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Abstract Model Predictive Control (MPC) is nowadays one of the most
successful advanced process control methodologies and is used in a wide
range of applications. While originally limited to processes with slow dy-
namics and a limited number of states, the applicability of MPC schemes
increased dramatically over the last years due the performance of modern
microchips and the concurrent advancements of mathematical optimization,
in particular distributed optimization. In this paper we outline the ideas of
distributed optimization schemes embedded in MPC implementations on the
example of the dual ascent algorithm and the alternating direction method of
multipliers. The performance and the properties of the resulting distributed
optimization based control schemes are illustrated on the example of a net-
work of distributed energy systems. In particular, the overall power demand
of the network is optimized by using flexibilities resulting from distributed
storage devices and controllable loads.

1 Introduction

Model Predictive Control (MPC) is nowadays the most successful advanced
process control methodology, which can be concluded from its wide range of
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applications [34, 11]. The key factors for its success are the simplicity of the
basic idea – measure/estimate the current state, predict and optimize the
future plant behavior to compute an input signal, and repeat this procedure
ad infinitum – and its capability to deal with constrained nonlinear multi-
input multi-output systems. For details on MPC as well as the development of
different MPC concepts over the last decades we refer to the monographs [22,
37], the review article [28], and the references therein.

While the range of applications was limited due to the real-time re-
quirements on the optimization step in MPC, see, e.g. [15], recent devel-
opments [40, 26] in mathematical programming allowed to further extend
the scope of application. Herein, distributed optimization, see [3, 5, 7], plays
a major role to overcome the computational limitations. To this end, new
distributed MPC schemes have been developed [38, 39] to embed iterative
distributed optimization algorithms within the MPC loop such that perfor-
mance guarantees can be concluded [19, 20, 21]. The potential of distributed
optimization in prediction based control is outlined in the review article [13]
and in the book [30].

The interplay of MPC and iterative distributed optimization schemes is
both the starting point and the focus of our work. After a brief introduction,
we give a conceptual review of dual decomposition to explicate the main ideas
behind distributed optimization. The section is concluded by presenting and
discussing a dual ascent algorithm [10], specified in terms of an optimal con-
trol problem for distributed dynamical systems. While dual ascent already
allows for a significant speed-up, see, e.g. [19], and is very flexible with respect
to the structure of the interconnection of dynamical systems, it requires – in
general – restrictive assumptions for convergence to the (global) optimum.
This drawback can, e.g., be mitigated by using the Alternating Direction
Method of Multiplies (ADMM), which is concisely outlined in the successor
section. We refer to [7] for a recently published more detailed exposition.
The key point demonstrated by doing so is that distributed optimization
algorithms are typically tailored for a particular setting, in which their per-
formance – in combination with other features like plug-and-play capability –
is extremely competitive with respect to scalability, which ensures that the
algorithm remains computationally tractable also for large-scale systems.

In this paper, the proposed algorithms are tailored to a smart-grid ap-
plication to illustrate their properties within the MPC closed loop. In the
context of the application, the overall energy demand of a network of RESs
is optimized. In this field of application distributed optimization is nowadays
very popular, see, e.g. [12, 42] or the review article [36] for further com-
ments on the application. We consider a setting in which Residential Energy
Systems (RESs) are connected to the grid via a Central Entity (CE), an
operator of a transmission grid, for example. Since the number of RESs is
typically large, distributed optimization is used to alleviate the computa-
tional burden resulting from solving the optimization problems in MPC, and
to maintain flexibility with respect to changes in the network structure of
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the smart grid. Here, we stick to the term Optimal Control Problem (OCP)
despite the fact that we consider discrete time systems, which implies that
the OCP is a finite dimensional optimization problem. This work continues
our first modeling approach (accompanied by first numerical results) on the
integration of controllable loads [9]. Using ADMM, we rigorously show that
the proposed distributed optimization approach converges to the global min-
imum and, thus, lay the foundation for its embedding in distributed MPC.
From an application point of view exploiting flexibilities resulting from both
energy storage devices and controllable loads further improves the contribu-
tion to load shaving necessary due to the integration of renewable (and, thus,
highly fluctuating) energy sources. Moreover, we investigate the distributed
MPC scheme applied to optimize the energy exchange between microgrids
coupled through transmission lines. In particular, we numerically show that
an exchange, on top of the optimization within the individual microgrids, is
beneficial with respect to peak shaving even if losses due to the transmission
are taken into account. Again, distributed optimization (ADMM) turns out
to be the right tool to leverage the untapped potential resulting from this
additional flexibility.

Throughout the paper, N0 and N denote the natural numbers including
and excluding 0, and Z and R denote the integers and the real numbers,
respectively. For given n,m ∈ Z, n ≤ m, we use [n : m] = {n, n+1, . . . ,m} to
define the integers from n tom to shorten the expressions. The identity matrix
of appropriate dimension is denoted by I. For a sequence {a1, a2, a3, . . .} ⊂ Rn
the shorter notation (al)l∈N ⊂ Rn is used.

2 Model Predictive Control

To illustrate the MPC concept, we consider a discrete time control system
governed by the dynamics

x(k + 1) = f(x(k), u(k)), x(0) = x0, (1)

with a continuous map f : Rnx × Rnu → Rnx . Here, x(k) and u(k) denote
the state of the system and the control input at time instant k, k ∈ N0,
respectively. In addition, we assume that the states and the control have to
respect certain constraints described through compact sets with non-empty
interior, i.e. x(k) ∈ X ⊂ Rnx and u(k) ∈ U ⊂ Rnu , k ∈ N0.

With these definitions, MPC is used to determine a state feedback law
µ : N0 ×Rnx → Rnu , through stage costs ` : N0 ×Rnx ×Rnu → R defining a
performance measure, such that the closed-loop system

xcl(k + 1) = f(xcl(k), µ(k, xcl(k))), xcl(0) = x0 (2)

is recursively feasible and satisfies infinite horizon performance properties.
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• Recursive feasibility refers to properties of the closed-loop solution xcl(k),
k ∈ N0. If xcl(k) is feasible, i.e. xcl(k) ∈ X holds, the current feedback
value and the successor state are also feasible, i.e.

µ(k, xcl(k)) ∈ U and xcl(k + 1) ∈ X.

Thus, recursive feasibility implies well-posedness of the closed loop (2)
provided initial feasibility xcl(0) = x0 ∈ X holds, see, e.g. [6, 37].

• The infinite horizon performance sums up the stage cost along the MPC
closed-loop trajectory

∞∑
k=0

`(k, xcl(k), µ(k, xcl(k))) (3)

in cases where the limit exists. If the limit does not exist, or in applications
where the average is more meaningful, the infinite horizon performance can
alternatively be measured by

lim sup
T→∞

1

T

T−1∑
k=0

`(k, xcl(k), µ(k, xcl(k))). (4)

The performance index (3) is typically used in set point stabilization, see,
e.g. [22, 37], while the average version (4) is often used in economic MPC,
see, e.g. [2, 31]. The main difference is that the stage cost is positive
definite with respect to a steady state for set point stabilization while
in economic MPC turnpike properties [14] in combination with (strict)
dissipativity [18] are used to deduce rigorous assertions with respect to
the closed-loop performance.

