N and ũ∗N+1 denote the optimal solutions of problem (12) with horizon N and N + 1, respectively.

From the finite horizon dynamic programming principle we obtain that u = ũ∗N is a minimizer of J̃M (k, x, u) +
ṼN−M (k +M,xu(M,x)). In particular it holds that

J̃M (k, x, ũ∗N ) + ṼN−M (k +M,xũ∗N (M,x)) ≤ J̃M (k, x, ũ∗N+1) + ṼN−M (k +M,xũ∗N+1
(M,x)). (21)

Now consider
R1(k, x,M,N) := ṼN−M (k +M,xũ∗N (M,x))− ṼN−M (k +M,x∗(k +M))

and
R2(k, x,M,N) := ṼN−M (k +M,xũ∗N+1

(M,x))− ṼN−M (k +M,x∗(k +M)).

Inserting the definition of R1 and R2 into (21) we obtain

J̃M (k, x, ũ∗N ) + ṼN−M (k +M,x∗(k +M)) +R1(k, x,M,N)

≤ J̃M (k, x, ũ∗N+1) + ṼN−M (k +M,x∗(k +M)) +R2(k, x,M,N)

which is equivalent to

J̃M (k, x, ũ∗N ) ≤ J̃M (k, x, ũ∗N+1)−R1(k, x,M,N) +R2(k, x,M,N). (22)

The above equations are true for every M ∈ {0, . . . , N}. For M ∈ {0, . . . , N}\(Q̃(k, x, P,N)∪Q̃(k, x, P,N+1))
we know from Assumption 5 that |(xũ∗N (M,x), ũ∗N (M))|(x∗(k+M),u∗(k+M)) ≤ σ̃(P ), and in particular |xũ∗N (M,x)|x∗(k+M) ≤
σ̃(P ), i.e. we have a bound on the distance of xũ∗N (M,x) to the optimal trajectory x∗. Using Assumption 7 we
obtain

|R1(k, x,M,N)| ≤ γṼ (σ̃(P )).

The same holds when considering the optimal trajectory ũ∗N+1 yielding the estimate

|R2(k, x,M,N)| ≤ γṼ (σ̃(P )).

For the converse inequality we use the dynamic programming principle once more together with the fact
that u = ũ∗N+1 minimizes the expression J̃M (k, x, u) + ṼN+1−M (k +M,xu(M,x)) which implies that

J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,xũ∗N+1
(M,x)) ≤ J̃M (k, x, ũ∗N ) + ṼN+1−M (k +M,xũ∗N (M,x)).

Defining
R3(k, x,M,N) := ṼN+1−M (k +M,xũ∗N+1

(M,x))− ṼN+1−M (k +M,x∗(k +M))
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and
R4(k, x,M,N) := ṼN+1−M (k +M,xũ∗N (M,x))− ṼN+1−M (k +M,x∗(k +M))

we can estimate

J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,x∗(k +M)) +R3(k, x,M,N)

≤ J̃M (k, x, ũ∗N ) + ṼN+1−M (k +M,x∗(k +M)) +R4(k, x,M,N)

⇔ J̃M (k, x, ũ∗N+1) ≤ J̃M (k, x, ũ∗N )−R3(k, x,M,N) +R4(k, x,M,N). (23)

Analogously to the above discussion we obtain the bounds

|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))

and
|R4(k, x,M,N)| ≤ γṼ (σ̃(P ))

for every M ∈ {0, . . . , N} \ (Q̃(k, x, P,N)∪ Q̃(k, x, P,N + 1)). Finally, combining the inequalities (22) and (23)
leads to

|R5(k, x,M,N)| = |J̃M (k, x, ũ∗N )− J̃M (k, x, ũ∗N+1)|
≤ max{| −R1(k, x,M,N) +R2(k, x,M,N)|, | −R3(k, x,M,N) +R4(k, x,M,N)|}
≤ max{|R1(k, x,M,N)|+ |R2(k, x,M,N)|, |R3(k, x,M,N)|+ |R4(k, x,M,N)|}
≤ max{2γṼ (σ̃(P )), 2γṼ (σ̃(P ))}
= 2γṼ (σ̃(P )).

This concludes the proof.

Using this result we can prove the following lemma, which states that the optimal value functions for the
modified problem yields almost the same value for different horizons N and N + 1.

