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Abstract

Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is

known about the spatial patterns of N and P in the organic layer of mountainous landscapes.

Therefore, the spatial distributions of N and P in both the organic layer and the A horizon

were analyzed using a light detection and ranging (LiDAR) digital elevation model and vege-

tation metrics. The objective of the study was to analyze the effect of vegetation and topog-

raphy on the spatial patterns of N and P in a small watershed covered by forest in South

Korea. Soil samples were collected using the conditioned latin hypercube method. LiDAR

vegetation metrics, the normalized difference vegetation index (NDVI), and terrain parame-

ters were derived as predictors. Spatial explicit predictions of N/P ratios were obtained using

a random forest with uncertainty analysis. We tested different strategies of model validation

(repeated 2-fold to 20-fold and leave-one-out cross validation). Repeated 10-fold cross vali-

dation was selected for model validation due to the comparatively high accuracy and low

variance of prediction. Surface curvature was the best predictor of P contents in the organic

layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important predic-

tors of N in the organic layer. N/P ratios increased with surface curvature and were higher

on the convex upper slope than on the concave lower slope. This was due to P enrichment

of the soil on the lower slope and a more even spatial distribution of N. Our digital soil maps

showed that the topsoils on the upper slopes contained relatively little P. These findings are

critical for understanding N and P dynamics in mountainous ecosystems.
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Introduction

Nitrogen (N) and phosphorus (P) are the most important nutrients for primary productivity

in terrestrial ecosystems [1,2]. Soil nutrient content varies during long-term soil development,

such that N increases while P declines during the course of pedogenesis. This is because N

enters the ecosystem via N-fixing microorganisms, whereas P is derived from the weathering

of minerals. As a result, primary productivity is initially N-limited in lightly weathered soils

but becomes increasingly P-limited in highly weathered soils over millions of years [3].

P limitation is enhanced by atmospheric N deposition [2,4]. In East Asia, where the popula-

tion and economy are growing rapidly, atmospheric N deposition is currently very high [5]. In

South Korea, atmospheric N inputs have rapidly increased due to large industrial operations

and agricultural intensification [6–8]. The annual average wet input of N ranged from 12.9 to

24.9 kg ha-1year-1 from 2005 to 2010 [6], and is markedly higher than that during pre-indus-

trial times. This might have effects on the productivity, biodiversity, and community composi-

tion of plants [9].

An understanding of nutrient contents in the organic layer is critical for mountainous eco-

system management. Organic layers are made up of freshly fallen organic matter, including

whole leaves, twigs, and fruits. Following mineralization of organic matter, the organic layer

slowly supplies nutrients, which are absorbed by plant roots [10]. Therefore, nutrients that are

returned to soil by litterfall are important for plant nutrition [11]. In particular, the N/P ratio

in topsoil is used as an indicator of potential growth limitation [12], and the spatial patterns of

nutrients in the organic layer and in the A horizon can provide insight into soil-vegetation

relationships.

Many studies have assessed spatial patterns of soil N [13–15] and P [16–18]. Previous stud-

ies on mountain ecosystems have found environmental correlations between the N contents in

the organic layer and topographic parameters in a temperate forested watershed [19] and in

boreal forests [20]. Wilcke et al. [21] reported an elevation gradient of decreasing N and P con-

tent in organic layers, and Soethe et al. [22] found that the N stocks of the organic layer differ

significantly between different elevations in tropical mountain forests. However, our under-

standing of quantitative relationships between the content of nutrients (especially P) in the

organic layer, topography, and vegetation is limited. In this regard, recent advances in digital

soil mapping (DSM) have allowed us to improve our knowledge on spatial patterns of N and P

and their environmental controls.

DSM often uses topographical predictors derived from digital elevation models (DEM),

such as elevation, slope angle, curvature, and wetness index [23,24]. According to Ballabio

[25], maps of soil properties can be produced with good accuracy using only terrain parame-

ters as predictors in mountainous areas. In addition, vegetation data might improve DSM

results, especially for the organic layer since it strongly depends on the vegetation [26]. Various

vegetation parameters derived from satellite images have helped to explain the spatial variabil-

ity of soil nutrients when used as DSM predictors [27,28]. However, to our knowledge, no

attempt has been made to use Light detection and ranging (LiDAR) derived vegetation metrics

for the spatial predictions of soil properties.

