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Abstract

This thesis deals with the measurement of voting power in different decision envi-
ronments. After a short introduction in Chapter 1, several established concepts for
power analysis are reviewed and applied in Chapters 2 and 3. Chapters 4 and 5 step
on new ground by introducing a power index for a decision environment that has
not been formalized before.

More specifically, the second chapter contrasts the textbook claim that Luxem-
bourg was a null player in the first period of the European Economic Community
(EEC) with a more comprehensive picture of Luxembourg’s role in EEC’s voting
system. It turns out that the assessment of Luxembourg’s voting power is sensitive
to the role played by the European Commission in the decision-making procedure
and to the measurement concepts underlying power evaluations.

The third chapter analyzes the European Union’s codecision procedure as a bar-
gaining game between the Council of the European Union and the European Parlia-
ment. The relative influence of these institutions on legislative decision-making in
the EU is assessed under a priori preference assumptions. In contrast to previous
studies, the chapter does not consider the codecision procedure in isolation but in-
cludes several aspects of the EU’s wider institutional framework. The finding that
the Council is more influential than the Parliament is robust to adding “context”
to the basic model but the imbalance is considerably smaller than was previously
diagnosed.

The fourth chapter considers collective decisions between more than two alter-
natives by a given number of differently sized voter groups. Weighted committee
games are introduced in order to describe corresponding decision-making in a simi-
lar fashion as weighted voting games model binary decision environments. The chapter
compares different voting weight configurations for plurality, Borda, Copeland, and
antiplurality rule. The respective geometries and distinct numbers of structurally
non-equivalent committees have escaped notice so far.

Finally, the fifth chapter seeks to clarify if – and quantify the extent to which –
adoption of a particular collective choice rule in a weighted committee game creates
a (dis)advantage for specific groups a priori. It extends established methods for
quantifying influence from weighted voting on binary options to several voting
rules for three or more alternatives. Voting weights and decision rules interact in
more complicated ways than traditional voting power indices can capture.
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Chapter 1

Introduction

1.1 Motivation and Scope

Voting and elections shape democratic participation at all levels of legislature and ex-
tend into many areas of economic activity and everyday life. Hiring committees vote
on job market candidates; shareholders of private companies elect board members,
who may in turn vote on a new CEO; high school students elect class representatives;
families vote on the location of the next family vacation; etc.

The goal of these elections is to aggregate individual, often diverging opinions
into a collective opinion. A wide range of methods and procedures exist for this
purpose – from the complicated system used for electing the German Bundestag or
weighted voting rules employed by the EU Council of Ministers to computationally
hard Schulze method and simple plurality rule.

These procedures may differ significantly in what they construe as the collective
opinion. That is, for the same voter preferences, different voting systems often
select different winners. A real-world example concerned the decision to move the
German Bundestag and federal government from Bonn to Berlin after the German
Reunification. Making plausible assumptions about preferences, Leininger (1993)
showed that a different voting system could very well have kept Bonn the seat of
government and national parliament in the newly constituted Federal Republic of
Germany. Similarly, Tabarrok and Spector (1999) analyzed the crucial US presidential
election in 1860, which ultimately led to the US Civil War. Abraham Lincoln had
only received a narrow plurality of the popular vote but won with a majority of
votes in the Electoral College. Tabbarok and Spector argue that Lincoln was not the
presidential candidate who best represented the preferences of the voters; his victory
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rather was a result of the choice of the voting system. It is likely that two of the three
other candidates, Stephen Douglas and John Bell, could have won under reasonable
alternative electoral systems – and averted the war.

Voting methods also differ in their structural properties. Among those are well-
known characteristics like Condorcet efficiency or liability to monotonicity para-
doxes. For example, the plurality runoff system that is used for the French presiden-
tial election may display a behavior that runs counter to the most obvious principles
of democratic decision-making: increased support for a winning candidate can be harm-
ful, i.e., make him or her non-winning. Other properties and staggering paradoxes
are surveyed, e.g., in Nurmi (1987) and Felsenthal and Nurmi (2017, 2018).

When a voting system is given, it is often of interest to evaluate a voter’s influence
on collective decisions. Consider, for instance, a private company’s shareholder com-
mittee that consists of three shareholders. Further assume that the first shareholder
commands 45 % of the shares, the second 40 %, and the third the remaining 15 %.
One might naively conclude that the large stockholder automatically has more say
than his smaller peers. But closer inspection reveals that this intuition is misleading:
if the committee has to decide between two alternatives (conceive, e.g., of a sim-
ple “accept” or “reject” decision), any two shareholders can jointly implement their
preferred alternative and thus have the same voting power, i.e., ability to influence
the voting outcome. Voting power is, in general, not proportional to voting weight.
Related observations date back at least to Luther Martin, who was an anti-federalist
delegate from Maryland to the US Constitutional Convention in Philadelphia 1787
and fought for fair representation of small states under the US Constitution. Martin
(as cited in Riker 1986, p. 294) already realized that “though Delaware has one dele-
gate, and Virginia but ten, yet Virginia has more than ten times as much power and
influence in the government as Delaware.”

As voting weights are an unreliable proxy for voting power, more sophisticated
mathematical tools are needed to evaluate who has how much influence on the
voting outcome. An index of voting power is exactly such an analytical tool. It tries
to quantify the a priori power of voters under the voting rule at hand. Taking an
a priori perspective makes the analysis focus on the power that a voter derives
from the voting rule itself and abstracts from other factors that may be important
to determine actual voting power. That is, it neither considers particular political
interests, preferences, or diplomatic skills nor does it analyze any specific issues that
are voted on. It rather takes the analysis behind a “veil of ignorance”.

Starting with Penrose (1946), mathematicians, economists, political scientists and
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lawyers have defined a plethora of indices.1 They all capture different aspects and
meanings of power. Most of them only apply to the simple binary case (“yes” or
“no”). More general frameworks, however, can capture richer decision environments
with more than two alternatives and account for strategic interaction between the
voters.

These richer decision environments and corresponding power investigations are
the focus of this dissertation. Its contribution is twofold: first, it reviews and applies
basic tools for the binary case (Chapter 2) as well as for spatial voting (Chapter 3) to
EU decision-making. Second, it steps on new ground by introducing the framework
of weighted committee games in order to describe weighted committee decisions on
three or more alternatives (Chapter 4). It also introduces a power index for such
games (Chapter 5). The latter is applied to analyze the voting power distribution in
the Executive Board of the International Monetary Fund (IMF) and to derive general
recommendations regarding the beneficiaries of particular voting methods.

1.2 Structure

All chapters are designed to be self-contained and can be read in any sequence.
This comes at the cost of some overlap. Chapter 2 was recently published in Games.
Chapter 3 is based on joint work with Nicola Maaser, published 2016 in Social Choice
and Welfare. Chapters 4 and 5 are based on collaboration with Sascha Kurz and Stefan
Napel.

1.2.1 Luxembourg in the Early Days of the EEC

Chapter 2 considers binary voting and reassesses an old and well-established stylized
fact in the voting power literature: Luxembourg supposedly was powerless in the
first period of the European Economic Community (EEC) from 1958 to 1972.

“Null players” are voters whose voting behavior never matters for the outcome
of a vote. Luxembourg’s role in the Council of Ministers during the first period of the
EEC is often cited as a real-world case. Although it wielded one vote out of a total
of 17 votes, there was not a single configuration of votes in which Luxembourg’s

1According to Riker (1986), Luther Martin’s informal reasoning was already close in spirit to ideas
later formalized by Banzhaf (1965) and Deegan and Packel (1978). Felsenthal and Machover (1998),
Laruelle and Valenciano (2008), and Napel (2018) provide surveys of the literature on the measurement
of voting power.
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decision could theoretically have made a difference. Consequently, standard binary
power indices like the Shapley-Shubik index (Shapley and Shubik 1954) and the Penrose-
Banzhaf index (Penrose 1946, Banzhaf 1965) assign zero power to Luxembourg.

The chapter contrasts this claim, which often serves as a textbook example in the
analysis of voting power, with a more comprehensive picture of Luxembourg’s role
in the EEC’s early voting system. It is shown that the situation was actually more
nuanced.

First, the evaluation of Luxembourg’s voting power depends on the role played by
the European Commission in the decision-making procedure. That is, Luxembourg
was only a null player if the proposal in question did not require an initial proposal
of the European Commission. Unfortunately, this observation seems to be mainly
unnoticed in the literature.

Moreover, the chapter identifies other sources of influence for Luxembourg –
sources that cannot be captured by standard power indices. In particular, it employs
a composite game with a Benelux Union and uses a popular power index for games
with communication structure to account for the deep bond between Belgium, the
Netherlands and Luxembourg and the historical importance of Luxembourg for
European integration. Taking these factors behind the “veil of ignorance” changes
the qualitative and quantitative assessment of Luxembourg’s influence in early EEC
decision-making.

1.2.2 Codecision in Context

Chapter 3 leaves the simple binary framework and considers a spatial voting model
in which voters are assumed to have Euclidean preferences. It makes use of the
“power as outcome sensitivity” approach (Napel and Widgrén 2004) and applies it
to the EU’s codecision procedure.

This procedure requires consensus to be reached between the European Parlia-
ment and the Council of Ministers through alternating amendments. If no agreement
is achieved during the first two readings, a compromise is sought by means of a con-
ciliation committee, the third and final phase of codecision.

The chapter portrays the codecision procedure as a bargaining game between
the Parliament and the Council and assumes one-dimensional spatial preferences
for members of the Parliament and delegates of the Council. The analysis provides
an assessment of the relative influence of the two “co-legislators” on EU decision-
making under a priori preference assumptions. In contrast to previous studies, it
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does not consider the codecision procedure in isolation but includes several aspects of
the EU’s wider institutional framework. It does so from a constitutional perspective
which considers only biases stemming from the institutional structure rather than
from today’s preferences or individual personalities. That is, a more realistic picture
of the codecision procedure is offered without giving up an a priori perspective.

The expected influence of the Parliament, the Council and of individual Council
members on EU decisions can be quantified using the “power as outcome sensitivity
approach”. This approach conceives of a posteriori power as the sensitivity of an
equilibrium outcome with respect to small changes in a player’s preferences. The
strategic measure of power (Napel and Widgrén 2004) then evaluates a priori power as
expected a posteriori power, using a probability measure with a priori credentials.

The main result is that the quantitative assessment of the power relation between
the EU’s key institutions strongly depends on how much context is taken into account.
The stark a priori bias in favor of the Council is greatly moderated when moving
to more context-rich models. The qualitative assessment of the balance of power is,
however, remarkably robust: the Parliament and the Council do not co-legislate on
a par. Decision rules make the latter more influential.

1.2.3 Weighted Committee Games

Chapter 4 considers committee decisions on three or more alternatives that cannot
be ordered in a natural fashion. It assumes that the committee uses a standard
voting rule that treats votes anonymously but allows the committee members to
wield asymmetric numbers of votes. Applications range from shareholders of a
private company that have to fill a position in the company’s supervisory board to
supranational organizations like the IMF whose Executive Board has to select its next
Managing Director.

The chapter formalizes such decision environments as weighted committee games,
which are defined as the combination of a set of voters, a set of alternatives, and
a particular weighted voting rule. The latter amounts to the combination of an
anonymous voting rule with voting weights associated to the relevant players.

Rather than being concerned with power evaluations, the analysis then focuses
on structural investigations of weighted committee games. It is motivated by the
observation that different distributions of voting weights that are equivalent for
binary majority decisions may be non-equivalent for more than two alternatives. For
example, a committee consisting of three voters in which the first voter wields 4 votes,
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the second 3 votes, and the third 2 votes is equivalent to a committee in which all
voters have the same voting weight if the committee has to decide on two alternatives:
every coalition of at least two voters can then implement its preferred alternative.
Things are different if the committee has to decide between three alternatives and uses
plurality rule to do so. This can most easily be seen by assuming that the three voters
have diverging interests, i.e., each has a different most preferred alternative. The
voting outcome (assuming sincere voting) will then be the most preferred alternative
of the first voter for weights of (4,3,2). If, however, votes are distributed equally,
all three alternatives get the same number of votes and some tie-breaking rule will
determine the outcome. Thus, the latter and the former voting weight distribution
are non-equivalent: there is at least one preference profile for which they induce
different winning alternatives.

Repeating the same exercise for all (infinitely many) distributions of voting
weights between three players, the chapter identifies and compares all structurally
distinct weight distributions for committees which use Borda, Copeland, plurality,
or antiplurality rule. Their geometry and differing numbers of equivalence classes
– e.g., 51 for Borda vs. 4 for Copeland rule if three voters decide on three alterna-
tives – have so far escaped notice. The partition of the set of weight distributions
into structurally distinct equivalence classes can be useful to identify the respective
distribution of power in weighted committee games. This is done in Chapter 5.

1.2.4 Influence in Weighted Committee Games

Chapter 5 is based on the weighted committee framework developed in Chapter 4. It
introduces an a priori measure of influence (or power) for weighted committee games
similar to what Penrose, Banzhaf, Shapley, Shubik and others have done for binary
decision environments. This allows to make new statements about the power impli-
cations of social choice rules. The chapter focuses on five rules: plurality, plurality
runoff, Borda, Copeland, and Schulze rule. This complements previous comparisons
of rule-specific properties like Condorcet efficiency or susceptibility to various voting
paradoxes. The analysis illustrates how voting weights and procedures jointly deter-
mine the distribution of influence between differently sized homogeneous groups of
voters for more than two alternatives.

The influence of a voter is quantified as the expected sensitivity of the outcome
to changes in this voter’s preferences. “Sensitivity” refers to the effect of arbitrary
perturbations of the original preference ordering (perhaps caused by a well-endowed
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lobbyist who successfully bribes the voter or a spontaneous change of mind). Iden-
tifying the average effect of preference perturbations on the voting outcome for each
preference profile and then – assuming that all preference profiles are equally likely
– averaging over all conceivable profiles, gives a measure of a voter’s a priori influ-
ence in the corresponding weighted committee game. It is a generalization of the
Penrose-Banzhaf index.

The new index is applied to determine the power distribution in the IMF Executive
Board. Voting weights as well as the selection process for the IMF’s Managing
Director have been reformed in 2016. It is investigated in the chapter whether – and
to which extent – the aim of granting emerging market economies more say in the
IMF’s decision-making process was successfully achieved.

In the final part of the chapter, it is asked if winners and losers from adopting a
particular voting rule can also be identified a priori if the precise distribution of votes
is not yet known. Making use of diagrams similar to those used for illustrating the
geometry of weighted committee games in Chapter 4, surprisingly general “rules of
thumb” regarding the beneficiaries of particular voting rules can be identified.





Chapter 2

Luxembourg in the Early Days of the EEC:
Null Player or Not?

On 25 March 1957, Germany, France, Italy and the Benelux countries signed the
Treaty of Rome which established the European Economic Community (EEC). Sixty
years later, it seems a well-established stylized fact that the founding fathers of what
has now become the European Union unwittingly chose an odd voting rule: they
rendered Luxembourg a “null player” in the Council of Ministers (CM) from 1958 to
1972.

The case of Luxembourg is often invoked as a textbook example in the analysis
of voting power. It illustrates that a positive number of votes does not necessarily
come with a positive share of power. Although it wielded one vote out of a total of 17
votes, there was not a single configuration of votes in which Luxembourg’s decision
could theoretically have made a difference. This matches the definition of a null
player. Consequently, standard power indices like the Shapley-Shubik index (Shapley
1953; Shapley and Shubik 1954) and the Penrose-Banzhaf index (Penrose 1946; Banzhaf
1965) indicate zero voting power for Luxembourg.

The first thing which is forgotten in this context is that Luxembourg was formally
a null player only under specific conditions. That is, when the EEC Treaty required
the Council to (i) use weighted voting and (ii) act on a proposal of the European
Commission. A closer look into the decision rules specified in the EEC Treaty reveals
that in all other cases – in particular if Council decisions had to be taken by weighted
voting without an initial proposal of the Commission – Luxembourg was not a null
player, i.e., had positive voting power.

Secondly, if one recalls the deep bond between the Benelux countries and the
important role that Luxembourg has always played (and still plays) in fostering Eu-



10 Chapter 2. Luxembourg in the Early Days of the EEC

ropean integration, there were probably other sources of influence for Luxembourg –
sources that cannot so straightforwardly be captured by power indices which rest on
the assumption of voters acting independently of each other. We provide historical
arguments that support this thesis. We also use a composite game with a Benelux
Union and invoke a popular power index for games with communication structure in
order to get a more refined picture of Luxembourg’s role in the first period of the
EEC.

The remainder of this chapter is organized as follows: Section 2.1 will first intro-
duce the different decision rules used by the then Council of Ministers and give a
short account of the historical background which motivates later modeling choices.
Then we introduce notation, weighted voting games and the two most prominent
standard power indices in Section 2.2. Section 2.3 recalls the results of traditional
power analysis for the early EEC. Section 2.4 takes account of the Benelux Union by
means of a composite game; communication structures within the EEC are captured
in Section 2.5. Section 2.6 concludes.

2.1 Historical Background

2.1.1 The Council’s Internal Decision Rule

The manner in which the Council of Ministers took decisions between 1958 to 1972
was established in Art. 148 of the EEC Treaty. Even though Art. 148(1) allowed for
simple majority voting, most of the Council decisions had to be taken by weighted
voting and required a so-called prescribed majority as specified in Art. 148(2).1 The
corresponding weights were four votes each to Germany, France and Italy, two votes
each to the Netherlands and Belgium, and one vote to Luxembourg.

For those decisions that had to be made by weighted voting, two different cases
were distinguished. If the EEC Treaty required the Council to act on a proposal of
the European Commission, the decision rule was a pure weighted rule that asked for at
least 12 out of the 17 total votes in order to adopt a decision. For decisions in policy
areas that did not require an initial proposal of the Commission, a double majority rule
had to be used: (i) at least twelve votes and (ii) the approval of at least four of the six

1The original version of the EEC Treaty used the term “prescribed majority”. It was changed
to “qualified majority” later. Constitutional measures and derogation from the Treaty always required
unanimity. For further information on weighted voting in the Council of Ministers during the first
period of the EEC, see Felsenthal and Machover (1998, ch. 5.2).
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member states were needed.2

2.1.2 The Benelux as a Key Driver of European Integration

Economic partnership between Belgium, the Netherlands and Luxembourg dates
back at least to 1922 when Belgium and Luxembourg established an economic union,
the Union Economique Belgo-Luxembourgeoise.3 In the 1930s, the three Benelux and the
Scandinavian states signed the Oslo Convention and Ouchy Convention with the aim
to lower tariffs. At the end of the Second World War, the three Benelux countries
agreed on an even deeper economic relationship among themselves. They signed the
Benelux Monetary Agreement in 1943 and the Netherlands-Belgium-Luxembourg Customs
Convention in 1944. The former fixed the exchange rates between the Dutch guilder
and the Belgian-Luxembourg franc; the latter established a tariff union between the
three Benelux countries. They introduced a common external tariff, unified their tax
rates and established common institutions like a Council of the Economic Union,
a Council for Trade Agreements and an Administrative Council for Customs. In
1945 the Benelux countries and France signed the Economic Agreement on Mutual
Consultation, setting up a Tripartite Council for Economic Cooperation. This was not
very successful and only lasted until 1948.

In the following years, the Benelux states continued to extend their partnership
on different levels. Having signed a military treaty in 1948, they agreed on a common
agricultural market in 1955 and unified their labour markets in 1956. Two years later,
they signed a treaty that established a new economic union – the well-known Benelux
Union – beginning in 1960 and intended to last for 50 years.4 The so-called Benelux
Treaty aimed at achieving free movement of capital, goods, people and services.
Moreover, the signatories agreed on coordinating economic, financial and social
policies. Important common institutions of the Benelux Union are the Committee of
the Ministers, consisting of the three foreign ministers, the Benelux Parliament and
the Council of the Union.

The Benelux countries were one of the main drivers of European integration.
After the European Coal and Steel Community (ECSC) had been established in 1951

2There was moreover a transition period of eight years (until 31 December 1965) during which
every country had a veto right. Unanimity was also required if the Council wanted to amend a
Commission proposal (Art. 149).

3The describtion in this section is mainly based on Urwin (1995), Dedman (1996) and Gilbert
(2012).

4Two years before expiration, an unlimited extension was agreed.
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by the Treaty of Paris with France, Germany and Italy, the Benelux states insisted
on a Council of Ministers to monitor the so-called High Authority of the ECSC and
to defend the interests of the smaller member states. The inaugural session of the
High Authority and the first session of the Council of Ministers both took place in
Luxembourg in 1952.

The most important contribution of the Benelux countries to European integration
was then made in 1955. They preferred much deeper integration than that achieved
by the ECSC and therefore suggested a comprehensive economic community. The so-
called Benelux Memorandum of 1955 resulted in the meeting of Messina, Italy – chaired
by Joseph Beck, the Prime Minister of Luxembourg. This was the starting point for
the 1957 Treaty of Rome that established the European Economic Community. The
Messina Declaration was heavily based on common positions of the Benelux states
regarding sectoral integration and a common market.

The deep integration between Belgium, Luxembourg and the Netherlands was
explicitly acknowledged in the EEC Treaty. According to Art. 233 “[t]he provisions
of this Treaty shall not be an obstacle to the existence or completion of regional
unions between Belgium and Luxembourg, and between Belgium, Luxembourg and
the Netherlands, in so far as the objectives of these regional unions are not achieved
by application of this Treaty.”

In the first crisis of the EEC in 1965, France boycotted every meeting of the Council.
It was Pierre Werner, the Prime Minister of Luxembourg and later regarded as the
“father” of the euro by many, who proposed a compromise during a number of
meetings held in Luxembourg in 1966.5 This compromise entailed that whenever a
member state’s vital national interests were affected adversely, negotiations had to
continue as long as a mutually acceptable compromise was reached. That gave each
member an informal veto right.

2.2 Preliminaries

2.2.1 Simple and Weighted Voting Games

A simple game is a special case of a cooperative game (N, v) in which N = {1, . . . ,n}
denotes the non-empty and finite set of players and v : 2N

→ {0, 1}. A coalition S is
referred to as winning if v(S) = 1 and as losing if v(S) = 0. A winning coalition is called

5Among the reasons for France’s so-called “policy of the empty chair” were discrepancies regard-
ing the admission of Britain, farm prices and increased budgetary power of the European Parliament.
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minimal winning if every proper subcoalition T ⊂ S is losing. It is generally required
from (N, v) that (i) the empty coalition ∅ is losing (i.e., v(∅) = 0), (ii) the grand
coalition N is winning (i.e, v(N) = 1) and (iii) v is monotone (i.e., S ⊆ T⇒ v(S) ≤ v(T)).

A weighted voting game is a simple game that can be represented by a set of non-
negative weights w = (w1, . . . ,wn) and a positive quota q such that v(S) = 1 if and only
if

∑
i∈S wi ≥ q. We then write [q; w] interchangeably with (N, v), i.e., (N, v) = [q; w].6

A few definitions pertaining to players’ roles in a simple game are worth recalling.

Definition 2.1. A player i ∈ N in game (N, v) is called a null player if for all S ⊆ N

v(S) = v(S ∪ {i}).

A null player contributes nothing to any coalition. If i is a null player, then v({i}) = 0.

Definition 2.2. A player i ∈ N in game (N, v) is called a dummy player if for all S ⊆ N \ {i}

v(S ∪ {i}) = v(S) + v({i}).

Intuitively, a dummy player i only contributes his standalone value to any coalition
S ⊆ N\{i}, i.e., his cooperation creates no complementarities and he has no meaningful
strategic role in the game. Every null player is also a dummy player. Moreover, if
(N, v) is a simple game, then a dummy player i can either be a null player or a dictator
(i.e., v(S) = 1⇔ i ∈ S).

To our knowledge, the notion of a null player goes back to von Neumann and
Morgenstern (1953, Ch. 10). They dedicated a full chapter’s attention to simple and
weighted games and pointed out that it may happen ”that no minimal winning
coalition contains a certain player i” (p. 436) – without directly referring to such
a player as a null player. Presumably the first to explicitly make use of the term
“dummy player” as defined above was Shapley (1953). The subtle difference between
null and dummy players got somewhat lost in subsequent years. The literature often
speaks of a “dummy player” but is actually referring to a “null player”. The recent
book by Maschler et al. (2013) is among the few that explicitly distinguishes both
player types.

6Not every simple game has such a weighted representation. Examples include the qualified
majority rule of the Council of the EU as specified in the Treaty of Lisbon, or the Canadian Constitution.
See Taylor and Zwicker (1999) and Kurz and Napel (2016). Ongoing progress on the problem of
verifying if a given simple game is weighted is, e.g., reported by Freixas et al. (2017).
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2.2.2 Power Indices

A power index for simple games is a family of functions which map each simple
game (N, v) to a vector of real numbers f (N, v) = ( f1(N, v), . . . , fn(N, v)), where fi(N, v)
indicates the voting power of player i in game (N, v).

The two most prominent indices are the Shapley-Shubik index (SSI) and the
Penrose-Banzhaf index (PBI) defined by

fi(N, v) =
∑

S⊆N\{i}

pi
S · [v(S ∪ {i}) − v(S)], i ∈ N,

where {pi
S : S ⊆ N \ {i}} is a probability distribution over the coalitions not including

player i. For the PBI

pi
S =

1
2n−1

and for the SSI

pi
S =

s!(n − s − 1)!
n!

.

Here s denotes the cardinality of coalition S and 0! is defined to equal 1. Regarding
its probabilistic interpretation, the PBI assumes that all coalitions S ⊆ N are equally
likely while the SSI assumes all coalition sizes s to be equally likely and any coalition
of a given size to be equally likely.7

The bracketed term v(S ∪ {i}) − v(S) is usually referred to as player i’s marginal
contribution to coalition S. In a simple game v(S∪ {i})− v(S) = 1 if and only if S∪ {i} is
winning and S is losing. Player i is then also called pivotal or decisive for coalition S.
If v(S ∪ {i}) − v(S) = 0, i.e., S ∪ {i} and S are either both winning or both losing, then
player i contributes nothing to coalition S.

2.3 Luxembourg in Traditional Voting Power Analysis

The two versions of the weighted decision rule used by the Council of Ministers from
1958–1972 amount to two different weighted games. The pure weighted rule simply is
[12; 4, 4, 4, 2, 2, 1]. The double majority rule, by contrast, is described in the EEC Treaty

7See Napel (2018) for a recent overview on different approaches to the measurement of voting
power. PBI and SSI often give similar values, but not always. They induce the same ordinal ranking
of players if the players can be ordered by Isbell’s desirability relation (see Isbell 1956).
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as the intersection of two weighted games (N, vt) = [qt; wt
1, . . . ,w

t
6], t = 1, 2. The first

one is (N, v1) = [12; 4, 4, 4, 2, 2, 1] and captures the weight dimension. The second is
(N, v2) = [4; 1, 1, 1, 1, 1, 1] and refers to the majority of countries dimension. A coalition
S ⊆ N is winning if and only if it is winning in both dimensions, i.e.,

(v1 ∧ v2)(S) =

1 if
∑

i∈S wt
i ≥ qt, t = 1, 2

0 otherwise.

It turns out that the double majority rule can also be translated into a single-
dimensional weighted voting game that can be represented by [10; 3, 3, 3, 2, 2, 1].
That is, the intersection of (N, v1) and (N, v2) is equivalent to [10; 3, 3, 3, 2, 2, 1].

Applying the SSI and PBI to the two decision rules we get the results reported in
Table 2.1. As one can immediately see, Luxembourg was formally powerless under
the pure weighted rule. There was not a single configuration in which the vote of
Luxembourg did matter, i.e., it was never part of a minimal winning coalition. If,
however, in addition to at least twelve votes a majority of the six member countries
had to approve the motion, then Luxembourg suddenly played a relevant role. In
particular, there existed one coalition that was losing without the support of Lux-
embourg but turned winning with Luxembourg: the coalition comprising Germany,
France and Italy had a total of twelve votes but failed to satisfy the majority of coun-
tries requirement; if Luxembourg joins, the losing coalition turned winning. Thus,
claiming that Luxembourg was a null player crucially depends on which of the two
decision rules of Art. 148(2) had to be used.