Lemma 2. Let Assumption 6 and those of Lemma 1 hold. Then the equation

ṼN+1(k, x) = ṼN (k, x) +R6(k, x,M,N)

holds with |R6(k, x,M,N)| ≤ 4γṼ (σ̃(P )) for all k ∈ N0, all N ∈ N, all P ∈ N sufficiently large, all x ∈ X(k)

and all M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)).

Proof. Let k ∈ N0 and let x ∈ X(k). We first consider the optimal value function with horizon length N . From
the dynamic programming principle it follows for every M ∈ {0, . . . , N} that

ṼN (k, x) = J̃M (k, x, ũ∗N ) + ṼN−M (k +M,xũ∗N (M,x)). (24)

We define
R1(k, x,M,N) := ṼN−M (k +M,xũ∗N (M,x))− ṼN−M (k +M,x∗(k +M))

which can be bounded by
|R1(k, x,M,N)| ≤ γṼ (σ̃(P ))

for M ∈ {0, . . . , N} \ Q̃(k, x, P,N) as seen in the proof of Lemma 1.
Using the definition of R1 we rewrite (24) to

ṼN (k, x) = J̃M (k, x, ũ∗N ) + ṼN−M (k +M,x∗(k +M)) +R1(k, x,M,N)

= J̃M (k, x, ũ∗N ) +R1(k, x,M,N)
(25)

where we used Remark 1 in the last equality.
Now consider the optimal value function for horizon length N+1. Again, we apply the dynamic programming

principle which yields

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,xũ∗N+1
(M,x)) (26)

for every M ∈ {0, . . . , N + 1}. We define

R3(k, x,M,N) := ṼN+1−M (k +M,xũ∗N+1
(M,x))− ṼN+1−M (k +M,x∗(k +M))
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with the bound
|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))

for M ∈ {0, . . . , N} \ Q̃(k, x, P,N + 1) (cf. Lemma 1).
Inserting the definition of R3 into (26) and using Remark 1 we obtain

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,x∗(k +M)) +R3(k, x,M,N)

= J̃M (k, x, ũ∗N+1) +R3(k, x,M,N).

For M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)) we apply Lemma 1 to get

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) +R3(k, x,M,N)

= J̃M (k, x, ũ∗N ) +R3(k, x,M,N)−R5(k, x,M,N)

= ṼN (k, x)−R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)

where the last equation follows with equation (25).
Finally, we define

R6(k, x,M,N) := −R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)

and from the bounds on R1, R3 and R5 we get the bound

|R6(k, x,M,N)| = | −R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)|
≤ |R1(k, x,M,N)|+ |R3(k, x,M,N)|+ |R5(k, x,M,N)|
≤ γṼ (σ̃(P )) + γṼ (σ̃(P )) + 2γṼ (σ̃(P ))

= 4γṼ (σ̃(P )).

This shows the assertion.

Remark 3. In the next lemma we will use both the turnpike property for the modified and the unmodified MPC
problem. Note however, that Assumption 1 and Assumption 5 express two different turnpike properties with
different bounds σ and σ̃ and associated sets Q and Q̃. For the proof of the following lemma we will need a
common bound and a single set for both problems. This can be achieved by defining

σ̄ := max{σ, σ̃}

and
Q̄(k, x, P,N) := Q(k, x, P,N) ∪ Q̃(k, x, P,N).

Then the optimal trajectories of both problems from Definitions 4 and 12 satisfy

|(xu∗N,x
(M,x), u∗N,x(M))|(x∗(k+M),u∗(k+M)) ≤ σ̄(P )

and
|(xũ∗N,x

(M,x, ũ∗N,x(M))|(x∗(k+M),u∗(k+M)) ≤ σ̄(P )

for all M ∈ {0, . . . , N} \ Q̄(k, x, P,N) and #Q̄(k, x, P,N) ≤ 2P .

The next theorem shows that the initial piece of an optimal control trajectory which ends in a neighborhood
of the optimal trajectory of the unmodified MPC problem yields approximately lower cost than all other
trajectories ending in that neighborhood.

