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Abstract

We consider economic model predictive control (MPC) without terminal conditions for time-varying
optimal control problems. Under appropriate conditions we prove that MPC yields initial pieces of approx-
imately infinite horizon optimal trajectories, and that the optimal infinite horizon trajectory is practically
asymptotically stable. The results are illustrated by two numerical examples, both motivated by energy
efficient heating and cooling of a building.
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1 Introduction

In classical model predictive control (MPC) the aim is to track an a priori known reference trajectory of the
system. The reference trajectory is either given by the control objective or prescribed by insight of the user
into the process and can for example be a steady state at which the system should be stabilized. This steady
state, in turn, may be computed via some form of optimization, e.g., as an optimal equilibrium of the system.

In contrast, in economic MPC the primary goal of the controller is not the stabilization of a pre-computed
trajectory or steady state but instead the optimal performance of the controller with respect to an economic
cost criterion, e.g. energy minimization or profit maximization. For time-invariant system dynamics this setting
has been studied extensively and a number of performance results and conditions for convergence to an optimal
steady state have been established both with [1] and without the use of terminal conditions [2].

It has been observed in various papers [3, 4, 5, 6] that even for time-invariant problems the optimal behaviour
of the system may occur not at a steady state but rather at a time-varying periodic orbit that the system traverses
cyclically. Consequently, it can no longer be expected that the system converges to a steady state but rather
to the periodic orbit. In this paper, we go one step further and consider problems with time-varying data, in
which the optimal behavior is a non-periodic time-varying trajectory.

In order to prove stability of model predictive controllers often terminal conditions are used in whose design
explicit knowledge of the reference trajectory enters. Already for periodic optimal behavior this can be difficult,



though for some problems it is in principle still doable as demonstrated in [7]. For general time-varying problems
the computation of the optimal reference is in general an even more difficult task. For this reason the focus of
research has turned to MPC schemes without terminal conditions.

In this paper we follow the same reasoning since we want to treat general time-varying systems that can
exhibit complex optimal steering behavior. We do not assume a priori knowledge of the resulting trajectory
of optimal operation — termed optimal trajectory in this paper — and thus entirely avoid the use of terminal
conditions. Instead, we rely on the model predictive controller to find the optimal trajectory by itself, without
providing it with any prior information about its location or structure. The questions to be addressed are under
what conditions we can guarantee approximate optimal performance of the MPC controller and whether the
trajectory generated by MPC converges to the optimal trajectory.

The paper is structured as follows. In the next section we introduce the mathematical formulation of the
problem making use of an optimality notion that allows us to consider unbounded cost functionals on the
infinite horizon and we define the optimal trajectory as a generalization of steady states or periodic orbits to the
time-varying setting. Section 3 explains the MPC algorithm. In Section 4 we state performance estimates from
a previous work [8] using two essential assumptions, the turnpike property and continuity of the optimal value
functions. The next section establishes convergence of the economic MPC solution to the optimal trajectory
which represents the main result of this paper. In the concluding section we give two examples that hint at a
practical application from energy efficient building control.

2 Problem statement
We consider the discrete-time time-varying dynamics
w(k+1) = f(k,z(k),u(k)), x(0) ==z, (1)

with f : Ng x X x U — X and state space X and control space U are normed spaces. Here k € Ny denotes
time, z(k) € X the state of the system at time k and u(k) € U the control.

A trajectory of the system starting at time k from initial state z € X controlled by u € UN, N € N is
denoted by z,,(; k, ). We may omit the initial time and simply write (-, z) when it is clear from the context.
We want to incorporate state and control constraints in the problem statement. The sets of admissible states
at time k will be denoted by X(k) C X and the sets of admissible control values for z € X(k) by U(k,z) C U.
By UM (k,z) we denote the sets of admissible control sequences for initial state z € X(k) up to time k + N, i.e.
control sequences u € UV satisfying

u(j) e Uk + j,zu(f; k,2)) and 2, (j + 1; k,2) e X(k+ 5+ 1)

forall j =0,..., N—1. The set U*(k, z) denotes the natural extension of this definition to the infinite horizon.
Let £: Ng x X x U — R be the stage cost function and consider the cost functional

Too(ky,w) = Y Uk + j,wu (i b, ), u())) (2)
j=0

The goal in our setting is to find a feasible control sequence u € U™ (k, z) that minimizes Jo(k,z,u). How-
ever, we first need to clarify what we mean by ”minimizing” because for infinite optimal control sequences it
is not obvious that J(k,z,u) will attain a finite minimum at all. In fact with general stage cost the value
of Jo(k,x,u) may be infinite for all control sequences, so it is not directly possible to compare two control
sequences based on their costs.

In the following we introduce a suitable notion of optimality that goes back to Gale[9] in the context of mathe-
matical economics. The key idea is to consider not the total cost of two control sequences but instead to look at
the difference of the costs. Although both control sequences in themselves generate infinite costs, the difference
between the two can still be finite. A control sequence is considered to be optimal if its cost is overtaken by the
cost of any other control sequence at some point.

Definition 1 (Overtaking optimality). Let x € X(k) and consider a control sequence u* € U (k,z) with
corresponding state trajectory x.«(-; k,x). The pair (z,+,u*) is called overtaking optimal if

K-1
fminf » - 6(k + j,2u(j, 2), u(f)) — £k + j,wue (5, 2),u” (7)) > 0 (3)

for all uw € U= (k, x).



Definition 1 provides us with the ability to decide which of two infinite control sequences is better when
starting at a fixed initial value x. The minimization in the following problem is to be understood in this
overtaking optimal sense:

minimize Jo(k,x,u 4

u€U>® (k,z) OO( ) ( )
In the next definition the requirement of a fixed initial value is removed. This means we now look at all possible
feasible trajectories that satisfy the dynamics of the system and pick from those the one that is optimal in the
sense of Definition 1.

