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Abstract 

 

Ferric (hydr)oxides are ubiquitous with different characteristics such as stability, reactivity 

and surface properties. They play an important role in redox reactions in many environments 

such as soils, marine sediments, lakes, and ground water. Under anoxic conditions, ferric 

(hydr)oxides are reduced by dissolved sulphide or by microorganisms. The reductive 

dissolution of ferric (hydr)oxides generates Fe(II) which may precipitate as iron hydroxide, 

adsorb to the ferric (hydr)oxide surfaces and transform the ferric (hydr)oxides into more 

stable minerals, or precipitate as iron sulphide. During the reductive dissolution adsorbed 

species like arsenic may be released from the oxide surfaces to solution. Furthermore, the 

generation of ferrous iron in ground water systems, their transport through the groundwater-

surface water interface, and subsequent iron oxidation and precipitation contribute to the 

acidification of lakes or sediments as a result of both mining activities and natural processes. 

Alternatively, the oxidation of iron sulphides due to mining activities and natural events leads 

to the production of acidity and concentrations of (toxic) metals in ground and surface water. 

Hence, the redox reactions between dissolved sulphide and ferric (hydr)oxides are of 

fundamental importance for the elemental cycles of sulphur and iron and in particular for the 

carbon and electron flow in groundwater, soil, and lake systems. The overall chemical 

pathway of the reactions and their kinetics are reasonably understood. There is less 

knowledge on the transient stages and the electron transfer processes during the reactions 

which involve the formation of amorphous or disordered, as well as, nucleation of 

(metastable) crystalline phases at the reacting interface as a function of time. Furthermore, the 

interaction between dissolved sulphide and ferric (hydr)oxides can be regard as a key reaction 

ultimately leading to pyrite formation in both marine and freshwater sediments. However, the 

knowledge on the pathways and on the controlling factors of pyrite formation is still limited.  

Therefore this work focused on anoxic abiotic kinetic batch and flow-through experiments 

with various ferric (hydr)oxides and dissolved sulphide at pH 4 and pH 7. Transmission 

electrode microscopy, X-ray diffraction, Mössbauer spectroscopy, and wet chemistry were 

used to explore the nanocrystalline products which formed over time during the reaction. 

Furthermore, these experiments should be contribute to the elucidation of the role of Fe
2+

 

regarding the iron sulphide formation and the transformation of Fe(III) oxides. 
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The electron transfer reaction between dissolved sulphide and ferric (hydr)oxides and the 

deeper insight into the processes occurring at the ferric (hydr)oxides surfaces were 

investigated in chapter 2 and 3. Batch experiments with dissolved sulphide and ferrihydrite, 

lepidocrocite, and goethite were performed under well-defined conditions at pH 7 and at room 

temperature in a glove box with a special emphasis on the characterization of nanocrystalline 

products by TEM, XRD, and Mössbauer spectroscopy forming at different time steps over a 

reaction time of 14 days. The iron species such as dissolved Fe(II), Fe(II) extractable with 

0.5 N HCl, and total iron were determined by wet chemistry extraction as well as the sulphur 

species dissolved S(-II) and S(0). The temporal evolution of the chemical species and the 

solid phases indicate that the reaction progress was highly dynamic. 

Chapter 2 comprised the results of the reductive dissolution of lepidocrocite by dissolved 

sulphide. The reaction could be divided into 3 phases with (i) fast consumption of dissolved 

sulphide, formation of mackinawite onto the lepidocrocite surface and S(0) (0-15 min), (ii) 

consumption of mackinawite due to the formation of magnetite and S(0) while acid 

extractable Fe(II) slightly increased (15-120 min). TEM measurements revealed the 

occurrence of a mackinawite rim covering the lepidocrocite crystals that was separated from 

the lepidocrocite surface by an interfacial magnetite layer. The magnetite layer can be seen as 

an intermediate stage linking the two reactions: The reaction between lepidocrocite and 

mackinawite and the diffusion of electrons in deeper regions of the lepidocrocite bulk crystal. 

In the third phase of reaction S(0) and acid extractable Fe(II) decreased due to pyrite 

formation accompanied with traces of magnetite (2-14 days). TEM measurements indicated 

that mackinawite was completely dissolved and the precipitation of pyrite occurred dislocated 

from the lepidocrocite surface. The absence of dissolved sulphide under these conditions 

suggest that excess Fe(II) is involved in the formation of polysulphides which are key 

precursors during pyrite formation. 

Chapter 3 includes the results of batch experiments with the same set-up and analysis with 

ferrihydrite and goethite as described in chapter 2. The objective was to investigate their 

transformation by Fe(II) and the formation of pyrite in sulphide-rich systems at pH 7 in regard 

to their reactivity kinetics, intermediate phases, and the final products. The similarities and 

differences between the ferric (hydr)oxides: ferrihydrite, lepidocrocite, and goethite were 

explored as well. Wet chemistry analysis showed the same tripartite reaction for all Fe(III) 

(hydr)oxides like in chapter 2. The mineral reactivity decreased in the order of ferrihydrite ~ 

lepidocrocite > goethite. Although the surface site concentration was different for ferrihydrite 

and lepidocrocite, both oxides showed similar reaction kinetics. Alternatively, lepidocrocite 
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and goethite had the same reaction pathway but different reaction kinetics. The FeS consisted 

of mackinawite for lepidocrocite and goethite, while only amorphous FeS was formed in the 

experimental solution of ferrihydrite. Ferrihydrite was completely reduced as identified by 

wet chemistry and Mössbauer spectroscopy, while the TEM measurements showed a well-

developed ferrihydrite structure. After 2 weeks of reaction ferrihydrite was transformed 

completely via a dissolution-precipitation process into the more stable minerals: magnetite, 

hematite, and pyrite. This process involved redox reactions, including the partial re-oxidation 

of Fe(II) and reduction of S(0). The host minerals remained in the experimental solutions with 

lepidocrocite and goethite, and only pyrite was detected as a new mineral. Small amounts of 

goethite were transformed to hematite while the pyrite formation in the experimental solution 

with lepidocrocite was accompanied by traces of magnetite. The differences in secondary 

mineralization for the observed ferric (hydr)oxides depend on the amount of excess-Fe(II). 

The production of excess-Fe(II) differed for each mineral and decreased in the sequence 

ferrihydrite > lepidocrocite > goethite. As the amount of excess-Fe(II) exceeded the 

concentration of surface sites in each experiment, the excess-Fe(II) had to be located into the 

bulk phase of each oxide.  

Summarized, the differences of excess-Fe(II) concentration depend on electron transfer 

properties and the ability of accommodation of Fe(II) within the bulk oxide of each mineral. 

Furthermore, the excess of Fe(II) stimulate the secondary mineralization and the pyrite 

formation. Whether the pyrite formation occurs via a reaction of FeS with dissolved Fe(II) or 

requires solid Fe(II) containing cluster is unclear.  

 

In chapter 4, the reaction kinetic of dissolved sulphide and ferric (hydr)oxides were studied 

under abiotic, anoxic, and flow-through conditions at pH 4 and 7 and at room temperature. 

Various synthetic Fe(III) (hydr)oxides with a broad range of crystallinity and different surface 

and bulk properties were used in order to assess how variations in these properties influence 

the kinetics of chemical Fe(III) (hydr)oxide reduction. The products in solution were analyzed 

periodically over approximately 6 hours. The mineral reactivity decreased in the order of 

ferrihydrite > lepidocrocite > goethite and can be described by a second rate law. The reaction 

between the ferric (hydr)oxides and dissolved sulphide were faster at pH 7 compared to that at 

pH 4. Furthermore, these experiments showed, as well as, the batch experiments, that the 

formation of Fe(II) and S(0) was decoupled. In the presence of ferrihydrite and lepidocrocite 

the generated Fe(II) due to the reaction with dissolved sulphide adsorbed to their surfaces and 

was accompanied by an electron transfer which led to the formation of excess-Fe(II). These 
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processes seem to be accelerating the reductive dissolution of ferrihydrite and lepidocrocite 

by dissolved sulphide. Goethite behaved differ: the adsorption of Fe(II) onto the goethite 

surface occurred without an electron transfer. These Fe(II) dynamics have a profound 

influence of the redox potential of the reaction suspension and in turn, affect the 

semiconducting properties of the Fe(III) solids. Thus, the generated Fe(II) controls the 

reductive dissolution of various ferric (hydr)oxides by dissolved sulphide. 
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Zusammenfassung 

 

Durch die Oxidation von gelöstem Fe(II), das durch Verwitterungsprozesse freigesetzt wird, 

sind Eisen(hydr)oxide in Böden und Sedimenten weit verbreitet. Sie besitzen unterschiedliche 

Eigenschaften bezogen auf Stabilität, Reaktivität und Oberflächen. Daher übernehmen sie 

eine wichtige Rolle bei Redoxreaktionen in vielen Umweltsystemen wie in Böden, marinen 

Sedimenten, Seen und Grundwasserleitern. Unter anoxischen Bedingungen werden 

Eisen(hydr)oxide mittels Sulfid oder Mikroorganismen reduziert und aufgelöst. Diese 

Reaktion generiert Fe(II), dass entweder als Eisenhydroxid gefällt wird, an der 

Eisen(hydr)oxid-Oberfläche adsorbiert und so das Eisen(hydr)oxid in stabilere 

Eisenmineralphasen transformiert oder Fe(II) reagiert mit Sulfid zu Eisensulfid. Aber auch die 

reverse Reaktion, die Oxidation von Eisensulfiden durch Bergbauaktivitäten oder durch 

natürliche Prozesse ist von großer Bedeutung, da sie zur Säureproduktion im Grund- und 

Oberflächenwasser beiträgt. Durch ihre hohe Oberfläche sind sie außerdem effiziente 

Adsorber für Schwermetalle wie Arsen, die durch die reduktive Auflösung der 

Eisen(hydr)oxide in Lösung gehen. Daher beeinflussen die Redoxreaktionen zwischen 

gelöstem Sulfid und Eisen(hydr)oxid nicht nur den Schwefel- und Eisen-Kreislauf, sondern 

auch den Kohlenstoff- und Elektronen-Fluss im Grundwasser, Boden und See. Die 

chemischen Reaktionspfade und die Kinetik dieser Reaktionen sind dabei einigermaßen 

verstanden, jedoch nicht die Elektronentransferprozesse, die maßgebenden 

Reaktionsbeeinflussenden Faktoren und die Bildung amorpher wie auch nano-kristalliner 

Phasen auf der Eisen(hydr)oxid-Oberfläche als Funktion der Zeit. Des Weiteren ist die 

Pyritbildung in Umweltsystemen, in denen Eisen, Schwefel oder FeS konstant oder periodisch 

abgereichert sind noch nicht vollständig verstanden. 

Deshalb konzentriert sich diese Arbeit auf die Kinetik verschiedener Eisen(hydr)oxide in 

Gegenwart von gelöstem Sulfid unter anoxischen und abiotischen Bedingungen. Die Edukte 

und Produkte sowohl fester als auch gelöster Phasen werden durch TEM, Mössbauer 

Spektroskopie, XRD und nasschemische Analytik charakterisiert. Zudem soll die Rolle des 

Fe
2+

 bezüglich der Bildung von Eisensulfid und der Transformation von Fe(III) Oxiden 

untersucht werden. 

 

Der Elektronentransfer zwischen gelöstem Sulfid und verschiedener Eisen(hydr)oxide und die 

Prozesse auf der Eisen(hydr)oxid-Oberfläche wurden in Kapitel 2 und 3 untersucht. Dazu 

wurden Batch-Experimente mit gelöstem Sulfid und Ferrihydrit, Lepidokrokit und Goethit 
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unter gut definierten Bedingungen bei pH 7 und Raumtemperatur in der Glovebox 

durchgeführt. Die Reaktionen wurden über einen Zeitraum von 14 Tagen untersucht. Der 

Schwerpunkt lag auf der Charakterisierung von nano-kristallinen Produkten, die sich zu 

unterschiedlichen Zeitpunkten auf der Oxidoberfläche gebildet haben. Die Charakterisierung 

erfolgte unter Anwendung von TEM, XRD und Mössbauer Spektroskopie. Auch wurden 

sowohl die Eisenspezies (gelöstes Fe(II), Säure-extrahierbares Fe(II), Fe gesamt) als auch die 

Schwefelspezies (gelöstes S(-II), S(0)) durch nasschemische Extraktionen bestimmt. Die 

zeitliche Entwicklung der chemischen Spezies und der festen Phasen zeigten, dass der 

Reaktionsverlauf sehr dynamisch war. 

Kapitel 2 beinhaltet die Ergebnisse der reduktiven Auflösung von Lepidokrokit durch gelöstes 

Sulfid. Die Reaktion konnte in 3 Phasen geteilt werden mit (i) schneller Verbrauch von 

gelöstem Sulfid, Bildung von Mackinawit auf der Lepidokrokitoberfläche und S(0) (0-

15 min), (ii) Verbrauch von Mackinawit durch die Bildung von Magnetit und S(0) während 

die Konzentration von HCl-extrahierbares Fe(II) nur schwach zunimmt (15-120 min). TEM 

Untersuchungen zeigten folgende räumliche Sequenz: Lepidokrokit, Magnetit, Mackinawit. 

Magnetit ist hier ein steady-state Produkt zweier Entgegengesetzter Reaktionen; zum einen 

die Reaktion zwischen der Lepidokrokitoberfläche und des Mackinawits und zum anderen die 

„Diffusion von Fe
2+

“ (Elektronen) in tiefere Bereiche des Bulk-Kristalls. In der dritten Phase 

wird S(0) und HCl-extrahierbaren Fe(II) durch die Pyrit- und Magnetitbildung wieder 

verbraucht (2-14 Tage). TEM Analysen zeigten, dass Mackinawit vollständig in Fe und S 

gelöst wurde und sich Pyrit in Abwesenheit von gelöstem Sulfid gebildet hat. Vermutlich hat 

sich der Pyrit durch die Reaktion mit Polysulfiden und dem überschüssigem Fe(II) gebildet. 

Die TEM Untersuchungen zeigten außerdem, dass die Pyritbildung von der 

Mackinawitbildung kinetisch entkoppelt ist. Der Magnetit in der letzten Phase ist ein 

Beiprodukt der Pyritbildung. 

Aufgrund der vorangegangenen Ergebnisse wurden in Kapitel 3 die Eisen(hydr)oxide 

Ferrihydrit und Goethit unter Verwendung des gleichen Set-ups und Analyse wie in Kapitel 2 

beschrieben untersucht. Dabei lag der Schwerpunkt auf Ähnlichkeiten und Unterschiede 

bezogen auf die Reaktionsraten, der Zwischenprodukte und der Endprodukte von Ferrihydrit, 

Goehtit und Lepidokrokit. Die nasschemische Analyse zeigte ebenfalls eine dreigeteilte 

Reaktion für alle Fe(III) (hydr)Oxide wie in Kapitel 2 beschrieben. Die Mineralreaktivität 

verringerte sich in der Reihenfolge Ferrihydrit ~ Lepidokrokit > Goethit. Obwohl die 

Oberflächenkonzentration von Ferrihydrit und Lepidokrokit unterschiedlich war, zeigten sie 

beide eine ähnliche Reaktionskinetik während der Reaktionsweg unterschiedlich war. 
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Lepidokrokit und Goethit haben einen ähnlichen Reaktionsweg, aber eine unterschiedliche 

Reaktionskinetik. Bei Lepidokrokit und Goethit bestand FeS aus Mackinawit während sich 

bei Ferrihydrit nur amorphes FeS gebildet hat. Ferrihydrit wurde komplett reduziert 

(nasschemische Analytik und Mössbauer Spektroskopie) während TEM Analysen noch eine 

gut ausgebildete Ferrihydritstruktur zeigte. Nach 2 Wochen Reaktion ist Ferrihydrit komplett 

durch Lösungs- und Fällungsprozesse durch die stabileren Minerale Magnetit, Hämatit und 

Pyrit ersetzt worden. Die damit verbundenen Redoxreaktionen beinhalten die teilweise Re-

Oxidation von Fe(II) und die Reduktion von S(0). Für Lepidokrokit und Goethit ist das 

Startmineral erhalten geblieben und nur Pyrit konnte als neues Mineral entdeckt werden. 

Kleine Bereiche von Goethit wurden in Hämatit transformiert während bei Lepidokrokit 

zwischen den Pyritkristallen auch Magnetit gefunden wurde. Die Mineralneubildung wird von 

der Fe(II) Bildung beeinflusst. Alle drei untersuchten Fe(III) (hydr)Oxide zeigten die Bildung 

von überschüssigem Fe(II), die in folgender Reihenfolge abnahm Ferrihydrit > Lepidokrokit > 

Goethit. Da die Konzentration von überschüssigem Fe(II) in jedem Experiment größer war als 

die Konzentration der Oberflächenplätze, muss das Fe(II) in die Bulk-Struktur des jeweiligen 

Fe(III) Oxids eingebaut worden sein. 

Die überschüssige Fe(II) Bildung ist dabei abhängig von der Mineralogie der jeweiligen 

Eisenoxidphase, genauer gesagt von den Elektronentransfereigenschaften und der Fähigkeit 

Fe(II) in die Bulk-Phase des Oxids einzubauen. Diese Unterschiede in der Fe(II) 

Konzentration, wie auch die Reaktivität der einzelnen Eisenoxidphasen können die 

Unterschiede in der Mineralneubildung erklären. Außerdem scheint es, dass die überschüssige 

Fe(II) Bildung die Pyritbildung stimuliert.  

 

Im vierten Kapitel wurde die Kinetik von gelöstem Sulfid mit Eisen(hydr)oxiden im 

Durchfluss unter anoxischen und abiotischen Bedingungen bei pH 4 und 7 und bei 

Raumtemperatur untersucht. Um die Faktoren, die die Kinetik beeinflussen aufzudecken, 

wurden verschiedene Fe(III) (hydr)Oxide unterschiedlicher Kristallinität und (Oberflächen-) 

Eigenschaften verwendet. Die Eisen- und Schwefel-Spezies in der Reaktionslösung wurden 

periodisch über 6 Stunden gemessen. Bei pH 7 verlief die Reduktion der Fe(III) Minerale 

schneller als bei pH 4 und die Mineralreaktivität nimmt in folgender Reihenfolge ab: 

Ferrihydrit > Goethit > Lepidokrokit. Die Durchflussexperimente zeigten ebenfalls, dass die 

Bildung von Fe(II) und S(0) voneinander entkoppelt war. In Gegenwart von Ferrihydrit und 

Lepidokrokit adsorbiert das durch die Reaktion mit gelöstem Sulfid gebildete Fe(II) an dessen 

Oberfläche. Durch die Interaktion von Fe(II) mit dem strukturellen Fe(III) wurde 
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überschüssiges Fe(II) gebildet. Dieser Prozess scheint die reduktive Auflösung von 

Ferrihydrit und Lepidokrokit durch Sulfid zu beschleunigen. Goethit verhielt sich anders; das 

adsorbierte Fe(II) auf der Goethitoberfläche reagierte nicht mit der Fe(III) Phase. Diese Fe(II) 

Dynamik beeinflusst das Redoxpotential der Reaktionssuspension und damit auch die 

halbleitenden Eigenschaften der Fe(III) Phasen. Die reduktive Auflösung der verschiedenen 

Eisen(hydr)oxide in Gegenwart von Sulfid wird maßgeblich von dem gebildeten Fe(II) 

kontrolliert.  
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1. General Introduction 

1.1. Ferric (hydr)oxides 

 

Ferric (hydr)oxides are ubiquitous and important components of rocks and soils with different 

characteristics such as stability, reactivity and surface properties (Cornell and Schwertmann, 

1996). Such variations in mineral properties result in a continuum of reactivity. The most 

widespread ferric (hydr)oxides are goethite, lepidocrocite, ferrihydrite, and green rust while 

the dominant iron oxides are hematite and the mixed-valence iron mineral magnetite. Ferric 

(hydr)oxides play an important role in abiotic and biotic reactions such as precipitation, 

sorption in soils, and redox reactions. They are important terminal electron acceptors for the 

oxidation of organic matter in aquifers (Jacobsen and Postma, 1999), soils and marine 

sediments (Canfield et al., 1992; Yao and Millero, 1996). Due to their high surface area, iron 

oxides are able to scavenge reactive species by adsorption and release them again to the 

overlying water if the ferric (hydr)oxides are dissolved by reductive processes. The 

dissolution of ferric (hydr)oxides is a surface controlled reaction (Stumm and Sulzberger, 

1992) and may be enhanced or inhibited by substances adsorbed to the surface (Biber et al., 

1994). Hence, the fate of heavy metals (arsenic), organics, and ligands are strongly associated 

with a lot of iron (Pedersen et al., 2005). This is one hypothesis for the serious problems with 

arsenic contaminated ground waters in many areas of the world. Thus, the development of a 

reduced zone may have significant consequences for the mobility of toxic organic and 

inorganic chemicals. 

 

In sedimentary environments under anoxic and reducing conditions, ferric (hydr)oxides often 

may be reduced by microorganisms using organic matter as substrate (Hansel et al., 2004; 

Lovley et al., 1991; Thamdrup, 2000). Although, in marine environments the most important 

electron donor for the iron reduction is dissolved sulphide (Canfield et al., 1992; Yao and 

Millero, 1996). Both reactions, the reduction of ferric (hydr)oxides by microorganisms and by 

dissolved sulphide generate Fe(II) may precipitate as iron hydroxide, adsorb to the ferric 

(hydr)oxide surfaces and transform the oxide into more stable minerals, or precipitate as iron 

sulfide depending on pH (Hansel et al., 2005; Poulton, 2003). 

 

The generation of ferrous iron in anoxic groundwater, their transport through the 

groundwater-surface water interface, and subsequent iron oxidation and precipitation 
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contribute to the acidification of lakes or sediments as a result of mining activities (i.e. acid-

mine drainage) or as a natural process (i.e. acid-sulfate soils) (Blodau, 2006; Burton et al., 

2008; Peine et al., 2000). Such environments are characterized by high amounts of ferric iron 

and sulphate and due to the low pH by low primary production (Peine et al., 2000). The 

oxidation of pyrite takes place when the mineral is exposed to water and air (eq. 1). 

 

FeS2 + 3.5 O2 + H2O → Fe
2+

 + 2 2

4SO + 2 H
+
     (1) 

 

The process of pyrite oxidation is complex and involves both chemical and biological 

mechanisms, while chemical oxidation is fairly slow (Blodau, 2006) and can decrease lake 

water pH to values as low as pH 2 (Geller et al., 1998). 

The ferrous iron from the pyrite oxidation may be subsequently oxidized and precipitated as 

ferric (hydr)oxides (eq. 2 and 3). 