Member state SSI PBI
pure weighted double majority pure weighted double majority

G(ermany) 0.23333 0.21667 0.31250 0.28125
F(rance) 0.23333 0.21667 0.31250 0.28125
I(taly) 0.23333 0.21667 0.31250 0.28125
N(etherlands) 0.15000 0.16667 0.18750 0.21875
B(elgium) 0.15000 0.16667 0.18750 0.21875
L(uxembourg) 0.00000 0.01667 0.00000 0.03125

Table 2.1 SSI and PBI in 1958–72 CM under pure weighted and double majority rule

Luxembourg’s role in EEC decision-making often serves as a prominent example
in the literature on voting power in general and the European Union in particular.
See, e.g., Straffin (1994, p. 1131), Felsenthal and Machover (1997b, p. 43), Leech (2003,
p. 831), Pacelli and Taylor (2009, p. 81) and Le Breton et al. (2012, p. 159).
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Unfortunately, it is in most cases simply claimed that Luxembourg was a “dummy
player” (more specifically a null player). Few authors mention the two different rules
in Art. 148(2) and the positive power of Luxembourg under the double majority rule
as well as under the simple majority and unanimity provisions of the Treaty. It rather
seems like received wisdom that Luxembourg was a null player from 1958–72.

To our knowledge, Affuso and Brams (1976, 1985) and Felsenthal and Machover
(1998) are the only investigations that explicitly refer to the different decision rules
specified in Art. 148. Felsenthal and Machover (1998) also claim that Luxembourg
was a “dummy player”, but they make clear that they are just concerned with the
pure weighted rule. Affuso and Brams (1976, 1985) stress the difference between the
pure weighted and the double majority rule and highlight that “[t]hese slightly more
stringent decision rules afforded Luxembourg some nonzero voting power on the
1958 Council [...]” (Brams and Affuso 1976, p. 43).

2.4 Power in a Composite Game with a Benelux Union

The case distinction between the pure and the double majority weighted voting game
notwithstanding, one is tempted to wonder why Luxembourg agreed to being a null
player under the pure weighted rule.8 Were they unaware of the fact that there was
not a single conceivable configuration of votes in which they could make a difference?
Or, and this leads us to the next argument, did they anticipate that their role within
the Benelux Union gave them an important say nonetheless?

Given the historical background which we presented in Section 2.1, it seems
natural to assume that the Benelux countries agreed to speak with one voice in the
EEC. This section therefore treats Belgium, the Netherlands and Luxembourg as a
bloc that acts like a single player. They are presumed to internally agree on the bloc’s
position before meeting the other three players.9

The standard framework we have used so far is not able to take such an ar-
rangement directly into account. It is best to employ a composite game to model the
situation.10 We can think of the Benelux Union’s decision-making as the first stage

8For the rest of this paper, we will only deal with the pure weighted rule. Under the double
majority rule, Luxembourg has positive voting power anyway.

9Other contributions dealing with coalition formation within the European Union are Widgrén
(1994), Hosli (1996) and Felsenthal and Machover (2002, 2008).

10For a thorough treatment of composite games, see Owen (1995, Ch. 11–12) and Felsenthal and
Machover (1998, Ch. 2).
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in a two-staged process in which all union members are bound to vote according to
the within-union decision in the second stage.11

Formally, let N1, . . . ,Nk be k nonempty and disjoint sets of players such that
N =

⋃k
j=1 N j. Also let v1, . . . , vk describe k simple games with respective player

sets N1, . . . ,Nk and v̄ a simple game with player set K = {1, . . . , k}. The so-called
v̄-composition of v1, . . . , vk is then denoted by

u = v̄[v1, . . . , vk].

The characteristic function of this composite game u is given by

u(S) = v̄
({

j : v j(S ∩N j) = 1
})

for S ⊆ N.
The composite game (N,u) represents a division of player set N into disjoint

subsets N j. The members of N j have to come to an internal decision via game (N j, v j).
Intuitively, one can think of the members of N j electing a representative who is
committed to the internal decision. In the second stage, the k representatives then
come together and play game (K, v̄) among themselves.

Applied to our context with a Benelux Union and the EEC’s pure weighted rule,
player set N = {G,F, I,N,B,L} is partitioned into sets N1 = {N,B,L}, N2 = {G}, N3 = {F}
and N4 = {I}. They face

u = v̄[v1, v2, v3, v4]

where (N1, v1) is the internal simple game of the Benelux Union, and (N2, v2), (N3, v3)
and (N4, v4) are the trivial simple games whose sole voter is Germany, France or Italy,
respectively.

Regarding decision-making within the Benelux Union, two options immediately
emerge as natural candidates for (N1, v1). One could (i) use simple majority voting
with the weights being those assigned by the EEC Treaty or (ii) simply require the
support of at least two of the three countries. The former can be represented by
[3; 2, 2, 1] and the latter by [2; 1, 1, 1]. From an analytical perspective it doesn’t matter
which of the two is used: they are just different representations of the same game.
Namely, every two-player coalition is minimal winning in (N1, v1).

Finally, (K, v̄) with K = {1, 2, 3, 4} is the four-player simple game played between

11At least for the PBI, this has already been pointed out by Felsenthal and Machover (2008).
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the Benelux Union, Germany, France and Italy and assuming that Belgium, the
Netherlands and Luxembourg are bound to their within union decision and cast a
joint voting weight of five. This can be represented by [12; 5, 4, 4, 4].

There are two types of minimal winning coalitions in (K, v̄). One consists of the
three large countries Germany, France and Italy. The other involves just two large
countries plus the Benelux Union. Overall, a coalition of the three large countries
and every coalition that involves two large countries and two Benelux countries is
minimal winning in the composite game (N,u).

Let SSIC and PBIC denote the SSI and PBI calculated for above composite game
with a Benelux Union.12 We obtain

SSIC(N,u) = (0.2333, 0.2333, 0.2333, 0.1000, 0.1000, 0.1000)

and
PBIC(N,u) = (0.3750, 0.3750, 0.3750, 0.1875, 0.1875, 0.1875).

To see why Luxembourg no longer is a null player in (N,u), consider the minimal
winning coalition S = {G,F,B,L}. Obviously, u(S) = 1 since v̄({1, 2, 3}) = 1 and
u(S \ {L}) = 0 since v̄({2, 3}) = 0. The crucial point is that coalition S loses the five
votes of the Benelux Union in one go if Luxembourg decides to leave S.

2.5 Power in a Game with Communication Structure

Another modeling option which reflects the probable real importance of Luxembourg
in early EEC decision-making is by means of games with communication structure. The
basic assumption underlying such games is that coalitions can only form between
players that are connected in a communication graph, i.e., that can “communicate”
with each other. This connection can, e.g., be interpreted as reflecting ideological or
spatial proximity.

Formally, a simple game with communication structure (N, v, g) is a simple game (N, v)
augmented by an undirected and unweighted graph g ⊆ gN = {〈i, j〉 : i, j ∈ N, i , j} on N
where 〈i, j〉 ∈ g means that players i and j can communicate, i.e., they are linked to
each other. If the underlying simple game (N, v) allows for a weighted representation,

12The calculation of the PBI is particularly easy: for the large countries it is just the PBI in the second
stage game (K, v̄); for a member of the Benelux Union it is the product of its PBI in the first-stage game
(N1, v1) and the Union’s PBI in the second stage game (K, v̄). Unfortunately, the SSI does not have such
a product property; we calculate it directly from its definition.
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we call (N, v, g) a weighted voting game with communication structure.
Players i and j in a coalition S are said to be connected by g if either 〈i, j〉 ∈ g or

there is a path within S from i to j, i.e., we can find players p1, . . . , pk ∈ S with p1 = i,
pk = j and 〈p1, p2〉, . . . , 〈pk−1, pk〉 ∈ g. Coalition S is called connected by g if all players
i, j ∈ S are connected.

A power index for games with communication structure is a family of functions
which assign a vector of real numbers f (N, v, g) = ( f1(N, v, g), . . . , fn(N, v, g)) to each
game (N, v, g), where fi(N, v, g) is interpreted as the power of player i in game (N, v, g).

One of several prominent power indices for games with communication structure
is the position value (PV) (Borm et al. 1992).13 It evaluates the power associated with
players’ links. It can be obtained by first calculating the SSI of the so-called link game
in which links in g are treated as the “players” and then assigning each player half
of the SSI of each link he participates in.14

In what follows, we will only focus on the full graph, i.e., cases where g = gN. In
our specific political context it seems natural to assume that every player is connected
to all the other players. That is, for all players i, j ∈ N the link 〈i, j〉 is a member of
gN.15 Then,

PVi(N, v, gN) =
∑
〈i, j〉∈gN

1
2

SSI〈i, j〉(gN, vN), i = 1, . . . ,n,

where (gN, vN) denotes the simple game played by links in the full graph and vN is
the characteristic function such that a coalition L of links is winning if and only if it
connects a winning coalition of the original simple game (N, v).

Intuitively, one can think of the position value as reflecting scenarios in which
links are established randomly one after another until all links have been activated
and the coalition in question is connected. The key feature of the PV is that the worth
vN(L∪ {〈i, j〉})− vN(L) of a new link is shared equally between the two players i and j
that are connected by it.

To illustrate the idea behind the PV before looking at the EEC’s pure weighted
rule consider the game (N, v, gN) with N = {A,B,C} and (N, v) = [6; 5, 3, 2]. The

13The main other ones are the Myerson value (Myerson 1977), the restricted Banzhaf index (Owen
1986) and the average tree solution (Herings et al. 2008, 2010).

14Ghintran (2013) provides an extension of the position value that allows for an unequal division
of a link’s SSI.

15For a general definition of the PV, also applying to cases g ⊂ gN, one needs to introduce the
concept of a restricted game. This would, however, just complicate the exposition without adding
useful insights for our setting.
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corresponding full graph gN is depicted in Figure 2.1.

A B

C

Figure 2.1 Full graph gN with N = {A,B,C}

In a first step, one has to calculate the SSI of the three links 〈A,B〉, 〈A,C〉 and
〈B,C〉 in the link game. The minimal winning coalitions are {〈A,B〉} and {〈A,C〉}. It
is easy to see that link 〈B,C〉 is never pivotal and links 〈A,B〉 and 〈A,C〉 are each
pivotal in half of the orderings. Thus, SSI(gN, vN) = (0.5, 0.5, 0). The position value of
a player is the sum of half of the SSI of all links in which this player is involved, i.e.,
PV(N, v, gN) = (0.50, 0.25, 0.25).

When applying the PV to the early EEC under the assumption that all six players
are connected to each other and with (N, v) = [12; 4, 4, 4, 2, 2, 1], we get

PV(N, v, gN) = (0.1983, 0.1983, 0.1983, 0.1525, 0.1525, 0.1003).

The corresponding full graph gN is depicted in Figure 2.2.
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Figure 2.2 Full graph gN with N = {G,F, I,N,B,L}

The fact that Luxembourg does have power in (N, v, gN) is no surprise. A null
player i in a full graph connects the grand coalition and is thus involved in some
links that have a positive marginal contribution in the link game, which implies
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PVi(N, v, gN) > 0 if (N, v) is non-dictatorial. For illustration, conceive of a sequence of
bilateral talks before the actual voting takes place. Assume, e.g., that first France talks
to Germany and they agree to support the proposal in question. Then France also
manages to get the support of Belgium. This coalition of links 〈F,G〉 and 〈B,F〉 already
captures ten votes. If we next assume that after some talking to each other, also the
Netherlands and Luxembourg are in favor of the proposal, the coalition of links
{〈F,G〉, 〈B,F〉, 〈L,N〉} is minimal winning. That is, the link between the Netherlands
and Luxembourg is pivotal and Luxembourg gets half of its worth.

Note that our finding of Luxembourg having a positive position value does not
hinge on using the full graph gN. It is sufficient to have one maximal losing coalition
T that is connected and Luxembourg being linked to one country outside T.

2.6 Concluding Remarks

The case of Luxembourg is the textbook example for illustrating the concept of a null
player (which is often confused with that of a dummy player). As shown above this
is somewhat misleading: whether Luxembourg was a null player from 1958–1972
depends on the institutional context, i.e., the two different decision rules embodied
in Art. 148(2) of the EEC Treaty. Moreover, even if one is aware of the exact rule
being utilized, standard power indices like the SSI and PBI may not be able to pay
proper account to the importance of Luxembourg for European decision-making. If
we take factors like the Benelux Union or a potentially sequential bilateral structure
of decision-making behind the “veil of ignorance” in a priori analysis of power, we
see that unqualified claims that Luxembourg was a null player fall short of the truth.

Some may argue that this makes use of information that goes beyond a pure
a priori perspective. To some extent, we agree. Power indices for composite games
or games with communication structure hold a middle ground between fully a priori
and a posteriori analysis. However, the respective analysis does neither presume any
specific issues that are voted on. Nor does it take historical preferences or individual
personalities into account. It analyzes the role of Luxembourg from a constitutional
perspective that considers important legal and structural elements of the EEC’s wider
institutional framework, notably the Benelux Union which is explicitly referred to in
the EEC Treaty.

To give a conclusive answer for the question raised in the title of this chapter, one
needs to answer a more general question: which properties that go with different



22 Chapter 2. Luxembourg in the Early Days of the EEC

indices fit a specific application best? Aumann (2008, p. 535) remarked:

“Which solution concept is ‘right’? None of them; they are indicators, not
predictions. Different solution concepts are like different indicators of an
economy; different methods for calculating a price index; different maps
[. . . ]; different stock indices [. . . ]; different batting statistics [. . . ]; different
kinds of information about rock climbs [. . . ]; accounts of the same event
by different people or different media; different projections of the same
three-dimensional object [. . . ]. They depict or illuminate the situation
from different angles; each one stresses certain aspects at the expense of
others.”

For the specific application considered in this paper, both the concepts of games
with a priori unions and games with communication structure in our view provide a
better perspective than standard simple games. They give a more fitting description
of the institutional environment during the first period of the EEC than the models
underlying traditional power indices like the PBI and SSI. Be it Luxembourg’s role
within the Benelux Union or its importance for maintaining intra-European commu-
nication (recall the “empty chair” crisis), Luxembourg clearly influenced decision-
making in the EEC. Taking all relevant aspects into the model, Luxembourg was no
null player in the early days of the EEC.



Chapter 3

Codecision in Context:
Implications for the Balance of Power in the EU

With the Lisbon Treaty’s entry into force, codecision has become the ordinary legislative
procedure for decision-making in the European Union (EU). As a step towards a better
democratic functioning of the EU, it was introduced in the Treaty of Maastricht
in 1993. Its primary objective was to strengthen the role of the directly elected
European Parliament (EP). The Treaties of Amsterdam (1999), Nice (2003) and Lisbon
(2009) subsequently amended the procedure and extended its scope.1 The commonly
drawn conclusion among EU observers is that the Parliament and the Council of the
European Union (CEU) are now legislators on an equal footing. According to the EP’s
own description (European Parliament 2012, p. 5) the “ordinary legislative procedure
is based on the principle of parity between the [...] European Parliament, representing
the people of the Union, and the Council, representing the governments of Member
States.”

The codecision procedure has inspired a number of theoretical and empirical
studies which aimed to answer the question of who has how much influence on
EU legislation. Bargaining theory suggests that factors such as agents’ evaluation of
the status quo, or their patience and attitude towards risk determine the outcome
of negotiations.2 While the importance of these aspects seems uncontroversial in
general, applied models on negotiations between the EP and the Council differ

1The codecision procedure applied to only 15 areas of community activity in its Maastricht version.
This number increased in the Treaties of Amsterdam, Nice and Lisbon to now more than 80 areas of
Community activity. The procedural rules in place today are essentially those laid down in the Treaty
of Amsterdam, the only difference being that the Council now decides by qualified majority in all
policy domains, including those which before required unanimity.

2Empirical studies, e.g., König et al. (2007), generally confirm these theoretical claims.
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widely with respect to the game form used to describe the codecision procedure.
As a result, theoretical findings vary from a genuine, balanced two-chamber system
(Crombez 1997, 2000; Tsebelis and Garrett 2000; Moser 1996, 1997; Scully 1997) to a
pronounced asymmetry in favor of the Council (Steunenberg and Dimitrova 2003;
Napel and Widgrén 2006).3

In this study, we explore how robust predictions about the relative power of the
two “co-legislators” are when several important but so far neglected elements of the
EU’s institutional framework are taken into account. We do so from a constitutional
perspective which considers only biases stemming from the institutional structure
rather than, say, from today’s preferences or individual personalities. It turns out
that an a priori bias in favor of the Council still persists when more institutional
context is modeled. We take the widely-cited model of Napel and Widgrén (2006,
henceforth N&W) as our reference point. In our view, their work succeeds well
in providing a picture of the codecision procedure taken in isolation. Yet, looking
at the wider institutional situation in which codecision is embedded, we suggest
several modifications of their assumptions. Specifically, we consider (i) the fact that
members of the Council are representatives of national governments which came off

as winners in national general elections, (ii) the fact that citizens generally exhibit
heterogeneity across member states rather than being all independent and identical
in their preference distribution, and (iii) the observation that negotiations between
the EP and the Council are characterized by mutual concessions. We then quantify
how power is distributed both between the EP and the Council and inside the Council
for a priori random, one-dimensional spatial preferences.

The remainder of the chapter is organized as follows. In Section 3.1 we describe
existing theoretical models of the codecision procedure and discuss how conflicting
predictions about the distribution of power come about. We present the N&W
model of legislative politics in the EU in more detail in Section 3.2. Section 3.3 then
proposes three modifications to that model. Section 3.4 presents the results from the
quantitative analysis of these modifications. Section 3.5 concludes.

3.1 EU Codecision: Rules and Models

The “ordinary legislative procedure” as laid down in Article 294 of the Treaty on the
Functioning of the European Union (TFEU) requires consensus to be reached between

3See Crombez and Vangerven (2014) for an extensive survey.
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the EP and the Council through alternating amendments, based on a Commission
proposal.4 It consists of up to three readings with the possibility to conclude at any
reading if the EP and the Council reach an overall agreement in the form of a joint text.
If they cannot agree during the first two readings, a compromise is sought by means
of a Conciliation Committee – the third and final phase of codecision. The Committee
is made up of 28 delegates representing the members of the Council and an equal
number of EP delegates.5 The Commission has no formal say in the negotiations,
but fulfills a mediating and facilitating role. In case of successful conciliation, the
Committee’s final joint text is voted upon under closed rule, i.e., neither institution
can amend the proposal. A simple majority of the votes cast in the EP and a qualified
majority in the Council are required for approval; otherwise (or if no joint text has
been produced) the proposal fails and the legal status quo prevails.

The standard approach to modeling EU decision-making under codecision is to
represent alternative policies as points in a policy space and to assume that political
actors have Euclidean preferences over these points. The procedure is most naturally
formalized by a finite extensive form game (see Figure 3.1). It follows from backward
induction logic that codecision outcomes are determined by the anticipated outcomes
of the last stage, i.e., the Conciliation Committee. The Commission is – at least for-
mally – no substantial player because in the Conciliation Committee, the EP and the
Council can jointly enact any policy on which they agree, without scope for a Com-
mission veto. Which equilibrium policies are predicted then depends on assumptions
about the location of the status quo, players’ preferences and (im-)patience, and the
theorist’s conception of the bargaining process between Council and Parliament.

There already exist various theoretical, mostly qualitative models of the codeci-
sion procedure – amongst others by Crombez (1997, 2000), Steunenberg and Dim-
itrova (2003) and Tsebelis and Garrett (2000).6 Crombez (1997, 2000) uses a spatial

4The Commission has no formal gate-keeping power since the Parliament and the Council may –
under Art. 225 and Art. 241 TFEU, respectively – request the Commission to submit an appropriate
proposal. Moreover, in specific cases proposals can also be submitted on the initiative of a group of
member states, on a recommendation by the European Central Bank, or at the request of the Court of
Justice (see Art. 294(15) TFEU).

5Despite being of equal size, delegations are potentially not symmetric because the Council is
fully represented in the sense that each of its members is involved in the negotiation, whereas the
Parliament’s delegates are agents whose interests may or may not be completely aligned to those
of their principal (see Franchino and Mariotto 2013). Empirically, Rasmussen (2008) finds that the
Parliament’s conciliation delegation is representative of the chamber as whole.

6Another strand of applied studies has focused on the intra-institutional distribution of power
in the Council, using measures of voting power which originate in cooperative game theory. For
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Figure 3.1 Stylized codecision game tree

model to analyze the effects of the Treaties of Maastricht and Amsterdam on the
equilibrium policy and the corresponding powers of the EP, the Council and the
Commission. He argues that under the Maastricht version of codecision, the EP and
the Council are genuine co-legislators because both need to approve Commission
proposals. The striking difference between the two versions of the procedure is that
under the Treaty of Maastricht, the Council can revert to the original proposal of
the Commission at the end of the procedure. This is no longer possible under the
Treaty of Amsterdam, which has the Conciliation Committee as the final stage. The
members of the Council thus compare the proposal of the EP to the status quo and
no longer to the Commission’s initial proposal. The author concludes, first, that
agenda setting power now resides with both the EP and the Council, and second,
that the Commission becomes powerless under the Amsterdam procedure “because
its proposal no longer provides a reversion policy in case the Conciliation Committee
fails to agree to a joint text” (Crombez 2000, p. 53). He suggests that the EP’s prefer-
ences are similar to those of the Commission, which leads to the conclusion that the
Amsterdam version may have decreased the EP’s power relative to the Maastricht
version.

Focusing on the Treaty of Amsterdam, Steunenberg and Dimitrova (2003) assume
Euclidean preferences for all players and model the Conciliation Committee as an
ultimatum bargaining game with the Council as the agenda setter. In their model, the

example, Le Breton et al. (2012) use the nucleolus to analyze past and current decision rules in the
Council. Felsenthal and Machover (1998), Laruelle and Valenciano (2008), and Napel (2018) provide
good overviews.
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Council President drafts a bill in the first stage which is put to a vote in the Council
in the second stage. Conditional on agreement, the common Council proposal is
then submitted to the Parliament, which can only veto but not amend the proposal.
Taking into account that a strategic Council President will only propose a bill that is
preferred by a qualified majority of the Council members, the equilibrium policy de-
rived via backward induction is the initial proposal of the Presidency. Subsequently,
Steunenberg and Dimitrova (2003) estimate the power of the EP, the Council and the
Commission by applying the concept of Steunenberg et al. (1999), which is based
on expected distances. Their results suggest that both the Council members and the
Parliament prefer the codecision procedure over the assent, consultation and coop-
eration procedures of the EU. Not surprisingly, they also ascribe greater power to the
Council.

Tsebelis and Garrett (2000) use a one-dimensional spatial model of the legisla-
tive procedure to predict the codecision outcome for the Treaties of Maastricht and
Amsterdam using a seven-member Council and treating the EP as a unitary actor.
They highlight the dominance of agenda setting over veto power and argue that it is
always advantageous to be the agenda setter if there are gains from trade. Similar to
Crombez (2000) they point out that, under the Maastricht version and after the Con-
ciliation Committee has broken down, the Council can make a “take-it-or-leave-it”
proposal to the EP which can only be vetoed by an absolute majority of the EP. The
Council is thus an unconstrained agenda setter “because it could essentially propose
to the Parliament any variation of its common position that it wanted” (Tsebelis and
Garrett 2000, p. 23). In contrast, under the Amsterdam version, the Conciliation
Committee is the final stage and agenda setting now resides with both the EP and
the Council. Tsebelis and Garrett (2000) see an institutional advantage for neither the
EP nor the Council.

N&W assume spatial preferences for individual members of the EP, the Council
and their respective representatives. Treating the codecision procedure as a non-
cooperative game as in Figure 3.1 and assuming that all political actors reason strate-
gically, the bargaining outcome of the codecision game can be determined by using
backward induction: the outcome of the codecision game depends only on the out-
come which the EP and the Council expect to result from engaging the Conciliation
Committee. Assuming further that the time duration of the procedure does not sig-
nificantly affect its outcomes, i.e., neither negotiator cares about reaching agreement
a few weeks sooner or later, N&W use the Nash bargaining solution (Nash 1950) as
a prediction for the codecision outcome. They find that the EP and the Council do
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not agree on some policy “in the middle”, but that, with a unidimensional policy
space and linear utility, the more conservative institution gets exactly its ideal point
(see N&W, Prop. 1). Which institution is closer to the status quo and thus enjoys
greater influence on codecision outcomes turns out to be determined by the respec-
tive intra-institutional decision quotas, i.e., qualified majority applied in the Council
and simple majority in the EP. Applying the “power as outcome sensitivity” frame-
work (see Napel and Widgrén 2004) to quantify the influence of the two institutions,
the authors conclude that the Council is considerably more influential than the EP.

3.2 Basic Model

Following N&W and Napel et al. (2013), we present the basic theoretical model of
negotiations in the Conciliation Committee as the last and strategically decisive stage
of the codecision procedure.

We consider a convex unidimensional policy space X ⊆ R, i.e., an interval of
alternatives. Let q ∈ X denote the status quo regarding the issue in question. All
political actors, i.e., the currently 751 members of the EP and the 28 members of the
Council, are assumed to have single-peaked preferences. For an individual i with ideal
point λi ∈ X preferences are represented by the utility function ui(x) = −|λi − x|, i.e.,
utility falls linearly in distance between λi and policy x ∈ X. The ordered individual
ideal points of the members of the EP (MEPs) will be denoted by π(1) ≤ · · · ≤ π(751);
those of individual members of the Council by µ(1) ≤ · · · ≤ µ(28).

From the perspective of classical bargaining theory, finding a Conciliation com-
promise between the EP and the Council amounts to selecting a particular point
(u∗EP,u

∗

CEU) in the utility possibility setU. The latter is constructed by mapping each
possible policy x ∈ X to a utility pair (uEP(x),uCEU(x)). Suppose that the delegations of
the EP and the Council enter negotiations with each other with respective bargaining
positions π and µ. Whenever there are gains from trade, i.e., sign(q − π) = sign(q − µ),
rational players can be expected to agree on a policy that is Pareto-efficient; the subset
of such policies forms the Pareto set connecting π and µ. If the EP and the Council
have opposite positions relative to the status quo, they fail to agree and the status
quo will persist. In utility space, the status quo corresponds to the disagreement point
d = (uEP(q),uCEU(q)).

In principle, various models from non-cooperative game theory and concepts
from cooperative game theory could be applied to the bilateral bargaining situation
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(U, d). Section 3.3.1 below will explore the implications of employing the Kalai-
Smorodinsky solution.

Before conciliation begins, the respective bargaining positions π and µ have to be
agreed on under the respective institution’s internal decision-making rules. MEPs
decide on any Conciliation compromise by simple majority rule, which – at least in
theory – renders the median MEP pivotal. We will hence assume that the ideal point
of the EP’s representatives can be restricted to π = π(376).7

Agreement on the Council’s ideal point µ is internally governed by the Lisbon
voting rules today. These replaced the earlier Nice rules.8 The latter were finally
replaced in April 2017. For comparison reasons, we will consider both the Nice and
Lisbon rules in the following. If the Council considers replacing the status quo q by
a policy to its left, the countries which hold the left-most positions µ(1), µ(2), etc. will
be the most enthusiastic about this. The critical Council member is then the country
that first brings about the required qualified majority as less and less enthusiastic
supporters of change are added to the coalition which endorses the new policy. For
policies x < q, we refer to this critical member as the Council’s right pivot RNice and
RLisbon, respectively. Analogously, we identify the left pivot LNice, respectively LLisbon,
for polices x > q.

In EU28, the Nice and Lisbon rules yield

RNice = min
{
r ∈ {15, ..., 28} :

r∑
i=1

w(µ(i)) ≥ 260 ∧
r∑

i=1

p(µ(i)) ≥ 0.62PEU28
}
, (3.1)

LNice = max
{
l ∈ {1, ..., 14} :

28∑
i=l

w(µ(i)) ≥ 260 ∧
28∑
i=l

p(µ(i)) ≥ 0.62PEU28
}
, (3.2)

RLisbon = min
{

min
{
r ∈ {16, ..., 28} :

r∑
i=1

p(µ(i)) ≥ 0.65PEU28
}
, 25

}
, (3.3)

7This abstracts away from agency problems and other reasons for why the preferences of the EP
delegation might not be congruent or at least sensitive to the EP’s median voter.