Definition 2 (Optimal operation). Let x € X(k) and consider a control sequence u* € U (k,x) with corre-
sponding state trajectory x* = xy+ (- k,x). We say the system (1) is optimally operated at (z*,u*) if

K-1

lim inf jz:(:) Uk + (g 2'), u(i)) = £k + 5,27 (5),u"(§)) 2 0 ()

for all ' € X(k) and u € U= (k,z').

We will refer to the trajectory pair (z*,u*) as the optimal trajectory. For the remainder of this paper we
will assume that an optimal trajectory of the system always exists. Similarly, we assume a solution of problem
(4) exists, which will be denoted by wu}

The optimal trajectory can be considered a generalization of an optimal equilibrium or an optimal periodic
orbit that may be present in the case of time-invariant systems, see e.g. [3]. In the classical time-invariant
setting there may for example exist an optimal equilibrium at which the system can be operated at minimal
cost for an infinite horizon. Then for any given initial condition we want to find a control sequence that brings
the state to the optimal equilibrium.

In the same way in our setting an optimal trajectory exhibits the best performance in the long run. The
question is how it connects to the solution of problem (4). In Section 4 we will introduce the turnpike property
for infinite horizon. This key assumption guarantees that the solution of problem (4) converges to the optimal
trajectory. This means we can reach the optimal operating behavior for a system by solving an infinite horizon
optimal control problem. However, in general this is a very hard problem. In the following section we will
introduce model predictive control as a method that aims to solve this problem by reduction to a finite horizon.

3 Economic model predictive control

In this paper we want to show that an approximate solution to problem (4) can be obtained by using model
predictive control (MPC). The idea is introduced in the following: Instead of solving the problem on the infinite
horizon we fix NV € N and consider the following cost functional.

Definition 3 (MPC cost functional). The MPC' cost functional is defined as

N—-1
~N(k,z,u) ka—&-],xu]kz) u(j))- (6)
=0

Then in each step of the MPC algorithm the following optimization problem is solved.

Definition 4 (MPC optimal control problem and optimal value function). Consider the problem

minimize Jn(k,x,u). (7)
uw€UN (k,z)

The corresponding optimal value function is defined by

Vn(k,x) = ueujifrvl{k Y In(k,x,u).

We will assume that the minimizer of this problem always exists and denote it by uj, or else u} , in
case we want to stress the dependence on the the initial state z. Note that the optimal control satisfies
Vn(k,z) = Jn(k, 2, uy ).

We remark that here we use the classical notion of optimality again since for finite horizon the cost functional
cannot attain an infinite value. As a general rule we will need overtaking optimality only when optimizing over
an infinite horizon, otherwise the usual notion of optimality suffices.



The model predictive control algorithm given in Algorithm ?? produces an approximate solution to problem
(4).
The trajectory of the system generated in this way is called closed loop. We will denote it by x, (-, ) for
initial value © = (ko) € X(ko). The cost of the closed loop for L time steps is defined by

L—-1

Jil(k07x7p,N) = Z é(ko +.]7 Tyun (jaz)7ﬂN(k0 +.77 Tyun (],l’)))
7=0

The aim of this paper is to study how good the approximation generated by the MPC algorithm is compared
to the exact solution of the infinite horizon problem. In particular we want to address the following questions:

e How does the cost of the MPC closed loop compare to the cost of the solution on infinite horizon?
This question is of special interest for problems in an economic setting. Here the behavior of the state
trajectories is of secondary importance, instead we are more interested in finding a solution that generates
the lowest possible costs. This question will be dealt with in Section 4.

e Does the closed loop converge to the optimal trajectory?
We also want to find out under what conditions we can establish convergence not only of the cost but
also of the state. This is of particular interest since the optimal trajectory does not appear in the MPC
problem from Definition 4. Instead, the algorithm finds the optimal trajectory by itself. In this respect,
economic MPC differs from classical stabilizing MPC approaches, which require a priori knowledge about
the optimal trajectory. An answer to this question will be given in Section 5.

4 MPC Performance estimates

In this section we will deal with the question whether the cost of the MPC closed loop approximates the cost
of the optimal trajectory on the infinite horizon. The key idea to bring together the trajectories of the MPC
problem and the problem on an infinite horizon is to look at the turnpike property. It states that optimal
trajectories converge on both finite and infinite horizon against the optimal trajectory (x*,u*). An illustration
of this can be found in Figure 1. The bound on the distance to the optimal trajectory is written in terms of a
comparison function as defined in the following.

Definition 5 (Comparison functions). We define the following classes functions:
K:={a:Rf =R | a is continuous and strictly increasing with «(0) = 0}

Keo = {a:R{ = Ry | @ € K unbounded }

L:={6:Rf = R |6 is continuous and strictly decreasing with lim;_,, 5(t) = 0}
KL:={B:Rf xRT = R{ | B is continuous, B(-,t) € K, B(r,") € L}

For the distance between two pairs (z1,u1), (2, u2) € X x U we will use the notation
(@1, 1) (@o,uz) = l21 = @l + [lus — uall

and similarly for xq,x9 € X

|21]zy = [lz1 — 22
Definition 6 (Turnpike property). Consider a trajectory pair (x*,u*) at which the system (1) is optimally
operated. We say that an optimal control problem has the turnpike property at (x*,u*) if the following hold:

There exists o € L such that for each k € Ny, each optimal trajectory wys (-,x), * € X(k) and all N,P € N
there is a set Q(k,x, P,N) C{0,..., N} with #9(k,xz, P,N) < P and

(@, (M, ), Wiy (M) 2 (k1) s (k- 21)) < T(P)

forall M €{0,...,N}\ Q(k,z,P,N).

