
Performance Estimates for Scalar and
Multiobjective Model Predictive Control

Schemes

Von der Universität Bayreuth
zur Erlangung des Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Marleen Stieler

aus Gießen

1. Gutachter: Prof. Dr. Lars Grüne
2. Gutachter: Prof. Dr. Gabriele Eichfelder

Tag der Einreichung: 19.03.2018
Tag des Kolloquiums: 27.06.2018





Acknowledgments

I wish to express my deep gratitude to my supervisor Prof. Dr. Lars Grüne for giving
me the opportunity to pursue this research project. His quick, constructive feedback as
well as our joint discussions were highly stimulating and helpful. I would also like to thank
Prof. Grüne for creating ideal working conditions and for promoting exchange with national
and international researchers.

I thank Prof. Dr. Gabriele Eichfelder for agreeing to review this thesis and for providing
new insights and perspectives into my research topic through our discussions. I also thank
Prof. Dr. Jörg Rambau and Prof. Dr. Anton Schiela for being members of the examination
board.

Furthermore, I would like to thank all (former and current) colleagues at the Chair
of Applied Mathematics of the University of Bayreuth – Dr. Nils Altmüller, Dr. Robert
Baier, Michael Baumann, Dr. Philipp Braun, Arthur Fleig, Dr. Christian Gleißner, Mat-
thias Höger, Dr. Thomas Jahn, Sigrid Kinder, Dr. Huijuan Li, Dr. Luc Muhirwa, Florian
Müller, Georg Müller, Julian Ortiz Lopez, Dr. Vryan Palma, Simon Pirkelmann, Manuel
Schaller, Dr. Manuela Sigurani, Tobias Sproll, Matthias Stöcklein, Marcus von Lossow and
Jun.-Prof. Dr. Karl Worthmann – for interesting discussions and for having a good time
in- and outside the office. Special thanks go to Jun.-Prof. Dr. Karl Worthmann, from
whom I learned a lot especially (but not only) in the beginning of my PhD project, and to
Dr. Philipp Braun for proofreading the first draft of this thesis, countless helpful discus-
sions and for sharing the office with me. I am very grateful for Sigrid Kinder’s excellent
organization, support with administrative issues, and for being my sports partner.

Many thanks go to Jun.-Prof. Dr. Jürgen Pannek for his support during my under-
graduate studies and for arousing my interest in MPC, and to student assistant Markus
Klar for his support with the implementation of the algorithms in this thesis.

I am very thankful for the financial support and the stimulating meetings of the Inter-
national Doctorate Program “Identification, Optimization and Control with Applications
in Modern Technologies” within the Elite Network Bavaria, and of the DFG project “Per-
formance Analysis for Distributed and Multiobjective Model Predictive Control”.

I thank my family, especially my parents and parents-in-law for their continuous sup-
port. Most important, I want to thank my husband Maximilian for his love and support,
and our children for reliably sidetracking me from mathematics every evening.



iv



Abstract (english/german)

Abstract

Since its first formulation in the middle of the twentieth century, Model Predictive Control
(MPC) has become a very well known and investigated method for feedback synthesis
of optimal control problems (OCPs). The acceptance of MPC in science as well as in
industry has steadily increased within the last two to three decades. Many different schemes
regarding the kind of problems and variants of MPC algorithms have been investigated, ac-
companied by the development of fast and/or robust (distributed) optimization methods.
However, it seems that only little work has been done when it comes to the systematic
investigation of multiobjective (MO) OCPs and game-theoretic settings.

The main questions of this thesis is the following: Given that we choose a specific
solution (Pareto-optimum, optimum or Nash equilibrium (NE)) in each MPC iteration,
can the characteristics of these strategies be carried over to the closed loop? And, if yes,
how can this be achieved, i.e. how do we choose the ‘right’ solutions? Moreover, we are
interested in the behavior of the resulting closed-loop trajectories. These questions are
tackled for (scalar-valued) economic MPC without terminal conditions, for MO MPC with
and without terminal conditions and for stabilizing and economic stage costs, and for
games, in which a NE is played in each iteration.

For economic MPC schemes without terminal conditions we provide a practical Lya-
punov function (LF) and can thus prove practical asymptotic stability as well as approxi-
mately optimal performance of the MPC controller during the so called transient phase.

In the context of MO MPC we show that imposing an additional constraint on the ob-
jective functions in the iterations enables us to make statements on the MPC performance
for all objective functions, and to prove convergence of the closed-loop trajectory. This
procedure prevents us from calculating the Pareto front in each iteration, which generally
is an expensive computation. We show that the MPC performance is determined in the
very first iteration of the MPC procedure.

In noncooperative MPC we show that the mechanism developed in MO MPC – i.e.
choosing the proper solution by means of constraints on the objective functions – does
generally not work for NE. For the special case of affine-quadratic games sufficient condi-
tions for the MPC closed-loop trajectory to converge are presented.



Kurzfassung

Modellprädiktive Regelung (MPC) ist eine gut untersuchte, numerische Methode zur Ap-
proximation von Optimalsteuerungsproblemen, die seit ihrer Formulierung Mitte des zwan-
zigsten Jahrhunderts starke Verbreitung gefunden hat. Die Akzeptanz von MPC sowohl
in der Wissenschaft als auch in der industriellen Praxis hat sich in den vergangenen 20-30
Jahren stetig ausgeweitet. In dieser Zeit wurden viele verschiedene Varianten von MPC
Algorithmen vorgeschlagen und untersucht und auch die Klasse von Problemen, für die
MPC verwendet wird, wurde immer wieder erweitert. Begleitet wurde diese Entwicklung
von Fortschritten in Bezug auf schnelle und/oder robuste (verteilte) Optimierungsalgorith-
men. Trotz der aktiven Forschung im Bereich MPC gibt es wenig Resultate, die sich mit
strukturellen Aussagen für MPC von multikriteriellen Optimalsteuerungsproblemen und
spieltheoretischen Problemen beschäftigen.

Diesbezüglich interessieren uns in der vorliegenden Arbeit im Wesentlichen zwei Fra-
gestellungen. Angenommen, wir wählen in jeder Iteration des MPC Algorithmus eine aus-
gezeichnete Kontrollfolge (z.B. ein Pareto-Optimum, Optimum oder Nash-Gleichgewicht)
und wenden sie in der für MPC typischen Art an. Lassen sich daraus Aussagen ableiten,
dass der MPC Regler ebenfalls (Pareto-)Optimalität auf unendlichem Horizont aufweist?
Und falls dem so ist, wie wählt man in den Iterationen von MPC die richtige Kontrollfolge
aus? Von weiterem Interesse ist auch das Trajektorienverhalten des geschlossenen Regel-
kreises. Die soeben gestellten Fragen werden wir für ökonomisches MPC ohne Endbedin-
gungen, für multikriterielles MPC mit und ohne Endbedingungen für stabilisierende und
ökonomische Kosten, sowie für dynamische Spiele, in denen Nash-Gleichgewichte gespielt
werden, systematisch untersuchen.

Für ökonomisches MPC werden wir hinreichende Bedingungen für die Existenz einer
Lyapunov-Funktion vorstellen, was wiederum den Nachweis von praktischer asymptotischer
Stabilität und die Analyse der Regelgüte von MPC während der sogenannten Übergangs-
phase ermöglicht.

Bei multikriteriellem MPC zeigen wir, dass man Aussagen über die Regelgüte und
die Trajektorie des geschlossenen Regelkreises treffen kann, wenn man in den Iterationen
eine zusätzliche Nebenbedingung an die Kostenfunktionale stellt. Hervorzuheben ist dabei,
dass wir eine garantierte Mindestregelgüte für jedes der Kostenkriterien erhalten und dass
kein Berechnen der gesamten Paretofront (was im Allgemeinen sehr aufwändig ist) in den
Iterationen erfolgen muss. Die Mindestregelgüte wird bereits in der ersten MPC Iteration
festgelegt.

In Bezug auf nicht-kooperatives MPC zeigen wir, dass der zuvor erwähnte Auswahl-
mechanismus von Lösungen – nämlich das Einführen zusätzlicher Nebenbedingungen an
die Kostenfunktionale – bei Nash-Gleichgewichten im Allgemeinen nicht funktioniert. Für
den Spezialfall der affin-quadratischen Spiele präsentieren wir hinreichende Bedingungen,
sodass Trajektorienkonvergenz des geschlossenen Regelkreises sichergestellt werden kann.
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1 | Introduction

“Life is about decisions.”

Matthias Ehrgott

It is a natural idea that optimal control problems (OCPs) of real-word applications have
multiple potentially conflicting objectives, see e.g. [55]. Already for one objective solving
OCPs on an infinite or very long time horizon is in general numerically and theoretically
intractable and is even more involved for multiobjective (MO) OCPs. A remedy for this
challenge is to use Model Predictive Control (MPC) – a numerical method whose main
idea (formulated e.g. in Lee and Markus [51]) is to repeatedly solve the original problem
on a short(er) horizon and to implement only the first part of the solution to the system.
Proceeding this way, closed-loop solutions on arbitrary horizons can be generated. Since
each of the “easy-to-solve” MO optimization problems in the MPC iterations generally has
an infinite number of equally optimal solutions, we are confronted with the situation that
we have to repeatedly choose ‘the right’ solution because only one among them can be
applied to the system. While some works (see e.g. [24, 50]) approach this challenge by
calculating all optimal solutions and then decide based on rules or expert knowledge, other
works (e.g. [6, 43, 73, 90]) avoid the incidence of multiple solutions by transforming the
MO optimization problem into a scalar optimization problem, which is then solved in the
MPC procedure.

In this thesis we aim to design efficient MPC algorithms, in which the calculation of all
optimal solutions is not needed, and that do not rely on a certain scalarization technique.
At the same time, the algorithms should guarantee properties of the closed loop, e.g.
trajectory convergence as well as performance statements for all objectives. In other words
we want to take the right decisions without knowing all alternatives.

In the course of this chapter we will formally introduce the concept of MPC for scalar
OCPs along with control-theoretic definitions. In Section 1.2 we present the outline and
contribution of this thesis.



Chapter 1. Introduction

1.1 Fundamentals of Model Predictive Control

Assume that we are given a state space Rn, a control space Rm for n, m ∈ N, and a
mapping f : Rn × Rm → Rn defining a discrete-time dynamical system or control system

x(k + 1, x0) = f(x(k, x0), u(k)), k ∈ N0,

x(0, x0) = x0.
(1.1)

The definition of a control system will sometimes be abbreviated by x+ = f(x, u). Equa-
tion (1.1) describes how the state x of the dynamical system evolves in time k under the
influence of the control u. We will use the notation xu(·, x0) for a trajectory resulting
from input u and with initial value x0, in which bold characters such as u always denote
a control sequence of control values.

If there is a cost criterion ` : X × U → R, defined on constraint sets X ⊂ Rn and
U ⊂ Rm, we can define the infinite-horizon OCP1

min
u∈U∞

J∞(x0,u), with J∞(x0,u) :=

∞∑
k=0

`(x(k, x0), u(k))

s.t. (1.1),

xu(k, x0) ∈ X for all k ∈ N0.

Using the definition

U∞(x0) := {u ∈ U∞|xu(k, x0) ∈ X for all k ∈ N0},

we can rewrite the OCP as follows:

min
u∈U∞(x0)

J∞(x0,u)

s.t. (1.1).
(1.2)

The corresponding optimal value function V∞(x0) is defined as the optimal value of (1.2).
The basic idea of MPC is now to replace the infinite-horizon OCP (1.2) by a sequence

of finite-horizon OCPs. For this purpose, we fix the MPC horizon N ∈ N and repeatedly
solve

min
u∈UN

JN (x,u), with JN (x,u) :=
N−1∑
k=0

`(x(k, x), u(k))

s.t. (1.1) for all k ∈ {0, . . . , N − 1},
xu(k, x) ∈ X for all k ∈ {0, . . . , N}.

(1.3)

Again, we summarize all constraints by defining

UN (x) := {u ∈ UN |xu(k, x) ∈ X for all k ∈ {0, . . . , N}}

and define the optimal value function V N (x) to the optimization problem (1.3). Based on
these definitions we can formulate a basic MPC algorithm.

1Throughout this section we assume that all problems are well-posed, i.e. that there exists a solution
with a finite optimal value.

2



1.1. Fundamentals of Model Predictive Control

Algorithm 1 (Basic MPC Algorithm).
Given a dynamical system (1.1) with initial value x0. At each time instant n ∈ N0:

(1) Set x := x(n).

(2) Solve (1.3), i.e.

min
u∈UN (x)

JN (x,u)

s.t. (1.1),

and receive an optimal control sequence u∗ = (u∗(0), . . . , u∗(N − 1)).

(3) Define the MPC feedback µN (x) := u∗(0) and apply it to the system, i.e., x(n+1) :=

f(x, µN (x)).

By applying Algorithm 1, we obtain the so called closed-loop trajectory that will usually
be denoted by xµ

N
(·, x0). Apart from many theoretical as well as technical issues such

as existence of (unique) optimal solutions, real-time optimization (see e.g. [91]) or state
estimation (see e.g. [72]), which will not be discussed here, there are two fundamental
questions that naturally arise when MPC is used to approximate the infinite-horizon
OCP (1.2) and that we will deal with in this thesis.

1. How does the MPC closed-loop trajectory behave?

Regarding this question, we will investigate properties such as (practical) asymptotic
stability, and convergence.

2. Is the MPC performance in some sense optimal?

One way (among others) to investigate this question is to compare the value

J∞(x0, µ
N ) := lim

K→∞

K−1∑
k=0

`(xµ
N

(k, x0), µN (xµ
N

(k, x0))), (1.4)

to V∞(x0).

1.1.1 Basic Definitions in Control Theory

The following definitions and results, taken from the references Goebel et al. [27], Grüne
and Pannek [32], Kellett [47], Michel et al. [60], Rawlings and Mayne [73], are needed in
order to answer the first question. Since we will only use those concepts in the context
of MPC, we will introduce them for control systems in closed loop, i.e. systems which are
controlled by a feedback µ : X → U. In order to deal with feasibility of the closed-loop
system

x+ = f(x, µ(x)) (1.5)

with solution xµ(·, x0) for a given initial value x0 ∈ X we need the following definition.

3



Chapter 1. Introduction

Definition 1.1 (Forward Invariance). A set Y ⊆ X is said to be forward invariant for the
closed-loop system (1.5) if f(x, µ(x)) ∈ Y holds for all x ∈ Y .

Synonymously to forward invariance we use the notion of recursive feasibility. As
stated in [32, Theorem 3.5], recursive feasibility of the set X can be ensured if a viability
assumption holds, i.e. if for all x ∈ X there exists u ∈ U such that f(x, u) ∈ X holds. For
the next definitions the following notion will be useful: For x ∈ X and ε ∈ R>0 we define

Bε(x) := {y ∈ X : ‖y − x‖ < ε} and
Bε(x) := {y ∈ X : ‖y − x‖ ≤ ε}.

(1.6)

Definition 1.2 (Local Stability). Consider the closed-loop system (1.5) with equilibrium
x∗ ∈ X, i.e. f(x∗, µ(x∗)) = x∗. The equilibrium is said to be locally stable for the closed-
loop system if for all ε > 0 there exists δ > 0 such that x0 ∈ Bδ(x∗) implies xµ(k, x0) ∈
Bε(x∗) for all k ∈ N0.

Local stability requires that closed-loop trajectories, which start close to the equilibrium
remain close to it for all time instants.

Definition 1.3 (Attraction). We say that the equilibrium x∗ of the closed-loop system
(1.5) is locally attractive if there exists δ > 0 such that for all x0 ∈ Bδ(x∗) it holds
‖xµ(k, x0)− x∗‖ → 0 as k tends to infinity.

The equilibrium is globally attractive if ‖xµ(k, x0)− x∗‖ → 0 for k →∞ holds for all
x0 ∈ X.

The notion of attraction is usually (and also in this thesis) used synonymously to (local
or global) convergence.

As demonstrated in [73, Appendix B], the equilibrium of a system can be globally
attractive but not stable. The following property does not allow for such a behavior.

Definition 1.4 (Asymptotic Stability). An equilibrium x∗ of the closed-loop system (1.5)
is called locally asymptotically stable if it is locally stable and locally attractive. It is called
globally asymptotically stable if it is locally stable and globally attractive.

Very often, asymptotic stability is characterized by means of the following comparison
functions.

Definition 1.5 (Comparison functions).

L := {δ : R+
0 → R+

0 | δ continuous and decreasing with lim
k→∞

δ(k) = 0},

K := {α : R+
0 → R+

0 |α continuous, strictly increasing with α(0) = 0},
K∞ := {α ∈ K |α unbounded},
KL := {β : R+

0 × R
+
0 → R+

0 |β continuous, β(·, t) ∈ K, β(r, ·) ∈ L}.

4



1.1. Fundamentals of Model Predictive Control

Definition 1.6 (Asymptotic Stability - KL Version). An equilibrium x∗ of the closed-loop
system (1.5) is called locally asymptotically stable if there is β ∈ KL and δ > 0 such that
for all x0 ∈ Bδ(x∗) it holds ‖xµ(k, x0)−x∗‖ ≤ β(‖x0−x∗‖, k) for all k ∈ N0. The function
β is called attraction rate.

If the property holds for all x0 ∈ X, the equilibrium is globally asymptotically stable.

As stated in [73], both characterizations of asymptotic stability are equivalent if the
mapping f is continuous. In the context of MPC asymptotic stability in the KL version is
usually proved by means of Lyapunov functions (LFs).

Definition 1.7 (Lyapunov Function). Consider the closed-loop system (1.5) with equilib-
rium x∗ and a set S ⊆ X. A function V : S → R≥0 is a Lyapunov function on S for x∗ if
there are α1, α2 ∈ K∞ and α3 ∈ K such that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖)

holds for all x ∈ X and

V (f(x, µ(x))) ≤ V (x)− α3(‖x− x∗‖)

holds for all x ∈ S with f(x, µ(x)) ∈ S.

The inequalities in Definition 1.7 require that the LF strictly decays along the closed
loop as long as the quilibrium is not reached. Moreover, the LF is a measure of the distance
to the equilibrium. Very commonly, a LF is interpreted as energy of the system. This is the
idea why existence of a LF implies asymptotic stability as the next theorem shows. Here,
we state the ‘global’ version, whereas a local version can be found in [32, Theorem 2.19].

Theorem 1.8 (Lyapunov function implies asymptotic stability). Suppose that X is forward
invariant and there exists a Lyapunov function V on X for an equilibrium x∗ and the closed-
loop system (1.5). Then, x∗ is globally asymptotically stable in the sense of Definition 1.4
and 1.6.

1.1.2 Stability and Performance in MPC

In past decades the majority of MPC literature was concerned with the question how to
design the feedback µN such that the closed-loop system x+ = f(x, µN (x)) asymptotically
stabilizes an equilibrium x∗. The main approach in many works such as [11, 28, 32, 73, 82]
is to modify the optimization problem (1.3) and/or to impose assumptions on the OCP
such that the optimal value function V N for (1.3) can be proven to be a LF for x∗. A key
assumption in most references is positive definiteness of the stage cost wrt the equilibrium
x∗, e.g. by setting `(x, u) = ‖x − x∗‖2 + γ‖u − u∗‖2 for γ ∈ R>0. Thus, for a long
time the stage cost ` has been regarded as a design parameter for stabilizing the system.
This is why we term such MPC schemes as stabilizing MPC. Additionally to establishing
asymptotic stability of the MPC closed loop, the performance of the MPC controller has
been of interest in the literature. Based on the Dynamic Programming Principle (DPP)

5



Chapter 1. Introduction

and by means of the LF it is possible to derive upper bounds on the infinite-horizon MPC
performance J∞(x0, µ

N ) and to make statement on the relation between the performance
and the optimal value function V∞(x0) of (1.2), see e.g. [32] for details.

Within the last years, the stage cost ` has more and more been regarded as given data,
which reflects an ‘economic’ criterion that is supposed to be minimized. In this situation
it cannot be expected that the stage cost is still positive definite wrt some equilibrium and
the stability analysis known from stabilizing MPC cannot be carried out. A remedy for
this challenge is to require strict dissipativity (see [87, 88]) of the OCP, which allows for
establishing a LF, see e.g. [3]. For details we refer to Chapter 2 and [29, 31, 34].

1.2 Outline and Contribution

Chapter 2 – Economic MPC without Terminal Conditions Existing results for
Economic MPC schemes with terminal conditions are extended to the setting without ter-
minal conditions. We provide sufficient conditions, under which the optimal value function
to an auxiliary (the rotated) OCP serves as practical LF. Thus, we conclude practical
asymptotic stability of the optimal equilibrium of the system. Moreover, the LF allows for
an analysis of the so called transient phase of the MPC closed loop. In particular, it is
shown that – among all controllers, which steer the trajectory into a predefined neighbor-
hood of the equilibrium within a fixed time – the MPC controller has the approximately
best performance. For two exemplary classes of control systems it is shown that they
satisfy the conditions that guarantee the existence of a practical LF.

Chapter 3 – Multiobjective Optimization In this chapter we provide some elemen-
tary definitions and properties of MO optimization problems. Those are needed for our
analysis of MO MPC schemes discussed in Chapters 4 and 5.

Chapter 4 – Multiobjective Stabilizing Model Predictive Control We start with
our analysis of MO MPC schemes with and without terminal conditions. The setting we
consider can be seen as the straightforward generalization of stabilizing MPC for OCPs
with one objective, i.e. all objectives are positive definite wrt the same equilibrium. It
is demonstrated that imposing terminal conditions or assumptions on the structure of
Pareto-optimal solutions (POSs) yields performance guarantees for all objectives as well
as convergence of the MPC closed-loop trajectories. Moreover, the MPC performance is
related to POSs on the infinite horizon for all objectives. The key for obtaining these
results is to impose additional constraints when solving the MO optimization problem in
the MPC iteration, which guarantee that the ‘right’ POSs are chosen. The proposed MPC
algorithms as well as the analysis are completely independent from coupling structures and
methods for solving MO optimization problems.

Chapter 5 – Multiobjective Economic MPC In this chapter we generalize the results
of Chapter 4 in two ways. First, we allow for economic cost criteria (as in Chapter 2) and

6



1.2. Outline and Contribution

second, we deal with the situation that the cost criteria are strictly dissipative at different
equilibria. Therefore, a novel dissipativity notion for MO OCPs is presented. We show
that under terminal conditions and recursive constraints (for choosing the proper POS in
the MPC iterations) it is sufficient that one cost criteria be strictly dissipative wrt to the
equilibrium from the terminal condition for the MPC closed-loop trajectory to converge.
A performance analysis depending on the specific dissipativity property is carried out for
each objective function.

For MO economic MPC without terminal conditions we explain theoretically and il-
lustrate numerically why a new way of analysis has to be found, which is mainly due to
the fact that strict dissipativity at different equilibria leads to a non-uniform turnpike
behavior.

Chapter 6 – Noncooperative Model Predictive Control We investigate the MPC
procedure under the assumption that different players play a noncooperative strategy – a
Nash equilibrium (NE) – in each iteration. We give an explanation, why we believe that
noncooperative MPC cannot be analyzed similarly to (MO) MPC. Based on the example of
a linear game, we show that selecting the ‘proper’ NE by means on the objective functions
does generally not work.

For affine-quadratic games we present sufficient conditions for the MPC closed-loop tra-
jectory to converge. We illustrate that turnpike behavior occurs for such games. Moreover,
it is demonstrated that the occuring NE are in general no POSs to the corresponding MO
optimization problem.

Chapter 8 – Future Research In this chapter, we present open questions that arose
during the process of working on this thesis as well as interesting topics that one could
further investigate on.

7
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2 | Economic MPC without Terminal
Conditions

We start investigating Model Predictive Control (MPC) schemes for optimal control prob-
lems (OCPs) of type (1.2), in which the stage cost ` represents an ‘economic’ criterion
rather than a designed cost that penalizes the distance to a desired equilibrium. This
is in contrast to classical MPC schemes and originates from the wish to deal with more
general OCPs, in which the stage cost is fixed by the application. Such stage costs often
reflect production costs or energy consumption of the underlying process that should not
be replaced by an ‘artificial’ cost for the following reasons. Firstly, it can be very difficult
to calculate a desired steady state (because an optimization problem has to be solved) and
should, thus, be avoided if possible. This aspect is also a motivation not to use terminal
conditions since they always require knowledge of the desired equilibrium. Secondly, we
shall measure the performance of the MPC controller in terms of the originally given eco-
nomic stage cost and, as our results will show, the (approximately) best performance is
achieved under the usage of this cost criterion in the MPC algorithm instead of any other
cost criterion. Results of this type were – in an averaged sense – given in [1, 3].

As in economic MPC with terminal conditions (see e.g. [3, 23, 44]), the main idea of our
approach is to establish a Lyapunov function (LF) such that stability can be concluded.
As opposed to ‘classical’ MPC, where the optimal value function V N (x) corresponding to
problem (1.3) serves as LF, in economic MPC a modified optimal value function is used as
practical LF. This allows to prove practical asymptotic stability.

Like in many of the references, above, we assume a strict dissipativity condition which
in particular implies the existence of an optimal steady state xe, cf. [62], and which is a
key ingredient in economic MPC, see [65]. For this setting, it is already known that –
under appropriate conditions, for details see [29] – economic MPC without terminal con-
straints yields closed-loop trajectories which are approximately optimal in an averaged
infinite horizon sense. Moreover, under an exponential turnpike assumption, cf. [12, 71],
the trajectories converge to a neighborhood of xe and there exists at least one time horizon
for which the closed-loop trajectory is also approximately optimal in a finite-horizon sense.
Since (approximate) optimality in an infinite-horizon averaged sense is in fact a rather
weak optimality concept (as the trajectory may be far from optimal on any finite time
interval) the latter is important because it tells us that the closed-loop trajectory when
initialized away form the optimal steady state approaches this equilibrium in an approx-
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imately optimal way. In other words, the closed loop is not only optimal on average in the
long run but also shows near optimal performance during its transient phase.

The results in this chapter and related results have been published in [12, 34, 35].
For simplicity of exposition we assume UN (x) 6= ∅ for all x ∈ X and N ∈ N.

2.1 Preliminary Definitions and Results

In this section we first give basic definitions before introducing the systems-theoretic
concept of dissipativity.

Definition 2.1 ((Optimal) Steady state/equilibrium). A pair (xe, ue) ∈ X × U with
f(xe, ue) = xe is called steady state or equilibrium. It is called optimal, if it it is a
solution to the optimization problem

min
x∈X,u∈U

`(x, u) s.t. x− f(x, u) = 0.

Definition 2.2 (Practical asymptotic stability). Let xe ∈ X be an equilibrium for the
closed-loop system, i.e. xe = f(xe, µ(xe)) for some feedback µ. The equilibrium is called
practically asymptotically stable wrt ε ≥ 0 on a set S ⊆ X with xe ∈ S if there exists
β ∈ KL (see Definition 1.5) such that

‖xµ(k, x0)− xe‖ ≤ max{β(‖x0 − xe‖, k), ε} (2.1)

holds for all x0 ∈ S and all k ∈ N. The equilibrium is globally practically asymptotically
stable wrt ε ≥ 0 if (2.1) holds on S = X.

An illustration of this definition is given in Figure 2.1. The orange curve is the function
of class KL that is the upper bound for the closed loop xµ(·, x0) (depicted in black) until
an ε-neighborhood (in blue) of xe is reached. Within that neighborhood the trajectory
does no longer have to exhibit asymptotic behavior. A sufficient condition for practical
asymptotic stability is the existence of a practical LF that is defined as follows.

Definition 2.3 (Practical LF). A function V : X → R is a practical Lyapunov function
wrt δ > 0 for the closed-loop system x+ = f(x, µ(x)) on a set S ⊆ X with xe ∈ S if there
are α1, α2 ∈ K∞ and α3 ∈ K such that

α1(‖x− xe‖) ≤ V (x) ≤ α2(‖x− xe‖) (2.2)

holds for all x ∈ X and

V (f(x, µ(x))) ≤ V (x)− α3(‖x− xe‖) + δ (2.3)

holds for all x ∈ S.

Theorem 2.4 (Practical LF implies pract. as. stability). Let V be a practical LF wrt some
δ > 0 on a set S ⊆ X. Assume that either S = X or S = V −1[0, L] := {x ∈ X |V (x) ≤ L}
for some L > α2(α−1

3 (δ)) + δ. Then xe is practically asymptotically stable on S wrt
ε = α−1

1 (α2(α−1
3 (δ)) + δ).

10
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xe k

xµ(k, x0), β(‖x0 − xe‖, k)

x0

xe + ε

Figure 2.1: Schematic illustration of practical asymptotic stability

Proof. Inequality (2.3) and the assumption on S implies f(x, µ(x)) ∈ S for all x ∈ S, i.e.,
forward invariance of S. Define η := α2(α−1

3 (δ)) + δ and P := V −1[0, η]. We claim that P
is also forward invariant. To this end, we pick x ∈ P , i.e., V (x) ≤ η, and distinguish two
cases:

Case 1: α3(‖x− xe‖) ≥ δ. In this case we get

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xe‖) + δ ≤ V (x)− δ + δ = V (x) ≤ η

implying f(x, µ(x)) ∈ P .
Case 2: α3(‖x − xe‖) < δ. In this case we get ‖x − xe‖ < α−1

3 (δ), implying V (x) <

α2(α−1
3 (δ)) and thus

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xe‖) + δ < α2(α−1
3 (δ)) + δ = η

which again yields f(x, µ(x)) ∈ P .
Now by continuity there exists c > 1 with α2(α−1

3 (cδ)) ≤ η. For x ∈ S \ P we have
V (x) ≥ η and consequently α3(‖x − xe‖) ≥ α3(α−1

2 (V (x))) ≥ α3(α−1
2 (η)) ≥ cδ for all

x ∈ S \ P . This implies α3(‖x− xe‖)− δ ≥ (1− 1/c)α3(‖x− xe‖) and thus

V (f(x, µ(x))) ≤ V (x)−
(

1− 1

c

)
α3(‖x− xe‖)

for all x ∈ S \ P . Hence, V is a Lyapunov function on S \ P in the sense of [32, Defini-
tion 2.18] and [32, Theorem 2.20] yields practical asymptotic stability wrt the exceptional
set P . Since x ∈ P implies V (x) ≤ η and thus ‖x − xe‖ ≤ α−1

1 (η) = ε, this proves the
assertion.