8The Nice decision rule was a triple majority requirement. In addition to traditional weighted
voting with a quota of roughly 73.9 % (i.e., 260 out of 352 votes), a qualified majority had to consist of
at least a simple majority of member states (i.e., 15 out of 28) and had to represent at least 62 % of the
total EU population. Under the Treaty of Lisbon, the old system of weighted voting has been replaced
by a dual majority system. A qualified majority must now consist of at least 55 % of member states
(i.e., 16 out of 28) and must represent at least 65 % of total EU population. Additionally, a blocking
minority must include at least four Council members.
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and

LLisbon = max
{

max
{
l ∈ {1, ..., 13} :

28∑
i=l

p(µ(i)) ≥ 0.65PEU28
}
, 4

}
, (3.4)

where PEU28 refers to EU28’s total population, w(µ(i)) denotes the voting weight of
the Council member with ideal point µ(i) and p(µ(i)) the population size he represents
(see Table 3.1, columns (1) and (2)). We assume that the corresponding ideal points
define the Council’s aggregate position when contemplating a replacement of q by a
policy to its left or right, respectively. They are denoted by µNice

R respectively µLisbon
R

for the Council’s right pivot position, and by µNice
L respectively µLisbon

L for the Council’s
left pivot position.

3.3 Adding Context: Three Modifications

3.3.1 Kalai-Smorodinsky Solution

Without any empirical or theoretical reasons to consider either the EP or the Council
a more patient or skilled bargainer, it is natural to use a symmetric bargaining solu-
tion in order to model the outcome of negotiations in the Conciliation Committee.
Economic as well as political applications of formal bargaining theory focus almost
exclusively on the Nash bargaining solution. A frequently cited reason is that the
Nash solution enjoys non-cooperative support via Rubinstein’s (1982) alternating of-
fers bargaining game (see Binmore 1987). But there are other negotiation procedures
whose equilibrium outcomes correspond to different bargaining solutions. More-
over, these non-cooperative “foundations” are often only valid in the limit, where
players’ incentives to reach an agreement in finite time vanish. Thus, in the ab-
sence of detailed information about how the negotiations unfold, non-cooperative
implementation does not provide a sound basis to discriminate between different
bargaining solutions.

Especially with regard to free-form bargaining situations like the Conciliation
Committee, a good reason to favor a particular bargaining solution is the appeal
and the descriptive plausibility of its axiomatic characterization. The Nash solution
is determined by the rather controversial property of independence of irrelevant
alternatives (along with efficiency, symmetry and invariance to equivalent payoff

representations). While this axiom may be plausible if bargaining is about rational
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Member state Population Nice weight EP seats
SMP Nice

(×10−2)
SMP Lisbon

(×10−2)
(1) (2) (3) (4) (5)

Germany 80 780 000 29 96 4.42 8.16
France 65 856 609 29 74 4.41 6.34
United Kingdom 64 308 261 29 73 4.40 6.17
Italy 60 782 668 29 73 4.40 5.80
Spain 46 507 760 27 54 4.09 4.29
Poland 38 495 659 27 51 4.08 3.62
Romania 19 942 642 14 32 2.09 2.18
Netherlands 16 829 289 13 26 1.94 1.89
Belgium 11 203 992 12 21 1.79 1.40
Greece 10 992 589 12 21 1.79 1.38
Czech Republic 10 512 419 12 21 1.79 1.34
Portugal 10 427 301 12 21 1.79 1.33
Hungary 9 879 000 12 21 1.79 1.29
Sweden 9 644 864 10 20 1.48 1.27
Austria 8 507 786 10 18 1.48 1.17
Bulgaria 7 245 677 10 17 1.48 1.06
Denmark 5 627 235 7 13 1.04 0.93
Finland 5 451 270 7 13 1.04 0.91
Slovakia 5 415 949 7 13 1.04 0.91
Ireland 4 604 029 7 11 1.04 0.84
Croatia 4 246 700 7 11 1.04 0.81
Lithuania 2 943 472 7 11 1.04 0.70
Slovenia 2 061 085 4 8 0.60 0.63
Latvia 2 001 468 4 8 0.60 0.63
Estonia 1 315 819 4 6 0.60 0.57
Cyprus 858 000 4 6 0.59 0.53
Luxembourg 549 680 4 6 0.59 0.51
Malta 425 384 3 6 0.44 0.49
CEU aggregate 52.87 57.15
EP 1.97 11.45

Table 3.1 2014 population, Nice weights, EP seats, and power in basic scenario under the
Nice and Lisbon Treaty rules for EU28 members
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arbitration, it is less acceptable as a description of how agents actually bargain.9 From
that perspective, solution concepts which satisfy certain monotonicity properties
appear to be more desirable. The predominant concept here is the Kalai-Smorodinsky
(1975) solution. It is also deemed an attractive option in the specific context of
decision-making in the EU (see, e.g., Achen 2006, p. 100; Schneider et al. 2010).

We call the maximum feasible utility that player i can achieve in the bargaining
problem i’s aspiration level ai(·); it corresponds to an agreement where i extracts all the
surplus, given that the other player receives at least his payoff from disagreement.10

Typically, the so-called utopian point u∗ whose coordinates correspond to the aspira-
tions of both players will not be feasible. The Kalai-Smorodinsky solution suggests
that both players cut back from u∗ proportionally in a way that preserves the ratio of
their aspirations. More precisely, the Kalai-Smorodinsky solution is defined by

ξKS (U, d) = d + λ̄(u∗ − d),

where λ̄ = max{λ ∈ R : d + λ(u∗ − d) ∈ U}.

The feature of mutual concessions by both parties with respect to their utopian
point seems to reflect actual codecision negotiations well. For example, Tsebelis et al.
(2001) analyze the process of “give and take” between the EP and the Council under
the Maastricht version of codecision (see Section 3.1), tracking legislative proposals
through the different stages of the amendment process. Elgström and Smith (2000,
p. 676) note that EU negotiations are “influenced by an informal principle of juste
retour, i.e., that all members are supposed to gain something from an ongoing round
of negotiation.” Arguably, decision-makers have learnt to see codecision “as an inter-
linked, continuous procedure where it is essential and normal that there be intensive
contacts throughout the procedure from before first reading onwards” (Shackleton
and Raunio 2003, p. 173), resulting in a more cooperative mode of negotiation. Given
these observations, our first modification to the baseline model suggests to consider

9For illustration, consider the bargaining problem defined by U = {uEP(x),uCEU(x) : 0 ≤ x ≤ 1},
π = 0.4, µ = 0.6 and q = 0. Now suppose that, e.g., due to a judicial decision, the bargaining set is
restricted toU′ = {uEP(x),uCEU(x) : 0 ≤ x ≤ 0.5}. Independence of irrelevant alternatives implies that
the Nash solution is uN = (uN

EP(x),uN
CEU(x)) = (0,−0.2) in both problems since uN

∈ U
′
⊂ U. So despite

the fact that the Council sees its most preferred alternative disappear, and the EP does not, the Nash
solution is unchanged. Also see Dubra (2001).

10The Kalai-Smorodinsky solution is defined by the following individual monotonicity axiom in
lieu of Nash’s independence of irrelevant alternatives: if player j’s aspiration levels a j(U) and a j(U′)
coincide in two bargaining problems (U, d) and (U′, d′) where the set of feasible payoffsU′ is a subset
ofU, then player i will receive at least as much utility in (U, d) as in (U′, d′).
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the Kalai-Smorodinsky solution instead of Nash’s bargaining solution.
Without loss of generality and for illustrational purposes we assume in the fol-

lowing that sign(q − π) = sign(q − µ), i.e., gains from trade, and |π − q| ≤ |µ − q|, i.e.,
the EP’s ideal point π is closer to q than the Council’s ideal point µ. It immediately
follows that u∗EP = 0 and

u∗CEU =

0 if |π − q| ≥ |π − µ|

−(|π − µ| − |π − q|) otherwise.

This is illustrated in Figure 3.2. As soon as π is located between q and µ, u∗EP = 0
because in this case the Council always prefers an implemented policy that is equal to
π to a policy that is equal to q. Regarding u∗CEU, things are slightly more complicated.
If, as in the upper panel of Figure 3.2, π is closer to µ than to q, u∗CEU = 0 because
the EP prefers an implemented policy that is equal to µ to a policy that is equal to
q. If, however, π is closer to q than to µ, as in the lower panel of Figure 3.2, the best
the Council can get given that the EP receives at least its utility from disagreement is
u∗CEU = −(|π−µ| − |π− q|). Moving from this point, which is equal to π+ (π− q), even
closer to µ would give the EP less utility than in case of disagreement.

Figure 3.2 Ideal point configurations with u∗ = (0, 0) in the upper panel and u∗ = (0,−|π −
µ| − |π − q|) in the lower panel

Geometrically, the Kalai-Smorodinsky bargaining outcome ξKS(U, d) is just the
intersection ofU’s Pareto frontier and the straight line connecting the disagreement
point d, say (−π,−µ) for q = 0, and the utopian point u∗ (see Figure 3.3). We obtain
the following prediction for the implemented policy xKS(π, µ, q):

Proposition 3.1. Assume that preferences of the EP and the Council are represented by utility
functions ui(x) = −|λi − x| for λi, x ∈ X ⊆ R where X is a non-empty interval. Whenever
there are gains from trade, the Kalai-Smorodinsky solution to the bargaining problem (U, d)
corresponds to agreement on a policy xKS which is located on the Pareto frontier but nearer to
the ideal point which is closer to the status quo. More specifically,
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sign(q−π) = sign(q−µ)⇒ xKS(π, µ, q) =


π +

µ−π
1+(µ−q)/(π−q) if |π − q| ≤ |µ − q| and |π − q| ≥ |π − µ|,

µ +
π−µ

1+(π−q)/(µ−q) if |π − q| > |µ − q| and |µ − q| > |π − µ|,

π +
π−q

3 if |π − q| ≤ |µ − q| and |π − q| < |π − µ|,

µ +
µ−q

3 if |π − q| > |µ − q| and |µ − q| ≤ |π − µ|.

The proof is presented in the appendix to this chapter. The left and right panels of
Figure 3.3 illustrate the result for utopian points u∗ = (0, 0) and u∗ = (0,−|π−µ|−|π−q|),
respectively. In contrast to the Nash prediction of N&W, the Kalai-Smorodinsky
solution gives an interior solution. Nevertheless, the agreed policy is still nearer to
the ideal point of the more conservative institution.11 As can be seen in the right
panel of Figure 3.3, the status quo bias is more extreme for u∗ = (0,−|π − µ| − |π − q|).
The bias is also more pronounced the closer d is located to the utopian point.

Figure 3.3 Kalai-Smorodinsky bargaining solution with u∗ = (0, 0) in the left panel and
u∗ = (0,−|π − µ| − |π − q|) in the right panel

11The result that the Kalai-Smorodinsky agreement is closer to the institution with smaller status
quo distance remains valid for multidimensional policy spaces. A proof is available from the authors
upon request. While the bilateral bargaining situation between the EP and the Council can still be
readily analyzed, multidimensional spaces make it much harder to predict which collective positions
MEPs and members of the Council will adopt in the first place. A possible approach could be to use a
point solution like the Copeland winner, or to assume an exogenous ordering of dimensions on which
individuals vote sequentially.
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We substantiate the suggestion to use the Kalai-Smorodinsky solution by a ten-
tative empirical evaluation of how well that model predicts decision outcomes com-
pared to the basic setting. The analysis relies on the DEUII dataset (Thomson et al.
2006, 2012) which is based on expert judgements of member states’ positions in a one
dimensional policy space. The dataset reports countries’ preferences for 158 policy
issues in EU27 as well the EP’s preferences, the status quo and the policy outcome.
Unfortunately, a number of issues had to be excluded when the data contained no
information on either the EP’s preferences, the status quo or the outcome. We cal-
culated the Council’s common ideal point and then excluded issues for which the
EP and the Council had diverging interests of whether to move to the left or to the
right of the status quo. For the remaining 33 issues, we identified the Nash and the
Kalai-Smorodinsky predictions and computed their respective distance to the actual
outcome. The Kalai-Smorodinsky model performed better for 19 issues, whereas
the Nash solution had the edge in seven issues, and seven other issues were ties.
The Wilcoxon signed-rank test on the equality of distances indicates that the Kalai-
Smorodinsky model is indeed more accurate than the Nash solution (Z-statistic 1.70,
p-value 0.0895).

In order to obtain quantitative statements regarding the expected influence of
the EP or individual Council members on EU decisions, we apply the “power as
outcome sensitivity” approach (Napel and Widgrén 2004) to the analysis of power in
collective decision-making. This framework merges traditional power index analysis
with a non-cooperative game-theoretic approach. It conceives of a posteriori power
as the sensitivity of the equilibrium outcome with respect to marginal changes in a
player’s behavior or preferences. The strategic measure of power (SMP) then evaluates
a priori power as expected a posteriori power, using a probability measure with a priori
credentials.

Rewriting Prop. 3.1, the Kalai-Smorodinsky solution predicts

xKS(π, µ, q) =



(π+µ)q−2πµ
2q−π−µ if (q < π ≤ µ or µ < π < q) and |π − q| ≥ |π − µ|,

(π+µ)q−2πµ
2q−π−µ if (q < µ < π or π ≤ µ < q) and |µ − q| > |π − µ|,

4π−q
3 if (q < π ≤ µ or µ < π < q) and |π − q| < |π − µ|,

4µ−q
3 if (q < µ < π or π ≤ µ < q) and |µ − q| ≤ |π − µ|,

q otherwise

as the equilibrium codecision outcome.
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Taking the partial derivatives of the predicted outcome, the a posteriori power
of EP for a given realization of status quo q and ideal points π1, ..., π751 and µ1, ..., µ28

then is

∂xKS(π, µ, q)
∂π

=


(q−2µ)(2q−π−µ)+(π+µ)q−2πµ

(2q−π−µ)2 if (q < π < µ or µ < π < q) and |π − q| > |π − µ|,
(q−2µ)(2q−π−µ)+(π+µ)q−2πµ

(2q−π−µ)2 if (q < µ < π or π < µ < q) and |µ − q| > |π − µ|,
4
3 if (q < π < µ or µ < π < q) and |π − q| < |π − µ|,

0 otherwise.

Similarly, for an individual member k of the Council, we obtain

∂xKS
(
π, µ(µ1, ..µ28), q

)
∂µk

=


(q−2π)(2q−π−µ)+(π+µ)q−2πµ

(2q−π−µ)2 if (q < π < µ or µ < π < q) and |π − q| > |π − µ|,
(q−2π)(2q−π−µ)+(π+µ)q−2πµ

(2q−π−µ)2 if (q < µ < π or π < µ < q) and |µ − q| > |π − µ|,
4
3 if (q < µ < π or π < µ < q) and |µ − q| < |π − µ|,

0 otherwise,

where µ = µk, i.e., member k is the Council’s pivotal member.
Note, however, that we are not interested in a player’s influence on a single issue

but rather in expected influence. We measure this a priori power by computing the
average of a posteriori power over a large number of uniformly distributed issues
(cf. Section 3.4).

3.3.2 Representatives in the EP and in the Council

Pointing to the normative character of their analysis, N&W assume that individual
decision-makers’ ideal points in both the Council and the EP come from an a priori
identical, uniform distribution. The Council’s internal qualified majority voting with
its demanding supermajority requirements then implies that the distribution of the
ideal point of the Council’s pivotal member (see formulas (3.1) – (3.4)) is skewed with
a peak rather close to the status quo.

This neglects, however, a basic design feature of the EU: the Council represents the
states and the Parliament represents the citizens. Decision-makers in the Council are
representatives of national governments, who usually have the support of a majority
of voters in their member state. By contrast, the EP is composed of MEPs who are
organized into various transnational party groups, each consisting of multiple (and
sometimes rather distantly related) national member parties from the 28 EU countries.
Political competition is governed by some variant of proportional rule of which the
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precise forms are determined by the member states.12 Election thresholds also vary
from country to country; 14 member states now require no minimum percentage
of votes for a party to obtain seats in the EP (see European Parliament 2014, p. 16
and p. 92f). Efforts to design a uniform electoral procedure, while mandated by
Art. 223(1) TFEU, have as yet failed to reach consensus. National (or regional)
parties control nominations to European elections and run election campaigns. As a
consequence, MEPs answer to both national and EP-level principals, giving rise to
a dual agency problem that is probably one reason why policy cohesion of the EP’s
political groups is relatively low. Difficulty of maintaining discipline and cohesion
also stems from the fact that, unlike parliamentary democracies at the national level,
the EP does not need to form and sustain a EU government by means of stable
majorities.13

The fundamentally different modes of election and mandates of MEPs and mem-
bers of the Council are institutional rules, too, which should be taken into account
in theoretical analysis.14 Thus, our second modification of the N&W model is a very
stylized representation of these differences but yet richer than the model where all
decision-makers’ preferences are identically distributed.

As a first step, we include individual citizens’ preferences into the model from
Section 3.2: consider the partition C = {C1, . . . ,C28} of the EU voter population into
28 constituencies with n j = |C j| > 0 members each. We assume:

(SPA) All individual voters have spatial preferences, characterized by ideal point
νi in policy space X.

From a normative constitutional-design point of view it is appealing to presume:

(IID) All individual ideal points are independent and identically distributed (i. i. d.).

If electoral arrangements have any role to play for how citizens’ preferences
are represented in the Council and the EP, then it is clear that the ideal points of
Council members and of MEPs cannot be identically distributed. It is less clear

12The most common system is list proportionality with the member state as a single constituency
and d’Hondt’s rule for seat allocation. But manifold deviations exist, see European Parliament (2014).

13Yet, voting cohesion has increased across parliamentary sessions, especially for the three largest
political groups (see Hix et al. 2007); there also exists an agreement between the latter to support the
current European Commission.

14Other facts such as, for example, the number of parliamentary groups into which MEPs are
organized, or the degree of cohesion within these groups, are of a more transitory nature and should
in our view not be held fixed behind the “veil of ignorance”.
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though how the different genesis of the two legislators’ preferences should be formally
modeled. While certainly not ideal, our two assumptions below provide, in our view,
a reasonable first approximation and thus help to assess the potential biases induced
by institutional rules more properly:

(MED) The preferences of country j’s representative in the Council are congruent
with the country’s median voter. More formally, representative j has ideal
point

µ j = median{νi : i ∈ C j}.

This assumption reflects that the median voter’s position is crucial to the formation of
a popular majority so that, in a competitive democracy, this voter’s preferences can be
expected to shape electoral campaigns, legislative decision-making and, eventually,
the government’s policy. This policy position corresponds to the electorate’s core
which can be understood as the result of sophisticated strategic interaction in the
electorate and in the national legislature (see Banks and Duggan 2000). We consider
(MED) to be a fair approximation, even in the light of the big variation among the
actual national electoral systems in the EU member states (see McDonald et al. 2004).
Note that a country’s population size generally affects the distribution of its median.
Specifically, if the ideal points νi of voters i ∈ C j are pairwise independent and
come from an arbitrary identical distribution F with positive density f on X, then its
median position µ j is asymptotically normally distributed with mean m̄ = F−1(0.5)
and standard deviation

σ j =
1

2 f (m̄)√n j

(see, e.g., Arnold et al. 1992, p. 223). The variance of the position ofC j’s representative
is smaller, the greater the population size n j.

It is even more challenging to formulate an appropriate assumption about how
MEPs’ positions are connected to citizens’ preferences. It is beyond the scope of
this contribution to develop a model of endogenous entry and platform formation
in the EP and to our best knowledge, no model exists so far that encompasses the
observations made above.15 In the absence of such a model, we propose to represent
the institutional realities described above by:

15A natural starting point seems to be some variant of a citizen-candidate model in which citizens
can freely form parties and seats are distributed proportionally (see, e.g., Hamlin and Hjortlund
2000). An important difficulty in modeling proportional systems in general is that elections may
fail to produce a clear winner, so that the policy output depends on the legislative bargaining game
occurring after the election. The link between composition of the EP and policy formation is even less
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(CRD) MEPs who are elected in country j are a clustered random draw from that
country’s electorate. More formally, let s j denote the number of seats allo-
cated to country j. If µ j is the median voter position in C j, then the ideal
points π j

1, . . . , π
j
s j

of j’s MEPs are distributed according to the symmetric tri-
angular distribution F(a j, µ j, b j) on the interval [a j, b j] with peak location µ j,
where a j and b j are the lower and upper bound, respectively, of country j’s
policy space.

This assumption reflects, first, that as a result of proportional representation and
the fragmentation of European elections into separate national contests, MEPs are
ideologically very diverse and, in fact, occupy the entire range of the political spec-
trum (see, e.g., McElroy and Benoit 2012). Second, generally low election thresholds
make it easier for new parties or even individual candidates to enter successfully,
and raise the odds that radical positions get represented in the EP. Finally, the posi-
tions of MEPs from a certain country and the position of the national government as
reflected by µ j both derive from the same voters’ preferences; this interdependency
should not be ignored. The triangular distribution achieves this by clustering ideal
points π j

1, . . . , π
j
s j

around the country median. Moreover, it is widely used in “limited
knowledge” applications (see, e.g., Law and Kelton 2000, Sect. 6.11).

3.3.3 Heterogeneity among Member States

Even for the kind of constitutional-design exercise that we are carrying out, assump-
tion (IID) in the previous section may be unduly restrictive on the joint distribution
of voter ideal points in C1, . . . ,C28. Namely, treating all individuals as homogeneous
ignores that the partition C may have reasons. These reasons (e.g., geographic bar-
riers, ethnics, language, religion) are likely to involve or give rise to closer political
connections between voters within constituencies than across them. With a view to
the EU, this is rather obvious. We consider, for example, the fact that elections to
the EP are conducted organizationally independently in each country, with different
rules and different parties to choose from, as revealing of the preference heterogeneity
across member states.

On the other hand, it is true that a constitutional analysis should ignore knowledge
about specific preferences for normative reasons. This implies that all citizens should

clear than for national parliaments. We conjecture that, in such a model, the absence of rents from
government participation – as in the EP – will give rise to a very large number of dispersed parties in
equilibrium.
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be considered identical a priori, i.e., every ideal point νi should be drawn from the same
marginal probability distribution F. However, the “veil of ignorance” perspective
does not necessarily entail that citizens’ preferences must also be considered as
independent of each other.

As an alternative to the benchmark assumption (IID) that all ideal points νi with
i ∈

⋃
j C j are drawn independently from the same marginal distribution F, we there-

fore also explore the idea that preferences within a country are positively correlated
with each other. This gives rise to a special type of heterogeneity among coun-
tries. In particular, we determine individual ideal points νi by a two-step random
experiment: first, we draw a constituency-specific shock θ j independently for each
j = 1, . . . , 28 from a distribution G with standard deviation σext. This parameter cap-
tures the degree of external heterogeneity between C1, . . . ,C28 for the policy issue at
hand. Parameter θ j is taken to reflect the expected ideal point of citizens from C j.
Each citizen i ∈ C j is then assigned an individual ideal point νi from a distribution F j

which has mean θ j and is otherwise just a shifted version of the same distribution F
for each constituency j = 1, . . . , 28.16 F’s standard deviation σint is a measure of the
internal heterogeneity in any constituency. It intuitively reflects the opinion differences
within any given C j. In summary, we account for heterogeneity among countries by
assuming:

(HET) The ideal points of all citizens are identically distributed with convoluted
a priori distribution G ∗ F but not independent: citizens in constituency C j

experience shock θ j, which is independent of θk for any k , j.

The introduction of heterogeneity makes it worthwhile to include an additional
institutional fact, namely the degressive proportionality in the EP’s national composi-
tion. There is a fixed number of MEPs to be elected in each country and smaller
states elect more MEPs than would be proportional to their populations. For exam-
ple, Spain’s population is more than one hundred times that of Malta, whereas its
number of seats in the EP is only nine times that of Malta (see Table 3.1, column (3)).
Under assumption (IID), the fact that MEPs come from different constituencies is ob-
viously inessential; under (HET), by contrast, links are established between citizens’
preferences in a given constituency, the position of the constituency’s member in the
Council (assumption (MED)) and the preferences of its EP delegation (assumption
(CRD)).

16Specifically, we draw θ j from a uniform distribution U(−a, a) with variance σ2
ext, and then obtain

νi = θ j + ε with ε ∼ U(0, 1).
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Basic scenario • Nash solution
Citizens’ preferences i. i. d.

Scenario I • Kalai-Smorodinsky solution
Citizens’ preferences i. i. d.

Scenario II • Kalai-Smorodinsky solution
Citizens’ preferences correlated within countries

Scenario III • Kalai-Smorodinsky solution
Citizens’ preferences correlated within countries
EP-Council distinction

Table 3.2 Overview of different scenarios

3.4 Simulation Results

In this section, we quantify the effects of our modifications on both the inter- and
intra-institutional distribution of power in EU codecision. Our results are based on
Monte-Carlo simulations.17 In a first step, we draw 751 random numbers as the ideal
points of MEPs and 28 random numbers as the ideal points of the Council members
from distributions F1, . . . ,F28. In a second step, we sort the realized ideal points and
determine the EP’s and the Council’s pivot positions according to their respective
internal decision rules presented in Section 3.2. We are thus able to identify the policy
outcome and, by repeating above procedure up to 109 times, to obtain numerical
estimates of the SMP values of the EP, the whole Council and its individual members.

In our basic setting, which has already been considered by N&W and which we
use as our reference point, we assume the distributions F j as well as the distribution
of the status quo to be a [0, 1]-uniform distribution. As a predictor for the bargaining
outcome, we use the Nash solution. Building on this benchmark, we distinguish three
scenarios which combine the modifications described in Section 3.3. We provide an
overview in Table 3.2; the corresponding results are reported in Table 3.3. The effects
of moving from our benchmark model to the different scenarios under the Nice rules
and the Lisbon rules are also illustrated in Figure 3.4.

We report simulation results of the basic scenario in Table 3.1, columns (4) and (5).

17We obtain an estimate of the intra-Council distribution of power in EU28 according to the
Shapley-Shubik-index (see Shapley and Shubik 1954) as an intermediate result to the inter-institutional
simulation and can also calculate it exactly by standard methods. This permits use of the former as
a control variate for our SMP estimator. The variance reduction obtained in this way is up to 45 %.
Remaining inaccuracies are due to the simulative nature of our results.
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The SMP values confirm the finding of N&W that the Council is much more influential
than the EP. For example, under the Nice rules, a shift in the Council’s ideal point
by a small amount 4µ in expectation shifts the outcome by 0.529 · 4µ, whereas a
shift in the EP’s position is only passed through at a rate of 0.020. As N&W (p. 143)
have pointed out, this remarkable asymmetry is due to the extreme status quo bias
of bargaining which “translates the event ‘[the Council] is more conservative’ into
‘[the Council] defines x∗’ and ‘[the Council] has power’.”

3.4.1 Scenario I

Scenario I continues to take the distributions F j as well as that of the status quo to
be [0, 1]-uniform, but applies the Kalai-Smorodinsky rather than the Nash solution
to describe bargaining in the Conciliation Committee (see Section 3.3.1). Under
the Nice decision rules and compared to our basic scenario, the Council’s ex ante
power increases from 0.529 to 0.597 and the EP’s ex ante power from 0.020 to 0.075.
Considering the Lisbon rules, the Council’s ex ante power increases from 0.572 to
0.598 and the EP’s ex ante power from 0.115 to 0.190.