LiDAR-derived vegetation metrics could extend our understanding of spatial soil data by

providing insight into the relationship between soils and vegetation as they are related to the

vegetation’s vertical variability, which reflects forest structure metrics [29]. Canopy cover per-

centage and maximum height can indicate the above ground biomass and forest productivity

[30]. LiDAR predictors may also act as ecological indicators, such as light condition on the

forest floor [30]. LiDAR intensity varies with land cover and forest types [31]. Additionally,

LiDAR predictors are high-resolution data, which provide more detailed spatial information

Spatial patterns of topsoil nitrogen and phosphorus

PLOS ONE | https://doi.org/10.1371/journal.pone.0183205 August 24, 2017 2 / 19

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0183205


than can be obtained from other types of remote sensing data (e.g. Aster [15 m] or Landsat [30

m] images). The normalized difference vegetation index (NDVI) and LiDAR data are expected

to be important for N predictions related to forest biomass, but most probably not for P since

it is assumed to mainly originate from bedrock.

LiDAR DEM could also be useful for predicting the spatial distributions of soil nutrients,

especially P. P in soils tends to be fixed into stable forms as iron, aluminium, and calcium com-

binations [32]. Most P in soils is lost by soil erosion and is moved along surface configuration

[33]. The LiDAR DEM can provide high resolution information on topography which might

benefit the investigation of spatial P patterns.

To better understand the spatial patterns of N and P in the organic layer and mineral top-

soil, the aim of this study was to use high-resolution LiDAR data and the derived DEM and

vegetation metrics to predict topsoil N and P content by a DSM regression approach. The spe-

cific objectives of our research were: (1) to test the importance of LiDAR-derived vegetation

and topographical parameters to understand the spatial patterns of N and P; (2) to identify

subareas with critical P contents; and (3) to test different validation strategies for N and P.

Materials and methods

Research area

The study area has a size of 9.84 km2 and is located in the downstream area of the Soyang lake

watershed, Gangwon province, South Korea (Fig 1). The mean annual air temperature of the

study area is 11.1˚C and it receives a mean annual rainfall of 1,347 mm [34] with about 70% of

the annual rain (824.4 mm) falling in the summer monsoon season (June, July, and August)

[34]. The area’s bedrock is part of the Gyeonggi gneiss complex, which consists of granitic

gneiss and banded gneiss [35] formed in the Paleoproterozoic and belonging to the oldest

basement rocks in the Korean Peninsula [36]. The elevation ranges between 320 and 868 m

above sea level and the area consists of various steep slopes (over 45˚) caused by a tectonic

uplift that occurred during the Quaternary Period [37]. The area is a headwater catchment

with narrow depositional areas and valleys, and plays an important role in the biogeochemical

cycle of the downstream hydrological system as a key source of nutrients [38]. Its soils are

Fig 1. Research area. (A) The Soyang watershed within South Korea. (B) The research area within the Soyang watershed. (C) The research area

with the sampling points. (D) The tree species map (fgis.forest.go.kr/).

https://doi.org/10.1371/journal.pone.0183205.g001
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mainly composed of fine gravelly sandy loam soils, fine sandy loam, and gravelly loam soils

[39]. The area is part of a national forest and the main tree species are Mongolian oak (Quercus
mongolica; 40–50 years) and Korean pine (Pinus koraiensis; 30–35 years), locally vegetated

with Japanese red pine (Pinus densiflora) and Japanese larch (Larix kaempferi) (Fig 1).

Soil sampling and chemical analyses

Soil samples were collected from the organic layer and the A horizon at 91 sampling sites in

2014. Spatial position information of sampling points was recorded with a Qmini H3 global

navigation satellite system (GNSS) GPS (accuracy within 5 m). Field studies were carried out

under research permission from the Korea Forest Service of Chuncheon. We confirm that the

field studies did not involve endangered or protected species. Conditioned Latin Hypercube

Sampling (cLHS) was applied to optimize the density functions of the n-dimensional covariate

space for the regression models [40]. This is a stratified random sampling approach that

divides the empirical density functions of the predictor space into quantiles based on the num-

ber of samples. In order to obtain a Latin hypercube of exactly one sample per quantile for

each of the predictors, an optimization approach is used. In the R package "clhs" [41], this is

achieved by simulated annealing.