Theorem 3 (Initial piece of optimal trajectory ending near turnpike is optimal). Let u∗N,x denote the optimal
trajectory of problem (4) and let Assumptions 1, 3 and 5 hold. Then for all k ∈ N0, all x ∈ X(k), all N ∈ N, all
P ∈ N, all M ∈ {0, . . . , N} \ Q̄(k, x, P,N) and all u ∈ UM (k, x) with |xu(M,x)|x∗(k+M) ≤ σ̄(P ) the estimate

ĴM (k, x, u∗N,x) ≤ ĴM (k, x, u) +R7(k, x,M,N) (27)

holds with |R7(k, x,M,N)| ≤ 2γV (N −M, σ̄(P )).

Proof. We prove the theorem by contradiction. Let u∗N,x denote the optimal solution of problem (4) and let

x̄u∗ := xu∗N,x
(M,x) for M ∈ {0, . . . , N}\Q̄(k, x, P,N). Then from Remark 3 we know that |x̄u∗ |x∗(k+M) ≤ σ̄(P ).

Now assume there exists a control sequence u ∈ UM (k, x) with x̄u := xu(M,x) satisfying |x̄u|x∗(k+M) ≤ σ̄(P )
and

ĴM (k, x, u) +R1(k, x,M,N) +R2(k, x,M,N) < ĴM (k, x, u∗N,x). (28)
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with
R1(k, x,M,N) := V̂N−M (k +M, x̄u)− V̂N−M (k +M,x∗(k +M))

and
R2(k, x,M,N) := V̂N−M (k +M,x∗(k +M))− V̂N−M (k +M, x̄u∗).

Using Assumption 3 R1 and R2 can be bounded by

|R1(k, x,M,N)| ≤ γV (N −M, σ̄(P ))

|R2(k, x,M,N)| ≤ γV (N −M, σ̄(P )).
(29)

Consider

ĴM (k, x, u) + V̂N−M (k +M, x̄u) = ĴM (k, x, u) + V̂N−M (k +M,x∗(k +M)) +R1(k, x,M,N)

= ĴM (k, x, u) + V̂N−M (k +M, x̄u∗)

+R1(k, x,M,N) +R2(k, x,M,N)

(28)
< ĴM (k, x, u∗N,x) + V̂N−M (k +M, x̄u∗)

= V̂N (k, x)

where we used the dynamic programming principle for the last equation. But this contradicts the optimality of
u∗N,x and thus the inequality

ĴM (k, x, u∗N,x) ≤ ĴM (k, x, u) +R1(k, x,M,N) +R2(k, x,M,N)

follows. Finally, define
R7(k, x,M,N) := R1(k, x,M,N) +R2(k, x,M,N)

which can be bounded by

|R7(k, x,M,N)| ≤ |R1(k, x,M,N)|+ |R2(k, x,M,N)|
(29)

≤ 2γV (N −M, σ̄(P )).

This concludes the proof.

So far we did not impose any assumptions on the storage function λ from the strict dissipativity of the
system. For the next lemma we will need that this function is continuous at the optimal trajectory.

Assumption 8 (Continuity of storage function λ at x∗). Assume that the storage function λ is continuous in
the following sense: There exists γλ ∈ K∞ such that for all k ∈ N and all x ∈ X it holds that

|λ(k, x)− λ(k, x∗(k))| ≤ γλ(|x|x∗(k)). (30)

In our final preparatory lemma we consider a control sequence û that for the first part consists of the optimal
control sequence u∗N,x of the unmodified problem until it is close to the optimal trajectory x∗. Then we control
from the final point using the optimal control sequence of the modified problem. The lemma states that the
resulting composite control sequence has almost the same cost as if we had controlled using the optimal control
sequence of the modified problem for the whole horizon.

Lemma 3. Let Assumptions 1, 3, 5 and 8 hold and let u∗N,x and ũ∗N,x denote the optimal control sequences

corresponding to problems (4) and (12). Let N,P ∈ N be arbitrary and for M ∈ {0, . . . , N} \ Q̄(k, x, P,N)
define x̄u∗ := xu∗N,x

(M,x) and denote by ū solution of the optimal control problem

min
u∈UN−M (k+M,x̄u∗ )

J̃N−M (k +M, x̄u∗ , u). (31)

Then the composite control sequence û ∈ UN (k, x) defined by û(k) = u∗N,x(k) for k = {0, . . . ,M − 1} and
û(k +M) = ū(k) for k = {0, . . . , N −M} satisfies