The following property in systems theory was originally introduced by Willems in 1972,
see [87].

11
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Definition 2.5 ((Strict) Dissipativity). The OCP (1.2) or (1.3) is called strictly dissi-
pative at (xe, ue) if there is an equilibrium (xe, ue) ∈ X × U, a function α` ∈ K∞ and a
storage function λ : X → R such that

min
u∈U

˜̀(x, u) ≥ α`(‖x− xe‖) (2.4)

holds for all x ∈ X, where ˜̀ denotes the rotated stage costs

˜̀(x, u) := `(x, u) + λ(x)− λ(f(x, u))− `(xe, ue). (2.5)

Based on the definition of the rotated stage cost ˜̀ we can formulate the rotated OCP
that corresponds to (1.3) that is

min
u∈UN (x)

J̃N (x,u) with J̃N (x,u) :=

N−1∑
k=0

˜̀(x(k, x), u(k))

s.t. (1.1).

(2.6)

The original and the rotated cost functional are related via J̃N (x,u) = JN (x,u) + λ(x)−
λ(x(N, x))−N`(xe, ue) and the optimal value function to (2.6) is called Ṽ N (x).

We point out that dissipativity at an equilibrium pair (xe, ue) implies optimality of this
equilibrium (see [32, Prop. 8.9]).

From an MPC perspective one could say that dissipativity is the main ingredient that
allows for a stability and performance analysis, yet this interpretation falls short of the im-
portance of general dissipativity theory: Dissipativity is not only a property that describes
how energy that is supplied to the systems, is stored within, but also allows for feedback
design. Moreover, it is a sufficient and almost nessecary condition for the turnpike property
(see [63]) that is used in the proofs in Section 2.2. We will comment on and illustrate this
property in Remark 2.7.

2.2 Practical Asymptotic Stability for Economic MPC

In this section we prove that the rotated optimal value function Ṽ N can be used as prac-
tical LF for economic MPC schemes without terminal conditions. While the first set of
inequalities in (2.2) can be obtained by strict dissipativity and structural assumptions on
the underlying OCP, inequality (2.3) is in general difficult to prove. Therefore, we will
first give sufficient conditions developed in [29]1 that yield (2.3) for V = Ṽ N . Since un-
derstanding the results presented here without having studied [29] might be challenging,
we will sketch the ideas in this reference and which are used here.2 It is not our ambition
to recapitulate this work, but rather to explain why the properties presented therein are
sufficient to prove (2.3).

Then, in Sections 2.2.1 and 2.2.2 we present two special structures of OCPs that exhibit
these conditions and thus practical asymptotic stability.

1We mention that the formulas taken from [29] look slightly different here since all the cost functionals
in [29] are averaged, i.e., JN (x,u) is divided by N .

2A consolidated and less technical presentation of the results in this chapter can be found in [32].
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Proposition 2.6 (The Lyapunov inequality). Consider the OCP (1.3). We assume

1. Strict dissipativity at (xe, ue) and λ bounded on X.

2. (a) There is C ′ ≥ 0 such that ∀x ∈ X,∀ε > 0 the quantity

Qε := #{k ∈ {0, . . . , N − 1} : ‖xu
?
N,x(k, x)− xe‖ ≤ ε}

satisfies Qε ≥ N − C′

α`(ε)
, with α` from strict dissipativity and u?N,x denoting the

optimal control for JN (x,u).

(b) There is C̃ ′ ≥ 0 such that ∀x ∈ X,∀ε > 0 the quantity

Q̃ε := #{k ∈ {0, . . . , N − 1} : ‖xũ
?
N,x(k, x)− xe‖ ≤ ε}

satisfies Q̃ε ≥ N − C̃′

α`(ε)
, with ũ?N,x denoting the optimal control for J̃N (x,u).

3. There are δ̄ > 0, N0 ∈ N, γV ∈ K∞ such that for all ρ ∈ (0, δ̄], all N ∈ N≥N0 and all
x ∈ Bρ(xe) it holds

|V N (x)− V N (xe)| ≤ γV (ρ), (2.7)

|Ṽ N (x)− Ṽ N (xe)| ≤ γV (ρ). (2.8)

4. There are N1 ∈ N,∆ ∈ L such that

`(x, µN ) ≤ V N (x)− V N (xµ
N

(1, x)) + ∆(N) (2.9)

holds for all x ∈ X, N ≥ N1 + 1, and µN from Algorithm 1.

5. The function ` is continuous and λ is Lipschitz continuous on Bδ̄(xe).

Then, inequality (2.3) holds for V = Ṽ N , α3 = α`, µ = µN defined in Algorithm 1 and
some3 δ = δ̃ ∈ L.

Proof. It was proven in [29, Thm. 7.6] that under the imposed assumptions there is δ̃ ∈ L
such that for all x ∈ X, k ∈ N, N ∈ N sufficiently large and µN from Algorithm 1 we have

J̃K(x, µN ) ≤ Ṽ N (x)− Ṽ N (xµ
N

(K,x)) + δ̃(N). (2.10)

For K = 1 and with the fact that xµN (1, x) = f(x, µN (x)) we obtain

Ṽ N (f(x, µN (x)) ≤ Ṽ N (x)− ˜̀(x, µN (x)) + δ̃(N) ≤ Ṽ N (x)− α`(‖x− xe‖) + δ̃(N),

in which the second inequality follows from strict dissipativity.
3For an upper bound for δ̃ see Theorem 2.13 and Theorem 2.17.
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Remark 2.7 (Turnpike property). The second property in Proposition 2.6 describes (a
variant of) the turnpike property. It states that if we fix a distance ε to the optimal
equilibrium (the so called turnpike), optimal trajectories will stay within this neighborhood
for a minimum number of time instants which increases with the optimization horizon N .
If we fix the horizon N and enlarge ε, we also obtain a larger number of time instants
at which the optimal trajectory is close to the equilibrium. The works of Dorfman et al.
[19] and von Neumann [85] are fundamental for the investigation of this property. Another
prominent reference is the work McKenzie [58], while collections of turnpike theorems can
be found in the works of Zaslawski, see e.g. [89]. An illustration of the turnpike property
for Example 2.14 can be seen in Figure 2.2.

0 2 4 6 8 10

k

0

1

2

3

4

5

x
u
⋆ N
,x
0
(k
,
x
0
)

Figure 2.2: Open-loop opimal trajectories (black) for N = 2, . . . , 10 and optimal equilib-
rium (red).

Let us now start explaining why the construction of inequality (2.3) for V = Ṽ N works
by means of the conditions in Proposition 2.6. The aim is to establish the inequality

V N (x) ≤ V N−1(x) + `(xe, ue) + ε (2.11)

for a ‘small’ error ε > 0. This is helpful because the continuity assumptions (third and
fifth condition in Proposition 2.6) and the turnpike property yield the following relation

Ṽ N (x) = V N (x) + λ(x)− V N (xe) + νx,N (2.12)

between the original and the modified optimal value function for some error term νx,N .
Thus, using first (2.12), then (2.11), the Dynamic Programming Principle (DPP)4, and

4For more information on the DPP we refer to the famous books by Bertsekas [7] and Bellmann [5].
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xe k

x(k)

N − 1 Nk′

x

x̄

Figure 2.3: Construction of inequality (2.11)

then again (2.12) and (2.5) we get

Ṽ N (f(x, µN (x))) = V N (f(x, µN (x))) + λ(f(x, µN (x)))− V N (xe) + νf(x,µN (x)),N

≤ V N−1(f(x, µN (x))) + `(xe, ue) + λ(f(x, µN (x)))− V N (xe)

+ νf(x,µN (x)),N + ε

= V N (x)− `(x, µN (x)) + `(xe, ue) + λ(f(x, µN (x)))− V N (xe)

+ νf(x,µN (x)),N + ε

= Ṽ N (x)− λ(x)− `(x, µN (x)) + `(xe, ue) + λ(f(x, µN (x)))

+ νx,N + νf(x,µN (x)),N + ε

= Ṽ N (x)− ˜̀(x, µN (x)) + νx,N + νf(x,µN (x)),N + ε.

Analyzing all the error terms5 that is νx,N , νf(x,µN (x)),N and ε, yields (2.3) for a δ = δ̃(N)

with δ̃ ∈ L.
The remaining question is how inequality (2.11) can be established. Because of the

turnpike property (second condition in Proposition 2.6), we know that optimal trajectories
are close to the optimal steady state xe for a minimum number of time instants. Let
u?N−1,x be an optimal control sequence of length N − 1 for initial value x. In Figure 2.3
the corresponding open-loop optimal trajectory xu

?
N−1,x(·, x) is depicted in black. At time

k′, where the optimal open-loop trajectory is close to xe, we can apply a feasible control
value u at the cost close to `(xe, ue) and obtain a new state x̄ at time k′ + 1 that is still
close to xe. From this point on we use the optimal control sequence of length N − 1− k′
for initial value x̄. This way, we have constructed a control sequence of length N for initial
value x (concatenation of black and red in Figure 2.3). By local uniform continuity of
the optimal value function V N−1−k′ (third condition in Proposition (2.6)), we know that

5An analysis of the error terms is conducted in the references [29, 32].
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V N−1−k′(xu
?
N−1,x(k′)) and V N−1−k′(x̄) do not differ too much. More specifically, we make

our construction such that the cost `(xu
?
N−1,x(k′, x), u) added to the value of the prolonged

tail V N−1−k′(x̄) does not exceed the value of the original tail V N−1−k′(xu
?
N−1,x(k′)) by

`(xe, ue) + ε. Proceeding this way and using the DPP, we obtain

V N (x) ≤
k′−1∑
k=0

`(xu
?
N−1,x(k, x), u?N−1,x(k)) + `(xu

?
N−1,x(k′, x), u) + V N−1−k′(x̄)

≤
k′−1∑
k=0

`(xu
?
N−1,x(k, x), u?N−1,x(k)) + V N−1−k′(xu

?
N−1,x(k′, x)) + `(xe, ue) + ε

= V N−1(x) + `(xe, ue) + ε,

which is the desired inequality (2.11).

2.2.1 Nonlinear Systems with Compact Constraints

We will now present the first class of OCPs for which a practical LF can be established by
means of Proposition 2.6. We require the OCPs to satisfy the following assumptions.

Assumption 2.8 (Strict dissipativity). The OCP of minimizing (1.3) is strictly dissipative
at (xe, ue) with storage function λ and α` ∈ K∞.

Assumption 2.9 (Continuity and compactness). The state and control constraint set X
and U are compact, the functions f , ` and λ from Assumption 2.8 are continuous, and λ
is Lipschitz continuous on a ball Bδ(xe) around xe.

We remark that under dissipativity the function ˜̀ is zero in (xe, ue). Hence, in our
finite-dimensional case with X ⊆ Rn and U ⊆ Rm Assumption 2.9 implies the inequality

˜̀(x, u) ≤ α(‖x− xe‖) + α(‖u− ue‖) (2.13)

for all x ∈ X, u ∈ U and a suitable α ∈ K∞.

Assumption 2.10 (Local controllability on Bε(xe)). There is ε > 0, M ′ ∈ N, C > 0 such
that ∀x ∈ Bε(xe) ∃u1 ∈ UM

′
(x),u2 ∈ UM

′
(xe) with

xu1(M ′, x) = xe, xu2(M ′, xe) = x

and

max {‖xu1(k, x)− xe‖, ‖xu2(k, xe)− xe‖, ‖u1(k)− ue‖, ‖u2(k)− ue‖} ≤ C‖x− xe‖

for k = 0, 1, . . . ,M ′ − 1.

Assumption 2.11 (Finite time controllability into Bε(xe)). For ε > 0 from Assump-
tion 2.10 there is K ∈ N such that for each x ∈ X there is k ≤ K and u ∈ Uk(x) with

xu(k, x) ∈ Bε(xe).
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Assumption 2.12 (Polynomial bounds). There are constants C1, C2, p, η > 0 such that

C1(‖x− xe‖p) ≤ ˜̀(x, u) ≤ C2(‖x− xe‖p + ‖u− ue‖p) (2.14)

holds for all x ∈ Bη(xe), u ∈ Bη(ue) with (xe, ue) and ˜̀ from dissipativity.

Theorem 2.13. Consider an OCP (1.3) satisfying Assumptions 2.8–2.11. Then there
exists N0 ∈ N and functions δ ∈ L and αV ∈ K∞ such that the inequalities

α`(‖x− xe‖) ≤ Ṽ N (x) ≤ αV (‖x− xe‖) (2.15)

and

Ṽ N (f(x, µN (x))) ≤ Ṽ N (x)− α`(‖x− xe‖) + δ(N) (2.16)

hold for all N ≥ N0, x ∈ X and µN from Algorithm 1. In particular, the functions Ṽ N are
practical LFs for the economic MPC closed-loop system and the closed loop is practically
asymptotically stable wrt ε→ 0 as N →∞. If, moreover, Assumption 2.12 holds, then the
function δ(N) converges to zero exponentially fast as N → ∞, i.e., there are C > 0 and
θ ∈ (0, 1) with δ(N) ≤ CθN .

Proof. The proof of the theorem is split into three steps. In step one we show how to
obtain inequality (2.15), in step two we deal with inequality (2.16). Finally, in step three
the exponential convergence of δ in (2.16) is deduced.

Step 1: Proof of (2.15). Assumption 2.8 yields Ṽ N (x) ≥ α`(‖x− xe‖) ∀x ∈ X. The
upper bound in (2.15) can be deduced from Assumptions 2.9 – 2.11 as follows.

In case x /∈ Bε(xe) with ε from Assumptions 2.10, 2.11, there is a control sequence u

that steers x into the equilibrium in at most M ′+K steps (M ′, K independent of x) and
stays there for an arbitrary number of time steps. Therefore, for each N ∈ N it holds

Ṽ N (x) ≤ J̃N (x,u) ≤ J̃M ′+K(x,u) ≤ (M ′ +K) · max
x∈X,u∈U

˜̀(x, u) =: C̄.

In case x ∈ Bε(xe), there is a control sequence u1 ∈ UM
′
(x) with xu1(M ′, x) = xe and

‖xu1(k, x)−xe‖ ≤ C‖x−xe‖, ‖u1(k)−ue‖ ≤ C‖x−xe‖ for all k = 0, . . . ,M ′−1. Together
with (2.13) this yields

Ṽ N (x) ≤ J̃N (x,u1) ≤ J̃M ′(x,u1) ≤
M ′−1∑
k=0

α(‖xu1(k, x)− xe‖) + α(‖u1(k)− ue‖)

≤ 2M ′α(C‖x− xe‖) =: α̃(‖x− xe‖).

Clearly, α̃ ∈ K∞. If α̃(‖x− xe‖) ≥ C̄ for x /∈ Bε(xe), we get Ṽ N (x) ≤ α̃(‖x− xe‖) for all
x ∈ X. Otherwise, we multiply α̃(‖x− xe‖) by a constant K̄ such that K̄α̃(‖x− xe‖) ≥ C̄
for x /∈ Bε(xe). Combining these considerations yields

Ṽ N (x) ≤ αV (‖x− xe‖) for αV (r) := max{1, K̄}α̃(r)
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and hence (2.15).
Step 2: Proof of (2.16). In Proposition 2.6 we have presented sufficient conditions,

such that (2.16) holds. Thus, we prove that the imposed assumptions yield those five
conditions.

1. Strict dissipativity holds due to Assumption 2.8, boundedness of λ on X follows from
continuity of λ and compactness of X which is Assumption 2.9.

2. (a) Here, we can use [29, Thm. 5.3] (adapted to the non-averaged case), since
JN (x,u?N,x) = V N (x) ≤ N`(xe, ue) + Ṽ N (x)− λ(x) + λ(xu

?
N,x(N)). Compact-

ness of X, continuity of λ and the upper bound on Ṽ N from Step 1 imply the
existence of C1 > 0 with JN (x,u?N,x) ≤ N`(xe, ue) +C1. Hence, [29, Thm. 5.3]
delivers the desired estimate with C ′ = C1 + max

x∈X
2|λ(x)|.

(b) Proceeding analogously as in [29, Thm. 5.3] and with the help of (2.15), the
desired property holds for

C̃ ′ = max
x∈X

αV (‖x− xe‖).

3. Estimate (2.7) has been shown to hold in [29, Thm. 6.4] under dissipativity, a local
controllability condition and boundedness of the rotated stage costs. A closer look
at the proof of the theorem reveals that the latter two conditions can be substituted
by (2.13), Assumption 2.10 and local Lipschitz continuity of λ.

Estimate (2.8) can be deduced the following way: By (2.15), for each x ∈ X and
N ∈ N the inequalities

α`(‖x− xe‖) ≤ Ṽ N (x) ≤ αV (‖x− xe‖) (2.17)

hold and we conclude Ṽ N (xe) = 0 and thus

|Ṽ N (x)− Ṽ N (xe)| = Ṽ N (x) ≤ αV (‖x− xe‖). (2.18)

4. Inequality (2.9) for K = 1 has been shown to hold for ∆(N) = ε(N − 1) in
[29, Thm. 4.2]. For the sake of completeness we check that the assumptions of
Therorem 2.13 include those of [29, Thm. 4.2]: Condition (a) follows from continu-
ity of ` and f , condition (b) is estimate (2.7) which we have shown to hold above.
Condition (c) can be concluded as in [29, Thm. 5.6]. To this end, we conclude [29,
Assumption 5.5] from Assumption 2.9–2.11 as follows: Similiar to Step 1 we construct
an upper bound for J̃N (x,u). This yields an upper bound for JN (x,u), too, since
both functionals only differ by λ(x), λ(xu(N, x)) and N`(xe, ue). Due to continuity
of λ and compactness of X the λ-terms can be bounded and we can proceed as in
the proof of [29, Thm. 5.6].

5. This is Assumption 2.9.
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2.2. Practical Asymptotic Stability for Economic MPC

Step 3: Exponential decay of δ. In order to show that δ(N) in (2.16) converges to
zero exponentially fast we shall look at the construction of δ̃ in [29, Thm. 7.6], cf. the
derivation of (2.10). It holds that δ̃(N) ≤ ε(N) + 12γV (ε̃(N)) + Lλε̃(N) with ε(N) from
[29, Thm. 4.2], γV from (2.7), ε̃ ∈ L and Lλ the Lipschitz constant of λ.

Exponential convergence of ε(N) holds due to [12, Thm. 6.5] if the functions γV in
(2.7),(2.8) and γ`, γf in [29, Thm. 4.2] are polynomial. This holds for γ` and γf due to the
Assumptions 2.9, 2.10 and 2.12. Inspection of the proofs of (2.7) and (2.8) in Step 2 of this
proof reveals that γV is polynomial if ` satisfies Assumption 2.12. This yields exponential
convergence of ε(N). To prove the assertion it is thus sufficient to show that also ε̃(N)

can be chosen to converge to zero exponentially fast.
In the proof of [29, Thm. 7.6], ε̃(N) must be chosen such that Qε̃(N) ≥ cN holds for

some c ∈ (7/8, 1) forQε̃(N) from Step 2. In [12, Thm. 6.5] is was proven that the exponential
turnpike property holds under the assumptions of Theorem 2.13 including Assumption 2.12.
More precisely, for each P ∈ N it was shown that for ε̄P (N) = K̃η(N−P )/(2p), K̃ > 0,
η ∈ (0, 1), p > 0, the inequality Qε̃P (N) ≥ P holds. We claim that ε̃(N) := ε̄dcNe(N)

satisfies the desired properties, where dcNe denotes the smallest integer ≥ cN : On the
one hand, we have ε̃(N) = K̃η(N−dcNe)/(2p) ≤ K̃η1/(2p)η(1−c)N/(2p), implying that ε̃ indeed
decays exponentially fast. On the other hand, Qε̃P (N) ≥ P directly implies the desired
inequality Qε̃(N) ≥ dcNe ≥ cN .

Example 2.14 (Economic growth). Consider the one-dimensional economic growth model
presented in [10], given by

x+ = u, `(x, u) = − ln(Axα − u),

with parameters A = 5 and α = 0.34. We impose state and control constraints X = [0, 10]

and U = [0.1, 5]. The optimal steady state of this OCP is given by (xe, ue) = (xe, xe) with
xe ≈ 2.23 and `(xe, xe) ≈ −1.467. The problem is known to be strictly dissipative at the
optimal equilibrium with a linear storage function6 λ(x) = 0.2306x. In Figure 2.4 we see
that the closed-loop trajectories for different horizon N all converge up to an offset to the
optimal equilibrium. This offset gets smaller as N increases. This is exactly the statement
of Theorem 2.13 whose assumptions are satisfied by this example.

2.2.2 Linear Quadratic Problems

We now consider a second special setting, for which we will prove the existence of a practical
Lyapunov function. Our setting is an extension to the standard linear quadratic regulator.

Assumption 2.15 (Linear quadratic problem). The dynamics and the cost functions are
given by

f(x, u) = Ax+Bu+ c and `(x, u) = xTRx+ uTQu+ sTx+ vTu

6It was proven in [12] and [1] that linear systems with strictly convex costs are strictly dissipative with
a linear storage function.
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Figure 2.4: Closed-loop trajectories (black) for N = 2, . . . , 5 from bottom to top and
optimal equilibrium (red).

with x ∈ Rn, u ∈ Rm, A,B,R,Q are matrices and s, v are vectors of appropriate dimen-
sions with R and Q symmetric and positive definite.

Assumption 2.16 (No constraints). There are no state and control constraints, i.e., X =

Rn and U = Rm.

Note that in this setting there exists a unique optimal steady state xe in the sense of
Definition 2.1. Moreover, [12, Prop. 4.5] shows that xe is strictly dissipative at (xe, ue)

with ˜̀ satisfying Assumption 2.12.

Theorem 2.17. Consider an OCP (1.2) satisfying Assumptions 2.15 and 2.16, let xe be
the optimal steady state and µN the feedback from Algorithm 1. Then xe is practically
asymptotically stable on each compact subset S ⊂ Rn wrt ε → 0 as N → ∞ if and only if
the pair (A,B) is stabilizable.

In this case, the problem is strictly dissipative and the functions Ṽ N are practical LFs
for the closed loop and ε converges to zero exponentially fast in N .

Proof. “⇐”: We first show the implication “Assumptions 2.15 and 2.16 and (A,B) stabil-
izable ⇒ practical asymptotic stability on each compact subset S ⊂ Rn” via the existence
of a practical LF. We proceed as in the proof of Theorem 2.13

Step 1: Proof of (2.15). According to [12, Prop. 4.3] the affine linear quadratic
problem is strictly dissipative with storage function λ(x) = νTx and α`(r) = C1r

2 for
some vector ν ∈ Rn and some constant C1 > 0. This implies the lower bound in (2.15).
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2.2. Practical Asymptotic Stability for Economic MPC

The upper bound can be concluded as follows. In the proof of [12, Prop. 4.3] it was shown
that the rotated stage costs are of the form

˜̀(x, u) = (x− xe)TR(x− xe) + (u− ue)TQ(u− ue),

hence there is C2 > 0 such that ˜̀(x, u) ≤ C2(‖x − xe‖2 + ‖u − ue‖2). Since (A,B)

is stabilizable, for each x ∈ Rn there exists a control sequence u of infinite length and
constants C3 > 0, σ ∈ (0, 1) independent of x, such that

‖xu(k, x)− xe‖ ≤ C3σ
k‖x− xe‖, ‖u(k)− ue‖ ≤ C3σ

k‖x− xe‖

holds for all k ≥ 0. Combining all estimates implies

˜̀(xu(k, x), u(k)) ≤ 2C2C
2
3σ

2k‖x− xe‖2.

We obtain

Ṽ N (x) ≤
∞∑
k=0

˜̀(xu(k, x), u(k)) ≤ 2C2C
2
3/(1− σ2)‖x− xe‖2 =: αV (‖x− xe‖).

Step 2: Proof of (2.16) We show that the assumptions of Theorem 2.17 include those of
[29, Thm. 7.6] on any compact subset S of Rn. To this end, we check the five properties
listed in Proposition 2.6.

1. According to [12, Prop. 4.3] the affine linear quadratic problem is strictly dissipative
with storage function λ(x) = νTx and α`(r) = C1r

2 for some vector ν ∈ Rn and
some constant C1 > 0. This structure of the storage function yields boundedness of
λ on S.

2. Both estimates, (a) and (b), can be concluded as in the proof of Theorem 2.13 as we
restrict the initial state to the compact set S.

3. In order to obtain (2.7) we have a closer look at the optimal value function V N (x).
In Appendix A it is shown that

V N (x) = xTPNx+ bTNx+ dN , (2.19)

with PN symmetric and positive definite and PN is the solution of the backward
Riccati iteration for the standard linear quadratic regulator.

As shown in the proof of [12, Thm. 6.2], V N is bounded uniformly in N on the
compact set S. This yields existence of constants CS , DS such that

CS ≤ V N (x) ≤ DS (2.20)

holds for all x ∈ S and all N ∈ N. This yields boundedness of the vector dN . Now
consider sequences (xi)i∈N in S and (Ni)i∈N in N with xTi PNixi →∞. By (2.20) this
is only possible if bTNixi → −∞. Then, (−xi)TPNi(−xi) → ∞ and bTNi(−xi) → ∞,
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too, which contradicts (2.20). Hence, there is K > 0 independent of N such that
0 ≤ xTPNx ≤ K‖x‖2 for all x ∈ S, and with the same argument there is M > 0

independent of N such that |bTNx| ≤M‖x‖ on S.
The bounds on bTNx immediately imply that the entries of bN are bounded on S.
Since PN is symmetric and positive definite its spectral norm is given by7 ‖PN‖2 =

max
‖x‖=1

xTPNx ≤ max
‖x‖=1

K‖x‖2 = K. Therefore, the entries of PN are bounded on S.

Now, it follows from the uniformity of the deduced bounds that for all N ∈ N, x ∈ S
it holds∣∣V N (x)− V N (xe)

∣∣ ≤ ∣∣xTPNx− (xe)TPNx
e
∣∣+
∣∣bTN (x− xe)

∣∣
≤ K

∣∣‖x‖2 − ‖xe‖2∣∣+M‖x− xe‖
= K |(‖x‖+ ‖xe‖)(‖x‖ − ‖xe‖)|+M‖x− xe‖
≤ 2K max{‖x‖ : x ∈ S} |‖x‖ − ‖xe‖|+M‖x− xe‖
≤ C‖x− xe‖, C > 0.

This concludes the proof of (2.7).

Inequality (2.8) can be concluded as in the proof of Theorem 2.13.

4. Again, for this property we use [29, Thm. 4.2] whose conditions are fulfilled.

5. Since λ is a linear function (cf. Step 1 of this proof) it is Lipschitz continuous on
every neighborhood of the equilibrium.

Step 3: Exponential decay of δ. Completely analogous to Step 3 of the proof of
Theorem 2.13 using [12, Thm. 6.2] instead of [12, Thm. 6.5].

“⇐”: Let the closed-loop system be practically asymptotically stable on some compact
subset S ⊂ Rn with ε→ 0 as N →∞. Then, for each x ∈ S we can choose N large enough
such that the feedback steers the closed loop into an arbitrarily small neighborhood of xe.
This implies stabilizability of (A,B).

Example 2.18 (Continuously stirred tank reactor (CSTR) model). The second example
is a linearized two-dimensional tank reactor model (Example 3.2 in [29]) with affine linear
dynamics

x(k + 1) =

(
0.8353 0

0.1065 0.9418

)
x(k) +

(
0.00457

−0.00457

)
u(k) +

(
0.5559

0.5033

)
and quadratic stage costs `(x, u) = ‖x‖2 + 0.05u2. State and control constraints are given
by X = [−100, 100]2 and U = [−10, 10]. The optimal steady state of this problem is xe ≈
(3.546, 14.653)T , ue ≈ 6.163 with cost `(xe, ue) ≈ 229.1876. As in the previous example,
we observe in Figure 2.5 that the closed-loop trajectories converge into a neighborhood of
xe which is shrinking as N increases. This confirms the result in Theorem 2.17, since the
pair (A,B) in the dynamics is stabilizable and the stage costs are strictly convex.

7As in the proof of [78, Lemma 8.2.1].
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Figure 2.5: Closed-loop trajectories (black) for N ∈ {10, 12, 15, 17} from left to right and
optimal equilibrium (red).

2.3 Transient Performance for Economic MPC

In this section we use the results from Section 2.2 in order to prove an approximate transient
optimality property of economic MPC without terminal constraints. In order to formu-
late the concept of transient optimality, assume that the MPC closed loop is practically
asymptotically stable, implying xµN (K,x) → xe as N → ∞ and K → ∞. Then transi-
ent optimality means that among all trajectories xu(k, x) satisfying ‖xu(K,x) − xe‖ ≤
‖xµN (K,x) − xe‖, the MPC closed-loop trajectories are those with the smallest cost
JK(x,u) — up to an error term which vanishes as N →∞ and ‖xµN (K,x)− xe‖ → 0.

We define

UKε (x) := {u ∈ UK(x) |xu(K,x) ∈ Bε(x)} and

JK(x, µN ) :=
K−1∑
k=0

`
(
xµ

N
(k, x), µN (xµ

N
(k, x))

)
.