The definition can be extended to the infinite horizon. Here an optimal control problem has the turnpike property,
if there exists p € L such that for each k € Ny, each optimal trajectory xy-_ (-, ), v € X(k) and all P € N there
is a set Q(k,x, P,oo) C Ng with #9(k,z, P,oo) < P and

[Tz (M, ), ule (M) (2 (k- 2y (k1 21)) < p(P)
for all M € No \ Q(k, z, P, 0).



Figure 1: Illustration of the finite horizon turnpike property for time-varying systems.

Assumption 1 (Turnpike property for MPC problem). We assume the MPC problem from Definition 4 has
the turnpike property.

Assumption 2 (Turnpike property for problem on infinite horizon). We assume the optimal control problem
(4) has the turnpike property on infinite horizon.

While the turnpike property is a very convenient assumption it is at the same time not unreasonable.
Turnpike properties of optimal control problems can be numerically observed for many practical problems. In
addition, there are results that prove the existence of turnpike behavior for dissipative systems, see e.g. [10].

Note that the infinite horizon turnpike property can also be regarded as a convergence assumption of the
solution of the infinite horizon problem (4) to the optimal trajectory. This is evident because the turnpike
property requires that the distance between the optimal trajectory and the trajectory generated by u}, can
only be large for a finite number of points but this can only hold for a convergent trajectory.

The second ingredient for proving performance estimates for the MPC closed loop is continuity of the optimal
value function. Before defining this continuity notion we first introduce a shifted stage cost function obtained
by subtracting the cost of the optimal trajectory, as well as the corresponding cost functionals and optimal
value function.

Definition 7 (Shifted cost). We define the shifted stage cost as

Uk, x(k),u(k)) =Lk, x(k),u(k)) — £(k,x"(k),u"(k))

and the shifted cost functional as

=

JN(,Z{},I,U) = g(k+],xu(],k,x),u(]))

<.
Il
=}

The corresponding shifted optimal value function is given by

VN(k‘,J;) = uEUi]l\}lfk . jN(k,x,u).

In the same way for the infinite horizon we define

M8

Joo(kyzou) =Y Uk + j,24(j; k, ), u(5)).
j=0
and
Voolk,z) := inf  Juo(k,z,u).
( I) uGUl‘}‘}(k,w) ( * U)

We will formulate our results in terms of this shifted function. The reason for this change is that the optimal
value function of the infinite horizon problem does not necessarily attain a finite value but it can be shown that
under the turnpike assumption the shifted optimal value function Va, (k, ) is finite for all 2 € X(k), see [8].

It should be noted that the solution of the shifted problem coincides with the solution of the MPC problem
(7). This is important for practical considerations since it means we do not need to know the optimal trajectory
(z*,u*) in order to solve the problem.



Assumption 3 (Continuity property of the optimal value function). We assume that the optimal value function
Vy is (approzimately) continuous at x* in the following uniform way: for each k € Ny there is an open ball
B.(x*(k)), € > 0, around x*(k) and a function vy : R§ x Ry — Ry with v (N,7) — 0 if N — oo and 7 — 0,
and vy (-, 1), yv (N, ) monotonous for fixed r and N, such that for all x € Be(x*(k)) N X(k) and all N € N the
inequality

\Vn (k,z) = Vi (k, 2" (k)| < v (N, |2

x*(k))

holds.

Moreover, we also assume approzrimate continuity of the optimal value function on the infinite horizon: for
each k € Ny there is an open ball B.(z*(k)), € > 0, around z*(k) and a function wy € Ko such that for all
x € Be(z*(k)) N X(k) it holds R R

Vo, 2) — Voo (b, (B))] < o ([l 1)

Using the turnpike and continuity properties one can prove the next result. Here we avoid duplicating the
preliminary lemmas that lead to this results and also will not give the proofs. These can be found in [8].

Theorem 1 (see Theorem 1 in [8]). Let Assumptions 1 and 3 hold. Then for each k € Ny and each sufficiently
large N € N the closed loop cost satisfies

J& (ky 2, pun) < Vo (ky @) — Vo (k + Ly (L, 2)) + L(N)
with a function § € L.

As outlined in the discussion following the proof of the theorem in [8], this implies that the MPC closed
loop trajectory approximates the cost of the infinite horizon optimal trajectory at least on finite horizons. More
specifically, consider a control sequence that consists for the first L steps of the MPC feedback solution and
after that of the solution of the infinite horizon problem starting in & = z,,, (L, ) at time k + L:

ulo 3(7); j=L

00,T

] ] j=0,...,L—1
ﬂ(]) — {MN(k+j7xltN(J)x))7 J 0, )

According to the theorem the cost of this control sequence is (up to the error term LJ(N)) comparable to the
cost of the optimal control sequence that solves the infinite horizon problem (4).

5 MPC trajectory convergence

In this section we show that not only the cost of the MPC trajectory approximates the cost of the infinite
horizon optimal trajectory, but we can also establish convergence of the trajectory itself. This is formalized by
using the notion of P-practical asymptotic stability and Lyapunov functions. For the definition of stability we
substitute the feedback for the control in system (1), i.e. we consider the feedback controlled system

ot = fk,z, pn(k,x)) =: gk, ). (®)
The following definitions and the theorem are taken from [11].

Definition 8 (Forward invariance). We say a family of sets Y (k) C X, k € Ny is forward invariant if
glk,x) € Y(k+1) for all k € Ng and all x € Y (k).