 

  Fe
2+

 + 0.25 O2 + H
+
 → Fe

3+
 + 0.5 H2O      (2) 

  Fe
3+

 + 3 H2O ↔ Fe(OH)3 + 3 H
+
       (3) 

 

During the Fe(II) oxidation and their precipitation as ferric (hydr)oxide, protons are released 

to solution, which leads to acidification of the sediments (eq. 1-3) (Peine et al., 2000). By 

contrast, during the microbial sulphate reduction (eq. 4) and the further reduction of ferric 

(hydr)oxides by sulphide (eq. 5) or by microorganisms (eq. 6), protons are consumed. Due to 

these transformations and precipitations, the alkalinity and pH of the groundwater changed 

(eq. 1-6). 

 

2

4SO + 2 <CH2O> + 2 H
+
 → H2S + 2 CO2 + 2 H2O    (4) 

FeOOH + H2S + 4 H
+
 → Fe

2+
 + S° + 4 H2O     (5) 

4 FeOOH + <CH2O> + 8 H
+
 → 4 Fe

2+
 + CO2 + 7 H2O   (6) 

 

The strong dependence of the reaction rates of surface-bound S(-II) and/or Fe(II) on the 

chemical composition of iron-containing minerals indicates that natural abiotic transformation 

reactions involving such species in the field may vary strongly with (bio)geochemical 

conditions (Elsner et al., 2004). Therefore, ferric (hydr)oxides have a profound influence on 

the water chemistry and it is important to elucidate all feasible pathways for ferric 

(hydr)oxides in natural environments, as well as, their influencing factors. 
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1.2. Surface complexation model 

 

Many of previous investigations have been focused on the reaction of ferric (hydr)oxides and 

demonstrated that the reactivity of ferric (hydr)oxides are controlled by sulphide 

concentration and oxide surface area (Dos Santos Afonso and Stumm, 1992; Peiffer et al., 

1992; Poulton et al., 2004). This reaction can be described by the following reaction sequence 

(Dos Santos Afonso and Stumm, 1992): 

 

(i) Surface complex formation: 

 

  >Fe
III

OH + HS
-
 

1

1

k

k 

>Fe
III

S
-
 + H2O       (7) 

 

(ii) Electron transfer: 

 

  >Fe
III

S
-
 

et

et

k

k

  >Fe
II
S        (8) 

 

(iii) Release of the oxidized product: 

 

  >Fe
II
S + H2O 

2

2

k

k 

  >Fe
II
OH 

2  + S
•-
      (9) 

 

(iiii) Detachment of Fe(II): 

 

  >Fe
II
OH 

2   3k
 new surface site + Fe

2+
      (10) 

 

The adsorption of dissolved sulphide to the iron oxide surface occurs rapidly due to the 

formation of inner-sphere complexes >FeS
-
 and >FeSH with the iron oxide surfaces (eq. 7) 

(Luther, 1990). The electrons are transferred at the iron oxide surface between the initially 

formed inner-sphere complexes and the bulk Fe(III) (eq. 8) (Dos Santos Afonso and Stumm, 

1992). The oxidized S
•-
 is then released to solution to reduce an additional Fe(III) ion and 

form a higher oxidation state sulphur species such as S(0) (eq. 9). Subsequently the newly 

formed Fe
2+

 at the oxide surface is released to solution (eq. 10). The limiting step is the 
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detachment of Fe(II) from the oxide surface, which is necessary to further oxidation of 

dissolved sulphide.  

But during the reductive dissolution of ferric (hydr)oxides by sulphide at pH 7 a large 

proportion of reductive iron remains at the ferric (hydr)oxides surfaces or is bound to the solid 

phase due to the formation of FeS and mixed-valence iron oxides (Handler et al., 2009; Jeon 

et al., 2003; Poulton et al., 2004). 

 

1.3. The reaction of ferric (hydr)oxides with H2S 

 

 

Fig. 1.1. The major pathways for the reaction of ferric (hydr)oxides with dissolved sulphide. 

 

The interaction of H2S with reactive iron plays a prominent role in natural environments such 

as marine sediments, freshwater sediments, lakes, soils, and aquifers (Fig. 1.1) (Canfield et 

al., 1992; Jacobsen and Postma, 1999; Yao and Millero, 1996). During the microbiological 

oxidation of organic matter, dissolved sulphate may reduce to H2S in the absence of oxygen 

(Canfield et al., 1992). H2S may react further with reactive sedimentary iron and can be 

oxidized to different sulphur species such as: elemental sulphur, polysulphides, thiosulphate, 

or sulphate depending on pH (Pyzik and Sommer, 1981). The reduction of ferric (hydr)oxides 

generates Fe
2+

 in which the nature of the species depends on pH. At circumneutral pH, Fe
2+

 is 

either bound to the solid phase FeS, which may be further converted to FeS2 by sulphur 

species such as S(0) or polysulphides (Rickard, 1974; Rickard, 1975; Rickard and Morse, 

2005) or Fe
2+

 is associated to the ferric (hydr)oxides surface which may lead to their 
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transformation into more stable Fe(III) oxides (Hansel et al., 2005; Liu et al., 2008; Pedersen 

et al., 2005). The formation of FeS or FeS2 trap dissolved sulphide and prevent its further 

oxidation by Fe(III). Thus, the formed Fe(II) and its further reaction to iron sulfides or/and its 

interaction with the oxide surface have a profound influence on the reaction of ferric 

(hydr)oxides and dissolved sulphide at circumneutral pH. At acidic pH, the ferric 

(hydr)oxides surface area is charged positive and only negative charged species can be 

sorbed.  

Several studies in the past years have been focused on the mechanism and kinetics of the 

reductive dissolution of ferric (hydr)oxides (Larsen and Postma, 2001; Peiffer et al., 1992; 

Peiffer and Gade, 2007; Postma, 1993; Poulton et al., 2004; Pyzik and Sommer, 1981; 

Rickard, 1974; Roden, 2003). The reaction mechanism based on the formation of surface 

complexes (see 1.2.) depending on pH (Dos Santos Afonso and Stumm, 1992) while the 

reaction rates of ferric (hydr)oxides are influenced by the concentration of dissolved sulphide 

and solid Fe(III) as well (Dos Santos Afonso and Stumm, 1992; Peiffer et al., 1992; Poulton, 

2003; Poulton et al., 2004; Pyzik and Sommer, 1981). Other investigators suggested that not 

solely the surface properties of the ferric (hydr)oxides control their reductive dissolution by 

dissolved sulphide, but rather depends on crystal properties (Larsen and Postma, 2001; 

Postma, 1993; Poulton et al., 2004). Ferric (hydr)oxides with a lower degree of crystal order 

such as ferrihydrite and lepidocrocite, are more reactive toward dissolved sulphide than more 

ordered minerals like magnetite, goethite and hematite proposed by Poulton et al. (2004). This 

assumption implies that the reactivity of the various ferric (hydr)oxides depends on the 

mineral type. 

 

In nature, the reactivity of ferric (hydr)oxides may be effected by impurities substituted within 

the mineral structure (Poulton et al., 2004). Poulton et al. (2004) demonstrated that the 

reactivity for an Al-substituted lepidocrocite decreases with increasing substitution. And also 

in the presence of sulphate, the reductive dissolution of ferric (hydr)oxides is inhibited and the 

reaction rates are lower than in the absence of sulphate (Peiffer and Gade, 2007). So, a 

significant decrease of the reaction rates under acid mine drainage conditions due to the high 

sulphate concentrations is expected. Furthermore, the comparison of ferric (hydr)oxides 

reduction rates in nature and the laboratory shows that for natural samples the rate decrease 

faster than for synthetic ferrihydrite due to the much greater heterogeneity of the ferric 

(hydr)oxides in natural sediments (Postma, 1993). Comparison of chemical and biotic 

reduction of ferric (hydr)oxides showed that the abiotic reduction is apparently strongly 
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influenced by morphologic characteristic while the biotic reduction dependence on the surface 

area of each mineral regardless of the degree of crystal order (Roden, 2003). 

 

There are many variables which influenced the interaction of ferric (hydr)oxides with 

dissolved sulphide such as surface properties, dissolved sulphide concentration, crystal 

properties, adsorbed ions, pH etc. The exact dependence of Fe(III) reduction kinetics on 

mineral properties including the dynamics of Fe
2+

 and its various species is still discussed in 

literature. Furthermore, it appears that our understanding of the reaction steps following the 

electron transfer reaction between sulphide and ferric (hydr)oxides is still incomplete and 

requires a deeper insight into the processes occurring at the ferric (hydr)oxide surfaces itself. 

 

1.4. Formation of pyrite 

 

The direct homogenous nucleation of pyrite from solution may play only a minor role in low-

temperature iron disulfide formation (e.g., salt marshes, epithermal ore deposits) (Schoonen 

and Banes, 1991a). Hence, here only the pathways of pyrite formation via a FeS precursor are 

listed. 

Iron(II) monosulfides are formed during the reaction of ferrous iron and sulphide in which 

FeSH
+
 and Fe(SH)2 act as kinetic intermediates (Rickard et al., 1995). Rickard et al. (1995) 

proposed the bisulfide pathway for the formation of iron(II) monosulfides for neutral and 

alkaline mediums and when the sulphide concentration is higher than 10
-3

 M. This pathway 

includes the formation of FeSH
+
 complexes and solid Fe(SH)2 and follows the equations: 

 

  Fe
2+

 + 2 HS
-
 → Fe(HS)2       (11) 

  Fe(SH)2 → FeS + H2S       (12) 

 

The iron(II) monosulphides may further react with sulphur species to pyrite. This conversion 

is promoted by the oxidation of FeS or of the reduced aqueous sulphur species (Benning L. G. 

et al., 2000). There are generally three pathways of pyrite formation discussed in the 

literature, which are (Schoonen, 2004): 

 

2 FeS(s) + 2H
+
 → FeS2(s) + Fe

2+
 + H2(g)     (13) 

FeS(s) + H2S(aq) → FeS2 + H2       (14) 

  FeS(s) + S(0)(s) → FeS2       (15) 
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All three pathways are dissolution-reprecipitation reactions. The conversion of FeS to FeS2 

can takes place via iron loss (eq. 13), via H2S (eq. 14), and via S(0) (eq. 15). Usually, 

intermediate sulphur species are necessary for the oxidation of mackinawite but they are not 

always present in natural environments (Furukawa and Barnes, 1995). Thus, in the absence of 

sulphur species the reaction may proceed by iron loss (eq. 13). The conversion of FeS to FeS2 

via Fe
2+

 loss proceeds at an insignificant rate for temperatures below 100°C (Schoonen and 

Barnes, 1991b). 

Benning et al. (2000) conducted experiments below 100°C in reducing sulphide solutions and 

showed that mackinawite was stable as long as no reactant other than H2S is provided and 

suggested that the transformation of iron(II) monosulphide to iron(II) disulphide requires an 

oxidant other than H2S or HS
-
. Their ageing experiments revealed that pyrite formed at very 

slow rates in the presence of H2S or HS
-
 (eq. 14).  

Rickard et al. (1995) proposed the polysulphide pathway for the formation of pyrite which 

involved the dissolution of FeS, followed by the reaction of Fe(II) and sulphur species 

resulting in pyrite as the final product. Other investigators prefer the formation of pyrite by 

S(0) which includes the dissolution of FeS as well (eq. 15) (Wang and Morse, 1995). Though, 

Schoonen et al. (2004) suggested, that elemental sulphur (eq. 15) is not the true reactant in 

this process. The hydrolysis of the sulphur or reactions of S° with H2S creates polysulphide 

species, which are more likely to be reactants (Luther, 1991; Schoonen and Barnes, 1991b). 

Schoonen and Barnes (1991b) proposed that the formation of FeS2 proceeds only at a 

significant rate if intermediate sulphur species like polysulphides are present. Wilkin and 

Barnes (1996) identified, that only polysulfide species or colloidal elemental sulphur solutions 

generated pyrite. The polysulfide pathway is the most prominent pathway which is discussed 

in the literature (Luther, 1991; Rickard et al., 1995; Wilkin and Barnes, 1996).  

The conversion of FeS to FeS2 via polysulphides can be described by the following reaction 

sequence where [FeS-Sn]
2- 

is a reaction intermediate (Luther, 1991; Rickard and Morse, 

2005): 

 

FeS(aq) + 2

nS  → [FeS-Sn]
2-

       (16) 

[FeS-Sn]
2-

 → FeS2 + 



2

1nS        (17) 

S(0) + 



2

1nS  → 2

nS         (18) 

 

which yields in total  
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FeS(s) + S(0)(s) → FeS2       (19) 

 

Previous studies showed that FeS clusters (FeS(aq)) are a key component in the pyrite 

formation (Rickard and Morse, 2005) and that the pyrite formation is inhibited if the 

formation of FeS(aq) is suppressed (Rickard et al., 2001).  

FeS(aq) which were formed by the dissolution of mackinawite (FeSm), followed by further 

oxidation to FeS2 (Luther, 1991; Rickard, 2006; Rickard et al., 2001):  

 

FeSm → FeS(aq)         (20) 

 

FeS(aq) structure is similar to that of mackinawite while their stoichiometry range from Fe2S2 

to Fe150S150 (Rickard and Morse, 2005). Their formation from FeSm is pH dependent and the 

FeS(aq) is not protonated (Rickard, 2006). Rickard and Morse (2005) pointed out that a 

solution consists only of FeS(aq) is clear, not black. Furthermore, iron and sulphur are 

transported via FeS(aq) to the site of pyrite formation (Rickard and Morse, 2005). 

Schoonen and Barnes (1991a) indicated that pyrite may be grown directly from solution when 

the solution is supersaturated with respect to pyrite due to the dissolution of mackinawite 

(FeS). Hence, mackinawite is not a direct precursor to pyrite, but pyrite is formed from 

dissolved phases which may be sourced in mackinawite (Rickard and Morse, 2005).  

 

But in many natural environments (e.g. tidal inundation of coastal plains, movement of the 

capillary fringe in ground waters) pyrite formation occurs even in the absence of dissolved 

sulphide. The pyrite formation mechanisms in these environments are still unknown. 

 

1.5. Objectives of the dissertation 

 

The interaction of dissolved sulphide and ferric (hydr)oxides occurs in groundwater systems, 

soils, and lakes and may exert a major role for the sulphur and iron cycle and in particular for 

the carbon and electron flow. The extent of the reaction depends on mineral reactivity and is 

controlled by the formation of surface complexes. To elucidate these processes, it is of 

importance to understand the reactions occurring at the mineral-sulphide interfaces. The 

overall goal of this project is to established a generalized kinetic model for the abiotic 

anaerobic H2S oxidation by ferric (hydr)oxides in the pH range of 4 to 7. The specific 
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objectives here are (i) determination of the reaction rate coefficients of various iron 

(hydr)oxides toward dissolved sulphide with regard to different pH’s, (ii) identify the 

processes occurring at the ferric (hydr)oxide surfaces itself by chemical analysis, 

spectroscopy and microscopy measurements, (iii) elucidate the role of Fe
2+

 during the 

reaction, and (iv) improve our understanding of the pathway of pyrite formation.  

 

The reaction progress of the reductive dissolution of ferric (hydr)oxides towards dissolved 

sulphide is highly dynamic. Hence, the temporal development of chemical species (Study 1, 

2, and 3) is observed while the formation of several phases is determined by microscopic and 

spectroscopic measurements (Study 1 and 2). Different abiotic and anoxic experiments are 

conducted under well-defined conditions in the laboratory, always with an excess of ferric 

(hydr)oxides regarding dissolved sulphide. The following ferric (hydr)oxides ferrihydrite, 

lepidocrocite and goethite were prepared after Schwertmann and Cornell (2000) for each 

experiment. Adjacent to the synthesized minerals, also the commercial Fe(III) oxides 

lepidocrocite (Bayferrox 943) and goethite (Bayferrox 920 Z) purchased by Lanxess Germany 

GmbH, Leverkusen were used. The properties of these synthesized and commercial ferric 

(hydr)oxides were characterized by several techniques such as BET (Brunner, Emmett, Teller) 

gas adsorption with N2, X-ray diffraction (XRD), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), titration experiments (point of zero charge), and 

total organic carbon (TOC) measurements (Buchholz, 2009).  

 

Chapter 2 and 3 (Study 1 and 2). A valuable insight into the product formation may help to 

balance electron flow and explain the reactivity patterns from the flow-through experiments 

(study 3). Therefore the reaction between ferric (hydr)oxides and dissolved sulphide is studied 

in batch experiments at pH 7 in a glove box by a combination of chemical, microscopic, and 

spectroscopic analysis. TEM, XRD, Mössbauer spectroscopy, and wet chemistry extraction 

are used to explore the nanocrystalline phases and reactive sites at different time steps at the 

ferric (hydr)oxide surfaces. Iron(II) monosulphides and iron(II) disulphides are formed during 

the reductive dissolution of ferric (hydr)oxides by dissolved sulphide. But due to the 

interactions of Fe
2+

 with the Fe(III) oxide surfaces, the ferric (hydr)oxides are transformed 

into higher crystalline Fe(III) oxides as well. These reactions are coexistent and interact with 

each other. The similarities and differences between the various ferric (hydr)oxides are 

explored as well. Contrary to previous work (Dos Santos Afonso and Stumm, 1992; Peiffer et 

al., 1992; Poulton et al., 2004) which studied only the initial (<5h) phases of the reaction, we 
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have extended the reaction time to 14 days to deepen our understanding into the dynamics of 

Fe
2+

 and its various species. 

 

Chapter 4 (Study 3). Fluidized bed reactor experiments are conducted to investigated the 

initial rates of the interaction between dissolved sulphide and ferric (hydr)oxides under flow-

through conditions. The overall aim is to get a dataset to obtain a generalized surface 

speciation model for the reaction of H2S with ferric (hydr)oxides. The experiments are 

prepared at pH 4 and 7 at room temperature with an excess of ferric (hydr)oxides in regard to 

dissolved sulphide. Various synthetic Fe(III) (hydr)oxides with a broad range of crystallinity 

and different properties are used in order to assess how variations in these properties would be 

expected to influence the kinetics of chemical Fe(III) oxides reduction. Therefore the products 

in solution are determined periodically. 

The experimental oxidation rate of H2S normalized to the surface area and with respect to the 

initial dissolved sulphide concentration follows a second order rate law and can be derived as 

 

Robs = 
dt

)SH(dc 2  = kobs c(H2S) A      (21) 

 

where Robs is the observed oxidation rate of H2S (mol L
-1

 min
-1

), kobs is the rate constant of the 

oxidation of H2S (L m
-2

 min
-1

), c(H2S) is the initial concentration of dissolved sulphide 

(mol L
-1

), and A the surface area concentration of ferric (hydr)oxide added (m
2
 L

-1
). 
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2.1. Abstract 

 

The interaction between S(-II) and ferric oxides exerts a major control for the sulphur and iron 

cycle and in particular for the carbon and electron flow in many aquatic systems. It is 

regarded to be a key reaction leading ultimately to pyrite formation, the pathways still 

remaining unresolved. We have studied the reaction between lepidocrocite (γ-FeOOH, 21-

42 mmol L
-1

) and dissolved S(-II) (3-9 mmol L
-1

) in batch experiments at pH 7 in a glove box 

using TEM, XRD, Mössbauer spectroscopy, and wet chemistry extraction to explore the 

nanocrystalline products forming at different time steps in close contact to the lepidocrocite 

surface. S(0) and acid extractable Fe(II) (Fe(II)HCl) were the main products detected by wet 

chemistry extraction. The reaction could be divided into three steps: a rapid (< 15 min) 

consumption of dissolved S(-II), formation of S(0) and the build-up of an Fe(II)HCl pool. Then 

in the absence of dissolved S(-II) concentrations of S(0) and Fe(II)HCl increased only slightly. 

TEM measurements revealed the occurrence of a mackinawite rim covering the lepidocrocite 

crystals and being separated from the lepidocrocite surface by an interfacial magnetite layer 

that can be regarded as a steady state product of the interaction between lepidocrocite and 

mackinawite. A significant fraction of Fe(II) was formed in excess to FeS within the first two 

hours. The amount of this fraction increased with decreasing ratio between dissolved S(-II) 

concentration and the concentration of surface sites, which we attributed to a kinetic 

decoupling of S(-II) oxidation and Fe(II) detachment from the lepidocrocite surface. At low 

ratios, S(-II) seems to transfer electrons to lepidocrocite faster then stoichiometric amounts of 

FeS could. After 2 days Fe(II)HCl and S(0) started to decrease resulting in pyrite formation 

accompanied by traces of magnetite. TEM measurements indicated that mackinawite 

completely dissolved and precipitation of pyrite occurred dislocated from the lepidocrocite 

surface. The absence of dissolved sulphide under these conditions suggest that excess Fe(II) is 

involved in the formation of polysulphides which are key precursors during pyrite formation. 

We propose that the occurrence of excess Fe(II) is a common phenomenon particularly in low 

sulphide – high iron environments attributing significant reactivity to ferric (hydr)oxides. 

 

 

Keywords: ferric (hydr)oxides reductive dissolution, dissolved S(-II), ferrous iron, 

lepidocrocite, pyrite formation, magnetite, electron transfer 
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2.2. Introduction 

 

The interaction between H2S and iron (hydr)oxides plays a prominent role in many 

environments like marine sediments, lakes, soils or aquifers. In the absence of oxygen, 

dissolved sulphate can be reduced to H2S during the biological oxidation of organic matter 

and react further with sedimentary iron (Canfield et al., 1992) to generate S(0) and FeS 

(Peiffer, 1994; Poulton et al., 2004; Rickard, 1974; Rickard, 1975). FeS and S(0) are regarded 

to be the most important reactants in the formation of pyrite (Rickard and Morse, 2005; 

Schoonen, 2004; Wang and Morse, 1995; Wilkin and Barnes, 1996).  

It has been recognised that the formation of FeS and FeS2 is kinetically decoupled (Rickard, 

1975). FeS formation can be directly linked to the sulfidation of ferric (hydr)oxides (Poulton, 

2003; Poulton et al., 2004; Pyzik and Sommer, 1981; Rickard, 1975). This reaction is 

regarded to be controlled by the formation of a reactive surface complex (Dos Santos Afonso 

and Stumm, 1992; Peiffer et al., 1992) and shows a strong pH dependency which was 

attributed to surface speciation of sorbed S(-II) atoms (Peiffer et al., 1992; Yao and Millero, 

1996). The rate of the sulfidation of lepidocrocite has a maximum value at near-neutral pH 

(Peiffer et al., 1992). In contrast, pyrite formation is regarded to be preceded by the 

dissolution of FeS and kinetically controlled by the degree of supersaturation and the 

occurrence of reactive sulphide species (Luther, 1991; Rickard, 2006; Rickard et al., 2001; 

Rickard and Morse, 2005; Schoonen and Barnes, 1991b). 

Aside from the formation of iron sulphides, Poulton et al. (2003, 2004) found that a large 

fraction of ferrous iron could be attributed neither to FeS nor to any other sulphide phase. 