The organic layer had an average depth of 5 cm and was sampled using a metal frame of 0.3 x

0.3 m. The A horizon of the mineral soil was sampled using a shovel according to the depth of the

A horizon, which differed between 10 and 30 cm. Mineral soil samples were air-dried and sieved

(< 2 mm). The organic layer samples were oven-dried. Total P was extracted with HNO3 and HF

and measured according to DIN EN ISO 11885 / 22036 [42] by ICP-OES (Perkin Elmer, 2100 ZL,

USA). After grinding to a fine powder, total N was measured by an elemental analyzer NA 1108

(CE Instruments, Milano, Italy). N/P ratios were calculated based on mass.

Environmental predictors

LiDAR is a remote sensing technology, which provides structural information on the illumi-

nated surface, including the 3D terrain, vegetation canopy information, and object heights

[43]. Point data, including x, y, and z coordinates, can be converted to a digital terrain model

and a digital surface model [44]. The laser emits short pulses of light and the sensor records

several returns from leaves, branches, and the underlying ground surface [29]. Vegetation

heights can be derived from the difference between the ground and the non-ground returns

[29]. LiDAR also generates intensity data, reflecting characteristics of objects, which can pro-

vide useful information on forest types and tree species [31]. Detailed overviews are provided

by Asner et al. [45] and Hyyppä et al. [46].

We used LiDAR point data which has a vertical accuracy of below 10 cm and an average of

4.08 points/m2, surveyed by the National Geographic Information Institute (NGII) in South

Korea [47]. The point data were pre-processed to identify ground returns, classify all returns,

and calculate the normalized vegetation heights. Furthermore, we calculated a set of forest

structural predictors using the LAStools software which provides a wide variety of methods to

process LiDAR data [48] (Table 1). First, the ground and non-ground points were classified

using the lasground module of LAStools. Then, the ground points were used to produce a digi-

tal elevation model with the las2dem module, and heights of non-ground points were calcu-

lated using the lasheight module. Finally, LiDAR vegetation metrics were derived using the

lascanopy module. The maximum height (Hmax) was computed from the maximum point

height within a grid cell. Variations of all vegetation point heights within a grid cell were con-

verted to the standard deviation of heights (Hstd), which indicates the structural diversity of

the forest. The canopy cover (Hccp) was calculated as the number of LiDAR first returns
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greater than the cover cutoff (1.37 m by default) divided by the total number of first returns

[48]. NDVI was derived from a 4-m Kompsat-2 image obtained on 11th October 2014 [49,50].

We selected the clear-sky image taken at the similar time as the field survey.

Most topographical predictors were calculated with the terrain analysis modules of the

open source software SAGA based on the LiDAR DEM [51]. In addition, surface curvature,

which reflects the degree of bending of the three-dimensional surface morphology, was calcu-

lated with the CURV3 program [52]. To consider the variability of surface configuration, sur-

face curvature values were calculated with different search window sizes of 3 x 3 to 35 x 35

cells. The one with the highest Pearson’s correlation coefficient with the response variables N

and P was finally selected as a predictor: 19 x 19 cells (CUR19). All predictors were converted

to 10-m cell size via the nearest neighbor resampling method.

Random forest

Random forest (RF) is an ensemble learning method that operates by building a set of regres-

sion trees and averaging the results [57]. Each tree is built using bootstrap samples of the data

and a subset of predictors. Providing the number of trees is large, the overall accuracy (out-of-

bag error) of the RF converges [57]. Accordingly, the number of trees was set to 1000. The size

of the predictor subset (mtry) was tuned by the R package “caret” [58]. The R package "ran-

domForest" [57] was employed as a dependency.

RF is able to model complex nonlinear relationships between soil properties and environ-

mental predictors. It is easier to apply than other supervised learning methods (e.g. neural net-

works and support vector regression) and does not require much tuning [58–60]. It also has a

better interpretability due to the provision of a predictor importance measure. For this mea-

sure, the predictor values are permuted. The importance is then determined by the difference

in mean square error before and after permutation [59]. Overall, RF has demonstrated good

performance in DSM applications [16,61–64].