Definition 9 (Uniform P-practical asymptotic stability). ' Let Y (k) be a forward invariant family of sets
and let P(k) C Y (k) be subsets of Y (k). Then we say that a trajectory x* with x*(k) € Y (k) is P-practically
uniformly asymptotically stable on Y (k) if there exists § € KL such that

2+ (k) < B(|Zolz (ko) B — ko) 9)

holds for all xg € Y (ko) and all ko, k € Ng with k > ko and x(k; ko, xo) ¢ P(k).

|z (ks ko, z0)

Uniform asymptotic stability is ensured by the existence of a Lyapunov function.

Definition 10 (Uniform time-varying Lyapunov function). 2 Let subsets S(k) C X and define S := {(k,z)|k €
No,z € S(k)}. A function V : & — R{ is called uniform time-varying Lyapunov function on S(k) if the
following conditions are satisfied:

Lef. Definition 2.17 in [11]
2cf. Definition 2.21 in [11]



1. There exist functions ay,as € Koo such that

ar(|@]e- ) < V(k, 2) < ooz

@ (k) (10)
holds for all k € Ng and all x € S(k).

2. There exists a function oy € KC such that

V(k+1,9(k,2)) <V(k,z)—ay(z

holds for all k € Ny and all x € S(k) with g(k,z) € S(n+1).

Theorem 2 (P-practical asymptotic stability). 3 Consider forward invariant families of sets Y (k) and P(k) C
Y(k), k € No, and z*(k) € P(k). If there exists a uniform time-varying Lyapunov function V on S(k) =
Y (k) \ P(k) then x* is P-practically asymptotically stable on Y (k).

We will show that a modified optimal value function related to the optimal value function of the original
MPC problem is a Lyapunov function for the feedback controlled system. An essential assumption we make is
strict dissipativity of the system as introduced in the following.

Assumption 4 (Strict dissipativity). The system (1) is strictly dissipative with respect to the supply rate
s(k,z,u) = l(k,z,u) and the optimal trajectory (z*,u*), i.e. there exists a storage function X\ : Ng x X — R
bounded from below on X and o € Koo such that for all k € No and all (z,u) € X(k) x U(k,z) the following
holds:

Ak +1, f(k,z,u) = Ak, @) < s(k, 2, u) — a([(z,w)] @ (k),us (k) (12)
holds for all k € Ng and all (z,u) € X(k) x U(k, x).
Using the storage function A from the previous definition we introduce a modified MPC stage cost.

Definition 11 (Modified MPC cost functional). The modified stage cost ( is given by
0k, x,u) = bk, 2, u) + Ak, 2) = Ak + 1, f(k, 2,u)). (13)

The modified MPC cost functional is defined as

N-1
~N(k,x,u) Z (k+j,zu(J; k, ), u(d)). (14)
7=0

Definition 12 (Modified MPC optimal control problem). We consider the modified MPC problem

in  Jy(k 15
ein ~N(k,z,u) (15)

and the corresponding modified optimal value function

Vn(k,z) = ueIUiJ{fl{k . In(k,x, ). (16)

In the following we will state several assumptions for this modified problem in order to facilitate the proofs.
In addition to the turnpike property from Assumption 1 we demand that the modified problem also has the
turnpike property.

Assumption 5 (Turnpike property for the modified MPC problem). The modified optimal control problem
from Definition 12 has the turnpike property. For the modified problem we will denote the set Q by Q and the
bound o by &.

Moreover, we make two assumptions for the modified stage cost and the modified optimal value function.

Assumption 6 (Modified cost bounded from above). We assume there exists a,, € Koo such that the modified
stage cost satisfies

Ok, 1) < o (|(, )] e (k) e (k) (17)
for all k € Ng and all (z,u) € X(k) x U(k, z).

3cf. Theorem 2.23 in [11]




Assumption 7 (Continuity of Vy at x*). We assume there exists vy such that for each k € No, N € N and
z € X the following holds

(Vv (k, ) = Vv (k, 2" (k)| <7y (|2

(k) (18)

Remark 1 (Modified cost along optimal trajectory). From Assumptions 4 and 6 it follows that the modified
cost along the optimal trajectory pair (x*,u*) satisfies

Lk, z"(k),u"(k)) =0 (19)

for all k € Ng. This also implies that

Vn(k,z*(k)) =0 (20)
for all k € Ny and for every N € N.

Remark 2 (Difference between different continuity assumptions). Note the difference between the two continuity
assumptions from Assumption 8 and Assumption 7. The continuity assumption for the modified problem is
independent of the horizon N.

The following preparatory lemma shows that the initial cost (up to some time instant M) of two optimal
trajectories with different horizon length of the modified problem is nearly identical.

Lemma 1. Let Assumptions 5 and 7 hold. Then

jM(kaxa ﬂ?\/) = jM(ka z’ﬂj\H—l) + RS(k'a Z7M7 N)
where the error term satisfies |Rs(k,x, M,N)| < 2y (6(P)) for all k € Ng, all N € N, all P € N sufficiently
large, all x € X(k) and all M € {0,...,N}\ (Q(k,z, P, N)U Q(k,z, P, N + 1)).

Proof. Let @} and @}, denote the optimal solutions of problem (12) with horizon N and N + 1, respectively.

From the finite horizon dynamic programming principle we obtain that u = @} is a minimizer of J vk, z,u) +
Vn-m(k+ M, z,(M,x)). In particular it holds that

I (b, @, y) + Ve (k + M, zag, (M, 2)) < Jy (k2,0 g0) + Ve (b + M, ay, (M, 2)). (21)
Now consider } 3
Rl(kaxaMa N) = VN—M(k+Ma‘Tﬂ}‘V(MaI)) - VN—JVI(k+Ma‘T*(k + M))
and

Ry(k,x, M,N) = V_p(k+ M,za; (M, x)) — Vy_p(k + M,z*(k + M)).