Theorem 2.19. Assume that xe is practically asymptotically stable on a set S ⊆ X wrt
ε = ε(N) for the economic MPC closed loop with LF Ṽ N satisfying (2.15) and (2.16).
Assume that there exists αλ ∈ K∞ with |λ(x)| ≤ αλ(‖x− xe‖) for all x ∈ X. Let εK,N :=

‖xµN (K,x)− xe‖ ≤ max{β(‖x− xe‖,K), ε(N)}. Then the inequality

JK(x, µN ) ≤ inf
u∈UKεK,N (x)

JK(x,u) + αV (εK,N ) + 2αλ(εK,N ) +Kδ(N) (2.21)
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Chapter 2. Economic MPC without Terminal Conditions

holds for all K,N ∈ N and all x ∈ S.

Proof. First, by induction from (2.16) we obtain

K−1∑
k=0

˜̀(xµ
N

(k, x), µN (xµ
N

(k, x))) ≤ Ṽ N (x)− Ṽ N (xµ
N

(K)) +Kδ(N). (2.22)

Second, from the DPP

Ṽ N (x) = inf
u∈UK(x)

{
J̃K(x,u) + Ṽ N−K(xu(K,x))

}
and (2.15) we obtain for all K ∈ {1, . . . , N} and u ∈ UKε (x)

J̃K(x,u) = J̃K(x,u) + Ṽ N−K(xu(K,x))︸ ︷︷ ︸
≥Ṽ N (x)

− Ṽ N−K(xu(K,x))︸ ︷︷ ︸
≤αV (ε)

≥ Ṽ N (x)− αV (ε) (2.23)

and we note that for K ≥ N non-negativity of ˜̀ implies the inequality J̃K(x,u) ≥ Ṽ N (x)

for all u ∈ UK(x), implying again (2.23). Third, we have

K−1∑
k=0

˜̀(xu(k, x), u(k)) = J̃K(x,u) = λ(x) + JK(x,u)− λ(xu(K,x)) (2.24)

and Ṽ N (x) ≥ 0. Using these inequalities for all u ∈ UKεK,N (x) we obtain

JK(x, µN )
(2.24)

=
K−1∑
k=0

˜̀(xµ
N

(k, x), µN (xµ
N

(k, x)))− λ(x) + λ(xµ
N

(K,x))

(2.22)
≤ Ṽ N (x)− Ṽ N (xµ

N
(K,x)) +Kδ(N)− λ(x) + λ(xµ

N
(K,x))

(2.23)
≤ J̃K(x,u) + αV (εK,N )− Ṽ N (xµ

N
(K,x)) +Kδ(N)

− λ(x) + λ(xµ
N

(K,x))

(2.24)
= JK(x,u) + αV (εK,N )− Ṽ N (xµ

N
(K,x)) +Kδ(N)

− λ(xu(K,x)) + λ(xµ
N

(K,x))

≤ JK(x,u) + αV (εK,N ) +Kδ(N) + 2αλ(εK,N )

implying the desired inequality.

Remark 2.20. i) Note that all assumptions of Theorem 2.19 are satisfied if either
Assumptions 2.8–2.11 or Assumptions 2.15–2.16 are satisfied. In the latter case the
existence of αλ follows because in the linear quadratic setting λ is either a linear or a
quadratic function, cf. [12]. Moreover, if Assumption 2.12 holds then δ(N) converges
to 0 exponentially fast as N → ∞, implying that the error terms on the right hand
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side of (2.21) converge to 0 if K,N →∞ with K ≤ cN for some c > 0. In addition,
in this case ˜̀ and Ṽ N have identical polynomial growth near xe, implying that the
convergences β(r, k)→ 0 as k →∞ and ε(N)→ 0 as N →∞ are exponentially fast
and thus all error terms in (2.21) converge to 0 exponentially fast as K,N →∞ with
K ≤ cN for some c > 0.

ii) Optimal trajectories that result from minimizing (1.3) in general do not end up near
xe, see, e.g., the examples in [12]. Hence, for u ∈ UK(x) the value JK(x,u) can be
much smaller than JK(x, µN ) and thus estimate (2.21) can only hold if we restrict
the control sequences to u ∈ UKεK,N (x). In words, the estimate states that among all
trajectories converging to a neighborhood of xe, the ones generated by MPC are —
up to the error terms — the ones with the lowest cost JK(x,u).

2.3.1 Numerical Simulations

In this section we illustrate the results on the transient performance of our MPC controller
by means of the Examples 2.14 and 2.18.

Example 2.14

For this example, we compare the MPC controllers µN computed using four different cost
functions:

• the original economic stage cost `  µN,eco

• the rotated stage cost ˜̀ from (2.5)  µN,rot

• the stabilizing quadratic stage cost `stab(x, u) = (x− xe)2 + (u− ue)2

 µN,stab

• the stabilizing quadratic stage cost

`tayl(x, u) = `(xe, ue) +
1

2
0.12125(x− xe)2

−0.05315(x− xe)(u− ue) +
1

2
0.05315(u− ue)2,

whose weights were derived from a 2nd order Taylor approximation of ` in (xe, ue)

 µN,tayl

Now, in order to investigate approximate optimal transient performance, for given N and
K we calculate JK(x, µN ) for the different MPC controllers8. In Figure 2.6 we show
the values for fixed N = 5 and varying K = 1, . . . , 20. One sees that the values of the
cost functionals are almost parallel, which is due to the fact that the difference is mainly
accumulated in the first few time steps. The value of JK(x, µN,eco) is almost identical

8In this comparison JK(x, µN ) is always evaluated using the economic cost `. The different cost func-
tions only refer to the computation of µN (x) in step (2) of the Algorithm 1.
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Figure 2.6: JK(x, µN ) for N = 5, x = 0.1 and varying K subject to different feedbacks
µN .

to JK(x, µN,rot) and both are better than the other feedbacks. Observe that the merely
practical stability of µN,eco does not have a visible effect in this comparison.

Next, we investigate two fixed values for K and varying optimization horizons N in
Figure 2.7. While in Figure 2.7 left µN,eco yields the best performance for all N , Figure 2.7
right reveals that JK(x, µN,eco) might not yield the best performance for very small N , but
converges to JK(x, µN,rot) asN increases and is slightly better than µN,rot and considerably
better than µN,tayl and µN,stab for most values of N .

Example 2.18

For this example we only compare µN,eco and µN,rot since by [12, Proposition 4.5] the
rotated costs ˜̀ of this problem are quadratic, i.e. ˜̀ coincides with the “canonical” choice
of stabilizing quadratic costs `stab and with its 2nd order Taylor approximation `tayl. Our
simulations show that for fixed N = 10 and varying K = 1, . . . , 100 the closed loop values
for µN,eco and µN,rot are virtually indistinguishable, cf. Figure 2.8. For fixed K and varying
N , Figure 2.9 shows (again) that even though the performance of µN,eco might not be the
best for small N , JK(x, µN,eco) converges to JK(x, µN,rot) as N increases and µN,eco (at
least slightly) outperforms µN,rot for sufficiently large N .
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3 | Multiobjective Optimization

The purpose of this chapter is to build the basis for multiobjective (MO) Model Predictive
Control (MPC) that will be dealt with in Chapter 4 and 5. Therefore, we state our
definition and notation of MO optimization problems, a corresponding notion of optimality,
and we will present results on existence of solutions. Furthermore, we briefly mention the
solution methods to MO optimization problems that we use in numerical experiments. The
first part of this chapter was written by means of the references Ehrgott [20], Eichfelder
[21], Jahn [45], Miettinen [61], Sawaragi et al. [77].

3.1 Basic Definitions and Selected Properties in Multiobjec-
tive Optimization

For functions (h1, . . . , hs) =: h : X → Rs, s ∈ N, we consider the following MO optimiza-
tion problem

“ min
x∈X

” (h1(x), . . . , hs(x)) . (3.1)

The functions h1, . . . , hs are called objective functions and the set X ⊆ Rn is called ad-
missible set. Of course, it would be preferable to obtain a value hI ∈ Rs that satisfies
hIi = minx∈X hi(x) for each i ∈ {1, . . . , s}. The value hI is called the ideal or utopia value
to problem (3.1). Since it is in general not possible to achieve this value – especially when
the objectives are conflicting – the ‘classical’ meaning of the min-operator breaks down.
This is why we write the min in (3.1) in quotation marks for the moment. The appropriate
notion of optimality in the context of MO optimization that we will use in this thesis, is
formalized as follows.

Definition 3.1 (Pareto optimality, nondominance). A point x? ∈ X is called a Pareto-
optimal solution (POS) to the MO optimization problem (3.1) if there is no feasible x ∈ X
such that

hi(x) ≤ hi(x?) for all i ∈ {1, . . . , s} and
hk(x) < hk(x

?) for at least one k ∈ {1, . . . , s}.

The respective value h(x?) := (h1(x?), . . . , hs(x
?)) is called nondominated and the set of

all such values the nondominated set or Pareto front.
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Figure 3.1: Schematic illustration of the admissible (dashed) and nondominated values
(red), and the ideal value hI of a bicriterion optimization problem.

A point x? ∈ X is called a weakly POS to the MO optimization problem (3.1) if there
is no feasible x ∈ X such that hi(x) < hi(x

?) holds for all i ∈ {1, . . . , s}.

In this section we will use the following abbreviations: H := {h(x)|x ∈ X}, XP :=

{x ∈ X|x is a POS to (3.1)} and HP := {h(x)|x ∈ XP}.

Convention: Throughout the thesis the min- and argmin-operator are in the context of
MO optimization thought of as follows:

min
x∈X

(h1(x), . . . , hs(x)) = HP ,

argmin
x∈X

(h1(x), . . . , hs(x)) = XP .

In Figure 3.1 we have illustrated what the ideal point and nondominated solutions to a
bicriterion (i.e. s = 2 in (3.1)) optimization problem can look like. As depicted in the
figure it is not unusual to have a whole continuum of nondominated solutions. Moreover,
those solutions are always elements of the boundary of the set of admissible values (see
[20] for a proof).

We point out that the nomenclature in MO optimization is not unified. POSs are also
called efficient, noninferior or Edgeworth-Pareto optimal1 solutions. The nondominated
set which is the solution to (3.1) is – also in this thesis – sometimes referred to the Pareto
front. It is worth mentioning that Pareto optimality is just one concept to define optimal
solutions in the theory of MO optimization. A more general approach can be found in [20]
or [77]. Without going into detail we just note that the dominance structure that is used
in Definition 3.1 is the convex cone Rs≥0.

Remark 3.2 (Equivalent characterizations of POSs). x? ∈ X is a POS to (3.1) iff

1. there is no x ∈ X, x 6= x?, such that hi(x) � hi(x
?) for all i ∈ {1, . . . , s}.

1Francis Y. Edgeworth (1845-1926) and Vilfredo F. Pareto (1848-1923) both contributed to the concept
of optimality in MO optimization, see e.g. [61, Section 2.2].
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h1(x)

h2(x)

Figure 3.2: Schematic illustration of a strongly Pareto-optimal solution (red) to a bicri-
terion optimization problem.

2. there is no x ∈ X such that h(x)− h(x?) ∈ −Rs≥0 \ {0}.

Definition 3.3 (Strong Pareto optimality). A point x? ∈ X is called a strongly Pareto-
optimal solution to problem (3.1) if hi(x?) ≤ hi(x) holds for all x ∈ X and all i ∈
{1, . . . , s}.

Clearly, any strongly POS is Pareto optimal in the sense of Definition 3.1. Moreover, in
case a strongly POS exists, its value h(x?) coincides with the ideal or utopia value hI . An
illustration of a bicriterion optimization problem with a strongly Pareto-optimal solution
can be found in Figure 3.2.

As in the theory of scalar-valued optimization, there exists the notion of local and
global (Pareto-)optimal solutions (see [61]) as well as ε-(Pareto-)optimal solutions, [21].
Moreover, we point out that Definition 3.1 is related to the concept of a strict optimizer
in scalar-valued optimization, whereas a nonstrict optimizer corresponds to the notion of
a weak POS, [20, 21]. Since we do not put emphasis on these aspects in this thesis, we
restrict ourselves to mentioning them and move on to the question of existence. As in
scalar-valued optimization there exists a wide variety on sufficient conditions which ensure
that the nondominated set to a MO optimization problem is not empty. In Lemma 3.6 we
will state a condition that is well suited for our purposes. Furthermore, we have to deal
with an issue that does not occur in scalar-valued optimization.

Imagine that we are given a minimizer to a scalar-valued optimization problem. Then,
by definition, the optimal value is smaller than any feasible value. In general, this property
does not hold true in MO optimization problems. In Figure 3.3 the nondominated value
(red dot) has a better (smaller) value for objective one, but a worse value for objective two
than the admissible value (black dot). Hence, the nondominated value does not dominate
the feasible value.2 The way to deal with this situation is not to investigate whether a POS
has a smaller value than some feasible point but to ensure that for any feasible solution
there is a POS with smaller value in each objective. This property is formalized as follows.

2Of course, this situation cannot occur for a strongly POS.
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h1(x)

h2(x)

Figure 3.3: Nondominated values (red) do not always dominate arbitrary feasible points
(black).

h1(x)

h2(x)

h

h̃

h− R2
≥0 h̃− R2

≥0
h1(x)

h2(x)

h

h̃

h− R2
≥0

h̃− R2
≥0

Figure 3.4: Two bicriterion optimization problems with Rs≥0-compact set of admissible
values.

Definition 3.4 (External stability). Consider the MO optimization problem (3.1). The set
HP is called externally stable if for each h ∈ H there is h? ∈ HP such that h ∈ h? +Rs≥0.
This is equivalent to H ⊂ HP + Rs≥0.

Existence and external stability of nondominated solutions can both be ensured using
the following compactness notion.

Definition 3.5 (Rs≥0-compactness). A set H ⊂ Rs is said to be Rs≥0-compact if for any
h ∈ H the section (h− Rs≥0) ∩H is compact.

In Figure 3.4 we have illustrated R2
≥0-compactness for the set of admissible values of

two bicriterion optimization problems. The set H on the left is already compact and
thus immediately R2

≥0-compact, whereas the set H on the right only exhibits the weaker
property of R2

≥0-compactness. To illustrate what a non externally stable set HP can look
like, let us slightly modify the example on the left in Figure 3.4 by removing a part of the
boundary, see Figure 3.5. In that case, the relation H ⊂ HP +Rs≥0 is obviously wrong and
externally stability is not given.
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h1(x)

h2(x)

Figure 3.5: Example of a bicriterion optimization problem with HP (red) which is not
externally stable.

Lemma 3.6 (Cone-compactness implies external stability). Consider the MO optimization
problem (3.1) and assume that H is nonempty. If H is Rs≥0-compact, then the set of
nondominated solutions HP is nonempty and externally stable.

For a proof of the statements we refer the reader to [77, Section 3.2] or [20, Section 2.2].
Especially in the first reference weaker and also more general conditions that guarantee
existence of POSs are presented.

3.2 Computation of Pareto-optimal Solutions

Just as in scalar-valued optimization there is a broad amount of methods to calculate
solutions to MO optimization problems such as (3.1). The main idea which many of these
methods share is to obtain one ore more solutions by solving an auxiliary scalar-valued
optimization problem that yields a POS. Here, we do not provide an overview of existing
methods. Instead, we refer to the literature (e.g. [9, 15, 20, 21, 61] ) and just mention that
we have used the following methods in our implementation: The Pascoletti-Serafini scalari-
zation, see [21, 70], the method of the global criterion, see [61], the weighted sum-approach,
see [20, 61], and a genetic algorithm called NSGA II, see [15]. The genetic algorithm is
implemented as function gamultiobj in Matlab and due to the lack of theoretical results
only used as fallback. An advantage of NSGA II is that it returns a representation of the
whole set of POSs and can be applied without checking any assumptions. Even though
the weighted sum-approach is just a special case of the Pascoletti-Serafini scalarization,
we will briefly present it for two reasons. Firstly, the weighted sum-approach seems to
be the best known (and easy) solution method to MO optimization problems in general,
and a popular approach to MO MPC in particular, see [6, 25, 52, 73, 81]. Secondly, there
are nice theoretical results if the approach is applied to (strictly) convex MO optimization
problems.
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3.2.1 The Weighted Sum-Approach and Convex Problems

The basic idea of this approach is to transform the MO optimization problem (3.1) into a
scalar-valued optimization. By means of weights w = (w1, . . . , ws), wi ∈ R≥0 that satisfy
the equality

∑s
i=1wi = 1, one defines the weighted sum

S(w, x) :=
s∑
i=1

wihi(x) (3.2)

and solves

min
x∈X

S(w, x) (3.3)

instead of (3.1). The justification for doing so is given in the following statement.

Lemma 3.7. Consider weights wi ∈ R≥0 satisfying
∑

iwi = 1 and let x? be a solution of
(3.3).

1. If wi > 0 for all i, then x? is a POS to (3.1).

2. If x? is a unique solution of (3.3), then it is a POS to (3.1).

Proof. 1. x? is a solution to (3.3) with wi > 0 for all i ∈ {1, . . . , s}, i.e.
∑s

i=1wihi(x
?) ≤∑s

i=1wihi(x) for all x ∈ X. Let us assume that x? is not a POS to (3.1). By
Definition 3.1 this implies the existence of x̄ ∈ X such that hi(x̄) ≤ hi(x

?) for all
i ∈ {1, . . . , s} and hk(x̄) < hk(x

?) for at least one k ∈ {1, . . . , s}. Thus, with the
assumption wi > 0, we have

∑s
i=1wihi(x̄) <

∑s
i=1wihi(x

?), which is a contradiction.

2. Let x? be a unique solution to (3.3), i.e.
∑s

i=1wihi(x
?) <

∑s
i=1wihi(x) for all x ∈

X \ {x?}. We assume that x? is not a POS to (3.1), i.e. there is x̄ ∈ X such that
hi(x̄) ≤ hi(x?) for all i ∈ {1, . . . , s} and hk(x̄) < hk(x

?) for at least one k ∈ {1, . . . , s}.
This yields

∑s
i=1wihi(x̄) ≤

∑s
i=1wihi(x

?) (because the weights are not assumed to
be strictly positive) and thus contradicts the uniqueness of x?.

Lemma 3.7 implies that by solving (3.3) with positive weights we always obtain a POS
to (3.1). The converse is in general not true. If the Pareto front contains concave parts,
they cannot be obtained via a weighted sum (see [20, Fig. 3.3] or [45, Fig. 11.10] for an
illustration of this fact). Clearly, this aspect is the major drawback of the approach.3

However, such a behaviour cannot occur if the Pareto front is convex.

3Other drawbacks of the weighted sum-approach are: It is very difficult to obtain a good (e.g. evenly
spread) representation of the nondominated set by a clever choice of the weights, and even if some decision
maker had clear preferences for the objectives, fixing weights might not reflect those preferences, see [13].
Thus, quite often, a sound knowledge of the nondominated set must be known a priori in order to use
appropriate weights.
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Definition 3.8 (Convex MO optimization problem). The MO optimization problem (3.1)
is called convex if X is a convex set and all objective functions hi, i ∈ {1, . . . , s}, are
convex functions. It is called strictly convex if X is a convex set and all objective functions
hi, i ∈ {1, . . . , s}, are strictly convex functions.

Lemma 3.9. Let (3.1) be a convex problem and let x? ∈ XP . Then there exist weights
w1, . . . , ws ≥ 0,

∑
iwi = 1, such that x? is a solution to (3.3).

A proof of this lemma can be found in [20, Section 3.2]. We note that it is not necessary
that (3.1) be a convex problem to obtain the statement in Lemma 3.9. The weaker condition
of H being Rs≥0-convex (i.e. H + Rs≥0 is convex) is already sufficient, see [20, Thm. 3.5].
For strictly convex problems the previous Lemmas 3.7 and 3.9 yield the following.

Corollary 3.10. Let (3.1) be a strictly convex problem. Then x? is a POS to (3.1) if and
only if there exist wi ≥ 0,

∑
iwi = 1, such that x? is a solution to (3.3).

Proof. “⇒”: Let x? be a POS to (3.1). Lemma 3.9 yields the existence of weights wi ≥ 0,∑
iwi = 1, such that x? is a solution to (3.3).

“⇐”: Consider arbitrary weights wi ≥ 0,
∑

iwi = 1, and let x? be a corresponding solution
to (3.3). Our assumptions imply that (3.3) is a strictly convex optimization problem and
thus, x? is the unique solution. The second statement in Lemma 3.7 then yields that x? is
indeed a POS to (3.1).

This means that the set of nondominated solutions can completely be characterized via
a weighted sum-approach if the MO optimization problem is strictly convex. We will make
use of this statement in Chapter 5.
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4 | Multiobjective Stabilizing Model
Predictive Control

In this chapter we move on from Model Predictive Control (MPC) for scalar-valued optimal
control problems (OCPs) to MPC for multiobjective (MO) OCPs. This means we address
problems that are equipped with s stage costs `1, . . . , `s : X× U→ R. Such problems can
occur in (mainly) two situations. Either, we are given one system that simply has multiple
objectives that have to be minimized simultaneously, or there are multiple systems or
subsystems – collected in the overall system (1.1) – that all have their own objective(s). In
the latter situation, we assume that the systems/agents aim for a cooperative control and
that there is a communication structure such that the computation of common solutions is
possible. This can be ensured via a central entity that communicates among the systems
and calculates control actions.

No matter which situation, the MO counterpart of the infinite-horizon OCP (1.2) is

min
u∈U∞(x0)

(J∞1 (x0,u), . . . , J∞s (x0,u))

s.t x(0, x0) = x0 (4.1)

x(k + 1, x0) = f(x(k, x0), u(k)) ∀ k ∈ N0,

in which the min-operator is supposed to be understood in the sense of Chapter 3. In this
chapter and in Chapter 5 we use the abbreviation JN (x,u) :=

(
JN1 (x,u), . . . , JNs (x,u)

)
,

N ∈ N ∪ {∞}, for the vector-valued cost functional.
Some results in this chapter have been published in [36].

4.1 Approaches and Challenges in Multiobjective MPC

Given the infinite-horizon MO OCP (4.1), a first idea is to transform the (now) MO
optimization problem

min
u∈UN (x)

JN (x,u)

s.t. (1.1),
(4.2)

that has to be solved in step (2), Algorithm 1, into a weighted sum with fixed (see, e.g.
[73, Sec. 6.2.4], [25, 81]) or time-varying (see [6]) weights. Advantages of this strategy are
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the low computational effort and the availability of the ‘standard’ MPC theory, however,
for the following reasons we will proceed differently:

1. The choice of weights might not represent the decision maker’s preferences, see e.g.
the discussion in [61, Sec. 3.1.3].

2. In general, not all Pareto-optimal solutions (POSs) can be attained (see the references
mentioned in Section 3.2.1).

3. As stated in [40], we do not obtain performance estimates for every objective but
only for the weighted sum.

Other approaches to handle the MO optimization problem are hierarchical MPC algorithms
(e.g. [43]), the so called utopia-tracking approach in [90] and iterative schemes, see [56].
Apart from the last reference, they all share the idea of specifying a hierarchy among the
objectives and to make use of the theory of Lyapunov stability by establishing a Lyapunov
function (LF) (see Definition 1.7).

Another idea to deal with (4.1) by means of MPC, in which no prioritization of object-
ives has to be set, is to directly execute Algorithm 1, i.e. by just choosing an arbitrary1

Pareto-optimal solution to the MO optimization problem (4.2), see [24, 50, 66, 69, 83].
Although this procedure might work (in terms of trajectory convergence) for the examples
in this chapter, it does not allow for a ’good’ performance analysis of the single objectives.
This fact will be demonstrated in Section 4.4. Moreover, we will see in Chapter 5 that a
random choice of POSs does not yield desirable results for more general cost criteria.

Nevertheless, our approach is conceptually closer to the latter references, since we do
not want to prioritize objectives a priori. The main idea in this chapter and in Chapter 5
is to add contraints to the MO optimization in step (2), Algorithm 1 that enable us
to formulate performance statements for all objectives and to ensure convergence of the
closed-loop trajectory. Proceeding this way (and as opposed to [6, 25, 43, 73, 81, 90]), we
will not define an optimal value function that serves as Lyapunov function (LF).

In the MPC context and for N ∈ N ∪ {∞} we will use the following notation:

UNP (x) := {u ∈ UN (x)|u POS to (4.2)}
JN (x) := {JN (x,u)|u ∈ UN (x)}
JNP (x) := {JN (x,u) ∈ JN (x)|u ∈ UNP (x)}.

For our analysis we start with a result on POSs that resembles an aspect of the Dynamic
Programming Principle (DPP).

Lemma 4.1 (Tails of POSs are POSs). If u? ∈ UNP (x), then u?,K := u?(· + K) ∈
UN−KP (xu

?
(K,x)) for allK ∈ N<N , where u?(·+K) := (u?(K), u?(K + 1), . . . , u?(N − 1)).

1Of course, the chosen solutions are not completely arbitrary, but usually subject to expert decisions.
We point out that – to the best of our knowledge – performance consideration do not play a role in choosing
a POS in the mentioned references.

38



4.1. Approaches and Challenges in multiobjective MPC

Proof. We first note that u? ∈ UNP (x) ⊂ UN (x) implies u?,K ∈ UN−K(x), see e.g. [32,
Lemma 3.12]. Let us assume that u?,K is not a POS of length N − K for initial value
xu

?
(K,x). This implies the existence of u ∈ UN−K(xu

?
(K,x)) satisfying

∀ i ∈ {1, . . . , s} : JN−Ki (xu
?
(K,x),u) ≤ JN−Ki (xu

?
(K,x),u?,K) and

∃ j ∈ {1, . . . , s} : JN−Kj (xu
?
(K,x),u) < JN−Kj (xu

?
(K,x),u?,K).

Since by definition

JNi (x,u?) =
K−1∑
k=0

`i(x
u?(k, x), u?(k)) + JN−Ki (xu

?
(K,x),u?(·+K)︸ ︷︷ ︸

u?,K

)

holds for all K ∈ N≤N , we obtain

∀ i ∈ {1, . . . , s} : JNi (x,u?) ≥
K−1∑
k=0

`i(x
u?(k, x), u?(k)) + JN−Ki (xu

?
(K,x),u) and

∃ j ∈ {1, . . . , s} : JNj (x,u?) =

K−1∑
k=0

`j(x
u?(k, x), u?(k)) + JN−Kj (xu

?
(K,x),u?,K)

>
K−1∑
k=0

`j(x
u?(k, x), u?(k)) + JN−Kj (xu

?
(K,x),u).

Using again [32, Lemma 3.12], it holds that the concatenated control sequence ū =

(u?(0), . . . , u?(K − 1),u) is contained in the set UN (x), i.e. we get

∀ i ∈ {1, . . . , s} : JNi (x,u?) ≥ JNi (x, ū) and

∃ j ∈ {1, . . . , s} : JNj (x,u?) > JNi (x, ū).

This contradicts the fact that u? ∈ UNP (x).

In this chapter, we investigate MO MPC for ‘classical’ or ‘stabilizing’ stage costs, that
is we assume the following.

Assumption 4.2 (‘Classical’ stage costs). 1. There is an equilibrium pair (x∗, u∗) ∈
X× U, i.e., f(x∗, u∗) = x∗.

2. There are α`,i ∈ K (see Def. 1.5) such that all stage costs `i, i ∈ {1, . . . , s}, satisfy
minu∈U `i(x, u) ≥ α`,i(‖x− x∗‖) ∀x ∈ X.

Moreover, we require that the infinite-horizon MO OCP (4.1) that we intend to solve
by means of MPC, has POSs with finite nondominated values for all objectives. Sufficient
conditions that ensure this property are presented in [32, Sec. 4.1] for single-objective
OCPs and can be carried over to our MO setting. Necessary and sufficient conditions for
the existence of POSs on the infinite-horizon based on Pontryagin principles are derived
in [42].
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Remark 4.3. In Assumption 4.2 it is required that all stage costs are positive definite wrt
to the same equilibrium. This means that the sequence ū ∈ UN (x∗) with ū(k) = u∗ for
all k ∈ {1, . . . , N}, is a strongly POS according to Def. 3.3 for the problem of minimizing
(4.2) with initial value x = x∗ for each N ∈ N ∪ {∞}.

4.2 Multiobjective MPC with Terminal Conditions

In this section we will analyze MO MPC using terminal conditions. This means that there
is a terminal constraint set X0 ⊆ X and a terminal cost Fi : X0 → R≥0, i ∈ {1, . . . , s},
such that the MO optimization problem that we solve in the MPC algorithm now reads

min
u∈UN (x)

JN (x,u), with JNi (x,u) :=
N−1∑
k=0

`i(x(k, x), u(k)) + Fi(x(N, x))

s.t. (1.1) (4.3)

x(N, x) ∈ X0.

Since the terminal constraint x(N) ∈ X0 can generally not be satisfied by all initial values
x ∈ X, we define the feasible set XN := {x ∈ X|∃u ∈ UN : x(k) ∈ X, k = 1, . . . , N −
1, x(N) ∈ X0}, cf. [32, Definition 3.9] or [73, Section 2.3]. This set is assumed to be
nonempty throughout this section. Only for such initial values x ∈ XN we consider the set
UN (x), which in this section comprises the terminal constraint2, i.e.

UN (x) := {u ∈ UN (x)|x(N, x) ∈ X0}.

Assumption 4.4 (Lyapunov function terminal cost). We assume that x∗ from Assump-
tion 4.2 is contained in X0 and the existence of a local feedback κ : X0 → U satisfying

1. f(x, κ(x)) ∈ X0 for all x ∈ X0 and

2. ∀x ∈ X0, i ∈ {1, . . . , s} : Fi(f(x, κ(x))) + `i(x, κ(x)) ≤ Fi(x).