J̃N (k, x, û) = ṼN (k, x) +R8(k, x,M,N)

with
|R8(k, x,M,N)| ≤ γṼ (σ(P )) + γλ(σ(P )) + γṼ (σ̃(P )) + γλ(σ̃(P )) + 2γV (N −M, σ̄(P ))

for all k ∈ N0 and for all x ∈ X(k).
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Proof. We first prove ”J̃N (k, x, û) + ε(N) ≤ ṼN (k, x)”: Using the definition of û, noting that ū is an optimal
solution and inserting the definition of J̃M we obtain

J̃N (k, x, û) = J̃M (k, x, u∗N,x) + J̃N−M (k +M, x̄u∗ , ū)

= J̃M (k, x, u∗N,x) + ṼN−M (k +M, x̄u∗)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̄u∗) + ṼN−M (k +M, x̄u∗)

(32)

Define
R1(k, x,M,N) := ṼN−M (k +M, x̄u∗)− ṼN−M (k +M,x∗(k +M))

and
R2(k, x,M,N) := λ(k +M,x∗(k +M))− λ(k +M, x̄u∗).

Because of Assumption 1 we know the bound |x̄u∗ |x∗(k+M) ≤ σ(P ) for M ∈ {0, . . . , N} \ Q(k, x, P,N). Thus

we can use the continuity of ṼN−M from Assumption 7 and the continuity of λ from Assumption 8 to obtain
the bounds

|R1(k, x,M,N)| ≤ γṼ (σ(P ))

and
|R2(k, x,M,N)| ≤ γλ(σ(P )).

Inserting R1 and R2 into (32) leads to

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̄u∗) + ṼN−M (k +M, x̄u∗)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M,x∗(k +M)) + ṼN−M (k +M,x∗(k +M))

+R1(k, x,M,N) +R2(k, x,M,N)

(33)

Now consider the optimal solution ũ∗N,x of problem (12), denote x̃ := xũ∗N,x
(M,x) and define

R3(k, x,M,N) := ṼN−M (k +M,x∗(k +M))− ṼN−M (k +M, x̃)

and
R4(k, x,M,N) := λ(k +M, x̃)− λ(k +M,x∗(k +M)).

For M ∈ {0, . . . , N}\Q̃(k, x, P,N) we have the bound |x̃| ≤ σ̃(P ) from Assumption 5. Using again the continuity
of ṼN−M and λ from Assumptions 7 and 8 we can bound R3 and R4 by

|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))

and
|R4(k, x,M,N)| ≤ γλ(σ̃(P )).

Continuing from (33) by inserting R3 and R4 yields

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M,x∗(k +M)) + ṼN−M (k +M,x∗(k +M))

+R1(k, x,M,N) +R2(k, x,M,N)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N)

Finally, using Theorem 3 for the control sequence u = ũ∗N,x we obtain for M ∈ {0, . . . , N} \ Q̄(k, x, P,N)

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N)

≤ ĴM (k, x, ũ∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N) +R7(k, x,M,N)︸ ︷︷ ︸
=:R̃8(k,x,M,N)

= J̃M (k, x, ũ∗N,x) + ṼN−M (k +M, x̃) + R̃8(k, x,M,N)

= ṼN (k, x) + R̃8(k, x,M,N)

In summary, we have shown that

J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N)
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with

|R̃8(k, x,M,N)| ≤ |R1(k, x,M,N)|+ |R2(k, x,M,N)|+ |R3(k, x,M,N)|+ |R4(k, x,M,N)|
+ |R7(k, x,M,N)|

≤ γṼ (σ(P )) + γλ(σ(P )) + γṼ (σ̃(P )) + γλ(σ̃(P )) + 2γV (N −M, σ̄(P ))

which holds for all M ∈ {0, . . . , N} \ Q̄(k, x, P,N). On the other hand from the definition of the optimal value
function we know that

ṼN (k, x) ≤ J̃N (k, x, u)

for all u ∈ UN (k, x), in particular for u = û. This implies

J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N) ≤ J̃N (k, x, û) + R̃8(k, x,M,N)

and thus R̃8(k, x,M,N) ≥ 0. In addition, we know that

ṼN (k, x) ≤ J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N).

With this we can conclude the existence of R8 with |R8(k, x,M,N)| ≤ R̃8(k, x,M,N) such that

J̃N (k, x, û) = ṼN (k, x) +R8(k, x,M,N). (34)

This finishes the proof.

Using the results from Lemmas 1 - 3 we can now prove that the modified optimal value function ṼN is
a Lyapunov function for the system controlled by the MPC feedback µN obtained by solving the original
(unmodified) MPC problem.