+1
Inserting the definition of Ry and Ry into (21) we obtain
vk, z, i) + Voar(k+ M, z*(k + M)) + Ry (k, z, M, N)
< Tk, @, @) + V—ar(k + M, z*(k + M)) + Ro(k, 2, M, N)

which is equivalent to
Jar(k,z,wy) < Jar(k, @, @ q) — Ri(k, 2, M, N) + Ro(k,z, M, N). (22)

The above equations are true for every M € {0,...,N}. For M € {0,...,N}\ (Q(k,z, P, N)UQ(k,z, P,N +1))

we know from Assumption 5 that |(vay (M, x), @y (M))|(e (k4-01),u* (k+a1)) < 6(P), and in particular |zas (M, )|z (k1) <
&(P), i.e. we have a bound on the distance of Tax, (M, z) to the optimal trajectory z*. Using Assumption 7 we

obtain

The same holds when considering the optimal trajectory u},, yielding the estimate

For the converse inequality we use the dynamic programming principle once more together with the fact
that u = @}, ; minimizes the expression Jys(k, z,u) + Vni1-n(k + M,z (M, x)) which implies that

Taa(ky @, @) + Viver-a (b + Mgy, (M, 2)) < Jar(k, 2, y) + Vive-a (b + M, zay, (M, 2)).

Defining R ~
Rs(k,xz, M,N) :=Vny1-m(k+ M, Tay,, (M,2)) = Vny1—m(k+ M, x*(k+ M))



and
Ry(k,, M,N) = Viy1-n(k + M, zas (M, 7)) = Vypr-n(k + M, z* (k + M))

we can estimate

Iu (b, @iy ) + Vivpr—a (k + M, 2™ (k+ M)) + Ry(k, z, M, N)
< Ju(kyx, @) + Vpr—n(k+ M,z (k + M)) + Ry(k,z, M, N)

& Ik, z, @y ) < Iv(k,2, @) — Ry(k,z, M, N) + Ry(k,z, M, N). (23)

Analogously to the above discussion we obtain the bounds
|R3(ka z, M, N)' < 7\7(&(P))

and
|R4(k7 x, M, N)' < IYV(&(P))

for every M € {0,..., N}\ (Q(k,x, P, N)U Q(k,x, P, N +1)). Finally, combining the inequalities (22) and (23)
leads to

|Rs (k,x, M, N)| = |Jas (k, @) — Tna (b, @, @3y

< max{| — Ry(k,z, M,N) + Ra(k,x, M, N)|,| — R3(k,z, M, N) + Ry(k,z, M, N)|}
< max{|Ry(k,z, M, N)| + |Ra(k,z, M, N)|, |R3(k,z, M, N)| + |Ry(k,x, M, N)|}

< max{2yy(6(P)), 27y (6(P))}

= 27y (6(P))-

This concludes the proof. O

Using this result we can prove the following lemma, which states that the optimal value functions for the
modified problem yields almost the same value for different horizons N and N + 1.

Lemma 2. Let Assumption 6 and those of Lemma 1 hold. Then the equation
Vnii(k,z) = Vi (k,z) + Rg(k,z, M, N)

holds with |Re(k,x, M,N)| < 4vy(6(P)) for all k € Ng, all N € N, all P € N sufficiently large, all x € X(k)
and all M € {0,...,N}\ (Q(k,z, P,N) U Q(k,z, P,N 4 1)).

Proof. Let k € Ny and let « € X(k). We first consider the optimal value function with horizon length N. From
the dynamic programming principle it follows for every M € {0,..., N} that

VN(]C,Z‘) :jM(k‘,.ﬁ,ﬂ?\[)+VN_M(I€+M,$@?V(M,$)). (24)

We define } }
Ri(k,x, M,N) := VN,M(]C-I-M,.’EﬂTV(M,(E)) —VNom(k+ M, z*(k+ M))

which can be bounded by

for M € {0,...,N}\ Q(k,z, P,N) as seen in the proof of Lemma 1.
Using the definition of R; we rewrite (24) to

Vn(k,z) = Ja(k,z, @) + Vv—ar(k + M, z*(k + M)) + Ry (k,z, M, N)

~ (25)
= JM(k,x,z]}*\,) + Rl(k‘,l‘,M,N)

where we used Remark 1 in the last equality.
Now consider the optimal value function for horizon length N+1. Again, we apply the dynamic programming
principle which yields

Ve (k@) = Jar (b, 2, @ 0) + Viveron (b + M 2ag, | (M, 2)) (26)
for every M € {0,..., N + 1}. We define

Rs(k,xz, M,N) := VN+17M(]€ + M, Tay ., (M,z)) — VNJrl,M(k + M, z*(k+ M))



with the bound
|R3(k,$,M,N)| < 'YV(&(P))

for M € {0,...,N}\ Q(k,x, P,N + 1) (cf. Lemma 1).
Inserting the definition of R3 into (26) and using Remark 1 we obtain
Vi (k,2) = Jar(k, @, @ 1) + Vvpr—a (b + M, o (k + M)) + Ry (k,z, M, N)
= Ju(k,z, @ 1) + Rs(k, 2, M,N).