In general, the problem of finding a feedback law that is optimal regarding
the infinite horizon performances (3) or (4) is computationally intractable.
MPC is a technique to approximately solve this task. To this end, an opti-
mization problem on a predefined finite time horizon N ∈ N≥2 is considered
in a receding horizon fashion, leading to the following basic MPC scheme.
Here, the term receding horizon means that the feedback law µ is computed
iteratively at each time step k ∈ N0 (and only for the current state x(k)).

Basic MPC Scheme

1. For k ∈ N0, measure the current state x̂ := x(k).
2. Minimize the cost functional

JN (k, x̂,u) :=

k+N−1∑
n=k

`(n, x(n), u(n))
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where u = (u(k), u(k + 1), . . . , u(k + N − 1))T and subject to the initial
condition x(k) = x̂, the system dynamics

x(n+ 1) = f(x(n), u(n)), n ∈ [k : k +N − 1],

and the state and control constraints

x(n+ 1) ∈ X, u(n) ∈ U, n ∈ [k : k +N − 1],

to compute a minimizing sequence u?.
3. Implement µ(k, x̂) := u?(k), shift the horizon forward in time, i.e. set
k = k + 1, and go to Step 1.

While the basic MPC algorithm is well understood, already time varying
stage costs ` lead to a significantly more involved analysis, see, e.g. [23, 27].
Moreover, a careful design of the stage cost ` is important to rigorously deduce
closed-loop properties as shown in [35, 32].

In this paper, we want to apply the idea of the MPC scheme to a dis-
tributed setting. To be more precise, let I, I ∈ N≥2, dynamically decoupled
systems

xi(k + 1) = fi(xi(k), ui(k)), xi(0) = x0i , i ∈ [1 : I], (5)

be given where xi ∈ Xi ⊂ Rnxi , ui ∈ Ui ⊂ Rnui , and the dimensions of the
overall system are given by nx =

∑I
i=1 nxi , and nu =

∑I
i=1 nui , respectively.

Even though the individual systems are not coupled through their dynam-
ics, we assume that the performance of the overall dynamics depends on the
individual decisions taken by the subsystems i ∈ [1 : I]. To incorporate this
into the model, we assume the presence of a Central Entity (CE) such that
each subsystem may communicate with the CE (star shaped topology) via

zi(k) = hi(k, xi(k), ui(k)) (6)

with communication variables zi ∈ Rp for all i ∈ [1 : I]. The functions
hi : N0 ×Rni ×Rmi → Rp are assumed to be continuous and can depend on
the current time step k ∈ N0 as well as the local states and the local control,
for all i ∈ [1 : I]. With these definitions the coupling between the individual
systems can be described through global stage costs

ˆ̀ : N0 × RpI → R, (k, z) 7→ ˆ̀(k, z) (7a)

involving the communication variables z := (z1, . . . , zI)T . The stage costs (7a)
capture the performance of the overall system, or equivalently, they capture
the costs enforced by the CE. In addition, every system i ∈ [1 : I] can have
local performance measures defined through local stage costs

`i : N0 × Rni × Rmi → R, (k, xi, ui) 7→ `i(k, xi, ui) ∀i ∈ [1 : I], (7b)
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which in combination with the global stage costs (7a) lead to multi-objective
optimization problems [17] or multi-objective MPC formulations [24] in the
control context.

The overall optimal control problem (OCP) to be solved at every time in-
stant k ∈ N0 in Step 2 of the MPC scheme can be summarized by the following
optimization problem where the notation x := (x(k), x(k+ 1), . . . , x(k+N −
1))T , u := (u(k), u(k + 1), . . . , u(k +N − 1))T is used.

Minimize the cost functional

JN (k, x̂,u) :=

k+N−1∑
n=k

(
α · ˆ̀(n, z(n)) +

1− α
I
·
I∑
i=1

`i(n, xi(n), ui(n))

)
w.r.t. u(k), u(k + 1), . . . , u(k +N − 1) subject to x(k) = x̂,

the equalities (5) and (6), the state and control constraints

xi(n+ 1) ∈ Xi(n), ui(n) ∈ Ui(n) for n ∈ {k, k + 1, . . . , k +N − 1}

(8)

The parameter α ∈ [0, 1], which we assume to be set and defined by the CE,
shifts the emphasis on the performance of the individual subsystems encoded
in `i, i ∈ [1 : I], to a network-wide objective ˆ̀ by choosing α between 0
and 1. The overall distributed MPC algorithm incorporating the OCP (8) is
summarized in Algorithm 1. While Algorithm 1 can be easily written down,

Algorithm 1 Distributed MPC algorithm

Input: Time horizon N ∈ N, number of systems I ∈ N, stage costs ˆ̀, `i, i ∈ [1 : I],
and a weighting parameter α ∈ [0, 1].
Initialization: Set k = 0.
Main loop: For k ∈ N0

(1) For all i ∈ [1 : I], measure the current states x̂i := xi(k).
(2) Solve the OCP (8) to obtain minimizing sequences

u?i = (u?i (k), . . . , u?i (k +N − 1))T ∀ i ∈ [1 : I].

(3) For all i ∈ [1 : I], implement µi(k, x̂i) := u?i (k), shift the horizon forward in time,
i.e. set k = k + 1, and go to Step (1).

Step (2) requires particular care due to the real-time requirements in MPC
and to maintain the decoupled structure of the individual subsystems. Hence,
the goal of the next section is to outline algorithms, which can be suitably
adapted such that Step (2) is computationally tractable and flexible with
respect to changes in local system dynamics. Here, iterative distributed op-
timization schemes play a major role to mitigate the computational burden
on the one hand and, on the other hand, allow for a premature stop after
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a few iterations while still ensuring feasibility and achieving a competitive
performance.

3 Distributed optimization

To compute an MPC feedback law, the OCP (8) of the form

min
ui(n),xi(n),zi(n)

k+N−1∑
n=k

(
α · ˆ̀(n, (z1, . . . , zI)T (n)) + 1−α

I

I∑
i=1

`i(n, xi(n), ui(n))
)

(9a)

s.t. xi(k) = x̂i, (9b)

xi(n+ 1) = fi(xi(n), ui(n)), (9c)

zi(n) = hi(n, xi(n), ui(n)), (9d)

xi(n+ 1) ∈ Xi(n+ 1), ui(n) ∈ Ui(n), (9e)

∀ i ∈ [1 : I], ∀ n ∈ [k : k +N − 1].

has to be solved at every time instant k, k ∈ N0. To this end, an efficient
optimization algorithm is essential to meet the real-time requirements of the
MPC scheme proposed in Algorithm 1. For applications with a large num-
ber of systems I, I ∈ N, scalability and flexibility with respect to I are
indispensable properties for the algorithm design, see also [43, 29]. The lat-
ter also includes changes in the particular system dynamics of the individual
systems. In this context iterative distributed optimization schemes regained
considerable attention over the last years.