These authors described this Fe(II) as being bound to the surface and extractable with HCl but 

not exchangeable with CaCl2. The nature, identity and morphology of this species is still 

unclear. Other researchers who performed Fe(II) adsorption experiments were not able to 

completely retrieve surface associated Fe(II) through wet chemical extraction and interpret 

this effect by incorporation of Fe
2+

 into the bulk phase (Larese-Casanova and Scherer, 2007; 

Rosso et al., 2010; Silvester et al., 2005; Williams and Scherer, 2004). At excess Fe(II) 

concentrations transformation of the ferric iron (hydr)oxide sorbent (e.g. lepidocrocite or 

ferrihydrite) to magnetite occurs (Hansel et al., 2005; Tamaura et al., 1983). 

It appears that our understanding of the reaction steps following the electron transfer reaction 

between sulphide and ferric (hydr)oxides is still incomplete and requires a deeper insight into 

the processes occurring at the iron (hydr)oxides` surfaces itself. In this study we have studied 

the reaction between sulphide and lepidocrocite at circumneutral pH and followed the reaction 



Chapter 2 

18 

progress using wet chemical extraction techniques. These analyses were supported by X-ray 

diffraction, Mössbauer spectroscopy and transmission electron microscopy to identify the 

products. Contrary to previous work (Dos Santos Afonso and Stumm, 1992; Peiffer et al., 

1992; Poulton et al., 2004) which studied only the initial (<5h) rates, we have extended the 

reaction time to 14 days to deepen our understanding into the dynamics of Fe
2+

 and its various 

species.  

2.3. Materials and methods 

 

All solutions were prepared with distilled water and bubbled with N2 to remove oxygen. All 

reagents were of analytical grade. 

2.3.1. Lepidocrocite 

 

Synthetic lepidocrocite Bayferrox 943 was purchased from Lanxess (Leverkusen, Germany). 

To remove ions like sulphate from the surface, an aliquot of 1 mol L
-1

 was suspended in 

0.01 mol L
-1

 NaNO3 and the pH was adjusted to 10 with NaOH. After 4 days of shaking the 

lepidocrocite suspension was washed by centrifuging, decanting, and resuspending in 

deoinized water and centrifuging again. After reaching a conduction value of <20 µS cm
-1

 the 

lepidocrocite was freeze-dried. 

The synthetic lepidocrocite was characterized using X-ray diffractometry (XRD), scanning 

electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM 

measurements showed pure lepidocrocite with a minor goethite impurity. The particle size 

ranges between 0.2-0.4 µm. Multi-point BET (Brunauer, Emmett and Teller) gas adsorption 

with N2 (Gemini 2375 Surface Area Analyzer) yielded a surface area of 17.34 m
2
 g

-1
. 

2.3.2. Experimental Set-up 

 

Kinetic batch experiments with excess lepidocrocite and dissolved sulphide were conducted at 

pH 7, at a constant ionic strength (I = 0.1 M NaCl), and at room temperature. All reactions 

took place in a 500-ml closed glass vessel installed in an anoxic glove box and containing 

ports for sampling and removals, pH electrode and HCl addition within. The suspensions 

were gently stirred with a Teflon-coated stirring bar at a constant rate. The pH value was kept 

constant by adding deoxygenated HCl (0.5 mol L
-1

) with an automated pH-stat device. HCl 

addition stopped automatically by the system itself when the pH dropped below 7 towards the 

end of the experiments. 
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The reaction solution was prepared by mixing 50 mL of solution I (0.1 mol L
-1

 NaCl) 

containing between 1.3 and 2.5 g L
-1

 lepidocrocite with 450 ml of solution II (0.1 mol L
-1

 

NaCl) to which aliquots of Na2S*9H2O (0.5 mol L
-1

) and HCl (0.5 mol L
-1

) were added to 

establish a pH of 7. The initial solution conditions and the consumption of acid are shown in 

table 1. The sulphide concentration was determined before each run. The following species 

were determined during the reaction and after 1-2 hours, 24 hours, 1 week and 2 weeks: 

dissolved Fe(II) and S(-II), Fe(II) extractable with 0.5 N HCl, S(0), and total iron. 

Furthermore samples were analyzed by XRD, Mössbauer spectroscopy and TEM to trace 

changes in the solid phase assemblage over a period of 2 weeks.  

2.3.3. Sampling and analysis 

 

Iron species. Dissolved Fe(II) (Fe(II)diss) was determined after filtration (0.45 µm) using the 

phenanthroline method Tamura (1974). Total extractable iron was determined after 

dissolution in 6 N HCl and heating at 60°C for 3 days. HCl extractable solid phase bound 

Fe(II) (Fe(II)HCl) was extracted with 0.5 N HCl for 1 hour, filtered and the Fe(II) was 

determined in the filtrate as above. Samples were purged with N2 to remove dissolved 

sulphide.  

Sulphur species. Dissolved sulphide (S(-II)diss) was determined photometrically by the 

methylene blue method (Fonselius, 1999) after filtration. Total elemental sulphur (S(0)) was 

measured by high performance liquid chromatography (HPLC, Beckman) combined with UV 

detection (Detector 168, Beckman) after extraction of 300 µL of unfiltered sample suspended 

in 1200 µL methanol (modified after Ferdelman et al., 1991). After 1 h equilibration time the 

suspension was filtered (0.2 µm) and the filtrate was stored at -20°C until analysis. Total 

dissolved sulphur (not further specified) was measured by ICP-OES. 

Mössbauer spectroscopy. 30 mL of the suspension was centrifuged outside of the glove box 

within closed centrifuge tubes. After centrifugation the supernatant was decanted in the glove 

box and the solid phase was dried under a nitrogen stream for 1 minute. After drying, the 

solid phase was put on a membrane filter paper (13 mm diameter and 0.45 µm) and was 

sealed between two layers of Kapton tape (polyimide tape with very low oxygen 

permeability). The samples were placed in a sealed crimp vial and stored at 4°C until 

measurement. Mössbauer spectra were collected with a WissEl Mössbauer gamma-ray 

spectrometer and a Janis closed-cycle helium gas cryostat that allowed for sample 

temperatures down to 4.2 K. A Co-57 gamma-ray source was used with a constant 

acceleration drive system operated in transmission mode. Spectra were calibrated against a 
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spectrum of alpha-Fe(0) foil at room temperature. Data acquisition times were usually about 

12-20 hours per spectrum. Spectral fitting was performed using Recoil® software (University 

of Ottawa, Canada) and Voigt-based spectral lines.  

X-ray diffraction. XRD patterns were collected with a Bruker-D8 with GADDS system 

(Bruker AXS GmbH, Karlsruhe) with CoKα radiation focused to a 300 micron spot size. The 

samples were scanned from 5 to 75° CoKα using step size of 0.1°. The sample preparation 

was the same as described for Mössbauer spectroscopy. 

Transmission electron microscopy. Solids retrieved from the reacting suspension were 

analyzed by a Philips CM 20-FEG TEM, operating at 200 kV. In order to limit oxidation in 

air during sample preparation the suspension was first sampled in gas-tight vials. A drop of 

solution was then taken with a syringe and put onto a Lacey carbon-coated copper grid. The 

grid was immediately transferred to the TEM holder and inserted into the high vacuum of the 

TEM. The short exposure of the sample to air was limited to 1-2 minutes at maximum with 

this procedure. The chemical composition and the distribution of elements were determined 

by energy-dispersive X-ray spectroscopy (Thermo Noran Ge detector).  

TEM was performed on the reaction products of run 10, 13, 14, and 15 (Table 1) at different 

reaction times as well as on the lepidocrocite starting material. All of the experimental runs 

were analyzed after 2 h and run 10, 14, and 15 also after 336 h (except run 13). Additional 

TEM measurements have been made for run 14 after 24, 48, 72, and 168 h. It is important to 

note that the TEM samples cannot be stored for repeated analyses because of the oxidation of 

run products after removal from the instrument vacuum. Anoxic storage may cause further 

reactions of the nanocrystalline run products and has not been applied.  

Conventional and high-resolution imaging as well as selected area electron diffraction 

(SAED) and EDX microanalysis were used to identify phases and to constrain their chemical 

composition and textural relationships. SAED patterns from both a high number of crystals 

leading to polycrystalline ring patterns and from individual crystals producing spot patterns 

that represent two-dimensional section of the reciprocal lattice have been produced and 

indexed. In addition, d-values of various phases were determined directly from high 

resolution images as well as from calculated diffraction patterns produced by fast Fourier 

transform (FFT) of selected areas. 
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Table 2.1. Initial conditions for each run. All runs were conducted at pH 7 and the chemical 

species was analyzed. TEM measurements were performed in run 10, 13, 14, and 15, Mössbauer 

spectroscopy and XRD were only for run 10.
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2.4. Results  

2.4.1. Chemical speciation during the reaction 

 

 

Fig. 2.1. Evolution of sulphur with □ ∆ ○ = dissolved sulphide and ■▲● = elemental sulphur 

(top) and acid extractable Fe(II) as ■▲● (bottom) during the first two hours of reaction for run 

10, 14, and 15. 
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Fig. 2.2. Evolution of sulphur with □ ∆ ○ = dissolved sulphide and ■▲● = elemental sulphur 

(top) and iron species with □ ∆ ○ = dissolved Fe(II) and ■▲● = acid extractable Fe(II) (bottom) 

during two weeks of reaction for run 10, 14, and 15. Note, that the initial sulphide concentration 

in run 10 and 14 was double the concentration in run 15 (Table 2.1). 
 

Dissolved sulphide was consumed completely in the first 15 minutes after addition of 

lepidocrocite (Fig. 2.1). Optically, a change of the lepidocrocite colour from orange to black 

was visible immediately after it was added to the sulphide solution. The main products of the 

reaction between lepidocrocite and dissolved sulphide were S(0) and acid extractable Fe(II) 

(Fig. 2.1). Only low concentrations of dissolved Fe(II) were measured (0.01-0.66 mmol L
-1

) 

(Fig. 2.2). Initially, the formation of S(0) and Fe(II)HCl was fast and after 10 minutes the 

concentration of both species increased slowly for S(0) up to 2.5-4.5 mmol L
-1

 and for 

Fe(II)HCl  up to approximately 4-8 mmol L
-1 

(Fig. 1). The concentration of S(0) dropped to 1-

2 mmol L
-1

 after 1 week and decreased further to 0.3-1.2 mmol L
-1

 towards the end (Fig. 2.2). 

The concentration of Fe(II)HCl had a maximum after 48 hours and then decreased to 3-

7 mmol L
-1

 (Fig. 2.2). 

The initial sulphide concentration in run 10 and 14 was double the concentration in run 15 

(Table 2.1). 

Similar observations were made in previous studies (Peiffer et al., 1992; Poulton, 2003; 

Poulton et al., 2004; Pyzik and Sommer, 1981; Rickard, 1974) where S(0) was the dominant 
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oxidized sulphur product and a large proportion of Fe(II) was bound to the solid phase as FeS 

or remained at the oxide surface. 

 

 

Fig. 2.3. pH progress (bottom) and H
+
 consumption (top) during the reaction between 

lepidocrocite and dissolved sulphide for run 10, 14, and 15. 

 

Within the first 24 hours 1.2-2.9 mmol L
-1

 of H
+
 were consumed, while in the following time 

the consumption increased slowly to a value of 1.3-3.1 mmol L
-1

 H
+
 (Fig 2.3). The fast 

consumption of dissolved sulphide coincides with a fast consumption of H
+
, and once 

dissolved sulphide has been consumed completely, H
+
 consumption declined to a slower rate. 

Most of the added H
+
 appeared to be consumed for the reaction between sulphide and Fe(III) 

at the lepidocrocite surface. After 10 days of reaction the pH started to decrease and after 2 

weeks the pH was 7, 5.5, and 4.5 for run 14, run 10, and run 15, respectively. Towards the 

end of the experiments after 14 days, the black coloration of the suspension disappeared and 

the suspensions turned into greyish-yellow.  

 

Overall, the reaction progress can be divided into three steps (Fig. 2.1, 2.2). The first is an 

initial fast reaction (< 15 min) in which dissolved sulphide was consumed upon formation of 
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Fe(II)HCl and S(0). Then, in a second phase, the concentration of Fe(II)HCl  and S(0) slightly 

increased. In a third step, both Fe(II)HCl and S(0) were consumed.  

2.4.2. Spectroscopical and microscopical results 

 

2.4.2.1. Mössbauer spectroscopy 

Mössbauer spectra were measured at 4.2 K to identify lepidocrocite transformation products 

(Fig. 2.4, run 10). Model parameters are listed in Table 2.2.  
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Table 2.2. Model parameters for 4.2 K Mössbauer spectra of lepidocrocite reacted with sulphide 

in Fig. 2.4. 
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Fig. 2.4. Mössbauer spectrum of lepidocrocite reacted with sulphide after 1 hour, 1 day, 1 week, 

and 2 weeks (run 10). White shaded sextets are lepidocrocite, and gray shaded doublets are FeS2. 

All spectra were collected at a temperature of 4.2 K. The scale bar represents a length of 2% 

absorption for each spectrum. Solution conditions are listed in Table 2.1, and model parameters 

are listed in Table 2.2. 
 

In all samples, a six-line signal (sextet) was identified as lepidocrocite based on model 

parameters that were consistent with an oxidation state of Fe(III) in a high-spin octahedral 

configuration similar to synthetic lepidocrocite in its antiferromagnetic state. The 

lepidocrocite was the dominant signal in all samples, but after a week a second signal 

emerged in the form of a paramagnetic doublet and increased with time (Fig. 2.4). We 

eliminated the possibility of this signal being an iron (hydr)oxide phase because no crystalline 

iron (hydr)oxides are paramagnetic at 4.2 K. Pyrite and marcasite share the same unit cell 

formula (FeS2) and have low-spin octahedral Fe(II) configurations with paired d-orbital 

electrons that allow the minerals to remain paramagnetic at 4.2 K. On this basis, the 

paramagnetic doublet indicates that 1.8 % of the initial added lepidocrocite was transformed 

into FeS2 after 1 week and 6.6 % after 2 weeks (Table 2.2). 

No other iron phases than lepidocrocite and FeS2 were observed by Mössbauer spectroscopy. 

Spectra collected at 77 K also confirmed the presence of lepidocrocite but did not discern the 

overlapping iron sulphide doublets (data not shown). 
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Fig. 2.5. X–ray diffractograms illustrating the formation of FeS2 during the reaction between 

lepidocrocite and dissolved sulphide after 1 and 2 weeks (top) and the typical mineral peaks with 

regard to their intensity (bottom) (run 10).  

 

The XRD results are shown in Fig. 5. The samples were taken after 1 week and 2 weeks of 

reaction. The characteristic reflections for unreacted lepidocrocite were apparent (Ewing, 

1935). XRD measurements confirmed the formation of FeS2 (pyrite) with XRD peaks at 

38.8°, 47.4°, and 65.5°, respectively (Fig. 2.5). Both XRD and Mössbauer spectroscopy 

demonstrated that the FeS2 signal increased with time. The characteristic reflections for 

magnetite and marcasite were not distinctly observed, although the 34.8° reflection might 

indicate magnetite (in addition to lepidocrocite) and the 38.5° reflection might include 

marcasite (in addition to pyrite). 

 

2.4.2.2. Transmission electron microscopy 

TEM was performed at different reaction times to localize and identify nanocrystalline 

reaction products. At 2 and 24 hours of reaction rims of 10-20 nm thickness are observed at 

the surface of all lepidocrocite crystals (Fig. 2.6a). High-resolution TEM reveals that these 

rims consists of mackinawite (tetragonal FeS) nanocrystals showing (001) lattice fringes with 

a spacing of 5.0 to 5.2 Å. (111) planes (d111 = 2.3 Å) have been frequently observed as well 

(Fig. 2.6b). Fig. 6c shows intersecting (001) and (101) planes of a mackinawite nanocrystal 

consistent with a [010] zone axis orientation. A set of continuous lattice fringes represents a 

mackinawite single crystal and allows to estimate the particle size. The thin tabular crystals 

are usually about 2 to 10 nm in size and elongated to the c-axis. However, the particle outline 

is often poorly defined. The same appearance has been reported by Ohfuji and Rickard (2006) 
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and Burton et al. (2009) for freshly-prepared nanocrystalline synthetic mackinawite and 

biologically-formed sedimentary mackinawite, respectively. The spotted contrast on the 

lepidocrocite grains (Fig. 2.6a) was first attributed to the dehydration of the crystals during 

observation. However, a careful inspection of a large number of grains revealed that the 

contrast is omnipresent and not related to beam damage indicating mackinawite nanocrystals 

covering the entire surface of lepidocrocite. 

 

Fig. 2.6. Bright field (a) and high resolution (b,c) TEM images of lepidocrocite crystals with 

sulphur-rich rims after 2 hours of reaction. The spotted contrast on lepidocrocite grains in (a) is 

due to nanocrystalline mackinawite. In (b) characteristic (001) and (111) lattice fringes of 

mackinawite were visible in the outer rim. A continuous intermediate layer (arrow) shows 

fringes matching d220 of magnetite/maghemite. This layer can also notice in (a). A nanocrystal of 
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mackinawite in [010] zone axis orientation is shown in (c) together with its calculated FFT and a 

simulated diffraction pattern as inset.  

 

The observations were consistent with scanning TEM-EDX maps taken which show a sulphur 

and iron signal from mackinawite in the rims and iron, oxygen and a low amount of sulphur at 

the lepidocrocite grains (Fig. 2.7). 

 

 

Fig. 2.7. Dark-field STEM image (upper left) and EDX maps of S K (upper right), O K (lower 

left), and Fe K (lower right) after 24 hours of reaction. Sulphur was enriched at the rims of the 

lepidocrocite crystals. Variations in counts of oxygen and iron are well correlated and mainly 

due to thickness differences which are caused by stacked crystals. 
 

The sulphur signal indicates a thin mackinawite layer on the upper and lower surface of 

lepidocrocite. Between the sulphur-rich rim and the lepidocrocite crystal an additional layer 

with a thickness of less than 10 nm was observed in the bright-field and high resolution image 

(Fig. 2.6a,b). The d-spacing in this continuous layer is 2.96 Å with constant orientation to 

lepidocrocite which strongly argues against mackinawite. The only iron oxides or hydroxide 

which fits to the observed lattice spacing are the (220) d-spacings of magnetite or maghemite. 

A reaction with ferrous iron as well as dehydroxylation with lepidocrocite can lead to 

magnetite/maghemite formation (Cornell and Schwertmann, 1996) which might be favoured 

by the structural similarities of lepidocrocite structural unit to the inverse spinel structure 

(Cudennec and Lecerf, 2005). The spinel layer was observed in a number of crystals, but a 

quick formation due to the electron beam during TEM observation cannot be ruled out 

completely. 
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Fig. 2.8. A temporal sequence of the conversion of mackinawite to pyrite at 72 hours (a), 1 (b,c) 

and 2 weeks (d). The high resolution TEM image after 72 hours (a) shows a slightly corrugated 

mackinawite rim on lepidocrocite. Additionally, amorphous areas form between the grains 

which consisted of Fe and S with variable stoichiometry (arrow). After 168 hours (b,c) pyrite 

starts to form (arrow in (b)) while only relicts of mackinawite can be found (arrow in (c)). At 336 

hours, pyrite grains (arrow) with a diameter of 200-500 nm are present. Some magnetite grains 

could be identified between the pyrite crystals. 

 

Fig. 2.8 shows a temporal sequence of the conversion of mackinawite to pyrite at 72 hours, 1 

and 2 weeks. The mackinawite rims get gradually thinner and more corrugated with time. 

After 72 hours amorphous regions composed of iron and sulphur in variable concentration can 

be found between lepidocrocite grains (Fig. 2.8a). After 1 week pyrite crystals were formed 



Chapter 2 

32 

on the expense of the amorphous films and the mackinawite rims (Fig. 2.8b,c). The pyrite 

grains reach diameters between 200 and 500 nm after 2 weeks and commonly show striking 

cubic or octahedral outlines and have been identified by both SAED and EDX analyses (Fig. 

2.8d, Fig. 2.9). Essentially, high resolution images reveal that the grains are composed of 

smaller cubic building blocks which point to a formation by oriented aggregation. 

Mackinawite cannot be found after 2 weeks. The lepidocrocite grain size has not significantly 

changed (lepidocrocite was in large excess to sulphide) and show no sulphur attached to the 

surface which remains corrugated. In addition to pyrite, some magnetite grains similar in size 

and shape could be identified by STEM-EDX and electron diffraction as well.  

 
Fig. 2.9. High resolution images, electron diffraction pattern and EDX spectra of pyrite. Note the 

aggregative nature of the grain consisting of cubic building blocks. Slight misorientations were 

also reflected in the diffraction pattern. 
 

2.5. Discussion 

2.5.1. Redox processes at the lepidocrocite surfaces 

 

Fast consumption of surface bound sulphide in the initial phase can account for the 

quantitative consumption of dissolved sulphide within the first 15 minutes of reaction. 

According to the proposed mechanism for the reaction between sulphide and ferric 

(hydr)oxides (Dos Santos Afonso and Stumm, 1992) the electron transfer from sulphide to 
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Fe(III) is preceded by the formation of the inner-sphere surface complexes ≡FeS
-
 and ≡FeSH 

(Luther, 1990). The rate of the reaction is pH dependent and the oxidation rate of the reactive 

surface species ≡FeHS has a maximum at pH 7 (Peiffer et al., 1992).  

The second phase is characterized by the occurrence of FeS as confirmed by TEM analyses 

made after 2 h. The concentration of FeS at this time step can be estimated based on the mass 

balance of sulfur (eq.1) 

 

c(FeS) = c(S(-II))added - c(S(0))      (1) 

 

where c(S(-II))added is the concentration of initially added S(-II). This calculation is based on 

the assumption that S(0) is the dominant product of S(-II) oxidation under these conditions 

(Poulton et al., 2004) and that the formed FeS is quantitatively recovered in the HCl extract. 

TEM analyses reveal that the FeS phase in the sulphur rich rims surrounding the lepidocrocite 

particles has mackinawite structure. Well crystalline mackinawite does not completely 

dissolve during in 0.5 N HCl extraction (Rickard and Morse, 2005) but it is very likely that 

the dissolution of the thin FeS layers observed is sufficiently fast to be completed during the 

extraction with 0.5 N HCl.  

It appears, however, that the concentration of Fe(II)HCl exceeds that of FeS in this reaction 

phase (cf. Table 2.3). Hence, a fraction of acid extractable Fe(II) is formed which is not bound 

to FeS. 

The amount of this excess Fe(II) (Fe(II)excess) can be defined as the difference between 

Fe(II)HCl and the amount of FeS (eq. 2) 

 

c(Fe(II)excess ) = c(Fe(II)HCl) - c(FeS)      (2) 

 

Table 2.3. Concentrations of products after 2 hours of the reaction of H2S with lepidocrocite. 