Theorem 4 (ṼN Lyapunov function for MPC with unmodified cost). Let Assumptions 1 - 8 hold. Then
for each Θ > 0 there exists δ1 ∈ L such that the optimal value function ṼN is a Lyapunov function for the
closed loop system g(k, x) = f(k, x, µN (k, x)) on S(k) = Y (k) \ P(k) for the families of forward invariant sets
Y (k) = Ṽ −1

N (k, [0,Θ]) and P(k) = Ṽ −1
N (k, [0, δ1(N)]).

Proof. 4 Let Θ > 0, k ∈ N0 and x ∈ X(k). We first prove the existence of lower and upper bounds for ṼN (k, x)
in inequality (10). To obtain a lower bound observe that from Assumption 4 it follows that

˜̀(k, x, u) ≥ α(|x|x∗(k))

for all (x, u) ∈ X(k)× U(k, x). With this we can estimate

ṼN (k, x) = inf
u∈UN (k,x)

N−1∑
j=0

˜̀(k + j, xu(j;x), u(j)) ≥ inf
u∈UN (k,x)

N−1∑
j=0

α(|xu(j;x)|x∗(k+j))

≥ α(|x|x∗(k))

This yields the lower bound α1 = α. The upper bound follows from Assumption 7 since ṼN (k, x∗(k)) = 0 with
α2 = γṼ .
Now we turn to the inequality (11). Consider the control sequence û ∈ UN (k, x) defined in Lemma 3 and let
x+ := xû(1, x). From the definition of the cost functional we have

J̃N (k, x, û) = ˜̀(k, x, û) + J̃N−1(k + 1, x+, û(·+ 1)).

We can apply Lemma 3 to J̃N (k, x, û) because û exactly corresponds to the control sequence from the lemma.
Furthermore, we can apply the lemma to J̃N−1(k + 1, x+, û(· + 1)). The reason for this is that the control
sequence û(·+ 1) coincides with the control sequence u∗N−1,x+ up to time M −1. This follows from the dynamic
programming principle and the fact that tails of optimal control sequences are again optimal control sequences,
cf. [11, Corollary 4.5]. From this we obtain

ṼN (k, x) +R8(k, x,M,N) = ˜̀(k, x, û) + ṼN−1(k + 1, x+) +R8(k + 1, x+,M − 1, N − 1)

Using Lemma 2 on the right-hand side of the equation for k = k + 1, x = x+, M = M − 1 and N = N − 1 we
get

ṼN (k, x) +R8(k, x,M,N) = ˜̀(k, x, û) + ṼN (k + 1, x+) +R6(k + 1, x+,M − 1, N − 1)

+R8(k + 1, x+,M − 1, N − 1)

4Parts of the proof are analogous to the proof of Proposition 8.32 in [11]
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or equivalently

ṼN (k + 1, x+) = ṼN (k, x)− ˜̀(k, x, û)−R6(k + 1, x+,M − 1, N − 1)

−R8(k + 1, x+,M − 1, N − 1) +R8(k, x,M,N).

From Lemma 2 and Lemma 3 we obtain a bound for the residuals

−R6(k + 1, x+,M − 1, N − 1)−R8(k + 1, x+,M − 1, N − 1) +R8(k, x,M,N)

≤ |R6(k + 1, x+,M − 1, N − 1)|+ |R8(k + 1, x+,M − 1, N − 1)|+ |R8(k, x,M,N)|
≤ 2γṼ (σ(P )) + 2γλ(σ(P )) + 6γṼ (σ̃(P )) + 2γλ(σ̃(P )) + 4γV (N −M, σ̄(P ))

(35)

which holds for all M ∈ {0, . . . , N}\{Q̄(k, x, P,N)∪Q̄(k+1, x+, P,N−1)}. Because each of the sets Q̄ contains
at most 2P elements we can choose P = bN8 c to guarantee that there is at least one such M satisfying M ≤ N

2

which implies N −M ≥ N
2 . With this we can find an upper bound ν(N) of (35) only depending on N that is

given by

ν(N) := 8γṼ (σ(bN
8
c)) + 2γλ(σ(bN

8
c)) + 2γλ(σ̃(bN

8
c)) + 4γV (

N

2
, σ̄(bN

8
c))

using the properties of comparison functions. Thus we arrive at the inequality

ṼN (k + 1, x+) ≤ ṼN (k, x)− ˜̀(k, x, û) + ν(N)

= ṼN (k, x)− ˜̀(k, x, µN (k, x)) + ν(N).