In this section, we discuss distributed optimization schemes, and in par-
ticular hierarchical distributed optimization schemes, and their embedding
within the MPC Algorithm 1. In Section 3.1, we discuss the basic dual de-
composition algorithm. While the convergence results are restrictive, dual
decomposition nicely illustrates the main idea of distributed optimization in
general. The Alternating Direction Method of Multipliers (ADMM) presented
in Section 3.2 extends the ideas of dual decomposition and is less restrictive
with respect to the stage costs `. We conclude this chapter in Section 3.3
by discussing beneficial properties of iterative optimization schemes within
MPC.

Since we are interested in the solution of a static optimization problem (9)
in this section, we simplify the notion before we continue. We collect the
information of the variables xi, ui, zi, i ∈ [1 : I], over the prediction horizon
at time k ∈ N in a single variable
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y =

y1

...
yI

 with yi =

 xi(k) ui(k) zi(k)
...

...
...

xi(k +N − 1) ui(k +N − 1) zi(k +N − 1)

 .

Even though the variables zi(n), i ∈ [1 : I], n ∈ [k : k+N − 1] are contained
in the definition of the variable y we additionally define

z =

z1
...
zI

 ∈ RpNI with zi =

 zi(k)
...

zi(k +N − 1)


to collect the data of the shared variables. For simplicity of exposition, the
k-dependency is dropped in the variables y and z in this section.

Remark 1. Note that the variables yi only need to contain the information
of the variables xi, ui, zi. By doing so, we do not restrict ourselves to a
particular formulation of the optimization problem. For example in MPC
problems with linear dynamics (1) it is common to optimize with respect to
u and to remove the state vector x from the set of unknowns, see, e.g. [22,
Chapter 12.1].

With these definitions of the vector of unknowns, the stage costs can be
summarized in the functions

φi(yi; k) =

k+N−1∑
n=k

`i(n, xi(n), ui(n)) ∀ i ∈ [1 : I] (10)

and φ̂(z; k) =

k+N−1∑
n=k

ˆ̀(n, (z1, . . . , zI)T (n)). (11)

Similarly, the constraints (9b) to (9e) are summarized in the sets

Di(k) =

yi

∣∣∣∣∣∣∣∣∣∣
xi(k) = x̂i,
xi(n+ 1) = fi(xi(n), ui(n)),
zi(n) = hi(n, xi(n), ui(n)),
xi(n+ 1) ∈ Xi(n+ 1), ui(n) ∈ Ui(n),

∀ n ∈ [k : k +N − 1].

 (12)

for all i ∈ [1 : I] and D(k) = D1(k) × . . . × DI(k). Combining all these
definitions, the OCP (9) can simply be written as

min
yi∈Di

α · φ̂(z; k) + 1−α
I ·

∑I
i=1 φi(yi; k). (13)

Coupling of the variables takes place in the function φ̂. Otherwise, the
optimization problem (13) could be split up into I independent optimization
problems. Next, we present a solution technique for the optimization problem
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based on iterative distributed optimization and explicit conditions on the
function φ and the set D(k) such that convergence to the global solution is
guaranteed.

3.1 Dual decomposition

Dual decomposition is a relatively old concept with its roots in the 1960s and
is discussed in many papers and monographs. Here, we follow the exposition
given in the monographs [5, 4] to introduce concepts for our particular setting
and refer to these books for details and references.

The coupling in the objective function (9a) can be eliminated by intro-
ducing a new variable a = z (clearly also ai = zi holds for all i ∈ [1 : I])
linked to the Central Entity (CE) and, then, shifting the coupling from the
objective function to the constraints

min
yi∈Di(k), a∈RIpN

αφ̂(a; k) + 1−α
I
∑I
i=1 φi(yi; k) (14a)

s.t. zi − ai = 0 ∀ i ∈ [1 : I]. (14b)

The advantage of the reformulation is that in the Lagrangian

L(y,a, λ; k) = αφ̂(a; k) + 1−α
I
∑I
i=1 φi(yi; k) +

∑I
i=1 λ

T
i (zi − ai) (15)

=
(
αφ̂(a; k)−

∑I
i=1 λ

T
i ai

)
+
∑I
i=1

(
1−α
I φi(yi; k) + λTi zi

)
the optimization variables a and y are separated in independent functions.
Thus, under appropriate conditions on the objective functions and the local
constraints, an optimal solution to the primal problem (14) can be obtained
by solving the (unrestricted) dual problem

max
λ∈RpIN

ψ(λ; k) with dual function ψ(λ; k) = inf
y∈D(k)
a∈RIpN

L(y,a, λ; k). (16)

The following theorem characterizes the interplay of the primal and the
dual problem, see, e.g. [5, Appendix C].

Theorem 1. If the primal problem (14) has an optimal solution (y?,a?),
then also the dual problem (16) has an optimal solution λ? (and vice versa)
and the optimal values coincide, i.e.,

αφ̂(a?; k) + 1−α
I
∑I
i=1 φi(y

?
i ; k) = ψ(λ?; k).

Moreover, the pair (y?,a?, λ?) is optimal for (14) and (16) if and only if the
saddle point condition



10 Braun et al.

L(y?,a?, λ; k) ≤ L(y?,a?, λ?; k) ≤ L(y,a, λ?; k) (17)

is satisfied for all y ∈ D(k), a ∈ RpIN and for all λ ∈ RpIN .

As a consequence of Theorem 1, if an optimal solution to the dual prob-
lem (16) is known, an optimal solution of the primal problem can be com-
puted by solving the optimization problems

y?i ∈ arg min
yi∈Di(k)

1−α
I φi(yi; k) + zTi λ

?
i

for all i ∈ [1 : I] in parallel. An optimal solution of the dual problem can
be found by iteratively updating the Lagrange multipliers. Hence, under ap-
propriate conditions on the primal problem (14) an optimal solution (y?,a?)
and λ? can be computed through the hierarchical dual ascent Algorithm 2.

Algorithm 2 Hierarchical dual ascent algorithm

Input: Step size c ∈ R> 0, number of systems I ∈ N, objective functions φ̂, φi, i ∈
[1 : I], weighting parameter α ∈ [0, 1], and maximal number of iterations lmax ∈ N.
Initialization: Set l = 0 and initialize λ0 ∈ RpIN (arbitrarily).
Main loop: For l ≤ lmax

1. The individual systems compute an optimal solution of

yli ∈ arg min
yi∈Di(k)

1−α
I φi(yi; k) + zTi λ

l
i ∀ i ∈ [1 : I], (18a)

in parallel and send zli to the CE.
2. The CE computes an optimal solution of

al ∈ arg min
a∈RpIN

αφ̂(a; k)−
∑I
i=1 a

T
i λ

l
i. (18b)

3. The CE updates the Lagrange multipliers

λl+1
i = λli + c(zli − ali) ∀ i ∈ [1 : I], (18c)

and broadcasts λl+1
i . Afterwards, set l = l + 1 and go to Step 1.