Predictor selection is reported to influence model performance [65–67]. Recursive feature

elimination (RFE), a backward predictor selection method, begins with all predictors and iter-

atively eliminates the least important predictors one by one based on an initial measure of RF

predictor importance until the best predictor remains [58]. At the end, the optimal number of

predictors and the final list of selected predictors are returned. The package “caret” provides

the functions for RFE [58].

Table 1. Environmental predictors for digital soil mapping.

Predictor Method Reference

1 Elevation (ELEV) Las2dem LAStools module Isenburg [48]

2 Slope degree (SLO) Slope, aspect, curvature SAGA module Zevenbergen et al. [53]

3 Catchment area (CA) Catchment area (Parallel) SAGA module (Multiple flow direction) Freeman [54]

4 SAGA topographical wetness index (STWI) SAGA wetness index SAGA module Böhner et al. [55]

5 Surface curvature (CUR19) CURV3 program Park et al. [52]

6 Normalized difference vegetation index (NDVI) (NIR–Red)/ (NIR+Red) Tucker and Sellers [56]

7 Maximum height (Hmax) Lascanopy LAStools module Isenburg [48]

8 Canopy cover percentage (Hccp) Lascanopy LAStools module Isenburg [48]

9 Standard deviation of heights (Hstd) Lascanopy LAStools module Isenburg [48]

10 Forest canopy and height (Hch) Canopy cover percentage (Hccp) x maximum height (Hmax) -

11 First return intensity average (Hfiravg) Lasgrid LAStools module Isenburg [48]

Note: NIR, near-infrared.

https://doi.org/10.1371/journal.pone.0183205.t001
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To assess model performance, R2 and root mean square error (RMSE) were calculated. For

model validation, we used k-fold cross-validation (CV) where the dataset is randomly parti-

tioned into k subsets; one subset is left out for model validation while the remaining subsets are

used for model training. The process is repeated k times (once for each fold) and the k estimates

of performance are summarized. In k-fold CV, the choice of k determines the size of the test

and training dataset. For example, in the case of 10-fold CV, 10% of the data are used for valida-

tion and the remaining 90% are used for calibration. The choice of k is usually 5 or 10; however

there is no formal rule [58]. Although the subsets are generated randomly, the subdivision still

affects model validation results. This can be acknowledged by repetitions of the k-fold CV. Still,

the number of repetitions (n) might also affect the estimated model performance; for example,

more repetitions lead to better results [68]. We explored 2-, 5-, 10-, 20-fold, and leave-one-out

(LOO) CV in n repetitions to account for a total of 100 validation measures: n × k = 100. Ulti-

mately, 100 R–squares and RMSEs were returned for each soil property. Finally, the cell-wise

standard deviation of the corresponding 100 predictions provides an estimate of spatial

uncertainty.

Results

Descriptive statistics of soil nutrients

Summary statistics for the N and P data are shown in Table 2. The mean N value of the organic

layer (No)was higher than that of the A horizon (Na). No had the lowest coefficient of variation

(CoV), while total P in the organic layer (Po) showed a relatively higher variance based on the

standard deviation and CoV. This indicates that the variability in the N/P ratios in the organic

layer (No/Po) was dependent on Po content, and that there was major P input from the litter

fall. The N/P ratio in the A horizon (Na/Pa) showed a higher relative variability than did those

in the organic layer, as indicated by the CoV. The mean No/Po was 20.83 ± 4.82 and the mean

Na/Pa was 7.91 ± 2.42.

Model validation

Fig 2 and S1 Fig show that with increasing k in repeated k-fold CV, mean R-square and RMSE

values indicate a better model performance, while R-square and RMSE variance increases as

well. Based on mean R-square, the LOO CV results were inferior to the repeated 10-fold and

20-fold, but superior to the repeated 2-fold results. Concerning repeated 5-fold CV, LOO CV

was superior for the predictions of the organic layer nutrients, but inferior for the predictions

of the mineral soil nutrients. Altogether, mean R-square values were higher for Po and Pa com-

pared to No and Na respectively. The results for No/Po and Na/Pa were the worst, but showed

Table 2. Statistical summary of N and P content (mg kg-1) and ratios.