The most important observation is that the EP now is ascribed considerable influ-
ence already under the Nice Treaty. However, the Council is still the more powerful
institution. Although the ideal points of the MEPs and the Council members come
from the same distribution, the Council’s internal qualified majority requirement
results in a more conservative distribution of its collective ideal point compared to
the EP whose ideal point is determined by simple majority. The reason for why
both the Council’s and the EP’s ex ante power increase is due to two effects. To
illustrate these effects, assume gains of trade and |µ − q| < |π − q|. First note that, in
contrast to the basic scenario, even the institution with greater distance to the status
quo may exert influence, namely if |µ − q| > |π − µ|. Regarding the second effect,
we have to distinguish between (a) |µ − q| < |π − µ| and (b) |µ − q| > |π − µ|. In
case (a), only a (marginal) shift in the common position of the more conservative
institution can affect the location of the agreed policy xKS. However, ∂xKS/∂µ = 4/3
(see Section 3.3.1) implies that the effect on xKS is always larger than the initial shift of
the more conservative institution. Similarly, we find that in case (b), we always have
∂xKS/∂π + ∂xKS/∂µ > 1. Since the only difference between Scenarios I and II is the
choice of the bargaining model, the probabilities of gains of trade and of one player
being more conservative than the other remain unchanged. Thus, whenever we
have gains of trade, the Nash solution implies either ∂xNB/∂π = 1 and ∂xNB/∂µ = 0
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SMP Nice (×10−2) SMP Lisbon (×10−2)

Member state
Scenario

I II III I II III

Germany 5.03 5.77 5.72 8.68 9.27 9.19
France 5.02 5.78 5.78 6.73 7.21 7.20
United Kingdom 5.01 5.77 5.78 6.54 7.01 7.00
Italy 5.01 5.77 5.77 6.14 6.57 6.57
Spain 4.65 5.37 5.40 4.54 4.88 4.92
Poland 4.63 5.34 5.38 3.84 4.14 4.17
Romania 2.35 2.68 2.71 2.27 2.42 2.48
Netherlands 2.17 2.47 2.51 1.97 2.10 2.16
Belgium 2.00 2.28 2.32 1.45 1.55 1.60
Greece 2.00 2.28 2.32 1.43 1.53 1.58
Czech Republic 2.00 2.28 2.32 1.38 1.48 1.54
Portugal 2.00 2.28 2.32 1.38 1.47 1.53
Hungary 2.00 2.28 2.32 1.33 1.42 1.48
Sweden 1.66 1.88 1.91 1.31 1.40 1.46
Austria 1.66 1.88 1.92 1.20 1.29 1.34
Bulgaria 1.66 1.88 1.92 1.09 1.17 1.23
Denmark 1.16 1.31 1.34 0.95 1.02 1.08
Finland 1.16 1.31 1.33 0.93 1.01 1.06
Slovakia 1.16 1.31 1.33 0.93 1.00 1.05
Ireland 1.16 1.31 1.33 0.86 0.93 0.98
Croatia 1.16 1.31 1.33 0.83 0.89 0.95
Lithuania 1.16 1.31 1.33 0.71 0.77 0.82
Slovenia 0.67 0.75 0.77 0.64 0.69 0.74
Latvia 0.67 0.75 0.77 0.63 0.69 0.74
Estonia 0.66 0.75 0.77 0.57 0.62 0.67
Cyprus 0.66 0.75 0.77 0.53 0.58 0.63
Luxembourg 0.66 0.75 0.76 0.50 0.55 0.60
Malta 0.49 0.55 0.56 0.49 0.54 0.59
CEU aggregate 59.65 68.14 68.79 59.84 64.21 65.36
EP 7.45 15.55 18.37 19.00 25.39 26.31

Table 3.3 Strategic power in EU28 under Scenarios I, II and III, Nice and Lisbon Treaty rules
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Figure 3.4 Inter-institutional distribution of power in EU28 under different scenarios

or ∂xNB/∂π = 0 and ∂xNB/∂µ = 1, while the Kalai-Smorodinsky solution always im-
plies ∂xKS/∂π + ∂xKS/∂µ > 1. Intuitively, the compromise culture reflected by the
Kalai-Smorodinsky solution makes the outcome more sensitive to slight preference
changes of either institution than the all-or-nothing Nash bargaining outcomes.

Looking at the intra-institutional distribution of power in the Council, we find
that all 28 countries gain absolute power under the Nice rules compared to the basic
scenario (see Table 3.1). The same holds under the Lisbon rules, except for the
smaller countries beginning with Lithuania, whose SMP numbers remain essentially
unchanged. Moreover, it is worth mentioning that for every country the absolute
gains under the Lisbon rules are smaller than those under the Nice rules.

3.4.2 Scenario II

Our Scenario II replaces the assumption that all citizens’ preferences are i. i. d. with
heterogeneity among member states (cf. Section 3.3.3). To incorporate assump-
tion (HET) in our analysis, we draw a country specific shock θ j which reflects the
expected ideal point of citizens from constituency C j. So voters’ ideal points from
different countries come from different distributions F j with mean θ j that are shifted
versions of some distribution F. We draw MEPs’ ideal points from shifted uniform
distributions F1, . . . ,F28 and also take degressive proportionality in the EP’s national
composition into account, i.e., we draw 96 ideal points from Germany’s uniform
distribution, 74 from France’s uniform distribution, etc. (cf. Table 3.1, column (3)).
The ideal point of each Council member similarly comes from the respective shifted
uniform distributions F1, . . . ,F28. The status quo in Scenarios II and III is still drawn
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from a uniform distribution, but now over a larger interval that captures all possible
preferences in a heterogenous EU.

Taking heterogeneity among member states along with degressive proportionality
into account has a further positive effect on the SMP values of the Council and the
EP under both the Nice and the Lisbon rules. Under the Nice Treaty the EP’s power
increases from 0.075 to 0.156 and that of the Council from 0.597 to 0.681. The effects
under the Lisbon Treaty are slightly smaller. The reason for why both institutions
gain by a similar magnitude lies in the probability of gains of trade which changed as
a result of our modeling choices. We draw the status quo from a uniform distribution
on the interval of all possible policy preferences but the ideal points of the Council
members and of MEPs come from a uniform distribution on the respective country’s
shifted unit interval. Thus, both the ideal points of the Council members and the
MEPs display a lower variance than the status quo, which leads to an increased
incidence of gains of trade. In particular, the probability of gains of trade under the
Nice Treaty increases from 55 % under Scenario I to 73 % under Scenario II. Similarly,
we identify an increase from 69 % to 82 % under the Lisbon Treaty.

3.4.3 Scenario III

We now turn to Scenario III. We would claim it to be the most realistic. It incor-
porates all our modifications; first, the Kalai-Smorodinsky solution, second, hetero-
geneity among member states (along with degressive proportionality in the EP’s
national composition) and third, the fact that Council members represent countries’
governments (MED) while MEPs represent citizens and are clustered around the
respective country’s median (CRD). Specifically, we draw MEPs’ ideal points from
(shifted) triangular distributions with the respective country’s median as the peak.
The ideal points of the 28 Council members are drawn from (shifted) beta distri-
butions F1, . . . ,F28 with parameters ((n j + 1)/2, (n j + 1)/2). This follows from our
assumption (IID) for the case of uniformly distributed voter ideal points (see Arnold
et al. 1992, p. 13f).

Compared to Scenario II, both the EP and the Council gain absolute power under
both Treaties but to a much smaller degree than before. While under the Nice Treaty
there is basically no effect on the influence of the Council, the EP’s influence increases
from 0.156 to 0.184. The effects under the Lisbon Treaty are much more balanced and
increase the influence of the EP from 0.254 to 0.263 and the influence of the Council
from 0.642 to 0.654.
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To explain these effects consider first the Nice Treaty. If we use the Nash solution
instead of the Kalai-Smorodinsky solution here, an SMP of 0.775 for the Council
and of 7.62 × 10−6 for the EP results. Intuitively, this indicates that the Council is
now the more conservative institution in almost all cases where we have gains of
trade. In fact, the number of cases with gains of trade in which the Council is more
conservative increased by 0.054 compared to Scenario II, while the number of such
cases in which the EP is more conservative dropped to nearly zero. In order to see
why the EP benefits more than the Council in Scenario III, next recall that with the
Kalai-Smorodinsky solution, it plays a crucial role how far the institutions’ positions
are apart from each other. Our assumptions (CRD) and (MED) affect the distribution
of the pivot positions π and µ, and in particular reduce their expected distance. This
is most obvious when we assume that the pivotal member of the Council and the
median MEP come from the same constituency; here the clustering of each country’s
MEP delegation around the country median clearly reduces the expected distance
compared to the “pure” heterogeneity model in Scenario II.18

Assuming gains of trade and taking into account that under Scenario III the
Council is in almost all cases the more conservative institution, we either have (a)
|µ− q| < |π−µ| or (b) |µ− q| > |π−µ|. In case (a), only a marginal shift in the Council’s
common position has an effect on the policy outcome xKS. In case (b), the CM and the
EP can shift xKS, but a marginal change in the common position of the Council has a
larger effect on xKS than a marginal change in the EP’s common position. However,
the smaller the distance between π and µ, the smaller the Council’s advantage,
whereas the influence of the EP on xKS increases. In summary, our assumptions
(CRD) and (MED) have two effects. They render the Council the more conservative
institution in almost all cases and they reduce the expected distance between µ and
π. This leads to a higher number of (b) cases, which over-compensate the EP’s loss
of influence in (a) cases.

Similar reasoning applies to the Lisbon Treaty. Again, the number of cases in
which the Council (the EP) is more conservative increases (decreases) when moving
from Scenario II to Scenario III. This has a positive effect on both institutions, but
again a larger effect on the Council. Note that the Council now benefits more strongly
from the greater incidence of gains of trade because the number of cases in which it is
more conservative is now nearly twice as large as under the Nice Treaty. Regarding

18Specifically, in our simulations, the average distance between π and µ in case of gains of trade
and the Nice Treaty (Lisbon Treaty) decreases from 0.254 (0.166) under Scenario II to 0.225 (0.144)
under Scenario III.
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the average distance between π and µ in case of gains of trade we find a reduction
by nearly the same magnitude as before (see fn. 18). Together, this explains why
the effects of Scenario III on the EP’s and the Council’s SMP values are much more
balanced under the Lisbon Treaty than under the Nice Treaty.

Comparing Scenario III to the benchmark under the Nice rules, the EP is now
attributed more than nine times as much a priori power. By contrast, the Council’s
power is larger by only about 30 %. Regarding the Lisbon rules, the relative effects are
smaller but still favor the EP: its influence more than doubles; the Council’s power
increases only by about 14 %. Of course, the Council still remains the more powerful
institution in Scenario III, but the asymmetry between the EU’s main decision-makers
is much smaller than in our basic setting (see Figure 3.4).

Turning to the Council’s intra-institutional distribution of power, we find that the
absolute power of all 28 countries has increased by roughly the same percentage, both
under the Nice and Lisbon rules. In other words, values of a normalized SMP, which
indicate relative influence would remain essentially unchanged for all countries.

3.5 Concluding Remarks

Existing models of the codecision procedure which take a constitutional perspec-
tive, i.e., which base claims on institutional rules rather than current preferences,
yield competing conjectures about the inter-institutional balance of power in the EU.
We followed this literature and introduced several new aspects into the bargaining
game between the EP and the Council. As a first modification, we suggested that
there is reason to consider the Kalai-Smorodinsky solution rather than the Nash
solution as a predictor for the bargaining outcome since actual negotiations in the
Conciliation Committee seem marked by mutual concessions. We then incorporated
heterogeneity between different constituencies. Finally, we added the observation
that MEPs represent citizens while Council members are representatives of national
governments.

Our first main result is that the quantitative assessment of the players’ power
relation strongly depends on how much context is taken into account. The stark
power divide predicted by the basic setting of N&W seems somewhat exaggerated.
It is greatly moderated when moving to more context-rich models. In Scenario III,
which gives in our view the so far most realistic description of the EU’s wider
institutional framework, the inter-institutional gap (i.e., the EP’s SMP relative to the
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Council’s SMP) has only about one seventh the original size from the basic scenario
when considering the Nice rules; it is still reduced by half under the Lisbon rules.
However, and this may be deemed more important, the qualitative assessment of the
balance of power is remarkably robust: the EP and the Council do not co-legislate
on a par. The latter remains more influential due to its more conservative internal
voting rule.

Plenty of other modifications of the considered model are conceivable. For ex-
ample, the motive to reach agreement is provided by the risk of breakdown of
negotiations. While we treated players in the EP and the Council to be risk-neutral,
one could argue that the Council is more risk-averse due to the higher visibility of
national representatives compared to the EP. This would suggest applying a concave
transformation to the Council’s utility function, which would change bargaining out-
comes in favor of the EP (see, e.g., Kihlstrom et al. 1981). Another potential source
of built-in asymmetry between the Council and the EP in codecision could be the re-
quirement that an absolute majority of MEPs is needed to amend a Council proposal
in the second reading (see Hagemann and Høyland 2010). Other possible modifica-
tions for future research include the fact that – besides the EP and the Council – the
Commission, national parliaments, lobbyists, rapporteurs and political parties could
also be regarded as relevant players in the codecision game.

Our contribution offers a robustness check on a key theoretical result in the lit-
erature on the power distribution in codecision. But it should also be seen as a
cautionary note on a more general level. While we fully agree with N&W (p. 138)
that “any systematic bias in influence must result from institutional rules rather than
differences between the politicians involved”, the practical problem of how to ade-
quately reflect complex institutional realities in applied social choice analysis has no
ready solution.



3.6. Appendix: Proof of Proposition 3.1 49

3.6 Appendix
Proof of Proposition 3.1

For |π−q| = |µ−q| the result is trivial. So consider gains from trade and |π−q| < |µ−q|.
This implies u∗EP = 0. The proof is split in two parts. First consider |π − q| ≥ |π − µ|
such that u∗CEU = 0. The Pareto frontier on [−|π − µ|, 0] can be described by

uCEU = −|π − µ| − uEP

and the straight line connecting d and u∗ by

uCEU =
|µ − q|
|π − q|

uEP.

The Kalai-Smorodinsky bargaining solution is located where the two lines cross, i.e.,

−|π − µ| − uEP =
|µ − q|
|π − q|

uEP

⇔ uEP =
−|π − µ|

1 +
|µ−q|
|π−q|

> −
|π − µ|

2

⇒ uCEU = −|π − µ| +
|π − µ|

1 +
|µ−q|
|π−q|

< −
|π − µ|

2
.

Above inequalities can be easily obtained by recalling |µ − q|/|π − q| > 1 from above.
The result is equivalent to xKS = π +

µ−π
1+(µ−q)/(π−q) ∈ (π, π + 1

2 (µ − π)). This completes
the first part of the proof.

Now consider |π − q| < |π − µ| such that u∗CEU = −(|π − µ| − |π − q|). While this has
no effect on the Pareto frontier, the straight line connecting d and u∗ is now given by

uCEU = −(|π − µ| − |π − q|) + 2uEP.

The intersection point is then given by

−|π − µ| − uEP = −(|π − µ| − |π − q|) + 2uEP

⇔ uEP = −
|π − q|

3
> −
|π − µ|

3

⇒ uCEU = −|π − µ| +
|π − q|

3
< −

2|π − µ|
3

.
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This is equivalent to xKS = π +
π−q

3 ∈ (π, π + 1
3 (µ − π)), which completes the proof.



Chapter 4

Weighted Committee Games

Consider a committee, council, corporate board, etc. that involves three players
(parties, groups, shareholders, delegations). Suppose the first wields 6 votes, the
second 5 votes, and the third 2 votes. Will their collective choices differ, ceteris
paribus, from those resulting if each player wielded 5 votes? Or, say, from outcomes
for a (48%, 24%, 28%) distribution of votes?

The way in which voting weights translate into collective decisions and how they
affect the influence of the respective decision-makers are old concerns for institu-
tional design. See Riker (1986), for instance, on reactions by delegate Luther Martin
from Maryland to the Constitutional Convention in Philadelphia in 1787. Notwith-
standing residual disagreement on which measures of power or success are the most
meaningful in a given context, the structural properties of voting are today well
understood for majority decisions on two alternatives. It is easy to see, e.g., that
for all of the above weight distributions any pair of players can jointly implement
their preferred alternative. The two form a winning coalition irrespective of whether
they have an 11 : 2, 7 : 6, 10 : 5, or 52% : 48% majority. As long as each player wields
positive but less than half the total weight, all distributions of votes among three
players are equivalent under simple majority rule. They amount to different weighted
representations of the same mathematical structure, known as a simple voting game.
The literature has formalized numerous related results (see, e.g., Taylor and Zwicker
1999).

But what if the committee is to choose from three or more candidates? Very little
is known then. Consider the most basic case: the committee uses plurality rule and
always selects the candidate who received the most votes. Now player 1 has greater
say for weights of (6, 5, 2) than for equal ones. Namely, whenever players 2 and 3 fail
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to agree, player 1 is decisive and his or her favorite candidate wins with a tally of
6 : 5 : 2, 11 : 2, or 8 : 5. The same plurality winners would result for (48%, 24%, 28%),
i.e., committees with voting weights of (6, 5, 2) and (48%, 24%, 28%) are structurally
equivalent – but one with (5, 5, 5) is not. One can conceive of the former as different
weighted representations of the same committee game, referring to the combination of
a set of n players, a set of m alternatives, and a particular mapping from n-tuples of
preferences to a winning alternative.

The goal of this chapter is to extend the knowledge on equivalent weighted voting
environments from two to more alternatives. We study four standard aggregation
methods: plurality, Borda, Copeland, and antiplurality rule. These can produce four
different winners for the same profile of preferences. We show that the methods also
differ widely in the degree to which voting weights matter. For instance, there exist
only 4 structurally different Copeland committees but 51 Borda committees when
n = m = 3. Our findings do not depend on whether sincere preference statements or
strategic votes are considered.

Committees that decide between two alternatives have received wide attention.
Von Neumann and Morgenstern (1953) started their formal analysis by introducing
simple voting games. Shapley and Shubik (1954) and Banzhaf (1965) constructed cor-
responding indices of voting power. Their applications range from the US Electoral
College, UN Security Council, and EU Council of Ministers to governing bodies of
the IMF and private corporations. See Mann and Shapley (1962), Riker and Shapley
(1968), Owen (1975), or Brams (1978) for seminal contributions. They and more re-
cently Barberà and Jackson (2006), Felsenthal and Machover (2013), Koriyama et al.
(2013), Kurz et al. (2017), and many others have sought to quantify the links between
voting weights and collective choices to evaluate democratic playing fields from a
fairness or welfare perspective.

The extent to which different voting weights make real rather than only cosmetic
differences has practical relevance. Weighted committee games offer the potential
to extend the respective analysis to decision bodies that face non-binary options.
For example, voting rights among the 24 Directors of the International Monetary
Fund’s (IMF’s) Executive Board were reformed in 2016. Is there a possibility that this
will affect any decisions, such as its choice of the next IMF Managing Director? The
Executive Board declared (IMF Press Release 2016/19) that in the future a winner from
a shortlist of at most three candidates shall be adopted “by a majority of the votes
cast”. Suppose this means (i) receiving the most votes (plurality rule). Have changes
of the distribution of IMF drawing rights, hence votes, then made a difference? And
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would it make a difference to interpret the declaration as calling instead for (ii)
a two-candidate runoff if nobody gets an outright majority (plurality runoff rule)
or (iii) securing the highest number of pairwise majority wins against competitors
(Copeland rule)? Both types of questions – comparing distinct vote distributions
for a given rule or different rules for a given distribution – are about equivalences
between committees that we formalize in this chapter.

Here we are not so much concerned with any particular voting body but a parsi-
monious framework for classifying non-binary voting structures. We take different
compositions of committees – monotonically related to an underlying scale such
as population, shareholdings, etc. or not – and a voting rule as primitives and in-
vestigate their equivalence relations. We seek to identify all structurally distinct
weight distributions to help assessing, for instance, if nominal differences in political
representation translate into real ones. We provide minimal representations for all
pertinent committee games for small n and m. Comprehensive lists of games only
existed for m = 2 so far. The extensions could be applied, e.g., to establish sharp
bounds on the numbers of voters and alternatives that permit certain monotonicity
violations or paradoxes (cf. Nurmi 1987 and Felsenthal and Nurmi 2017, 2018); to
generalize rule-specific findings on manipulability from one to infinitely many equiv-
alent committees (see Aleskerov and Kurbanov 1999 and Smith 1999); or to check
robustness of voting equilibria to small reallocations of voting weights (cf. Myerson
and Weber 1993, Bouton 2013, or Buenrostro et al. 2013). We also give a glimpse of
the beautiful geometry of weighted committee games.

4.1 Related Literature

Our analysis concerns arbitrary mappings from n-tuples of preferences over m alter-
natives to a winning one. We seek to connect a given mapping to an anonymous
baseline decision rule in the same way as weighted representations of a simple vot-
ing game described by player set N and coalitional function v connect it to simple
majority or supermajority rule.

Simple voting games and the subclass of weighted voting games (i.e., those that
have weighted representations) received a complete chapter’s attention by von Neu-
mann and Morgenstern (1953, Ch. 10). Taylor and Zwicker (1999) devoted a full-
length monograph to them and investigations continue. See, e.g., Kurz and Tauten-
hahn (2013) on open challenges in classifying and enumerating simple voting games
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in the tradition of Isbell (1956, 1958) and Shapley (1962). Machover and Terrington
(2014) studied simple voting games as “mathematical objects in their own right” and
have connected their algebraic structure to seemingly unrelated areas of mathemat-
ics. Beimel et al. (2008), Gvozdeva and Slinko (2011), Houy and Zwicker (2014) or
Freixas et al. (2017) document ongoing progress on the problem of verifying if a
given game (N, v) is weighted.

However, the literature has increasingly acknowledged that the presumption of
dichotomous decision-making is a severe limitation. Many committee decisions
allow more than two outcomes. And even for binary motions, voters usually can
abstain, stay away from the ballot, express different intensities of support, etc.

This has led to generalizations of simple voting games to multiple levels of ap-
proval. For instance, Felsenthal and Machover (1997a), Tchantcho et al. (2008) and
Parker (2012) have considered ternary voting games with the option to support a pro-
posal, to abstain, or to reject it. Quaternary voting games introduced by Laruelle and
Valenciano (2012) add the possibility not to participate in a ballot. The case of an
arbitrary finite number of individual actions translating into one of finitely many
collective outcomes has been addressed by Hsiao and Raghavan (1993) and Freixas
and Zwicker (2003, 2009). In their ( j, k)-games each player expresses one of j linearly
ordered levels of approval and every resulting j-partition of player set N is mapped
to one of k ordered output levels.

Committees that determine quantities like grades, interest rates, budget sizes, etc.
can be modeled as ( j, k)-games. But the assumption of ordered actions and outcomes
is problematic for alternatives with multidimensional attributes – for instance, if
the committee is to select from several policy options, locations of a facility, job
candidates, etc. Pertinent extensions of simple voting games have been introduced
as multicandidate voting games by Bolger (1986) and taken up as simple r-games by Amer
et al. (1998). These are the most closely related concepts in the literature to weighted
committee games as far as we are aware. In particular, weighted plurality committees
(as defined below) have featured in the framework of Bolger and Amer et al. as
“simple plurality games” and “relative majority r-games”. However, the respective
analysis concerned values and power indices rather than structural investigation
of the underlying games. We seem the first to find, e.g., that there are no more
than 36 distinct “simple plurality games” with four players1 and so only 36 different
distributions of power can arise.

1Chua et al. (2002) identified the eight games that cannot generate ties for m = 3.
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4.2 Notation and Definitions

4.2.1 Committees and Simple Voting Games

We consider finite sets N of n ≥ 1 players or voters such that each voter i ∈ N has strict
preferences Pi over the set A = {a1, . . . , am} of m ≥ 2 alternatives. P(A) denotes the set
of all m! strict preference orderings on A. A (resolute) social choice rule ρ : P(A)n

→ A
maps each profile P = (P1, . . . ,Pn) to a single winning alternative a∗ = ρ(P). The
combination (N,A, ρ) of a set of voters, a set of alternatives and a particular social
choice rule will be referred to as a committee game or just as a committee.

For given N and A, there are m(m! n) distinct rules ρ. Those that treat all voters i ∈ N
symmetrically will play a special role in our analysis: suppose preference profile P′

results from applying a permutation π : N → N to profile P, so P′ = (Pπ(1), . . . ,Pπ(n)).
Then ρ is anonymous if for all such P, P′ the winning alternative a∗ = ρ(P) = ρ(P′) is
the same. We will write r instead of ρ if we want to highlight that a considered rule
is anonymous, i.e., we impose no restrictions on general social choice rules denoted
by ρ but require anonymity for rules denoted by r : P(A)n

→ A.
For m = 2 and binary alternatives a1 = 1 and a2 = 0, it is common to describe ρ

by a coalitional function v : 2N
→ {0, 1} with v(S) = 1 when 1 Pi 0 for all i ∈ S implies

ρ(P) = 1. Sets S ⊆ N with v(S) = 1 are called winning coalitions. The pair (N, v) is
referred to as a simple voting game: it can be viewed as a cooperative game in which
the worths v(S) of coalitions are restricted to {0, 1}.

A simple voting game (N, v) is weighted and also called weighted voting game if there
exists a non-negative vector w = (w1, . . . ,wn) of weights and a positive quota q such
that v(S) = 1 if and only if

∑
i∈S wi ≥ q. One then refers to pair (q; w) as a (weighted)

representation of (N, v) and denotes the respective game by [q; w], i.e., (N, v) = [q; w]. It
is without loss of generality to focus on integer numbers: given q ∈ R++ and w ∈ Rn

+

one can always find q′ ∈ N and w′ ∈ Nn
0 such that [q; w] = [q′; w′]. Certificates

for the non-weightedness of a given simple game (N, v) can be rather complex and
characterization of weightedness remains an active field for m = 2 (see Section 4.1).

Somewhat involved analogues of winning coalitions and coalitional functions
exist for m > 2. For instance, Moulin (1981) introduced veto functions to succinctly
describe the outcomes that given coalitions of players could prevent if they coordi-
nated. Different types of effectivity functions clarify the power structure associated
with a rule ρ by enumerating the sets of alternatives that given coalitions of voters
can force ρ(P) to lie in. See Peleg (1984). We provide a different perspective by
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Rule Winning alternative at preference profile P

Antiplurality rA(P) ∈ arg mina∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : a′Pia}
∣∣∣

Borda rB(P) ∈ arg maxa∈A

∑
i∈N bi(a,P)

Copeland rC(P) ∈ arg maxa∈A

∣∣∣{a′ ∈ A | a �P
M a′}

∣∣∣
Plurality rP(P) ∈ arg maxa∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣

Table 4.1 Considered anonymous social choice rules

investigating analogues to weightedness of a simple voting game on the domain of
general committee games.

4.2.2 Four Anonymous Social Choice Rules

We will define weightedness of general rules ρ relative to some fixed anonymous
rule r. For the latter we here focus on four standard social choice rules with lexico-
graphic tie breaking. Their definitions are summarized in Table 4.1.

Under plurality rule rP each voter names his or her top-ranked alternative and
the alternative that is ranked first by the most voters will be chosen.2 Analogously,
antiplurality rule rA selects the alternative that is ranked last by the fewest voters.
Borda rule rB requires each voter i to give m − 1, m − 2, . . . , 0 points to the alternative
that he or she ranks first, second, etc. These points bi(a,P) :=

∣∣∣{a′ ∈ A | aPia′}
∣∣∣ equal

the number of alternatives that i ranks below a. The alternative with the highest total
number of points, known as its Borda score, is selected. Copeland rule rC considers
pairwise majority votes between the alternatives. They define the majority relation
a �P

M a′ :⇔
∣∣∣{i ∈ N | aPia′}

∣∣∣ > ∣∣∣{i ∈ N | a′Pia}
∣∣∣ and the alternative that beats the most

others according to �P
M is selected. In particular, if some alternative a is a Condorcet

winner, i.e., beats all others, then rC(P) = a.
We assume that whenever there is a non-singleton set A∗ = {a∗i1 , . . . , a

∗

ik
} of opti-

mizers in Table 4.1, the alternative a∗i∗ ∈ A∗ with lowest index i∗ = min{i1, . . . , ik} is
selected. This amounts to lexicographic tie breaking for A ⊂ {a, . . . , z, aa, ab, . . .} and
has computational advantages over working with set-valued choices. In particular,

2The formal structure of a committee game is unaffected by whether voting is sincere or strategic.
The difference only lies in the interpretation of P(A)n: it refers to profiles of true preferences in the
former and stated ones in the latter case. So it is without loss of generality if we adopt the simpler
vocabulary of sincere voting and say “ranked first” instead of “named as top-ranked”.
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only m(m!n) distinct mappings from preference profiles to alternatives a∗ need to be
considered, compared to (2m

− 1)(m!n) if each profile were mapped to a non-empty set
A∗ ⊆ A. The former entails no loss of information as we consider all P ∈ P(A)n: the
set of alternatives tied at P is fully determined by a∗ = r(P) and the respective winners
a∗∗, a∗∗∗, . . . at profiles P′,P′′, . . . that swap a∗ with alternatives a′, a′′, . . . that might be
tied with a∗ at P.3 The considered rules rA, rB, rC, rP and their set-valued versions are
hence in one-to-one correspondence and exhibit the same structural equivalences.4

4.2.3 Weighted Committee Games

Committee games (N,A, ρ) that model real committees, councils, parliaments etc.
are more likely than not to involve a non-anonymous social choice rule ρ. Desig-
nated members might have procedural privileges and veto rights. Or an anonymous
decision rule r applies not at the level of voters but their respective shareholdings,
IMF drawing rights, etc. Moreover, we may take the relevant players i ∈ N in a com-
mittee game to be well-disciplined parties, factions, or interest groups with different
numbers of seats. Anonymity of the underlying rule at the level of individual voters
then is destroyed at the level of voter blocs.

The latter two cases – individual voters with different numbers of votes and
groups of voters who act as monolithic blocs – amount to the same: the corresponding
rule ρ can be viewed as the combination of an anonymous social choice rule r with integer
voting weights w1, . . . ,wn attached to the relevant players.