Convergence of Algorithm 2 can, e.g., be guaranteed by Theorem 2.

Theorem 2 ([4, Prop. 1.2.3]). Consider the primal problem (14) and as-
sume that the objective function is strongly convex1 with respect to the vari-
ables (y,a) with parameter χ > 0. Moreover, assume that the primal prob-
lem (14) is feasible, and the sets Di(k) are convex and closed for all i ∈ [1 : I].
Then, for a constant stepsize c ∈ (0, χ) the iterates (yl)l∈N, (al)l∈N, (λl)l∈N
computed according to Algorithm (18) satisfy

1 A function F : Rn → R is said to be strongly convex with parameter χ > 0 if
F (µx+ (1−µ)y) ≤ µF (x) + (1−µ)F (y)− χ

2
µ(1−µ)‖x− y‖22 holds for all x, y ∈ Rn

and all µ ∈ [0, 1].
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lim
l→∞

zl = z?, lim
l→∞

al → a?, lim
l→∞

λl → λ?.

for arbitrary initial values y0 ∈ D(k), a0 ∈ RpIN , λ0 ∈ RpIN .

The name dual ascent refers to the fact that (18c) is a gradient step in the
direction of the dual function ψ, where ψ(λl+1) > ψ(λl) holds if the condition
on the stepsize is satisfied. The maximal stepsize c depends on the convexity
of the objective function as well as on the definition of the linear coupling
constraints (14b), see [5, Prop. 6.1.1] for details.

The dual ascent Algorithm 2 allows to split the optimization problem
in tasks performed by the individual systems in parallel (see Algorithm 2,
Step 1), and tasks performed by a CE (Step 2 and 3). The local optimization
problems (18a) depend on local information and on the dual variables λi,
i ∈ [1 : I]. Thus, the dimension and the complexity of the optimization
problem solely depends on the parameters defining the i-th system, i ∈ [1 : I].
Note that also the number of systems I ∈ N does not need to be known by the
individual systems. To achieve this, the scaled Lagrange multipliers λ̃i = λiI,
i ∈ [1 : I], are broadcast by the CE and individual systems need to solve the
optimization problem

yli ∈ arg min
yi∈Di(k)

(1− α)φi(yi; k) + zTi λ̃
l
i (19)

for i ∈ [1 : I], instead of (18a).
The dimension of the optimization problem (18b) linked to the CE de-

pends on the number of systems I ∈ N. Nevertheless, note that the variables
a ∈ RpIN are unconstrained and thus an optimal solution can be computed
efficiently or even explicitly by the CE.

Note that depending on the network structure and the interconnection of
the individual systems, the dimension of the variable a and the dimension
of the Lagrange multipliers λ can be reduced (see [5, 7], for example), or in
special cases they can even be made independent of the number of systems
I ∈ N. Consider for example stage costs ˆ̀, which can be written in the form

ˆ̀
(
n; (z1, . . . , zI)T

)
= `

(
n; 1
I
∑I
i=1 zi

)
and thus, the stage costs only depend on the average taken over the com-
munication variables zi, i ∈ [1 : I]. Hence, we can define the variables

a(n) = 1
I
∑I
i=1 zi(n) for n ∈ [k : k + N − 1], which are the elements of

the vector a and modify the cost function (11):

φ(a; k) = φ̂(z; k) =
∑k+N−1
n=k `

(
n; 1
I
∑I
i=1 zi(n)

)
. (20)

Then, the primal optimization problem (14) becomes
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min
yi∈Di(k)
a∈RpN

αφ(a; k) + 1−α
I
∑I
i=1 φi(yi; k) s.t. 1

I
∑I
i=1 zi − a = 0 (21)

and the dual ascent scheme (18) is of the form

yli ∈ arg min
yi∈Di(k)

(1− α)φi(yi; k) + zTi λ
l ∀ i ∈ [1 : I], (22a)

al ∈ arg min
a∈RpN

αφ(a; k)−
∑I
i=1 a

T
i λ

l
, (22b)

λ
l+1

= λ
l
+ c( 1

I
∑I
i=1 z

l
i − al). (22c)

Here, the dimension of a ∈ RpN as well as the dimension of the Lagrange
multipliers λ ∈ RpI is independent of the the number of systems. Moreover,
the same information is communicated from the CE to the individual systems.
In this case, the stepsize c needs to be chosen such that c ∈ (0, 2Iχ/[2 + I])
is satisfied to guarantee convergence [16].

Overall, the dual ascent Algorithm 2 thus provides a very flexible scheme
to solve OCPs embedded in the MPC Algorithm 1. However, the assumed
strong convexity of the objective function is very restrictive.

3.2 The alternating direction method of multipliers

To weaken the assumption on strong convexity in Theorem 2, and thus to
extend the applicability of iterative distributed optimization schemes, alter-
native algorithms based on the augmented Lagrangian Lρ(y,a, λ; k) defined
by

Lρ(y,a, λ; k) = αφ̂(a; k) + 1−α
I
∑I
i=1 φi(yi; k) (23)

+
∑I
i=1

(
λTi (zi − ai) + ρ

2 ‖zi − ai‖22
)
,

for a positive parameter ρ > 0, have been proposed. For ρ = 0 the original
definition of the Lagrangian (15) is recovered. Observe that for a feasible solu-
tion of the optimization problem (14) the quadratic terms vanish. In contrast
to the Lagrangian, the variables z and a are not decoupled (or separable)
in the augmented Lagrangian. However, it is still possible, to optimize the
variables z and a sequentially, which leads to the ADMM Algorithm 3 and
in particular to the iteration scheme (24).

The ADMM scheme received a lot of attention over the last years, espe-
cially due to the exposition and discussion of the algorithm in [7] and [33].
The advantage of ADMM compared to dual ascent is that convergence can
be shown under weaker assumptions and independently of the stepsize.
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Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

Input: Step size ρ ∈ R>0, number of systems I ∈ N, objective functions φ̂, φi,
i ∈ [1 : I], a weighting parameter α ∈ [0, 1], and a maximal number of iterations
lmax ∈ N.
Initialization: Set l = 0 and initialize λ0,a0 ∈ RpIN (arbitrarily).
Main loop: For l ≤ lmax

1. The individual systems compute an optimal solution of

yl+1
i ∈ arg min

yi∈Di(k)

1−α
I φi(yi; k) + zTi λ

l
i + ρ

2

∥∥zi − ali
∥∥2
2

∀ i ∈ [1 : I] (24a)

in parallel and broadcast zl+1
i to the CE.

2. The CE computes an optimal solution of

al+1 ∈ arg min
a∈RpIN

αφ̂(a; k) +
∑I
i=1−aTi λli + ρ

2

∥∥∥zl+1
i − ai

∥∥∥2
2
. (24b)

3. The CE updates the Lagrange multipliers

λl+1
i = λli + ρ(zl+1

i − al+1
i ) ∀ i ∈ [1 : I] (24c)

and broadcasts (λl+1
i ,al+1

i ) to system i ∈ [1 : I]. Afterwards, set l = l+ 1 and go
to Step 1.