In addition, from Assumption 4 it follows that

−˜̀(k, x, u) ≤ −α(|x|x∗(k))

for all (x, u) ∈ X(k)× U(k, x), in particular for u = µN (k, x). This leads to the inequality

ṼN (k + 1, x+) ≤ ṼN (k, x)− α(|x|x∗(k)) + ν(N).

Since we have upper bound ṼN (k, x) ≤ α2(|x|x∗(k)) we can further estimate

ṼN (k + 1, x+) ≤ ṼN (k, x)− α(|x|x∗(k)) + ν(N)

≤ ṼN (k, x)− α(α−1
2 (ṼN (k, x))) + ν(N)

= ṼN (k, x)− χ(ṼN (k, x))) + ν(N)

(36)

with χ := α ◦ α−1
2 . Define δ1(N) := max{χ−1(2ν(N)), χ−1(ν(N)) + ν(N)} and let P(k) := Ṽ −1

N (k, [0, δ1(N)]).
Then for x ∈ Y (k) \ P(k) it holds that

ṼN (k, x) ≥ δ1(N) ≥ χ−1(2ν(N)).

This implies

ν(N) ≤ χ(ṼN (k, x))

2

and it follows that

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x))) + ν(N)

≤ ṼN (k, x)− χ(ṼN (k, x)))

2

and using the lower bound α1(|x|x∗(k)) ≤ ṼN (k, x) we get

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)))

2
≤ ṼN (k, x)− χ(α1(|x|x∗))

2
.

Thus we have shown the inequality (11) with αV (r) = χ(α1(r))
2 . What remains to be shown is the forward

invariance of the sets Y (k) and P(k). For x ∈ Y (k) it holds that ṼN (k, x) ≤ Θ. Now consider x+ for which it
holds

ṼN (k, x) ≤ ṼN (k, x)− αV (|x|x∗) < ṼN (k, x) ≤ Θ

and thus x+ ∈ Ṽ −1
N (k + 1, [0,Θ]) = Y (k + 1). This shows the forward invariance of Y (k).

To prove forward invariance of P(k) let x ∈ P(k) which implies that ṼN (k, x) ≤ δ1(N). Distinguish two
cases:

14



1. case: χ(ṼN (k, x)) ≥ ν(N)
Here it follows from (36) that

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)) + ν(N) ≤ ṼN (k, x) ≤ δ1(N).

2. case: χ(ṼN (k, x)) ≤ ν(N)
In this case it follows

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)) + ν(N)

≤ ṼN (k, x) + ν(N) < χ−1(ν(N)) + ν(N) ≤ δ1(N).

In both cases it follows that x+ ∈ P(k + 1) and thus the forward invariance.

Together with Theorem 2, Theorem 4 shows that the MPC closed loop is practically asymptotically stable at
the optimal trajectory. In particular, this means that the closed loop trajectory will converge to a neighborhood
of the optimal trajectory, whose size tends to 0 as the optimization horizon N tends to infinity. In addition,
Theorem 1 ensures that the closed loop trajectory approaches this neighborhood in an approximately optimal
way.

6 Examples

In this section we present two examples that illustrate the theoretical results from Theorems 1 and 4.

Example 1 (Scalar system). Consider the scalar control system

x(k + 1) = x(k) + u(k) + w(k)

with a time-varying function w(k) = −2 sin(kπ12 ) + ak where (ak)k∈N0
⊂ [− 1

4 ,
1
4 ] is sequence of random numbers.

The stage cost is defined as `(k, x, u) = u2 and we consider state constraints sets X(k) defined by

X(k) :=

{
[−2, 2], k ∈ [24j, 24j + 12)), j ∈ N0

[− 1
2 ,

1
2 ], k ∈ [24j + 12, 24(j + 1)), j ∈ N0

and control constraints U(k) = [−3, 3], k ∈ N0.
The model is a minimal example already used in [8]. Though simple in nature, it already captures the

important features of time-varying dynamics and economic stage cost. At the same time it is not a purely
academic example since it can be interpreted as an application from engineering: regard the state x as the
mean temperature of a room that is subject to time-varying ambient temperature fluctuations w caused e.g. by
the weather. The aim is to keep the temperature within certain comfort bounds X(k) by controlling the heating
and/or cooling u. This goal should be achieved using as little control effort as possible (corresponding for example
to electricity cost), which is expressed by the economic stage cost function ` that only penalizes the control effort.