Mean SD MIN Median MAX CoV (%) Skew Kurt

No 12245 1986 8000 12200 17800 16.22 0.35 2.92

Po 624 190 310 610 1240 30.39 0.44 2.97

Na 2990 1348 700 2600 7300 45.07 0.81 3.52

Pa 389 171 160 330 920 43.96 1.40 4.52

No/Po 20.83 4.82 12.16 20.17 38.06 23.12 0.76 3.77

Na/Pa 7.91 2.42 1.89 7.78 13.85 30.55 0.21 3.06

Notes: SD, standard deviation; MIN, minimum; MAX, maximum; CoV, coefficient of variation; Skew, skewness; Kurt, kurtosis; N, nitrogen; P, phosphorus; o,

organic layer; and a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.t002
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the highest increase in model performance (mean R-square) with increasing k. Fig 3 shows the

standard deviations of all raster cells according to the 100 spatial predictions resulting from

the 100 models from the various CV schemes. The mean standard deviation and the variance

of the standard deviations decrease with increasing k for all models.

As an example, spatial prediction patterns of Po including mean values and the standard

deviations from the 100 predictions according to the various CV schemes are displayed in Fig

4. In particular, spatial patterns of mean Po of the repeated 5-, 10-, and 20-fold CV are optically

very similar (Fig 4C, 4E and 4G). Only the results from repeated 2-fold CV (Fig 4A) show a

comparatively smaller range of mean Po values with lower values in the valleys and higher val-

ues along ridges. Furthermore, the increase of mean Po values with elevation, which was partic-

ularly observable in the concave valley for repeated 5-, 10- and 20-fold CV, is less pronounced

for repeated 2-fold CV. As already indicated by Fig 3, standard deviation values decrease with

increasing k and a correspondingly bigger calibration dataset. The spatial patterns of the stan-

dard deviations show an abrupt increase in the concave valley in the lower part of the study

area (Fig 4B, 4D, 4F and 4H).

Environmental drivers of spatial nutrient patterns

To analyze the influence of topography and vegetation on soil nutrients, the results from

repeated 10-fold CV are displayed. These correspond to a comparatively good performance for

all soil nutrients based on mean R-square, while R-square variance is not as high as for repeated

20-fold CV (Fig 2). The predictors selected with RFE are shown in Table 3. Surface curvature

and elevation were selected for all soil nutrients. For Po and Pa, they were the only selected pre-

dictors. NDVI and LiDAR vegetation predictors (Hfiravg, Hstd, and Hmax) were additionally

selected for No. For the N/P ratios parameters corresponding to water flow were additionally

selected. While the models for N0/P0 in correspondence to N0 also included vegetation metrics

as predictors (Hst, Hmax, and Hch), the model for Na/Pa included the NDVI instead. We

expected that the tree species influenced the spatial pattern of N/P ratios (Fig 1). Tree species

were initially also tested as predictors; however, these were not considered important predictors

based on previous results. Accordingly, they were excluded due to the simplicity of the model.

Our RF model revealed good performance for all soil nutrients based on R2 (Fig 2). Mean

R-square values ranged from 0.23 to 0.52. Pa showed the best result of the validation, while

that of the R-square for Na/Pa was lowest. Models for P showed better results than did models

for N.

Fig 5 shows the mean relative predictor importance of the RF models created by repeated

10-fold CV. Terrain predictors exhibited 5.37–53.07% of the reduction in the mean square

error (MSE). Surface curvature was the best or second best predictor for all soil nutrients, with

the exception of No (Fig 5); contributed 6.50–53.07% of the MSE. Elevation exhibited a simi-

larly high predictor importance: 9.55–39.22%. NDVI and LiDAR derived vegetation metrics

(Hstd, Hmax, Hpdy, and Hfiravg) were also important precitors for the nutrients. The results

showing the RF predictor importance were not consistent with the RFE results; however, the

two results were similar and there was no difference in the most important predictors

(Table 3).

The map of each nutrient displays the mean of the 100 predictions from repeated 10-fold

CV (Fig 6). No and Na content increased with elevation. We found that P content differed

Fig 2. Model validation based on R-square with cross validation methods. The dotted lines indicate the leave-one-out cross-validated

result. 2f, 2-fold 50 repetitions; 5f, 5-fold 20 repetitions; 10f, 10-fold 10 repetitions; 20f, 20-fold 5 repetitions; N, nitrogen; P, phosphorus; o, organic

layer; and a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.g002
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markedly between the upper and lower slopes. No/Po and Na/Pa were higher on the convex

upper slope.