Theorem 3 ([7, Sec. 3.2.1]). Let the functions φ̂, φi, i = [1 : I], be con-
vex. Suppose there exists a saddle point (y?,a?, λ?) of the unaugmented La-
grangian L0, i.e., (y?,a?, λ?) satisfies (17) for all y ∈ D(k), a, λ ∈ RpIN .
Then, for y0 ∈ D(k), a0 ∈ RpIN and λ0 ∈ RpIN and fixed stepsizes ρ > 0,
Algorithm 3 satisfies the following properties:

1. The sequence (zl − al)l∈N converges to zero, ensuring feasibility of the
optimization problem (14).

2. The sequence
(
αφ̂(al; k) + 1−α

I
∑I
i=1 φi(y

l
i; k)

)
l∈N

converges to the opti-

mal value of the optimization problem (14).
3. The dual variables (λl)l∈N converge to the optimal dual point λ?.

Theorem 3 weakens the assumptions on the objective function of The-
orem 2 from strong convexity to convexity. The saddle point condition in
Theorem 3 is, e.g., satisfied if the sets Di(k), i ∈ [1 : I], are convex and
compact. Compared to the dual ascent Algorithm 2, Step 1 and Step 2 of
Algorithm 3 need to be performed sequentially and cannot be performed in
parallel.

Remark 2. In Algorithm 3, also the primal variables a ∈ RpIN need to be
communicated. However, the information contained in λ and a can be com-
pressed in a single communication variable of dimension pIN , which allows
to achieve the same communication costs as in Algorithm 2, see the scaled
version of ADMM proposed in [7, Sec. 3.1.1].
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Even though it is not as obvious as in the dual ascent Algorithm 2, also the
ADMM scheme allows a formulation of an Algorithm 3 where the dimension
of a and λ is independent of the number of systems I ∈ N if an objective
function of the form (20) is used. In this case, the iteration scheme (24)
becomes

yl+1
i ∈ arg min

yi∈Di(k)

1−α
I φi(yi; k) + ρ

2

∥∥zi − zli +Π l
∥∥2
2

∀ i ∈ [1 : I] (25a)

al+1 ∈ arg min
a∈RpN

αφ(a; k) + ρI
2

∥∥∥λlρ + 1
I
∑I
i=1 z

l+1
i − a

∥∥∥2
2

(25b)

λ
l+1

= λ
l
+ ρ

(
1
I
∑I
i=1 z

l+1
i − al+1

)
(25c)

Π l+1 = λ
l+1

ρ +
(

1
I
∑I
i=1 z

l+1
i − al+1

)
. (25d)

See [7, Section 7] or [8] for a derivation of the iteration scheme, for example.

3.3 Properties within the MPC closed loop

Algorithm 2 and 3 enable us to solve the OCPs (8) by iteratively solving
smaller or less complex optimization problems independent of the number
of systems. Thus, the numerical complexity of the distributed optimization
algorithms strongly depends on the number of iterations needed to compute
a solution within a predefined tolerance. If a good initial guess, e.g. initial
values λ0 and a0 close to the optimal solution, are available, the number
of iterations is typically much smaller. Here, MPC provides a natural way
to initialize λ0 and a0 since at two consecutive time instants k and k + 1,
k ∈ N0, similar optimization problems are solved and only the first piece
of the optimal trajectory is used to define a feedback law, while the rest
is discarded. To illustrate this fact let the last iteration of the distributed
optimization algorithm at time k be denoted by λlmax

i [k] and the initial value
at time k + 1 by λ0i [k + 1] for i ∈ [1 : I]. Then, we get

λlmax
i [k] =


λlmax
i (k|k)

λlmax
i (k + 1|k)

...

λlmax
i (k +N − 2|k)

λlmax
i (k +N − 1|k)

  


λlmax
i (k + 1|k)

...

λlmax
i (k +N − 2|k)

λlmax
i (k +N − 1|k)

0

 = λ0i [k + 1].

The variable a can be initialized in the same way. Observe that in Algorithm 2
the variables a and y do not need to be initialized since Step 1 and 2 in the
first iteration l = 0 only depend on the initialization of λ0. The same holds



Distributed optimization based control of microgrids 15

for the variable y in the ADMM algorithm. Typically, already a few iterations
are enough to obtain a closed-loop performance, which is close to optimal.

Moreover, note that even though the iterates zli, i ∈ [1 : I], l ∈ [0 : lmax]
might not be optimal, feasibility (i.e., zi ∈ Di(k), i ∈ [1 : I]) is assured in
every iteration since by assumption the systems are physically decoupled.
Thus, an early termination of the distributed optimization algorithm always
provides a feasible solution if D(k) 6= ∅ holds.

4 Case Study: Distributed MPC for small scale
electricity networks

In this section we apply the distributed MPC Algorithm 1, where the op-
timization Step (2) is carried out with the ADMM Algorithm 3 to a small
scale electricity network. The input variables (controls) represent the flexi-
bility present in the system. In Section 4.1, locally installed energy storage
devices are used for load shaping. Here, we are particularly interested in re-
ducing fluctuations in the network-wide energy consumption. To this end, we
first recapitulate the basic model of a network of Residential Energy Systems
(RESs) introduced and extended in [41, 10]. Then, in Section 4.2 controllable
loads are added to further increase the flexibility with respect to the demand
patterns of the RESs. Here, we rigorously prove global convergence of a set-
ting (very) similar to the one presented in [9]. Last, in Section 4.3, the model
is extended to additionally optimize the energy exchange between individual
microgrids (MGs) coupled through transmission lines.

In the simulations we concentrate on the performance of the overall net-
work instead of individual performance measures. We thus set α = 1, i.e., we
use the coupling stage costs ˆ̀ (or `, respecitvely) and neglect the individual
stage costs `i, i ∈ NI . However, the additional consideration of convex stage
costs is straightforward. The numerical simulations are based on a dataset
provided by the electricity distribution company Ausgrid and publicly avail-
able online [1]. From the dataset consisting of data collected from 300 residen-
tial customers with a resolution of half-hour windows we use the information
of power consumption and power generation using solar photovoltaic (PV)
panels and the information of controllable loads, which is available for some
customers. The power consumption and the power generation is combined to
obtain the power demand of a single customer at a particular time.