As such it bears resemblance to a slightly more complex model in continuous time treated in [12], which
displays the same essential dynamics but has a periodic optimal solution. In contrast the model we consider has
a non-periodic optimal solution due to the external excitation w being non-periodic.

The optimal reference, i.e. the trajectory at which the system operates best on the infinite horizon, cannot
be computed analytically for this model. In lieu thereof we compute an open loop trajectory on a very long finite
horizon.

It was already shown in [10] that the system is strictly dissipative and satisfies the turnpike and continuity
assumptions. This means the requirements for applying Theorem 1 and Theorem 4 are met. The convergence
and stability results from the two theorems are also confirmed by our numerical simulations performed in Matlab.
The source code of the simulations can be found on Bitbucket5. In Figure 2 a MPC closed loop solution for
a fixed horizon length is shown. It can be observed that the closed loop follows the optimal trajectory. Figure
3 shows that the MPC closed loop cost converges for increasing horizon length (presumably to the cost of an
open loop optimal trajectory on the infinite horizon) and the MPC closed loop trajectory also approximates the
optimal trajectory x.

Example 2 (Simple PDE model). As a second example we investigate a problem involving a partial differential
equation (PDE). The example demonstrates that our theorems not only hold for finite but also infinite dimen-
sional systems.
Consider the convection diffusion equation

∂y

∂t
− α∇2y + w∇y = 0 on Q := Ω× [0, T ],

y(0) = y0 on Ω,
(37)

5Bitbucket repository: https://bitbucket.org/spirkelmann/scalar-economic-mpc-example/, commit: 55f42af
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Figure 2: MPC closed loop state (solid red) and control (solid blue) trajectories for horizon length N = 8
and optimal trajectory (dash-dotted black). The MPC trajectory starts away from the optimal trajectory at
x(0) = 0 and quickly converges to the optimal trajectory.
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where y : Q→ R is the temperature, α > 0 is the diffusion coefficient, w : Ω× [0, T ]→ R is a velocity field and
y0 : Ω→ R is the initial condition at time zero. Let the boundary of the domain be separated in two parts Γout
and Γc and consider boundary conditions of Robin type:

∂y

∂n
+ γouty = δoutyout on Σout := Γout × [0, T ],

∂y

∂n
+ γcy = δcu on Σc := Γc × [0, T ].

(38)

In the above equations ∂y
∂n is the derivative of y in normal direction, yout : Σout → R is the outside temperature,

u : Σc → R is a control function, and γc, δc : Σc → R, γout, δout : Σout → R are coefficient functions.
The optimal control problem is given by:

min
y,u,w

J(y, u, w) =
1

2
‖u‖2L2(Σc) +

1

2
‖w‖2L2(Q) (39)

subject to equations (37), (38) and the constraints

u ≤ u ≤ u on Σc, (40)

y ≤ y ≤ y on Ωy × [0, T ], (41)

with lower and upper bounds for state and control where Ωy ⊆ Ω is a subdomain.
The physical interpretation of this setting is similar to Example 1 but now with an underlying PDE. The state y
models the spatial distribution of the temperature within a room. The temperature is subject to time-dependent
variations at the boundary Γout due to changing outside temperature yout. On the controlled part of the boundary
Γc the temperature can be influenced by the control u representing heating and cooling. In addition, a second
control w can be used to affect the convection, similar to a controllable air flow inside the room. The goal is to
keep the temperature of the room within lower and upper bounds y and y on the subdomain Ωy, using as little
energy as possible.
For simplicity we consider the unit interval as domain Ω. Similar results can be obtained also in higher di-
mensions, see also [13]. The boundary Γ is partitioned into an uncontrolled boundary Γout at x = 0 and a
controlled boundary Γc at x = 1, see Figure 4. Furthermore, we assume the controlled convection w is con-
stant in space. For the solution with MPC the problem is discretized using linear Lagrange finite elements for

Ωy

Ω ΓcΓout

10

Figure 4: Illustration of domain Ω and subdomain Ωy, as well as controlled (Γc) and uncontrolled (Γout) parts
of the boundary.

the spatial discretization and the implicit Euler method for the time discretization. The numerical simulations
have been carried out in Python with the help of FEniCS [14] [15] and Ipopt [16]. All the parameters for the
simulations can be found in Table 1. The source code for the simulations can be found on Bitbucket 6.