In the following, we let r denote the entire family of mappings from n-tuples of
linear orders over A = {a1, . . . , am} to winners a∗ ∈ A determined by the considered
rule (for all n and m). Then the indicated combination operation amounts to a simple
replication. It defines the social choice rule r|w : P(A)wΣ → A by

r|w(P) := r(P1, . . . ,P1︸     ︷︷     ︸
w1 times

, P2, . . . ,P2︸     ︷︷     ︸
w2 times

, . . . , Pn, . . . ,Pn︸     ︷︷     ︸
wn times

)

for a given anonymous rule r and a non-negative, non-degenerate weight vector
w = (w1, . . . ,wn) ∈ Nn

0 with wΣ :=
∑n

i=1 wi > 0. In the degenerate case w = (0, . . . , 0),

3Given r(P) = b, for example, a tie with a can directly be ruled out; one sees if b was tied with c by
checking whether r(P′) = c or b where P′ only swaps b’s and c’s position in every player’s ranking Pi.

4Analogous reasoning would apply if ties were broken in a uniform random way, i.e., for the most
basic type of probabilistic social choice. See Brandl et al. (2016) on differences between deterministic
and probabilistic frameworks.
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P1 P2 P3 P4

d b c c
e c e b
b e a a
a a d d
c d b e

⇒

rA
|w(P) = a (a has min. bottom ranks 0)

rB
|w(P) = b (b has max. Borda score 28)

rC
|w(P) = c (c has max. pairwise wins 3)

rP
|w(P) = d (d has max. plurality tally 5)

Table 4.2 Choices for preference profile P when w = (5, 3, 2, 2)

let r|0(P) ≡ a1.
We say a committee game (N,A, ρ) is r-weighted for a given anonymous social

choice rule r if there exists a weight vector w = (w1, . . . ,wn) ∈Nn
0 such that

ρ(P) = r|w(P) for all P = (P1, . . . ,Pn) ∈ P(A)n.

Then – so when (N,A, ρ) = (N,A, r|w) – we refer to (N,A, r,w) as a (weighted) represen-
tation of (N,A, ρ). The corresponding game will also be denoted by [N,A, r,w].

If the anonymous rule in question is plurality rule rP, we call (N,A, rP
|w) a

(weighted) plurality committee. Similarly, (N,A, rA
|w), (N,A, rB

|w), and (N,A, rC
|w) are

respectively referred to as an antiplurality committee, Borda committee, and Copeland
committee. That such committees can crucially differ for a fixed distribution w is
illustrated in Table 4.2: the winning alternative all depends on the voting rule r in
use.5

4.3 Equivalence Classes of Weighted Committee Games

4.3.1 Equivalence of Committee Games

Weighted representations of given committee games are far from unique. Consider,
e.g., the j-dictatorship game (N,A, ρ j) where ρ j(P) equals the alternative that is top-
ranked by P j for every P ∈ P(A)n. This coincides with [N,A, r,w] for r ∈ {rC, rP

} and
any w ∈Nn

0 with w j >
∑

i, j wi.
Committees (N,A, r|w) and (N′,A′, r′|w′) evidently are equivalent if N = N′, A = A′,

and r , r′ or w , w′ but the respective mappings from preference profiles to outcomes

5Moreover, e wins under approval voting for suitable ballots (Brams and Fishburn 1978). See
Felsenthal et al. (1993), Leininger (1993), or Tabarrok and Spector (1999) for related case studies.
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a∗ are the same; that is, when r|w(P) = r′|w′(P) for all P ∈ P(A)n. We will focus on
situations where r = r′ and try to capture structural equivalence in the sense that
(N,A, r|w) and (N′,A′, r|w′) reflect the same decision environment even though weights
and labels of players or alternatives might differ. The latter means there are bijective
mappingsπ : N→ N′ and π̃ : A→ A′ such that each player i ∈ N and alternative a ∈ A
has the same role in (N,A, r|w) as do player π(i) and alternative π̃(a) in (N′,A′, r|w′).
Accordingly, r-weighted committee games (N,A, r|w) and (N′,A′, r|w′) will be called
structurally equivalent (or equivalent up to isomorphism) if{

a j Pi ak ⇔ π̃(a j) P′π(i) π̃(ak)
}
⇒ π̃

(
r|w(P)

)
= r|w′(P′)

for suitable bijections π : N → N′ and π̃ : A→ A′ that map every profile P of prefer-
ences Pi over A to a relabeled profile P′ of preferences P′π(i) over A′.

This includes situations where N = N′ but weights w′ are a permutation of w.
For instance, the Copeland committee (N,A, rC

|w) has different attractiveness to a
given player for w = (3, 1, 1), (1, 3, 1), or (1, 1, 3). However, the decision environment
is the same: it involves a dictator player whose most-preferred alternative always
wins and two null players whose preferences do not influence the outcome.

A given weight distribution w ∈ Nn
0 fixes the number of players. So as labels

of players and alternatives do not matter, we write (r,w) ∼m (r,w′) to denote that
r-committee games with m alternatives are structurally equivalent for weight distri-
butions w and w′. Relation ∼m and a suitable reference distribution w̄ ∈ Nn

0 with
w̄1 ≥ w̄2 ≥ . . . ≥ w̄n serving as index jointly define an equivalence class

E
r
w̄,m :=

{
w ∈Nn

0 | (r,w) ∼m (r, w̄)
}
.

E
r
w̄,m is the set of all weight distributions that give rise to weighted committee games

equivalent to [N,A, r, w̄] up to isomorphism. If voters use rule r for deciding between
m alternatives, then all weight distributions w,w′ ∈ Er

w̄,m come with identical mono-
tonicity properties, voting paradoxes, manipulation incentives, strategic equilibria,
implementation possibilities, etc.

4.3.2 Illustration

As an example, consider Borda rule rB for m = 3 and reference weights w̄ = (5, 2, 1).
To simplify the exposition, let us focus on the subset EB

(5,2,1),3 ⊂ E
rB

(5,2,1),3 of vectors w
with w1 ≥ w2 ≥ w3.
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Identity of ρ = rB
|(5, 2, 1) and rB

|w implies two inequalities for each profile P ∈
P(A)3: the Borda winner must beat each of the other alternatives. Writing abc in
abbreviation of aPibPic, profile P = (cab, bac, abc), for instance, implies rB

|w̄(P) = c and
hence the Borda score of (lexicograpically maximal) c under any equivalent weight
vector w must strictly exceed that of a and b:

2w1 > w1 + w2 + 2w3 (I)

2w1 > 2w2 + w3. (II)

Similarly, profile P′ = (cab, abc, bac) makes a the winner. Being lexicographically
minimal, this implies a’s Borda score must not be smaller than b’s and c’s:

w1 + 2w2 + w3 ≥ w2 + 2w3 (III)

w1 + 2w2 + w3 ≥ 2w1. (IV)

Profiles P′′ = (abc, bca, bac) and P′′′ = (abc, bca, bca) similarly induce ρ(P′′) = a and
ρ(P′′′) = b, which implies

2w1 + w3 ≥ w1 + 2w2 + 2w3 (V)

2w1 + w3 ≥ w2 (VI)

w1 + 2w2 + 2w3 > 2w1 (VII)

w1 + 2w2 + 2w3 ≥ w2 + w3. (VIII)

Condition (VIII) is trivially satisfied for any w ∈Nn
0 . (IV) and (V) imply w1 = 2w2+w3.

This makes (I) equivalent to w2 > w3 and (VII) to w3 > 0. Combining w1 = 2w2 + w3

and w2 > w3 > 0 also verifies (II), (III) and (VI). The 212 remaining profiles P ∈ P(A)3

turn out not to impose additional constraints. Hence

w ∈ EB
(5,2,1),3 =

{
(2w2 + w3,w2,w3) ∈N3

0 : w2 > w3 > 0
}
.

The full class ErB

(5,2,1),3 follows by permuting the weight distributions in EB
(5,2,1),3. Other

equivalence classes, such as ErB

(1,1,1),3, ErB

(2,1,1),3, etc., can be characterized analogously.
However, determining all classes is quite involved even for n = m = 3.
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4.3.3 Relation between Equivalence Classes

As the number of distinct mappings from preference profiles to outcomes is finite for
given n and m, there are only finitely many disjoint Er

w̄,m with w̄ ∈ Nn
0 for any given

rule r. They partition the infinite space Nn
0 of weight distributions into a collection{

E
r
w̄1,m,E

r
w̄2,m, . . . ,E

r
w̄ξ,m

}
of all r-weighted committees with n voters deciding on m

alternatives. We will see below that the numbers ξ of elements of such a partition –
hence the numbers of structurally distinct weighted committee games for given r, n,
and m – vary widely across rules.

Let us first gather some results on the relation between equivalence classes for
different rules r or parameters n and m; proofs are provided in Appendix A. Non-
surprisingly, the degenerate weight vector w0 = 0 always forms its own class:

Lemma 4.1. Let m ≥ 2, r ∈ {rA, rB, rC, rP
} and w , 0 ∈Nn

0 . Then (r, 0) /m (r,w).

We focus on non-degenerate weight vectors w , 0 from now on. Another straight-
forward observation is that the considered rules do not differ for m = 2:

Proposition 4.1. The partitions
{
E

r
w̄1,2
, . . . ,Er

w̄ξ,2

}
ofNn

0 coincide for r ∈ {rA, rB, rC, rP
}.

Furthermore, weighted committee games with m = 2 are in one-to-one relation to
standard weighted voting games [q; w1, . . . ,wn] with a 50%-majority quota: 6

Proposition 4.2. Let N = {1, . . . ,n} and A = {a1, a2}. For any w , 0 ∈ Nn
0 and r ∈

{rA, rB, rC, rP
}

r|w(P) = a1 ⇔ v(S) = 1

where v is the coalitional function of weighted voting game (N, v) = [q; w] with q = 1
2

∑
i∈N wi

and coalition S = {i ∈ N | a1 Pi a2} ⊆ N collects all players who prefer a1 at profile P ∈ P(A)n.

It follows that the respective partitions
{
E

r
w̄1,2
, . . . ,Er

w̄ξ,2

}
ofNn

0 coincide with those for
weighted voting games with a simple majority quota. Their study and enumeration
for n ≤ 5 dates back to von Neumann and Morgenstern (1953, Ch. 10).

The remaining propositions consider equivalence classes for a fixed rule r as the
number m of alternatives is varied.

Proposition 4.3. For Copeland rule rC, the partitions
{
E

rC

w̄1,m, . . . ,E
rC

w̄ξ,m

}
ofNn

0 coincide for
all m ≥ 2.

6Weighted voting games [q; w] and [q′; w] with quota q =
∑

wi/2 and q′ = q + ε for small ε > 0 are
in a well-defined sense duals of each other, i.e., are also in bijection.
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Proposition 4.4. For plurality rule rP, the partitions
{
E

rP

w̄1,m, . . . ,E
rP

w̄ξ,m

}
ofNn

0 coincide for
all m ≥ n.

Proposition 4.5. For Borda rule rB and given m ≥ 3, every weight vector w̃j = ( j, 1, 0, . . . , 0)
with j ∈ {1, . . . ,m − 1} identifies a different class ErB

w̃j,m
.

It follows from Proposition 4.5 that, for any fixed number of players, the number
ξ of structurally distinct Borda committee games grows without bound as m goes
to infinity. Borda rule differs in this respect from Copeland, plurality, and also
antiplurality plurality rule:

Proposition 4.6. For antiplurality rule rA, the partitions
{
E

rA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄ξ,m

}
ofNn

0r{0}
consist of ξ = n equivalence classes identified by weight vectors w̄1 = (1, 0, . . . , 0), w̄2 =

(1, 1, . . . , 0), . . . , w̄n = (1, 1, . . . , 1) for all m ≥ n + 1.

The reference vectors in Propositions 4.5 and 4.6 have the lowest possible weight
sum for the respective class of games. Before we elaborate on this be reminded that
equivalence classes would be the same if we considered uniform tie breaking or
set-valued choices (cf. end of Section 4.2.2).7

4.4 Identifying Weighted Committee Games

4.4.1 Minimal Representations and Test for Weightedness

Above rules have the property that [N,A, r,w] = [N,A, r,w′] when w is a multiple
of w′. Even if w represents the actual distribution of seats or vote shares in a
given institution, it can be analytically more convenient to work with w′. More
generally, given (N,A, ρ) = (N,A, r|w), we say that (N,A, r,w) has minimum integer
sum or is a minimal representation of (N,A, ρ) if

∑
i∈N w′i ≥

∑
i∈N wi for all representations

(N,A, r,w′) of (N,A, ρ) that involve rule r. The games in a given equivalence class
E

r
w̄,m usually have a unique minimal representation.8 The corresponding minimal

weights are the focal choice for w̄. For instance, (5, 2, 1) has minimal sum among all
w ∈ ErB

(5,2,1),3 characterized in Section 4.3.2.

7Lexicographic tie breaking can yield r|w(P) = r|w′(P) = a∗ even though the sets of alternatives
tied at P, say A∗ and A′∗, differ between r|w and r|w′. Then construct P′ as follows: if A∗ 1 A′∗, fix
an alternative a′ ∈ A∗ \ A′∗ and swap positions of a∗ and a′ in P. Now r|w(P′) = a∗ is unchanged but
r|w′(P′) , a∗. If A∗ ⊂ A′∗, consider a′ ∈ A′∗ \ A∗ analogously.

8If m = 2, minimal representations are unique for up to n = 7 players (Kurz 2012). Multiplicities
for games with larger values of m or n arise but are rare.
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Finding minimal representations of arbitrary Copeland committees simplifies to
finding them for m = 2 by Proposition 4.3. And by Proposition 4.2 this amounts to
finding minimal representations of specific weighted voting games. Linear program-
ming techniques have proven helpful for this task and can be adapted to committees
that apply rules rA, rB, or rP. These all belong to the family of positional or scoring
rules: winners can be characterized as maximizers of scores derived from alterna-
tives’ positions in P and a suitable scoring vector s ∈ Zm with s1 ≥ s2 ≥ . . . ≥ sm.
Specifically, let the fact that alternative a is ranked at the j-th highest position in
ordering Pi contribute s j points for a, and refer to the sum of all points received as a’s
score. Then score maximization for sB = (m−1,m−2, . . . , 1, 0) yields the Borda winner,
sP = (1, 0, . . . , 0, 0) the plurality winner, and sA = (0, 0, . . . , 0,−1) or (1, 1, . . . , 1, 0) the
antiplurality winner.

For an arbitrary scoring rule r that induces social choice rule ρ for appropriate
weights, let us denote the index of the winning alternative at profile P by ωρ(P) ∈
{1, . . . ,m}, i.e., ρ(P) = aωρ(P) ∈ A; write Sk(Pi) ∈ Z for the unweighted s-score of
alternative ak derived from its position in ordering Pi (e.g., for m = 3 and a3 = c, we
have S3(Pi) = s2 if either aPicPib or bPicPia). Then any solution to the following integer
linear program yields a minimal representation (N,A, r,w) of (N,A, ρ):

min
w∈Nn

0

n∑
i=1

wi (ILP)

s.t.
n∑

i=1

Sk(Pi) · wi ≤

n∑
i=1

Sωρ(P)(Pi) · wi − 1 ∀P ∈ P(A)n
∀1 ≤ k ≤ ωρ(P) − 1,

n∑
i=1

Sk(Pi) · wi ≤

n∑
i=1

Sωρ(P)(Pi) · wi ∀P ∈ P(A)n
∀ωρ(P) + 1 ≤ k ≤ m.

The case distinction between scores of non-winning alternatives ak with index k <
ωρ(P) vs. k > ωρ(P) reflects the tie breaking assumption. If some (non-minimal)
representation (N,A, r,w′) of (N,A, ρ) is known and satisfies w′1 ≥ w′2 ≥ . . . ≥ w′n then
adding constraints wi ≥ wi+1,∀1 ≤ i ≤ n− 1, to (ILP) helps to speed up computations.

If it is not yet known whether ρ is r-weighted, (ILP) provides a decisive test for
r-weightedness for any scoring rule r.9 Namely, the constraints in (ILP) characterize
a non-empty compact set if and only if ρ is r-weighted. Checking non-emptiness of
the constraint set for a given ρ answers the question of its r-weightedness. This can

9This extends to Copeland rule rC by Propositions 4.1 and 4.3.
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be done with optimization software (e.g., Gurobi or CPLEX) that also identifies the
weight sum minimizer at little extra cost.

4.4.2 Algorithmic Strategy

We would like to characterize all r-committee games for fixed n and m. In princi-
ple, one could do this as follows: loop over the m(m!n) different social choice rules
ρ : P(A)n

→ A; conduct above test for r-weightedness; if successful, determine a
representation (N,A, r, w̄) and characterize Er

w̄,m as in Section 4.3.2; continue until all
rules ρ have been covered.

The extreme growth of m(m!n) prevents a direct implementation of this idea: n =

m = 3 already gives rise to an intractable 3216 > 10103 different mappings. However,
many mappings can be dropped from consideration in large batches. If ρ(P) = a1 for
one of the (m−1)!n profiles P where a1 is unanimously ranked last, for instance, then ρ
cannot be r-weighted for r ∈ {rA, rB, rC, rP

}. This rules out m(m!n−1) candidate mappings
in one go. Similarly, if weights w such that r|w(P) = a1 turn out to be incompatible
with r|w(P′) = a2 for two suitable profiles P,P′, then all m(m!n−2) mappings ρ with
ρ(P) = a1 and ρ(P′) = a2 can be disregarded at once.

Branch-and-Cut Algorithm
Given n, m and r, identify every class Er

w̄k,m by a minimal representation.

Step 1 Generate all J := (m!)n profiles P1, . . . ,PJ
∈ P(A)n for A := {a1, . . . , am}.

Set F := ∅.

Step 2 For every P j
∈ P(A)n and every ai ∈ A, check if there is any weight

vector w ∈ Nn
0 s.t. r|w(P j) = ai by testing feasibility of the implied

constraints (cf. Section 4.3.2). If yes, then append (i, j) to F .

Step 3 Loop over j from 1 to J.

Step 3a If j = 1, then set C1 :=
{
1 ≤ i ≤ m | (i, j) ∈ F

}
.

Step 3b If j ≥ 2, then set C j := ∅ and loop over all (p1, . . . , p j−1) ∈ C j−1 and
all p j ∈ {1, . . . ,m} with (p j, j) ∈ F . If (ILP) has a solution for the
restriction to the profiles P1, . . . ,Pj with prescribed winners ρ(Pi) =
api for 1 ≤ i ≤ j, then append (p1, . . . , p j) to Cp.

Step 4 Loop over the elements (p1, . . . , p j, . . . , pJ) ∈ CJ and output minimal
weights w̄ such that r|w̄ ≡ ρ with ρ(Pj) = p j by solving (ILP).

Table 4.3 Determining the classes of r-weighted committees for given n and m
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The branch-and-cut algorithm described in Table 4.3 operationalizes these con-
siderations. It can be tuned – and performance significantly improved – if the rule r
in question uses only partial information, such as top ranks. For plurality rule rP it
actually suffices to consider individual preferences for which all alternatives below
the top are in lexicographic order. Then only mn profiles instead of (m!)n need to be
looped over. Analogous reasoning applies to antiplurality rule rA.

Alas, the algorithm can still require too much memory and running time. The
main alternative then is to loop over different weight distributions and check if they
are structurally distinct from those already known. Namely, start with wΣ := 0 and
an empty list Ŵ of weight vectors; increase the sum of weights wΣ in steps of 1;
generate the setWwΣ

:=
{
w ∈ Nn

0

∣∣∣ w1 ≥ · · · ≥ wn and w1 + · · · + wn = wΣ

}
and loop

over all w ∈ WwΣ
. The respective weight vector w is appended to Ŵ if for every

w′ ∈ Ŵwe have r|w(P) , r|w′(P) for at least one P ∈ P(A)n. The set Ŵ then contains
a growing list of minimal weight vectors that correspond to structurally distinct
committee games [N,A, r,w]. This method has the advantage of not requiring any
weightedness test, such as (ILP). However, search needs to be stopped manually and
just produces a lower bound on the actual number of classes.10

4.5 Number and Geometry of Weighted Committee Games

4.5.1 Number of Antiplurality, Borda, Copeland, and Plurality games

A combination of our analytical findings and indicated computational methods
permits to identify all structurally distinct r-weighted committee games with r ∈
{rA, rB, rC, rP

} for small n and m. This can be useful in several ways: demonstrating,
for instance, that a certain voting paradox does not occur for any of the 34 distinct
plurality committees with n = 4, m = 3, which we list in Appendix B, would suffice
to establish that at least five voter groups or four alternatives are needed for rP to
exhibit the paradox. Similarly, a characterization of voting equilibria for, say, the
7 weight vectors listed for antiplurality rule when n = m = 4 would automatically
extend to all distributions of votes.

Table 4.4 summarizes our findings. Figures do not include the degenerate class
E0,m. When less than 150 equivalence classes of games exist, we report a minimum

10One can compute upper bounds on the weight sum that guarantees coverage of all equivalence
classes, analogously to bounds for minimal representation of weighted voting games (see Muroga
1971, Thm. 9.3.2.1). In our context such bounds are way too large to be practical, however.
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sum integer representation for each in Appendix B. The list for m = 2 nests the
games reported by Krohn and Sudhölter (1995) and Brams and Fishburn (1996);
plurality committees with m = 3 nest the tie-free games listed by Chua et al. (2002)
for n = 3, 4. The branch-and-cut approach required excessive memory for Borda
committees when m > 4 or n = m ≥ 4. We write “≥ . . .” if the search algorithm
appended no new games to set Ŵ for long enough to support the conjecture that the
indicated bound equals the exact number of games; we write “� . . .” if we expect
more computing power to yield yet more games.11

n,m
r Antiplurality Borda Copeland Plurality

3,2 4
4,2 9
5,2 27
6,2 138
7,2 1 663
8,2 63 764
9,2 9 425 479
3, 3 5 51 4 6
3, 4 3 505 4 6
3, 5 3 ≥ 2 251 4 6
4, 3 19 5 255 9 34
4, 4 7 � 635 622 9 36
4, 5 4 � 635 622 9 36
5, 3 263 � 1 153 448 27 852
6, 3 ≥ 33 583 � 1 153 448 138 � 160 312

Table 4.4 Numbers of distinct weighted committee games

4.5.2 Geometry of Committee Games with n=3

In principle, one could characterize the full equivalence class of committee games
for each reference distribution that we list in Appendix B. We have indicated how
in Section 4.3.2. But computation of the respective partition ofNn

0 is very arduous –

11We used 128 GB RAM and eight 3.0 GHz cores. Some instances ran for more than two months.
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much more than determining into which classes given games [N,A, r,w] fall.
We have done the latter to obtain a first overview of the geometry of committee

games. Our illustrations differ in content but echo the geometric approach to voting
espoused by Saari (1995, 2001). His eponymous triangles concern m = 3 alterna-
tives and consider an arbitrary number n of voters. They illuminate how collective
rankings vary with the applicable voting procedure for given preferences.

We, by contrast, assume n = 3 voter groups or players and consider arbitrary
fixed numbers of alternatives. The points in our triangles correspond to voting
weight distributions; colors group them into equivalence classes. We use the stan-
dard projection of the 3-dimensional unit simplex of relative weights to the plane,
illustrated in Figure 4.1: extreme points of the resulting equilateral triangle match
committees in which only one of the groups has voting rights; the midpoint reflects
equal numbers of votes for each group. The relative weight axes are suppressed in
subsequent figures. Points of identical color correspond to structurally equivalent
weight distributions, i.e., they induce isomorphic committee games for the voting
rule r under investigation. We can thus depict the partition of all non-degenerate
weight distributions w ∈ N3

0 into equivalence classes Er
w,m in terms of relative vote

shares. When classes correspond to line segments or single points in the simplex, we
have manually enlarged these in Figures 4.2–4.4 in order to improve visibility.

2
1

w1 w2

w3

100 %

100 %

100 %

3

Figure 4.1 Simplex of all distributions of relative voting weights for n = 3
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4.5.2.1 Copeland Committees

Figure 4.2 shows all Copeland committees with three players. The four equivalence
classes ErC

w̄,m with w̄ ∈

{
(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)

}
, m ≥ 2, can be identified

as follows. The dark blue triangles in the corners collect all weight distributions
in ErC

(1,0,0),m: one group with more than 50% of the votes can impose its preferred

alternative as a dictator. The green lines cover all weight distributions in ErC

(2,1,1),m:
one player holds 50% of the votes, the others share the rest in an arbitrary positive
proportion. The three black points depict situations in which two players have equal
positive numbers of votes while the third has no votes, i.e., ErC

(1,1,0),m. The yellow

triangle in the middle reflects the many equivalent weight configurations in ErC

(1,1,1),m:
each player wields a positive number of votes below half the total. As known from
the analysis of binary weighted voting games, weights do not matter inside the
central triangle: quite dissimilar distributions like (33, 33, 33) and (49, 49, 1) induce
the same pairwise majorities; hence possibilities for players to influence outcomes
and to achieve their goals are identical.

1 2

3

Figure 4.2 The four Copeland equivalence classes for m ≥ 2
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4.5.2.2 Plurality Committees

Figure 4.3 illustrates the situation for m ≥ 3 when plurality rule rP is used. Weight
vectors w that belong to Copeland class ErC

(1,1,1),m split into the plurality classes ErP

(1,1,1),m

with identical weights for all three players, ErP

(2,2,1),m and ErP

(3,2,2),m. The former corre-
sponds to weights on the orange lines that point to the center: two players each have
a plurality of votes. The latter class involves just one plurality player.

For non-dictatorial weight configurations, plurality rule is more sensitive to the
configuration of seats or voting rights than Copeland rule. This becomes more
pronounced the more players are involved: Table 4.4 shows that there are about four
and 32 times more structurally different committees with plurality than Copeland
rule for n = 4 and 5, respectively; we conjecture this factor exceeds 1 000 for n = 6.

1 2

3

Figure 4.3 The six plurality equivalence classes for m ≥ 3

4.5.2.3 Antiplurality Committees

In Figure 4.4, the dark blue triangles that reflected existence of a dictator player under
rC and rP in Figures 4.2 and 4.3 shrink to the three vertices for antiplurality rule.
Only the degenerate case, in which no one else has positive weight, has outcomes
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determined by one player’s preferences alone. Otherwise, even a single vote may
veto and disqualify an alternative under rA.

Equivalence classes ErA

w̄,3 with w̄ ∈
{
(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1)

}
differ

according to whether one (blue vertices), two (dark green edges), or all three players
have positive weight. The latter case comes with the possibility that none (yellow
center), one (orange lines), or two of them (light green triangles) have greater weight
than others and hence elevated roles if the players each vote against a different
alternative. For m = 4, this distinction becomes obsolete because there is always at
least one alternative not disapproved by anyone (Proposition 4.6). Then there are
just three classes ErA

w̄,4 with w̄ ∈
{
(1, 0, 0), (1, 1, 0), (1, 1, 1)

}
.

(a) m = 3 (b) m ≥ 4

1 2

3

1 2

3

Figure 4.4 The five or three antiplurality equivalence classes

4.5.2.4 Borda Committees

Visually the most interesting geometry of committee games is induced by Borda
rule. Figures 4.2 and 4.5–4.7 illustrate the quick increase in equivalence classes as the
number of alternatives rises. (Recall that Figure 4.2 captures the case of m = 2 for all
rules r ∈ {rA, rB, rC, rP

} by Proposition 4.1.)
The pictures indicate how sensitive Borda decision structures are to the underlying

vote distribution – the more alternatives, the higher the sensitivity. This need not
make a big difference in practice. Incidences of rB

|w(P) , rB
|w′(P) for similar w,w′

imply that the respective committee games differ; but depending on the context at
hand, corresponding preference profiles P may have zero or smaller probability than
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1 2

3

Figure 4.5 The 51 Borda equivalence classes for m = 3

1 2

3

Figure 4.6 The 505 Borda equivalence classes for m = 4
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1 2

3

Figure 4.7 At least 2251 Borda equivalence classes for m = 5

profiles P′ such that rB
|w(P′) = rB

|w′(P′).12 Still, from an a priori perspective the three
other considered rules, rA, rC and rP, involve less scope than rB for changes in the
distribution of seats or voting rights to induce different decisions.