Imposing Assumption 4.4 ensures that it is always possible to remain within the ter-
minal constraint set X0 and that the cost of this control action is bounded from above
by the original terminal cost. We note that Lemma 4.1 remains valid under the ‘new’
definition of the cost functionals JNi .

In what follows we first propose a MO MPC algorithm and prove feasibility, perfor-
mance and convergence afterwards.

Algorithm 2 (Multiobjective MPC with terminal conditions).

(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx(n) ∈ U
N
P (x(n)) to (4.3). Go to

(2).

2In case N =∞, the set U∞(x) remains unchanged.

40



4.2. Multiobjective MPC with Terminal Conditions

(1) At time n ∈ N : Choose a POS u?,Nx(n) to (4.3) so that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤ JNi

(
x(n),uNx(n)

)
are satisfied for all i ∈ {1, . . . , s}.

(2) For x := x
u?,N
x(n)(N, x(n)) set

uNx(n+1) :=
(
u?,Nx(n)(1), . . . , u?,Nx(n)(N − 1), κ(x)

)
.

(3) Apply the feedback µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).

Figure 4.1 schematically visualizes the choice of the POSs in step (1) of Algorithm 2.
The bounds resulting from uNx(n) are visualized by dashed lines and determine the set of
nondominated points that may be chosen (thick, red line). The basic idea (formalized
in Lemma 4.5) is that the control sequence uNx(n) in step (2) is a POS of length N − 1

prolonged by the local feedback from Assumption 4.4 and that the prolongation reduces the
value of the objective functions. The preliminary considerations in Chapter 3 moreover

JN1

JN2

JN2

(
x(n),uNx(n)

)
JN1

(
x(n),uNx(n)

)

Figure 4.1: Visualization of step (1) in Algorithm 2 for a bicriterion OCP.

show that there are sufficient conditions, so that there is a POS with smaller objective
value than the prolonged sequence (for each i).

Lemma 4.5. Let Assumption 4.4 hold and let u ∈ UN−1(x), x ∈ XN . Then there exists a
sequence uN ∈ UN (x) satisfying

JNi (x,uN ) ≤ JN−1
i (x,u) ∀i ∈ {1, . . . , s}.

Proof. We define uN as follows. uN (k) := u(k) for k = 0, . . . , N−2 and uN (N−1) := κ(x̄)

from Assumption 4.4, where x̄ := xu
N

(N−1, x). Then uN is feasible because u ∈ UN−1(x),
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and therefore, x̄ ∈ X0. Assumption 4.4 ensures feasibility of κ(x̄) and f(x̄, κ(x̄)). With
the definition of uN we obtain the estimates

JNi (x,uN ) =
N−1∑
k=0

`i(x
uN (k, x),uN (k)) + Fi(x

uN (N, x))

=

N−2∑
k=0

`i(x
uN (k, x),uN (k)) + `i(x̄, κ(x̄)) + Fi(f(x̄, κ(x̄)))

≤
N−2∑
k=0

`i(x
u(k, x),u(k)) + Fi(x̄) = JN−1

i (x,u).

By means of our preliminary considerations we can now state our main performance
result on MO stabilizing MPC with terminal conditions, which guarantees a bounded
performance of the feedback µN defined in Algoritm 2 for all cost criteria i ∈ {1, . . . , s}.

Theorem 4.6 (MO MPC Performance Theorem). Consider a MO OCP (4.3) with system
dynamics (1.1), stage costs `i, i = 1, . . . , s, and let N ∈ N≥2. Let Assumptions 4.2
and 4.4 hold and let the set JNP (x) be externally stable (according to Def. 3.4) for each
x ∈ XN . Then, the MPC feedback µN : X → U defined in Algorithm 2 renders the set
X forward invariant (see Definition 1.1) and has the following infinite-horizon closed-loop
performance:

J∞i
(
x0, µ

N
)

:= lim
K→∞

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x0,u

?,N
x0

)
(4.4)

for all objectives i ∈ {1, . . . , s}, in which u?,Nx0 denotes the POS of step (0) in Algorithm 2.

Proof. Feasibility: The existence of the POSs in step (0) and (1) is concluded from
external stability of JNP (x). Feasibility of uNx(n+1) in (2) follows from Assumption 4.4.
Recursive feasibility of X is an immediate consequence.
Performance: It follows from the definition of the cost functional in (4.3) that

JNi

(
x(k),u?,Nx(k)

)
= `i

(
x(k), u?,Nx(k)(0)

)
+ JN−1

i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)
,

and hence, for arbitrary K ∈ N≥1 and all i ∈ {1, . . . , s}

K−1∑
k=0

`i(x(k), µN (x(k))) =

K−1∑
k=0

`i(x(k), u?,Nx(k)(0))

=

K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1

i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]
≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JNi

(
f(x(k), u?,Nx(k)(0)),uNx(k+1)

)]
,
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in which the inequality follows from Lemma 4.5 in combination with Lemma 4.1, and u?,Nx(k)

is the POS chosen in Algorithm 2 at time k. In step (1), u?,Nx(k+1) is constructed such that

JNi

(
x(k + 1),u?,Nx(k+1)

)
≤ JNi

(
x(k + 1),uNx(k+1)

)
.

Thus, we finally obtain

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x0,u

?,N
x0

)
− JNi

(
x(K),uNx(K)

)
≤ JNi

(
x0,u

?,N
x0

)
,

because of the positivity of JNi (Assumption 4.2). The expression on the left hand side
of the inequalities is monotonically increasing and due to its boundedness, the limit for
K →∞ exists and we conclude the assertion.

Remark 4.7. 1. A closer look at Algorithm 2 reveals that only for k ≥ 1 the choice
of u?,Nx(k) is subject to additional constraints. The first POS u?,Nx0 , which determines
the bound on the performance of the MPC algorithm, can be chosen freely. Thus,
the performance can be calculated a priori from a MO optimization of horizon N .
This observation justifies the approach of putting major effort into generating the
Pareto front in the initialization step (0) and just calculating one arbitrary solution
in subsequent steps with the least possible effort.

An overview of methods used in our implementation is given in Section 3.2. In the
initialization, we usually use the Pascoletti-Serafini scalarization, and in subsequent
iterations we use the method of the global criterion or a weighted sum with random
weights.3

2. The performance result above can serve as an incentive to convince players to apply
the MPC strategy.

In Theorem 4.6 we assume external stability of the sets JNP (x) for all x ∈ XN . Since
this property is difficult to verify, we now provide easily checkable conditions that are
sufficient for external stability.

Lemma 4.8. Let U be compact, X and X0 be closed, and f , Fi and `i be continuous. Then,
the set JNP (x) is externally stable for all x ∈ XN and all N ∈ N.

Proof. Fix an arbitrary horizon N ∈ N and x ∈ XN .

1. It is a general assumption that XN is nonempty, thus UN (x) 6= ∅ and JN (x) 6= ∅.

2. In [17] it was for even more general settings proven that the set ∆, which contains
all feasible trajectories with their corresponding control sequences (xu(·, x),u), is
compact in Z := Rn × · · · × Rn︸ ︷︷ ︸

N times

×Rm × · · · × Rm︸ ︷︷ ︸
(N−1) times

. If we interpret JN as a function

3We point out that using a weighted sum also yields a POS even if the Pareto front in step (1) is not
convex.

43



Chapter 4. Multiobjective Stabilizing Model Predictive Control

that maps from Z to Rs≥0, we can conclude compactness of JN (x) from compactness
of ∆ and continuity of `i and Fi. The stronger notion of compactness implies Rs≥0-
compactness of JN (x).

Since all conditions of Lemma 3.6 are satisfied, we conclude the assertion.

It may be of interest to note that the conditions in Lemma 4.8, which were proven
to guarantee the existence of optimal solutions to single-objective finite-horizon OCPs in
[17], are also sufficient for our setting. This fact is particularly pleasing because as opposed
to single-criterion OCPs we do not only need existence of optimal solutions but also the
special structure of external stability.

Corollary 4.9 (Trajectory convergence). Under the assumptions of Theorem 4.6 it holds
that the closed-loop trajectory x(·, x0) driven by the feedback µN from Algorithm 2 converges
to the equilibrium x∗.

Proof. It follows from Theorem 4.6 that the sum
∑∞

k=0 `i
(
x(k), µN (x(k))

)
converges for

each i ∈ {1, . . . , s}. Hence, the sequences
(
`i
(
x(k), µN (x(k))

))
k∈N0

, i ∈ {1, . . . , s}, tend
to zero. Together with Assumption 4.2 for arbitrary i ∈ {1, . . . , s} we obtain

∀ε > 0 ∃K ∈ N0 : ∀k ≥ K : ε > |`i
(
x(k), µN (x(k))

)
| = `i

(
x(k), µN (x(k))

)
≥ min

u∈U
`i(x(k), u) ≥ α`,i(‖x(k)− x∗‖),

which is equivalent to the statement limk→∞ α`,i (‖x(k)− x∗‖) = 0 for all i ∈ {1, . . . , s}.
Since α`,i is a K function for each i ∈ {1, . . . , s}, it is continuous and it holds

α`,i

(
lim
k→∞

‖x(k)− x∗‖
)

= lim
k→∞

α`,i (‖x(k)− x∗‖) = 0.

Again, we use the fact that α`,i ∈ K for each i ∈ {1, . . . , s} and conclude

α`,i

(
lim
k→∞

‖x(k)− x∗‖
)

= 0⇔ lim
k→∞

‖x(k)− x∗‖ = 0.

Remark 4.10. The result in Corollary 4.22 shows that the equilibrium x∗ is globally at-
tractive for the MPC closed-loop system in the sense of Definition 1.3. Due to the lack of
a LF we are not able to prove asymptotic stability (see Definition 1.6). In Chapter 8 we
will discuss an approach that might enable us to establish a LF for our MO MPC scheme.

We have proved in Theorem 4.6 that the inequalities

J∞i
(
x0, µ

N
)
≤ JNi

(
x0,u

?,N
x0

)
∀ i ∈ {1, . . . , s}

hold for the MPC feedback µN from Algorithm 2. Usually, one would like to compare
the infinite-horizon MPC cost to an expression of the form J∞i (x0,u

?,∞
x0 ), where u?,∞x0 is

a POS to the MO OCP 4.1. We now show that it is, in general, not possible to bound
J∞i

(
x0, µ

N
)
from above by J∞i (x0,u

?,∞
x0 ).
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Lemma 4.11. Let N ∈ N≥2, x0 ∈ XN be given. Let the assumptions of Theorem 4.6
hold and assume furthermore external stability of the set J∞P (x0) := {J∞(x0,u

?)|u? ∈
U∞P (x0)}. Then, for each u?,N ∈ UNP (x0) there is u?,∞ ∈ U∞P (x0) such that the inequalities

JNi
(
x0,u

?,N
)
≥ J∞i (x0,u

?,∞)

hold for all i = 1, . . . , s.

Proof. For N ∈ N≥2 and x0 ∈ XN fix an arbitrary u?,N ∈ UNP (x0). Define the MPC
feedback µN according to Algorithm 2 and define u ∈ U∞(x0) via u(k) = µN (xµ

N
(k)) for

k ∈ N≥0. Then, we have

JNi
(
x0,u

?,N
) Thm. 4.6
≥ J∞i

(
x0, µ

N
)

= J∞i (x0,u) ∀ i.

Since we assume external stability of the set J∞P (x0), there exists u?,∞ ∈ U∞P (x0) satisfying

J∞i (x0,u) ≥ J∞i (x0,u
?,∞) ∀ i.

This yields the assertion.

Lemma 4.11 implies that it is not possible to bound J∞i
(
x0, µ

N
)
from above by

J∞i (x0,u
?,∞) using Theorem 4.6. However, we will be able to show an approximate es-

timate of this form in Theorem 4.13. As a preparation, we first show that the trajectory
corresponding to any infinite-horizon control sequence with bounded objectives gets arbit-
rarily close to the equilibrium x∗ in a finite number of time steps.

Lemma 4.12. Let δ > 0, x ∈ X and u∞ ∈ U∞(x) be given. Under Assumption 4.2 and
if there is K ∈ R≥0 satisfying

J∞i (x,u∞) ≤ K ∀i ∈ {1, . . . , s},

the index k̂ := min
{
k ∈ N0|xu

∞
(k) ∈ Bδ(x∗)

}
fulfills k̂ ≤ K

mini α`,i(δ)
. Here, the ball Bδ(x∗)

is defined according to (1.6).

Proof. Assume k̂ > K
mini α`,i(δ)

, then for all i ∈ {1, . . . , s} it holds

J∞i (x,u∞) =

k̂−1∑
k=0

`i(x(k), u∞(k)) +

∞∑
k=k̂

`i(x(k), u∞(k))

≥
k̂−1∑
k=0

α`,i(‖x(k)− x∗‖) >
k̂−1∑
k=0

α`,i(δ) = k̂ · α`,i(δ) > K,

contradicting the assumption.
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Theorem 4.13 (Approximate infinite-horizon optimality). Consider the MO OCP (4.3)
and the corresponding optimal control problem on the infinite horizon (4.1) with the same
constraints and running costs. Let the Assumptions 4.2 and 4.4 hold and assume further-
more the existence of σi ∈ K such that Fi(x) ≤ σi(‖x − x∗‖) holds for all x ∈ X0 and all
i ∈ {1, . . . , s}. Consider an arbitrary initial value x0 ∈ XN and a sequence u?,∞ ∈ U∞P (x0)

with J∞i (x0,u
?,∞) ≤ C for all i and some C ∈ R≥0. Assume there is N̄ ∈ N such that the

sets JNP (x0) are externally stable for all N ≥ N̄ . Then, for each ε > 0 there exists N0 ∈ N
such that for all N ≥ N0 there is u?,N ∈ UNP (x0) satisfying

JNi
(
x0,u

?,N
)
≤ J∞i (x0,u

?,∞) + ε ∀i. (4.5)

In particular, u?,∞ can be approximated arbitrarily well by µN from Algorithm 2 in terms
of the infinite-horizon performance, that is,

J∞i
(
x0, µ

N
)
≤ J∞i (x0,u

?,∞) + ε. (4.6)

Proof. Let ε > 0 and choose δ > 0 such that σi(δ) ≤ ε ∀i and Bδ(x∗) ⊆ X0. For the
sequence u?,∞ ∈ U∞P (x0) it holds J∞i (x0,u

?,∞) ≤ C ∀i. From Lemma 4.12 we know that
the index k̂ := min

{
k ∈ N0|xu

?,∞
(k) ∈ Bδ(x∗)

}
satisfies k̂ ≤ C

mini α`,i(δ)
. Now let us choose

N0 ∈ N such that N0 ≥ max{k̂ + 1, N̄}. For N ≥ N0 define the sequence u ∈ UN (x0) via

u(k) =

{
u?,∞(k), k = 0, . . . , k̂ − 1,

κ(x(k)), k = k̂, . . . , N − 1,

with κ from Assumption 4.4. Since xu?,∞(k̂) ∈ Bδ(x∗) ⊆ X0, κ can be applied and it holds
xu(N) ∈ X0. From the definition of u we obtain

JNi (x0,u) =
N−1∑
k=0

`i(x(k), u(k)) + Fi(x(N))

=

k̂−1∑
k=0

`i(x(k), u?,∞(k)) +

N−1∑
k=k̂

`i(x(k), κ(x(k))) + Fi(x(N))

≤ J∞i (x0,u
?,∞) +

N−1∑
k=k̂

[Fi(x(k))− Fi(f(x(k), κ(x(k))))] + Fi(x(N))

= J∞i (x0,u
?,∞) + Fi(x(k̂)) ≤ J∞i (x0,u

?,∞) + σi(‖x(k̂)− x∗‖︸ ︷︷ ︸
≤δ

)

≤ J∞i (x0,u
?,∞) + ε.

Due to external stability of JNP (x0) we conclude the existence of u?,N ∈ UNP (x0) such that

JNi
(
x0,u

?,N
)
≤ JNi (x0,u) ≤ J∞i (x0,u

?,∞) + ε,

i.e. (4.5) holds. Choosing u?,Nx0 = u?,N in step (0) of Algorithm 2 and combining the
estimates (4.4) and (4.5) yields (4.6).
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4.2.1 Endpoint Equilibrium Constraints: A Special Case

The computation of κ and X0 in Assumption 4.4 can be a hard task that even in the simple
case of affine systems and quadratic cost functions involves the solution of linear matrix
inequalities (LMIs). Thus, it is sometimes easier, though more restrictive for the set of
feasible solutions, to consider the setting X0 = {x∗} and Fi(x∗) = 0 for all i ∈ {1, . . . , s}.
If the feedback κ is defined as κ(x∗) = u∗ and requiring `(x∗, u∗) = 0, this immediately
yields the properties from Assumption 4.4 and, thus, also the statements in Theorem 4.6
and Corollary 4.9. In order to be able to establish a result similar to Theorem 4.13 we
need some further assumptions4 on the given OCP.

Assumption 4.14 (Local controllability with bounded costs). 1. There are η, C >

0, M ∈ N such that for all x ∈ Bη(x∗) there is ux ∈ UMP (x) it holds

xux(M,x) = x∗ with max{‖xux(k, x)− x∗‖, ‖ux(k)− u∗‖} ≤ C‖x− x∗‖.

2. There are δ > 0, C̄i > 0 and pi ∈ N such that for all x ∈ Bδ(x∗), all u ∈ Bδ(u∗) and
all i ∈ {1, . . . , s} it holds

`i(x, u) ≤ C̄i(‖x− x∗‖pi + ‖u− u∗‖pi).

We point out that the second part of Assumption 4.14 implies that all stage costs are
zero in the equilibrium, i.e. `i(x∗, u∗) = 0 for all i ∈ {1, . . . , s}. This requirement is needed
to avoid summing up nonzero terms for an infinite time period once we have reached the
equilibrium (x∗, u∗).

We remark that the first part of Assumption 4.14 is not overly restrictive in this setting
since we implicitely require controllability by setting X0 = {x∗} and assuming XN 6= ∅.

Theorem 4.15 (Approximate infinite-horizon optimality). Consider the optimal control
problem (4.3) with X0 = {x∗} and Fi(x∗) = 0 for all i ∈ {1, . . . , s} and the corresponding
optimal control problem on infinite horizon (4.1) with the same constraints and running
costs. Let the Assumptions 4.2 and 4.14 hold. Consider an arbitrary initial value x0 ∈ X
and a sequence u?,∞ ∈ U∞P (x0) with J∞i (x0,u

?,∞) ≤ K for all i ∈ {1, . . . , s} and some
K ∈ R≥0. Assume there is N̄ ∈ N such that the sets JNP (x0) are externally stable for all
N ≥ N̄ . Then, for each ε > 0 there exists N0 ∈ N such that for all N ≥ N0 there is
u?,N ∈ UNP (x0) satisfying

JNi
(
x0,u

?,N
)
≤ J∞i (x0,u

?,∞) + ε ∀i. (4.7)

In particular, u?,∞ can be approximated arbitrarily well by µN from Algorithm 2 (using
κ(x∗) = u∗) in terms of the infinite-horizon performance, that is,

J∞i
(
x0, µ

N
)
≤ J∞i (x0,u

?,∞) + ε ∀i. (4.8)
4Assumption 4.14 is a lighter, but MO version of Assumptions 2.10 and 2.12.
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Proof. Let ε > 0 and choose δ̄ > 0 so that δ̄ ≤ min{δ, η} and 2MC̄iC(δ̄)pi ≤ ε for all
i ∈ {1, . . . , s}. Lemma 4.12 states that the index kδ̄ := min

{
k ∈ N|xu?,∞(k, x0) ∈ Bδ̄(x∗)

}
satisfies kδ̄ ≤ K

mini α`,i(δ̄)
. Let us choose N0 ∈ N such that N0 ≥ max{N̄ , kδ̄ +M + 1}. For

N ≥ N0 we define u ∈ UN (x0) via

u(k) =


u?,∞(k), k = 0, . . . , kδ̄ − 1,

ux1(k − kδ̄), k = kδ̄, . . . , kδ̄ +M − 1,

u∗, k = kδ̄ +M, . . . , N − 1,

in which ux1 is the control sequence from Assumption 4.14 for x1 = xu
?,∞

(kδ̄, x0). With
this definition we obtain

JNi (x0,u) =

N−1∑
k=0

`i(x
u(k, x0), u(k))

=

kδ̄−1∑
k=0

`i(x
u?,∞(k, x0), u?,∞(k)) +

kδ̄+M−1∑
k=kδ̄

`i(x
ux1 (k − kδ̄, x1), ux1(k − kδ̄))

+

N−1∑
k=kδ̄+M

`i(x∗, u∗)︸ ︷︷ ︸
=0

≤ J∞i (x0,u
?,∞) +

kδ̄+M−1∑
k=kδ̄

C̄i2C‖x1 − x∗‖pi

= J∞i (x0,u
?,∞) +MC̄i2C‖x1 − x∗‖pi ≤ J∞i (x0,u

?,∞) + ε,

wherein the first inequality results from the fact that x1 ∈ Bδ̄(x∗) in combination with
Assumption 4.14. The second inequality is obtained by choice of δ̄. By means of external
stability of the set JNP (x0), this chain of inequalites implies the desired estimate (4.7).
Inequality (4.8) is then obtained as in the proof of Theorem 4.6.

4.2.2 A Game Theoretic Interpretation: The Bargaining Game

In this section we interpret Algorithm 2 in terms of a game theoretic concept called bar-
gaining problem or bargaining game (see e.g. [68]). The idea of such a game is that the
players define a disagreement point which is realized if negotiations among the players fail.
In the negotiations players seek for a solution which is better than the disagreement point
for each player (otherwise negotiatations fall down). If the players agree on a solution, this
strategy is played. To apply the game-theoretic interpretation to our analysis, we assume
that there are s players with their own criterion (i.e. `i) and that the system x+ = f(x, u)

is the collection of players’ systems x+
i = fi(x, u). Then, in our MO MPC Algorithm 2 we

can interpret step (1) as a bargaining game, in which uNx(k) ∈ U
N (x(k)) is the disagreement

point5 and any solution u?,Nx(k) ∈ U
N
P (x(k)) in step (1), Algorithm 2 is a bargaining solution

5Though this terminology might be confusing since this point still yields the desired performance es-
timate and trajectory convergence.
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that improves all players’ objectives. Note that by definition a bargaining solution does
not need to be Pareto-optimal.

In the Nash-bargaining game (see [67]) Nash requires more structure on solutions of the
game, that is invariance under affine transformations, Pareto optimality, independence of
irrelevant alternatives, and symmetry. The game theoretic interpretation of these assump-
tions can be found in [67]. Moreover, Nash assumes that the players are rational, have
equal bargaining skills and that the game is subject to full information. The motivation
for these structural requirements is the wish to define a unique solution to the bargaining
game. Nash proved that if JN (x(k)) is convex and compact, the unique solution (the
Nash-bargaining solution) satisfying the structural assumptions is given by

argmax
u∈UN (x(k))

s∏
i=1

(
JNi (x(k),uNx(k))− J

N
i (x(k),u)

)
.

Let us note that the concept of bargaining games is a possible interpretation here, though
there are valid objections against this approach for the following reason: Usually the dis-
agreement point is thought of as a combination of strategies that all players fix individually
and that they could implement independent from the other’s strategies, whereas the co-
operation then enables the players to commonly improve their objectives. In our approach,
the control strategy uNx(K) is already a common strategy that yields desirable results.

The idea to interpret MO MPC as a bargaining game was also pursued in [41] for a very
special class of systems. The basic idea in this reference is to implement a weighted-sum
approach, in which the weights are obtained by playing a Nash-bargaining game.

4.3 Multiobjective MPC without Terminal Conditions

In this section we aim to develop performance estimates for MO MPC schemes without
terminal conditions, i.e. Assumption 4.4 does no longer hold. A discussion why proceeding
this way may be superior to MPC schemes with terminal conditions can be found in e.g.
[32, Sec. 6.1]

Instead of imposing such terminal conditions, we follow the procedure developed in [33]
for scalar-valued MPC and require the following structural property on POSs.

Assumption 4.16 (Bounds on POSs). Let an optimization horizon N ∈ N be given. For
all i ∈ {1, . . . , s} there exist γi ∈ R>1 such that the inequalities

∀x ∈ X,∀u?,1x ∈ U1
P(x) ∃u?,2x ∈ U2

P(x) : J2
i (x,u?,2x ) ≤ γi · J1

i (x,u?,1x ),

∀x ∈ X,∀u?,kx ∈ UkP(x) : Jki (x,u?,kx ) ≤ γi · `i(x, u?,kx (0)) ∀k = 2, . . . , N

holds for all objectives i ∈ {1, . . . , s}.

Furthermore, we assume UN (x) 6= ∅ for all x ∈ X and all N ∈ N and we still impose
Assumption 4.2. Assumption 4.16 requires that all POSs are in a sense structured. The
second set of inequalities therein states that the values of all POSs can be expressed in
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terms of the stage cost of the first piece of the POS for all horizon lengths. The first set
of inequalities is mainly needed as a base case for the induction in Lemma 4.18 in order to
prove a relation between POS of horizon length k and k− 1. An alternative assumption to
Assumption 4.16 is to directly require the statement of Lemma 4.18. However, this seems
to be even more difficult to verify.6

The MPC scheme we propose in this section is the following.

Algorithm 3 (Multiobjective MPC without terminal conditions).

(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx(n) ∈ U
N
P (x(n)) to (4.2). Go to

(2).

(1) At time n ∈ N: Choose a POS u?,Nx(n) to (4.2) so that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤
γN−2
i + (γi − 1)N−1

γN−2
i

JN−1
i

(
x(n),uN−1

x(n)

)
are satisfied for all i ∈ {1, . . . , s}.

(2) Set
uN−1
x(n+1) := u?,Nx(n)(·+ 1).

(3) Apply the feedback µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).

After giving two auxiliary results, we will prove that the MPC feedback defined in
Algorithm 3 has a bounded infinite-horizon performance for each objective.

Lemma 4.17. Given x ∈ X and u?,kx ∈ UkP(x) for arbitrary k ∈ {2, . . . , N}. Under
Assumptions 4.2 and 4.16 the inequalities

Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
≤ (γi − 1)`i

(
x, u?,kx (0)

)
hold for all i ∈ {1, . . . , s} and all k ∈ {2, . . . , N}.

Proof. Consider an arbitrary x ∈ X, k ∈ {2, . . . , N} and a POS u?,kx ∈ UkP(x). Then, for
all i ∈ {1, . . . , s} it holds

Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
= Jki

(
x,u?,kx

)
− `i

(
x, u?,kx (0)

)
≤ γi · `i

(
x, u?,kx (0)

)
− `i

(
x, u?,kx (0)

)
,

which shows the assertion.

6A comment on the verification of Assumption 4.16 is stated before Algorithm 4.
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Lemma 4.18. Given x ∈ X and N ∈ N≥2. Let Assumptions 4.2 and 4.16 hold, assume
external stability (according to Def. 3.4) of the sets J kP(x) for all k ∈ {2, . . . , N}. Then,
for each k ∈ {2, . . . , N} and each u?,k−1

x ∈ Uk−1
P (x) there is u?,kx ∈ UkP(x) such that

ηk,i · Jki
(
x,u?,kx

)
≤ Jk−1

i

(
x,u?,k−1

x

)
holds for all i ∈ {1, . . . , s}, in which ηk,i is defined as

ηk,i =
γk−2
i

γk−2
i + (γi − 1)k−1

.

Proof. By induction:
k = 2: The statement follows immediately from Assumption 4.16.
k → k + 1: Let u?,kx ∈ UkP(x). It holds that

Jki

(
x,u?,kx

)
= Jk−1

i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+ `i(x, u

?,k
x (0))

= Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+ (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

`i(x, u
?,k
x (0))

+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

≥ Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

1− ηk,i
(γi − 1) + ηk,i

· Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

=

(
1 +

1− ηk,i
γi − 1 + ηk,i

)
Jk−1
i

(
f(x, u?,kx (0)),u?,kx (·+ 1)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

≥ ηk,i
(

1 +
1− ηk,i

γi − 1 + ηk,i

)
Jki

(
f(x, u?,kx (0)),u?,k

f(x,u?,kx (0)

)
+

(
1− (γi − 1)

1− ηk,i
(γi − 1) + ηk,i

)
`i(x, u

?,k
x (0))

=
ηk,iγi

γi − 1 + ηk,i

[
Jki

(
f(x, u?,kx (0)),u?,k

f(x,u?,kx (0)

)
+ `i(x, u

?,k
x (0))

]
=

ηk,iγi
γi − 1 + ηk,i

Jk+1
i (x,uk+1

x ), uk+1
x :=

(
u?,kx (0),u?,k

f(x,u?,kx (0))

)
≥

ηk,iγi
γi − 1 + ηk,i

Jk+1
i (x,u?,k+1

x ).

The first inequality holds due to Lemma 4.17 and in the second inequality we used the in-
duction assumption. The last inequality holds due to external stability of the set J k+1

P (x).
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Moreover, for all i ∈ {1, . . . , s} we have

ηk,iγi
γi − 1 + ηk,i

=
γk−1
i /(γk−2

i + (γi − 1)k−1)

γi − 1 + γk−2
i /(γk−2

i + (γi − 1)k−1)
=

γk−1
i

γk−1
i + (γi − 1)k

= ηk+1,i.