4.1 The basic model and its MPC formulation

Several models describing RESs have been introduced in the literature. We
focus on extensions to the model discussed in [41, 10]. The dynamics of the
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i-th RES, i ∈ [1 : I], are described by

xi(k + 1) = fi(xi(k), ui(k)) = %ixi(k) + T (βiu
+
i (k) + u−i (k)) (26)

zi(k) = hi(k, xi(k), ui(k)) = wi(k) + u+i (k) + γiu
−
i (k), (27)

compare (5) and (6) in Section 2. In the particular setting of an electricity
grid, the state xi ∈ R represents the state of charge of a battery in kWh,
containing local information of the i-th RES and the variable zi ∈ R denotes
the power demand in kW of system i, which needs to be shared with or
communicated to the CE. The local power demand zi depends on the net
consumption wi ∈ R in kW, i.e., the energy demand minus the generation
of solar PV panels, and can be manipulated by charging or discharging the
storage device using the input signals ui = (u+i , u

−
i )T ∈ R2 (in kW). The net

consumption wi(k), which is assumed to be a known exogenous signal for all
i ∈ [1 : I] and for all n ∈ [k : k + N − 1], causes the time dependency of
the function h in (27). Hence, the prediction horizon corresponds to the time
interval, on which reliable data is available, see, e.g. [41] for the impact of
forecast errors. The additional parameters in (26)-(27) are constants, where
T > 0 represents the length of a sampling interval in hours (h), while %i, βi,
γi ∈ (0, 1] are used to model losses due to energy transformation.

Additionally, for constants Ci, ui, ui ∈ R>0, i ∈ [1 : I], constraints on the
state of charge of the storage device and maximal charging and discharging
rates are defined in [41, 10], which result in the state constraints

xi(k) ∈ Xi = {xi(k) ∈ R|0 ≤ xi(k) ≤ Ci} (28)

and the input constraints

ui(k) =

(
u+i (k)
u−i (k)

)
∈ Ui =

ui ∈ R2

∣∣∣∣∣∣∣
−ui ≤ u−i ≤ 0

0 ≤ u+i ≤ ui

0 ≤ u−i
−ui

+
u+
i

ui
≤ 1

 (29)

for all i ∈ [1 : I] and for all k ∈ N. Note that in this setting neither the state
constraints Xi nor the input constraints Ui are time dependent.

In [41, 8] the objective function in the MPC closed-loop formulation is
defined in such a way, that for all k ∈ N in the prediction horizon, the
deviation of the aggregated power demand

∑I
i=1 zi(k) from the aggregated

net consumption computed over the prediction horizon is minimized. Here,
we use a slightly different approach to be able to use the definition (7) of the
stage costs. For a given prediction horizon N ∈ N, we denote the average net
consumption over the prediction horizon of a single RES i ∈ [1 : I] by

ζi(k) =

{
1
k+1

∑k
n=0 wi(n), if k ≤ N − 1,

1
N

∑k
n=k−N+1 wi(n), if k ≥ N − 1.

(30)
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For the first N − 1 time steps, where the past data of wi(k), for k < 0 is not
available, only the average over the available data is used. Analogously the
average net consumption of all the systems is defined as

ζ(k) = 1
I
∑I
i=1 ζi(k) (31)

for all k ∈ N. With this definition the coupled stage costs, tracking the average
net consumption of the RESs can be written in the form

`(k, 1
I
∑I
i=1 zi(k)) =

(
ζ(k)− 1

I
∑I
i=1 zi(k)

)2
(32)

and the overall objective function of the OCP (8) in the distributed MPC
Algorithm 1 at time k ∈ N is defined by

φ(y; k) =
∑k+N−1
n=k

(
ζ(n)− 1

I
∑I
i=1 zi(n)

)2
.

Here, the local terms in the objective function are not present since the
weighting parameter is set to α = 1. The objective function is convex but
not strictly or strongly convex. The sets Di(k), i ∈ [1 : I] and k ∈ N, are
defined by the initial state of charge, the system dynamics (26)-(27) and the
constraints (28)-(29), see (12). Since the dynamics and the constraints are
linear, Di(k) is convex and closed. Additionally, compactness of Di(k) can
be concluded from the fact that Ui and Xi, i ∈ [1 : I] are compact and the
boundedness of Ui implicitly limits the power demand zi for all i ∈ [1 : I].
Thus, the distributed optimization Algorithm 3 can be used to compute an
optimal solution of the OCP embedded in the MPC Algorithm 1.

Numerical simulations

For the numerical simulations throughout this section a setting of I = 100
RESs is used. The parameter T is set to T = 0.5, representing half-hour
windows, and the energy demand is predicted for 24 hours into the future,
i.e., we set N = 48. Additionally the constants ui = ui = 0.5 are fixed for
the maximal discharging/charging rates for all i ∈ [1 : I]. The constants
modeling the losses are set to %i = 0.99 and βi = γi = 0.95 for all i ∈ [1 : I].
The battery capacities of the storage devices are set to Ci = 2 kWh with
initial state of charge xi(0) = 0.5 kWh for all i ∈ [1 : I]. For the ADMM
Algorithm 3 embedded in the MPC scheme the parameter ρ is set to ρ = 0.1.

The closed-loop results of the MPC Algorithm 1 over a simulation length
of one week (i.e., k = 0, . . . , 335) are visualized in Figure 1. Due to the defini-
tion of the reference value ζ(k) in (31), ζ(k) takes 24 hours before it becomes
a reliable reference value which only changes slowly over time (see the green
line in the Figure 1, top). In addition to the reference value, Figure 1 (top)
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Fig. 1: Closed-loop results of the MPC Algorithm 1 optimizing the use of
storage devices. The first figure shows the reference value ζ(k) (green) as
well as the uncontrolled (black) and controlled (blue) average power demand,
1
I
∑I
i=1 wi(k) and 1

I
∑I
i=1 zi(k), respectively. The second plot shows the de-

viation of the uncontrolled (black) and the controlled (blue) average power
demand from the reference value, while the last figure visualizes the average
State of Charge (SOC) of the storage devices.

visualizes the uncontrolled average power demand 1
I
∑I
i=1 wi(k) (black) and

the optimized average power demand 1
I
∑I
i=1 zi(k) (blue). The storage de-

vices help to reduce the the peaks in the average power demand significantly.
The deviation of the uncontrolled power demand (black) and the controlled
power demand (blue) from the reference value is shown in Figure 1 (mid-
dle). Even though the peaks are reduced, the MPC algorithm is not able to
track the reference value perfectly due to the maximal capacity of the storage
devices and due to the bounds on the charging/discharging rates. This can
be observed in the last plot in Figure 1, where the average State of Charge
(SOC) of the storage devices is visualized.
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4.2 Storage devices and controllable loads

In this section we establish an additional degree of freedom in the model
of the electricity network, i.e, we consider the concept of controllable loads
introduced for this particular setting in [9]. To this end, the net consumption
is split into two parts: the static load wi(k) and the controllable load wci (k).
While we cannot influence the static load, controllable load can be shifted
in time. To schedule the controllable load we extend the control input ui =
(u+i , u

−
i , u

c
i )
T ∈ R3 and modify the dynamics (27) to

zi(k) = wi(k) + u+i (k) + γiu
−
i (k) + uci (k) (33)

for all i ∈ [1 : I]. Here, uci (k) in kW represents the amount of controllable
load scheduled at time k.