The dark blue triangles in the corners of Figures 4.5–4.7 are smaller than those
in Figures 4.2–4.3 for Copeland and plurality rule. This attests to the fact that the
minimal weight w1 required to make player 1 a dictator and players 2 and 3 null
players is bigger: having 50% plus one vote suffices to win all pairwise comparisons
and plurality votes while more than two thirds are needed to secure that one’s top-
ranked alternative is the Borda winner. The required weight increases in m.13

12Our color choices provide a rough guide to how much two mappings r|w and r|w′ differ: points
of similar color correspond to committees whose decisions differ for few profiles.

13Player 1’s relative weight must exceed (m − 1)/m to be a Borda dictator. This was already
observed by Borda in 1781 and follows from the condition that unanimous players 2, . . . ,n cannot
make 1’s second choice the winner. Moulin (1982) studies a more nuanced concept of veto power for
Borda and Copeland rule, which translates to lighter colors in our figures.
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4.6 Concluding Remarks

Equivalence of different distributions of seats, drawing rights, voting stock, etc.
depends highly on whether decisions involve two, three, or more alternatives. Weight
distributions such as (6, 5, 2), (5, 5, 5), or (48%, 24%, 28%) are equivalent for binary
majority choices but not more generally. Scope for weight differences to matter has
been formalized and compared across rules in this chapter.

The only Condorcet method that we featured here, i.e., Copeland rule, behaves
somewhat at odds with the others: it extends the equivalences known for dichoto-
mous choice problems to arbitrarily many options (Proposition 4.3). This might not
feel surprising because winners in Copeland games are selected by binary compar-
isons. Is it, therefore, okay to apply insights and tools for binary voting, such as
the Shapley-Shubik or Penrose-Banzhaf power indices, also to voting bodies that
face non-binary options as long as the pertinent rules satisfy the Condorcet winner
criterion?

This conjecture is wrong. The Copeland method is special insofar that it invokes
ordinal evaluations only; most other Condorcet methods also use information on
victory margins, rank positions, or distances. More alternatives then generate more
scope for decisions to be sensitive to the seat distribution. Proposition 4.3 fails to gen-
eralize, for example, to Black committee games. The Black rule selects the Condorcet
winner if one exists and otherwise uses Borda scores to break cyclical majorities.
Weight distributions of (6, 4, 3) and (4, 4, 2) are equivalent for m = 2 and give rise to
a cycle a �P

M b �P
M c �P

M a for profile P = (cab, abc, bca). The Black winner is c for the
former weight distribution, with a score of 15; but a wins with a score of 12 for the
latter. Hence they are non-equivalent for m = 3. The same applies to Kemeny–Young
rule, which minimizes total pairwise disagreements (Kemeny distances) between the
rankings in profile P and the collective ranking; or maximin rule, where a winner
must maximize the minimum support across all pairwise comparisons. There are
more distinct Black, Kemeny–Young, or maximin committee games than Copeland
ones although all involve Condorcet methods.

There is ample choice for extending the analysis. The list of sensible single-winner
voting procedures that could be used by a committee is long (see, e.g., Aleskerov
and Kurbanov 1999; Nurmi 2006, Ch. 7; or Laslier 2012). We have tentatively tried to
identify the number of distinct committee games that involve scoring rules based on
arbitrary s = (1, s2, 0) ∈ Q3 for n = m = 3. The numbers of structurally distinct games
are roughly M-shaped: they increase from 6 plurality committees to more than 160
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for s2 = 0.25, fall to 51 Borda committees for s2 = 0.5, increase again to at least 229 for
s2 = 0.9 and then drop sharply to just 5 antiplurality committees for s2 = 1.14

The equivalence of seemingly different committee games is of theoretical and
applied interest. It is relevant for the design of actual voting bodies such as the
IMF’s Executive Board, councils of non-governmental organizations, boards of pri-
vate companies, and possibly even for empirical analysis and forecasting: sampling
errors in opinion poll data should matter less, for instance, when population shares
of the relevant groups fall into the middle of a big equivalence class of the applicable
election rule than for a boundary point.

Whether sensitivity of collective decisions to weight differences is (un)desirable
from an institutional perspective depends on context and objectives. Higher sensi-
tivity can give bigger incentives for parties to campaign or for investment into voting
stock. However, this needs to be weighed against other properties of the applicable
voting methods. Links between the weight distribution and decisions are just one
aspect of voting among many – but one that matters beyond binary options.

14Illustrations of their geometry for s2 starting at 0.05 and increasing in steps of 0.05 until s2 = 0.95
are provided in Appendix C. Some reminded us of paintings, e.g., by Bauhaus artists Paul Klee and
Johannes Itten.
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4.7 Appendix A
Proofs

Proof of Lemma 4.1

Consider w , 0 ∈ Nn
0 and the unanimous profile P = (P, . . . ,P) ∈ P(A)n with

a2Pa3P . . .PamPa1. Then r|0(P) = a1 but r|w(P) = a2 for any r ∈ {rA, rB, rC, rP
}.

Proof of Proposition 4.1

For A = {a1, a2} and arbitrary fixed w , 0 ∈Nn
0

r|w(P) =


a2 if

∑
i : a2Pia1

wi >
∑

j : a1P ja2

w j,

a1 otherwise

for any r ∈ {rA, rB, rC, rP
}. So antiplurality, Borda, Copeland and plurality rule are

equivalent and hence have the same equivalence classes.

Proof of Proposition 4.2

Define w(T) :=
∑

i∈T wi for T ⊆ N. If w(S) ≥ w(N r S) then rP
|w(P) = a1 and v(S) = 1.

If w(S) < w(N r S) then rP
|w(P) = a2 and v(S) = 0. Proposition 4.1 extends this to

r ∈ {rA, rB, rC
}.

Proof of Proposition 4.3

For a given set of alternatives A = {a1, . . . , am} and any subset A′ ⊆ A that preserves
the order of the alternatives, we denote the projection of preference profile P ∈ P(A)n

to A′ by P ↓A′ with ak Pi ↓A′ al :⇔ [akPial and ak, al ∈ A′]. For instance, for P =

(a1a2a3, a3a1a2, a2a3a1) and A′ = {a1, a3} we have P↓A′= (a1a3, a3a1, a3a1). Conversely, if
A′ ⊇ A is a superset of A with A′ r A = {am+1, . . . , am′} we define the lifting P↑A′ of
P ∈ P(A)n to A′ by appending alternatives am+1, . . . , am′ to each ordering Pi below
the lowest-ranked alternative from A. That is, for P = (a1a2a3, a3a1a2, a2a3a1) and
A′ = {a1, a2, a3, a4} we have P ↑A′= (a1a2a3a4, a3a1a2a4, a2a3a1a4). We let ρ or r refer
to whole families of mappings and, for instance, write ρ(P) = ρ(P↓A′) if the same
alternative a∗ ∈ A′ ⊂ A happens to win for both A and the smaller set A′.
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Now consider A = {a1, . . . , am} for m > 2 and any w,w′ ∈ Nn
0 such that (rC,w) /m

(rC,w′). So there exists P ∈ P(A)n with rC
|w(P) , rC

|w′(P). The w and w′-weighted
versions of the majority relation differ at P: if all pairwise comparisons produced the
same winners for weights w and w′, identical Copeland winners would follow. So a
weak victory of some ak over some al for w turns into a strict victory of al over ak for
w′, i.e., ∑

i : akPial

wi ≥

∑
j : alP jak

w j and
∑

i : akPial

w′i <
∑

j : alP jak

w′j. (4.1)

Then take A′ = {ak, al} ⊂ A where |A′| = 2 and projection P↓A′ . (4.1) implies∑
i : ak Pi↓A′ al

wi ≥

∑
j : al P j↓A′ ak

w j and
∑

i : ak Pi↓A′ al

w′i <
∑

j : al P j↓A′ ak

w′j.

If both inequalities are strict or k < l then rC
|w(P↓A′) = ak , rC

|w′(P↓A′) = al and
hence (rC,w) /2 (rC,w′). If not, al wins also for w by lexicographic tie breaking but
we can consider profile P′ ∈ P(A′)n with alP′iak ⇔ akPi ↓A′ al for all i ∈ N. Then
rC
|w(P′) = al , rC

|w′(P′) = ak and (rC,w) /2 (rC,w′).
Conversely take A = {a1, a2} and w,w′ ∈ Nn

0 such that (rC,w) /2 (rC,w′) and
rC
|w(P) = a1 , rC

|w′(P) = a2 for some P ∈ P(A)n. Then∑
i : a1Pia2

wi ≥

∑
j : a2P ja1

w j and
∑

i : a1Pia2

w′i <
∑

j : a2P ja1

w′j. (4.2)

Consider A′ = {a1, a2, . . . , am} ⊃ A where |A′| = m and lifting P↑A′ . (4.2) implies∑
i : a1 Pi↑A′a2

wi ≥

∑
j : a2 P j↑A′a1

w j and
∑

i : a1 Pi↑A′a2

w′i <
∑

j : a2 P j↑A′a1

w′j

and alternatives a3, . . . , am lose all weighted majority comparisons against a1 and a2

by construction of P↑A′ . So rC
|w(P↑A′) = a1 , rC

|w′(P↑A′) = a2. Hence (rC,w) /m

(rC,w′). In summary, (rC,w) /2 (rC,w′)⇔ (rC,w) /m (rC,w′) and, a fortiori, (rC,w) ∼2

(rC,w′)⇔ (rC,w) ∼m (rC,w′).
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Proof of Proposition 4.4

Let m > n. Consider A = {a1, . . . , am} and any w,w′ ∈Nn
0 such that (rP,w) /m (rP,w′).

So there exists P ∈ P(A)n with rP
|w(P) = ak , rP

|w′(P) = al. For this P let

Â :=
{
a | ∃i ∈ N : ∀a′ , a : aPia′

}
denote the set of all alternatives that are top-ranked by some voter. (Obviously,
ak, al ∈ Â.) Now define A′ ⊂ A as the union of Â and some arbitrary elements of Ar Â
such that |A′| = n. By construction, each a ∈ A′ has the same weighted number of
top positions for projection P↓A′ as it had for P. So rP

|w(P↓A′) = ak , rP
|w′(P↓A′) = al.

Hence (rP,w) /n (rP,w′).
Analogously, consider A = {a1, . . . , an} and w,w′ ∈Nn

0 such that (rP,w) /n (rP,w′).
A profile P ∈ P(A)n with rP

|w(P) = ak , rP
|w′(P) = al can then be lifted to A′ =

A∪{an+1, . . . , am}. By construction, rP
|w(P↑A′) = ak , rP

|w′(P↑A′) = al. Hence (rP,w) /m

(rP,w′). Overall, we can conclude (rP,w) ∼m (rP,w′)⇔ (rP,w) ∼n (rP,w′).

Proof of Proposition 4.5

Let k > j for otherwise arbitrary j, k ∈ {1, . . . ,m}. Consider A = {a1, . . . , am} and
any profile P ∈ P(A)n such that player 1 prefers a2 most and ranks all remaining
alternatives lexicographically while player 2 ranks a2 in k-th position and other-
wise agrees with player 1, i.e., suppose a2 P1 a1 P1 a3 P1 a4 . . . am and a1 P2 a3 P2 a4 . . .

ak P2 a2 P2 ak+1 P2 ak+2 . . . am.

The Borda score j·(m−2)+(m−1) of a1 under w̃j is at least as big as the corresponding
score j·(m−1)+(m−k) of a2. Since scores of a3, . . . , am are all strictly smaller than that of
a1, we have rB

|w̃j(P) = a1. With w̃k, by contrast, a1’s weighted score k · (m−2) + (m−1)
is strictly smaller than a2’s corresponding score k · (m−1) + (m− k). Scores of a3, . . . , am

remain smaller than a1’s. So rB
|w̃k(P) = a2. Hence (rB, w̃j) /m (rB, w̃k).

Proof of Proposition 4.6

The claim is obvious for n = 1, as each non-degenerate weight then is equivalent to
w1 = 1. So consider m ≥ n + 1 for n ≥ 2. Let A = {a1, . . . , am} and Pi

∈ P(A)n be any
preference profile where the first i players rank alternative a1 last and the remaining
n − i players rank alternative a2 last. Consider any w̄k and w̄l with k < l. Then
rA
|w̄k(Pk) = a2 , rA

|w̄l(Pk) = a3. So ErA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄n,m all differ.
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Now assume some w ∈ Nn
0 r {0} with w1 ≥ w2 ≥ . . . ≥ wn satisfies (rA,w) /m

(rA, w̄k) for all k ∈ {1, . . . ,n}. Let l denote the index such that wl > 0 and wl+1 = 0.
Then both rA

|w(P) and rA
|w̄l(P) equal the lexicographically minimal element in set

Zl(P) :=
{
a ∈ A | ∀i ∈ {1, . . . , l} : ∃a′ ∈ A : aPia′

}
that collects all alternatives not ranked last by any of the players who have positive
weight. These coincide for w and w̄l; and Zl(P) is non-empty because m ≥ n + 1. This
holds for arbitrary P ∈ P(A)n. Hence rA

|w ≡ rA
|w̄l, contradicting the assumption that

(rA,w) /m (rA, w̄k) for all k ∈ {1, . . . ,n}. Consequently, ErA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄n,m are all
antiplurality classes that exist for m ≥ n + 1 (plus the degenerate E0,m).
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4.8 Appendix B
Minimal Representations of Committees

n,m Minimal w̄ for all antiplurality classes ErA

w̄,m

3, 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)
2. (1,1,0) 4. (2,1,1)

3,m ≥ 4 1. (1,0,0) 2. (1,1,0) 3. (1,1,1)

4, 3 1. (1,0,0,0) 6. (2,1,1,1) 11. (3,2,2,1) 16. (4,3,2,2)
2. (1,1,0,0) 7. (2,2,1,0) 12. (3,3,1,1) 17. (4,4,2,1)
3. (1,1,1,0) 8. (2,2,1,1) 13. (3,3,2,1) 18. (4,4,3,2)
4. (1,1,1,1) 9. (2,2,2,1) 14. (3,3,2,2) 19. (5,4,3,2)
5. (2,1,1,0) 10. (3,2,1,1) 15. (4,3,2,1)

4, 4 1. (1,0,0,0) 3. (1,1,1,0) 5. (2,1,1,1) 7. (2,2,2,1)
2. (1,1,0,0) 4. (1,1,1,1) 6. (2,2,1,1)

4,m ≥ 5 1. (1,0,0,0) 2. (1,1,0,0) 3. (1,1,1,0) 4. (1,1,1,1)

Table 4.5 Minimal representations of different antiplurality committees

n,m Minimal w̄ for all Borda classes ErB

w̄,3

3, 3 1. (1,0,0) 14. (3,3,2) 27. (5,4,3) 40. (8,6,3)
2. (1,1,0) 15. (4,3,1) 28. (7,4,1) 41. (9,6,2)
3. (1,1,1) 16. (5,2,1) 29. (6,5,2) 42. (8,7,3)
4. (2,1,0) 17. (4,3,2) 30. (7,5,1) 43. (8,6,5)
5. (2,1,1) 18. (5,2,2) 31. (6,5,3) 44. (10,7,2)
6. (2,2,1) 19. (5,3,1) 32. (7,5,2) 45. (11,7,2)
7. (3,1,1) 20. (4,3,3) 33. (8,5,1) 46. (9,7,5)
8. (3,2,0) 21. (5,4,1) 34. (6,5,4) 47. (10,8,3)
9. (3,2,1) 22. (6,3,1) 35. (7,5,3) 48. (11,8,2)

10. (4,1,1) 23. (5,3,3) 36. (7,6,2) 49. (11,9,3)
11. (3,2,2) 24. (5,4,2) 37. (8,5,2) 50. (13,8,2)
12. (3,3,1) 25. (6,4,1) 38. (7,5,4) 51. (12,9,7)
13. (4,2,1) 26. (7,2,2) 39. (7,6,4)

Table 4.6 Minimal representations of different Borda committees
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n Minimal w̄ for all Copeland classes ErC

w̄,m

and for all classes Er
w̄,2 when r ∈

{
rA, rB, rP

}
and for all weighted voting games [q; w] with q = 0.5

∑
wi

3 1. (1,0,0) 2. (1,1,0) 3. (1,1,1) 4. (2,1,1)

4 1. (1,0,0,0) 4. (1,1,1,1) 7. (2,2,1,1)
2. (1,1,0,0) 5. (2,1,1,0) 8. (3,1,1,1)
3. (1,1,1,0) 6. (2,1,1,1) 9. (3,2,2,1)

5 1. (1,0,0,0,0) 8. (2,1,1,1,1) 15. (3,2,2,1,0) 22. (4,3,2,2,1)
2. (1,1,0,0,0) 9. (2,2,1,1,0) 16. (4,1,1,1,1) 23. (4,3,3,1,1)
3. (1,1,1,0,0) 10. (3,1,1,1,0) 17. (3,2,2,1,1) 24. (5,2,2,2,1)
4. (1,1,1,1,0) 11. (2,2,1,1,1) 18. (3,2,2,2,1) 25. (4,3,3,2,2)
5. (2,1,1,0,0) 12. (3,1,1,1,1) 19. (3,3,2,1,1) 26. (5,3,3,2,1)
6. (1,1,1,1,1) 13. (2,2,2,1,1) 20. (4,2,2,1,1) 27. (5,4,3,2,2)
7. (2,1,1,1,0) 14. (3,2,1,1,1) 21. (3,3,2,2,2)

6 see next page . . .



4.8. Appendix B: Minimal Representations of Committees 81

5 . . . see previous page

6 1. (1,0,0,0,0,0) 36. (3,2,2,2,2,1) 71. (5,4,3,2,1,1) 106. (5,5,4,3,3,2)
2. (1,1,0,0,0,0) 37. (3,3,2,2,1,1) 72. (5,4,3,2,2,0) 107. (6,4,4,3,3,2)
3. (1,1,1,0,0,0) 38. (3,3,2,2,2,0) 73. (5,4,4,1,1,1) 108. (6,5,4,3,2,2)
4. (1,1,1,1,0,0) 39. (3,3,3,1,1,1) 74. (6,3,2,2,2,1) 109. (6,5,4,3,3,1)
5. (2,1,1,0,0,0) 40. (4,2,2,2,1,1) 75. (6,3,3,2,1,1) 110. (6,5,5,2,2,2)
6. (1,1,1,1,1,0) 41. (4,3,2,1,1,1) 76. (7,2,2,2,2,1) 111. (7,4,4,3,2,2)
7. (2,1,1,1,0,0) 42. (4,3,2,2,1,0) 77. (5,4,3,2,2,1) 112. (7,5,3,3,2,2)
8. (1,1,1,1,1,1) 43. (4,3,3,1,1,0) 78. (4,4,3,3,2,2) 113. (7,5,4,3,2,1)
9. (2,1,1,1,1,0) 44. (5,2,2,1,1,1) 79. (4,4,3,3,3,1) 114. (7,5,5,2,2,1)

10. (2,2,1,1,0,0) 45. (5,2,2,2,1,0) 80. (5,3,3,3,2,2) 115. (8,4,3,3,2,2)
11. (3,1,1,1,0,0) 46. (3,3,2,2,2,1) 81. (5,4,3,2,2,2) 116. (6,5,4,4,3,2)
12. (2,1,1,1,1,1) 47. (4,3,2,2,1,1) 82. (5,4,3,3,2,1) 117. (6,5,5,3,3,2)
13. (2,2,1,1,1,0) 48. (4,3,3,1,1,1) 83. (5,4,4,2,2,1) 118. (7,5,4,3,3,2)
14. (3,1,1,1,1,0) 49. (5,2,2,2,1,1) 84. (5,5,3,2,2,1) 119. (7,5,4,4,2,2)
15. (2,2,1,1,1,1) 50. (3,3,2,2,2,2) 85. (6,3,3,2,2,2) 120. (7,5,5,3,3,1)
16. (2,2,2,1,1,0) 51. (3,3,3,2,2,1) 86. (6,4,3,2,2,1) 121. (7,6,4,3,2,2)
17. (3,1,1,1,1,1) 52. (4,3,2,2,2,1) 87. (6,4,3,3,1,1) 122. (7,6,4,3,3,1)
18. (3,2,1,1,1,0) 53. (4,3,3,2,1,1) 88. (6,4,4,2,1,1) 123. (7,6,5,2,2,2)
19. (3,2,2,1,0,0) 54. (4,3,3,2,2,0) 89. (7,3,3,2,2,1) 124. (8,5,4,3,2,2)
20. (4,1,1,1,1,0) 55. (4,4,2,2,1,1) 90. (7,3,3,3,1,1) 125. (8,5,5,3,2,1)
21. (2,2,2,1,1,1) 56. (4,4,3,1,1,1) 91. (5,4,3,3,3,2) 126. (9,4,4,3,2,2)
22. (3,2,1,1,1,1) 57. (5,2,2,2,2,1) 92. (5,4,4,3,2,2) 127. (7,5,5,4,3,2)
23. (3,2,2,1,1,0) 58. (5,3,2,2,1,1) 93. (5,4,4,3,3,1) 128. (7,6,5,3,3,2)
24. (4,1,1,1,1,1) 59. (5,3,3,1,1,1) 94. (5,5,3,3,3,1) 129. (8,5,5,4,2,2)
25. (2,2,2,2,1,1) 60. (5,3,3,2,1,0) 95. (5,5,4,2,2,2) 130. (8,6,4,3,3,2)
26. (3,2,2,1,1,1) 61. (6,2,2,2,1,1) 96. (6,4,3,3,2,2) 131. (8,6,5,3,3,1)
27. (3,2,2,2,1,0) 62. (4,3,3,2,2,1) 97. (6,4,4,3,2,1) 132. (9,5,5,3,2,2)
28. (3,3,1,1,1,1) 63. (5,3,3,2,1,1) 98. (6,5,3,2,2,2) 133. (7,6,5,4,4,2)
29. (3,3,2,1,1,0) 64. (4,3,3,2,2,2) 99. (6,5,3,3,2,1) 134. (8,6,5,4,3,2)
30. (4,2,1,1,1,1) 65. (4,3,3,3,2,1) 100. (6,5,4,2,2,1) 135. (8,7,5,3,3,2)
31. (4,2,2,1,1,0) 66. (4,4,3,2,2,1) 101. (7,3,3,3,2,2) 136. (9,6,5,4,2,2)
32. (5,1,1,1,1,1) 67. (5,3,2,2,2,2) 102. (7,4,3,2,2,2) 137. (9,7,5,4,3,2)
33. (3,2,2,2,1,1) 68. (5,3,3,2,2,1) 103. (7,4,4,2,2,1) 138. (9,7,6,4,4,2)
34. (3,3,2,1,1,1) 69. (5,3,3,3,1,1) 104. (7,4,4,3,1,1)
35. (4,2,2,1,1,1) 70. (5,4,2,2,2,1) 105. (8,3,3,3,2,1)

Table 4.7 Minimal representation of different Copeland committees for m ≥ 2,
and of different antiplurality, Borda and plurality committees for m = 2,
and of different weighted voting games with a simple majority
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n,m Minimal w̄ for all plurality classes ErP

w̄,m

3,m ≥ 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)
2. (1,1,0) 4. (2,1,1) 6. (3,2,2)

4, 3 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,3,1)
2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,2)
3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (6,4,3,2)
4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (6,5,3,2)
5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,5,4,2)
6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (7,4,4,2)
7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (7,6,4,2)
8. (2,2,1,1) 17. (4,2,2,1) 26. (5,3,3,2)
9. (3,1,1,1) 18. (3,3,2,2) 27. (5,4,2,2)

4,m ≥ 4 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,2,2)
2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,1)
3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (5,4,3,2)
4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (5,4,4,2)
5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,4,3,2)
6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (6,5,3,2)
7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (6,5,4,2)
8. (2,2,1,1) 17. (4,2,2,1) 26. (4,4,3,2) 35. (7,4,4,2)
9. (3,1,1,1) 18. (3,3,2,2) 27. (5,3,3,2) 36. (7,6,4,2)

Table 4.8 Minimal representations of different plurality committees
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4.9 Appendix C
Geometry of General Scoring Rules for m = 3
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s=0.05

1 2

3

Figure 4.8 At least 162 equivalence classes for s2 = 0.05

s=0.1

1 2

3

Figure 4.9 At least 163 equivalence classes for s2 = 0.10
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s=0.15
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3

Figure 4.10 At least 162 equivalence classes for s2 = 0.15

s=0.2
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3

Figure 4.11 At least 163 equivalence classes for s2 = 0.20
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s=0.25
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3

Figure 4.12 At least 163 equivalence classes for s2 = 0.25

s=0.3
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3

Figure 4.13 At least 154 equivalence classes for s2 = 0.30
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s=0.35
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3

Figure 4.14 At least 146 equivalence classes for s2 = 0.35

s=0.4
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Figure 4.15 At least 147 equivalence classes for s2 = 0.40
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s=0.45
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Figure 4.16 At least 146 equivalence classes for s2 = 0.45
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Figure 4.17 At least 216 equivalence classes for s2 = 0.55
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Figure 4.18 At least 216 equivalence classes for s2 = 0.60
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Figure 4.19 At least 216 equivalence classes for s2 = 0.65
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Figure 4.20 At least 220 equivalence classes for s2 = 0.70
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Figure 4.21 At least 211 equivalence classes for s2 = 0.75
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Figure 4.22 At least 217 equivalence classes for s2 = 0.80
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Figure 4.23 At least 228 equivalence classes for s2 = 0.85
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Figure 4.24 At least 229 equivalence classes for s2 = 0.90

s=0.95
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Figure 4.25 At least 228 equivalence classes for s2 = 0.95



Chapter 5

Influence in Weighted Committee Games

The aggregation of individual preference orderings to a collective choice is a nec-
essary element of business, politics, and beyond. Members of a board, council, or
committee are rarely aware of how sensitive their collective decision is to the adopted
aggregation rule. Consider, for illustration, a city council with 14 members who need
to fill the position of the city manager with a job candidate from set A = {a, b, c, d, e}.
Suppose the committee members are divided into three groups with homogeneous
preferences: 6 from the mayor’s party (group 1), 5 from the main opposition party
(group 2), and 3 independents (group 3). Assume that the preferences of the groups
can be described as follows (from top rank to bottom):

Group 1 Group 2 Group 3
a b c
d c e
e d d
c e b
b a a

Table 5.1 Preferences in the city council example

Suppose members of the council are constrained to voting sincerely or lack the
information about each other’s preferences to make strategic voting worthwhile. If
then everybody votes for his or her highest ranked candidate, a is the winner under
standard plurality voting. However, no candidate secures a 50 %-majority. So the
committee might do a runoff between the two candidates with most votes, a and b.
Such a plurality with runoff procedure is used, e.g., for selecting the French president.
Then candidate b wins. Alternatively, the committee might conduct pairwise votes
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between all candidates. In this case, c emerges as the so-called Condorcet winner: it
gets a majority against every other candidate. The committee might also apply the
Borda rule: each voter gives 0 points to his or her lowest-ranked candidate, 1 point
to the second-lowest, 2 points to the third-lowest, etc. Candidate d’s total score is 34
and the highest; so then d would be hired. Yet another prominent procedure, known
as approval voting, can make e the winner.

The lesson of this example is: be careful when you adopt a particular aggregation
method in a committee. The outcome may not only depend on preferences but can be
highly sensitive to the voting procedure. If the largest group wants to get its favored
candidate, it should try to impose plurality rule. While, for the configuration at hand,
the smallest group should, e.g., have argued for doing pairwise comparisons.

This chapter investigates whether such recommendations are also possible with-
out the benefit of hindsight, i.e., when preferences of the committee members are not
yet known. Can anything be said a priori about which groups benefit or suffer if a
specific voting rule is adopted? Knowing only the partition of a committee into dif-
ferently sized groups and possibly the number of considered alternatives, are there
robust reasons to prefer a scoring method, like Borda’s rule, over binary comparisons
à la Condorcet, or a runoff procedure if you belong to a particular group?

Answers will arguably depend on which metric is used for evaluating different
aggregation rules. Seeking success in the sense of obtaining outcomes that are, on
average, ranked highly by the group may have different implications from seeking
influence in the sense of outcomes being, on average, very sensitive to potential
perturbations of the group’s preferences. Influence, i.e., the expected effect of a
group’s preferences on the collective decision is the focus of this chapter. It has a
long tradition of being studied with the help of voting power indices.1 These – most
prominently the Penrose-Banzhaf index (Penrose 1946; Banzhaf 1965) and the Shapley-
Shubik index (Shapley and Shubik 1954) – are usually defined for binary decision
environments. Binary weighted voting games have received wide attention since von
Neumann and Morgenstern (1953, Ch. 10) first formalized them. See, e.g., Mann
and Shapley (1962), Riker and Shapley (1968), Owen (1975) or Brams (1978) for
classical contributions and, more recently, Barberà and Jackson (2006), Felsenthal
and Machover (2013), Koriyama et al. (2013).