Theorem 4.19 (Performance Theorem). Consider a MO OCP with system dynamics (1.1),
cost criteria `i, i ∈ {1, . . . , s}, and let N ∈ N≥2, and x0 ∈ X be given. Let Assumptions 4.2
and 4.16 hold and let the sets J kP(x0) be externally stable for all k ∈ {2, . . . , N}. Let
moreover (γi−1)N < γN−2

i hold for all i ∈ {1, . . . , s}. Then, the MPC feedback µN : X→ U
defined in Algorithm 3 renders the set X forward invariant (in the sense of Definition 1.1)
and has the following infinite-horizon closed-loop performance

J∞i
(
x0, µ

N
)
≤

γN−2
i

γN−2
i − (γi − 1)N

· JNi
(
x0,u

?,N
x0

)
for all objectives i ∈ {1, . . . , s}. u?,Nx0 denotes the POS from step (0) in Algorithm 3.

Proof. Existence of the POSs in Algorithm 3 is obtained by Lemma 4.18 and we can thus
conclude recursive feasibility of the closed-loop system. We will now prove that the MPC
feedback exhibits the stated performance. For K ∈ N≥1 and all i ∈ {1, . . . , s} it holds(

1− (γi − 1)N

γN−2
i

)
︸ ︷︷ ︸

>0

JKi (x0, µ
N ) =

(
1− (γi − 1)N

γN−2
i

)
K−1∑
k=0

`i(x(k), µN (x(k)))

=

(
1− (γi − 1)N

γN−2
i

)
K−1∑
k=0

`i

(
x(k), u?,Nx(k)(0)

)
=

K−1∑
k=0

[
`i

(
x(k), u?,Nx(k)(0)

)
− (γi − 1)N

γN−2
i

`i

(
x(k), u?,Nx(k)(0)

)]

≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1

i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)
−(γi − 1)N−1

γN−2
i

JN−1
i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]

=
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1

i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)(
1 +

(γi − 1)N−1

γN−2
i

)
︸ ︷︷ ︸

=
γN−2
i

+(γi−1)N−1

γN−2
i

]
,

in which the inequality is obtained by Lemma 4.17. In step (1) the POS u?,Nx(k) is chosen
such that we obtain the estimates(

1− (γi − 1)N

γN−2
i

)
JKi (x0, µ

N ) ≤ JNi (x0,u
?,N
x0

)− JNi (x(K),u?,Nx(K)) ≤ J
N
i (x0,u

?,N
x0

)
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for all i ∈ {1, . . . , s}. This concludes the assertion.

Corollary 4.20 (Infinite-horizon near optimality). Let the assumptions of Theorem 4.19
hold for N ∈ N≥2 and x0 ∈ X and assume that there is a POS u?,∞ ∈ U∞P (x0) to (4.1).
Then, the estimates

J∞i (x0, µ
N ) ≤

γN−2
i

γN−2
i − (γi − 1)N

· J∞i (x0,u
?,∞) ∀i ∈ {1, . . . , s}

are obtained by applying Algorithm 3 with a proper initialization in step (0).

Proof. Due to the positivity of the stage costs `i we have J∞i (x0,u
?,∞) ≥ JNi (x0,u

?,∞) for
all i ∈ {1, . . . , s} and external stability of the set JNP (x0) guarantees the existence of u?,Nx0 ∈
UNP (x0) such that JNi (x0,u

?,∞) ≥ JNi (x0,u
?,N
x0 ) holds for all i ∈ {1, . . . , s}. By applying

u?,Nx0 in step (0) of Algorithm 3 we conclude J∞i (x0, µ
N ) ≤ γN−2

i

γN−2
i −(γi−1)N

· J∞i (x0,u
?,∞)

for all objectives i ∈ {1, . . . , s}.

Remark 4.21. In all statements so far we have required Assumption 4.2 to hold. In fact,
it is sufficient if `i(x, u) ≥ 0 holds for all i ∈ {1, . . . , s} to obtain the presented results. But
since positive semidefinite stage costs are not sufficient for the following Corollary 4.22,
we decided to impose Assumption 4.2 throughout the course of this section.

Corollary 4.22 (Trajectory convergence). Let the assumptions of Theorem 4.19 hold for
x0 ∈ X and N ∈ N. Then, any closed-loop trajectory xµN (·, x0) resulting from Algorithm 3
converges to x∗.

Proof. As the proof of Corollary 4.9.

A drawback of Algorithm 3 is that finding a POS in step (1) is subject to constraints,
which depend on the γi from Assumption 4.16. Checking the respective assumption is
already a difficult task in the single-objective setting and is often done numerically. It is
even more involved in our MO setting and can lead to large values for γi if the Pareto
fronts have a large diameter. A possible remedy for this problem is to specify values for
the γi, such that Assumption 4.16 holds for some POSs of each horizon length. Needless
to say, this restricts our choice in each iteration of Algorithm 3. Another possibility is to
find N and γi such that Assumption 4.16 and the inequalities in Lemma 4.18 only hold for
N instead of for all k ∈ {2, . . . , N}.

This is our motivation to replace the constraint in step (1), Algorithm 3 by a constraint
that does not explicitly depend on the knowledge of γi but yields the same performance
result as Theorem 4.19. Thus, we are able to perform MO MPC without terminal con-
straints under existence theorems for the γi’s. For this purpose we propose Algorithm 4.

Algorithm 4 (Multiobjective MPC without terminal conditions – ver-
sion 2).
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(0) At time n = 0 : Set x(n) := x0 and choose a POS u?,Nx(n) ∈ U
N
P (x(n)) to (4.2). Go to

(2).

(1) At time n ∈ N: Choose a POS u?,Nx(n) to (4.2) such that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤ JNi

(
x(n), ũx(n)

)
are satisfied for all i ∈ {1, . . . , s}.

(2) For x := x
u?,N
x(n) (N − 1, x(n)) choose u? ∈ U2

P (x) such that ∀ i ∈ {1, . . . , s} it holds

`i (x, u?(0)) ≤ `i
(
x, u?,Nx(n)(N − 1)

)
. (4.9)

Define ũx(n+1) ∈ UN
(
x
u?,N
x(n)(1, x(n))

)
via

ũx(n+1)(k) :=

{
u?,Nx(n)(k + 1), k = 0, . . . , N − 3

u?(k − (N − 2)), k = N − 2, N − 1
.

(3) Apply µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).

Lemma 4.23. Let Assumptions 4.2 and 4.16 hold and let an initial value x ∈ X and a
POS u? ∈ UNP (x) to the MO OCP (4.2) be given. Then, for all i ∈ {1, . . . , s} it holds that

`i(x
u?(N − 1, x), u?(N − 1)) ≤

(
γi − 1

γi

)N−2

JN−1
i

(
xu

?
(1, x),u?(·+ 1)

)
.

Proof. Similar to the proof of [32, Proposition 6.19]: For each p ∈ {0, . . . , N − 2} and for
all i ∈ {1, . . . , s} it holds that

N−1∑
k=p+1

`i(x
u?(k, x), u?(k)) = JN−pi (xu

?
(p, x),u?(·+ p))− `i(xu

?
(p, x), u?(p)).

Since u?(· + p) is a POS of length N − p for initial value xu?(p, x) (see Lemma 4.1),
Assumption 4.16 provides the estimate

N−1∑
k=p+1

`i(x
u?(k, x), u?(k)) ≤ γi`i(xu

?
(p, x), u?(p))− `i(xu

?
(p, x), u?(p))

= (γi − 1)`i(x
u?(p, x), u?(p))

⇒
N−1∑
k=p

`i(x
u?(k, x), u?(k)) = `i(x

u?(p, x), u?(p)) +

N−1∑
k=p+1

`i(x
u?(k, x), u?(k))

≥
(

1

γi − 1
+ 1

)
︸ ︷︷ ︸

=
γi
γi−1

N−1∑
k=p+1

`i(x
u?(k, x), u?(k)), p ∈ {1, . . . , N − 2}.
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Applying this inequality inductively we obtain

N−1∑
k=1

`i(x
u?(k, x), u?(k)) ≥

(
γi

γi − 1

)N−2

`i(x
u?(N − 1, x), u?(N − 1))

for all i ∈ {1, . . . , s}, which is the claimed estimate.

Theorem 4.24 (Performance Theorem for Algorithm 4). Consider a MO OCP (4.2) with
system dynamics (1.1), cost criteria `i, i ∈ {1, . . . , s}, and let N ∈ N≥2. Let Assump-
tions 4.2 and 4.16 hold and let the sets JNP (x) and J 2

P(x) be externally stable for each
x ∈ X. Assume viability of the set X (see page 4). Let moreover (γi − 1)N < γN−2

i hold
for all i ∈ {1, . . . , s}. Then, the MPC feedback µN : X → U defined in Algorithm 4 yields
recursive feasibility of X and has the following infinite-horizon closed-loop performance

J∞i
(
x0, µ

N
)
≤

γN−2
i

γN−2
i − (γi − 1)N

· JNi
(
x0,u

?,N
x0

)
for all objectives i ∈ {1, . . . , s}. u?,Nx0 denotes the POS from step (0) in Algorithm 4.

In particular, any u?,∞ ∈ U∞P (x0) that solves (4.1) can be approximated arbitrarily well
by µN from Algorithm 4 in terms of the infinite-horizon performance, that is,

J∞i
(
x0, µ

N
)
≤

γN−2
i

γN−2
i − (γi − 1)N

· J∞i (x0,u
?,∞) .

Proof. Feasibility: Step (1) in Algorithm 4 is feasible, because we assume external sta-
bility of the sets JNP (x) for all x ∈ X. Now let us turn to step (2): The tail u?,Nx(n)(N − 1)

can be prolonged by some û ∈ U such that ū :=
(
u?,Nx(n)(N − 1), û

)
∈ U2 (x), in which

x := x
u?,N
x(n)(N − 1, x(n)), otherwise U1

(
f
(
x, u?,Nx(n)(N − 1)

))
= ∅, contradicting our via-

bility assumption. Clearly, the control sequence ū satisfies the constraint (4.9). Thus,
existence of a POS satisfying the constraint follows from external stability of J 2

P(x).
Performance: For n ∈ N and ũx(n+1), u

?,N
x(n), u

? as defined in Algorithm 4 it holds
that

JNi
(
x(n+ 1), ũx(n+1)

)
= JN−2

i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
+ J2

i

(
x
u?,N
x(n)(N − 1, x(n)),u?

)
.

Since u? ∈ U2
P

(
x
u?,N
x(n) (N − 1, x(n))

)
, Assumption 4.16 yields

J2
i

(
x
u?,N
x(n)(N − 1, x(n)),u?

)
≤ γi`i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
.
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Thus, we get

JNi
(
x(n+ 1), ũx(n+1)

)
≤ JN−1

i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
− `i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
+ γi`i

(
x
u?,N
x(n)(N − 1, x(n)), u?(0)

)
≤ JN−1

i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
+ (γi − 1)`i

(
x
u?,N
x(n) (N − 1, x(n)) , u?,Nx(n)(N − 1)

)
,

in which the last inequality follows from the construction in step (2) in Algorithm 4. If
we now apply Lemma 4.23, we obtain

JNi
(
x(n+ 1), ũx(n+1)

)
≤ JN−1

i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)(
1 + (γi − 1)

(
γi − 1

γi

)N−2
)

=
γN−2
i − (γi − 1)N−1

γN−2
i

JN−1
i

(
x(n+ 1),u?,Nx(n)(·+ 1)

)
.

Hence, the POS in step (1) of Algorithm 4 satisfies the constraint in step (1) of Al-
gorithm 3. This leads to the fact that the MPC feedback defined in Algorithm 4 has the
same performance as the feedback defined in Algorithm 3. The second estimate follows
from Corollary 4.20.

Remark 4.25. The values γN−2
i −(γi−1)N−1

γN−2
i

, i ∈ {1, . . . , s}, can be estimated online while
executing Algorithm 4.

4.4 Example

By means of the following example, presented in [64], we will illustrate the results of the
previous sections. We consider six two-dimensional systems xi ∈ R2, i ∈ {1, . . . , 6} that
are dynamically decoupled but coupled through constraints and cost criteria. Each system
is steered by a two-dimensional input ui ∈ R2. The system dynamics and stage cost of
system i ∈ {1, . . . , 6} is given by

x+
i =

(
0.9 0.1

−0.2 0.8

)
xi +

(
1 0

0 1

)
ui + 0.1

(
x2
i,2

x2
i,1

)
,

`i(x, u) = xTi Qixi + uTi Riui +
∑
j∈Ni

(Cixi − Cjxj)TQij(Cixi − Cjxj),

in which Ni = {i− 1, i+ 1} for i = 2, . . . , 5 and N1 = {2}, N6 = {5} and

Qi =

(
1 0

0 1

)
, Ri = 5Qi, Ci = Qi, for all i,

Q34 = Q43 = 02×2, Qij = 3Qi otherwise.
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The states and controls are constrained by ‖xi‖∞ ≤ 5 and ‖ui‖∞ ≤ 2. Moreover, systems
three and four are coupled by the constraint ‖x3 − x4‖ ≤ 4. Let us first turn to the
simulations that were obtained using terminal conditions. In Figure 4.2 we observe that
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Figure 4.2: Accumulated performance of the six objectives (blue) compared to the value
of the POS u?,Nx0 from step (0), Algorithm 2 (red).

the accumulated performance of the MPC feedback defined in Algorithm 2 for N = 2 is
indeed bounded from above by JNi (x0,u

?,N
x0 ) as stated in Theorem 4.6. In Corollary 4.9

convergence of the closed-loop trajectories was proven. This behavior is illustrated in
Figure 4.3.

We have run Algorithm 1 for our example and have chosen an arbitrary POS in each
iteration, i.e. we removed the constraints in step (1). Figure 4.4 illustrates that the desired
performance bound is violated7, yet the trajectories converge to the origin. The reason for
this still reasonable behavior is that all cost criteria `i are positive definite wrt the same
equilibrium. This means that all objectives share the same point they want to achieve but
the way to arrive there might vary among them. Thus, they converge to the point that is
strongly Pareto-optimal to the problem (4.3) and the accumulated performance converges
for all objectives. Such a nice behavior cannot be observed in Chapter 5, cf. Figure 5.12.

From our theoretical consideration we know that imposing the recursive contraint in
step (1), Algorithm 1 always yields a bounded performance, no matter what solution we
choose in the iteration. As can be seen in Figure 4.5 compared to Figure 4.3 the trajectories
are influenced by the choice of the POSs in the iterations.

7In order to obtain a violation of the bound we chose N = 6, because for small horizons the terminal
constraint becomes so restrictive that it dominates the effect of the constraint in step (1), Algorithm 1.
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Figure 4.3: Trajectories of the six systems (phase plots).

We now present numerical simulations for our example without terminal conditions.
Therefore, we have checked Assumption 4.16 numerically and used the values (γi)i∈{1,...,s} =

(2.1, 1.6, 1.6, 1.5, 1.5, 1.6) and N = 4. In Figure 4.6 we have depicted the trajectories
(left) and performance (right) of the MPC feedback defined in Algorithm 3. The blue
lines represent the accumulated cost, the red lines the theoretical upper bound derived in
Theorem 4.19, i.e.

γN−2
i

γN−2
i − (γi − 1)N

· JNi
(
x0,u

?,N
x0

)
.

Let us now assume we did not know the γi and therefore apply Algorithm 4 with N = 4

to the example. Our theoretical considerations in Theorem 4.24 guarantee that the MPC
performance is bounded from above by the same bound as before. In Figure 4.7 we compare
the accumulated MPC cost (blue) to the theoretical upper bound (red) using the values
(γi)i∈{1,...,s} = (2.1, 1.6, 1.6, 1.5, 1.5, 1.6) (as before).
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Figure 4.4: Trajectories and performance without the constraints in step (1), Algorithm 2.
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Figure 4.5: Trajectories of the six systems resulting from Algorithm 2 choosing POSs
different from those in Figure 4.3.

59



Chapter 4. Multiobjective Stabilizing Model Predictive Control

-5 0 5

x1

-5

0

5

x
2

Sys. 1

Sys. 2

Sys. 3

Sys. 4

Sys. 5

Sys. 6

5 10

k

50

100

150

J
1

5 10

k

150

200

250

J
2

5 10

k

200

250

300

J
3

5 10

k

150

200

250

J
4

5 10

k

250

300

350

J
5

5 10

k

150

200

250

J
6

Figure 4.6: Trajectories and accumulated performance without terminal constraints using
Algorithm 3.
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Figure 4.7: Trajectories and accumulated performance without terminal constraints using
Algorithm 4.
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In multiobjective (MO) economic Model Predictive Control (MPC) we entirely drop As-
sumption 4.2, i.e. we do not assume positive definiteness of the criteria `i wrt to an equi-
librium x∗. The motivation for doing so is given in Chapter 2. The results presented here
can be seen as an attempt to generalize some of the results on single-objective Economic
MPC in [32, Chap. 8] and Chapter 2. Thus, a dissipativity assumption will be imposed
and discussed.

As in the setting with ‘classical’ stage costs, we distinguish MPC schemes with and
without terminal conditions and start our analysis by imposing terminal conditions.

Some of our results have been published in [36].

5.1 MO Economic MPC with Terminal Conditions

In this section we solve MO optimal control problems (OCPs) of the form (4.3). The
following assumption on the terminal condition, which is an extension of [1, Assumption
6] (see also [32, Assumption 8.5]), takes the place of the Assumptions 4.2 and 4.4.

Assumption 5.1. 1. There is an equilibrium (x∗, u∗) ∈ X × U with x∗ ∈ X0 and the
terminal cost Fi : X0 → R≥0 satisfies Fi(x∗) = 0 for all i ∈ {1, . . . , s}.

2. There is κ : X0 → U such that f(x, κ(x)) ∈ X0 and

Fi(f(x, κ(x))) ≤ Fi(x)− `i(x, κ(x)) + `i(x∗, u∗)

holds for all i ∈ {1, . . . , s}.

5.1.1 Averaged Performance

By means of these conditions we can already formulate an averaged performance result
for Algorithm 2 for the economic setting. The sets UN (x) and XN are defined as in Sec-
tion 4.2. A numerical example that illustrates the results in this section will be presented in
Section 5.1.4. We start our analysis with some results on the averaged infinite-horizon per-
formance of the MPCcontroller defined in Algorithm 2 and then move on to non-averaged
performance results. The necessity for considering the averaged performance is explained
in [32, Sec. 8.1].
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Theorem 5.2 (Averaged performance theorem). Consider an OCP (4.3), and let N ∈
N≥2. Let Assumption 5.1 hold and let the set JNP (x) be externally stable (according to
Def. 3.4) for each x ∈ XN . We furthermore assume that there is M ∈ R such that
JNi (x,u?) ≥ M for all x ∈ XN , all u? ∈ UNP (x) and each i ∈ {1, . . . , s}. Then, the MPC
feedback µN : X → U defined in Algorithm 2 has the following infinite-horizon averged
closed-loop performance for all objectives i ∈ {1, . . . , s}:

J̄∞i (x0, µ
N ) := lim sup

K→∞

1

K

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ `i(x∗, u∗).

Proof. We follow the reasoning in the proof of Theorem 4.6. Feasibility of all chosen
Pareto-optimal solutions (POSs) holds with the same arguments. For investigating the
performance consider K ∈ N and i ∈ {1, . . . , s}. We obtain

K−1∑
k=0

`i(x(k), µN (x(k)))

=
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JN−1

i

(
f(x(k), u?,Nx(k)(0)),u?,Nx(k)(·+ 1)

)]
≤
K−1∑
k=0

[
JNi

(
x(k),u?,Nx(k)

)
− JNi

(
f(x(k), u?,Nx(k)(0)),uNx(k+1)

)
+ `i(x∗, u∗)

]
,

in which the inequality is obtained as in Lemma 4.5 for the terminal cost from Assump-
tion 5.1 in combination with Lemma 4.1, and u?,Nx(k) is the POS chosen in Algorithm 2 at

time k. In step (1) u?,Nx(k+1) is constructed such that

JNi

(
x(k + 1),u?,Nx(k+1)

)
≤ JNi

(
x(k + 1),uNx(k+1)

)
holds for all i ∈ {1, . . . , s}. Thus, we have

K−1∑
k=0

`i
(
x(k), µN (x(k))

)
≤ JNi

(
x0,u

?,N
x0

)
− JNi

(
x(K),u?,Nx(K)

)
+K`i(x∗, u∗)

≤ JNi
(
x0,u

?,N
x0

)
−M +K`i(x∗, u∗) ∀ i ∈ {1, . . . , s}.

Taking the average and the limit superior on both sides of the inequality yields the asser-
tion.

In Chapter 2 we have emphasized that dissipativity (see Def. 2.5) is a key ingredient
for analyzing economic MPC schemes (with and without terminal conditions). To the best
of our knowledge there does not exists a MO version of this systems theoretic property.
Our attempt to generalize dissipativity is as follows.
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Definition 5.3 ((Strict) Dissipativity). The MO OCP (4.1) is strictly dissipative with
respect to `i, i ∈ {1, . . . , s}, at an equilibrium (xe, ue) if there is λi : X→ R bounded from
below with λi(xe) = 0 and ρi ∈ K∞ such that for all x ∈ X and u ∈ U(x) it holds

˜̀
i(x, u) := `i(x, u)− `i(xe, ue) + λi(x)− λi(f(x, u)) ≥ ρi(‖x− xe‖). (5.1)

If the inequality holds for ρi ≡ 0, we call the problem dissipative.
If the MO OCP is (strictly) dissipative wrt all `i at (xe, ue), we say that the problem is

uniformly (strictly) dissipative at (xe, ue).1

If the MO OCP is strictly dissipative wrt to all `i at (xe, ue), Definition 5.3 seems
to be the natural extension of Definition 2.5. Moreover, the common interpretation of
dissipativity as a measure of how much energy is stored (and lost) in the system is still
meaningful. However, we conjecture that it is more realistic that different costs criteria are
(strictly) dissipative at different equilibria. While this assumption enables us to have more
distinct results on MO economic MPC, it is not quite clear how to interpret this property
physically. This aspect will be part of our future research on MO economic MPC.

Since in scalar-valued economic MPC, dissipativity is closely related to the optimal
equilibrium/steady state as defined in Definition 2.1 (see e.g. [30, 63]), the Pareto-optimal
steady states defined below seem to be the proper equivalent in the MO setting.

Definition 5.4 ((Pareto-) Optimal steady state). A steady state (xe, ue) is called Pareto
optimal steady state if it is a POS to the MO optimization problem

min(`1(x, u), . . . , `s(x, u))

s.t. f(x, u)− x = 0, (5.2)

x ∈ X, u ∈ U(x).

It is called optimal steady state for `i if it is a solution to

min `i(x, u)

s.t. f(x, u)− x = 0,

x ∈ X, u ∈ U(x).

We now show that dissipativity wrt `j at a steady state (xe, ue) is sufficient for (xe, ue)

to be an optimal steady state for `j and a Pareto-optimal steady state for (5.2).

Lemma 5.5 (Dissipativity implies (Pareto-)optimality). Assume that the MO OCP is
dissipative wrt to `j, j ∈ {1, . . . , s}, at (xe, ue). Then, (xe, ue) is an optimal steady state for
`j (and a weakly Pareto-optimal steady state for (5.2)) and for all x0 ∈ X and u ∈ U∞(x0)

it holds

lim sup
K→∞

1

K

K−1∑
k=0

`j (x(k, x0), u(k)) ≥ `j(xe, ue).

1In that case, u with u(k) ≡ ue for all k ∈ N ∪ {∞} is a strongly POS to (4.1) and to (4.2) with initial
value xe.
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Proof. Let (x̄, ū) be an admissible steady state. It holds `j(x̄, ū) − `j(xe, ue) = `j(x̄, ū) −
`j(x

e, ue) + λj(x̄) − λj(f(x̄, ū)) ≥ 0. Hence, (xe, ue) is optimal for `j . Any point that is
optimal wrt to one objective function belongs to the set of weakly POSs to the respective
MO optimization problem.

Now, consider arbitrary x0 ∈ X and u ∈ U∞(x0). Then, we have

1

K

K−1∑
k=0

`j (x(k, x0), u(k)) ≥ 1

K

K−1∑
k=0

[`j (xe, ue)− λj(x(k, x0)) + λj(x(k + 1, x0))]

= `j(x
e, ue) +

1

K
(λj(x(K,x0))− λj(x0))

≥ `j(xe, ue) +
1

K
(Mλj − λj(x0)),

in which Mλj is the assumed bound on λj (see Def. 5.3). Taking the lim supK→∞ on both
sides of the inequality yields the assertion.

Remark 5.6. It follows immediately from Lemma 5.5 that if the MO OCP is uniformly
dissipative at a steady state (xe, ue), then (xe, ue) is a strongly POS to (5.2) in the sense
of Definition 3.3.

So far, we have established an upper bound on the averaged performance, which de-
pends on the terminal condition and applies to all cost criteria `i, i ∈ {1, . . . , s}, and we
have a lower bound that only applies to all dissipative cost criteria and which depends
on the respective equilibrium that the cost criterion is dissipative at. Not suprisingly and
as can be seen in the following corollary, the upper and the lower bound on the averaged
infinite-horizon performance coincide for those cost criteria, which are dissipative at the
steady state from the terminal condition.

Corollary 5.7. Let Assumption 5.1 hold, let x0 ∈ XN and consider the MPC feedback
defined in Algorithm 2. If there is a cost criterion `i that is dissipative wrt (x∗, u∗) and if
the sets JN (x) for all x ∈ XN are externally stable, then it holds

J̄∞i (x0, µ
N ) = inf

u∈U∞(x0)
lim sup
K→∞

1

K

K−1∑
k=0

`i(x(k, x0), u(k)).

Proof. For all `i that are dissipative wrt to (x∗, u∗) it holds

`i(x∗, u∗) ≥ J̄∞i (x0, µ
N ) = lim sup

K→∞

1

K

K−1∑
k=0

`i
(
x(k, x0), µN (x(k, x0))

)
≥ inf

u∈U∞(x0)
lim sup
K→∞

1

K

K−1∑
k=0

`i (x(k, x0), u(k)) ≥ `i(x∗, u∗),

in which the first and the last inequality follow from Theorem 5.2 and Lemma 5.5. Since
the left hand side and right hand side of the chain of inequalities coincide, we have equality
of all expressions, and thus, obtain the assertion.
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5.1.2 Non-averaged Performance

For cost criteria that are strictly dissipative at the equilibrium from the terminal condition
there is no gap between the upper and lower bound on the averaged performance. Moreover,
as the next Lemma 5.8 shows, we will be able to prove that for those cost criteria we are
able to establish a non-averaged infinite-horizon performance statement. Since this result
will be formulated in terms of the rotated cost according to Definition 5.3, we define the
following rotated cost functionals2:

J̃Ni (x,u) :=
N−1∑
k=0

˜̀
i(x(k), u(k)) + F̃i(x(N)) with F̃i(x) := Fi(x) + λi(x)

J̃∞i (x0, µ
N ) := lim

K→∞

K−1∑
k=0

˜̀
i(x(k), µN (x(k)))

Lemma 5.8 (Non-averaged rotated performance). Let Assumption 5.1 hold, x0 ∈ XN ,
and let the sets JNP (x) be externally stable for all x ∈ XN . Then, for all cost criteria `i,
i ∈ {1, . . . , s} that are dissipative at (x∗, u∗), it holds

J̃∞i (x0, µ
N ) ≤ J̃Ni (x0,u

?,N
x ).

Here, µN is the MPC feedback defined in Algorithm 2.

Proof. Let i ∈ {1, . . . , s} such that `i is strictly dissipative at (x∗, u∗). By definition, for
any x ∈ XN and u ∈ UN (x) the relation

J̃Ni (x,u)

=
N−1∑
k=0

[`i(x(k), u(k))− `i(x∗, u∗) + λi(x(k))− λi(x(k + 1))] + Fi(x(N)) + λi(x(N))

=JNi (x,u)−N`i(x∗, u∗) + λi(x) (5.3)

holds. This means that both cost functionals only differ by constants. Then, we can

2Of course, the rotated functionals can only be defined for those cost criteria, which are strictly dissi-
pative at some equilibrium.
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determine the performance as follows: For each K ∈ N it holds

K−1∑
k=0

˜̀
i(x(k, x0), µN (x(k, x0)))

=

K−1∑
k=0

[
`i(x(k, x0), µN (x(k, x0)))− `i(x∗, u∗) + λi(x(k, x0))− λi(x(k + 1, x0))

]
=
K−1∑
k=0

[
JNi (x(k, x0),u?,Nx(k,x0))− J

N−1
i (x(k + 1, x0),u?,Nx(k,x0)(·+ 1))

]
−K`i(x∗, u∗) + λi(x0)− λi(x(K,x0))

≤
K−1∑
k=0

[
JNi (x(k, x0),u?,Nx(k,x0))− J

N
i (x(k + 1, x0),uNx(k+1,x0)) + `i(x∗, u∗)

]
−K`i(x∗, u∗) + λi(x0)− λi(x(K,x0))

≤JNi (x0,u
?,N
x0

)− JNi (x(K,x0),uNx(K,x0)) + λi(x0)− λi(x(K,x0))

=J̃Ni (x0,u
?,N
x0

)− J̃Ni (x(K,x0),uNx(K,x0)) ≤ J̃
N
i (x0,u

?,N
x0

),

in which the first inequality holds by means of the terminal condition, the second inequality
because of step (1) in Algorithm 2, and the last inequality holds true because dissipativity
of the cost criterion as well as positive terminal costs F̃i imply positivity of the rotated cost
functional. The existence of proper POSs (i.e. such POSs satisfying the constraints) is again
ensured by external stability. Finally, letting K tend to infinity yields the statement.

Lemma 5.8 can be proven more elegantly in case that the MO OCP (4.1) is uniformly
strictly dissipative at (x∗, u∗) (cf. Definition 5.3): Analogous to UNP (x) we define the set
ŨNP (x) = {u? ∈ UN (x)|u? POS to (4.3) with J̃N (x,u) instead of JN (x,u)} and by rela-
tion (5.3) conclude ŨNP (x) = UNP (x). This also implies that existence of POSs for the
rotated problem is ensured by external stability of the sets JNP (x).