We make the assumption that controllable load becomes available at a
certain time j ≤ k and then needs to be scheduled until (its deadline at) time
k, i.e., wci (k+N −1), k ∈ Z≥1−N , has to be planned during the time interval

from max{0, k} to k+N−1 for a given N ∈ N. To this end, the time-varying
constraints

k∑
j=0

wci (j)−
k−1∑
j=0

uci (j) ≤ uci (k) ≤
k+N−1∑
j=0

wci (j)−
k−1∑
j=0

uci (j) (34)

are introduced. Further, we assume that only a certain amount of the con-
trollable load can be scheduled during one time step, which leads to

0 ≤ uci (k) ≤ wci (35)

for a constant wci ≥ 0, which is assumed to be chosen such that (34) can be
fulfilled simultaneously. Note that in (34), at a fixed time instant k ∈ N0,
uci (k) for k ≥ k represent control variables which need to be optimized,
whereas uci (k) for k < k are constants which have been fixed at previous
time steps. To be able to update the input constraints (29) capturing the
controllable loads, we rewrite the constraints (34) as time-dependent upper
and lower bounds

λqi (k) :=

k+q∑
j=0

wci (j)−
k−1∑
j=0

uci (j) ≤
k+q∑
j=k

uci (j) (36a)

Λqi (k) :=

k+min{q+N,N}−1∑
j=0

wci (j)−
k−1∑
j=0

uci (j) ≥
k+q∑
j=k

uci (j) (36b)

for the input variables uci , for i ∈ [1 : N ], k ∈ N and over the prediction
horizon q ∈ [0 : N − 1]. Note that the time-dependency is due to the time
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dependent controllable loads wci (k), k ∈ N, as well as the decisions made by
the controller to define uci (j) for j < k for all i ∈ NI . Since we assume that
the system dynamics and in particular the load and the controllable load can
only be estimated over the prediction horizon, the first sum in (36b) stops at
the increment k + min{q +N,N} − 1.

Due to the linearity of the dynamics (33) and the constraints (35)-(36),
convexity and compactness of the (now time-dependent) sets Di(k), i ∈ [1 :
I], k ∈ N, follows the same arguments as in Section (4.1). For the stage
costs, we additionally have to take the controllable loads into account in the
computation of the average net consumption, i.e., ζi(k), i ∈ NI , is defined as

ζi(k) =

{
1
k+1

∑k
n=0 wi(n) + wci (n), if k ≤ N − 1,

1
N

∑k
n=k−N+1 wi(n) + wci (n), if k ≥ N − 1

in this setting.

Numerical simulations

In addition to the parameters used in the setting without controllable loads
we set N = 12, which represents a six hour time window for scheduling the
controllable loads, and bound the controllable load for each RES i ∈ [1 : I]
at time k ∈ N0 by wci (k) ≤ wci = 1.25 [kW].

The results comparing the setting with and without controllable loads can
be found in Figure 2. Here, in addition to the results shown in Figure 1, the
simulations including controllable loads are visualized in red. The additional
degree of freedom in the controllable loads clearly improves the performance
of the MPC scheme where only stroage devices are used. The deviation of the
average power demand from the reference signal is hardly visible at most of
the time steps in the simulation. To obtain a perfect tracking however, i.e., to
obtain |ζ(k)− 1

I
∑I
i=1 zi(k)| = 0 for all k = 0, 1, . . . , 335, either the capacity

of the storage devices or the percentage of controllable load from the overall
load needs to be increased.

4.3 Optimal operation of coupled microgrids

So far in this paper, and also in preceding publications, we have concentrated
on the optimal operation of a single electricity network. Here, we extend these
results to the optimal operation of Ξ microgrids (MGs), Ξ ∈ N, coupled
through a network of transmission lines as visualized in Figure 3, for example.
Here, a network of Ξ = 4 MGs is shown where MG1 is only connected to
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Fig. 2: Impact of controllable loads in the closed-loop simulation of Algo-
rithm 1. Compared to Figure 1 additionally the closed-loop results with con-
trollable loads are shown in red. The last plot shows the extended average
control input 1

I
∑I
i=1 u

c
i (k), k ∈ [0 : 335].

MG2, and MG2, MG3 and MG4 are fully connected through transmission
lines.

The individual MGs can be defined as discussed in Section 4.1 without
controllable loads or as in Section 4.2 with controllable loads. We use Iκ ∈ N,
to denote the number of RESs in MGκ, κ ∈ [1 : Ξ]. In the case where the
MGs are not connected a straightforward extension of the stage costs defined
in (32) is to consider the costs
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Fig. 3: Example of four MGs coupled through transmission lines. Each MG
consists of a number of Iκ ∈ N, κ = 1, 2, 3, 4, RESs.

ˆ̀(k, (z1, . . . , zI)T (k)) =
∑Ξ
κ=1

(
Iκζκ(k)−

∑Iκ
i=1 zκi(k)

)2
, (37)

where in contrast to (32) the deviation of the average net consumption ζκ(k),
κ ∈ NΞ , in the MGs is penalized. This means, ζκ(k) is defined as

ζκ(k) = 1
Iκ
∑Iκ
i=1 ζκi(k). (38)

We are interested in the case where the MGs are coupled via transmission
lines. In particular, we want to investigate whether the MGs can benefit
from an energy exchange even if the energy exchange involves losses. We
thus consider stage costs of the form

ˆ̀(k, (z1, . . . , zI)T (k), δ(k)) =

Ξ∑
κ=1

(
Iκζκ(k)−

Ξ∑
ν=1

(δκ,ν(k)ηκ,ν)

Iν∑
i=1

ziν (k)

)2

(39)

with additional variables δ(k) ∈ [0, 1]Ξ×Ξ and constants η ∈ [0, 1]Ξ×Ξ . The
matrix entry δκ,ν(k), κ, ν ∈ [1 : Ξ], represents the fraction of the power
demand of MGκ at time k, which is used to manipulate the average ζν(k)
of MGν . To define δκ,ν(k) as a fraction of the overall power demand of MGκ

the linear constraints ∑Ξ
ν=1 δκ,ν(k) = 1 ∀κ ∈ [1 : Ξ] (40)

are introduced. Moreover, to ensure that power can be exchanged over a
transmission line only in one direction at a fixed time index k ∈ N we use the
nonlinear constraints

δκ,ν(k) · δν,κ(k) ≤ 0 ∀ κ, ν ∈ [1 : Ξ], κ 6= ν. (41)



Distributed optimization based control of microgrids 23

The matrix η is assumed to be symmetric, i.e. ηκ,ν = ην,κ for all κ, ν ∈ [1 : Ξ],
where a zero-entry (ηκ,ν = ην,κ = 0) indicates that no transmission line
between MGν and MGκ exists and values ηκ,ν ∈ (0, 1) correspond to losses.
In addition, we set ηκ,κ = 1, κ ∈ [1 : Ξ]. For the MGs visualized in Figure 3
the constants η can be defined as

ηloss =


1.0 0.0 0.8 0.0
0.0 1.0 0.7 0.8
0.8 0.7 1.0 0.9
0.0 0.8 0.9 1.0

 and ηno loss =


1 0 1 0
0 1 1 1
1 1 1 1
0 1 1 1

 (42)

with losses and without losses, for example.
To handle the additional set of variables δ in the MPC closed-loop we ex-

tend Algorithm 1. Note that the coupling of the variables δ and (z1, . . . , zI)
leads to a non-convex objective function. Additionally, the constraints (41)
are nonlinear and non-convex. Hence, δ is only optimized in the MPC al-
gorithm, but not in the distributed optimization conducted in the second
Step (2) of the MPC algorithm.