Run 

no. 
S(-II)added S(0) Fe(II)HCl H

+
 

FeScalculated 

eq. 1 

Fe(II)excess 

eq. 2 

 (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) 

6 9.0 3.0 5.5 2.6 6 -0.5 

7 7.8 2.0 6.0 2.5 5.8 0.2 

8 8.8 2.0 6.5 2.8 6.8 -0.3 

9 8.3 2.0 7.0 2.8 6.3 0.7 

10 7.2 3.7 5.5 2.8 3.5 2.0 

13 6.7 4.0 8.0 2.0 2.7 5.3 

14 7.4 4.0 7.5 1.7 3.4 4.1 

15 3.7 2.7 3.7 1.0 1 2.7 
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Fig. 2.10. Fraction of excess Fe(II) of HCl extractable Fe(II)
 
as a function of the ratio between 

the concentration of initial S(-II) and of the lepidocrocite surface sites after 2 h. 

 

The fraction of Fe(II)excess formed during Fe(III) reduction seems to depend on the ratio 

between the concentration of initial S(-II) and that of the surface sites of lepidocrocite (S(-

II):SS-ratio, Fig. 2.10), so that a general stoichiometry for the turnover after 2 h can be written 

as 

 

(1.5-x) H2S + FeOOH → x Fe
2+

excess + (1-x) FeS + 0.5 S° + 2x OH
-
 + 2(1-x) H2O  (3) 

 

The variable x (0 < x < 1) represents the fraction of reduced Fe(II) which is not bound in FeS. 

This fraction decreases with increasing initial S(-II):SS-ratio (Fig. 2.10). Note that also 

negative values exist for Fe(II)excess as a result of the mass balance in eqs. (1) and (2) 

indicating the range of error. We have set negative fractions in Fig. 2.10 equivalent to zero. 

We propose that the reason for this pattern is related to the decoupling of the kinetics of 

sulphide oxidation, Fe(III) reduction and FeS formation.  

According to the proposed mechanism for reductive dissolution of iron (hydr)oxides by 

sulphide, the oxidation rate of dissolved sulphide is proportional to the concentration of 

reactive surface complexes (Peiffer et al, 1992) while detachment of Fe(II) from the surface is 

considered the rate limiting step for the reductive dissolution of ferric (hydr)oxides (Dos 

Santos Afonso et al, 1992). Given the high affinity of sulphide to the ferric (hydr)oxide 

surface (Dos Santos Afonso et al, 1992) it can be assumed that in all our experiments full 

surface coverage with HS
-
 is rapidly obtained and its oxidation operates at the maximum rate. 
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Under conditions where the initial sulphide concentration is low relative to the amount of 

reactive sites (low ratios in Figure 2.10) the consumption of the sulphide pool is fast. Since 

detachment of Fe(II) is slow relative to the consumption of sulphide the build-up of 

significant amounts of FeS is not possible. A disproportionation seems to occur between the 

electrons transfered and the generation of Fe(II) to be available for FeS formation as reflected 

by the high fraction of excess Fe(II). In other words, S(-II) seems to transfer electrons to 

lepidocrocite faster under these conditions then stoichiometric amounts of FeS could form. 

In contrast, at high S(-II):SS-ratios, the detachment rate of Fe
2+

 is seemingly high enough to 

channel Fe
2+

 into FeS formation from the remaining S(-II) pool. The fraction of Fe(II)excess 

under these conditions approaches zero. 

The presence of large amounts of Fe(II)excess indicates that transfer of Fe
2+

 from the surface 

into solution is not required for the continuation of Fe(III) reduction. This can be explained by 

a mechanism in which electrons, that are generated by the oxidation of S(-II) at the particle 

surface, are transported into the lepidocrocite bulk phase.  

 

Formation of Fe
2+

 in the bulk phase is supported by the observation that the calculated 

concentrations of Fe(II)excess (Table 2.3) exceed the estimated concentration of reactive sites at 

the lepidocrocite surface by far. Concentrations of dissolved Fe(II) are relatively low so that a 

considerable fraction of Fe(II)excess is solid-phase Fe(II) which does not occur adsorbed onto 

the lepidocrocite surface. This solid-phase Fe(II) is apparently incorporated inside the bulk 

phase. Poulton et al. (2003, 2004) studied the reaction of several iron oxides with sulfide at 

circumneutral pH and also report the formation of solid-phase Fe(II) which is not FeS nor can 

it be extracted from the surface by 1 M CaCl2 solution. They refer to this pool of Fe(II) as 

surface-Fe(II) without further specification. 

 

Formation of Fe
2+

 within the iron oxide bulk phase can be explained by a displacement of 

electrons from the mineral surface into the mineral’s interior. Proposed mechanisms for the 

reaction of S(-II) with iron oxides (Dos Santos Alfonso and Stumm, 1992; Peiffer et al., 1992) 

conform with the idea that the first step of the reaction is the adsorption of S(-II) onto the 

oxide surface followed by electron transfer between sulphide and iron. Thermodynamic 

calculations (Luther, 2010) suggest, that two electrons are transferred simultaneously and S(-

II) is directly oxidized to S(0) while other proposed mechanisms involve a sequence of one-

electron transfer steps by assuming intermediate formation of a S
-

 radical. Irrespective of the 

detailed mechanism of the redox reaction at the surface, many studies demonstrate that 

electrons can be transferred from surface bound Fe(II) into the iron oxide bulk (Hiemstra and 
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van Riemsdijk, 2007; Burton et al., 2008; Catalano et al., 2010; Larese-Casanova and Scherer, 

2007; Williams and Scherer, 2004). It has been proposed that the oxidized Fe
2+

, now Fe
3+

, 

becomes incorporated into a Fe
3+ 

containing layer similar in structure to the bulk oxide 

(Williams and Scherer, 2004) and results in growth of the ferric (hydr)oxide (Handler et al., 

2009). The electron is regarded to be injected into the oxide structure but the exact fate is 

unknown. It is assumed that the electron moves through the crystal lattice and reduces another 

bulk Fe
3+

 which can be released into solution (Catalano et al., 2010; Handler et al., 2009) or 

can be accumulated inside the bulk structure (Hansel et al., 2004). 

 

HRTEM analysis reveals the occurrence of magnetite at the interface between mackinawite 

and the lepidocrocite surface (Fig. 2.6.). Interaction between Fe(II) and ferric hydroxides can 

stimulate the formation of magnetite (Hansel et al., 2005; Jeon et al., 2003; Jeon et al., 2001; 

Tamaura et al., 1983; Tronc et al., 1992) which is the thermodynamically stable product in a 

system containing Fe(II) and lepidocrocite. However, magnetite formation at the FeS – 

lepidocrocite interface appears to be only a transient phenomenon. After 48 hours no 

magnetite could be detected anymore (data not shown).  

Nevertheless, the observed interfacial nanocrystalline magnetite layer indicates a functional 

relationship between lepidocrocite and the surface attached FeS. The occurrence of magnetite 

may be connected to a reaction between these two phases as reflected in the time evolution of 

Fe(II)HCl and S(0) during the second phase of the reaction. After 48 h measured S(0) and 

Fe(II)HCl concentrations are in most experiments higher than those determined at the end of 

the first phase when dissolved sulphide is consumed. This implies that concentrations of 

Fe(II)excess increase at the expense of FeS. We therefore propose that interfacial FeS in contact 

with lepidocrocite can also transfer electrons to the ferric (hydr)oxide in a similar way as 

adsorbed sulphide. Magnetite in this case reflects the steady-state product of this interaction.  

The possibility of Fe(II)excess production upon the reaction of FeS with lepidocrocite is in 

agreement with the observed disappearance of the mackinawite rims at the lepidocrocite 

surfaces after 72 h (Fig. 2.8a), which seems to be accompanied by the generation of the 

amorphous material composed of not further identifiable iron and sulphur species separated 

from the lepidocrocite particles. Both, disaggregation of amorphous FeS and generation of 

Fe(II)excess in the second phase of the reaction can thus be assumed to contribute to the 

generation of precursors for pyrite formation in the third phase. 
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2.5.2. Implications for the pathway of pyrite formation 

 

The products of the first two phases of the reaction are thermodynamically metastable and 

evolve further into more stable products during the third phase of the reaction. Based on 

thermodynamic considerations, pyrite and magnetite are the most stable minerals under the 

experimental conditions. Hence, the observed formation of pyrite and magnetite at the 

expense of FeS, Fe(II)excess, and S(0) towards the end of the experiments (Fig. 8d) is consistent 

with thermodynamic predictions. The interaction between these components can be 

represented by the stoichiometry: 

 

FeS + S(0) + Fe
2+

excess + 2 FeOOH → FeS2 + Fe3O4 + 2 H
+
   (4) 

 

This reaction accounts for the decrease in S(0) and pH as well as for the decrease in Fe(II)HCl 

concentration after 48 h of reaction (Fig 2.2), because magnetite and pyrite only marginally 

dissolve during 0.5 HCl extraction (Rickard and Morse, 2005). Although formation of pyrite 

is thermodynamically favored, pyrite formation upon the reaction of S(-II) with iron 

(hydr)oxides within 14 days has not been reported so far and FeS does not readily transform 

into pyrite (Rickard and Morse, 2005).  

Occurrence of pyrite was first observed after 168 hours and was preceded by disappearance of 

mackinawite (Fig. 2.8). Typically, dissolution of FeS is regarded to be the initial step in a 

pyrite formation pathway proposed by Wang and Morse (1995) according to which Fe(II) 

reacts with polysulfide species to ultimately generate pyrite (Luther, 1991; Rickard et al., 

1995; Wilkin and Barnes, 1996). It has been argued, however, that FeS is not any more of a 

precursor mineral as any other Fe phase to generate pyrite (Rickard & Luther, 2007) and it 

can be expected that basically all ingredients for pyrite formation are occurring in the 

suspensions.  

We observed the onset of dissolution of mackinawite after 72 hours (Fig. 2.8) of reaction 

when also the concentration of S(0) and Fe(II)HCl started to decrease (Fig. 2.2).  

Previous studies have shown that FeS(aq) is a key component in pyrite formation (Rickard et 

al., 1999; Rickard and Morse, 2005) and that pyrite formation is inhibited by suppression of 

FeS(aq) formation (Rickard et al., 2001). Formation of FeS clusters is typically related to 

dissolution of mackinawite (FeSm) (Luther, 1991; Rickard, 2006; Rickard et al., 2001). The 

conversion of FeS(aq) to FeS2 is postulated to occur via reaction with polysulphides (Luther, 

1991):  
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FeS(aq) + 2
nS  → [FeS-Sn]

2-
 → FeS2 + 


2

1nS      (5) 

 

where [FeS-Sn]
2-

 is an intermediate product. 

Schoonen and Barnes (1991a) suggest that pyrite may grow directly from solution when the 

solution is supersaturated with respect to pyrite after dissolution of FeS. This is consistent 

with our observation that pyrite particles form spatially separated from the lepidocrocite 

surfaces (Fig. 2.8d). However, the nucleation of FeS2 proceeds at a significant rate only, if 

intermediate sulphur species like polysulphides are present (Schoonen and Barnes, 1991b). 

Hence, the proposed mechanisms for pyrite formation have in common that polysulphides are 

involved in the process and the question arises how polysulphides might contribute to pyrite 

formation in the reaction of lepidocrocite with S(-II).  

The accepted pathway for polysulphide formation is the dissolution of S(0) by dissolved 

sulphide (Hartler et al, 1967), the rate of which seems to be 2
nd

 order with respect to dissolved 

sulphide in the absence of polysulphides and 1
st
 order in their presence (Hartler et al, 1967). 

The activity of dissolved sulphide in our experimental systems needs to be controlled by the 

solubility of the remaining FeS and will be low. Moreover, S(-II) dissolving from FeS will 

tend to react in a competitive reaction with lepidocrocite so that one can assume that the 

polysulphide generation rate through this pathway and subsequently the overall pyrite 

formation rate would be low. We therefore propose that, through an additional pathway, the 

disappearance of Fe(II)excess during the third reaction phase could possibly contribute to 

polysulphide formation.  

Magnetite, the expected product of Fe(II)excess reacting with lepidocrocite, could be detected 

by TEM analysis as separate entities not associated with the lepidocrocite crystals, but the 

magnetite concentrations in the solids were so low that they were not detectable by 

Mössbauer spectroscopy or XRD implying that part of the Fe(II)excess is consumed through 

another process. Formation of polysulphides by the reduction of S(0) with Fe(II)excess could 

provide an explanation for the concurrent disappearance of the two species. Production of 

Fe(II)excess in the first two reaction phases is driven by the presence of S(-II) or FeS at the 

lepidocrocite surface as described through reactions (eq. 1-3). Once, the pool of surface bound 

S(-II) is exhausted the driving force for Fe(II)excess generation is exhausted likewise. Under 

these circumstances, partial reduction of S(0) by Fe(II)excess leading to the formation of 

polysulphides  

 

2 Fe
2+

excess + Sn + 2 H2O → FeOOH + 2
nS  + 4 H

+ 
     (6) 
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might be thermodynamically feasible if the polysulphides are, in turn, directly consumed in 

the formation of pyrite as described through reaction (5). 

 

According to this reaction model, the occurrence of Fe(II)excess acts as an intermediate storage 

of electrons created during the conversion of lepidocrocite into pyrite upon reaction with S(-

II). Chemical reduction of elemental sulphur typically requires a strongly reducing reagent, 

such as Cr
2+

, and it may therefore be hypothesized that the redox potential of the stored 

electrons is rather low compared to that of any other Fe(II) species. According to our model, 

the built up of this stock of electrons thus facilitates the formation of polysulphides in the 

third phase of the reaction and by this accounts for the formation of pyrite. However, direct 

evidence for the proposed mechanism of polysulphide formation from Fe(II)excess is lacking 

and requires further investigation.  

2.6. Implications for sedimentary processes 

 

This study has provided novel insights into the dynamic redox processes occurring at the 

surface and in the vicinity of the lepidocrocite crystals upon reaction with dissolved sulphide. 

The major initial product of these interactions is mackinawite forming at the surface of the 

lepidocrocite crystals within minutes. We were able to demonstrate that complete conversion 

of S(-II) to pyrite at room temperature occurred within 2 weeks, a time period that is much 

shorter than formation rates previously observed in FeS aging experiments with sulphur 

species such as S(0), polysulphides, or dissolved sulphide (Rickard and Morse, 2005; 

Schoonen and Barnes, 1991a; Schoonen 2004). In this study, pyrite formed much faster than 

expected for abiotic reactions in the absence of dissolved sulphide and matches the time scale 

of pyrite formation in salt marsh sediments and subtidal sediments where the pyrite formation 

occurs within 2 days (Howarth, 1979; Howarth and Jörgensen, 1984). 

We propose that the rapid conversion observed in our study is related to the close interaction 

between FeS and the ferric (hydr)oxide surface that serves as an oxidant for FeS. The 

electrons appeared to be transferred between lepidocrocite and mackinawite through 

magnetite as an interfacial layer and to eventually lead to disaggregation of mackinawite 

being followed by generation of polysulphides even in the absence of dissolved sulphide. This 

step seems to be essential, since it allows for the physical separation of the location of pyrite 

precipitation from that of FeS as being postulated in several previous experimental and field 
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observations (Raiswell et al., 1993). In this study we were able to prove the spatial dislocation 

through the HRTEM images made. 

In a broader sense, dissolved sulphide has two functions during the interaction with 

lepidocrocite: it generates Fe(II) (respectively excess electrons) driving the transformation of 

this mineral and it is a sulphide source for FeS formation at the surface generating a highly 

reactive redox interface. The extent of FeS and/or Fe(II) formation, however, seems to depend 

on the ratio between dissolved sulphide and the amount of surface sites available. At low S(-

II):SS ratios, the concentration of dissolved sulphide is low relative to the concentration of 

reactive surface sites which matches conditions in freshwater or groundwater systems. It may 

be hypothesized that excess reactive Fe surface sites in the presence of sulphide may create 

highly reactive excess Fe(II) and thus affect the reactivity of ferric (hydr)oxides. In this study, 

we have proposed a pathway to generate polysulphides through reduction of S(0). This 

concept may be even extended to contaminants that undergo abiotic reduction at the surface 

of ferric (hydr)oxides to which Fe
2+

 is adsorbed (e. g. Pecher et al., 2002; Elsner et al., 2004).  

In contrast, high S(-II):SS ratios reflect the conditions in marine systems. According to the 

results derived in this work, the formation of excess Fe(II) would be suppressed by the fast 

formation of FeS and its further conversion into pyrite in these systems. This consideration 

implies the hypothesis that the pathways of pyrite formation through reaction of sulphide with 

ferric (hydr)oxides are different between fresh and ground water systems and marine 

environments because the mechanism of polysulphide generation is different. 

The question arises, whether the observation made in this work can be generalized in regard 

to other ferric (hydr)oxides, since their reactivity in regard to Fe
2+

 is different (Cornell & 

Schwertmann). The key for understanding the kinetics of pyrite formation under sedimentary 

conditions but also in ground-water systems is therefore related to the understanding of the 

formation pathways of FeS and polysulphide as related to the specific ferric (hydr)oxides. 
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3.1. Abstract 

 

The reductive dissolution of ferric (hydr)oxides in sulphide-rich systems is a complex 

process, including the interaction of Fe(II) and S(-II) with the oxide surface, electron transfer, 

the formation of nanocrystalline minerals onto the oxide surface, transformation to secondary 

minerals, and the formation of iron sulphides. These reactions are influenced by structural 

properties of the various ferric (hydr)oxides. To elucidate the dynamics of these surface 

reactions we conducted batch experiments in a glove box at pH 7 using various ferric 

(hydr)oxides (ferrihydrite, lepidocrocite, and goethite) and dissolved sulphide. The 

nanocrystalline products forming at different time steps in close contact to the ferric 

(hydr)oxides surface were explored over 2 weeks by wet chemistry analysis, TEM, and 

Mössbauer spectroscopy.  

Wet chemistry showed that dissolved sulphide was consumed rapidly and S(0) and Fe(II)HCl 

were the main products in each experimental solution. But the formation of S(0) and Fe(II) 

was decoupled and the most of Fe(II) was not bound in FeS but rather associated with the 

oxide surface whereby, electrons may transferred between the structural Fe(III) and the 

surface bound Fe(II). These electron transfers led to the formation of excess-Fe(II) which 

amounts depending on electron transfer properties and the adsorption properties of the Fe(III) 

solid phases. As the amount of excess-Fe(II) exceeded the concentration of surface sites, a 

large proportion had to be located in the bulk phase of the oxide. The ability to form excess-

Fe(II) and to accommodate Fe(II) in the bulk phase increased in the order goethite > 

lepidocrocite > ferrihydrite which agrees to the order of the specific surface area.  

After two weeks we observed the formation of secondary minerals and pyrite in all 

experiments as a result of excess-Fe(II) formation. Ferrihydrite was transformed completely 

via dissolution-precipitation processes into more stable minerals such as magnetite, hematite, 

pyrite, and into minor amounts of goethite. In the experimental solution with lepidocrocite 

and goethite the host mineral remained and we detected only pyrite as new mineral. Small 

amounts of goethite were transformed to hematite while the pyrite formation in the 

experimental solution with lepidocrocite was accompanied by traces of magnetite. 

We proposed that the sequence of mineral transformations and the pyrite formation are 

promoted by excess-Fe(II), whereby the excess-Fe(II) formation is more facilitate for 

ferrihydrite and lepidocrocite due to a higher specific surface area compared to goethite. 

 

Keywords: ferric (hydr)oxides reduction, dissolved sulphide, ferrous iron, ferrihydrite, 

lepidocrocite, goethite, pyrite formation, magnetite, electron transfer 
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3.2. Introduction 

 

Ferric (hydr)oxides are ubiquitous with different characteristics such as stability, reactivity 

and surface properties (Cornell and Schwertmann, 1996). Under anoxic conditions ferric 

(hydr)oxides are reduce by dissolved sulphide (Dos Santos Afonso and Stumm, 1992; Peiffer, 

1994; Peiffer et al., 1992; Peiffer and Gade, 2007; Poulton et al., 2004; Pyzik and Sommer, 

1981) or by microbes (Canfield et al., 1992; Hansel et al., 2003; Hansel et al., 2004) which 

generated soluble Fe
2+

 at acidic pH. At higher pH the generated Fe
2+

 is often bound to FeS 

which is prevalent the final product of the reductive dissolution of ferric (hydr)oxides by 

dissolved sulphide at circumneutral pH (Rickard, 1974; Rickard, 1975). This implies that two 

parallel pathways exist for the consumption of dissolved sulphide which are (i) oxidation by 

Fe(III) and (ii) precipitation with Fe
2+

 at circumneutral pH. Furthermore, during the reduction 

of ferric (hydr)oxides most of the adsorbed species such as arsenic will be released from the 

oxide surfaces to solution (Pedersen, 2006). Hence, the fate of Fe(II) have a direct influence 

on the biogeochemical cycling of Fe and is associated with nutrients and contaminants. In 

addition, at higher pH Fe(II) may adsorbed to the Fe(III) (hydr)oxide surfaces and react with 

them resulting in their transformation. This reaction which is usually explained by electron 

transfer from adsorbed Fe(II) to structural Fe(III) (Jeon et al., 2003; Jeon et al., 2001; 

Pedersen et al., 2005; Tronc et al., 1992; Williams and Scherer, 2004), is primary controlled 

by Fe(II) concentration (Hansel et al., 2005; Hansel et al., 2004; Jeon et al., 2003; Jeon et al., 

2001; Liu et al., 2009; Liu et al., 2005). 

The reductive dissolution of ferric (hydr)oxides by dissolved sulphide is a surface controlled 

process proposed by Dos Santos Afonso and Stumm (1992). After the reduction of Fe(III) at 

the ferric (hydr)oxide surface, the reaction can only proceed after surface bound Fe(II) is 

released into solution and a new surface site is exposed. According to this mechanism 

reductive dissolution of Fe(III) (hydr)oxides by dissolved sulphide at circum neutral pH is 

expected to accompanied by FeS precipitation. Poulton et al. (2004) investigated the reaction 

of various ferric (hydr)oxides with dissolved sulphide at pH 7.5 and observed the 

accumulation of acid extractable Fe(II) which is neither in the form of FeS nor exchangeable 

with other cations. They consider this fraction of acid extractable Fe(II) as “surface bound” 

but the amount of Fe(II) in this pool exceeds the number of sites at the Fe(II) oxide surface 

several times so that a considerable part of this Fe(II) has to be located in the bulk phase. In 

the following, we will refer to the pool of acid extractable Fe(II) which is not bound in FeS as 

“excess-Fe(II)”. 
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In a previous study we investigated the evolution of the reaction of lepidocrocite with 

dissolved sulphide at pH 7 over a period of up to 14 days by a combination of chemical 

analysis, spectroscopic, and microscopic measurements (Hellige et al., 2010). During the 

reduction of lepidocrocite by dissolved sulphide, S(0) and acid extractable Fe(II) which 

consisted of FeS and surface-associated Fe(II) were formed which corresponds well to the 

findings of Poulton et al. (2004). Electron transfer from surface bound Fe(II) to bulk Fe(III) 

leads to the formation of excess-Fe(II) and the recycled Fe(III) at the surface is available to 

oxidize an additional S(-II) (Catalano et al., 2010; Handler et al., 2009; Silvester et al., 2005). 