For M € {0,...,N}\ (Q(k,z, P, N)U Q(k,x, P, N + 1)) we apply Lemma 1 to get

VN+1U€’$) = jM(k7m7ﬂ*N+1) + RS(kvvav N)
= Ju(k, 2, @y) + Rs(k, 2, M, N) — Rs(k,x, M,N)
= Vn(k,z) — Ry(k,z, M, N) + Rs(k,z, M, N) — Rs(k,z, M, N)

where the last equation follows with equation (25).
Finally, we define

Rs(k,z, M,N) := =Ry (k,x, M, N) + R3(k,x, M, N) — Rs(k,z, M, N)
and from the bounds on Ry, R3 and R5 we get the bound
|Rs(k,z, M,N)| = | — Ry(k,xz, M, N) + R3(k,x, M, N) — Rs(k,z, M, N)]
S |R1(k‘,$,M, N)| + |R3(k7I7M7 N)| + |R5(l€,$,M, N)|
< (0(P)) +5(6(P)) + 27 (6(P))
=4y (6(P)).
This shows the assertion. O

Remark 3. In the next lemma we will use both the turnpike property for the modified and the unmodified MPC
problem. Note however, that Assumption 1 and Assumption 5 express two different turnpike properties with
different bounds o and & and associated sets Q and Q. For the proof of the following lemma we will need a
common bound and a single set for both problems. This can be achieved by defining

7 :=max{o,0}

and 3
Q(k,z,P,N) := Q(k,x, P, N) U Q(k,x, P,N).

Then the optimal trajectories of both problems from Definitions 4 and 12 satisfy

(g, , (M, @), uy o (M) @ (kM) u (k1)) < (P)
and
((way, , (M, @, @y o (M) @ (k)0 (k4 0)) < T(P)
for all M €{0,...,N}\ Q(k,z, P,N) and #Q(k,x, P, N) < 2P.
The next theorem shows that the initial piece of an optimal control trajectory which ends in a neighborhood

of the optimal trajectory of the unmodified MPC problem yields approximately lower cost than all other
trajectories ending in that neighborhood.

Theorem 3 (Initial piece of optimal trajectory ending near turnpike is optimal). Let u} , denote the optimal
trajectory of problem (4) and let Assumptions 1, 3 and & hold. Then for all k € No, all z € X(k), all N € N, all
PeN, all M €{0,...,N}\ Q(k,x, P,N) and all u € UM (k,z) with |x,(M, )|, xsr) < 5(P) the estimate

JAM(k,a:,u*jV’x) < Jy (k2 u) + Ry (k, @, M,N) (27)
holds with |R7(k,z, M,N)| < 2vy (N — M,5(P)).

Proof. We prove the theorem by contradiction. Let u} , denote the optimal solution of problem (4) and let
Ly» = xyy, (M, z)for M € {0,...,N}\Q(k,z, P, N). Then from Remark 3 we know that |, |y« 111y < 7(P).

Now assume there exists a control sequence u € UM (k, z) with Z,, := x,(M, z) satisfying |Zy |, (k+11) < 7(P)
and

Jui(k,z,u) + Ry(k, 2, M, N) + Ra(k,z, M, N) < Jar(k, z,u} ). (28)
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with
Ry(k,x, M,N) := Vy_nr(k + M,zy) — Vy_pr(k + M, z*(k + M))

and
Ro(k,x, M,N) := Vy_ar(k + M,z*(k+ M)) — V_pr(k + M, Zy- ).

Using Assumption 3 Ry and Ry can be bounded by

‘Rl(kvx’MaN” < 'YV(N_Mva'(P))
|Ry(k,, M, N)| < v (N — M,&(P)).

Consider

jM(k,x,u) +VN_M(k+M,.fu) = jM(k‘,Z‘,U) —|—VN_M(I€—|-M,$*(]€+M)) +R1(k‘,3§‘,M,N)
= jM(k,x,u) +VN_M(kJ+M,i‘u*)
+R1(]{57.’L‘,M,N) +R2(I{?,LE,M,N>

(28) . .
< Ju(k,z, u}‘\m) +Vn_m(k+ M, )

= Vn(k,z)

where we used the dynamic programming principle for the last equation. But this contradicts the optimality of
u}y , and thus the inequality

Iu(k,z,uly o) < Jar(k,2,u) + Ry(k, o, M, N) + Ry(k,z, M, N)
follows. Finally, define
R7(k,z, M,N) := Ry(k,x, M,N) 4+ Ra(k,x, M, N)
which can be bounded by

(29)
|R7(kyxz, M, N)| < |Ry(k,xz, M, N)| + |Ra(k, 2z, M, N)| < 2vy(N — M,5(P)).
This concludes the proof. O

So far we did not impose any assumptions on the storage function A from the strict dissipativity of the
system. For the next lemma we will need that this function is continuous at the optimal trajectory.

Assumption 8 (Continuity of storage function A at z*). Assume that the storage function A is continuous in
the following sense: There exists v\ € Koo such that for all k € N and all x € X it holds that

ACk,2) = Alk, 2" ()] < 1a(lele- o). (30)

In our final preparatory lemma we consider a control sequence @ that for the first part consists of the optimal
control sequence u} , of the unmodified problem until it is close to the optimal trajectory z*. Then we control
from the final point using the optimal control sequence of the modified problem. The lemma states that the
resulting composite control sequence has almost the same cost as if we had controlled using the optimal control
sequence of the modified problem for the whole horizon.

Lemma 3. Let Assumptions 1, 3, 5 and 8 hold and let uy , and uy . denote the optimal control sequences
corresponding to problems (4) and (12). Let N, P € N be arbitrary and for M € {0,...,N}\ Q(k,z, P, N)
define Ty 1= Ty, (M, ) and denote by u solution of the optimal control problem

min ~ Jy_a(k+ M, Ty, ). (31)
w€UN—M (k+M,Z,,*)

Then the composite control sequence @ € UM (k,z) defined by a(k) = uy (k) for k = {0,...,M — 1} and
w(k + M) =u(k) for k=A{0,...,N — M} satisfies

Jn(k,x,0) = Vi (k,z) + Rs(k,z, M, N)
with
| R (k, 2, M, N)| < 77 (a(P)) + 71 (0(P)) + 7 (5(P)) + 71 (3(P)) + 27v (N = M, 5(P))
for all k € Ny and for all x € X(k).