For x ∈ X0 Assumption 5.1 yields

F̃i(f(x, κ(x))) = Fi(f(x, κ(x))) + λi(f(x, κ(x)))

≤ Fi(x)− `i(x, κ(x)) + `i(x∗, u∗) + λi(f(x, κ(x)))

= Fi(x) + λi(x)− `i(x, κ(x)) + `i(x∗, u∗)− λi(x) + λi(f(x, κ(x)))

= F̃i(x)− ˜̀
i(x, κ(x)).

Thus, the modified OCP satisfies Assumptions 4.2 and 4.4. Hence, proceeding as in the
proof of Theorem 4.6, we immediately obtain the desired inequality for all cost criteria.

At first glance the result of Lemma 5.8 might seem somehow unsatisfactory, because
the performance of the MPC controller is evaluated in terms of the rotated cost instead of
the original cost. The main benefit of this result lies in the fact that it enables us to prove
convergence of the MPC closed-loop trajectory.
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5.1. MO Economic MPC with Terminal Conditions

Corollary 5.9 (Convergence of the MPC closed loop). Let the assumptions of Lemma 5.8
hold and assume that there is at least one cost criterion `i that is strictly dissipative at
(x∗, u∗). Then, for the MPC feedback µN from Algorithm 2 it holds

lim
k→∞

xµ
N

(k) = x∗.

Proof. The proof is the same as the proof of Corollary 4.9 using ˜̀
i instead of `i.

We have just shown how to obtain averaged performance and estimates for the rotated
cost functional. In what follows we will deduce estimates for the non-averaged infinite-
horizon MPC performance in terms of the original cost critera. Therefore, we require the
following:

Assumption 5.10 (Uniform continuity). Assume there are criteria `i, i ∈ I ⊆ {1, . . . , s},
which are strictly dissipative at (x∗, u∗) and `i(x∗, u∗) = 0 for all i ∈ I and x∗ from
Assumption 5.1. We assume that for each i ∈ I there exists γi ∈ K∞ such that for all
N ∈ N, for all x ∈ XN and all u? ∈ UNP (x) it holds

|JNi (x,u?)| ≤ γi(‖x− x∗‖). (5.4)

Property (5.4) is referred to as uniform continuity of JNi at x∗. This is due to the
following: If I = {1, . . . , s}, then for each N ∈ N the sequence u ∈ UN (x∗) with u(k) = u∗
for all k ∈ {0, . . . , N − 1} is a strongly POS to (4.3) for x = x∗ and it holds J̃Ni (x∗,u) =

0. Using (5.3) this yields JNi (x∗,u) = J̃Ni (x∗,u) + N`i(x∗, u∗) − λi(x∗) = 0 because of
Assumption 5.10 above and Definition 5.3. Thus, in case I = {1, . . . , s} relation (5.4) in
fact reads: For all N ∈ N, for all x ∈ XN , all u? ∈ UNP (x) and for all u?x∗ ∈ U

N
P (x∗) it holds

|JNi (x,u?)− JNi (x∗,u
?
x∗)| ≤ γi(‖x− x∗‖).

By means of our preliminary results and Assumption 5.10 we are now ready to state
our main performance result for MO economic MPC.

Theorem 5.11 (Non-averaged infinite-horizon performance). Consider x0 ∈ XN , and
let the Assumptions 5.1 and 5.10 hold and let the sets JNP (x) be externally stable for all
x ∈ XN . Then, for all i ∈ I the MPC feedback from Algorithm 2 has the following non-
averaged infinite-horizon performance:

J∞i (x0, µ
N ) ≤ JNi (x0,u

?,N
x ).

Proof. We proceed as in prior proofs and consider the finite-horizon performance. For each
K ∈ N and all i ∈ I it holds

K−1∑
k=0

`i
(
x(k, x0), µN (x(k, x0))

)
=
K−1∑
k=0

JNi

(
x(k, x0),u?x(k,x0)

)
− JN−1

i

(
x(k + 1, x0),u?x(k,x0)(·+ 1)

)
≤JNi

(
x0,u

?
x0

)
− JNi

(
x(K,x0),u?x(K,x0)

)
+K `i(x∗, u∗)︸ ︷︷ ︸

=0

.
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Now, we combine (5.4), Corollary 5.9 and the fact that γi in (5.4) is a K∞-function and
thus continuous. This way, we get

lim
K→∞

|JNi (x(K,x0),u?x(K,x0))| ≤ lim
K→∞

γi(‖x(K,x0)− x∗‖)

= γi( lim
K→∞

‖x(K,x0)− x∗‖) = 0.

This implies the assertion.

5.1.3 Strictly Convex MO Optimization Problems

In what follows we will be concerned with the special case of strictly convex MO OCPs.
The reason for investigating this special case is twofold. Firstly, such OCPs are quite
common according to [8, 77], secondly, we will be able to show that the MPC closed-loop
trajectory converges to the equilibrium in Assumption 5.1 even if none of the given cost
criteria `i is strictly dissipative at this equilibrium. The following Lemma 5.12 provides
insights into this (probably) unexpected behavior.

Lemma 5.12. Consider x0 ∈ XN , let Assumption 5.1 hold, let the sets JNP (x) be externally
stable for all x ∈ XN , and assume that the MO OCP (4.1) is strictly dissipative wrt all `i at
(possibly different) (xei , u

e
i ). If the dynamics (1.1) are affine, all `i and Fi are strictly convex

and (x∗, u∗) in Assumption 5.1 is a Pareto-optimal steady state according to Definition 5.4,
then the MPC feedback µN from Algorithm 2 yields xµN (k, x0)→ x∗, k →∞.

Proof. Step 1: We prove that there exists a convex combination `Σ of the `i, such that
`Σ is strictly dissipative at (x∗, u∗).

Let E be the set of Pareto-optimal steady states, which includes the points (xei , u
e
i ) and

(x∗, u∗). Due to strict convexity of the `i, the set E can completely be computed via a
weighted sum-approach (see Corollary 3.10), i.e.

E =

{
(x, u)|(x, u) = argmin

(x,u)∈X×U, x=f(x,u)

s∑
i=1

wi`i(x, u), wi ∈ R≥0,
s∑
i=1

wi = 1

}
.

According to Lemma 5.5, the points (xei , u
e
i ) are associated with weights (1, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Since (x∗, u∗) ∈ E , there are (ŵi)i=1,...,s, ŵi ≥ 0,
∑

i ŵi =

1, such that (x∗, u∗) = argmin(x,u)∈X×U, x=f(x,u)

∑s
i=1 ŵi`i(x, u). Let us define

`Σ(x, u) :=

s∑
i=1

ŵi`i(x, u).

Clearly, `Σ is a strictly convex function with optimal steady state (x∗, u∗). It was proven
in [12, Prop. 4.3]3 that (single-objective) OCPs with affine dynamics and strictly convex
stage costs are strictly dissipative at the optimal steady state with a linear storage function,
hence `Σ is strictly dissipative at (x∗, u∗).

3See also [16].
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Step 2: `Σ strictly dissipative at (x∗, u∗) yields that the closed-loop trajectory tends
to x∗.

Due to the convexity assumptions, we have strict convexity of the cost functionals JNi
for all i ∈ {1, . . . , s}. Thus, all POSs in step (1) of Algorithm 2 can be calculated via
weighted sums. This means that one admissible POS is argminu∈UN (x) J

N
Σ (x,u) subject

to the constraints, in which JNΣ (x,u) :=
∑s

i=1 ŵiJ
N
i (x,u). Hence, `Σ can be included

in the set of stage costs without changing the POSs in the MPC iterations and since for
this weighted stage cost, the equilibrium from the terminal constraint and dissipativity
coincide, we can apply Corollary 5.9 to conclude the proof.

Remark 5.13. 1. Lemma 5.12 reveals that even though none of the original stage costs
is dissipative wrt to the steady state from the terminal condition, there might be an ‘ar-
tificial’ criterion that is dissipative wrt this steady state. In the proof of Lemma 5.12
`Σ has that property.

2. For the rotated stage cost ˜̀
Σ we obtain the performance result from Lemma 5.8.

3. If the equilibrium from the terminal condition does not belong to the set E, the MPC
closed-loop trajectory does not converge towards it, see Figure 5.8.

5.1.4 Numerical Results

The Case of Uniform Dissipativity

To illustrate the results in this section we reconsider Example 2.14 (economic growth
model), but this time in a MO setting. To this end we will equip the system x+ = u,
`1(x, u) = − ln(Axα − u) with a second cost function `2(x, u) = (x − xe1)2 + 0.1(u − ue1)2

using the steady state xe1 = xe ≈ 2.23 at which `1 is strictly dissipative. With this
definition, the MO OCP is uniformly strictly dissipative at (xe1, u

e
1). We use the same

constraint sets as in Example 2.14 with the additional terminal constraint X0 = {xe1}.
This means that Assumption 5.1 holds with x∗ = xe1, κ ≡ u∗ = x∗ and Fi ≡ 0 for all
i ∈ {1, . . . , s}.

Let us first note that with these specifications, the sets JNP (x) are externally stable
for each x ∈ XN and each N ∈ N (see Lemma 4.8). In this setting, the equilibrium from
Assumption 5.1 and from uniform strict dissipativity coincide. Consequently, the bounds
in Theorem 5.2, Lemma 5.5 and Corollary 5.7 coincide, too, for both cost criteria. Indeed,
it can be observed in Figure 5.1 that the averaged infinite-horizon performance approaches
the value `i(xe1, xe1) for both objectives. Convergence of the MPC closed-loop trajectory
was proven in Corollary 5.9 and is illustrated in Figure 5.2. In Figure 5.3 it is shown that
the non-averaged infinite-horizon performance is bounded from above by the value of the
POS in step (0), Algorithm 2, but need not be below this bound for all times, which is in
contrast to the results in Chapter 4. In order to obtain the desired results in Figure 5.3,
constants were added to `1 such that `i(x∗, u∗) = 0 holds.
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Figure 5.1: Averaged performance (red, solid) of Algorithm 2 for the MO uniformly dissi-
pative economic growth example, using X0 = {xe1}, x0 = 5 and N = 3. The dashed green
lines are the values `i(x∗, u∗) = `i(x

e
1, x

e
1).
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Figure 5.2: Closed-loop trajectory (red, solid) of Algorithm 2 for the uniformly strictly
dissipative example using X0 = {xe1} and N = 3, and the terminal condition (black,
dashed).

The Case of Non-Uniform Dissipativity

In this section the stage cost `1 remains unchanged, whereas the second cost function
is given by `2(x, u) = − ln(A2x

α2 − u) with A2 = 3 and α2 = 0.2. We use the same
constraints as in Example 2.14 with the additional terminal constraint X0 = {x∗} that will
vary throughout our illustrations. Again, the sets JNP (x) are externally stable for each
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Figure 5.3: Non-averaged infinite-horizon performance (red, solid) and the value
JNi (x0,u

?,N ) (black, dashed) for the uniformly strictly dissipative problem and x0 = 5,
N = 3.

x ∈ XN and each N ∈ N.
Let us now set x∗ = xe1 ≈ 2.23, which is the optimal equilibrium for `1. Thus, x∗ ∈ E .

We have already stated in Example 2.14 that the first cost criterion is strictly dissipative
wrt xe1 and since `2 has the same structure as `1 we conclude strict dissipativity (with
a linear storage function λ2) of `2 at (xe2, u

e
2) = (xe2, x

e
2) with xe2 ≈ 0.53. In Figure 5.4
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Figure 5.4: Averaged performance (red, solid) of Algorithm 2 for the MO economic growth
example, using X0 = {xe1}, x0 = 5 and N = 3. The dashed blue lines are the values
`i(x∗, u∗) = `i(x

e
1, x

e
1), the green lines the values `i(xei , u

e
i ).

we see that the averaged performance of Algorithm 2 for our example indeed approaches
the value of the stage cost of the terminal condition `i(x∗, u∗) from below. This reflects
the statement of Theorem 5.2. Moreover, we observe that the infinite-horizon averaged
performance is lower bounded by `i(xei , u

e
i ) as proved in Lemma 5.5. For the first objective

the values `1(x∗, u∗) and `1(xe1, u
e
1) coincide.

Since there is `i (namely `1) which is strictly dissipative at the steady state in As-
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sumption 5.1, Corollary 5.9 applies. The convergence of the MPC closed loop is illustrated
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Figure 5.5: Closed-loop trajectory (red, solid) of Algorithm 2 using X0 = {xe1} and N = 3,
and the terminal condition (black, dashed).

in Figure 5.5. Let us now consider the non-averaged infinite-horizon performance of µN .
Theorem 5.11 implies that the performance of the first cost criterion is bounded by the
value of the POS in step (0), Algorithm 2. Note that in order to obtain this result we have
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Figure 5.6: Non-averaged infinite-horizon performance (red, solid) and the value
JNi (x0,u

?,N ) (black, dashed) for N = 3, x0 = 5.

added constants to our stage costs, such that `i(x∗, u∗) = 0 holds. Indeed, in Figure 5.6 we
observe that only the first objective exhibits the performance estimate in Theorem 5.11.
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5.2. MO Economic MPC without Terminal Conditions

In what follows we will illustrate the results stated in Lemma 5.12. Let us first note
that the example satisfies all assumptions of the lemma. This implies that for any choice of
x∗ ∈ E , we obtain xµ

N
(k, x0)→ x∗ even if neither `1 nor `2 is strictly dissipative at (x∗, u∗).

In Figure 5.7 we observe that this indeed holds true for our example. Moreover, we see
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Figure 5.7: Closed-loop trajectory (red, solid) of Algorithm 2 using X0 = {x∗} for some
Pareto-optimal steady state x∗ (black, dashed) and the optimal steady states for `1 and
`2 (green and blue, dashed) on the left and the corresponding non-averaged performance
(red) of the ‘artificial’ objective JNΣ (N = 3) on the right.

that the non-averaged performance of the weighted objective JΣ is bounded as stated in
Theorem 5.11.

Let us now investigate what happens if we choose a terminal condition x∗ ∈ X with
x∗ 6= xe1, x∗ 6= xe2 and x∗ /∈ E . In Figure 5.8 we used the terminal constraint x∗ = 0.1,
which is an equilibrium, but not a Pareto-optimal one. We observe that the trajectory
neither converges to the terminal condition nor to any of the optimal steady states. Thus,
the requirement x∗ ∈ E in Lemma 5.12 is needed.

5.2 MO Economic MPC without Terminal Conditions

In this section we deal with MO OCPs with economic stage costs and without terminal
conditions, i.e. we waive Assumption 5.1. In other words we aim to generalize the results
in Chapter 2 to our MO setting. As in the previous section dissipativity is our main tool
for analyzing such schemes.

For cost criteria `i that are strictly dissipative at (xei , u
e
i ), the relation between the
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Figure 5.8: Closed-loop trajectory (red, solid) of Algorithm 2 using X0 = {0.1} and N = 3

(black, dashed), and xe1 (green, dashed), xe2 (blue, dashed).

rotated and the original cost functional is as follows:

J̃Ni (x,u) =
N−1∑
k=0

˜̀
i(x(k), u(k))

=

N−1∑
k=0

`i(x(k), u(k))− `i(xei , uei ) + λi(x(k))− λi(x(k + 1))

= JNi (x,u)−N`i(xei , uei ) + λi(x)− λi(x(N))

In the absence of terminal conditions the value λi(x(N)) is neither fixed nor compensated
for by terminal conditions, which implies that POSs to the rotated and the original MO
OCP do not coincide. Consequently, an analysis as in Lemma 5.8 and below can not be
conducted. In Section 2.2 we have explained that – under the turnpike property – optimal
trajectories approach the optimal steady state. This behavior is exploited in the proofs in
Chapter 2. Figuratively spoken one could say that the MPC closed loop is led in the right
direction if the turnpike property holds.

In the presence of multiple objectives the situation can become more complex as we
might be dealing with MO OCPs which are strictly dissipative at different steady states.
Since dissipativity with a bounded storage function implies the turnpike property – as
stated in Lemma 5.14 – this also leads to turnpike behavior wrt different steady states, see
Figures 5.10, 5.11 and 5.12 for an illustration of the non-uniform turnpike property.
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5.2. MO Economic MPC without Terminal Conditions

Lemma 5.14 (Dissipativity implies turnpike behavior). Let i ∈ {1, . . . , s} be an index such
that the MO OCP (4.1) is strictly dissipative wrt `i at (xei , u

e
i ) in the sense of Definition 5.3

and with λi bounded on X. Then, for each δ > 0 there exists σiδ ∈ L such that for all
x ∈ X, N , P ∈ N and u ∈ UN (x) with JNi (x,u) ≤ N`i(x

e
i , u

e
i ) + δ it holds that the set

Di(x,u, P,N) := {k ∈ {0, . . . , N − 1}|‖xu(k, x) − xei‖ ≥ σiδ(P )} has at most P elements
(short notation #Di(x,u, P,N) ≤ P ).

Proof. The proof of the lemma is completely analogous to the proof of [32, Prop. 8.15] and
is therefore omitted. We just mention that σiδ(P ) := ρ−1

i ((2Mi+ δ)/P ), in which Mi is the
assumed bound on λi.

5.2.1 Uniformly Dissipative MO OCPs

In order to avoid turpike behavior wrt different steady states we will first consider the case
of uniform dissipativity.

Assumption 5.15 (Uniform Dissipativity and Uniform Continuity).

1. The MO OCP (4.1) is uniformly strictly dissipative at (xe, ue) in the sense of Defi-
nition 5.3.

2. There are γJi ∈ K∞ and ωi ∈ L such that for all x ∈ X, N ∈ N, u? ∈ UNP (x) and all
u?xe ∈ UNP (xe) the inequalities

|JNi (x,u?)− JNi (xe,u?xe)| ≤ γJi(‖x− xe‖) + ωi(N).

hold for all i ∈ {1, . . . , s} and xe from the first assumption.

The second part of Assumption 5.15 can be seen as a counterpart of Assumption 5.10.
The additional term ωi(N) reflects the lack of a terminal condition. We conjecture that
unless an explicit formula for nondominated values of the underlying problem is known, it
will be a difficult task to verify this assumption.

Under the assumption of uniform strict dissipativity, the turnpike property becomes
uniform, too, see Figure 5.9 for an illustration of the uniform turnpike property based
on the example in Section 5.1.4 without terminal conditions. This means that xei = xe

for all i ∈ {1, . . . , s} in Lemma 5.14. Let us now fix δ > 0 and pick arbitrary x ∈
X, N, P ∈ N and u ∈ UN (x) such that JNi (x,u) ≤ N`i(x

e, ue) + δ holds for all i ∈
{1, . . . , s}. Lemma 5.14 then yields #Di(x,u, P,N) ≤ P for all i ∈ {1, . . . , s}. The sets
Di refer to different distances of the trajectory to xe, i.e. if σiδ(P ) ≥ σjδ(P ) for i, j ∈
{1, . . . , s}, then Di(x,u, P,N) ⊆ Dj(x,u, P,N). Hence, for k ∈ argmini∈{1,...,s} σ

i
δ(P ) and

j ∈ argmaxi∈{1,...,s} σ
i
δ(P ) we have

Dj(x,u, P,N)︸ ︷︷ ︸
=∩i∈{1,...,s}Di(x,u,P,N)

⊆Di(x,u, P,N) ⊆ Dk(x,u, P,N)︸ ︷︷ ︸
=∪i∈{1,...,s}Di(x,u,P,N)

∀i ∈ {1, . . . , s}.

Consequently, by uniform strict dissipativity the inequalities JNi (x,u) ≤ N`i(x
e, ue) + δ

ensure ‖xu(M,x) − xe‖ < σkδ (P ) for all M /∈ Dk(x,u, P,N). We will make use of these
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Figure 5.9: Open-loop Pareto optimal trajectories (black) for horizon N = 5 (left) and N =

10 (right) for the uniformly strictly dissipative economic growth example from Section 5.1.4
without terminal conditions, and the equilibrium (red) from dissipativity.

considerations in the next two lemmas, which serve the purpose to establish a relation
between nondominated values of length N and N − 1.

Lemma 5.16. Let Assumption 5.15 and the assumptions of Lemma 5.14 hold. Let the
set JNP (xe) be externally stable for all N ∈ N. Then, for all x ∈ X, N ∈ N and all
u?,Nx ∈ UNP (x), u?,Nxe ∈ UNP (xe) the relation

JNi (x,u?,Nx ) = JMi (x,u?,Nx ) + JN−Mi (xe,u?,Nxe ) +R1,i(x,M,N)

holds for all i ∈ {1, . . . , s} with |R1,i(x,M,N)| ≤ γJi(σkδ (P ))+ωi(N−M) for all P ∈ N, all
M /∈ Dk(x,u?,Nx , P,N) and σkδ from Lemma 5.14 with δ = max

i∈{1,...,s}
(γJi(‖x− xe‖) + ωi(N))

and k ∈ argmin
i∈{1,...,s}

σiδ(P ).

Proof. Here, and also in Lemma 5.17 we follow the reasoning of [32, Section 8.5]; however,
we provide details since choosing the proper POSs might not be obvious.

For x ∈ X and N ∈ N consider the control u = (ue, . . . , ue) ∈ UN (xe) with objective
values JNi (xe,u) = N`i(x

e, ue). External stability of JNP (xe) guarantees the existence
of u?xe ∈ UNP (xe) such that JNi (xe,u?xe) ≤ N`i(x

e, ue) holds for all i ∈ {1, . . . , s}. By
Assumption 5.15

JNi (x,u?,Nx ) ≤ JNi (xe,u?xe) + γJi(‖x− xe‖) + ωi(N)

≤ N`i(xe, ue) + γJi(‖x− xe‖) + ωi(N) ≤ `i(xe, ue) + δ

holds for all u?,Nx ∈ UNP (x), all i ∈ {1, . . . , s} and δ = maxi∈{1,...,s} γJi(‖x − xe‖) +

ωi(N). Our preliminary considerations reveal that for all M /∈ Dk(x,u?,Nx , P,N) we have
‖xu

?,N
x (M,x)− xe‖ < σkδ (P ), in which k ∈ argmini∈{1,...,s} σ

i
δ(P ).
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5.2. MO Economic MPC without Terminal Conditions

By definition we have

JNi (x,u?,Nx ) = JMi (x,u?,Nx ) + JN−Mi (xu
?,N
x (M,x),u?,Nx (·+M))

= JMi (x,u?,Nx ) + JN−Mi (xe,u?,N−Mxe )) +R1,i(x,M,N)

for R1,i(x,M,N) := JN−Mi (xu
?,N
x (M,x),u?,Nx (·+M))−JN−Mi (xe,u?,N−Mxe )) and arbitrary

u?,N−Mxe ∈ UN−MP (xe). Using Assumption 5.15 we have the following bound on the error
term: |R1,i(x,M,N)| ≤ γJi(‖xu

?,N
x (M,x)−xe‖)+ωi(N−M) ≤ γJi(σkδ (P ))+ωi(N−M).

Lemma 5.17. Let Assumption 5.15 and the assumptions of Lemma 5.14 hold. Assume
external stability of the sets JNP (x) for all x ∈ X and N ∈ N. Then, for all x ∈ X, all
N ∈ N and all u?,N−1

x ∈ UN−1
P (x) there exists u?,Nx ∈ UNP (x) such that

JNi (x,u?,Nx ) ≤ JN−1
i (x,u?,N−1

x ) + `i(x
e, ue) +R2,i(x,N)

holds for all i ∈ {1, . . . , s} with |R2,i(x,N)| ≤ 2γJi(σ
k
δ (bN/2c)) + 2ωi(bN/2c) for σkδ from

Lemma 5.14 with δ = max
i∈{1,...,s}

(γJi(‖x− xe‖) + ωi(N − 1)) and k ∈ argmin
i∈{1,...,s}

σiδ(bN/2c).

Proof. For x ∈ X, horizon N − 1 and P = bN/2c consider an arbitrary solution to (4.2)
u?,N−1
x ∈ UN−1

P (x). Since #Dk(x,u?,N−1
x , P,N−1) ≤ bN/2c, the set {0, . . . , N−2}\Dk is

non empty and we can apply Lemma 5.16 forM ∈ {0, . . . , bN/2c−1}. For all u?,N−M−1
xe ∈

UN−M−1
P (xe) the relation

JN−1
i (x,u?,N−1

x ) = JMi (x,u?,N−1
x ) + JN−M−1

i (xe,u?,N−M−1
xe ) +R1,i(x,M,N − 1)

holds for all i ∈ {1, . . . , s} and with |R1,i(x,M,N − 1)| ≤ γJi(σ
k
δ (bN/2c)) + ωi(N − 1)

and δ = maxi∈{1,...,s} γJi(‖x− xe‖) + ωi(N − 1). Moreover, for x̄ := xu
?,N−1
x (M,x) it holds

‖x̄− xe‖ < σkδ (bN/2c).
For u?,N−M−1

xe ∈ UN−M−1
P (xe) the concatenated control (ue,u?,N−M−1

xe ) is a feasible
control sequence of length N −M for initial value xe. By external stability we hence get
the existence of u?,N−Mxe ∈ UN−MP (xe) such that

JN−Mi (xe,u?,N−Mxe ) ≤ `i(xe, ue) + JN−M−1
i (xe,u?,N−M−1

xe )

holds for all i ∈ {1, . . . , s}. Moreover, Assumption 5.15 ensures the relation

|JN−Mi (x̄,u?,N−M )− JN−Mi (xe,u?,N−Mxe )| ≤ γJi(‖x̄− xe‖) + ωi(N −M)

for all i ∈ {1, . . . , s} and all u?,N−M ∈ UN−MP (x̄).
Let us now define u ∈ UN (x) via

u(k) =

{
u?,N−1
x (k), k = 0, . . . ,M − 1

u?,N−M (k −M), k = M, . . . , N − 1
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for arbitrary u?,N−M ∈ UN−MP (x̄). For all i ∈ {1, . . . , s} we obtain

JNi (x,u) = JMi (x,u?,N−1
x ) + JN−Mi (x̄,u?,N−M )

= JMi (x,u?,N−1
x ) + JN−Mi (xe,u?,N−Mxe ) + R̂1,i(x,M,N),

in which |R̂1,i(x,M,N)| ≤ γJi(σkδ (b(N/2c)) + ωi(b(N/2c).
Putting everthing together yields

JN−1
i (x,u?,N−1

x ) + `i(x
e, ue)

=JMi (x,u?,N−1
x ) + JN−M−1

i (xe,u?,N−M−1
xe ) +R1,i(x,M,N − 1) + `i(x

e, ue)

≥JMi (x,u?,N−1
x ) + JN−Mi (xe,u?,N−Mxe ) +R1,i(x,M,N − 1)

=JNi (x,u)− R̂1,i(x,M,N) +R1,i(x,M,N − 1)

for all i ∈ {1, . . . , s}. Due to external stability there exists u?,Nx ∈ UNP (x) such that
JNi (x,u?,Nx ) ≤ JNi (x,u) holds for all i ∈ {1, . . . , s} and we finally obtain

JN−1
i (x,u?,N−1

x ) + `i(x
e, ue) +R2,i(x,N) ≥ JNi (x,u?,Nx )

for all i ∈ {1, . . . , s} and |R2,i(x,N)| ≤ 2γJi(σ
k
δ (bN/2c)) + 2ωi(bN/2c).

Remark 5.18. Lemma 5.16 has been stated for M /∈ Dk(x,u?,Nx , P,N) for the index k ∈
argmini∈{1,...,s} σ

i
δ(P ), because this yields the smallest error term R1,i for all i ∈ {1, . . . , s},

which also carries over to the error terms R2,i in Lemma 5.17. However, all the statements
remain true if we pick M /∈ Di(x,u?,Nx , P,N) for an arbitrary but fixed i ∈ {1, . . . , s}. In
this case, the error terms depend on the value σiδ(P ).

The following assumption similar to [30, Definition 2.2] ensures that for Pareto-optimal
trajectories it is – in terms of the cost functional – not worse to move to the optimal
equilibrium xe from Assumption 5.15 than staying away from it.

Assumption 5.19 (Cheap reachability). We assume that the steady state xe from As-
sumption 5.15 is cheaply reachable, i.e. we assume that there exists E ∈ R such that for
all x ∈ X, N ∈ N and all u? ∈ UNP (x) the inequality

JNi (x,u?) ≤ N`i(xe, ue) + E

holds for all i ∈ {1, . . . , s}.

The reason for imposing Assumption 5.19 is that up to now, the error terms in Lem-
mas 5.16 and 5.17 depend on the distance ‖x− xe‖, which can become arbitrarily large if
X is unbounded.

Corollary 5.20. Let Assumption 5.19 and the assumptions of Lemma 5.17 hold. Then,
for all x ∈ X, all N ∈ N and all u?,N−1

x ∈ UN−1
P (x) there exists u?,Nx ∈ UNP (x) such that

JNi (x,u?,Nx ) ≤ JN−1
i (x,u?,N−1

x ) + `i(x
e, ue) + δi(N)

holds for all i ∈ {1, . . . , s} with |δi(N)| ≤ 2γJi(σ
k
E(bN/2c)) + 2ωi(bN/2c) for σkE from

Lemma 5.14, E from Assumption 5.19 and k ∈ argmin
i∈{1,...,s}

σiE(bN/2c).
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5.2. MO Economic MPC without Terminal Conditions

Proof. If xe is cheaply reachable, i.e. Assumption 5.19 holds, we can apply Lemma 5.17
with δ = E and k ∈ argmini∈{1,...,s} σ

i
E(bN/2c) and obtain the error term |δi(N)| =

|R2,i(x,N)| ≤ 2γJi(σ
k
E(bN/2c)) + 2ωi(bN/2c), which no longer depends on x.