Due to this mechanism, oxidation of S(-II) can proceed without release of Fe(II) into solution 

and precipitation of FeS. However, lepidocrocite containing excess-Fe(II) is instable and after 

complete consumption of aqueous S(-II) the reaction proceeds involving further electron 

transfer reactions and mineral transformations (Hellige et al., 2010). These mineral 

transformations include intermediate formation of magnetite, dissolution of FeS and 

formation of pyrite.  

The question is, whether the formation of excess-Fe(II) is a common feature of the reaction of 

Fe(III) (hydr)oxides with dissolved sulphide. We hypothesize that the extent of excess 

production of Fe(II) is different for the various ferric (hydr)oxides and depends on their 

electron transfer properties and their ability to accommodate Fe(II) within the structure. 

Furthermore, we proposed in the previous study that formation of excess-Fe(II) triggered the 

sequence of mineral transformations and promoted the formation of pyrite (Hellige et al., 

2010). Hence, the evolution of the system after complete consumption of dissolved sulphide 

and the type and concentrations of secondary Fe minerals being formed is dependent on the 

amount of excess-Fe(II) and the reactivity of the remaining Fe(III) (hydr)oxide phase. Here, 

we compare the reductive dissolution of lepidocrocite with those of ferrihydrite and goethite, 

representing a less stable or more stable iron oxide phase, respectively. We conducted batch 

experiments with the same set-up and analysis as described in Hellige et al. (2010) to 

investigate their transformation by Fe(II) and the formation of pyrite in sulphide-rich systems 

at pH 7 in regard to the reaction rates, intermediate phases, and the final products. 

 

3.3. Materials and methods 

 

All solutions were prepared with distilled water and bubbled with N2 to remove oxygen from 

solutions. All reagents were of analytical grade. 
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3.3.1. Ferric (hydr)oxides 

 

Synthetic 6-line ferrihydrite was prepared after Schwertmann and Cornell (2000). Under rapid 

stirring 20 g of Fe(NO3)3*9H2O was added to 2 L 75°C hot distilled water. After 12 minutes 

of stirring, the solution was cooling and dialyses for three days. The final product was freeze 

dried. 

Synthetic lepidocrocite and goethite were purchased from Lanxess (Leverkusen, Germany). 

The trade names are Bayferrox 920 Z for goethite and Bayferrox 943 for lepidocrocite. To 

remove ions like sulphate from the iron oxides surface, 1 mol L
-1

 of it was suspended in 

0.01 mol L
-1

 NaNO3 and the pH was adjusted to 10 with NaOH. After 4 days of shaking the 

iron oxides solution was washed and freeze-dried. 

The ferric (hydr)oxides were characterized using X-ray diffractometry (XRD), scanning 

electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM 

measurements showed lepidocrocite contaminated with goethite with a particle size of 0.2-

0.4 µm and pure goethite with a particle size of 0.2-0.9 µm. Surface area was measured by 

multi-point BET-N2 (Brunauer, Emmett and Teller) method (Gemini 2375 Surface Area 

Analyzer). Surface area were determined as 140 m
2
 g

-1
 for ferrihydrite, 17.34 m

2
 g

-1
 for 

lepidocrocite and 9.12 m
2
 g

-1
 for goethite.  

 

3.3.2. Experimental Set-up 

 

Kinetic batch experiments with 12-45 mmol L
-1

 ferric (hydr)oxide and dissolved sulphide (4-

11 mmol L
-1

) were conducted at pH 7, at a constant ionic strength (I = 0.1 M NaCl), and at 

room temperature (Hellige et al., 2010). All reactions took place in a 500-mL glass vessel 

with ports for sampling and removals, pH electrode and HCl addition within anoxic glove 

box. The solution was stirred with a Teflon-coated stirring bar at constant rate. With an 

automatic pH-stat device the pH value was kept constant by adding HCl (0.5 mol L
-1

). 

The reaction solution was prepared by mixing 50 mL of solution I (0.1 mol L
-1

 NaCl) 

containing ferric (hydr)oxide with 450 ml of solution II (0.1 mol L
-1

 NaCl) to which aliquots 

of Na2S*9H2O (0.5 mol L
-1

) and HCl (0.5 mol L
-1

). The sulphide concentration was 

determined before each run. The initial solution conditions and the consumption of acid are 

shown in Table 3.1.  

During the reaction and after 1-2 hours, 24 hours, 1 week and 2 weeks the following species 

were determined: dissolved Fe(II) and S(-II), Fe(II) extractable with 0.5 N HCl, S(0), and 
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total iron. Furthermore samples were analyzed by Mössbauer spectroscopy and TEM to trace 

changes in the solid phase assemblage over a period of 2 weeks.  

 

3.3.3. Sampling and analysis 

 

All samples were taken within the glovebox and were immediately purged with N2 to dispel 

H2S within the glovebox. 

Iron species. The iron species total iron (FeTOT), solid phase bound Fe(II) (Fe(II)HCl), and 

dissolved Fe(II) (Fe(II)diss) were determined after addition of HCl using the phenanthroline 

method of Tamura (1974). Dissolved Fe(II) was measured on filtered (0.45 µm) samples 

using 0.5 N HCl, while total iron was measured on unfiltered samples using 6 N HCl. After 

the extraction of the solid phase bound Fe(II) with 0.5 N HCl, the solution was filtered and 

Fe(II) was determined. 

Sulphur species. Dissolved sulphide was determined photometrically by methylene blue 

method of Fonselius (1999) after filtration. Elemental sulphur content of the solid and 

aqueous phase was measured by high performance liquid chromatography (HPLC, Beckman) 

combined with UV detection (Detector 168, Beckman) after extraction with methanol 

(modified after Ferdelman et al., 1991). Therefore 300 µL of unfiltered sample was suspended 

in 1200 µL methanol. After 1 h equilibration time the solution was filtered (0.2 µm) and 

stored at -20°C until analyses. 

Mössbauer spectroscopy. 30 mL of the suspension was filtered (membrane filter paper, 

13 mm diameter and 0.45 µm) and was sealed between two layers of Kapton tape (polyamide 

tape with very low oxygen permeability). The samples were placed in an anoxically sealed 

crimp vial and stored at 4°C until measurement. Mössbauer spectra were collected with a 

WissEl Mössbauer gamma-ray spectrometer and a Janis closed-cycle helium gas cryostat that 

allowed for sample temperatures down to 4.2 K. A Co-57 gamma-ray source was used with a 

constant acceleration drive system operated in transmission mode. Spectra were calibrated 

against a spectrum of alpha-Fe(0) foil at room temperature. Data acquisition times were 

usually about 12-20 hours per spectrum. Spectral fitting was performed using Recoil® 

software (University of Ottawa, Canada) and Voigt-based spectral lines.  

Transmission electron microscopy. At different time steps aliquots of the reacting suspension 

were analyzed by a Philips CM 20-FEG TEM, operating at 200 kV. In order to limit oxidation 

in air during sample preparation the suspension was first sampled in gas-tight vials. A drop of 

solution was then taken with a syringe and put onto a Lacey carbon-coated copper grid. The 
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grid was immediately transferred to the TEM holder and inserted into the high vacuum of the 

TEM. The short exposure of the sample to air was limited to 1-2 minutes at maximum with 

this procedure.  

The chemical composition and the distribution of elements were determined by energy-

dispersive X-ray spectroscopy (Thermo Noran Ge detector).  
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Table 3.1. Initial conditions for each run. All runs were conducted at pH 7 and the chemical 

speciation was analyzed. TEM measurements were performed in run 13, 14, 21, 24, 26, and 27. 

Mössbauer spectroscopy was used for 14, 16, 17, and 24. 
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3.3.4. Equilibrium Thermodynamics 
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Fig. 3.1. Equilibrium distribution of Fe in the products of the reaction of 28 mM ferrihydrite 

with S(-II)diss at pH 7 (run 23). The calculations are based on the assumption that S is not 

oxidized beyond the redox state of elemental sulphur. In the calculations the amount of S(-II)aq 

was varied and is listed below the bars. Furthermore, different assemblages of solids were taken 

into considerations in the calculations. Minerals, which were allowed to from in the calculations 

are indicated by “X” in the table below the graph. 

 

Fig. 3.1 shows the calculated equilibrium distribution of Fe in the products of the reaction 

with ferrihydrite and different concentrations of dissolved sulphide. These calculations were 

performed by using MINEQL. The first three scenarios demonstrate, that a larger fraction of 

Fe(III) can be reduced when the formation of FeS or FeS2 are kinetically hindered. In the first 

scenario where no secondary minerals are formed, half of the Fe(III) is supposed to become 

reduced upon addition of 7 mM S(-II). In contrast, the formation of mackinawite prevents 

about 64% of the added S(-II) to become oxidized by Fe(III) and, consequently, the fraction 

of reduced iron is considerably smaller than without mackinawite formation. However, the 

formation of pyrite is thermodynamically more favourable than mackinawite precipitation and 

the electron balance requires that the formation of one mol pyrite is accompanied by one extra 

mol Fe(II). Hence, the fraction of Fe(II) is larger when pyrite is formed compared to the 

formation of mackinawite. After complete oxidation of S(-II) the system proceeds towards an 

energetically more favourable state by forming FeS or FeS2, then a part of the Fe(II) is 

expected to become re-oxidized. 

Scenarios 4 and 5 demonstrate that the formation of magnetite is energetically more 

favourable than FeS and FeS2 precipitation. The amount of excess-Fe(II) which can 

eventually be accommodated in magnetite is limited by the availability of Fe(III). But 

increasing initial S(-II)/Fe(III) ratios lead to decreasing fractions of magnetite in favour of 
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pyrite and mackinawite formation (scenario 6). Hence, when the added amount of S(-II)aq 

exceeds 16.5% of the initial concentration of Fe(III), mackinawite or pyrite are expected to 

form together with magnetite.  

 

In conclusion, magnetite formation is the thermodynamically most favourable sink for excess-

Fe(II), provided excess-Fe(II) does not exceed 50% of the remaining Fe(III). When larger 

amounts of excess-Fe(II) are formed, only the formation of pyrite and/or mackinawite is 

expected. The latter might require partial re-oxidation of Fe(II) if not sufficient reduced 

sulphur is available for precipitating the required amounts of pyrite and mackinawite. 

 

3.4. Results 

3.4.1. Chemical speciation 

 

 
Fig. 3.2. Evolution of sulphur and iron species during the reaction between dissolved sulphide 

and ferrihydrite (A, run 24), lepidocrocite (B, run 14), and goethite (C, run 21). 
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Fig. 3.3. Consumption of sulphide for the various ferric (hydr)oxides over time. 

 

Fig. 3.2 shows the development of the formation of sulfur and iron species during the reaction 

of dissolved sulphide with the three ferric (hydr)oxides. The initial amounts of dissolved 

sulphide in the three suspensions were the same while the consumption of dissolved sulphide 

was different (Fig. 3.3). In the presence of ferrihydrite and lepidocrocite dissolved sulphide 

was consumed within fewer 30 minutes. In contrast, the reaction was slower when goethite 

was added and more than 5 hours were required to remove dissolved sulphide. The decrease 

in S(-II) was accompanied by production of Fe(II) and S(0) (Fig. 3.2). In all cases the 

concentration of dissolved Fe(II) was of little importance with a maximum concentration of 

0.1-0.3 mmol L
-1

 (data not shown). The main amount of the formed Fe
2+

 was extractable with 

HCl which consisted of dissolved Fe(II), Fe(II)-S solid, and surface-associated Fe(II). In the 

following, we will refer to the Fe(II)HCl which is not bound in FeS as excess-Fe(II). In 

experiments with ferrihydrite and lepidocrocite Fe(II)HCl concentrations reached almost 

instantaneously a level which remained practically constant during the first hour of reaction 

(Fig. 3.2). Production of Fe(II)HCl followed S(-II) consumption in the experiments with 

goethite, and was hence slower compared to the reaction with ferrihydrite and lepidocrocite.  

The ratio of produced Fe(II) per consumed S(-II) varied between the different minerals (Table 

3.2). After the consumption of dissolved sulphide was completed and S(0) concentration 

reached its maximum value which was for ferrihydrite and lepidocrocite after approximately 

1 hour and 5-10 hours for goethite excess-Fe(II) were calculated based on the S mass balance 

as  

 

excess-Fe(II) = Fe(II)HCl-FeS = Fe(II)HCl-(S(-II)initial-S(0)max)  (1) 
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The highest relative concentrations of excess-Fe(II) are found for ferrihydrite (e.g. run 24 

about 55 % excess-Fe(II)) while the relative excess-Fe(II) are lower for lepidocrocite and 

practically zero for goethite (Table 3.2). In all cases the increase of S(0) was slower than the 

production of Fe(II) which is most pronounced for ferrihydrite (Fig. 3.2).  

 

Table 3.2. The concentrations of products during the reaction of H2S with the three ferric 

(hydr)oxides. These values are the maximum concentration for S(0) and Fe(II)HCl. Ferrihydrite 

and lepidocrocite reached the constant level of S(0) and Fe(II)HCl concentration within 1 hour 

while goethite required 5 to 10 hours. 

Run 

no. 
Mineral H2Sinitial S(0) Fe(II)HCl 

Excess 

Fe(II) 

Excess 

Fe(II)/FeTOT  

  (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) (mmol L
-1

) (%) 

24 Ferrihydrite 7.5 5.14 8.99 6.63 55.25 

25 Ferrihydrite 8.1 2.85 12.92 7.67 25.57 

9 Lepidocrocite 9 2.87 6.14 0.01 0.07 

11 Lepidocrocite 7.9 1.79 6.55 0.54 2.48 

12 Lepidocrocite 8.8 2.42 6.26 -0.12  

13 Lepidocrocite 8.3 1.58 7.22 0.5 1.82 

14 Lepidocrocite 7.2 3.7 5.52 2.02 7.59 

20 Lepidocrocite 6.7 4.18 8.52 6 23.44 

26 Lepidocrocite 7.4 3.72 7.71 4.03 14.81 

10 Goethite 8.9 1.58 4.69 -2.63  

15 Goethite 8.6 1.58 3.98 -3.04  

16 Goethite 10 3.14 4.79 -2.07  

17 Goethite 11 1.5 4.98 -4.52  

21 Goethite 6.7 0.29 1.28 -6.7  

 

In the presence of ferrihydrite the concentration of Fe(II)HCl had a maximum at 12 mmol L
-1

 

after 24 hours which implies a complete reduction of the initial amount of ferrihydrite (Fig. 

3.2A). But after 2 days, the reaction changed and Fe(II)HCl and S(0) started to decrease for all 

three minerals (Fig. 3.2). Whereas this decrease is more pronounced for Fe(II)HCl and in 

particular in the experiments with ferrihydrite. 

 

Optically, all ferric suspensions turned black during the reaction with dissolved sulphide. But 

after 2 weeks the black coloration of the suspensions disappeared for goethite and 

lepidocrocite while the ferrihydrite suspension was still black. 
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Fig. 3.4. pH progress (bottom) and H
+
 consumption (top) during the reaction between 

ferrihydrite (run 24), lepidocrocite (run 14), and goethite (run 21) and dissolved sulphide. 

 

Fig. 3.4 depicts the pH progress and the consumption of H
+
 over 2 weeks reaction of the three 

ferric (hydr)oxides with dissolved sulphide (Table 3.1). The H
+
 consumption was equal for 

lepidocrocite and goethite; 2.8 mmol L
-1

 H
+
 were consumed within the first 24 hours and after 

2 weeks 3.2 mmol L
-1

. Compared to the both ferric oxides, the H
+
 consumption in the case of 

ferrihydrite was lower. Only 1.2 mmol L
-1

 H
+
 was consumed after 24 hours and 1.6 mmol L

-1
 

H
+
 during the 2 weeks of reaction. 

 

The three ferric (hydr)oxides showed the same chemical reaction pattern but the velocity of 

dissolved sulphide consumption was different. The reactivity decreased in the order 

ferrihydrite ~ lepidocrocite < goethite with the rate coefficient kobs for the oxidation of 

dissolved sulphide normalized to the surface area of 1.04*10
-2

 m
-2

 min
-1

, 4.18*10
-2

 m
-2

 min
-1

, 

and 4.96*10
-4

 m
-2

 min
-1

, respectively (Fig. 3.5). The rate constants kobs were determined by 

the slope of the logarithm of numbers of the moles of H2S consumed due to the reaction with 

ferric (hydr)oxides versus time (Fig. 3.5). 
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Fig. 3.5. Negative logarithm of number of moles of H2S, c(H2S), consumed due to the reaction 

with ferrihydrite (fh), lepidocrocite (lp), and goethite (gt). kobs is the rate constant for the 

oxidation of sulphide expressed in min
-1

. 

 

3.4.2. Spectroscopic and microscopic results 

 

3.4.2.1. Mössbauer Spectroscopy 

The Mössbauer spectra obtained at 4.2 K for products from the reduction of ferrihydrite and 

goethite are shown in Fig. 3.6 and 3.7, respectively. Table 3.3 described the model parameters 

which were used for the Mössbauer spectroscopy. The model parameters to characterize the 

experimental solution with lepidocrocite and its Mössbauer spectrum are shown in Hellige et 

al. (2010).  
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Table 3.3. Model parameters for 4.2 K Mössbauer spectra of ferrihydrite and goethite reacted 

with sulphide in Fig. 3.6 and 3.7 respectively. 
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Fig. 3.6. Mössbauer spectra of ferrihydrite reacted with sulphide after 1 week and 2 weeks. 

White shaded sextets are bulk models for all Fe(III) (hydr)oxides present and may represent a 

combination of the goethite, hematite, and magnetite observed in TEM spectra. Gray shaded 

doublets are FeS2. All spectra were collected at a temperature of 4.2 K. The scale bar represents 

a length of 2% absorption for each spectrum. Solution conditions are listed in Table 3.1, and 

model parameters are listed in Table 3.3. 

 

 

Fig. 3.7. Mössbauer spectra of goethite reacted with sulphide after 18 hours, 2 days, 1 week, and 

2 weeks. White shaded sextets are goethite and gray shaded doublets are FeS2. All spectra were 

collected at a temperature of 4.2 K. The scale bar represents a length of 2% absorption for each 

spectrum. Solution conditions are listed in Table 3.1, and model parameters are listed in Table 

3.3. 



Chapter 3 

64 

Fig. 3.6 shows the Mössbauer spectra of ferrihydrite during the reaction with dissolved 

sulphide. For the first two samples no correlation to ferric (hydr)oxides could be made 

because of a huge noise (sample 1 hour and 24 hours are not shown). This is consistent with 

the chemical analysis which revealed that the complete amount added ferrihydrite was 

reduced in the first 2 days as indicated by HCl-extractable Fe(II) (Fig. 3.2A).  

After two weeks sextets emerged in the experimental solution with ferrihydrite which were 

identified as ferric (hydr)oxides such as goethite, hematite, and magnetite (Sample 1 and 2 

weeks, Table 3.3). In the experimental solutions with lepidocrocite and goethite, the host 

minerals were the dominant signal in all samples (Hellige et al., 2010, Fig. 3.7). Over time, a 

second signal emerged in the form of a paramagnetic doublet which was identified as FeS2 for 

the three ferric (hydr)oxides. 26.4 %, 6.6 %, and 2 % of the initially added ferrihydrite, 

lepidocrocite (Hellige et al., 2010), and goethite, respectively, were converted into FeS2 

(Table 3.3). In the case of goethite the signal decreased with time due to an incomplete 

sampling (Fig. 3.7, Table 3.3). Not all samples were filterable, so the filtered solids may not 

be completely representative of the entire solids. After 1 week 8.4 % of the initial added 

goethite was transformed into FeS2 and only 2 % after 2 weeks (Table 3.3). 

 

3.4.2.2. TEM Analysis 

Fig. 3.8 displays the TEM images of ferrihydrite after 2 hours of reaction with dissolved 

sulphide. Contrary to wet chemistry and Mössbauer spectroscopy data which implies the 

complete reduction of Fe(III), TEM images show a well-defined ferrihydrite structure without 

any changes in morphology of the particles. No differences in electron diffraction pattern 

were found to those of the initial ferrihydrite. Hence, after 2 hours of reaction no formation of 

secondary phases were detected and the structure of ferrihydrite seemed to have been 

preserved. Sulphur was adsorbed evenly on the ferrihydrite surfaces (Fig. 3.8d,e). 
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Fig. 3.8. High resoluiton TEM image (a) and electron diffraction pattern (b) of ferrihydrite after 

2 hours reaction with dissolved sulphide. Dark-field STEM image (c) and EDX maps of iron [Fe 

Kα] (d) and sulphur [S Kα] distribution (e) show that sulphur was evenly adsorbed on 

ferrihydrite. 

 

In experiments with lepidocrocite sulphur-rich rims were formed around the lepidocrocite 

crystals. Contrary to ferrihydrite the nucleation of mackinawite was revealed in these rims by 

high resolution TEM images. Additional a thin layer of magnetite could be identified at the 

interface between the mackinawite and lepidocrocite structure (see Hellige et al., 2010) which 

disappeared after 2 weeks of reaction.  

 

At the end of the second phase of the reaction (18 hours), the goethite crystals were 

surrounded with a layer of mackinawite of variable thickness (Fig. 3.9b,c). In contrast to 

lepidocrocite, no magnetite layer was found at goethite crystals.  
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Fig. 3.9. Bright field TEM image (a) of the apparently pristine particle size and morphology of 

goethite after 18 hours of reaction. High resolution TEM images (b, c) reveal sulphur rich rims 

on goethite crystals. Lattice fringes in these rims are characteristic for mackinawite (FeS). EDX 

spectra (d) taken from the rims (black) and in the centre of goethite crystals (white) reveal the 

formation of iron sulphide with a Fe:S ratio of 1:1 on the goethite surface. 

 

After two weeks of reaction no ferrihydrite crystals could be detected anymore. TEM 

observations confirmed the complete transformation of ferrihydrite and the formation of new 

minerals which is consistent with the chemical data and Mössbauer spectra. Table 3.4 shows 

the d-values of the formed phases due to the reductive dissolution of ferrihydrite which were 

predominantly magnetite and hematite (Fig. 3.10d,e). Only a minor amount of goethite was 

observed which may be served as hematite precursor and may be seen as an intermediate 

stage. In contrast to lepidocrocite and goethite the black coloration of the suspension did not 

disappear towards the end of reaction which might be due to the nanocrystalline nature of the 

newly formed iron oxides.  
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Table 3.4. d values of phases formed by the reaction of ferrihydrite with dissolved sulphide 

identified by electron diffraction and FFT of HR images. 