The key contribution of this chapter is to extend the pertinent methods from
weighted voting on binary options to several, practically relevant decision proce-

1The terms “influence” and “power” are often used as synonyms in the literature.
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dures for three or more alternatives. We make, to the best of our knowledge, the first
attempt to compare the power implications of adopting, say, Borda rule vs. doing
pairwise comparisons vs. having a sequential runoff.

We rely on the formalization of weighted committee decisions by Kurz, Mayer,
and Napel (2018) in our analysis (cf. Chapter 4). They define a weighted committee
game as a combination of a set N of players, a set A of alternatives, a vector w
of voting weights and an anonymous aggregation method r (such as Borda rule,
plurality rule, etc.) We will briefly review the suggested framework in Section 5.2.2.
Their analysis focuses on the structural investigation of the corresponding games:
identifying equivalences and minimal representations analogous to those known
for binary simple games and weighted voting games (see, e.g., Houy and Zwicker
2014 or Freixas et al. 2017). We focus on measuring influence in weighted committee
games and try to evaluate voting rules for multiple alternatives from a given player’s
power perspective.

Power evaluations of different voting procedures complement comparisons in
social choice theory that investigate properties like Condorcet efficiency, various
monotonicity and no-show paradoxes, or manipulability (see, e.g., Nurmi 1987 and
Felsenthal and Nurmi 2017, 2018). Our findings pertain to shareholders’ meetings of
corporations, where voting weights reflect participants’ shareholdings, as well as to
various types of boards with a regional or divisional structure, where voting weights
reflect seat numbers of voter blocs.

The Executive Board of the International Monetary Fund (IMF) can be considered
as a prominent example of weighted committee voting. At the urging of emerging
market economies, voting weights among the 24 Directors as well as rules for the
choice of the IMF’s Managing Director were reformed in 2016. The Managing Director
was historically always a European selected by consensus with the US, but things
shall be more competitive in the future. The winner will be adopted from a shortlist of
at most three candidates by “a majority of the votes cast” (IMF Press Release 2016/19).
There is scope to interpret the provision, since the IMF has not officially defined yet
what “majority” refers to in case of more than two candidates. We consider several
possibilities in Section 5.4 and investigate (i) if the reform of the voting weights makes
real rather than only a cosmetic difference and (ii) whether the choice of the voting
rule (i.e., the interpretation of the term “majority”) can have practical relevance in
the next election.

We focus on five standard single-winner procedures: plurality, plurality runoff,
Borda, Copeland and Schulze rule (cf. Section 5.2.1). For a given voting rule and



96 Chapter 5. Influence in Weighted Committee Games

partition of a committee, the a priori voting power of group i is quantified as the ex-
pected sensitivity of the outcome to changes in this group’s strict preference ordering.
We determine whether the outcome at a given preference profile would change in
response to a change of group i’s preferences. The latter might be a spontaneous
change of mind or brought about by a well-endowed lobbyist. We evaluate the aver-
age sensitivity of the outcome with respect to preference perturbations at any given
profile assuming all conceivable profiles of preferences to be equally likely (just as
the Penrose-Banzhaf index for binary alternatives). A formal definition is given in
Section 5.3 and illustrated with a toy example. In Section 5.4, we apply the new
measure to the IMF Executive Board.

Extensive comparisons of the indicated rules show how group sizes and voting
procedures jointly determine the distribution of influence between large, medium
and small groups of voters for m ≥ 3 alternatives. We identify tentative “rules of
thumb” regarding the beneficiaries of particular voting rules (cf. Section 5.5). Though
our influence measure coincides with the Penrose-Banzhaf index for m = 2, it is in
general unwarranted to infer the balance of power for decisions on three or more
alternatives from standard measures of binary voting power.

5.1 Related Literature

Power index analysis provides analytical tools that quantify how a decision rule
allocates influence over the collective decision to the respective players. Although
many decisions involve more than two alternatives, most of the analysis of voting
power has focused on the binary case. The latter is usually modeled as a simple or
weighted voting game. The literature is surveyed, e.g., in Felsenthal and Machover
(1998), Laruelle and Valenciano (2008) and Napel (2018).

Since many real-world committee decisions allow for more than two elements in
the input and output domain, the standard dichotomous framework is restrictive.
Even for simple “yes” or “no” decisions, voters usually have more than just two
options. For example, they can abstain or not even participate in a vote or election.
This has been formalized by means of ternary voting games (Felsenthal and Machover
1997a, Tchantcho et al. 2008, Parker 2012) with the option to support a proposal,
to reject it, or to abstain; and by quaternary voting games (Laruelle and Valenciano
2012) with the additional option not to participate in a ballot. Moreover, players
could also be allowed to express different intensities of support: so-called ( j, k)-
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games, introduced by Hsiao and Raghavan (1993) and Freixas and Zwicker (2003,
2009), give each player the possibility to express one of j ordered levels of approval.
The resulting j-partitions of players are mapped to one of k ordered output levels.
(3, 2)-games correspond to ternary voting games; (4, 2)-games are quaternary voting
games for which abstention and absence have an ordered impact on passage of a
proposal.2 Power indices for ( j, k)-games were introduced by Freixas (2005a, 2005b).
A general framework for quantifying influence in settings with richer than binary
actions, and therefore involving strategic considerations, has been proposed by Napel
and Widgrén (2004).

The linear orderings of all players’ actions and of the feasible outcomes required
by ( j, k)-games are naturally given in many applications. For instance, school or
university committees who have to agree on distinctions and discrete grades may be
modeled as ( j, k)-games; so do committees which decide on the scale or intensity of
a specific policy intervention. The assumption of ordered actions and outcomes is,
however, problematic when options have multidimensional attributes – for instance,
if a job applicant, policy program, location of a facility, etc. is to be selected. Pertinent
extensions of simple games, along with corresponding power measures, have been
introduced as multicandidate voting games by Bolger (1986) and taken up as simple
r-games by Amer et al. (1998) and as weighted plurality games by Chua et al. (2002).
They allow each player to vote for a single candidate. This results in partitions of
player set N which, in contrast to ( j, k)-games, are mapped to a winning candidate
without ordering restrictions.

A second branch of the literature we connect to is the vulnerability of voting
systems to strategic behavior. Ever since Gibbard’s (1973) and Satterthwaite’s (1975)
seminal work, it is well-known that every surjective, resolute and non-dictatorial so-
cial choice function defined on the universal domain must be manipulable. Although
this is damaging to the view that the outcome of a vote should reflect “the will of the
people”, one has to put it into context. Every reasonable social choice function gives
rise to at least one preference profile at which individual strategic misrepresentation
is possible; but the Gibbard-Satterthwaite theorem does not say anything on the
prevalence of manipulation possibilities. If the proportion of manipulable profiles is
low, strategic voting might be of little concern.

This has led to the investigation of the rule-specific extent of manipulability. A

2The requirement of a player-independent ordering for the distinct individual inputs to the deci-
sion mechanism is not satisfied for all quaternary voting games, i.e., that class of games is a superset
of the class of (4, 2)-games.
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first straightforward approach is to simply count the number of profiles at which at
least one voter can successfully manipulate. This has been done in computational
studies by, e.g., Nitzan (1985) and Kelly (1993).

A relative of our power index has already featured in Nitzan’s work. He looked
at the aggregate sensitivity of anonymous scoring rules before investigating op-
portunities for strategic misrepresentation. Nitzan checked if the outcome can be
affected by some individual preference variation, i.e., a change in preferences that is
not necessarily driven by strategic concerns but just by some naive changes in the
decision-making process. The key difference to our measure of influence is that we
consider the effect of a given voter’s preferences on outcomes. We thus obtain a mea-
sure of each voter’s a priori influence at the individual level while Nitzan’s analysis
concerned the aggregate level, i.e., addresses the question how likely the voting rule
is sensitive to some voter’s preference variation.

Several extensions of Nitzan’s approach have been proposed (see Aleskerov and
Kurbanov 1999 or Smith 1999). Instead of just enumerating the manipulable profiles,
one can count the number of voters who can manipulate on average; or determine
the average improvement – in terms of ranks – due to successful strategic misrepre-
sentation at a given profile; or determine the highest possible improvement; etc.

5.2 Preliminaries

5.2.1 Anonymous Voting Rules

We consider finite sets N = {1, . . . ,n} of n players or voters such that each voter i ∈ N
has strict preferences Pi over a set A = {a1, . . . , am} of m ≥ 2 alternatives. We will write
abc in abbreviation of aPibPic. The set of all m! strict preference orderings on A is
denoted by P(A). A (resolute) voting rule r : P(A)n

→ A maps each preference profile
P = (P1, . . . ,Pn) to a single winning alternative a∗ = r(P).

Throughout our analysis r will be defined by truthful voting.3 We will consider
the following five anonymous rules that treat all voters i ∈ N symmetrically:4

3Our assumption of truthful voting might, e.g., be justified by players being political agents to
principals (constituents) that value truth telling. There is also experimental evidence that players
often lack or ignore the information required to make manipulation profitable (cf. Kube and Puppe
2009). Even if they are aware of the other voters’ preferences, they might face a hard (NP-complete)
problem in identifying profitable deviations. See Nurmi (2016).

4Formally, construct P′ by applying a permutation π : N → N to P, so that P′ = (Pπ(1), . . . ,Pπ(n)).
Then r is anonymous if for all such P, P′ the winning alternative a∗ = r(P) = r(P′) is the same.
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Plurality

The most simple voting method is plurality rule rP: each voter endorses his or her
top-ranked alternative; then the alternative which is ranked first by the most voters
is chosen. That is, a∗ = rP(P) implies

a∗ ∈ arg max
a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣. (5.1)

Plurality Runoff

Similarly, plurality runoff rule rPR asks each voter to name his or her top ranked
alternative. If an alternative is ranked first by more than half of the voters, it is
chosen. Otherwise a runoff is held between the alternatives a(1) and a(2) which are
lexicographically minimal among the alternatives that received the (second-)most
votes. Formally, conceive of a(1), a(2), . . . , a(m) as a permutation of the alternatives in A
such that they are ordered according to decreasing numbers of votes and, in case of
ties, in decreasing lexicographic order.

Then, a∗ = rPR(P) implies

a∗ ∈


arg max

a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣ if max

a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣ > n

2

arg max
a∈{a(1),a(2)}

∣∣∣{i ∈ N | ∀a′ , a ∈ {a(1), a(2)} : aPia′}
∣∣∣ otherwise.

(5.2)

Borda

Our third benchmark is Borda rule rB. It requires each voter i to give m − 1, m − 2,
. . . , 0 points to the alternative that is ranked first, second, . . . , and last according to
Pi. Then it selects the alternative with the highest total number of points (known as
Borda score). Formally, let

bi(a,P) :=
∣∣∣{a′ ∈ A | aPia′}

∣∣∣
be the number of alternatives ranked below a according to i’s preferences. Then
a∗ = rB(P) implies

a∗ ∈ arg max
a∈A

∑
i∈N

bi(a,P). (5.3)
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Copeland

The fourth benchmark is Copeland rule rC. Pairwise majority votes are held between
all alternatives; the alternative that beats the most others is selected. Formally, let the
majority relation �P

M be defined by

a �P
M a′ :⇔

∣∣∣{i ∈ N | aPia′}
∣∣∣ > ∣∣∣{i ∈ N | a′Pia}

∣∣∣.
Then a∗ = rC(P) implies

a∗ ∈ arg max
a∈A

∣∣∣{a′ ∈ A | a �P
M a′}

∣∣∣. (5.4)

Rule rC is a Condorcet method: if some alternative a is a Condorcet winner, i.e., beats
all others in pairwise majority comparisons, then rC(P) = a.

Schulze

A fairly recent voting method is Schulze rule rS, as introduced by Schulze (2011). It is
also a Condorcet method and based on indirect comparisons of alternatives ai and a j

by defining a path ai→j := a(1), . . . , a(k) from ai to a j with the following properties:

1. a(1) = ai

2. a(k) = a j

3. For all i = 1, . . . , (k − 1) : a(i) �P
M a(i + 1)

Every alternative a(i) in the sequence a(1), . . . , a(k) wins the binary comparison against
its successor a(i + 1). The strength s(ai→j) of a path ai→j = a(1), . . . , a(k) is defined as the
strength of its weakest link, i.e.,

s(ai→j) := min
{
d[a(i), a(i + 1)] | i = 1, . . . , (k − 1)

}
where d[a(i), a(i + 1)] =

∣∣∣{i ∈ N | a(i) Pi a(i + 1)}
∣∣∣. The strength of the strongest path from

ai to a j is then

p[ai, a j] := max
{
s(ai→j) | ai→j is a path from ai to a j

}
.

That is, one calculates the strength of every possible path from ai to a j and then selects
the path with the highest strength. If there is no path from ai to a j, p[ai, a j] := 0.
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Thus, a∗ = rS(P) implies

a∗ ∈
{
a ∈ A | p[a, a′] ≥ p[a′, a] ∀ a′ , a ∈ A

}
. (5.5)

Several private organizations adopted the Schulze rule for internal elections in
recent years. Among them are the Pirate Parties of Austria, Germany and Sweden,
Debian, Ubunto and the Wikimedia Foundation. We remark that the Schulze method
is closely related to the Simpson-Kramer rule, which is also known as maximin rule.5

We assume that whenever there is a non-singleton set A∗ = {a∗i1 , . . . , a
∗

ik
} of optimiz-

ers in eqs. (5.1)–(5.5), the alternative a∗i∗ ∈ A∗ with lowest index i∗ = min{i1, . . . , ik} is
selected. This amounts to lexicographic tie breaking for A ⊂ {a, . . . , z, aa, ab, . . .}.

5.2.2 Weighted Committee Games

Real committees are more likely than not to involve a non-anonymous voting rule.
This can be because designated members like a chairperson or agenda-setter have
veto rights or procedural privileges. Or an anonymous decision rule r applies not
at the voter level but at the level of their respective votes, shareholdings, etc. We
could also think of the relevant players i ∈ N in a committee to be differently sized
but well-disciplined parties or interest groups with homogeneous preferences. It is
then obvious that the introduction of voting weights implies non-anonymity at the
level of voter blocks – even if the utilized voting rule is anonymous at the level of
individual voters.

Single voters who differ in their numbers of votes and homogeneous groups of
voters are formally equivalent: the committee’s voting rule amounts to the combina-
tion of an anonymous baseline voting rule r with voting weights w1, . . . ,wn associated to
the relevant players.

Following Chapter 4, we conceive of a rule r as representing the entire associated
family of mappings from n-tuples of strict preferences over A = {a1, . . . , am} to a
winner a∗ ∈ A for arbitrary n. Then, the indicated combination is simply a replication
operation. It defines the weighted voting rule r|w : P(A)wΣ → A by

r|w(P) := r(P1, . . . ,P1︸     ︷︷     ︸
w1 times

,P2, . . . ,P2︸     ︷︷     ︸
w2 times

, . . . ,Pn, . . . ,Pn︸     ︷︷     ︸
wn times

)

5For m = 3, the Schulze winner and the Simpson-Kramer winner are identical; for larger m they
coincide in about 99 % of all instances. These small differences notwithstanding, the Schulze rule fixes
the most common flaws of the Simpson-Kramer rule. See Schulze (2011) for an elaborate discussion.
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for a given anonymous rule r and a non-negative, non-degenerate weight vector
w = (w1, . . . ,wn) ∈ Nn

0 with wΣ :=
∑n

i=1 wi > 0. Moreover, we assume that r|0(P) := a1

in the degenerate case w = (0, . . . , 0).
The combination (N,A, r|w) of a set of voters, a set of alternatives and a particular

weighted voting rule is called a weighted committee game. Such games were introduced
and their structure was extensively studied in Chapter 4.

When the underlying anonymous rule is plurality rule rP, we call (N,A, rP
|w)

a (weighted) plurality committee. Similarly, (N,A, rPR
|w), (N,A, rB

|w), (N,A, rC
|w) and

(N,A, rS
|w) are respectively referred to as a plurality runoff committee, Borda committee,

Copeland committee, and Schulze committee.
Weighted representations of given committee games are far from unique. For

instance consider the weighted plurality committee (N,A, rP
|w). Since having more

than half of the total voting weight renders player j a dictator, all weighted committee
games (N,A, rP

|w) with w ∈ E =
{
w ∈ Nn

0 | w j >
∑

i, j wi

}
are equivalent. That is,

rP
|w(P) = rP

|w′(P) for all P ∈ P(A)n and all w,w′ ∈ E.
In general, two weighted committee games (N,A, r|w) and (N′,A′, r′|w′) are equiv-

alent if N = N′, A = A′, and r , r′ or w , w′ but the respective mappings from
preference profiles to outcomes a∗ are the same; that is, when r|w(P) = r′|w′(P) for all
P ∈ P(A)n. Chapter 4 investigates situations where r = r′ and tries to capture struc-
tural equivalence in the general sense that (N,A, r|w) and (N′,A′, r|w′) reflect the same
decision environment even though weights and labels of players or alternatives may
differ.6 For instance, it turns out that when n = 3 voter groups decide on m = 3 alter-
natives with Borda rule, one can distinguish 51 equivalence classes of committees,
i.e., families of weights or group sizes that induce the same mapping from preference
profiles to outcomes; in contrast, there are only 4 classes for binary voting. There
are also just 4 with Copeland rule for m = 3: either the largest group has dictatorial
power, the largest two share power equally, or all three share power either equally
or with an advantage to the largest.

We here take N, A and the distribution of voting weights w as given and seek to
identify the implications of choosing r ∈ {rP, rPR, rB, rC, rS

} on players’ possibilities to
influence the outcome. To do so, we first try to quantify influence on the outcome in
a suitable way.

6In particular this means that, e.g., the three games (N,A, r|w) with w ∈
{
(6, 5, 3), (5, 3, 6), (3, 6, 5)

}
are treated as equivalent. Although they obviously differ from the perspectives of players 1, 2 and 3,
they do not from the perspective of the large, medium and small player, i.e., the decision environment
stays the same.
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5.3 Measuring Influence in Weighted Committee Games

5.3.1 General Idea

The basic idea is to operationalize power of group i with weight wi under rule r as the
expected sensitivity of r|w(P) to changes of Pi. We assume that all groups’ preferences
are drawn independently from the uniform distribution over P(A), i.e., all profiles P
are equally likely.7 Then we allow Pi to switch to arbitrary P′i , Pi ∈ P(A) and check
if this changes the outcome. A different outcome will result only at some profiles P
and for a few of the m!−1 orderings P′i to which group i’s preferences might possibly
switch. But the more often r|w(P) is sensitive to Pi, the greater is group i’s a priori
influence on the outcome.8

A preference variation might directly reflect a change in individual tastes. Alter-
natively, such variations could reflect intentional preference misrepresentation aris-
ing, e.g., because a lobbyist might have successfully bribed voters. Such variations
might also be the result of mistakes occurring in some stage of the decision-making
procedure. Or a voter gets new last-minute information, positive or negative, about
one of the candidates. The more influential the voter is, the more likely are such
variations to affect the voting outcome.

Formally, sensitivity of outcome r|w(P) at profile P = (P1, . . . ,Pi−1,Pi,Pi+1, . . . ,Pn)
with respect to a change in player i’s preference ordering from Pi to P′i is captured by
indicator function

∆r|w(P,P′) =

1 if r|w(P) , r|w(P′)

0 if r|w(P) = r|w(P′)

where P′ = (P1, . . . ,Pi−1,P′i ,Pi+1, . . . ,Pn). The average sensitivity of outcome r|w(P) at
profile P with respect all m! − 1 possible preference perturbations of player i is then
given by 1

(m!−1)

∑
P′i,Pi∈P(A) ∆r|w(P,P′).

Averaging this over all (m!)n conceivable preference profiles, we get a measure of

7This probabilistic assumption about preferences is also known as the Impartial Culture framework.
Although we are aware of its limited empirical support (see, e.g., Regenwetter et al. 2012, Ch. 1), we
take it as a starting point and will consider more restrictive assumptions like single-peakedness in
future research.

8One could also be more restrictive and only consider local preference variations, that is, only
allow for changes to adjacent orderings. So when m = 3 and Pi = abc, voter i might only be allowed to
switch to P′i = acb and P′′i = bac. This affects our findings on influence in moderate quantitative ways
but results in very similar qualitative findings.
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player i’s a priori influence – i.e., evaluated at a stage when own and others’ preferences
are not yet known – in the weighted committee game (N,A, r|w), denoted by

Îi(r|w) =

∑
P∈P(A)n

∑
P′i,Pi∈P(A) ∆r|w(P,P′)

(m! − 1)(m!)n , i ∈ N.

This measure equals the probability that a change of player i’s preferences from Pi

to a random P′i , Pi at a randomly drawn profile P affects the outcome. For example,
Îi(r|w) = 0.5 means that 50 % of player i’s preference variations change the outcome,
treating all profiles and all variations as equally likely.
Îi(r|w) is zero if player i is a null player. It is smaller than one for all non-

null players (i.e., even for a dictator). In particular, the expected sensitivity of the
outcome at a given profile P with respect to a dictator’s preference perturbations
equals (m! − (m − 1)!)/(m! − 1). The intuition behind this is straightforward: for a
dictator, the (m−1)!−1 preference perturbations that leave the top-choice unchanged
cannot have an effect on the outcome for any Pareto-efficient voting rule like the rules
considered here. So from the m! − 1 orderings different from a given Pi, this leaves
m!− (m− 1)! alternative orderings that will alter the outcome under dictatorship. We
therefore propose

Ii(r|w) =
Îi(r|w)

(m! − (m − 1)!)/(m! − 1)
, i ∈ N

as a dictator-normalized measure of player i’s a priori influence in game (N,A, r|w).
This normalization destroys the probabilistic interpretation of Îi(r|w). It rather gives
an intuitive assessment of how close player i is to being a dictator (and how far from
being a null player). A value of Ii(r|w) = 0.5, for instance, means that i’s influence
on outcomes is halfway between that of a null player and a dictator. In other words,
the probability to affect the outcome with a random last-minute change of mind is
50 % that of a dictator.

5.3.2 Relationship to the Penrose-Banzhaf Index

Before we illustrate analysis based on I(r|w) with a simple example in Section 5.3.3,
it is worth pointing out that our non-normalized measure Î(r|w) coincides with the
well-known Penrose-Banzhaf index in case of m = 2. To see this, first note that our
rules rP, rPR, rB, rC and rS are equivalent for m = 2, i.e., they always select the same
winning alternative. See Proposition 4.1 in this thesis; the argument immediately
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extends to plurality runoff and Schulze rule. Also note that for m = 2, every player
has just one preference variation and the number of coalitions in the theory of simple
voting games equals the number of profiles in our setting.

Specifically, in the binary case, weighted committee games reduce to simple or
weighted voting games, which are a special case of cooperative games (N, v). Instead
of working with voting rule r, one considers the coalitional function v : 2N

→ {0, 1}
such that v(S) = 1 if 1 Pi 0 for all i ∈ S implies r(P) = 1. A coalition S is referred
to as winning if v(S) = 1 and as losing if v(S) = 0. One usually denotes the set of
winning coalitions byW and the set of losing coalitions by L. If i < S and S ∈ L but
S ∪ {i} ∈ W, player i is called critical outside S. Similarly, player i is critical inside S if
i ∈ S and S ∈ W but S \ {i} ∈ L.

A simple voting game (N, v) is called weighted voting game if it can be represented
by a set of non-negative weights w = (w1, . . . ,wn) and a positive quota q such that
v(S) = 1 if and only if

∑
i∈S wi ≥ q. One then writes [q; w] interchangeably with (N, v),

i.e., (N, v) = [q; w].

There is a plethora of power indices for simple simple games. One of the most
popular is the Penrose-Banzhaf index (PBI) defined by

PBIi(v) =
1

2n−1

∑
S⊆N\{i}

[v(S ∪ {i}) − v(S)], i ∈ N.

The PBI considers all coalitions S ⊆ N \ {i} and counts how often player i is critical
outside S, denoted by η−i =

∑
S⊆N\{i}[v(S∪ {i})− v(S)]. Equivalently, one could consider

all coalitions S ⊆ N with i ∈ S and count the number of coalitions for which i is critical
inside, denoted by η+

i =
∑

S⊆N,i∈S[v(S) − v(S \ {i})].

Chapter 4 (Proposition 4.2) already showed that weighted committee games with
m = 2 are in bijection to weighted voting games [q; w] with a 50 %-majority quota,
i.e., r|w(P) = a1 ⇔ v(S) = 1 where A = {a1, a2} and S = {i ∈ N | a1 Pi a2} ⊆ N is the set of
players who prefer a1 at profile P ∈ P(A)n.

With this at hand, it is easy to see that in the binary case, our non-normalized
influence measure coincides with the PBI applied to the respective weighted voting
game with a 50 %-majority quota. While the PBI considers S ⊆ N \ {i} and identifies
η−i (or S ⊆ N, i ∈ S and η+

i ), we consider all coalitions S ⊆ N (or, in our terminology,
profiles) and count both η−i and η+

i . Since η−i = η+
i , we have that∑

P′i,Pi∈P(A)

∆r|w(P,P′) = 2 ·
∑
S⊆N

[v(S ∪ {i}) − v(S)], i ∈ N
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where S = { j ∈ N | a1 P j a2} ⊆ N is the set of players who prefer a1 at profile P ∈ P(A)n.9

For m = 2, using that (m!)n = 2 · 2(n−1), we get

Î(r|w) = PBI(N, v)

with r ∈ {rP, rPR, rB, rC, rS
} and (N, v) = [ 1

2wΣ; w].10

5.3.3 Illustration

To illustrate the use of our power index, consider again the city council example with
N = {1,2,3} and voting weights of 6, 5, and 3. For the ease of exposition, assume
that A = {a, b, c} and let the committee decide by Borda rule. The corresponding
weighted Borda committee is then given by (N,A, rB

|(6, 5, 3)). Consider the following
preference profile P:

P1 P2 P3

b a c
c b b
a c a

Table 5.2 Preference profile P in the city council example

Table 5.3 shows the Borda scores at P for weights (6, 5, 3):

a b c
Group 1 0 12 6
Group 2 10 5 0
Group 3 0 3 6
Result 10 20 12

Table 5.3 Calculation of rB
|(6, 5, 3)(P)

Thus rB
|(6, 5, 3)(P) = b with a score of 20.

Let us now check how changes in the preferences of group 1 affect, ceteris
paribus, the voting outcome. Preferences can change from P1 = bca to any P′1 ∈

9It is feasible to sum over all S ⊆ N on the right hand side of above eq. since S ∪ {i} = S if i ∈ S.
10The same applies to the PBI for weighted voting games with q =

∑
wi/2 + ε for small ε > 0.

Weighted voting games [q; w] and [q′; w] with quota q =
∑

wi/2 and q′ = q + ε for small ε > 0 are
duals of each other, i.e., the set of winning coalitions in one game is the set of blocking coalitions in the
other. The PBI satisfies the so-called duality property, i.e., PBIi[q; w] = PBIi[q′; w] for i ∈ N. See, e.g.,
Felsenthal and Machover (1998, Ch. 2 and 3) or Taylor and Zwicker (1999, Ch. 1).
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{abc, acb, bac, cab, cba}. The respective points associated with the new Borda winner
rB
|(6, 5, 3)(P′) are printed in bold in Table 5.4. If the change from P1 to P′1 results in a

new winner, i.e., rB
|(6, 5, 3)(P′) , rB

|(6, 5, 3)(P), the score is marked with an asterisk.
Four out of five perturbations of P1 at P change the outcome.

P′1 a b c
abc 22* 14 6
acb 22* 8 12
bac 16 20 6
cab 16 8 18*
cba 10 14 18*

Table 5.4 Effects of changes of group 1’s preferences from P1 = bca to P′1

Repeating above procedure for the members of group 2 (change of P2 = abc
to any P′2 ∈ {acb, bac, bca, cab, cba}) and group 3 (change of P3 = cba to any P′3 ∈
{abc, acb, bac, bca, cab}), we get the results as reported in Tables 5.5 and 5.6.