Higher standard deviations of Po and No/Po were found at lower elevations and on the val-

ley floor (S2 Fig). The spatial uncertainties of Pa were higher at the upper part of the catch-

ment. Uncertainties of No (S2 Fig) were similarly complex like the spatial pattern of the mean

values (Fig 6A).

Discussion

Predictors of soil N and P

In this study, No (r = 0.58, p<0.001) and Na (r = 0.49, p<0.001) were correlated with elevation.

Likewise, Bedison and Johnson [69] also found a strong relationship between No and elevation

(R2 = 0.41, P<0.001) in mountainous forested areas in the USA. Additionally, positive rela-

tionships between Na and elevation were reported by Kunkel et al. [15], Wang et al. [70] and

Peng et al. [13]. The catchment area (CA) and topographical wetness index (TWI) were impor-

tant predictors of No in other studies [19,20]. In our study, CA and TWI were not significant

for No, whereas Na was correlated with TWI (r = 0.26, p<0.05). According to Aandahl [71],

higher nitrogen content is found on the lower slope. Higher Na was found in areas with high

elevation and on the lower slope (Fig 6C), which might have higher productivity (plants and

microbes) and therefore, higher nitrogen fixation.

Vegetation can determine the spatial distribution of N in forest ecosystems [69,72]. For No,

NDVI ranked as the second most important predictor and the LiDAR intensity of first returns

(Hfiravg), which is often used as an indicator of forest type [31], was also an important predic-

tor. Although NDVI and LiDAR predictors were not selected as predictors of the Na model, Na

was weakly correlated with maximum height (r = 0.24, p<0.05) and standard deviations of

heights (r = 0.23, p<0.05). Other studies have found significant relationships between Na and

NDVI which can measure vegetation density and aboveground biomass [15,16,73]. This

implies that the density of forest cover and forest types affects the No content and No/Po ratios.

Vesterdal et al. [74] reported significant differences for No but not for Na based on tree species

and forest types. However, no relationship was found between P and LiDAR predictors.

As noted, LiDAR-derived predictors are promising for spatial soil predictions. In future

studies, vegetation predictors should be applied to forest areas where there is difference in the

variation of forest cover. Forest structure (LiDAR metrics) can have an effect on erosion and

deposition of materials, which in turn, might alter the soil nutrient content. Hahm et al. [75]

confirmed that differences in erosion rates are affected by tree canopy cover. However, to our

knowledge, no studies have investigated the relationship between soil erosion, forest struc-

tures, and nutrient status using LiDAR data so far.

Spatial patterns of N/P ratios

We found that N/P ratios increased with surface curvature and were higher on the upper slope

compared to the lower slope. This was due to P enrichment of the soil on the lower slope and a

more even distribution of N (Fig 6). No/Po and Na/Pa were strongly related to surface curvature

(Fig 6), which implies that P dynamics are affected strongly by topography. This is likely

because P was carried from the upper slope by surface and subsurface flows and accumulated

Fig 3. Boxplots showing standard deviations of 100 predicted values for each raster cell with cross validation methods. 2f, 2-fold 50

repetitions; 5f, 5-fold 20 repetitions; 10f, 10-fold 10 repetitions; 20f, 20-fold 5 repetitions; LOO, leave-one-out; N, nitrogen; P, phosphorus; o, organic

layer; and a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.g003
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on the lower slope, as observed previously in other areas [33]. Soil erosion in the watershed

under study is strong due to storm events and steep slopes [76,77]. Consequently, higher soil P

content on the lower slope than on the upper slope can lead to higher plant P uptake and

Fig 4. Maps of mean and coefficient of variation (CoV) of 100 models of phosphorus in the organic layer (Po) with cross validation

methods. 2f50r, 2-fold 50 repetitions; 5f20r, 5-fold 20 repetitions; 10f10r, 10-fold 10 repetitions; 20f5r, 20-fold 5 repetitions.

https://doi.org/10.1371/journal.pone.0183205.g004
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higher plant litter P content, leading to a lower No/Po. This implies that spatial patterns of No/

Po might be generated by the interconnected relationships between soil, topography, and vege-

tation. Similarly, Uriarte et al. [78] found that soil N/P was correlated with leaf litter N/P, and

was determined by topography in a tropical mountainous forest with heavy rainfall and steep

slopes.