Pyrite (hkl)pyrite Hematite (hkl)hematite Magnetite (hkl)magnetite Goethite (hkl)goethite 

3.12 1 1 1 3.70 0 1 2 4.86 1 1 1 4.18 1 0 1 

2.71 2 0 0 2.76 1 04 2.95 2 2 0 2.72 3 0 1 

2.42 2 1 0 2.54 1 1 0 2.52 3 1 1 2.56 2 1 0 

2.21 2 1 1 2.23 1 1 3 1.48 4 4 0 2.24 2 1 1/1 0 2 

1.93 2 2 0 1.79 0 2 4   2.18 4 0 1 

1.64 3 1 1 1.71 1 1 6     

1.47 3 1 2 1.46 2 1 4/3 0 0     

1.21 4 2 0             

 

 

Fig. 3.10. Bright field (a, c) and high resolution (b, d, e) TEM images after 2 weeks of reaction 

between ferrihydrite and dissolved sulphide. Pyrite crystals are characterized by quadratic 

outlines and occur separated from ferric oxides (a, c). The aggregates consisted of agglomerated 

nanocrystalline domains (b). Ferrihydrite was completely transformed into hematite (arrow in c, 

d, e) and magnetite (e).  

 

We observed the pyrite formation for all three ferric (hydr)oxides (Fig. 3.10a, 3.11a, Hellige 

et. al, 2010). In all cases the pyrites consisted of nanocrystalline domains and were probably 

formed by oriented aggregation. The morphology of the aggregated assemblages resembles 

quadric outlines (black squares) indicating an Ostwald ripening process to attain lower surface 

energy. These structures were not directly connected to the iron oxide crystals. The EDX 
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spectra (data not shown) confirm the Fe:S of 1:2 corresponding to pyrite in the black squares. 

As observed in Hellige et al. (2010) mackinawite becomes dissolved over time in the 

experimental solution with lepidocrocite and Fe and S accumulated between the lepidocrocite 

crystals. From these sulphur-rich accumulations were pyrite formed after two weeks 

accompanied by minor amounts of magnetite which have been found with a similar 

morphology.  

Additionally, small amounts of hematite in the goethite rims with a thickness of ~ 20 nm (Fig. 

3.11d) were detected; prevalent at the end of the acicular goethite crystals.  

 

 

Fig. 3.11. Bright field TEM image (a) showing the distribution of goethite and pyrite after 2 

weeks reaction. The pyrite crystals consisted of nanocrystalline aggregates (b). Bright field TEM 

images (c, d) and FFT electron diffraction pattern (inset in d) revealed that minor amounts of 

goethite were transformed into hematite, preferred at the end of the acicular goethite crystals. 

 

In conclusion, mineral reactions occurred in experiments with all three oxides during the 

second phase of the reaction. However, after 2 weeks of reaction the extent of these 

transformations and the composition of the solids differed. In particular, the formation of 

other iron oxides and pyrite was less pronounced in experiments with goethite than with 

lepidocrocite and ferrihydrite, whereas complete transformation into secondary minerals 

occurred in experiments with ferrihydrite.  

 

3.5. Discussion 

 

As described in Hellige et al. (2010) the reaction progress of the reductive dissolution of 

lepidocrocite by dissolved sulphide was highly dynamic. Spectroscopic and microscopic data 



Influence of structural properties of ferric hydroxides on reaction pathways with sulphide 

  69 

showed that various phases were formed and disappeared during the reaction with pyrite as 

the final product. The main products were S(0) and acid extractable Fe(II) which consisted of 

FeS, surface-associated Fe(II), and dissolved Fe(II). The reaction could be subdivided into 

three phases with (i) fast consumption of dissolved sulphide, formation of S(0) and 

mackinawite onto the lepidocrocite surface (0-15 min), (ii) consumption of mackinawite due 

to the formation of magnetite onto the lepidocrocite surface and S(0) while acid extractable 

Fe(II) slightly increased (15-120 min), and (iii) decrease of S(0) and acid extractable Fe(II) 

due to pyrite formation accompanied with traces of magnetite (2-14 days). The magnetite in 

the first phase was an intermediate product which acted as “electron shuttle” between the 

lepidocrocite and mackinawite layer while the magnetite in the third phase was a by-product 

of the pyrite formation. After 2 days of reaction the dissolution of mackinawite started and Fe 

and S were accumulated between the lepidocrocite crystals and pyrite started to growth. The 

dissolution of lepidocrocite by dissolved sulphide and the pyrite formation were kinetically 

decoupled.  

In the current study we observed differences in the reaction pathway as expressed by 

Mössbauer spectroscopy and TEM and differences in the reaction kinetics as expressed by 

wet chemistry for ferrihydrite, lepidocrocite, and goethite. Therefore we want to compare the 

oxides and highlight common characteristics and differences in the following.  

 

3.5.1. The order of mineral reactivity 

 

In any experiment the concentration of dissolved sulphide was higher than the number of 

surface sites which resulted in an incomplete adsorption of sulphide at the oxide surfaces 

(Table 3.1). Under this condition the oxide surfaces were saturated with respect to dissolved 

sulphide. 

Fig. 3.3 shows that dissolved sulphide was consumed in the first minutes of the reaction for 

ferrihydrite and lepidocrocite with rate constant kobs of 1.04*10
-2

 and 4.18*10
-2

 min
-1

 m
-2

, 

respectively, while the concentration of surface sites was different for both oxides. In the 

experimental solution with goethite dissolved sulphide was consumed after 5 hours with a rate 

constant of 4.96*10
-4

 min
-1

 m
-2

. Fig. 3.5 indicates that lepidocrocite and ferrihydrite have 

similar reaction kinetics. The reactivity decreases in the order of ferrihydrite ~ lepidocrocite > 

goethite. Differences in reactivity are related to the variations in crystal degree, particle size, 

specific surface area or site density. The reactivity increases with increasing surface area. This 

order is similar to the dissolution order and reverse to the degree of crystallinity (Cornell and 
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Schwertmann, 1996). The mechanisms and kinetics for the dissolution of ferric (hydr)oxides 

towards dissolved sulphide have been studied in detail (Canfield et al., 1992; Peiffer et al., 

1992; Peiffer and Gade, 2007; Poulton et al., 2004; Pyzik and Sommer, 1981; Rickard, 1974). 

The easily extractable iron phases ferrihydrite and lepidocrocite are more reactive towards 

sulphide than the crystalline oxides goethite and hematite (Canfield, 1989; Poulton et al., 

2004) which is consistent with our results.  

 

3.5.2. Extent of Fe(II) excess formation 

 

As pointed out above, the reaction progress can be divided into three steps according to 

Hellige et al. (2010) which includes an initial fast reaction where sulphide was rapidly 

consumed by a combined fast adsorption and oxidation process that lead to quasi 

instantaneous Fe(III) reduction and to Fe(II) and S(0) formation. But the generation rate of 

Fe(II) seems to be higher than the oxidation rate of dissolved sulphide and the sum of Fe(II) 

phases was more than double the concentration of S(0) for all three ferric (hydr)oxides (Table 

3.2, Fig. 3.2). In the previous paper, we explained this phenomenon as a result of S(-II) 

adsorption which leads initially to the formation of Fe(II) and S(-I) while S(0) is formed in a 

subsequent second electron transfer reaction or upon disproportionation of two S(-I) by 

forming S(-II) and S(0) (Hellige et al., 2010). Hence, a part of sulphide was not oxidized to 

S(0) but rather fixed in FeS (Fig. 3.8, 3.9). The two reactions removing dissolved sulphide, 

the oxidation to S(0) and FeS precipitation, proceed at different rates. So, the formation of 

S(0) and Fe(II) is decoupled which is most pronounced when a large proportion of the added 

dissolved sulphide is removed upon adsorption (Hellige et al., 2010).  

But the major fraction of the reduced iron which we refer as excess-Fe(II) might not be 

accessible for dissolved sulphide to form FeS solids and the rate of Fe(III) reduction exceeds 

the rate of FeS solid formation except for goethite (Table 3.2). This kinetic effect might lead 

to the development of a metastable reaction product such as magnetite onto the lepidocrocite 

surface (Hellige et al., 2010) in which the amount of Fe(II) is larger than expected based on 

thermodynamic consideration (Fig. 3.1).  

The excess production of Fe(II)HCl increases in the sequence goethite > lepidocrocite > 

ferrihydrite (Table 3.2) and is conform to the results of Hansel et al. (2004). As the amount of 

Fe(II)HCl exceeds the number of surface sites for each mineral suspension (Table 3.1, 3.2), a 

proportion of Fe(II)HCl might to be accommodate in the bulk phase (Catalano et al., 2010; 

Handler et al., 2009; Williams and Scherer, 2004). Apparently, the ability of the three oxides 
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to form and to accommodate Fe(II) within the bulk phase increases in the order as the excess 

formation of Fe(II). Additionally, the specific surface area decreases in the order ferrihydrite 

> lepidocrocite > goethite. This implies that ferrihydrite and lepidocrocite are more favor to 

S(-II) adsorption and excess-Fe(II) formation due to their higher specific surface areas 

compared to goethite. Hence, the differences in specific surface area might additionally 

emphasize the differences between the three ferric (hydr)oxides regarding the tendency to 

form excess-Fe(II). The modeled chemical equilibriums for different scenarios showed that 

the major sink for excess-Fe(II) is the formation of magnetite (Fig. 3.1). Except for goethite, 

the formation of magnetite could be detected which implies that the formation of excess-

Fe(II) was higher in the presence of lepidocrocite and ferrihydrite.  

Hiemstra and van Riemsdijk (2007) investigated the reactivity of ferrihydrite, lepidocrocite, 

and goethite regarding the Fe
2+

 adsorption and concluded that the oxidation of adsorbed Fe(II) 

to the goethite surface is less pronounced compared to Fe(II) at the lepidocrocite surface. This 

is due to different electron charge distribution in goethite and lepidocrocite. In analogy, this 

difference can also explain the lower extent of excess-Fe(II) formation during the reductive 

dissolution of goethite compared to the reaction of lepidocrocite. Furthermore, they found out 

that the Fe(II) adsorption to lepidocrocite occurs only if the electron transfer is accepted 

which may explain the formation of magnetite onto the lepidocrocite surface (Hellige et al., 

2010). Typically, magnetite formation is regarded to occur at high Fe(II) concentrations 

(Hansel C. M. et al., 2005) which can be an explanation that we observed no magnetite in the 

experimental solution with goethite neither with microscopy nor spectroscopy measurements. 

Another explanation may that the magnetite formation and its consumption due to the 

interaction of mackinawite with the goethite surfaces occurred at the same rate and so, we 

were not able to observed magnetite. However, according to Hiemstra and van Riemsdijk 

(2007) the Fe(II) adsorption to ferrihydrite and goethite surfaces is a combination process of 

adsorption with and without electron transfer which may explained also why we observed 

only the formation of amorphous FeS and mackinawite onto the surfaces of ferrihydrite and 

goethite without a magnetite layer in the initially phase. Compared to goethite, a large amount 

of magnetite appeared after 14 days of reaction in the experimental solution with ferrihydrite 

which might be a result of a high production of excess-Fe(II). 

Furthermore, they applied the ion adsorption model CD (charge distribution) to analyze the 

Fe(II) adsorption behavior (Hiemstra and van Riemsdijk, 2007) which uses the Pauling 

valence bond concept to obtain the CD value of the surface complexes (Hiemstra and 

VanRiemsdijk, 1996). Possibly, the electron transfer in ferrihydrite cannot be explained by 
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the CD distribution following Pauling distribution alone. Silvester et al. (2005) reported 

considerable oxidation of Fe(II) upon adsorption onto ferrihydrite and its incorporation into 

the bulk oxide. Based on these experimental findings it can be concluded that the ability of 

ferrihydrite to transfer electron charge and to form bulk Fe(II) can also account for the 

formation of excess-Fe(II). This may also explain the TEM measurements which showed a 

well-defined ferrihydrite structure after 2 hours of reaction (Fig. 3.8) while no ferrihydrite 

structure was observed by Mössbauer spectroscopy. Chemical analysis depicted that the 

ferrihydrite was almost completely reduced after 2 hours (Fig. 3.2). One explanation for this 

contradiction could be the exchange of Fe(III) ions through Fe(II) ions due to the reaction 

with dissolved sulphide while the ferrihydrite structure was preserved. So, we were able to 

recover all added Fe(III) as Fe(II)HCl and observed the ferrihydrite structure by TEM.  

 

Summarized, the extent of FeS formation depends on the Fe(II) adsorption behaviour of the 

respective Fe(III) solid phase. Due to the slower formation of FeS in the presence of goethite, 

the FeS was of higher crystallinity in contrast to that in the experimental solution with 

ferrihydrite where the FeS was built-up very fast. The crystallinity/stability of FeS increases 

in the order ferrihydrite > lepidocrocite > goethite. This order is reverse to the order of the 

formation of excess-Fe(II). It seems that the formation of FeS is stimulated by excess-Fe(II). 

In turn, the excess-Fe(II) promote the dissolution of FeS and the formation of pyrite. Hence, 

the reaction kinetics appears to be controlled by the amount of excess-Fe(II). 

 

3.5.3. Formation of secondary minerals 

 

In the case of ferrihydrite, initially dissolved sulphide adsorbed only to the oxide surface and 

we observed no formation of new crystalline phase like FeS. Probably amorphous FeS were 

formed which may acted as FeS or pyrite “prototype” because the reflexes 0.284 nm and 

0.32 nm in Fig. 3.8b are closed to the pyrite reflexes 0.27 nm and 0.31 nm. In the presence of 

lepidocrocite and goethite we observed the formation of mackinawite onto their surfaces. 

After 2 days the reaction changed in each experimental solution and Fe(II)HCl and S(0) (Fig. 

3.2) were consumed due to the dissolution of the amorphous FeS and mackinawite (Hellige et 

al., 2010). After 14 days of reaction, pyrite was formed accompanied by traces of magnetite 

except for goethite (Fig. 3.10a, 3.11a, Hellige et al., 2010). Pyrite and magnetite was not 

anymore associated with the oxide surfaces. Here, magnetite was a by-product due to the high 

Fe(II) generation. Furthermore, in natural environments, pyrite formation is often associated 
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with magnetite (Qian et al., 2010) In the presence of ferrihydrite was more magnetite formed 

than in the other experiments which explained that the suspension was still black. The 

formation of magnetite in the experiment with ferrihydrite (eq. 2) and lepidocrocite (eq. 3) 

can be explained by the following reaction pathways (Hellige et al., 2010)  

 

2 Fe(OH)3 + Fe
2+

 → Fe3O4 + 2 H2O + 2 H
+
     (2) 

6 γ-FeOOH + 3 Fe
2+

 → 3 Fe3O4 + 6 H
+
     (3) 

 

As described in Hellige et al. (2010) the onset of mackinawite dissolution started after 

72 hours in the experimental solution with lepidocrocite while S(0) and Fe(II)HCl decreased. 

TEM measurements showed the accumulation of sulphur and iron between the lepidocrocite 

crystals which could be consisted of FeS clusters (eq. 4). These FeS clusters may further 

converted into pyrite by polysulphides (eq. 5) (Luther, 1991; Rickard, 2006; Rickard and 

Morse, 2005; Schoonen and Barnes, 1991b; Wilkin and Barnes, 1996).  

 

 FeSm → FeS(aq)        (4) 

 FeS(aq) + 2

nS  → [FeS-Sn]
2-

 → FeS2 + 



2

1nS      (5) 

 

The pyrite formation requires reduced sulphur. And if is not enough reduced sulphur available 

for the pyrite precipitation, partial re-oxidation of Fe(II) is required which leads to the 

formation of S(-I). Though, the formation of pyrite could be also occurring via the reaction of 

FeS with dissolved Fe
2+

. Whether the pyrite formation occurs is unclear but it seems that the 

presence of excess-Fe(II) stimulate its formation and might serve as a readily reductant of S(-

II) in FeS and by this trigger the FeS2 formation. In addition, the equilibrium thermodynamic 

model showed that formation of pyrite occurs if larger amounts of excess-Fe(II) is formed 

(Fig. 3.1).  

In the experimental solution with ferrihydrite, 26.4 % (=3.17 mmol L
-1

) of the total iron is 

bound in pyrite (Table 3.3, run 24) detected by Mössbauer spectroscopy. After 14 days 

2 mmol L
-1

 Fe(II) was extractable with HCl. So, totally 5.17 mmol L
-1

 of ferrihydrite was 

reduced by the initial sulphide concentration of 7.5 mmol L
-1

. 6.34 mmol L
-1

 was bound in 

pyrite. Either S(0) nor dissolved sulphide could be detected after 14 days; hence ~15 % of 

sulphur could not be detetected while in the experimental solution with lepidocrocite (run 14) 

~46 % of sulphur remained undetected (Hellige et al., 2010). Mössbauer spectroscopy 

suggests that pyritic Fe in the experimental solution with goethite (Table 3.3, run 21) made up 
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2 % of the total iron (=0.44 mmol L
-1

). Together with 2 mmol L
-1

 of Fe that were extracted 

with HCl after 14 days a total ammount of 2.44 mmol L
-1

 of goehtite was reduced by the 

initial sulphide concentration of 6.7 mmol L
-1

 in run 21. However, only 1.58 mmol L
-1

 

sulphur (0.88 mmol L
-1

 as pyrite S plus 1.5 mmol L
-1

 as S(0)) could be recovered after 

14 days implying that a significant fraction of sulphur (~76 %) remained undetected. It seems 

that the recovery of sulphur depends on the mineral. With increasing crystallinity the rate of 

sulphur recovery decreased. Mössbauer spectroscopy results implies that the amount of 

excess-Fe(II) is proportional of the pyrite abundace which follows the order ferrihydrite > 

lepidocrocite > goethite. 

Generally, the formation of magnetite and pyrite requires excess-Fe(II). 

 

The TEM measurements after 2 hours and the Mössbauer samples after 1 hour and 24 hours 

indicated the reductive dissolution of ferrihydrite by dissolved sulphide and its transformation 

into more stable minerals which involves redox reactions including re-oxidation of Fe(II) and 

reduction of S(0). Fe(II) was formed during the reaction of ferrihydrite and dissolved sulphide 

which may associated to the ferrihydrite surfaces and acted here as catalyst for the 

transformation into more stable mineral phases. Ferrihydrite has metastable properties and 

their transformation into more thermodynamically stable species is affected by temperature, 

pH and anionic media (Liu et al., 2008). Liu et al. (2008) conducted batch experiments with 

ferrihydrite and Fe(II) under anoxic and abiotic conditions and suggested that the 

transformation is slow in the absence of catalysts like Fe(II). We observed the transformation 

of ferrihydrite to hematite (eq. 7) with goethite (eq. 6) being intermediary (Fig. 3.10) (Das et 

al., 2010; Liu et al., 2008; Liu et al., 2005) accompanied by the formation of magnetite (eq. 

2). 

 

 Fe(OH)3 + 2 Fe
3+

 + 3 H2O → 3 α-FeOOH + 6 H
+
    (6) 

  Fe(OH)3 + Fe
3+

 → Fe2O3 + 3 H
+
      (7) 

 

During these formations, protons are released into solution (eq. 6, 7, 2) which may account 

for the significantly lower consumption of HCl compared to the other oxides (Fig. 3.4). 

Ferrihydrite belongs to the hexagonal system which is different from goethite which belongs 

to the orthorhombic system. Hematite belongs to the hexagonal crystallographic system and 

has a similar anionic framework (same stacking of close-packed anions) to ferrihydrite. Liu et 

al. (2009) proposed that the nucleation and growth of hematite involved a combination of 



Influence of structural properties of ferric hydroxides on reaction pathways with sulphide 

  75 

dehydration and rearrangement process which is facilitated by its structural resemblance to 

ferrihydrite. So, there is no simple relationship between the structures of goethite, hematite, 

and magnetite and the replacing mineral ferrihydrite which support their formation by 

dissolution-precipitation processes catalyst by Fe(II). Our data are consistent with that of 

Pederson et al. (2005) who observed the complete ferrihydrite transformation into new 

minerals by Fe(II) within 2 days. Furthermore, our results agree very well with the crystal 

growth concept which indicates that the size of particles increased when the kinetic of 

transformation was slower. In the case of ferrihydrite the transformation was rapid and thus, 

the new formed crystals become smaller (Fig. 3.10c).  

In contrast to lepidocrocite no magnetite was formed in the beginning of the reaction of 

goethite with dissolved sulphide. The extent of magnetite precipitation depends on the Fe(II) 

concentration (Hansel et al., 2005; Pedersen et al., 2005). Hansel et al. (2005) observed the 

magnetite formation only at Fe(II) concentrations about 2 mM. Compared to lepidocrocite, 

goethite has a higher crystallinity and a lower surface area corresponding to a lower reaction 

velocity. Hence, only a minor fraction of goethite surface sites reacted with dissolved 

sulphide to Fe(II) and may be the Fe(II) concentration was not high enough to form 

magnetite. Furthermore, the adsorption of Fe(II) to lepidocrocite occurs only with an electron 

transfer while the adsorption to goethite occurs with or without an electron transfer (Hiemstra 

and van Riemsdijk, 2007). These assumptions explain why we did not observe the magnetite 

formation in the presence of goethite while we observed its formation in the case of 

lepidocrocite. 

But after 14 days of reaction, hematite precipitated onto the goethite surface (Fig. 3.11d, eq. 

8). 

 

 2 α-FeOOH → Fe2O3 + H2O       (8) 

 

The residual Fe(II) which was not bound in pyrite may be adsorbed to the goethite surface and 

their interaction causes in hematite precipitation due to an interfacial electron transfer by 

Fe(II)ads-Fe(III)oxide (Fig. 3.11d). Hence, hematite was formed as a by-product of pyrite 

formation. Other investigators observed no transformation of goethite after the reaction with 

Fe(II) (Handler et al., 2009; Jang et al., 2008; Pedersen et al., 2005; Tamaura et al., 1983). 
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3.5.4. Conceptual model 

 

 

Fig. 3.12. Conceptual model for the reaction of ferric (hydr)oxides with dissolved sulphide at pH 

7. 

 

The secondary mineralization pathways in sulphide-rich systems are complex and involve an 

interplay between a number of geochemical factors and competing Fe(II)-induced 

mineralization pathways (Hansel et al., 2005). Based on our results, we suggest a simplified 

conceptual model of secondary mineralization pathways following the iron reduction of ferric 

(hydr)oxides by dissolved sulphide (Fig. 3.12). Initially, Fe(II) and S(0) were formed due to 

the rapidly adsorption of sulphide to the oxide surface. The reduced Fe(II) remained at the 

oxide surface and formed FeS. On a longer run, FeS was converted into pyrite via a reaction 

with polysulphides and excess Fe(II). The pyrite crystals consisted of nanocrystalline domains 

in all experiments. Except for the experimental solution of goethite, the formation of pyrite 

was accompanied by magnetite.  