Parameter Value Description Parameter Value Description
Ωy [0.25, 0.75] subdomain α 1 diffusion coefficient
h 0.01 sampling rate γout, δout 106 parameters at outside boundary
ny 100 dof for FEM discretization γc 0 parameter at control boundary
−y, y 0.15 state constraints δc 10 parameter at control boundary
−u, u 0.25 control constraints yout(t) 0.3 sin(10t) time-varying outside temperature
y0 −0.1 initial value of the state

Table 1: Overview of parameters used in the simulations.

It seems difficult to verify the turnpike assumption analytically for this example. However, numerical evidence
from Figure 5 suggests that the problem has the turnpike property. Like in Example 1 the optimal trajectory has
been computed from an optimization with a free initial value on a long horizon. The plots indicate that open loop
trajectory come close to the turnpike, i.e. the optimal trajectory y∗. It can also be observed that for a longer

6Bitbucket repository: https://bitbucket.org/spirkelmann/pde-economic-mpc-example/, commit: aebbf8a
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Figure 5: The upper two figures show the norm difference ‖yu∗N (k, x)−y∗(k)‖L2(Ω) between open loop predictions
yu∗N starting at time k with initial values on the closed loop yµN

(k) and the optimal trajectory y∗ (dashed black
line) for horizon length N = 25 on the left and N = 50 on the right. In addition the norm difference of the
closed loop yµN

to the optimal trajectory y∗ is shown (solid red line). The plot at the bottom shows the norm
difference between open loop predictions yu∗N and the optimal trajectory y∗ starting at different initial values
y0 for a fixed horizon length N = 50.

horizon the open loop solutions stay longer at the turnpike which also causes the closed loop to be closer to the
optimal trajectory. Moreover, the third plot in Figure 5 shows that even for different initial values the open loop
predictions are at some point near the optimal trajectory, although for some initial values this happens faster
than for others.

Checking the continuity assumptions of the optimal value functions is more involved and remains an open
problem. Nonetheless we can apply the MPC algorithm to the problem. Figure 6 shows an exemplary MPC closed
loop with a horizon of N = 50. The state on the subdomain Ωy is kept between the lower and upper bounds.
The control u alternates between cooling and heating in order to counteract the rising and falling temperature
at the uncontrolled boundary. As seen in Figure 7 we can observe convergence of the closed loop cost of the
MPC solutions for increasing horizon length as well as convergence of the MPC closed loop trajectories to the
optimal trajectory. An interesting observation is that in this example the cost converges much quicker than the
state. While there is already not much change in the value of the closed loop cost for N = 20 the closed loop
trajectories themselves only come close to the optimal trajectory around relatively long horizons of N = 70.

7 Conclusions

In this paper we presented performance and stability results for economic model predictive control in the time-
varying setting. We generalized the concept of optimal equilibria and optimal periodic orbits to the time-varying
setting, making use of a overtaking optimality as a more general optimality notion. This resulted in the definition
of an optimal trajectory. We then showed that under turnpike and continuity assumptions the cost of the MPC
closed loop approximates the cost of optimal trajectories on the infinite horizon. In addition, we used strict
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dissipativity in order to prove that a modified optimal value function is a practical Lyapunov function, allowing
us to conclude that the MPC closed loop converges to a neighborhood of the optimal trajectory whose size
tends to 0 as the optimization horizon N tends to infinity. Finally, we presented two examples that illustrated
that our theoretical findings also hold in practical applications, both for finite and infinite dimensional systems.
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[2] Lars Grüne. Economic receding horizon control without terminal constraints. Automatica, 49(3):725–734,
2013.
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[21] Lars Grüne and Marleen Stieler. Asymptotic stability and transient optimality of economic mpc without
terminal conditions. Journal of Process Control, 24(8):1187–1196, 2014.

[22] Christopher M. Kellett. A compendium of comparison function results. Mathematics of Control, Signals,
and Systems, 26(3):339–374, 2014.

21


	Introduction
	Problem statement
	Economic model predictive control
	MPC Performance estimates
	MPC trajectory convergence
	Examples
	Conclusions