11



Proof. We first prove ” jN(lmx,ﬁ) +&(N) < Vy(k,x)”: Using the definition of @, noting that @ is an optimal

solution and inserting the definition of Jy; we obtain

jN(kwxvﬁ) = jM(k>m>u7V,:r) + ijM(k + M, ,’i‘u*7ﬁ)
jM(k,x,u*NJ) +‘~/N_M(]€+M,fu*) (32)
= Ju(k, 2, ui ) + Ak, 2) = Ak + M, Zu=) + Viv_ar(k + M, Zy-)

Define 5 -
Rl(kaxaMaN) = VN—M(k‘_FMa'iu*) - VN_]\/[(]C—FM,JT*(I?"‘M))

and

Ro(k,x, M,N):= Ak + M,z*(k+ M)) — Mk + M, Z,).
o (k) < o(P) for M € {0,...,N}\ Q(k,z, P,N). Thus
we can use the continuity of Viy_j; from Assumption 7 and the continuity of A from Assumption 8 to obtain
the bounds

Because of Assumption 1 we know the bound |z,

|R1(/{J,3},M, N)' < 7V<U(P))

and
|Ro(kyz, M, N)| < vx(c(P)).

Inserting R; and Ry into (32) leads to

Inr(ky 2z, uly o) + Ak, ) = Mk + M, @) + Vivear (b + M, Ty
= Ju(k,z,uly,) + Mk, x) = Ak + M, 2*(k + M)) + Vy_ar(k + M, 2" (k + M)) (33)
+R1(k,$,M,N) + RQ(kax,MaN)

Now consider the optimal solution @} , of problem (12), denote 7 := zgy (M, ) and define

Rs(k,z, M,N) := Vy_n(k + M, z*(k + M)) — Vi_pr(k + M, &)
and
Ry(kyz, M, N) := Ak + M, %) — Mk + M,z (k + M)).
For M € {0,..., N\ Q(k, x, P, N) we have the bound |#| < &(P) from Assumption 5. Using again the continuity
of Viy_pr and A from Assumptions 7 and 8 we can bound R3 and R4 by
and
Continuing from (33) by inserting R3 and Ry yields

Iu(k,z,uly o) + Ak, 2) — Mk + M, 2" (k + M)) + Vv_a (k + M, 2* (k + M)
+ Ry(k,z, M,N)+ Ryo(k,z, M,N)
= Jur(k,z,uly ,) + Ak, 2) = Ak + M, %) + Vv (k + M, &)
+ Ry(k,x, M,N) + Ro(k,z, M, N) + Rs(k,z, M,N) + Ry(k,x, M, N)
Finally, using Theorem 3 for the control sequence u = i}y, we obtain for M € {0,...,N}\ Q(k,x, P,N)

Iu(k,z,uly o) + Ak, 2) — Mk + M, %) + Vy_a(k + M, 2)
+ Ry(k,z, M,N) 4 Ry(k,x, M, N) + Rg(k,z, M, N) + Ry(k,z, M, N)
< Ik, @y ) + Ak, ) — Nk + M, 7) + Vy_ar(k + M, 7)
+ Ri(k,x, M,N) + Ro(k,z, M,N) + R3(k,z, M, N) + Ry(k,x, M, N) + R7(k,x, M,N)

=:Rg(k,x,M,N)
= jM(k‘,.T,ﬂ}(VJ) + VN_M(]C + M,i‘) + Rg(k,x,M, N)
= VN(k,LE) —i—fig(k,z,M,N)

In summary, we have shown that

jN(/ﬁLE,'LAL) < VN(]@ZL’) +R8(k7x7M7N)
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with
|Rg(k,x, M,N)| < |Ry(k,z, M, N)| + |Ro(k, z, M, N)| + |R3(k,z, M, N)| + |Ry(k,z, M, N)|
+ |R7(k,z, M,N)|
<y (0(P) +m(a(P)) + 73 (5(P)) + (6 (P)) + 2 (N — M, 5(P))
which holds for all M € {0,...,N}\ Q(k,x, P,N). On the other hand from the definition of the optimal value

function we know that ~ ~
VN(ka JT) S JN(k7 z, ’LL)

for all u € UY (k, ), in particular for u = 4. This implies
Jn(k,z,0) < Vy(k,z) + Rs(k,z, M, N) < Jy(k,z,4) + Rs(k,z, M, N)
and thus Rg(k,z, M, N) > 0. In addition, we know that
Vn(k,z) < Jn(k,z,0) < Vy(k,z) + Rs(k,z, M, N).
With this we can conclude the existence of Rg with |Rg(k,z, M, N)| < Rg(k,z, M, N) such that
Jn(k,z, @) = Vy(k, z) + Rg(k,z, M, N). (34)
This finishes the proof. O

Using the results from Lemmas 1 - 3 we can now prove that the modified optimal value function Vi is
a Lyapunov function for the system controlled by the MPC feedback puy obtained by solving the original
(unmodified) MPC problem.

Theorem 4 (Vy Lyapunov function for MPC with unmodified cost). Let Assumptions 1 - 8 hold. Then
for each © > 0 there exists 8, € L such that the optimal value function Vy is a Lyapunov function for the
closed loop system gk, x) = f(k,z uN(k x)) on S(k) = Y (k) \P(k) for the families of forward invariant sets
Y (k) = Vy'(k,[0,0]) and P(k) = Vi (k, [0,6:1(N)]).