Despite the same reaction kinetics for ferrihydrite and lepidocrocite, the product pathway of 

both oxides differs. The lower solubility of goethite and lepidocrocite relative to ferrihydrite 

resulted in lower aqueous Fe(III) and aqueous Fe(II) concentration. Thus, we observed for 

both minerals only the pyrite formation, for lepidocrocite the magnetite formation as well, and 

the host minerals remained. Only small amounts of goethite were transformed to hematite. 

Within 2 weeks, due to re-equilibration reactions, ferrihydrite was transformed completely via 

dissolution-precipitation processes into new and more stable phases such as hematite, 
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magnetite, and pyrite. Only a minor amount of goethite was observed. The extent of 

transformation depends on the current ferric (hydr)oxide and the production of Fe(II).  

The current work provides an improved understanding of the possible reaction pathways of 

ferric (hydr)oxides in sulphide-rich systems involved the interaction of Fe(II) with the oxide 

surface and with dissolved sulphide. The reductive dissolution of Fe(III) oxides and its 

transformation is controlled by the extent of excess-Fe(II) and their ability to accommodate 

Fe(II) in its bulk which decreases in the sequence ferrihydrite > lepidocrocite > goethite. In 

addition, the specific surface area decreases in the same order which implies, that in contrast 

to a low specific surface area, a high specific surface area is more able to S(-II) adsorption 

followed by electron transfer and excess-Fe(II) formation. Hence, the differences in specific 

surface area might additionally emphasize the differences between the three ferric 

(hydr)oxides regarding the tendency to form excess-Fe(II).  
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4.1. Abstract 

 

The reaction between synthetic ferric (hydr)oxides and H2S was studied under flow-through 

conditions at pH 4 and 7. Therefore, we developed a fluidized-bed reactor to investigate initial 

reaction kinetics with a constant oxidation rate of H2S over the experiment period. The 

concentration of Fe(III) solids regarding the surface area was equal for each mineral and so, 

the different ferric (hydr)oxides could be compared with each other. The formation of the 

main products Fe(II) and S(0) was decoupled which suggested that the formation was non-

stoichiometric during the reaction. We explained these differences of Fe(II):S(0) ratios with 

different lattice stabilities. In the presence of ferrihydrite and lepidocrocite, the adsorption of 

Fe(II) was accompanied with the uptake into the bulk crystal which led to high Fe(II):S(0) 

ratios. Contrary, the adsorption of Fe(II) onto the goethite surface occurred without an 

electron transfer and resulted in low Fe(II):S(0) ratios. These different Fe(II) conditions may 

influence the redox potential of the reactor suspension. That conditions in turn affect 

semiconducting properties of Fe(III) oxides and thus, their reactivity. 

The reaction rate coefficient kobs_H2S and kobs_Fe(II) normalized to the surface area suggested 

that the reactivity of Fe(III) (hydr)oxides decreased in the order ferrihydrite > lepidocrocite > 

goethite and followed a second order rate law. kobs_H2S increased with pH and specific surface 

area.  

We proposed that the reactivity is largely controlled by the adsorption and electron properties 

of the Fe(III) solid phase and by the specific variations of the generated Fe(II).  

 

 

Keywords: ferric (hydr)oxides, dissolved sulphide, kinetics, reductive dissolution, 

coordination chemistry, surface-chemistry, mechanism 
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4.2. Introduction 

 

Ferric (hydr)oxides are widely distributed in natural environments such as aquifers or marine 

sediments, solids, and freshwater sediments. In these environments, ferric (hydr)oxides play a 

major role in abiotic and biotic reactions as reductants and oxidants, in electron transfer 

reactions, and in the (re)cycling of elements (1-4). Due to their high surface area they are 

efficient scavengers for trace metals, organic compounds and ferrous iron which may be 

released to solution during their reductive dissolution (5). The prominent abiotic reductant of 

ferric (hydr)oxides is H2S which may form during the sulphate reduction by microorganisms 

in anoxic environments (6). The major reaction products are S(0) and Fe(II) (7,8). These two 

species contribute to formation of FeS or FeS2 and contribute to the storage of sulfur in 

sediments (6,9,10). Hence, the reductive dissolution of ferric (hydr)oxides by H2S is highly 

relevant for the cycling of sulfur (10,11). 

The mechanisms and kinetics of the abiotic dissolution of ferric (hydr)oxides have been 

studied in detail for a number of reductants including H2S, ascorbate, and fructose (4,7,9,12-

17). The interaction between ferric (hydr)oxides and dissolved sulphide is surface controlled 

(18) and depends on factors like mineralogy, crystallinity, specific surface area, grain size, 

and the concentration of reductants and oxidants. The various ferric (hydr)oxides have a wide 

variation in reactivity. Minerals with a lower degree of crystal order (hydrous ferric oxides 

and lepidocrocite) are reactive on a time scale of minutes to hours while the more ordered 

minerals such as goethite, magnetite, and hematite are reactive on a time-scale of tens of days 

(6,14). Furthermore, Al substitution in ferric (hydr)oxides (14) or the adsorption of sulphate to 

the Fe(III) (hydr)oxide surface (7) may affect their reactivity. Generally, the initial Fe(III) 

(hydr)oxide reduction rate is denoted as a function of the oxide surface area with a first order 

dependency and the reactivity decreases in the order of 2-l ferrihydrite > 6-l ferrihydrite > 

lepidocrocite > goethite > hematite (14-16). Other investigators who determined the reactivity 

of ferric (hydr)oxides by their reduction with ascorbic acid suggested that crystal properties 

have a significant effect on the reactivity (15,16).  

The rate of the reaction between dissolved sulphide and ferric (hydr)oxides is regarded to be 

proportional to the surface species >FeSH (13) 

 

  R = kintr {>FeSH}         (1) 

 

where kintr denotes the intrinsic rate constant for this reaction. Eq. 1 qualitatively accounts for 

the rate dependency on pH (13,19) as well as the rate maximum at pH 7 (13). At this pH or 
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greater, the reaction is accompanied by FeS precipitation which may trap S(-II) and by this 

prevent its oxidation by Fe(III). In a previous study, we have demonstrated that the formed 

Fe(II) formed through the reaction of sulphide with ferric (hydr)oxides has a profound 

influence on the overall reaction pathways and electron transfer mechanisms at circumneutral 

pH (8,20). Hence, the kinetic studies carried out as initial-rate batch experiments are not 

suitable to study intrinsic rate constants under these conditions. To overcome these problems 

we have performed flow-through experiments to investigate the reactivity of various various 

ferric (hydr)oxides with respect to H2S at pH 4 and 7. We used various synthetic Fe(III) 

(hydr)oxides with a broad range of crystallinity and different surface properties in order to 

their influence on the reaction kinetics. The concentration of the solid Fe(III) phases was 

chosen to obtain the same total concentration of surface area (approximately 24 m
2
 L

-1
). Thus, 

in the initial phase of reaction the Fe(III) surface concentration is equal for all experiments so 

that the different ferric (hydr)oxides can be compared with each other and the reaction 

becomes independent from the specific surface area but influenced by surface and crystal 

properties of each oxide.  

 

4.3. Materials and methods 

 

All solutions were prepared with distilled water and bubbled with N2 to remove oxygen. All 

reagents were of analytical grade. 

 

4.3.1 Ferric (hydr)oxides 

 

Synthetic 6-line ferrihydrite and goethite were synthesized following the recipes given in ref 

(21). Lepidocrocite was prepared according to ref (22). Additionally, synthetic lepidocrocite 

(Bayferrox 943) and goethite (Bayferrox 920 Z) were purchased from Lanxess (Leverkusen, 

Germany). To remove ions like sulphate from Bayferrox oxides surface, 1 mol L
-1

 of it was 

suspended in 0.01 mol L
-1

 NaNO3 and the pH was adjusted to 10 with NaOH. After 4 days of 

shaking the Bayferrox solution was washed and freeze-dried. The Bayferrox lepidocrocite is 

contaminated with goethite (23). 

The ferric (hydr)oxides were characterized using X-ray diffractometry (XRD), scanning 

electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM 

measurements showed pure Fe(III) (hydr)oxides. Surface area was measured by multi-point 

BET-N2 (Brunauer, Emmett and Teller) method (Gemini 2375 Surface Area Analyzer). The 
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point of zero charge (pHpzc) was determined for every mineral using the method of ref (24) 

(Table 4.1).  

 

Table 4.1. Characterization of commercial and synthesized iron minerals. 

 Commercial Fe(III) minerals Synthesized Fe(III) minerals 

 Lepidocrocite Goethite 6-l Ferrihydrite Lepidocrocite Goethite 

Multi-

point 

BET-N2 

(m
2
 g

-1
) 

17.34 9.12 140 169.9 27.02 

Particle 

size (µm) 
0.2-0.4 0.6-0.9 – 0.2-0.6 0.7-1.5 

pHpzc – 7.5 7.1 6.85 7.4 

 

4.3.2. Experimental Set-up 

 

Flow-through experiments with synthetic and commercial ferric (hydr)oxides in excess and 

dissolved sulphide were performed at pH 4 and 7 at room temperature. The solid 

concentration of the various Fe(III) (hydr)oxides was chosen to obtain the same total 

concentration of surface area as approximately 24 m
2
 L

-1
. The initial conditions for each 

Fe(III) mineral and pH are shown in Table 4.2. All reactions were conducted in a 250-mL 

glass vessel with ports for sampling and removals, pH electrode and temperature (see 

supporting information: Fig. S. 1). The reaction solution was stirred with a Teflon-coated 

stirring bar at constant rate. The sulphide stock solution of 150 to 340 µmol L
-1

 was stored in 

gas-tight aluminized PP/PE-bags (Tesseraux Spezialverpackungen GmbH, Bürstadt). To 

adjust the pH to 4 0.01 M Na-acetate/acetic was added to the sulphide stock solution. The pH 

of 7 was established using 0.015 M PIPES (piperazine-N,N’-bis{2-ethanesulfonic 

acid},dipotassium salt) buffer and NaOH. The H2S containing carrier solution flow through 

the reactor continuously with a flow of 0.003 L min
-1

. After the reactor was completely filled 

with the carrier solution, wet ferric (hydr)oxide was injected through a septum with a syringe. 

The syringe was flushed three times with the reactor solution after injection of the Fe(III) 

oxide. 

Samples were taken periodically for the determination of dissolved Fe(II), dissolved S(-II), 

dissolved sulphate, acid extractable Fe(II), total Fe, and total S(0). The samples were taken at 

the outflow and from the inside reaction solution through the septum. Before each run the 

concentration of dissolved sulphide were determined in the stock solution, in the inside of the 

reactor, and at the outflow of the reactor. 
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4.3.3. Chemical analyses 

 

The iron species were determined after addition of HCl using the phenanthroline method of 

ref (25). Dissolved Fe(II) (Fe(II)diss) was measured on filtered (0.45 µm) samples, while total 

iron (Fe(III)TOT) was measured on unfiltered samples. After the extraction of the solid phase 

bound Fe(II) (Fe(II)HCl) with 0.5 N HCl, the solution was filtered and Fe(II) was determined. 

Dissolved sulphide (S(-II)diss) was determined photometrically by methylene blue method of 

ref (26) after filtration. Elemental sulphur (S(0)) of the solid phase was measured by High 

Performance Liquid Chromatography (HPLC, Beckman) combined with UV detection 

(Detector 168, Beckman) after extraction with methanol. Therefore 300 µL unfiltered sample 

was suspend in 1200 µL methanol. After 1 h equilibration time the solution was filtered and 

stored at 4°C until measurement. Dissolved sulphate ( 2
4SO ) was determined turbidimetrically 

after ref (27). The method is not very sensitive with a detection of 10 µmol L
-1

. 

 

Table 4.2. Initial conditions for each run.  

Run 

no. 
Mineral pH Runtime 

Mineral 

concentration 

Surface 

area 

Initial sulphide 

concentration 

   (hours) (mmol L
-1

) (m
2
 L

-1
) (µmol L

-1
) 

14 Ferrihydrite 4 5.88 2.0 25.6 189 

16 Ferrihydrite 4 7.52 2.0 26.2 218 

15 Lepidocrocite 4 9.87 1.7 26.0 254 

18 Lepidocrocite 4 7.28 2.3 34.3 253 

10 Goethite 4 7.53 9.2 22.0 235 

11 Goethite 4 7.01 10.0 24.0 240 

12 Goethite 4 5 15.5 37.3 153 

13 Goethite 4 7.52 8.7 20.8 152 

20 
Bayferrox 

Lepidocrocite 
4 7.28 13.6 21.1 254 

21 
Bayferrox 

Lepidocrocite 
4 7.27 21.7 33.5 236 

17 Bayferrox Goethite 4 7.27 32.9 26.0 186 

19 Bayferrox Goethite 4 7.27 29.6 24.7 243 

4 Ferrihydrite 7 7 2.1 27.0 184 

7 Ferrihydrite 7 7.52 1.9 24.4 332 

3 Lepidocrocite 7 6.5 1.8 27.1 343 

6 Lepidocrocite 7 7.52 1.0 15.6 297 

2 Goethite 7 7.51 13.3 31.9 275 

8 Goethite 7 7.53 12.7 30.6 296 

22 
Bayferrox 

Lepidocrocite 
7 7.27 13.1 20.3 242 

23 
Bayferrox 

Lepidocrocite 
7 7.26 15.4 23.8 227 

1 Bayferrox Goethite 7 6.59 29.8 24.5 320 

5 Bayferrox Goethite 7 7.77 21.6 17.7 284 

9 Bayferrox Goethite 7 7.51 31.7 26.0 244 
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4.3.4. Data evaluation 

 

The reductive dissolution of ferric (hydr)oxides by dissolved sulphide can be described 

operationally by a second order kinetic law with respect to the surface area and initial 

dissolved sulphide concentration (3,13,18) 

 

Robs = 
dt

)SH(dc 2  = kobs_H2S c(H2S) A      (2) 

 

where Robs is the observed oxidation rate of H2S (mol L
-1

 min
-1

), kobs_H2S is the rate constant for 

the oxidation of sulphide (L m
-2

 min
-1

), c(H2S) the initial concentration of H2S (mol L
-1

), and A 

the concentration of surface area of Fe(III) mineral added (m
2
 L

-1
). 

 

In order to evaluate the experimental data with respect to kobs_H2S, we have developed a 

quantitative model for the time course of the concentration of H2S in the flow-through reactors. 

The model is based on the mass-balance for H2S in a linear flow through reactor (28) and can 

be written as 

 

)t(A)SH(ck
V

Q
)SH(c

V

Q
)SH(c

dt

)SH(dc
reactor2S2H_obsreactor2initial2

2   (3a) 

 = c(H2S)initial kw – (c(H2S)reactor (kw + kobs_H2S A(t)))  (3b) 

 

where c(H2S)initial is the initial H2S concentration (mol L
-1

), c(H2S)reactor is the concentration in 

the reactor (mol L
-1

), kw is the specific flow rate with kw = 
V

Q
. Q is the flow rate of the H2S 

carrier solution (0.003 L min
-1

) and V is the volume of the reactor (0.25 L), kobs_H2S is the 

unknown, and A(t) is the specific surface area of ferric (hydr)oxide (m
2
 L

-1
) depending on time. 

A(t) was explicitly derived for each time step as  

 

A(t) = As c(Fe(III)t        (4) 

 

in which As is the specific surface area (m
2
 g

-1
) and c(Fe(III)t is the solid Fe(III) concentration 

in suspension at a certain time step (g L
-1

). Fe(III)t was calculated by the following equation 

 

kt

initialt e))III(Fe(c))III(Fe(c        (5) 
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where c(Fe(III))initial is the initial concentration of Fe(III) added (m
2
 L

-1
), kFe(III) is the rate 

constant for the consumption of Fe(III) in the reactor (min
-1

), t is the time (min). kFe(III) was 

derived from the slope of the (natural) logarithm of numbers of the moles of consumed Fe(III). 

 

Equation 3b can be integrated to (28) 

 

)SH(c 2 = c(H2S)initial e
-k*t

 + c
∞
 (1-e

-k*t
)    (6) 

 

with k* = kw + kobs_H2S A(t) and c
∞
 = initial2

S2H_obsw

w )SH(c
))t(Akk(

k



. 

The parameter kobs_H2S was estimated by non-linear parameter fitting using the statistic 

software CoHort. 

 

In similar approach the rate constants for the formation of Fe(II) (kobs_Fe(II)) during the reaction 

of ferric (hydr)oxides with dissolved sulphide were derived after the following equation 

 

)e1(
k

)t(A
)SH(ck))II(Fe(c

)tk(

w

2)II(Fe_obs
w

    (7) 

 

4.4. Results 

4.4.1. Evolution of sulphur and iron species during reaction 

 

In the following we will demonstrate the chemical speciation during the reaction using the 

example of lepidocrocite. Additional ferric (hydr)oxides are given in supporting information 

(Fig S2-S9). Fig. 4.1 and 4.2 shows the typical temporal development of sulphur and ferrous 

iron during the reductive dissolution of lepidocrocite by dissolved sulphide at pH 4 and 7, 

respectively. The main products were S(0), dissolved Fe(II) and acid extractable Fe(II) which 

is consistent with previous studies (7-9,14). In each experiment, these species built up fast in 

the beginning of the experiment, followed by a slower decrease. Sulphate could not be 

detected in any experiment. 

 



Chapter 4 

90 

 

Fig. 4.1. The experimental outcome of the reaction between H2S and lepidocrocite at pH 4 (run 

18). Time zero corresponds to the addition of lepidocrocite. The evolution of dissolved sulphide 

during the reaction with lepidocrocite is shown in (A). The main products total S(0) and 

dissolved Fe(II) were monitored during the reaction (B). (C) shows the evolution of total Fe 

during the reaction. 

 

Fig. 4.1 shows the reaction between lepidocrocite (As = 34 m
2
 L

-1
, c = 2.3 mmol L

-1
) and 

dissolved sulphide (c = 253 µmol L
-1

) at pH 4. The addition of lepidocrocite leads to a rapid 

drop of dissolved sulphide with a minimum of 109 µmol L
-1

 after approximately 60 minutes. 

At the same time, the pH increased slightly from 4.15 to 4.28 and started to decrease again 

after 100 minutes to a value of 4.16. The main products were dissolved Fe(II) and S(0) that 

formed immediately. The concentration of dissolved Fe(II) had a maximum at 280 µmol L
-1

 

and S(0) at 140 µmol L
-1

 after 60 minutes with a stoichiometric Fe(II):S(0) ratio of 2:1.  
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Fig. 4.2. Experimental outcome of the reaction of H2S and lepidocrocite at pH 7 (run 3). Time 

zero corresponds to the addition of lepidocrocite. (A) shows the evolution of dissolved sulphide 

during the reaction with lepidocrocite. The main products total S(0), Fe(II)HCl, and dissolved 

Fe(II) were monitored during the reaction (B). (C) displays the evolution of total Fe during the 

reaction. 

 

At pH 7, immediately after the addition of lepidocrocite (As = 27.1 m
2
 L

-1
, c = 1.8 mmol L

-1
), 

dissolved sulphide (c = 343 µmol L
-1

) was consumed almost completely and started to 

increase again after 40 minutes (Fig. 4.2). Simultaneously, the pH increased from 6.90 to 6.93 

and achieved a value of 6.87 toward the end of the experiment. Contrary to the experiments 

performed at pH 4, the solution turned black after the addition of lepidocrocite to the reactor 

solution. Within the first 5 minutes of the reaction dissolved Fe(II) and acid extractable Fe(II) 

achieved a maximum concentration of 99 µmol L
-1

 and 642 µmol L
-1

, respectively. S(0) 

increased slower to approximately 340 µmol L
-1

. Fe(II)aq and S(0) species remained stable for 

150 minutes while Fe(II)HCl started to decrease after 5 minutes.  
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4.4.2. Rates of H2S oxidation and Fe(II) dissolution 

 

The simulated H2S concentration correspond well to the measured H2S concentration which 

implies that the surface complexation model for the oxidation rate of H2S underlying the 

simulations is valid throughout the entire experimental time span (Fig. 4.3). The calculated 

Fe(II) concentration correspond well to the measured Fe(II) concentration at pH 4. At pH 7 

the calculated Fe(II) concentration does not fit to the measured Fe(II) concentration due to 

some interferences at this pH. However, product formation did not lead to interferences which 

makes the flow-through reactor a suitable tool to investigate particularly the initial reaction 

kinetics. 

 

 

Fig. 4.3. The modeled H2S and Fe(II) concentration and measured H2S and Fe(II) concentration 

for the reductive dissolution of lepidocrocite at pH 4 (A, run 18) and at pH 7(B, run 3). 

 

The pH dependency of Fe(III) (hydr)oxide reactivity is well-established and occurs due to the 

formation of different surface species and due to the changes in the speciation of the dissolved 
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reactant (13,29). The observed reaction rate constants kobs_H2S and kobs_Fe(II) showed a strong 

pH dependency and also varied between the minerals over two orders of magnitude for pH 4 

and for pH 7 over three magnitudes. The reactivity coefficient kobs_(H2S) and kobs_Fe(II) 

normalized to the surface area decreases in the order ferrihydrite > lepidocrocite > goethite > 

Bayferrox lepidocrocite > Bayferrox goethite and ranged between 10
-3

 to 10
-4

 L min
-1

 m
-2

 for 

pH 4 (Table 4.3) while at pH 7 the reductive dissolution decrease in the sequence ferrihydrite 

~ lepidocrocite > Bayferrox lepidocrocite > goethite ~ Bayferrox goethite and ranged between 

10
-1

 to 10
-3

 L min
-1

 m
-2

 for pH 7 (Table 4.4). The reactivity coefficients kobs_H2S and kobs_Fe(II) 

suggest that the oxidation of sulphide and the formation of Fe(II) occurred at the same rate at 

both pH.  

Bayferrox lepidocrocite is contaminated with goethite which explains the lower kobs_H2S and 

kobs_Fe(II) compared to synthetic lepidocrocite. 

 

Table 4.3. The observed reaction constants kobs for the oxidation of sulphide and the formation 

of Fe(II) at pH 4. kobs is derived in terms of A. 