Model performance based on different cross validation schemes

We observed the typical bias-variance tradeoff when comparing the various CV schemes as

was discussed at length in Hastie et al. [79]. With a higher k, the mean test error decreases,

while test error variance increases (Fig 2, S1 Fig). In general, the performance of the learning

Table 3. Selected predictors using recursive feature elimination (RFE) based on repeated 10-fold

cross validation.

Soil properties Predictors

No ELEV, NDVI, Hfiravg, CUR19, STWI, Hstd, Hmax

Po CUR19, ELEV

Na ELEV, CUR19

Pa CUR19, ELEV

No/Po CUR19, CA, Hstd, ELEV, Hmax, Hch

Na/Pa CUR19, CA, NDVI, ELEV, STWI

Notes: ELEV, elevation; CUR19, surface curvature (19 x 19 local window); STWI, SAGA topographical

wetness index; CA, Catchment area; SLO, slope degree; NDVI, normalized difference vegetation index;

Hfiavg, first return intensity average; Hstd, standard deviations of heights; Hmax, maximum height; Hccp,

canopy cover percentage; Hch, forest canopy and height (Hmax X Hccp); N, nitrogen; P, phosphorus; o,

organic layer; a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.t003

Fig 5. Mean relative importance of predictors for nitrogen and phosphorus based on the increased mean square error (%incMSE) from

random forest. N, nitrogen; P, phosphorus; o, organic layer; and a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.g005
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method varies with the size of the training set. A higher k results in a higher amount of training

data, which can be crucial with small datasets. This pattern was consistent with the findings of

previous studies. Park and Vlek [80] tested the change in prediction error with different num-

bers of training soil data sets, and confirmed that the prediction accuracy increases when

increasing numbers of soil samples are used for the tuning dataset. A similar decrease in the

prediction error was found using various methods for soil prediction according to Ballabio

[25]. Generally, 10-fold CV is recommended in most studies [81–86]. Remesan and Mathew

[81] noted that the use of very few datasets might result in poorly calibrated models, while

Fig 6. Predicted mean soil N and P content and ratios. N, nitrogen; P, phosphorus; o, organic layer; and a, A horizon.

https://doi.org/10.1371/journal.pone.0183205.g006

Spatial patterns of topsoil nitrogen and phosphorus

PLOS ONE | https://doi.org/10.1371/journal.pone.0183205 August 24, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0183205.g006
https://doi.org/10.1371/journal.pone.0183205


high amounts of data for calibration might lead to overfitting. For small sample sizes, model

calibration requires all possible datasets to improve the model performance, while validation

results can differ markedly depending on which samples are included in the validation [58].

Therefore, Kuhn and Johnson [58] suggested repeated 10-fold CV for small sample sizes

because the bias and variance are somewhat balanced and the computational efficiency is

good.

The size of the standard deviations of the spatial predictions corresponds to the applied CV

scheme (Fig 3). Naturally, a low model bias goes along with low standard deviations. With a

high amount of samples included in the training dataset, the training datasets and hence the

100 models are very similar to one another and will, therefore, make similar predictions. That

this ensemble of RF models (e.g. from repeated 20-fold or LOO CV) comes along with a high

error variance indicates that it is not a good choice, as the corresponding model might be over-

fitting the data and perform poorly on other data.

Conclusions

Here, we created the first digital soil maps, showing the spatial pattern of N/P ratios using

LiDAR-derived vegetation and topographic predictors. These maps help to identify areas with

low nutrient availability. In our study, repeated 10-fold CV was recommended for model vali-

dation with small sample sizes. While surface curvature and elevation were mostly sufficient

to explain the overall spatial pattern, particularly N contents as well as nutrient ratios in the

organic layer benefited from the inclusion of the LiDAR derived vegetation metrics. N/P ratios

on the upper slope were higher than those on the lower slope and therefore, productivity on

the upper slope might be limited by P in mountainous ecosystems under monsoon conditions.

Finally, our analyses show that topographic and vegetation characteristics may help to predict

the spatial distribution of nutrients and hence, nutrient limitation in mountainous regions.
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