Proof. * Let © >0, k € Ny and z € X(k). We first prove the existence of lower and upper bounds for Vi (k, z)
in inequality (10). To obtain a lower bound observe that from Assumption 4 it follows that

Uk, z,u) > of|] 2= (k)
for all (z,u) € X(k) x U(k, z). With this we can estimate

N—-1 N-1
V(ha)= inf Z:; Ukt jzu(iio)u(@) = inf ;0 o[ (5 )| (b))

J
> af[]a= (k)

This yields the lower bound a; = . The upper bound follows from Assumption 7 since Vy (k,z*(k)) = 0 with
Qo = ’}/‘7

Now we turn to the inequality (11). Consider the control sequence @ € UN (k,z) defined in Lemma 3 and let
xt :=x4(1,z). From the definition of the cost functional we have

jN(k‘.ax7ﬂ) = g(k:,x,d) + jN—l(k + 1,3}‘+,{L(' =+ 1))

We can apply Lemma 3 to J. ~(k,x, 1) because 4 exactly corresponds to the control sequence from the lemma.
Furthermore, we can apply the lemma to Jy_1(k + 1,2, a(- + 1)). The reason for this is that the control
sequence 4(-+ 1) coincides with the control sequence u?v—1,z+ up to time M — 1. This follows from the dynamic
programming principle and the fact that tails of optimal control sequences are again optimal control sequences,
cf. [11, Corollary 4.5]. From this we obtain

Vn(k,z) + Rs(k,x, M,N) = 0(k,z,0) + Vn_1(k+1,27) + Rg(k + 1,2, M —1,N — 1)

Using Lemma 2 on the right-hand side of the equation for k =k +1, 2 =27, M =M —1and N =N — 1 we
get

Vn(k,2) + Rg(k,x, M,N) = l(k,z,4) + Vn(k+1,27) + Rg(k + 1,27, M —1,N — 1)
+ Rg(k+ 1,27, M —1,N —1)

4Parts of the proof are analogous to the proof of Proposition 8.32 in [11]
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or equivalently

Vn(k+1,2%) = V(k,2) — 0(k,x,4) — Rg(k + 1,2, M —1,N — 1)
— Rg(k+1,2%,M —1,N — 1) + Rg(k,z, M, N).
From Lemma 2 and Lemma 3 we obtain a bound for the residuals
—Re(k+1,2",M —1,N—1) — Rg(k+ 1,27, M — 1, N — 1) + Rg(k,z, M, N)
<|R¢(k+1,27,M —1,N —1)| + |Rg(k + 1,27, M —1,N — 1)| + |Rg(k, 2, M, N)| (35)
< 295 (0(P)) 4+ 2(a(P)) + 67y (5(P)) + 29 (0(P)) + 4yv (N — M,5(P))

which holds for all M € {0,..., N}\{Q(k,z, P, N)UQ(k+1,z*, P, N —1)}. Because each of the sets Q contains
at most 2P elements we can choose P = L%J to guarantee that there is at least one such M satisfying M < %

which implies N — M > &. With this we can find an upper bound v(N) of (35) only depending on N that is
given by
V(N) = 895 (o (L5 1) + 215 ) + 2 G D) + v (a5 1)
using the properties of comparison functions. Thus we arrive at the inequality
Vn(k+1,2%) < Vn(k,z) — {(k,z,4) + v(N)
= Vn(k,z) — 0(k,z, un (k, ) + v(N).

In addition, from Assumption 4 it follows that

—g(k,x,u) < —a(|z

a:*(k:))
for all (z,u) € X(k) x U(k, z), in particular for v = pn(k,x). This leads to the inequality

Viv(k+1,2%) < Vi (k,2) = a(|z]p- 1) + v(N).

Since we have upper bound Vy (k,z) < as(|z

z*(k)) We can further estimate

VN(k+lvz+) ‘7 ( 5 ) (‘z|w*(k))+V(N)

Viv (k, ) — a(ag ! (Viv(k, 2))) + v(N) (36)
Vn (k,z) = x(Vw (, 2))) + v(N)

with x := a o ay . Define 6;(N) := max{x *(2v(N)),x ' (v(N)) + v(N)} and let P(k) := Vﬁl(k, [0,61(N))).
Then for x € Y (k) \ P(k) it holds that

<
<

Viv(k, @) 2 61(N) 2 x ! (20(N)).

This implies

and it follows that

and using the lower bound o (|2]z- 1)) < Vi (K, z) we get

X (k) _ g Xen(falee))

Thus we have shown the inequality (11) with ay (r) = M What remains to be shown is the forward
invariance of the sets Y (k) and P(k). For 2 € Y (k) it holds that Vi (k,z) < ©. Now consider ™+ for which it
holds

Vn(k,z) < Vi(k,z) — av(|z|e) < Vi (k,z) < ©

and thus 2+ € V' (k +1,[0,0]) = Y (k + 1). This shows the forward invariance of Y (k).

To prove forward invariance of P(k) let = € P(k) which implies that Vy(k,z) < 6;(N). Distinguish two
cases:
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1. case: x(V(k,z)) > v(N)
Here it follows from (36) that

Vn(k+1,27) < Vi (k,2) = x(Vy(k,2)) + v(N) < Vi (k,2) < 61 (N).

2. case: x(Vw(k,z)) < v(N)
In this case it follows

Viv(k+1,2%) < Viv(k,2) — x(Viv (k, 2)) + v(N)
< Vn(k,z) +v(N) < x ' (v(N)) + v(N) < 51(N).
In both cases it follows that 2™ € P(k + 1) and thus the forward invariance. O

Together with Theorem 2, Theorem 4 shows that the MPC closed loop is practically asymptotically stable at
the optimal trajectory. In particular, this means that the closed loop trajectory will converge to a neighborhood
of the optimal trajectory, whose size tends to 0 as the optimization horizon N tends to infinity. In addition,
Theorem 1 ensures that the closed loop trajectory 