Distributed optimization of the energy exchange

Using the definitions introduced in Section 3 we define the objective function

φ̂(z, δ; k) =
∑k+N−1
n=k

ˆ̀(k, z(k), δ(k)) (43)

with δ ∈ RΞ×Ξ×N . For the constraints we define the set

∆ =

δ ∈ [0, 1]Ξ×Ξ×N

∣∣∣∣∣∣
∑Ξ
ν=1 δκ,ν(n) = 1 ∀κ ∈ Ξ

δκ,ν(n) · δν,κ(n) ≤ 0 ∀κ, ν ∈ [1 : Ξ], κ 6= ν
∀ n ∈ [k : k +N − 1]

 .

Hence, the optimal control problem involved in the MPC algorithm at time
k ∈ N is defined as

min
y∈D(k)
δ∈∆

αφ̂(z, δ; k) + 1−α
I
∑I
i=1 φi(yi; k). (44)

As already pointed out, due to the additional variables δ, the distributed
optimization scheme (24) is not applicable in the current form. Thus, we
update the variables δ only once at every time step k ∈ N within the MPC
algorithm and keep δ fixed in the iterates of the distributed optimization
algorithm. The corresponding MPC algorithm is given in Algorithm 4.

In (46), δ is updated for the next time step using the ideas discussed
in Section 3.3 and I ∈ RΞ×Ξ denotes the identity matrix. Optimization
problem (45) is not convex and thus it is not guaranteed, that an optimal
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Algorithm 4 Distributed MPC for energy exchange
Input: Time horizon N ∈ N, number of MGs Ξ ∈ N, transmission grid parameters
ν ∈ [0, 1]Ξ×Ξ , number of systems Iκ ∈ N in MGκ, κ ∈ [1 : Ξ], satisfying

∑Ξ
κ=1 Iκ =

I, stage costs ˆ̀, `i, i ∈ [1 : I], and a weighting parameter α ∈ [0, 1].
Initialization: Set k = 0.
Main loop: For k ∈ N0

(1) For all i ∈ [1 : I], measure the current states x̂i := xi(k).
(2) Solve the OCP (8) for fixed δ to obtain minimizing sequences

u?i = (u?i (k), . . . , u?i (k +N − 1))T ∀ i ∈ [1 : I].

(3) Obtain the optimal energy exchange δ∗ by solving the optimization problem

δ∗ ∈ arg min
δ∈∆

αφ̂(z∗, δ; k) + 1−α
I
∑I
i=1 φi(y

∗
i ; k). (45)

(4) For all i ∈ [1 : I], implement µi(k, x̂i) := u?i (k) and δ∗(k), define

δ+ = (δ∗(k + 1)× . . .× δ∗(k +N − 1)× I), (46)

shift the horizon forward in time, i.e. set k = k + 1, and go to Step (1).

solution is found at every time step. However, observe that the optimization
problem (45) does not involve a coupling over the prediction horizon and
δ(n), n ∈ [k : k + N − 1] can be computed independently, leading to N
optimization problems, where the number of unknowns is upper bounded by
Ξ2. Even though optimality with respect to the energy exchange cannot be
shown in our setting, simulation results indicate the potential benefit of the
additional Step (3) in Algorithm 4.

The power exchange of coupled MGs is also discussed in [25]. In [25] how-
ever, the power flow over the transmission lines results from linearized DC
power flow equations and cannot be optimized separately. In contrast, Algo-
rithm 4 includes the optimization of the power exchange through the addi-
tional variable δ.

Numerical simulations

To show the numerical properties of Algorithm 4 we consider a network of
Ξ = 4 MGs visualized in Figure 3. Additionally, we consider the set of param-
eters η defined in (42) with and without losses. The individual MGs consist
of I1 = 20, I2 = I3 = 25 and I4 = 30 RESs. Each RES is defined through
the parameters introduced in Section 4.1.

The deviation of the power demand of the closed-loop solution from the
reference values in the individual MGs and for the different settings is visu-
alized in Figure 4 and 5. Figure 4 compares the uncontrolled power demand
with the controlled power demand without energy exchange (see Section 4.1).
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Fig. 4: Deviation of the uncontrolled average power demand in the MGs
from the reference values in the left figure and the deviation of the closed-
loop solution without power exchange (i.e. optimization with respect to (37))
on the right. Note the different scaling on the y-axis.

In Figure 5 additionally the power exchange is taken into account. The ex-
change of energy without losses over the transmission lines (Figure 5, right)
clearly improves the results of the uncoupled MGs (Figure 4, right). The ben-
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Fig. 5: Visualization of the deviation of the closed-loop solution from the ref-
erence value with power exchange (i.e. optimization with respect to (39)),
with (left) and without (right) losses are visualized. Here, dclκ denotes
the closed-loop average power demand after the power exchange dclκ (k) =
1
Iκ
∑Ξ
ν=1 δ

cl
κ,ν(k)ηκ,ν

∑Iν
i=1 ziν (k). The matrices η are defined in (42).

efit of the energy exchange with losses ηloss over the transmission lines is not
that obvious. It can however be observed by evaluating the MPC closed-loop
performance (4), taking the average over 336 iterations. Here, the uncon-
trolled setting in Figure 4 (left) leads to average costs of 148.66 compared
to 10.60 in the controlled case without energy exchange (Figure 4, right).
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The setting with energy exchange and with losses over the transmission lines
(Figure 5, left) decreases the average costs to 3.50, which shows the improve-
ments compared to the uncoupled simulations. As one might expect from
Figure 5 (right) the setting with energy exchange and without losses out-
performs the other simulation results with a value of 1.00 for the average
closed-loop performance over 336 iterations.

5 Conclusions

In this paper we gave a conceptual review of dual decomposition – in par-
ticular dual ascent – and ADMM as representatives of the class of iterative
distributed optimization algorithms. Furthermore, we thoroughly discussed
their embedding within distributed MPC schemes. Here, we emphasized the
importance to tailor the distributed optimization scheme to the particular
application to ensure essential properties like scalability and plug-and-play
capability. To demonstrate the effectiveness of the proposed combination, we
considered an application, in which flexibilities (energy storage devices, con-
trollable loads, and energy exchange between microgrids) were exploited for
load shaving. In particular, we rigorously showed global convergence for the
setting with controllable loads to extend our previous work [9] and presented
a new model, which allows to (numerically) assess the potential of energy
exchange between several microgrids while taking transmission losses into
account.
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23. L. Grüne and S. Pirkelmann. Closed-loop performance analysis for economic
model predictive control of time-varying systems. In Proc. of the 54th IEEE
Conference on Decision and Control (CDC), pages 5563–5569, 2017.
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