By means of our preliminary considerations we are now able to formulate an algorithm
for MO Economic MPC without terminal conditions. In order to execute the algorithm,
the following information must be available: The functions σiE from the turnpike prop-
erty (see Lemma 5.14) for E from Assumption 5.19 and the functions γJi and ωi from
Assumption 5.15.

Algorithm 5 (MO Economic MPC without Terminal Conditions).

(0) At time n = 0 : Find δi ∈ L such that |δi(N)| ≤ 2γJi(σ
k
E(bN/2c)) + 2ωi(bN/2c) for

all i ∈ {1, . . . , s}. Set x(n) := x0 and choose a POS u?,Nx(n) ∈ U
N
P (x(n)) to (4.2). Go

to (2).

(1) At time n ∈ N: Choose a POS u?,Nx(n) to (4.2) such that the inequalities

JNi

(
x(n),u?,Nx(n)

)
≤ JN−1

i

(
x(n),uN−1

x(n)

)
+ `i(x

e, ue) + δi(N)

are satisfied for all i ∈ {1, . . . , s}.

(2) Define uN−1
x(n+1) := u?,Nx(n)(·+ 1)

(3) Apply µN (x(n)) := u?,Nx(n)(0), set n = n+ 1 and go to (1).

Theorem 5.21 (Averaged infinite-horizon performance). Consider x0 ∈ X and N ∈ N,
and let Assumptions 5.15 and 5.19 hold. Let the set JNP (x) be externally stable for all
x ∈ X, assume that the storage functions λi are bounded on X for all i ∈ {1, . . . , s} and
that the values JNi (x,u?,Nx ) are bounded from below for all x ∈ X and all u?,Nx ∈ UNP (x).
Then, for each N ∈ N≥2 the MPC feedback µN defined in Algorithm 5 yields the averaged
infinite-horizon performance

J̄∞i (x0, µ
N ) ≤ `i(xe, ue) + δi(N)

for all cost criteria i ∈ {1, . . . , s} and δi ∈ L as defined in step (0) of the algorithm.

Proof. Feasibility: External stability of JNP (x0) ensures existence of POSs and thus
step (0) in Algorithm 5 is feasible. Let us consider step (1). Since uN−1

x(n) is the tail of a
POS (see step (2)), by Lemma 4.1 we know that uN−1

x(n) ∈ U
N−1
P (x(n)). Then we apply

Lemma 5.17 to conclude feasibility of step (1).
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Performance:

J̄∞i (x0, µ
N ) = lim sup

K→∞

1

K

K−1∑
k=0

`i(x(k), µN (x(k)))

= lim sup
K→∞

1

K

K−1∑
k=0

[
JNi (x(k),u?,Nx(k))− J

N−1
i (x(k + 1),u?,Nx(k)(·+ 1))

]
≤ `i(xe, ue) + δi(N)

+ lim sup
K→∞

1

K

(
JNi (x0,u

?,N
x0

)− JN−1
i (x(K),u?,Nx(K−1)(·+ 1))

)
≤ `i(xe, ue) + δi(N) + lim sup

K→∞

1

K

(
JNi (x0,u

?,N
x0

)−M
)

= `i(x
e, ue) + δi(N),

in which the first inequality follows from step (1) in Algorithm 5 and the second inequality
from the assumed bound on nondominated values.

Theorem 5.21 states that the averaged infinite-horizon performance of the MPC con-
troller from Algorithm 5 is bounded from above by the stage cost of the steady state
(xe, ue) up to an error term that vanishes as N tends to infinity. This demonstrates the
fact that also in the absence of terminal conditions it is possible to obtain upper bounds
on the performance for each objective. The difficulty lies in the aspect that the choice of
the POSs in Algorithm 5 depends on an error term, which stems from the functions in
Assumption 5.15. Finding appropriate δi ∈ L in Algorithm 5 seems to be a difficult task
and it will be part of our future research how to tackle this problem.

5.2.2 Dissipative MO OCPs

In the last section we have given evidence that MPC schemes for MO economic OCPs
require much (quantitative) knowledge on the structure of the problem, which is in general
hard to obtain. In case that the MO OCP is non-uniformly strictly dissipative, i.e. the
cost criteria are strictly dissipative at different Pareto-optimal steady states, the situation
gets even more involved. To illustrate the difficulties, let us reconsider the example in
Section 5.1.4 (which is an extension of Example 2.14):

x+ = u, `i(x, u) = − ln(Aix
αi − u), i ∈ {1, 2}

in which A1 = 5, α1 = 0.34, A2 = 3, α1 = 0.2. The constraints are given by X = [0, 10] and
U = [0.1, 5]. In this section, no terminal costs and constraints are imposed (i.e. X0 = X
and Fi ≡ 0 for all i ∈ {1, 2}). From previous considerations we already know that `1 is
strictly dissipative at xe1 ≈ 2.23 and `2 at xe2 ≈ 0.53. The storage functions λi are linear
functions (see Section 5.1.4) and since X is bounded, λi is bounded on X for i ∈ {1, 2}.
Therefore, we can apply Lemma 5.14 for i ∈ {1, 2} to establish that there are trajectories,
which exhibit turnpike behavior wrt xe1 as well as wrt xe2, if we are able to proof existence
of POSs u such that JNi (x,u) ≤ N`i(xei , uei ) + δ.
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5.2. MO Economic MPC without Terminal Conditions

Following the reasoning of (step 1 of) the proof of Theorem 2.13, for each x ∈ X and
each i ∈ {1, 2} we can find û ∈ UN (x) such that J̃Ni (x, û) ≤ αi(‖x − xei‖) holds. Since
J̃Ni (x,u) = JNi (x,u)−N`i(xei , uei ) + λi(x)− λi(xu(N, x)), we get the estimate

JNi (x, û) ≤ αi(‖x− xei‖) + 2Ci +N`i(x
e
i , u

e
i ),

in which Ci ∈ R>0 is a bound on λi. In our example, the sets JNP (x) are externally stable
for each N ∈ N and each x ∈ X (see Theorem 4.8), i.e. there exists u? ∈ UNP (x) satisfying
JNi (x,u?) ≤ αi(‖x−xei‖)+2Ci+N`i(x

e
i , u

e
i ). Hence, u

? is a POS, which exhibits turnpike
behavior wrt xei .

In Figure 5.10 we see that the red Pareto-optimal open-loop trajectories show turnpike
behavior wrt xe1 and the blue ones wrt xe2. We conjecture that one could enforce averaged
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Figure 5.10: Pareto-optimal open-loop trajectories (solid) of horizon N ∈ {2, 4, 6, 8, 10}
and for initial value x = 5, and the steady states that `1 and `2 are strictly dissipative at
(dashed blue and red, respectively). Blue trajectories exhibit turnpike behavior wrt xe1,
red trajectories wrt xe2.

performance as stated in Theorem 5.21 if one is able to find very tight error terms because
xe1 and xe2 are not ‘too close’. The bad news is that there is a continuum of Pareto-optimal
steady states and for each of them there are Pareto-optimal open-loop trajectories which
exhibit turnpike behavior, see Figure 5.11. In this situation it might happen that the
constraint in step (1) of Algorithm 5 does not only include trajectories with turnpike
behavior wrt one specific steady state but also wrt to neighboring steady states. The
question whether this prevents the closed loop from convergence remains open.

Numerical experiments in Figure 5.12 reveal that the closed-loop trajectory converges
into the set E of Pareto-optimal steady states without imposing any recursive constraint
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Figure 5.11: The open-loop Pareto-optimal trajectories (red, solid) exhibit turnpike beha-
vior wrt different Pareto-optimal steady states (black, dashed) for N = 4 (left) and N = 10

(right).
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Figure 5.12: MPC closed-loop trajectory (red) and Pareto-optimal open-loop trajectories
(black) without terminal conditions and recursive constraints for the non-uniformly strictly
dissipative economic growth example using N = 10.

and by choosing an arbitrary POS to the MO optimization problem in each iteration. It
will be part of future research to prove this behavior and to investigate what happens in
case the set E is not connected (as opposed to the example here).

82



6 | Noncooperative Model Predictive
Control

In the previous Chapters 4 and 5 we were concerned with the question how optimal control
problems (OCPs) can be approximated by means of Model Predictive Control (MPC)
in a cooperative fashion, which naturally led to the concept of Pareto-optimality and
multiobjective (MO) optimization. In this chapter we assume that MPC is carried out
noncooperatively. The wording noncooperative means that different players of a game are
either not willing or not able to cooperate, e.g. due to a lack of trust or information or
because of corporate secrets, see e.g. [4, 84]. In such a setting it cannot be expected that a
(Pareto-)optimal strategy can be found, see e.g. [14, 74, 79]. The game-theoretic literature
proposes different solution concepts to such noncooperative games, such as Nash equilibria
(NE), subgame perfect equilibria and Stackelberg equilibria, see e.g. [86]. In our analysis we
focus on Nash-based MPC (i.e. MPC schemes that implement the first piece of a NE in
each iteration), an approach that is also pursued in [53, 54, 75, 92]. In these references, the
proposed MPC controller is usually designed and tested for a specific application. MPC
based on subgame perfect equilibria is e.g. performed in [80] for smart grids.

Existence and uniqueness of NE heavily rely on the structure of the game under con-
sideration. This is in contrast to scalar-valued and MO optimization problems, for which
regularity properties such as continuity of the occuring functions and closedness or com-
pactness of constraint sets yield existence and a certain structure of (Pareto-)optimal solu-
tions. This is why we focus on the following setting: Let there be s ∈ N players, who can
influence the system dynamics

x+ = f(x, u1, . . . , us) (6.1)

with f : Rn × U1 × · · · × Us︸ ︷︷ ︸
U

→ Rn through their inputs ui ∈ Ui ⊆ Rmi , i ∈ {1, . . . , s}.

The set Ui denotes players i’s control constraint set, the state x ∈ Rn is assumed to be
unconstrained. Based on player i’s cost function `i : Rn × U → R we define the cost
functional for initial value x ∈ Rn and horizon N ∈ N

JNi (x,u1, . . . ,us) :=
N−1∑
k=0

`i(x(k, x), u1(k), . . . , us(k)) (6.2)
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along the solution of (6.1) resulting from (u1, . . . ,us) ∈ UN . No terminal cost or condition
will be imposed in this setting.

As in previous chapters we are mainly interested in the question whether choosing a
specific solution ((Pareto-)optima in Chapters 2, 4 and 5 and NE in this chapter) in the
iterations of MPC leads to closed-loop solutions with specific properties, such as approxi-
mate (Pareto-)optimality in previous chapters. Moreover, we are interested in the behavior
of the closed-loop trajectories. The question how players calculate the NE will not be dealt
with in this work although it certainly is a topic that should be investigated.

In what follows we will first introduce the notion of NE and explain why we believe
that MPC with NE can generally not be designed such that we obtain an approximation
of NE on the infinite horizon or a desired trajectory behavior. Based on a linear game, we
show in Section 6.2 that choosing the ‘right’ NE by imposing constraints on the objective
functions (as in Chapters 4 and 5) does not work. However, in Section 6.3 we present a
class of games – namely affine-quadratic games – for which one can observe and prove that
noncooperative MPC yields convergence of the MPC closed-loop trajectory.

6.1 Solution Concept and Some Considerations

In order to start our analysis let us first define our solution concept to the game given by
(6.1) and (6.2).

Definition 6.1 (Nash equilibrium). The control sequence ue,N = (ue,N1 , . . . ,ue,Ns ) ∈ UN
is called a Nash equilibrium or Nash strategy for initial value x ∈ R of length N ∈ N if
for all i ∈ {1, . . . , s} and all uNi ∈ UNi it holds

JNi (x,ue,N ) ≤ JNi (x, (ue,N1 , . . . ,uNi , . . . ,u
e,N
s )).

The set of all NE of length N for initial value x ∈ R will be denoted by UNN (x).

The interpretation of NE is that it is never beneficial (in terms of the cost functional) for
each player to unilaterally deviate from the NE. Consequently, NE are typically regarded
as ‘stable’ or ‘reliable’ solutions. Of course, this does by no means imply optimality of the
NE as can be seen in the famous prisoner’s dilemma, see e.g. [86]. The optimal solution for
both prisoners is to cooperate but since this solution is not reliable (one can unilaterally
change his strategy and improve his/her situation), they play the NE. Although NE are
conceptually very different from optima and Pareto-optimal solutions (POSs), they also
share the well-known aspect from the Dynamic Programming Principle (DPP) that tails
of NE are NE. Analogous to Lemma 4.1 we give the following result.

Lemma 6.2 (Tails of NE are NE). If ue,N ∈ UNN (x), then ue,K := ue,N (· + K) ∈
UN−KN (xu

e,N
(K,x)) for all K ∈ N<N , in which

ue,N (·+K) :=
(
ue,N (K), ue,N (K + 1), . . . , ue,N (N − 1)

)
.
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Proof. Let us assume that ue,K /∈ UN−KN (xu
e,N

(K,x)). This implies the existence of i ∈
{1, . . . , s} and ui ∈ UN−Ki so that

JN−Ki (xu
e,N

(K),ue,K) > JN−Ki (xu
e,N

(K), (ue,K1 , . . . ,ui, . . . ,u
e,K
s ))

holds. But since this yields

JNi (x,ue,N ) =

K−1∑
k=0

`i(x
ue,N (k, x),ue,N (k)) + JN−Ki (xu

e,N
(K),ue,K)

>
K−1∑
k=0

`i(x
ue,N (k, x),ue,N (k)) + JN−Ki (xu

e,N
(K), (ue,K1 , . . . ,ui, . . . ,u

e,K
s ))

for this i, there is a feasible1 uNi , namely uNi = (ue,Ni (0), . . . , ue,Ni (K−1), ui(0), . . . , ui(N−
K − 1)), such that

JNi (x,ue,N ) > JNi (x, (ue,N1 , . . . ,uNi , . . . ,u
e,N
s ))

holds. This contradicts the fact that ue,N is a NE of length N for initial value x ∈ X.

In [79] it is shown that the in a sense converse relation does generally not hold true. In
particular, the authors prove that the DPP approach of calculating NE for one time step
starting at time N − 1 and proceeding backwards in time until k = 0, and then putting
together the solutions forward in time does not yield a NE of horizon N .

Additional to a result such as Lemma 6.2, in previous chapters we made use of the
following idea: At time n ∈ N construct a feasible control sequence for time n + 1 that
produces a decay in all objective functions and then, at time n+1 choose a (Pareto-)optimal
solution with even smaller objective values. For scalar-valued optimization problem, this
choice is somewhat trivial because any optimum is smaller than any feasible value. In
the presence of multiple objectives we have guaranteed the existence of a suitable POS
by means of external stability (see Definition 3.4), which in turn is obtained under mild
regularity assumptions, see Lemma 4.8. Using both ingredients, we were then able to
upperbound the MPC closed-loop performance

∑K−1
k=0 `i(x(k), µN (x(k))) for each objective

i ∈ {1, . . . , s}, which led to performance estimates as well as statements for the closed-loop
trajectory. To the best of our knowledge a counterpart of external stability for NE does not
exist. This means that it is in general not possible to guarantee the existence of a NE which
is subject to additional constraints. Moreover, in Section 6.2 we provide an example, for
which we prove that imposing constraints on the objective function of the players does not
yield any statements on the closed loop. Thus, we believe that a performance analysis for
noncooperative MPC cannot be conducted in a similar way to scalar-valued or MO MPC.
We thus propose the following noncooperative MPC algorithm, which does not contain any
kind of choice (e.g. by means of recursive constraints) of the NE.

Algorithm 6 (Nash-based MPC).
Given an s-player game and a horizon N ∈ N. At each time instant n ∈ N0:

1Feasibility of the concatenated control sequence is obtained as in Lemma 4.1.

85



Chapter 6. Noncooperative Model Predictive Control

(1) Set x := x(n).

(2) Find ue,Nx ∈ UNN (x).

(3) Apply µN (x) := ue,Nx (0).

6.2 MPC for a Linear Game

In this section we consider a prisoner’s dilemma type two-player game with one-dimensional
linear dynamics

x+ = x− 1

C
(u1 + u2) (6.3)

with x ∈ R, C ∈ N and ui ∈ [0, 1]. The stage cost of player i ∈ {1, 2} is given by

`i(x, u1, u2) = x+ ui − uj (6.4)

for j ∈ {0, 1}, j 6= i, defining the cost functional

JNi (x,u1,u2) =

N−1∑
k=0

`i(x(k), u1(k), u2(k))

of horizon N ∈ N. If the game is only played for one time instant, no player will control the
system because controlling is penalized in their stage costs. Depending on the parameter C
and horizon length N , playing the game over multiple time stages leads to control actions
because controlling the system decreases the state, which is beneficial in terms of the stage
cost for both players. Moreover, any control action of one player is beneficial for the other,
because it occurs in the stage cost and again reduces the state.

Lemma 6.3 (Existence of NE). The two-player game of horizon N ∈ N, which is given
by dynamics (6.3) and stage costs (6.4), has a NE ue,N1 , ue,N2 . If N < C + 1, the NE is
unique, whereas there are infinitely many NE in case N ≥ C + 1.

Proof. In order to calculate the NE of the two-player game of horizon N ∈ N, we follow
the best-response approach, see e.g. [57], i.e. we minimize JNi wrt ui under the assumption
that uj is constant. Therefore, let us first consider the cost functional along the trajectory.
For initial value x0 ∈ R and all k ∈ N0 we obtain

x(k) = x0 −
1

C

k−1∑
l=0

(u1(l) + u2(l)),
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and thus (using the convention
∑−1

l=0(·) = 0)

JNi (x0,u1,u2) =

N−1∑
k=0

[
x0 −

1

C

k−1∑
l=0

(u1(l) + u2(l)) + ui(k)− uj(k)

]

=
N−1∑
k=0

x0 + ui(k)− uj(k)− N − 1− k
C

(ui(k) + uj(k))

=

N−1∑
k=0

x0 +
C −N + 1 + k

C
ui(k)− C −N + 1 + k

C
uj(k).

(6.5)

Minimizing JNi wrt ui now yields

ue,Ni (k) =


0, C−N+1+k

C > 0⇔ k > N − C − 1

1, C−N+1+k
C < 0⇔ k < N − C − 1

can be chosen freely in [0, 1], C−N+1+k
C = 0⇔ k = N − C − 1

.

If N < C + 1, we have N − C − 1 < 0, i.e. the last two cases never occur because
k ∈ {0, . . . , N − 1}. This yields a unique NE that is constantly zero for both players. If
N = C + 1, the first element of the NE can be chosen freely for both players and the last
N − 1 elements are zero. If N > C + 1 all three cases occur, i.e. the NE of both players
consist of ones, one entry that can be chosen freely and zeros in the end. Consequently, in
case N ≥ C + 1 the two-player game has an infinite number of NE.

The result reflects our prior considerations, because it shows that controlling only pays
off for each player as long as the planning horizon is large enough to see the positive effect
on the state of the system (in terms of the stage cost).

Lemma 6.3 immediately gives the following implications on the MPC closed loop resul-
ting from Algorithm 6. If N < C + 1, µNi (x) = 0 for all x ∈ R and i ∈ {1, 2}. This leads
to the closed-loop trajectory xµN (k, x0) = x0 for all k ∈ N0. If N > C + 1, by Lemma 6.3
we have µNi (x) = ue,Ni (0) = 1 for all i ∈ {1, 2} and all x ∈ R. This leads to the MPC
closed-loop trajectory xµN (k, x0) = x0 − 2k

C for k ∈ N0, i.e. xµ
N

(k, x0) → −∞ as k → ∞.
In other words, in this case we obtain a unique noncooperative MPC feedback even though
the corresponding open-loop NE are non-unique. In case N = C+1, ue,Ni (0) can be chosen
arbitrarily and independently within the interval [0, 1] for both players, which leads to an
unpredictable outcome of the MPC closed-loop trajectory. Since this is the only ‘critical’
case, one might hope that choosing the right value for ue,Ni (0) leads to statements on the
closed-loop trajectory. Unfortunately, this can be negated as the next theorem shows.

Theorem 6.4 (MPC with recursive constraints does generally not work). Consider the
two-player game of horizon N ∈ N, which is given by dynamics (6.3) and stage costs (6.4).
Statements on the closed-loop trajectory resulting from Algorithm 6 cannot be obtained by
including a selection of NE by means of the objective functions JNi in step (2).
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Proof. In case N 6= C + 1, the behavior of the closed-loop trajectory can be predicted
because of the unique MPC feedback as our preliminary considerations show. Let us
therefore consider the caseN = C+1. An inspection of the NE of the game (see Lemma 6.3)
gives the following implication on the corresponding objective functions.

If N = C + 1, we have ue,Ni (0) ∈ [0, 1] and ue,Ni (k) = 0 for k ∈ {1, . . . , N − 1} for both
players. Thus, we have

JNi (x0,u
e,N
1 ,ue,N2 ) = Nx0 +

C −N + 1

C︸ ︷︷ ︸
=0

(ue,Ni (0)− ue,Nj (0))

= Nx0.

This reveals that the objective functions have the same values no matter how the players
pick ue,Ni (0) ∈ [0, 1]. Since the choice makes a difference in terms of the closed-loop
trajectory, we have thus proven that a selection of NE by means of the objective functions in
step (2) of Algorithm 6 does not provide any information about the closed-loop trajectory.

Remark 6.5. Very interesting about the game considered in Theorem 6.4 is the fact that
not only the NE for N = C + 1 all have the same objective function value, but also the NE
for N 6= C + 1 have this value. This can be seen from the following calculations.

If N < C + 1, the NE of both players are constantly zero, which in view of (6.5) leads
to

JNi (x0,u
e,N
1 ,ue,N2 ) = Nx0 +

N−1∑
k=0

C −N + 1 + k

C
(ue,Ni (k)− ue,Nj (k))

= Nx0

for both players i ∈ {1, 2}.
If N > C + 1, we have ue,Ni = (1, . . . , 1, ue,Ni (N − C − 1), 0, . . . , 0) for both i ∈ {1, 2}.

This yields

JNi (x0,u
e,N
1 ,ue,N2 ) = Nx0 +

N−C−2∑
k=0

C −N + 1 + k

C
(1− 1)

+
C −N + 1 +N − C − 1

C︸ ︷︷ ︸
=0

(ee,Ni (N − C − 1)− ue,Nj (N − C − 1))

+

N−1∑
k=N−C

C −N + 1 + k

C
(0− 0)

= Nx0.

6.3 MPC for Affine-Quadratic Games

In this section we present a class of games and sufficient conditions such that the closed-
loop trajectory resulting from Algorithm 6 converges. Moreover, we illustrate by means
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of an example that convergence is also observed if the conditions are not satisfied. The
games we consider have affine system dynamics, i.e.

x+ = f(x, u) = Ax+
s∑
i=1

Biui + c, (6.6)

in which x, c ∈ Rn, ui ∈ Rmi , and A and Bi matrices of appropriate dimensions. The
stage cost `i : Rn × Rmi → R of player i ∈ {1, . . . , s} is given by

`i(x, ui) =
1

2

[
(x− x∗i )TQi(x− x∗i ) + uTi Riui

]
, (6.7)

for matrices Ri and Qi of appropriate dimension. Although affine-quadratic games are
under investigation in many references, e.g. in [4, 22, 46, 48] for the finite and infinite
horizon, it seems that the situation of a ’true’ conflict in the stage cost is not dealt with
in the literature. This means that x∗i = 0 for all i ∈ {1, . . . , s} or all x∗i are identical in
the mentioned references. However, we will show that our game can be transformed, such
that it is solvable in the same manner.

Firstly, we perform the coordinate transformation yi := x − x∗i for all i ∈ {1, . . . , s}
and obtain a blown-up system

Rsn 3 y+ =

y
+
1
...
y+
s

 =

x
+ − x∗1

...
x+ − x∗s

 =

Ax+
∑s

i=1Biui + c− x∗1
...

Ax+
∑s

i=1Biui + c− x∗s


=

Ay1 +
∑s

i=1Biui + c+ (A− Id)x∗1
...

Ays +
∑s

i=1Biui + c+ (A− Id)x∗s

 = Āy +
s∑
i=1

B̄iui + c̄ = f̄(y, u),

in which

Ā :=

A 0
. . .

0 A

 ∈ Rsn×sn, B̄i :=

Bi...
Bi

 ∈ Rsn×mi , c̄ :=

c+ (A− Id)x∗1
...

c+ (A− Id)x∗s

 ∈ Rsn
and Q̄i ∈ Rsn×sn is a zero-matrix apart from [Q̄i](i−1)∗n+1≤v,w≤i∗n = Qi, i.e. the ith block
of size n× n on the diagonal of Q̄i is Qi. The stage costs then translate to

`i(x, ui) =
1

2

[
yTi Qiyi + uTi Riui

]
=

1

2

[
yT Q̄iy + uTi Riui

]
= ¯̀

i(y, ui),

in which Q̄i ∈ Rsn×sn is a zero-matrix apart from [Q̄i](i−1)∗n+1≤v,w≤i∗n = Qi, i.e. the ith
block of size n × n on the diagonal of Q̄i is Qi. With these preparations we are ready to
state a result on existence and uniqueness of a NE for our affine-quadratic game.
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Proposition 6.6 (Existence and uniqueness of NE). Consider the s-player game on ho-
rizon N ∈ N with affine dynamics (6.6) and stage costs (6.7) with Qi � 0 and Ri � 0 for
all i ∈ {1, . . . , s}. Consider the backward matrix iterations

Λk = Id+
s∑
i=1

B̄iR
−1
i B̄i

T
Mk+1
i , (6.8)

Mk
i = Q̄i + ĀTMk+1

i (Λk)−1Ā, MN
i = 0, (6.9)

for k = N − 1, . . . , 0.

If all Λk are invertible, then for each initial value x ∈ X there exists a unique NE
ue,N ∈ UNN (x) to the transformed system with corresponding trajectory yue,N (·) given by

ue,Ni (k) = −R−1
i B̄i

T
[
Mk+1
i (Λk)−1Āyu

e,N
(k) + ξki

]
, k = 0, . . . , N − 1, i = 1, . . . , s,

yu
e,N

(k + 1) = (Λk)−1
[
Āyu

e,N
(k) + ηk

]
, k = 0, . . . , N − 1, yu

e,N
(0) =

x− x
∗
1

...
x− x∗s

 ,

and the backward iterations

mk
i = ĀT

[
mk+1
i +Mk+1

i (Λk)−1ηk
]
, mN

i = 0, (6.10)

ηk = c̄−
s∑
i=1

B̄iR
−1
i B̄i

T
mk+1
i , (6.11)

ξki = Mk+1
i (Λk)−1ηk +mk+1

i . (6.12)

In the original coordinates, the Nash trajectory is given by xue,N (k, x) =
[
yu

e,N
(k)
]
i
+ x∗i

for arbitrary i ∈ {1, . . . , s} and all k = 1, . . . , N .

Proof. The proof is an adapted version of the proof of Başar and Olsder [4, Thm. 6.2] to
our setting and the transformed system. First, we note that the inequality in Definition 6.1
can be formulated as a minimization problem, namely

JNi (x,ue,N ) = min
uNi

JNi (x, (ue,N1 , . . . ,uNi , . . . ,u
e,N
s )) ∀i ∈ {1, . . . , s}.

As stated in [4, Thm. 6.1], the following conditions are necessary for a control sequence to
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be a NE:

yu
e,N

(k + 1) = Āyu
e,N

(k) +
s∑
i=1

B̄iu
e,N
i (k) + c̄, yu

e,N
(0) = y0,

ue,Ni (k) =

argmin
ui(k)∈Rmi

Hi(k, pi(k + 1), ue,N1 (k), . . . , ue,Ni−1(k), ui(k), ue,Ni+1(k), . . . , ue,Ns (k), yu
e,N

(k)),

pi(k) =
∂ ¯̀
i

y
(yu

e,N
(k), ue,Ni (k))

= Q̄iy
ue,N (k), pi(N) = 0,

(6.13)

in which the Hamiltonian-type functional Hi is given by

Hi(k, pi(k + 1), u1(k), . . . , us(k), y(k)) = ¯̀
i(y(k), u(k)) + pi(k + 1)T f̄(y(k), u(k))

=
1

2
[y(k)T Q̄iy(k) + ui(k)TRiui(k)] + pi(k + 1)T

(
Āy(k) +

s∑
i=1

B̄iui(k) + c̄

)
.

Since our transformation preserves the definiteness of the occuring matrices, i.e. Q̄i � 0

and Ri � 0 for all i ∈ {1, . . . , s}, and since the system is still affine, we have a strictly
convex problem, and the conditions (6.13) are also sufficient. Thus, it suffices to prove
that the expression for ue,Ni (k) stated in Proposition 6.6 satisfies (6.13).