P′2 a b c
acb 10 15 17*
bac 5 25 12
bca 0 25 17
cab 5 15 22*
cba 0 20 22*

Table 5.5 Effects of changes of group 2’s preferences from P2 = abc to P′2

P′3 a b c
abc 16 20 6
acb 16 17 9
bac 13 23 6
bca 10 23 9
cab 13 17 12

Table 5.6 Effects of changes of group 3’s preferences from P3 = cba to P′3

It becomes clear that the members of group 1 have, at the considered profile P,
more say than the other two groups. Only three out of five perturbations of P2 affect
the outcome. The members of group 3 have no influence at P: there is no P′3 that
alters the outcome.
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Repeating the above procedure for all profiles P ∈ P(A)n, the expected (dictator-
normalized) influences evaluate to

I(rB
|(6, 5, 3)) ≈ (0.6806, 0.5972, 0.3611).

Table 5.7 reports the results of doing the same exercise for all of the five considered
voting rules and up to five alternatives. If the large group can decide on the voting
rule before knowing anything about own and others’ preferences, they should insist
on Borda rule if m = 3 and plurality rule if m ∈ {4, 5}. For the medium-sized and small
group it is even easier. For any m ∈ {3, 4, 5} the latter should argue for Copeland rule
and the former for Borda rule if they seek as much influence on the voting outcome
as possible.

The distribution of influence under plurality rule tends to (1, 0, 0) as m→ ∞: the
proportion of profiles at which players 2 and 3 have the same candidate top-ranked
goes to zero as m → ∞. At all other profiles, player 1 is as influential as a dictator.
Consequently, the probability that the outcome is as sensitive to player 1 as it would
be under a dictatorship goes to 1.

Let us remark that for m = 2, the weight distribution (6, 5, 3) translates into equal
influence of 0.5 for all three groups: it is easy to see that any two players could then
jointly implement their preferred alternative – independently of the voting rule.11

In contrast, the distribution of votes and the choice of the voting rule matter for
outcomes and the distribution of influence for m > 2.

5.4 Application: International Monetary Fund

The previous section illustrated our approach of measuring the a priori power dis-
tribution for committee decisions on more than two alternatives with a toy example.
We now go one step further and apply it to a real-world committee. In particular
we are going to evaluate the IMF’s recent reform of voting weights as well as the
reform of the selection process for its Managing Director. The power distribution in
the IMF has been investigated with binary power index analysis several times. See,
e.g., Leech (2002, 2003), Aleskerov et al. (2008), or Leech and Leech (2013).

11Recall that all our considered voting rules are equivalent for m = 2.
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Ii(r|(6, 5, 3)) m = 3 m = 4 m = 5
rP

I1 0.6667 0.7500 0.8000
I2 0.4444 0.3750 0.3200
I3 0.4444 0.3750 0.3200

rPR
I1 0.5556 0.5833 0.6000
I2 0.5556 0.5833 0.6000
I3 0.5000 0.5000 0.5000

rB
I1 0.6806 0.7372 0.7631
I2 0.5972 0.6246 0.6462
I3 0.3611 0.3644 0.3839

rC
I1 0.5509 0.5851 0.6098
I2 0.5509 0.5851 0.6098
I3 0.5509 0.5851 0.6098

rS
I1 0.5972 0.6584 0.7011
I2 0.5278 0.5426 0.5515
I3 0.5278 0.5426 0.5515

Table 5.7 I(r|(6, 5, 3)) for m ∈ {3, 4, 5} and r ∈ {rP, rPR, rB, rC, rS
}

5.4.1 Institutional Background

The International Monetary Fund dates back to 1944 when the Articles of Agreement
of the IMF were adopted at the United Nations conference in Bretton Woods. Back
then, the primary goal of the Fund was to further economic cooperation in order
to prevent disparities in the global economy like the ones that contributed to the
Great Depression and the major worldwide economic turndown in the 1930s. Ac-
cording to its own account, the IMF’s goal nowadays is to ensure the stability of the
international financial architecture, to resolve crises, to promote sustainable growth
and macroeconomic stability and to reduce poverty. See IMF (2018a) for a detailed
overview about the IMF’s goals and main tools for carrying out its mandate.

The two main decision bodies of the IMF are the Board of Governors and the
Executive Board. The former has delegated most of its powers to the latter and only
remains responsible for general decisions like the allocation of special drawing rights
or the admittance of new members. We will therefore focus on the Executive Board
in the following.

The Executive Board consists of 24 Executive Directors. Six of them are elected
by the countries with the largest quota. That is, USA, China, Japan, Germany, France
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and the UK. They each have their own Director. The remaining 183 countries are
grouped into eighteen constituencies that represent at least four countries. Every
constituency elects its own Director to represent the interests of the group members.

The IMF uses a weighted voting system in which a member’s voting weight is
based on its financial contribution to the Fund (measured in special drawing rights).
Each Executive Director that represents a single country can cast as many votes as
was allotted to his or her state.12 Directors that represent a group of countries can
cast as many votes en bloc as their group has in total. See IMF (2018b) for how the
IMF is partitioned into the 24 groups. A list of the corresponding voting weights for
every country is available upon request.

5.4.2 IMF Voting Weights Reform 2016

The IMF’s governance structure today still largely reflects the world at the end of
World War II, when it was established. In particular, high-income countries like
the USA, Japan, Germany, France and the UK have a solid majority and can thus
effectively run the organization. Low- and middle-income countries hardly have
significant say. Emerging market economies like China and India have raised this
issue repeatedly and keep seeking more influence for the developing world in the
global financial architecture.

Therefore, there have been several pushes to reform the governance structure of
the IMF. First, the so-called Singapore reforms of 2006 increased China’s vote share
from 2.9 % to 3.6 % and that of the BRIC countries plus Mexico from 10.1 % to 11.1 %.
The most recent reform was agreed in 2010 and has started to be implemented in
2016. A significant percentage of vote shares is shifting from the USA and European
countries to emerging and developing countries.13 For instance, China’s vote share
went up to 6.1 % (compared to 3.8 % before). India’s share increased to 2.6 % (2.3 %),
Russia’s to 2.6 % (2.4 %), Brazil’s to 2.2 % (1.7 %) and Mexico’s to 1.8 % (1.5 %). This
brings India and Brazil into the list of the top ten IMF members in terms of vote
shares.

In addition to reforming voting weights, the IMF also changed the selection pro-
cess for its Managing Director. Prior to the reform, the process was quite intranspar-
ent and criticized as undemocratic: the Managing Director always was a European

12Each member gets one vote for every 100 000 special drawing rights plus a fixed amount of basic
votes.

13The voting share of the USA still dwarfs all other members. The USA were nevertheless one of
the last countries to ratify the reform.
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selected by consensus with the USA. In contrast, the new process is advertised as
“open, merit based, and transparent” (IMF Press Release 16/19). Every Governor or
Executive Director may nominate a candidate. If the number of nominees exceeds
three, the Executive Board draws up a shortlist of three candidates. From this list,
the new Managing Director will be selected “by a majority of the votes cast” by
the Executive Board. What “majority” exactly means if the number of candidates
exceeds two leaves room for interpretation.

We take this as an opportunity to apply our approach of measuring influence
in weighted committee games. We take it to be reasonable to interpret the new
selection requirement as (i) receiving the most votes (plurality rule). However, one
could also read the declaration as demanding (ii) a two-candidate runoff if nobody
gets an outright majority (plurality runoff rule). Another conceivable interpretation
would be to ask (iii) the winner to secure the highest number of pairwise majority
wins against the other two competitors (Copeland rule).

5.4.3 Influence in the IMF Executive Board

We, first, seek to identify if recent changes of the distribution of IMF drawing rights,
hence votes, can make a difference in future voting practice and, second, to test
if different interpretations of the selection process matter for the distribution of
influence in the IMF Executive Board. Since the large number of preference profiles
(624) prevents a direct calculation of I(r|w), our results are based on Monte Carlo
simulation. Table 5.8 reports the estimated influence numbers; respective 95 %-
confidence intervals are provided in Appendix A (Tables 5.9 to 5.11).

As one can immediately see from the influence numbers reported in Table 5.8, the
aim of increasing the voting power of emerging market economies by the 2016 reform
was achieved: higher vote shares translate into more influence in the Executive
Board.14 This is independent of which voting rule interpretation (i)–(iii) we consider.
The rise in influence is particularly pronounced for China, with an increase by more
than 50 %. Other emerging market economies also have a greater say than before the
2016 reform. The influence of the groups that include Brazil and Turkey increased by
about 17 % and 11 %, respectively; that of the Indonesian group by about 10 %; and
Russia and the Indian and Spanish group (that, e.g., includes Mexico) each gained
about 9 %. Intended or not, many African countries are among the greatest losers:
the South African group lost about 10 % of its influence. The greatest loser, however,

14We remark that this also holds for m = 2.
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Vote share (%) I(rP
|w) I(rPR

|w) I(rC
|w)

wpre wpost wpre wpost wpre wpost wpre wpost

USA 16.72 16.55 0.7121 0.7048 0.6735 0.6669 0.6875 0.6807
Japan 6.22 6.16 0.1986 0.1988 0.2239 0.2234 0.2164 0.2159
China 3.80 6.10 0.1216 0.1966 0.1404 0.2210 0.1340 0.2159
Netherlands* 6.56 5.40 0.2092 0.1742 0.2350 0.1972 0.2277 0.1899
Germany 5.80 5.33 0.1851 0.1719 0.2097 0.1949 0.2023 0.1876
Spain* 4.90 5.30 0.1567 0.1711 0.1788 0.1939 0.1717 0.1865
Indonesia* 3.93 4.32 0.1254 0.1392 0.1448 0.1595 0.1381 0.1526
Italy* 4.22 4.12 0.1349 0.1331 0.1551 0.1529 0.1483 0.1461
France 4.28 4.04 0.1370 0.1305 0.1575 0.1499 0.1507 0.1432
United Kingdom 4.28 4.04 0.1370 0.1303 0.1574 0.1499 0.1506 0.1431
Korea* 3.62 3.89 0.1158 0.1257 0.1340 0.1445 0.1277 0.1380
Canada* 3.59 3.36 0.1150 0.1082 0.1332 0.1255 0.1268 0.1194
Sweden* 3.39 3.27 0.1085 0.1056 0.1259 0.1224 0.1198 0.1164
Turkey* 2.91 3.21 0.0933 0.1037 0.1087 0.1203 0.1031 0.1143
Utd. Arab Emirates* 3.21 3.09 0.1027 0.0998 0.1195 0.1159 0.1134 0.1101
Brazil* 2.61 3.05 0.0835 0.0984 0.0979 0.1144 0.0927 0.1087
India* 2.80 3.05 0.0897 0.0984 0.1048 0.1145 0.0993 0.1087
South Africa* 3.41 3.04 0.1091 0.0981 0.1267 0.1141 0.1205 0.1083
Switzerland* 2.80 2.73 0.0896 0.0883 0.1047 0.1030 0.0992 0.0976
Russian Federation 2.39 2.60 0.0763 0.0838 0.0896 0.0979 0.0847 0.0926
Iran* 2.26 2.19 0.0722 0.0707 0.0851 0.0831 0.0804 0.0785
Saudi Arabia 2.80 2.02 0.0896 0.0650 0.1047 0.0766 0.0992 0.0723
Argentina* 1.84 1.58 0.0587 0.0511 0.0695 0.0603 0.0655 0.0567
Dem. Rep. Congo* 1.46 1.57 0.0466 0.0505 0.0554 0.0598 0.0520 0.0562

Table 5.8 Distribution of influence in the IMF Executive Board (N,A, r|w) before (wpre) and
after implementation of the 2016 reform (wpost) under plurality, plurality runoff
and Copeland rule for m = 3. Member states that represent a group of members are
marked by an asterisk. We selected the largest member of each group to represent
the group. The pre-reform scenario does not include Nauru, which joined the IMF
in April 2016.
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is Saudi Arabia with a decrease in a priori voting power of about 27 %. Among the
European countries, Germany, France and UK each lose between 5 % and 7 %. The
USA remain largely unaffected and lose only about 1 % of their influence.

Table 5.8 also shows whether adopting one or the other of the possible interpreta-
tions of the selection process for the Managing Director makes a difference. It turns
out that they really differ for countries’ chances to influence the outcome. There is
a simple pattern: while the USA should prefer plurality rule over both Copeland
and plurality runoff rule, it is the opposite for all other (groups of) countries. They
all have more influence under plurality runoff rule than under Copeland rule than
under plurality rule. This is in line with our findings from Section 5.3.3: if three
alternatives are on the table, the largest group should push for plurality rule while
medium and small groups are better off under plurality runoff rule and Copeland
rule.

5.5 Towards a More General Comparison

The examples provided in the previous sections compared voting rules for a specific
weight distribution. It is worthwhile to check whether observations such as the
largest group benefitting from plurality rule or the smallest from Copeland rule, can
be generalized. Can recommendations still be given if – in addition to individual
preferences – the exact distribution of voting weights is unknown yet? Ideally, we
would like to move beyond isolated examples and identify possible general biases of
the considered rules for, say, large or small shareholders in a corporation, delegation
of big or small size in a representative body, etc.

As a first step in this direction, we make use of the geometric approach proposed
in Chapter 4, where all structurally distinct weighted committee games for n =

3 players were illustrated. In each of the subsequent triangles (Figure 5.2, and
Figures 5.4 to 5.11 in Appendix B) we compare two voting rules. Similar to Chapter 4,
the points in our triangles correspond to voting weight distributions. We use the
standard projection of the 3-dimensional unit simplex of relative weights to the plane,
illustrated in Figure 5.1. The weight axes are suppressed in subsequent figures.
The color choices indicate which voting rule gives greater influence to player 1.
Figure 5.2, e.g., compares Borda and plurality rule. Weight distributions colored in
green indicate that player 1 has more influence under Borda rule than under plurality
rule. For weight distributions colored in red it is the other way round. Distributions
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for which player 1 has equal influence under both rules are colored in yellow. We
thus partition all non-degenerate weight distributions w ∈ N3

0 into three categories:
green areas indicate that player 1 should go for Borda rule and red areas that he
should insist on plurality rule (assuming a procedural decision between the two).
Yellow areas come with identical influence for player 1 under either rule. Similar
interpretations apply to all other binary comparisons in Figures 5.4 to 5.11 provided
in Appendix B.

2
1

w1 w2

w3

100 %

100 %

100 %

3

Figure 5.1 Simplex of all distributions of relative voting weights for n = 3

Since the outcome under Borda rule is known to be highly sensitive to changes
in the weight distribution (cf. Figures 4.5–4.7 in Chapter 4), we use different in-
tensities of red and green in comparisons that involve Borda rule. Darker tones of
green in Figure 5.2 and Figures 5.4 to 5.7 indicate a larger influence advantage for
Borda, respectively, than lighter tones of green. Similarly, darker red indicates a
more pronounced advantage for the respective other rule over Borda rule. For all
comparisons not involving Borda, we stick to a simple partition in green, red and
yellow; these rules are much less sensitive to changes in the weight distribution.15

Note that visibility of the color indications is restricted to areas instead of isolated
points or line segments.

15Corresponding pictures with different – compared to Borda rule much less variable – color
intensities are available upon request.
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5.5.1 Illustration: Borda Rule versus Plurality Rule

Let us illustrate some of the inferences that can be drawn from the comparison of
Borda vs. plurality committees in Figure 5.2.16 We focus on generic cases where
w1 , w2 , w3.

Borda vs.	Plurality m=3

1 2

3

1a

1b

2a

2b

3

4

4

5

5

6

6

2a

2b

Figure 5.2 Borda vs. plurality for m = 3. Regions colored in (green/yellow/red) indicate that
Borda influence is (greater than/equal to/smaller than) plurality influence

Assume you are player 1 and you can impose either Borda rule or plurality
rule at a constitutional stage at which the committee is set up and endowed with
procedural rules; later committee decisions will be about selecting a winner from
three candidates. If your objective is to have the greatest possible influence, then the
following “rules of thumb” might be useful:

• You should impose plurality rule if you will later have a majority of votes
(region 1): either Borda rule and plurality rule both give you equal influence
(in case you are a plurality and a Borda dictator in region 1a); or plurality
rule is strictly better (in case you have more than half but at most two thirds

16We highlighted “key” areas for the analysis. The same figure without numbering these areas is
again provided in Appendix B (Figure 5.4).
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of total votes in region 1b).17

• By similar reasoning, you should go for Borda rule if one of the other two
players will have a majority (regions 2a and 2b).

• If nobody will wield a majority but you will at least have a plurality, then it is
safe to go for Borda rule in most cases (region 3). The only exception are two
small red triangles in region 3. They indicate situations in which players’
weights are relatively similar and exactly one of the other two players has
more than one third of total votes (e.g. player 2 for w = (35, 34, 31)).

• If you know that you will only be the second largest player but have more
than one third of total votes (and nobody has a majority), then you should
impose Borda rule (region 4).

• If you know that you will be the smallest player and the other two each have
more than one third of total voting weight, plurality rule gives you more
influence (region 5).

• The remaining case involves one other player and you each having less than
one third of total votes (region 6). Then it depends: if all three players are
relatively close to each other, Borda rule gives you greater influence a priori;
if, however, the largest player’s share is close to 50 %, then you should better
pick plurality rule.

5.5.2 Further Comparisons

Similar reasoning also applies to all other comparisons. The corresponding figures
are provided in Appendix B. For comparisons not involving Borda rule, things are
rather simple. For instance, when plurality rule is compared to either Copeland,
plurality runoff, or Schulze rule (Figure 5.8), the recommendation always is the
same: you should impose plurality rule if you have the most votes. If someone else
has the most votes, you are better off under the respective other rule (you are either
equally influential, or the respective other rule makes you more influential).

The same applies to Copeland rule versus Schulze rule (Figure 5.9). If you wield
at least a plurality of votes, Schulze rule entails greater influence than Copeland; in
case someone else has the most votes, it is the opposite.

17While a player needs more than (m− 1)/m of total weight to be a Borda dictator, it is sufficient to
have more than 50 % to be a plurality dictator.
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Regarding Copeland rule versus plurality runoff rule (Figure 5.10), you would
always chose the former if you have at least the second-most votes; otherwise you
go for Copeland rule. If you can chose between plurality runoff rule and Schulze
rule (Figure 5.11), insist on Schulze rule if you are the largest or the smallest player;
otherwise it is better to install a plurality runoff rule.

5.5.3 The “Best” Voting Rule

We can summarize all ten binary influence comparisons of the five considered voting
rules in one picture. It indicates the “best” voting rule for any weight distribution,
i.e., the rule which maximizes the a priori influence of player 1 for a given weighted
committee game. We do so in Figure 5.3. Voting weight configurations of the same
color share the same influence-maximizing voting rule(s). Figure 5.3 provides a
“map” that reveals which of our five voting rules maximize the a priori influence of
player 1 on decisions over m = 3 alternatives for all different distributions of voting
weights. When areas correspond to line segments or single points in the simplex, we
have manually enlarged these in order to improve visibility.

1 2

3

Figure 5.3 A map of the influence maximizing voting rules for m = 3.
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5.6 Concluding Remarks

This chapter has proposed a framework for analyzing the a priori implications of
different voting rules for the influence (voting power) of homogeneous voter groups
that are differently sized or players who wield asymmetric voting weights in com-
mittees. For m > 2 alternatives, the distribution of influence depends not only on
vote shares but also on which of the various existing aggregation methods – from
simple plurality to complicated Schulze rule (among others) – are used. The existing
indices of binary voting power need to be complemented by power indices for three
or more alternatives. We provide one such index. It is based on evaluating whether
preference changes by an individual player translate into a change of the outcome.
The index rescales the probability that a random preference variation leads to an
outcome change such that a dictator player has a power of one and a null player a
power of zero (assuming preferences are independent and uniformly distributed a
priori).

Although the specific distribution of voting weights matters for players’ influence,
one can nevertheless infer some general “rules of thumb” on procedural biases by
considering all different weight distributions, at least for a small number of players.
For the five rules in our focus, except for Borda rule, this is surprisingly easy and
does not even require much knowledge of the exact distribution of voting weights.
That is, the indicated recommendations in Section 5.5 are quite robust with respect
to the specific distribution of weights. It gets more complicated when Borda rule is
part of the menu. But even then it is possible to derive comprehensible (if admittedly
less robust) recommendations.

Our results matter for the design of institutions and all committees whose deci-
sions are not restricted to purely binary choices. In Section 5.4 we showed that the
choice of the voting rule will indeed affect what individual members of the IMF’s
Executive Board can achieve if, e.g., it is to decide on three candidates for its next
Managing Director. Obviously, there is ample choice for analyzing other real-world
committees that use a weighted voting system and that have to choose, at least some-
times, between more than two alternatives. For instance, one could look at the newly
constituted FIFA Council and the FIFA Congress. Both consist of (more or less) ho-
mogeneous but differently sized groups, i.e., representatives from UEFA, CAF, AFC,
etc. It might be of interest to determine how much influence the election rules for the
next FIFA president or World Cup location give to the respective regions in order to
assess biases or attractiveness to outside influence.
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There is also ample choice of other single-winner rules that could be analyzed and
added to the influence map in Figure 5.3 (see, e.g., Aleskerov and Kurbanov 1999;
Nurmi 2006, Ch. 7; or Laslier 2012). Moreover, nothing in principle precludes similar
analysis for multi-winner rules (see, e.g., Elkind et al. 2017) and strategic voting
equilibria. A first step towards analysis of the latter might focus on single-peaked
preferences so as to exclude the complications of sophisticated voters (at least for
Condorcet consistent rules).

Our voting power analysis is inspired by that of Penrose, Banzhaf, Shapley and
others for the case of binary alternatives. It is therefore natural to ask whether there
are analogues in our setting to well-known normative benchmarks in the binary case
such as Penrose’s square root rule or the Shapley linear rule (see, e.g, Felsenthal and
Machover 1998, Ch. 3.4, for the former, and Kurz, Maaser, and Napel 2018 on the
latter). We leave this for future research.
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5.7 Appendix A
Confidence Intervals for the IMF Example

95 %-confidence interval 95 %-confidence interval
Ii(rP

|wpre) Ii(rP
|wpost)

USA [0.7119; 0.7124] [0.7046; 0.7051]
Japan [0.1983; 0.1988] [0.1986; 0.1990]
China [0.1214; 0.1218] [0.1964; 0.1969]
Netherlands* [0.2089; 0.2094] [0.1740; 0.1744]
Germany [0.1849; 0.1853] [0.1717; 0.1721]
Spain* [0.1565; 0.1569] [0.1709; 0.1713]
Indonesia* [0.1252; 0.1255] [0.1390; 0.1394]
Italy* [0.1347; 0.1351] [0.1329; 0.1333]
France [0.1368; 0.1372] [0.1303; 0.1307]
United Kingdom [0.1368; 0.1372] [0.1301; 0.1305]
Korea* [0.1156; 0.1160] [0.1255; 0.1259]
Canada* [0.1148; 0.1152] [0.1081; 0.1084]
Sweden* [0.1084; 0.1087] [0.1055; 0.1058]
Turkey* [0.0931; 0.0934] [0.1035; 0.1039]
Utd. Arab Emirates* [0.1025; 0.1028] [0.0997; 0.1000]
Brazil* [0.0833; 0.0836] [0.0982; 0.0986]
India* [0.0895; 0.0898] [0.0983; 0.0986]
South Africa* [0.1089; 0,1092] [0.0980; 0.0983]
Switzerland* [0.0895; 0.0898] [0.0882; 0.0885]
Russian Federation [0.0761; 0.0764] [0.0837; 0.0840]
Iran* [0.0721; 0.0724] [0.0705; 0.0708]
Saudi Arabia [0.0894; 0.0897] [0.0649; 0.0652]
Argentina* [0.0586; 0.0588] [0.0510; 0.0512]
Dem. Rep. Congo* [0.0465; 0.0467] [0.0504; 0.0506]

Table 5.9 95 %-confidence intervals for Monte-Carlo estimations of Ii(rP
|wpre) and

Ii(rP
|wpost)
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95 %-confidence interval 95 %-confidence interval
Ii(rPR

|wpre) Ii(rPR
|wpost)

USA [0.6732; 0.6737] [0.6667; 0.6671]
Japan [0.2237; 0.2241] [0.2231; 0.2236]
China [0.1402; 0.1406] [0.2208; 0.2213]
Netherlands* [0.2348; 0.2353] [0.1970; 0.1974]
Germany [0.2095; 0.2100] [0.1947; 0.1952]
Spain* [0.1786; 0.1790] [0.1937; 0.1941]
Indonesia* [0.1446; 0.1450] [0.1593; 0.1597]
Italy* [0.1549; 0.1553] [0.1527; 0.1531]
France [0.1573; 0.1577] [0.1497; 0.1501]
United Kingdom [0.1572; 0.1576] [0.1497; 0.1501]
Korea* [0.1338; 0.1342] [0.1443; 0.1447]
Canada* [0.1330; 0.1333] [0.1253; 0.1256]
Sweden* [0.1257; 0.1261] [0.1223; 0.1226]
Turkey* [0.1085; 0.1089] [0.1201; 0.1204]
Utd. Arab Emirates* [0.1193; 0.1196] [0.1158; 0.1161]
Brazil* [0.0977; 0.0981] [0.1142; 0.1146]
India* [0.1046; 0.1049] [0.1143; 0.1146]
South Africa* [0.1265; 0.1268] [0.1139; 0.1142]
Switzerland* [0.1045; 0.1049] [0.1029; 0.1032]
Russian Federation [0.0894; 0.0897] [0.0977; 0.0980]
Iran* [0.0849; 0.0852] [0.0830; 0.0833]
Saudi Arabia [0.1045; 0.1048] [0.0765; 0.0768]
Argentina* [0.0693; 0.0696] [0.0602; 0.0605]
Dem. Rep. Congo* [0.0553; 0.0556] [0.0597; 0.0599]

Table 5.10 95 %-confidence intervals for Monte-Carlo estimations of Ii(rPR
|wpre) and

Ii(rPR
|wpost)
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95 %-confidence interval 95 %-confidence interval
Ii(rC

|wpre) Ii(rC
|wpost)

USA [0.6873; 0.6877] [0.6804; 0.6809]
Japan [0.2162; 0.2166] [0.2157; 0.2162]
China [0.1338; 0.1342] [0.2134; 0.2139]
Netherlands* [0.2275; 0.2279] [0.1897; 0.1901]
Germany [0.2021; 0.2026] [0.1874; 0.1878]
Spain* [0.1715; 0.1719] [0.1863; 0.1867]
Indonesia* [0.1379; 0.1383] [0.1524; 0.1528]
Italy* [0.1481; 0.1485] [0.1459; 0.1462]
France [0.1505; 0.1509] [0.1430; 0.1434]
United Kingdom [0.1504; 0.1508] [0.1429; 0.1433]
Korea* [0.1275; 0.1279] [0.1378; 0.1382]
Canada* [0.1267; 0.1270] [0.1192; 0.1195]
Sweden* [0.1197; 0.1200] [0.1163; 0.1166]
Turkey* [0.1030; 0.1033] [0.1141; 0.1145]
Utd. Arab Emirates* [0.1133; 0.1136] [0.1099; 0.1102]
Brazil* [0.0925; 0.0928] [0.1085; 0.1089]
India* [0.0991; 0.0995] [0.1086; 0.1089]
South Africa* [0.1204; 0.1207] [0.1081; 0.1085]
Switzerland* [0.0991; 0.0994] [0.0975; 0.0978]
Russian Federation [0.0846; 0.0849] [0.0925; 0.0928]
Iran* [0.0802; 0.0805] [0.0783; 0.0786]
Saudi Arabia [0.0991; 0.0994] [0.0721; 0.0724]
Argentina* [0.0653; 0.0656] [0.0566; 0.0568]
Dem. Rep. Congo* [0.0519; 0.0521] [0.0561; 0.0564]

Table 5.11 95 %-confidence intervals for Monte-Carlo estimations of Ii(rC
|wpre) and

Ii(rC
|wpost)
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Borda vs.	Plurality m=3

1 2

3

Figure 5.4 Borda vs. plurality

Borda vs.	Copeland	m=3

1 2

3

Figure 5.5 Borda vs. Copeland
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Borda vs.	PluralityR m=3

1 2

3

Figure 5.6 Borda vs. plurality runoff

Borda vs.	Schulze	m=3

1 2

3

Figure 5.7 Borda vs. Schulze
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Plurality vs.	Copeland	m=3

1 2

3

Figure 5.8 Plurality vs. plurality runoff, Copeland and Schulze

Copeland	vs.	Schulze	m=3

1 2

3

Figure 5.9 Copeland vs. Schulze
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Copeland	vs.	PluralityR m=3

1 2

3

Figure 5.10 Copeland vs. plurality runoff

PluralityR vs.	Schulze	m=3

1 2

3

Figure 5.11 Plurality runoff vs. Schulze
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