Minimization of Hi wrt ui(k) yields

ue,Ni (k) = −R−1
i [B̄T

i pi(k + 1)]. (6.14)

Let us now prove the assertion by a backward induction.
Base case: k = N −1. In this case, pi(N) = 0 and (6.14) gives ue,Ni (N −1) = 0. This

is accordance with our assertion, because MN
i = 0 and ξN−1

i = 0. Using this solution, we
get

yu
e,N

(N) = Āyu
e,N

(N − 1) +
s∑
i=1

B̄iu
e,N
i (N − 1) + c̄ = Āyu

e,N
(N − 1) + c̄

⇔ yu
e,N

(N)− Āyue,N (N − 1) = c̄ = (Id− ΛN−1)−1yu
e,N

(N) + c̄

⇔ yu
e,N

(N) = (ΛN−1)−1(Āyu
e,N

(N − 1) + c̄),

which is again in accordance to the assertion because ηN−1 = c̄.
Inductive hypothesis. We assume that the formula for ue,Ni (k) holds true for k = l+1

and that pi(l + 1) = M l+1
i yu

e,N
(l + 1) +ml+1

i (which is true for the base case).
Inductive step: l + 1 7→ l. The relation (6.14) in combination with the hypothesis

for pi gives

ue,Ni (l) = −R−1
i [B̄T

i (M l+1
i yu

e,N
(l + 1) +ml+1

i )].
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Plugging this into the dynamics yields

yu
e,N

(l + 1) = Āyu
e,N

(l)−
s∑
i=1

B̄iR
−1
i [B̄T

i (M l+1
i yu

e,N
(l + 1) +ml+1

i )] + c̄

= Āyu
e,N

(l) + (Id+ Λl)yu
e,N

(l + 1) + ηl

⇔ yu
e,N

(l + 1) = (Λl)−1[Āyu
e,N

(l) + ηl]

⇒ ue,Ni (l) = −R−1
i B̄T

i [M l+1
i (Λl)−1Āyu

e,N
(l) + ξli],

which is exactly what we have claimed.

Remark 6.7. 1. An alternative derivation of the results, which also relies on charac-
terizing NE by means of optimization problems, can be obtained by an approach simi-
lar to the one presented in Appendix A. In this case, NE are obtained by backward
Riccati-type iterations and a value function can be calculated, see [4].

2. As can be seen in the inductive proof, the condition that the matrices Λk be invertible
for all k ∈ {0, . . . , N − 1} is needed, because it ensures that we obtain a unique
trajectory when plugging in the NE.

Theorem 6.8 (Convergence of the noncooperative MPC controller). Let the assump-
tions of Proposition 6.6 hold for the affine-quadratic game of horizon N ∈ N. Assume
‖Ā(Λ0)−1‖ < 1 for an arbitrary matrix norm, in which Λ0 is the result of the backward
iteration in (6.8). Moreover, assume that all eigenvalues λ of (Λ0)−1Ā fulfill |λ| ≤ 1, and
any λ with |λ| = 1 is nondefective2 and fulfills λ = 1. Then, for each x0 ∈ X the MPC
closed-loop trajectory xµN (k, x0) obtained by execution of Algorithm 6 converges as k tends
to infinity.

Proof. First, we note that the backward iterations (6.8)-(6.12) only depend on the data
of the game and the horizon N , but neither on the current time nor on the current state.
Thus, we get the same values in (6.8)-(6.12) in each iteration of Algorithm 6. We claim

that the closed-loop trajectory of the transformed system for initial value y0 =

x0 − x∗1
...

x0 − x∗s


evolves as follows:

yµ
N

(k, y0) =
(
(Λ0)−1Ā

)k
y0 + (Λ0)−1

k−1∑
l=0

(
Ā(Λ0)−1

)l
η0, k ∈ N0

with the convention that
∑−1

l=0(·) = 0. The base case k = 0 is obvious. As induction
hypothesis we assume that the formula holds true for k ∈ N. For yµN (k + 1, y0) we use

2An eigenvalue of matrix X is said to be nondefective or semisimple if it is a root of multiplicity one in
the minimal polynomial of X.
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the considerations from the proof of Proposition 6.6 and get (together with the induction
hypothesis)

yµ
N

(k + 1, y0) = (Λ0)−1
[
Āyµ

N
(k, y0) + η0

]
= (Λ0)−1Āyµ

N
(k, y0) + (Λ0)−1η0

= (Λ0)−1Ā

[(
(Λ0)−1Ā

)k
y0 + (Λ0)−1

k−1∑
l=0

(
Ā(Λ0)−1

)l
η0

]
+ (Λ0)−1η0

=
(
(Λ0)−1Ā

)k+1
y0 + (Λ0)−1

(
Ā(Λ0)−1

k−1∑
l=0

(
Ā(Λ0)−1

)l
η0 + η0

)

=
(
(Λ0)−1Ā

)k+1
y0 + (Λ0)−1

(
k−1∑
l=0

(
Ā(Λ0)−1

)l+1
η0 + η0

)

=
(
(Λ0)−1Ā

)k+1
y0 + (Λ0)−1

(
k∑
l=0

(
Ā(Λ0)−1

)l
η0 − η0 + η0

)

=
(
(Λ0)−1Ā

)k+1
y0 + (Λ0)−1

(
k∑
l=0

(
Ā(Λ0)−1

)l
η0

)
︸ ︷︷ ︸

(∗)

.

This finishes the inductive proof. Since ‖Ā(Λ0)−1‖ < 1, the Neumann series (∗) converges
to (Λ0)−1

(
I − Ā(Λ0)−1

)−1
η0 =

(
Λ0 − Ā

)−1
η0, see e.g. [76]. Now consider the sequence((

(Λ0)−1Ā
)k)

k∈N0

. It is well known (see e.g. [59]) that this sequence converges under the

assumption that we have imposed on the eigenvalues of (Λ0)−1Ā. In order to calculate
the limit, let T be an invertible matrix such that T−1(Λ0)−1ĀT = J and J is the Jordan
canonical form of (Λ0)−1Ā. From our assumption on the eigenvalues we know that J =(
Id 0

0 P

)
, in which Id has as many rows and columns as the number of eigenvalues with

|λ| = 1, and P is a matrix with spectral radius strictly less than one. Thus we get

(
(Λ0)−1Ā

)k
= TJkT−1 = T

(
Id 0

0 P k

)
T−1

and yµN (k, y0)→ T

(
Id 0

0 0

)
T−1y0+

(
Λ0 − Ā

)−1
η0 as k →∞. In our original coordinates

this translates to

xµ
N

(k, x0)→

T (Id 0

0 0

)
T−1

x0 − x∗1
...

x0 − x∗s

+
(
Λ0 − Ā

)−1
η0


i

+ x∗i

for an arbitrary choice of i ∈ {1, . . . , s}.
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Remark 6.9. We point out that the conditions presented in Theorem 6.8 are sufficient
but by no means necessary. As can be observed in our numerical simulations, the MPC
closed-loop trajectory resulting from Algorithm 6 also converges if the conditions are not
satisfied. Moreover, the conditions Qi � 0, Ri � 0 can be relaxed, see [4].

In Chapter 4 and 5 we have analyzed MO MPC schemes and are therefore interested
in the question, whether there is a relation between both concepts, cooperative and non-
cooperative MPC. The next result, presented in [14], provides necessary and sufficient
conditions for a NE to be Pareto-optimal in the affine-quadratic setting.

Lemma 6.10 (Pareto optimality of NE). Consider the affine-quadratic s-player game
given by (6.6) and (6.7) for horizon N ∈ N and initial value x ∈ X. Let A be nonsingular
and Qi � 0, Ri � 0. A NE ue,N ∈ UNN (x) is a POS to the MO optimization problem

min
u∈UN

(
JN1 (x,u), . . . , JNs (x,u)

)
if and only if for all i, j ∈ {1, . . . , s} with i 6= j and all k ∈ {0, . . . , N − 1} it holds

∂JNi
∂uj(k)

(x,ue,N ) = 0. (6.15)

As stated in [14] condition (6.15) “basically boils down to the absence [. . . ] of conflict”
and is “extreme and unreasonable”. Nevertheless, in the next section we demonstrate for
our example that the situation, in which a NE is Pareto-optimal, may occur.

6.3.1 Numerical Example

In order to illustrate the findings of this section, we consider a very simple example of two
players, who can influence the room temperature of the same room. The dynamics are
given by

x+ = ax+ u1 + u2,

in which x ∈ R is the temperature and ui ∈ R is the heating (or cooling) control of player
i. The cost criterion

`i(x, ui) =
1

2

[
(x− x∗i )2 + ciu

2
i

]
reflects the desired temperature x∗i of player i as well as a penalization of the control effort
(i.e. ci > 0). In our simulation we use the values x∗1 = 23 and x∗2 = 17. The parameters
a, ci ∈ R>0 will be varied throughout our investigations and can be interpreted as follows:
If a = 1, the temperature is constant, i.e. it is only influenced by the two players. If a > 1,
the room heats up by itself, e.g. due to solar radiation. In case a < 1 there is constant loss
of energy, e.g. through lack of insulation. The value ci determines player i’s motivation to
control the system.
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Figure 6.1: Closed-loop trajectories (black) resulting from Algorithm 6 using a = 0.8,
c1 = 2, c2 = 0.5, different initial values and N = 2 (left) and N = 3 (right). The red line
is the theoretically calculated limit from Theorem 6.8.

Let us first consider the case a = 0.8 and c1 = 2, c2 = 0.5, i.e. player two has a stronger
incentive to control the room temperature than player one. For these parameters and
N ∈ N≥2 numerical experiments show that the assumptions of Theorem 6.8 are satisfied
and we expect convergence of the MPC closed-loop trajectory of Algorithm 6. In Figure 6.1
convergence of the MPC closed-loop trajectory is indeed observed. As can be seen from
Figures 6.1 and 6.2, the limit of the closed loop does not depend on the initial value but on
the MPC horizon N . Moreover, we observe that the limit that the trajectories converge to
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Figure 6.2: Closed-loop trajectories (black) resulting from Algorithm 6 using a = 0.8,
c1 = 2, c2 = 0.5, different initial values and N = 5 (left) and N = 7 (right). The red line
is the theoretically calculated limit from Theorem 6.8.

reaches a limit itself, i.e. it does not differ for N = 5 and N = 7. We would like to compare
our MPC closed-loop trajectories to Nash-trajectories on the infinite horizon. Results for
linear-quadratic games on the infinite horizon can be found in [4, 48]. The approaches
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therein require solving nonlinear matrix equations, which become involved in our situation
because we are dealing with affine dynamics and they only apply to the transformed game
(see the beginning of Section 6.3) of higher dimension. Thus, we compare our MPC closed-
loop trajectories to Nash-solutions of the same length as the number of executed MPC
iterations. In Figure 6.3 it is illustrated that the open-loop Nash-trajectory approaches a
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xµ
N

(·, x)

xu
e

(·, x)

Figure 6.3: Closed-loop trajectories (black) resulting from Algorithm 6 for N ∈ {2, 3, 5, 7}
(bottom to top) and fixed initial value, and Nash-trajectory of horizon 15 (magenta).

value, stays there for most of the time before it eventually turns away. The MPC closed-
loop trajectories get closer to the open loop as N becomes larger but do not turn away in
the end. The behavior of the Nash-trajectory resembles very much the turnpike property,
cf. Chapters 2 and 5. This is why we compare Nash-trajectories of different optimization
horizons with each other. In Figure 6.4 we indeed obeserve turnpike behavior. As proven in
[38], under regularity assumptions the turnpike property on the finite horizon is equivalent
to the turnpike property on the infinite horizon, which in turn implies convergence of the
trajectories. Thus, we expect the Nash-trajectory of infinite horizon to look like the MPC
closed-loop for sufficiently large N . This would imply that for these parameters MPC
based on Algorithm 6 indeed approximates Nash solutions on the infinite horizon in terms
of trajectory behavior.

If we vary the values of ci, the previously observed results only change quantitatively
but not qualitatively.

Now let us consider the case a = 1. Our numerical experiments reveal that the as-
sumptions of Theorem 6.8 are not satisfied for all N ∈ N≥2 because ‖Ā(Λ0)−1‖ ≥ 1, i.e.
we cannot prove convergence of our MPC closed-loop trajectories. However, as illustrated
in Figure 6.5 the MPC closed-loop trajectories still converge. We moreover see that the
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Figure 6.4: Open-loop Nash trajectories for N = 2, . . . , 20 exhibit turnpike behavior.
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Figure 6.5: Closed-loop trajectories (black) resulting from Algorithm 6 using a = 1, c1 = 2,
c2 = 0.5, different initial values and N = 2 (left) and N = 7 (right).

limit does not depend on the MPC horizon for these parameters. In Figure 6.6 the MPC
closed-loop trajectories are again compared to the open-loop Nash-trajectory of the same
horizon as MPC iterations. In this figure, already for small N both trajectories almost co-
incide. Opposed to the case a = 0.8, in this setting the open-loop trajectory does not turn
away in the end. This is because the temperature stays constant if players do not interact,
i.e. without no cost. If in contrast a = 0.8, player one has to counteract the contracting
dynamics which is only done as long as it is beneficial in terms of the cost functional. This
is why the open-loop trajectory in the end turns away in Figure 6.3 whereas it does not in
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Figure 6.6: Closed-loop trajectories (black) resulting from Algorithm 6 for N ∈ {2, 3, 5, 7}
(bottom to top) and fixed initial value, and Nash-trajectory of horizon 15 (magenta).

Figure 6.6.
The last case we consider is the case a = 1.1, i.e. the uncontrolled dynamics are

unstable. Again, numerical experiments show that Theorem 6.8 is not applicable because
‖Ā(Λ0)−1‖ ≥ 1 for all N ∈ N. Nevertheless, in Figure 6.7 we observe the same closed-loop
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Figure 6.7: Closed-loop trajectories (black) resulting from Algorithm 6 using a = 1.1,
c1 = 2, c2 = 0.5, different initial values and N = 2 (left) and N = 7 (right).

behavior as in Figures 6.1 and 6.2 for the case a = 0.8. If we compare MPC closed-loop
trajectories to the Nash trajectory of the same length we again see that MPC approaches
that solution asN increases (not displayed). Not surprisingly, we observe turnpike behavior
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Figure 6.8: Open-loop Nash trajectories for N = 2, . . . , 20 exhibit turnpike behavior.

of open-loop Nash trajectories in Figure 6.8 but this time the leaving arcs of the trajectories
are going up (instead of down as in Figure 6.4), which is due to the fact that a > 1 and
that players stop controlling the system at the end of the planning horizon.

In Lemma 6.10 we have presented conditions for NE to be Pareto-optimal. Our nu-
merical simulations with different values for a and N ∈ N reveal that the NE obtained in
Algorithm 6 are usually no POSs to the corresponding MO optimization problem, espe-
cially in case a ≥ 1 we could not oberserve such a situation and rather get relations as
depicted in Figure 6.9 left. For a ∈ (0, 1) we were always able to find a horizon N ∈ N
such that the NE in the iterations of Algorithm 6 are Pareto-optimal. Such a situation is
illustrated in Figure 6.9 right.
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Figure 6.9: Pareto front (black circles) and NE (red cross) of our problem for a = 1.1 (left)
and a = 0.8 (right), x0 = 15 and N = 2 at iteration 5 of Algorithm 6.
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7 | Implementation

All of our theoretical investigations were accompanied by numerical experiments performed
in Matlab and partially supported by student assistant B.Sc. Markus Klar. The simu-
lations in Chapter 2 rely on the implementation of Algorithm 1, for which we used the
routine that can be found on http://www.nmpc-book.com/, see also Grüne and Pannek
[32].

For the implementation of the multiobjective (MO) Model Predictive Control (MPC)
schemes in Chapters 4 and 5 we have written and included different methods for MO
optimization and the visualization of Pareto fronts in our code, i.e. the adapted Pascoletti-
Serafini scalarization presented in Eichfelder [21], a weighted sum-method, the method of
the global criterion, see Miettinen [61], and we made use of NSGA II presented in Deb [15].
This genetic algorithm is readily available in Matlab in the global optimization toolbox
under the name gamultiobj. Our implementation is interactive in the sense that in the
first iteration the whole Pareto front is approximated and visualized (if there are at most
three objectives) and then the user chooses one point on the Pareto front. This way, the
user can determine the upper bound on the performance for all objectives. In subsequent
steps, usually only one arbitrary solution to the occuring MO optimization problems is
calculated. However, one can also choose to visualize all occuring Pareto fronts.

Regarding noncooperative MPC for affine-quadratic games we have implemented the
backward iteration that was presented in Proposition 6.6. In our code also the transforma-
tion of the system is done automatically. As stated in Theorem 6.8 the backward iteration
neither depends on the time nor on the state and has to be performed only once. Thus, our
MPC loop only consist of applying the feedback (and data storage). In order to calculate
the Nash equilibria (NE) in Section 6.2 we used Maple to handle the symbolic calculations
that occur when the best response-approach is persued.

http://www.nmpc-book.com/
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8 | Future Research

8.1 Multiobjective MPC

8.1.1 Structure of Pareto-optimal Solutions and Pareto Fronts

In results such as Theorems 4.6, 4.19, 4.24 and 5.11, we have seen that the performance
is determined by our choice in the very first iteration and that a calculation of the Pareto
front in subsequent iterations is not needed as long as the recursive constraints are obeyed.
However, it would be interesting to investigate how restrictive the recursive constraint is
and how much this influences the Model Predictive Control (MPC) performance. This
is closely related to the question how the Pareto fronts that we can choose from develop
over time. In numerical simulation we usually observe that the Pareto front degenerates
after a few iterations. In the absence of terminal conditions and for stabilizing stage costs
we would also like to investigate how Pareto fronts develop for increasing optimization
horizon. Our interest is triggered by the fact that we have proven in Corollary 4.20 that
any Pareto-optimal solution on the infinite horizon can – in terms of the performance –
be approximated arbitrarily well by MPC if the initialization in step (0) of Algorithm 3 is
chosen correctly. The converse question, whether each initialization leads to an approxi-
mation of some Pareto-optimal solution on the infinite horizon is unanswered by now. Let
us briefly give an explanation of this aspect.

In the single-objective case it follows from the definitions that if optimal solutions wrt
the horizons N, M ∈ N with M ≥ N exist for initial value x, then the optimal value
functions satisfy VM (x) ≥ V N (x). This leads to the following implication: If optima exist
for all horizons, the infinite-horizon cost of the MPC feedback defined in Algorithm 1 fulfills
(see [33] or [32])

J∞(x, µN ) ≤ γN−2

γN−2 − (γ − 1)N
· V N (x) ≤ γN−2

γN−2 − (γ − 1)N
· V∞(x).

In the multiobjective (MO) setting and under the assumption of external stability for all
optimization horizons, we can prove that for M ≥ N it holds: For all u?,M ∈ UMP (x) there
exists u?,N ∈ UNP (x) such that JNi (x,u?,N ) ≤ JMi (x,u?,M ) holds for all i ∈ {1, . . . , s}.
This result was used in Corollary 4.20. However, the converse statement, i.e. the question
whether for all u?,N ∈ UNP (x) there is u?,M ∈ UMP (x) such that JNi (x,u?,N ) ≤ JMi (x,u?,M )
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holds for all i ∈ {1, . . . , s} remains open.1

8.1.2 Investigation of Specific Schemes

In the presence of terminal conditions the recursive constraint depends on the local feed-
back on the terminal region, see Algorithm 2. So far, we have assumed that a common
feedback exists (see Assumption 4.4). However, this assumption might be too strong in
case of independent, cooperating systems/agents. In our future research we will therefore
investigate for which types of coupling one can relax this assumption, e.g. by only requiring
the existence of individual local feedbacks.

8.1.3 Towards Stability of MO MPC

Up to now, our analysis only allows for proving convergence of the MPC closed-loop tra-
jectory, see Corollaries 4.9, 4.22 and 5.9. Of course, it would be preferable to establish
asymptotic stability via a Lyapunov function (LF). We think that it might be a promising
idea to consider set-valued LFs (see e.g. [26, 27]). Such a LF would also be beneficial in MO
economic MPC for analyzing the transient behavior similar to [34] for the scalar-valued
setting.

8.1.4 MO Dissipativity, MO Turnpike, and MO Economic MPC

In Chapter 5 we have proposed a MO version of (strict) dissipativity. The question,
whether there is a physical interpretation of our definition (for single-criterion optimal
control problems (OCPs) dissipativity is considered as a measure of energy of the system),
is open and should be investigated. As we have seen, strict dissipativity at different steady
states entails a non-uniform turnpike behavior. This leads to a very interesting observation:
Whereas the turnpike property in the single-objective case pushes the MPC closed loop
into the ‘right’ direction, in the MO setting we have to make sure to follow the ‘right’ path.
The question how to enforce convergence in this setting is an interesting and challenging
problem. Without imposing any constraint, in MO economic MPC we have observed in
numerical simulations that the MPC closed loop converges into the set of Pareto-optimal
steady states. Deriving conditions under which such a behavior can be proven could be a
first step towards a convergence analysis.

8.2 Noncooperative MPC

In Section 6.2 we have shown that an additional constraint on the objective functions
in the MPC iterations does generally not enable us to analyze the closed-loop behavior.
Moreover, Nash equilibria (NE) seem to be less structured than (Pareto-)optimal solutions
(see the explanation in Section 6.1). Thus, the tools known from scalar and MO MPC are

1In fact, we are aware of an example, in which this property does not hold true. Since in this counter-
example the objective functions do not have the structure typical for MPC (where the objective functions
are sums of the stage cost), we can not prove this property wrong in our setting.
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not suitable in this setting. Consequently, new techniques need to be developed in order
to analyze Nash-based MPC. We conjecture that such MPC schemes can only be analyzed
for specific games.

For affine-quadratic games we have imposed conditions under which the MPC closed-
loop trajectory converges and the limit can be calculated analytically. Based on the theory
developed in [48] or [4], we aim to compare the Nash-based MPC solution to the infinite-
horizon solution in terms of the trajectory behavior as well as in terms of the performance.
Since the solution of the infinite-horizon game requires solving a nonlinear matrix equation,
an analytical comparison seems to be involved. As a first step, we aim to compare the
solutions for selected examples and by solving the infinite-horizon game numerically. We
have observed numerically that the MPC trajectory converges even if the conditions of
Theorem 6.8 are not satisfied. Thus, it is a natural wish to provide less restrictive sufficient
conditions. Another interesting research topic is the investigation of turnpike properties
in affine-quadratic games.
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A | An Optimal Value Function for
Affine-Quadratic Optimal Control
Problems

In this section we prove that the optimal control problem (OCP) (1.3) with data such as
in Assumption 2.15, i.e. f(x, u) = Ax + Bu + c, `(x, u) = xTRx + uTQu + sTx + vTu,
R, Q � 0, has an optimal value function of the form V N (x) = xTPNx + bTNx + dN with
PN symmetric and positive definite and vectors bN , dN ∈ Rn. This result is needed in the
proof of Theorem 2.17 in order to make statements on the optimal value function. Even
though there is a lot of literature on the linear quadratic regulator for continuous- and
discrete-time systems (e.g. [2, 18, 49, 78]), we did not find any result for the case of affine
dynamics and costs with additive terms. This is why we provide a result on the structure
of the optimal value function here. To this end, we first remark that we can eliminate the
additive constant c in the system dynamics through a coordinate transformation. This
does not change the structure of the stage costs, and without loss of generality (wlog) we
can assume that the system is given by dynamics x(k + 1) = Ax(k) + Bu(k) and stage
costs `(x, u) = xTQx+uTRu+sTx+vTu with R, Q symmetric and positive definite. The
derivation of the result follows the reasoning of Anderson and Moore [2, Section 2.4] so we
prove the statement by induction and by means of the Dynamic Programming Principle
(DPP).

Claim: Let N ∈ N. Then V N (x) has the structure as mentioned above with

PN = Q+KT
N (R+BTPN−1B)KN +ATPN−1A, P1 = Q,

bN =
(
sT + 2K̄T

NRKN + vTKN + 2K̄NB
TPN−1(A+BKN ) + bTN−1(A+BKN )

)T
, b1 = s,

dN = K̄T
NRK̄N + vT K̄N + K̄NB

TPN−1BK̄
T
N + bTN−1BK̄N + dN−1, d1 = −1

4
vTR−1v,

KN = −(BTPN−1B +R)−1
(
BTPN−1A

)
,

K̄N = −1

2
(BTPN−1B +R)−1

(
BT bN−1 + v

)
.

(A.1)



Appendix A. An Optimal Value Function for Affine-Quadratic OCPs

Proof. Base case: K = N − 1.

JN−K(x(K), u(K)) = J1(x(N − 1), u(N − 1)) = `(x(N − 1), u(N − 1))

= x(N − 1)TQx(N − 1) + u(N − 1)TRu(N − 1)

+ sTx(N − 1) + vTu(N − 1)

The partial derivative of J1 wrt u(N − 1) equals zeros iff

u?(K) = −1

2
R−1v =: KN−Kx(K) + K̄N−K

and since the second partial derivative is positive definite, this is indeed the minimizer of
J1. This yields

V N−K(x(K)) = J1(x(N − 1), u?(N − 1))

= x(N − 1)TQx(N − 1) +

(
−1

2
R−1v

)T
R

(
−1

2
R−1v

)
+ sTx(N − 1) + vT

(
−1

2
R−1v

)
= x(N − 1)TQx(N − 1) + sTx(N − 1) +

1

4
vTR−1v − 1

2
vTR−1v

= x(N − 1)TPN−Kx(N − 1) + bTN−Kx(N − 1) + dN−K ,

with PN−K := Q, bN−K := s and dN−K := −1
4v

TR−1v.
Inductive step: K+1→ K. Prove V N−K(x(K)) = x(K)TPN−Kx(K)+bTN−Kx(K)+

dN−K with

PN−K = Q+KT
N−K(R+BTPN−K−1B)KN−K +ATPN−K−1A,

bN−K =
(
sT + 2K̄T

N−KRKN−K + vTKN−K + 2K̄N−KB
TPN−K−1(A+BKN−K)

+bTN−K−1(A+BKN−K)
)T
,

dN−K = K̄T
N−KRK̄N−K + vT K̄N−K + K̄N−KB

TPN−K−1BK̄
T
N−K

+ bTN−K−1BK̄N−K + dN−K−1,

in which

KN−K = −(BTPN−K−1B +R)−1
(
BTPN−K−1A

)
,

K̄N−K = −1

2
(BTPN−K−1B +R)−1

(
BT bN−K−1 + v

)
,
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using the inductive hypothesis V N−K−1(x(K + 1)) = x(K + 1)TPN−K−1x(K + 1) +

bTN−K−1x(K + 1) + dN−K−1.

V N−K(x(K))
DPP
= min

u(K)
{`(x(K), u(K)) + V N−K−1(x(K + 1))}

= min
u(K)
{x(K)TQx(K) + u(K)TRu(K) + sTx(K) + vTu(K)

+ V N−K−1(x(K + 1))}
(∗)
= min

u(K)
{x(K)TQx(K) + u(K)TRu(K) + sTx(K) + vTu(K)

+ x(K + 1)TPN−K−1x(K + 1) + bTN−K−1x(K + 1) + dN−K−1}
(#)
= min

u(K)
{x(K)TQx(K) + u(K)TRu(K) + sTx(K) + vTu(K)

+ (Ax(K) +Bu(K))TPN−K−1(Ax(K) +Bu(K))

+ bTN−K−1(Ax(K) +Bu(K)) + dN−K−1},

in which we used the inductive hypothesis in (∗) and in (#) the system dynamics. Com-
putation of the first and second partial derivative of the last expression wrt u(K) yields

u?(K) = −(BTPN−K−1B +R)−1

(
BTPN−K−1Ax(K) +

1

2
(BT bN−K−1 + v)

)
=: KN−Kx(K) + K̄N−K .

We note that the inverse of BTPN−K−1B +R exists due to symmetry of PN−K−1 and R.
Plugging in the optimal control value, we get

V N−K(x(K)) = x(K)TQx(K) + u?(K)TRu?(K) + sTx(K) + vTu?(K)

+ (Ax(K) +Bu?(K))TPN−K−1(Ax(K) +Bu?(K))

+ bTN−K−1(Ax(K) +Bu?(K)) + dN−K−1

= x(K)T
[
Q+KT

N−K(R+BTPN−K−1B)KN−K +ATPN−K−1A
]
x(K)

+
[
sT + 2K̄T

N−KRKN−K + vTKN−K + 2K̄N−KB
TPN−K−1(A+BKN−K)

+bTN−K−1(A+BKN−K)
]
x(K)

+ K̄T
N−KRK̄N−K + vT K̄N−K + K̄N−KB

TPN−K−1BK̄
T
N−K

+ bTN−K−1BK̄N−K + dN−K−1

=: x(K)TPN−Kx(K) + bTN−Kx(K) + dN−K .

This finishes the inductive step.

This means that for a given horizon N ∈ N, the optimal value function V N (x) can be
calculated from the iteration (A.1) using the given initial conditions.

We point out that the iteration for PN is exactly the same as for the standard linear
quadratic regulator (cf. [2]). Moreover, the optimal control sequence u? for the finite-
dimensional OCP of length N is affine, viz.

u?(k) = KN−kx(k) + K̄N−k, k = 0, . . . , N − 1.
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Appendix A. An Optimal Value Function for Affine-Quadratic OCPs

The corresponding optimal trajectory is then given by

x(k + 1, x0) = (A+BKN−k)x(k, x0) +BK̄N−k, k = 0, . . . , N − 1.
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Acronyms and Glossary

Acronyms

CSTR continuously stirred tank reactor

DP Dynamic Programming

DPP Dynamic Programming Principle

LF Lyapunov function

LMI linear matrix inequality

MO multiobjective

MPC Model Predictive Control

NE Nash equilibrium

OCP optimal control problem

PO Pareto optimum

POS Pareto-optimal solution

wlog without loss of generality



Glossary

Glossary

� Denotes positive definiteness of a matrix

N Optimization horizon in MPC

u Control value

u Sequence of control values

u?,Nx (Pareto-)Optimal control sequence of length N for initial value x

ue,Nx Nash strategy of length N for initial value x

x State variable

κ Auxiliary feedback that is defined on the terminal region X0

Bε(x) Set of states with distance to x strictly less than ε

U Set of admissible control values

UN (x) Set of control sequences of length N ∈ N ∪ {∞} for initial value x, such that all
state and control constraints are met

X Set of admissible states

X0 Terminal constraint set

XN Set of initial values, such that there exists a control sequence, which steers the initial
value into X0 in N steps
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