Mineral Run kobs_H2S 

Standard 

deviation 

(H2S) 

kobs_Fe(II) 

Standard 

deviation 

(Fe(II)) 

  (L min
-1

 m
-2

) (L min
-1

 m
-2

) (L min
-1

 m
-2

) (L min
-1

 m
-2

) 

Ferrihydrite  14 2.14 x 10
-3

 3.07x 10
-2

 7.39 x 10
-3

 7.72 x 10
-1

 

Ferrihydrite  16 5.05 x 10
-3

 2.04 x 10
-2

 1.64 x 10
-2

 3.89 x 10
-1

 

Lepidocrocite 15 8.00 x 10
-4

 1.24 x 10
-2

 1.57 x 10
-3

 4.64 x 10
-2

 

Lepidocrocite 18 1.50 x 10
-3

 2.02 x 10
-2

 3.45 x 10
-3

 3.20 x 10
-2

 

Goethite 10 9.89 x 10
-4

 6.63 x 10
-2

 1.34 x 10
-3

 1.16 x 10
-1

 

Goethite 11 1.03 x 10
-3

 2.10 x 10
-2

 1.36 x 10
-3

 7.73 x 10
-2

 

Goethite 12 4.23 x 10
-4

 1.96 x 10
-2

 9.10 x 10
-4

 3.28 x 10
-2

 

Goethite 13 1.40 x 10
-3

 3.78 x 10
-2

 1.49 x 10
-3

 3.86 x 10
-2

 

Bayferrox Lepidocrocite 20 4.53 x 10
-4

 7.46 x 10
-2

 4.92 x 10
-4

 9.91 x 10
-2

 

Bayferrox Lepidocrocite 21 2.06 x 10
-4

 2.09 x 10
-3

 4.21 x 10
-4

 1.02 x 10
-3

 

Bayferrox Goethite 17 1.62 x 10
-4

 9.91 x 10
-3

 1.30 x 10
-4

 4.38 x 10
-4

 

Bayferrox Goethite 19 5.79 x 10
-4

 1.69 x 10
-2

 2.17 x 10
-4

 7.40 x 10
-4

 

 

 

 

 

 

 

 

 

 



Chapter 4 

94 

Table 4.4. The observed reaction constants kobs for the oxidation of sulphide and the reductive 

formation of Fe(II) at pH 7. kobs is derived in terms of A. 

Mineral Run kobs_H2S 

Standard 

deviation 

(H2S) 

kobs_Fe(II) 

Standard 

deviation 

(Fe(II)) 

  (L min
-1

 m
-2

) (L min
-1

 m
-2

) (L min
-1

 m
-2

) (L min
-1

 m
-2

) 

Ferrihydrite  4 3.70 x 10
-1

 1.17 x 10
-2

 7.42 x 10
-1

 2.51 x 10
-2

 

Ferrihydrite  7 1.98 x 10
-2

 4.46 x 10
-2

 8.94 x 10
-2

 6.60 x 10
-1

 

Lepidocrocite 3 8.85x 10
-2

 3.84 x 10
-2

 1.47 x 10
-1

 9.22 x 10
-1

 

Lepidocrocite 6 2.12 x 10
-1

 2.69 x 10
-2

 1.98 x 10
-1

 2.50 x 10
-1

 

Goethite 2 4.86 x 10
-3

 3.56 x 10
-2

 3.24 x 10
-3

 1.11 x 10
-1

 

Goethite 8 5.03 x 10
-3

 6.24 x 10
-2

 2.84 x 10
-3

 9.43 x 10
-2

 

Bayferrox Lepidocrocite 22 2.32 x 10
-2

 7.83 x 10
-3

 3.07 x 10
-2

 6.53 x 10
-2

 

Bayferrox Lepidocrocite 23 2.31 x 10
-2

 8.48 x 10
-3

 3.56 x 10
-2

 1.05 x 10
-1

 

Bayferrox Goethite 1 7.90 x 10
-3

 1.27 x 10
-2

 7.08 x 10
-3

 1.78 x 10
-2

 

Bayferrox Goethite 5 3.04 x 10
-3

 2.94 x 10
-2

 1.66 x 10
-3

 1.26 x 10
-2

 

Bayferrox Goethite 9 2.16 x 10
-3

 2.10 x 10
-2

 2.79 x 10
-3

 1.46 x 10
-2

 

 

4.5. Discussion 

4.5.1. Electron balance during reaction 

 

The reaction between lepidocrocite and dissolved sulphide could be divided into three steps. 

In the initial phase, the majority of dissolved sulphide was rapidly consumed due to a pre-

equilibrium phase with respect to the sulphide adsorption at the oxide surface (18). In a 

second step, the H2S concentration remained constant until the reduction of ferric 

(hydr)oxides stopped followed by the third step, the increase of H2S. 

This reaction is described by the surface complexation model proposed by ref (18). According 

to this surface controlled reaction, the sum of Fe(II) phases should be double the 

concentration of sulphide oxidized, consistent with the conservation of electrons during the 

oxidation of sulphide to elemental sulphur (14).  
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Fig. 4.4. Ratios of Fe(II)tot:S(0) for ferrihydrite (fh), lepidocrocite (lp), goethite (gt), Bayferrox 

lepidocrocite (Blp), and Bayferrox goethite (Bgt) at pH 4 (A) and pH 7 (B) (Table S 1, S 2). 

 

The ratios of Fe(II)tot:S(0) during the reaction of ferric (hydr)oxides and dissolved sulphide at 

pH 4 and pH 7 are shown in Fig. 4.4 (Supporting information: Table S 1, S 2). The data show 

some scatter which is probably due to some analytical uncertainty. However, some general 

patterns can be derived.  

The initially ratios of Fe(II)tot:S(0) were >2 for ferrihydrite and the both lepidocrocites and the 

ratio of 2:1 was achieved between 30 to 100 minutes after starting the experiment (Table S 1, 

S 2). The ratio of Fe(II)tot:S(0) for the both goethites ranged between 0.3 to 1 at both pH (Fig. 

4.4). These observations suggest that the formation of S(0) and Fe(II) was decoupled.  

At each point of time, the formation of S(0) was higher than the formation of Fe(II) phases for 

goethite compared to lepidocrocite and ferrihydrite where the formation of Fe(II) was more 

than double the S(0) formation. In a previous study (20) we observed the same non-

stoichiometric ratios of Fe(II):S(0) which we explained by different lattice stabilities of the 

Fe(III) (hydr)oxides and by the surface complexation model. That is, first the adsorption of 

dissolved sulphide to the oxide surface which resulted in the formation of S(-I) and Fe(II). At 

pH 7 the most of the formed Fe(II) is associated to the Fe(III) oxide surface which leads to an 

electron transfer between the structural Fe(III) and the adsorbed Fe(II) (30-32). The recycled 
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Fe(III) at the surface is then available to oxidize an additional S(-II) ion or S(-I) ion. These 

interactions lead to excess-Fe(II) formation in the presence of ferrihydrite and lepidocrocite 

(20). The extent of excess-Fe(II) formation increases in the sequence goethite < lepidocrocite 

< ferrihydrite (20) which implies that a higher specific surface area emphasizes the formation 

of Fe(II). Furthermore, at circumneutral pH the precipitation of FeS occurs which trap S(-II) 

and thus, prevent its further oxidation which leads also to high Fe(II):S(0) ratios in the case of 

ferrihydrite and lepidocrocite.  

But in the presence of goethite, the adsorption of Fe(II) may occurs with or without an 

electron transfer (33). So, the Fe(II) remained at the goethite surface without an electron 

transfer and occupied the surface sites and so, prevent the further oxidation of S(-II) and S(-I). 

These processes may explain the observed low Fe(II):S(0) ratios in the reactor suspensions 

with goethite. Significantly, the underestimation of Fe(II) occurs at pH 4 as well as at pH 7. 

Another study (32) investigated the reaction of different hematite surfaces with Fe(II) at pH 3 

and pH 7 and observed that the structural transformations of hematite by Fe(II) are generally 

independent of pH but vary with crystallographic plane of hematite. They found out that the 

reaction between Fe(II) and hematite occurs at acidic pH values as well. This could be an 

explanation for the observed low concentrations of Fe(II) at pH 4 in the presence of goethite. 

The differences of Fe(II)tot:S(0) ratios implies that the Fe
2+

 detachment kinetic from Fe(III) 

(hydr)oxide surfaces control their reactivity and thus, the detachment of Fe
2+

 is the rate 

limiting step (9,14,18). These desorption kinetics are influenced by the thermodynamic 

stability of the Fe(III) solid phase. 

Similar observations were made in previous studies (8,9,12-14). At circumneutral pH the 

dominant oxidized sulphur product was S(0) and a part of reduced iron was bound to the solid 

phase FeS while a larger proportion remained at the oxide surface with or without an electron 

transfer. These different conditions of Fe
2+

 are attributed to the different ratios of Fe(II)tot:S(0) 

which may influence the redox potential of the reactor suspension and therefore the reactivity 

of the ferric (hydr)oxides. 

 

4.5.2. Variables controlling reactivity 

 

The results have demonstrated that the reactivity of Fe(III) oxides decreases in the sequence 

ferrihydrite > lepidocrocite > goethite follow a second rate order (Table 4.3, 4.4). The 

reactivity order follows the dissolution order of Fe(III) (hydr)oxides and is reverse to the 

order of the degree of crystallinity of ferric (hydr)oxides (34). Additionally, with increasing 
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specific surface area the reactivity of the Fe(III) (hydr)oxides increases. These observations 

are consistent with the findings of investigators who determined the reactivity of various 

ferric (hydr)oxides towards dissolved sulphide or ascorbic acid (7,14-16,18). Some of these 

studies suggest a pseudo-first order reaction with respect to the initial dissolved sulfide 

concentration (3,13,16). Other studies determined a reaction order of 1.5 for total dissolved 

sulphide during the formation of FeS (12) or a reaction order of 0.5 due to some interferences 

between Fe(II), H2S, and the surface at pH 7.5 (14). Prior studies suggest that the reactivity is 

largely controlled by the surface properties and sulphide concentration (3,9,13,18,35) while 

recent studies suggest that the crystallographic properties of ferric (hydr)oxides are the rate 

controlling step (14,16). 

In our experiments, the solid concentration of the various ferric (hydr)oxides was chosen to 

obtain the same total concentration of surface area as approximately 24 m
2
 L

-1
. Thus, in the 

initial phase of reaction the surface concentration is equal for all experiments. As the model 

fit demonstrates we have constant reaction conditions over the experiment period (Fig. 4.3). 

So, the different ferric (hydr)oxides can be directly compared with each other and the reaction 

is independent from the specific surface area but influenced by surface and crystal properties 

of each oxide. 

The mineral reactivity can be related to thermodynamic considerations (free energy). The 

dependency of the reductive dissolution of ferric (hydr)oxides on free energies has been 

stressed by several authors (4,7,14,18). We calculated the free energies for the following 

reactions  

 

2 FeOOH + H2S + 4 H
+
 → S(0) + 2 Fe

2+
 + 4 H2O     (8) 

2 Fe(OH)3 + H2S + 4 H
+
 → S(0) + 2 Fe

2+
 + 6 H2O     (9) 

2 FeOOH + 2 H2S + 4 H
+
 → S(0) + Fe

2+
 + FeS + 4 H2O    (10) 

2 Fe(OH)3 + 2 H2S + 4 H
+
 → S(0) + Fe

2+
 + FeS + 6 H2O    (11) 

 

The free energy values used for eq. 8-11 are listed in Table 4.5. It is commonly assumed that 

at pH 4 all Fe(II) is present as aqueous Fe
2+

. But the study of ref (32) found out that there are 

also interactions between Fe(II) and the structural Fe(III) at lower pH. At pH 7 there are 

complications due to the formation of FeS and the continued association of Fe(II) with the 

oxide surface. The free energy of associated Fe(II) to the oxide surface were not available 

from the literature. Hence, only the formation of FeS and dissolved Fe
2+

 are considered. 
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Table 4.5. 
fG  values of the three ferric (hydr)oxides used in eq. 8-11. 

 
fG  (kJ mol

-1
) Reference 

Ferrihydrite (Fe(OH)3) -711 (36) 

Lepidocrocite (γ-FeOOH) -480.1 (37) 

Goethite (α-FeOOH) -490.6 (38) 

FeSamorphous -21.3 (39) 

 

To compare the minerals among each other, the intrinsic rate constants kintr for the oxidation 

of sulphide normalized to the surface species were estimated after the following equation (7) 

 

Robs = kintr βFeOH,ox αH2S STOT As c(FeOOH) c(H2S)tot KAds    (12) 

 

where Robs is the observed reaction rate (mol L
-1

 min
-1

), kintr is the intrinsic rate coefficient for 

the oxidation of H2S (min
-1

) βFeOH,ox is the fraction of surface sites >FeOH, which depends on 

both surface charge and the intrinsic acidity constants of the respective oxide (-),αH2S is the 

protolysis coefficient of the species H2S (-), STOT is the site density (3.75*10
-6

 mol m
-2

), As is 

the specific surface area (m
2
 g

-1
), c(FeOOH) is the concentration of the oxide (g L

-1
), c(H2S)tot 

is the initial concentration of H2S in the reactor solution, and KAds is the adsorption constant 

(10
2.82

 L mol
-1

).  

Setting eq. 12 equal to eq. 2, one obtains 

 

kobs = kintr βFeOH,ox αH2S STOT KAds      (13a) 

  AdsTOTS2H

ox,FeOH

obs
rint KS

k
k 


        (13b) 

 

βFeOH,ox was calculated by using PHREEQC described in supporting information. 
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Fig. 4.5. Relationship between the logarithm of intrinsic rate constant k and the free energies for 

the reactions of the ferrihydrite (fh), lepidocrocite (lp), goethite (gt), Bayferrox lepidocrocite 

(Blp), and Bayferrox goethite (Bgt) with dissolved sulphide at pH 4 (A, eq. 8-9) and pH 7 (B, eq. 

10-11). 

 

Fig. 4.5 displays a significant relationship between the intrinsic rate constant kintr and the free 

energies. For both pH the intrinsic reaction coefficients decrease with increasing free energies 

which implies that kintr increases at more negative ΔG values (14,18). Comparison of Fig. 

4.5A and 4.5B showed that the reactivity at pH 7 are stronger influenced by free energy than 

at pH 4. 

However, there are a number of uncertainties inherent in the derivation of Fig. 4.5. The 

weakest influence may arise from βFeOH,ox due to its low variation between the Fe(III) 

(hydr)oxides (Supporting information: Table S 3). Also, the validity of KAds is unknown. The 

value was derived as fitting parameter in a study of H2S and hematite (18) and may bear 

uncertainty in itself. Moreover KAds may reflect a mean adsorption constant integrating over 

different crystal faces. The relative importance of each of these species may vary significantly 

(33). Also the calculation of free energies is associated with severe uncertainties particularly 

since the role of the redox potential of surface associated Fe(II) is not understood (see section 
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4.5.1.). The observed ratios of Fe(II)tot:S(0) implies that Fe(II) inhibit the reactivity of goethite 

while the association of Fe(II) to the ferrihydrite and lepidocrocite surface seems to be 

accelerate their reductive dissolution by dissolved sulphide. So, the reactivity of Fe(III) 

(hydr)oxides is largely control by mineral properties. Association of Fe(II) with the oxide 

surface or even uptake in bulk structure may affect conduction band bending and significantly 

affect the energies of the conduction band and thus, the semiconducting properties (40). Large 

differences in energy between the donor and acceptor levels resulted in a slow electron 

transfer as in the presence of goethite (41). This means, that the reactivity of ferric 

(hydr)oxides are influenced by their adsorption properties and the electron properties and 

accordingly by the dynamics of Fe(II). Thus, the formed Fe(II) and its further reaction to FeS 

or its interaction with the oxide surface control the reaction between ferric (hydr)oxides and 

dissolved sulphide.  

Research is required to identify the mineral specific variation in reactivities also in 

quantitative terms such as the Fe(II) variations of Fe(III) oxides.  
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Experimental set-up 

 

The fluidized bed reactor (Fig. S 1) was developed to determine the reaction rates of various 

Fe(III) (hydr)oxides. The glass frit was added to prevent the export of the Fe(III) (hydr)oxide 

particles. The Teflon-coated stirring bar was kept in a frame to prevent the mechanical 

pulverization of the Fe(III) (hydr)oxide particles. 

 

 

Fig. S 1. Experimental set-up. 
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Reaction of Fe(III) oxides with H2S 

 

The evolution of sulphur and iron species during the reaction of various ferric (hydr)oxides 

with dissolved sulphide at pH 4 and pH 7 (Fig. S2-S9): 

 

 

Fig. S 2. Ferrihydrite, pH 4 (Run 16). 
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Fig. S 3. Ferrihydrite, pH 7 (Run 7) 
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Fig. S 4. Goethite, pH 4 (Run 10) 
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Fig. S 5. Goethite, pH 7 (Run 2). 
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Fig. S 6. Bayferrox Lepidocrocite, pH 4 (Run 20). 
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Fig. S 7. Bayferrox Lepidocrocite, pH 7 (Run 23) 
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Fig. S 8. Bayferrox Goethite, pH 4 (Run 19) 
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Fig. S 9. Bayferrox Goethite, pH 7 (Run 9) 
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Table S 1. Ratios of ΔFe(II)tot:ΔS(0) for all minerals for each point of time during the reaction of 

ferric (hydr)oxides and dissolved sulphide at pH 4. 

 ΔFe(II)tot:ΔS(0) 

Time Ferrihydrite Lepidocrocite Goethite 
Bayferrox 

Lepidocrocite 

Bayferrox 

Goethite 

(min) Run 16 Run 18 
Run 

10 

Run 

11 

Run 

20 

Run 

21 
Run 19 

1 3 0.4 0.4 0.2 2.6 13  

15 2.4 2.2    1 0.4 

30 5.2 2.2 0.7 1.2 8 1.7 0.7 

45 2.2 2.2   5.6 1.5 0.8 

60 1.5 2 0.6 1 3 1.4 0.4 

75   0.5     

90    0.7    

105 1.9 1.8 0.3  2 1 0.6 

120  1.4  0.6    

135 1.4 1.4 0.3  1.8 1.2 0.3 

150    0.7    

165 1.4 3 0.3  2.6 1.3 0.4 

180   0.2 0.7    

195  1.7   2.4 0.9 0.5 

210 1.3  0.2 0.7    

225  1.4   2.1 2.1 0.4 

240 1.6  0.1 0.6    

255  1.8   2.7 1.1 0.2 

270 1.8  0.1 0.6    

285  1.9   1.6 0.5 0.4 

300 1.6  0.1 0.8    

315  1.8   2.6 0.6 0.3 

330 2.1  0.1 0.6    

345  2.3   4 0.6 0.2 

360 1.4  0.1 0.8    

375  1.5   1.2 1.2  

390 1.7  0.1 0.7    

405  1.4   1.8 0.4 0.4 

420 1.8  0.1 0.7    

435  1.5   1.2 2 0.3 
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Table S 2. Ratios of ΔFe(II)tot:ΔS(0) for all minerals for each point of time during the reaction of 

ferric (hydr)oxides and dissolved sulphide at pH 7. Fe(II) consisted of the sum of dissolved Fe(II) 

and acid extractable Fe(II). 

 ΔFe(II)tot:ΔS(0) 

Time Ferrihydrite Lepidocrocite Goethite 
Bayferrox 

Lepidocrocite 
Bayferrox Goethite 

(min) 
Run 

4 

Run 

7 
Run 3 Run 6 

Run 

2 

Run 

8 

Run 

22 

Run 

23 

Run 

1 

Run 

5 

Run 

9 

1 1.9 1.6 2.9 1.6  0.8 3.2 4.3  0.7 0.4 

5     1.2    0.5   

30 1.9 2.1 2.3 1.3 1 0.8 2.8 1.9 0.5 1.2 0.7 

60 1.9 1.3 1.6 1.1 0.9 0.7 2.7 1.9 0.4 0.7 0.8 

90 1.6  1.8  0.6 0.5  1.7 0.3 0.5 0.8 

105       3.3 1.3    

120 1.6  1.5   0.4   0.3 0.4 0.6 

135  1.4  1   1.7 2    

150 1.5 1 1.3 0.8 0.6 0.4    0.4 0.5 

165  1  0.8   1.9     

180 1  1.2 0.6 0.5 0.4   0.2  0.6 

195       1.4 1.2  0.4  

210 1.2 0.8 1 0.4 0.5 0.3   0.2  0.4 

225       1.6 1.5  0.3  

240 1.2 0.7 0.8 0.6  0.3   0.2  0.5 

255       1.5 1.1  0.4  

270  0.6 1.1 0.3  0.4   0.2  0.7 

285       1.4 0.9  0.3  

300 1.2 0.6 0.5 0.3 0.4 0.3   0.2  0.4 

315       1.4 1.1  0.4  

330 0.9 0.5 0.3 0.3 0.3 0.3   0.2  0.5 

345       1.6 1  0.3  

360 0.8 0.5 0.3  0.4 0.4   0.1  0.8 

375       2.6 0.8  0.2  

390 0.8 0.5 0.2 0.3 0.3 0.5   0.1  1 

405       0.9 1.1  0.3  

420 0.8 0.5  0.3 0.3 0.3     0.6 

435       0.9 0.8  0.2  

450  0.4  0.3 0.3 0.3     1.1 

465          0.2  
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The intrinsic rate constant 

 

The intrinsic rate coefficient was calculated for each Fe(III) oxide by using eq. 13b. The 

fraction of reactive surface sites βFeOH,ox was simulated by PHREEQC and by {FeOH}tot and 

pKa values at pH 4 and 7. Table S 3 shows the values for the calculation of βFeOH,ox. 

{FeOH}tot can be written as 

 

{FeOH}tot = Stot As c(FeOOH)      (14) 

 

where Stot is the site density (3.75*10
-6

 mol m
-2

), As is the specific surface area (m
2
 g

-1
) and 

c(FeOOH) is the concentration of the oxide (g L
-1

). The values of {FeOH}tot for each mineral 

at the given pH are listed in Table S 3. 

 

The pKa1 and pKa2 values were calculated by using PHREEQC according the following 

equation 

 

))PHREEQC(pK)PHREEQC(pK(
2

1
()oxide(pH)oxide(pK;pK 1a2apzc2a1a   (15) 

   = pHpzc ± 0.82 

 

The simulated pKa values for each Fe(III) mineral are listed in Table S 3. 

 

Table S 3. Used values for the estimation of βFeOH,ox. The pKa values were also estimated by using 

PHREEQC and eq. 15.  

  Synthesized oxides 
Commercial oxides 

(Bayferrox) 

  Ferrihydrite Lepidocrocite Goethite Lepidocrocite Goethite 

specific surface area 

(multi point BET-

N2) (m
2
 g

-1
) 

140 169.9 27.02 17.34 9.12 

pHpzc 7.1 6.85 7.4 6.85 7.5 

pKa1 6.28 6.03 6.58 6.03 6.68 

pKa2 7.92 7.67 8.22 7.67 8.32 

βFeOH,ox pH 4 0.717 0.734 0.689 0.734 0.676 

βFeOH,ox pH 7 0.768 0.768 0.767 0.768 0.767 

{FeOH}tot (mol L
-1

) 9.61*10
-5

 9.56*10
-5

 7.8*10
-5

 7.8*10
-5

 8.89*10
-5

 

mass (g L
-1

) 0.18 0.15 0.77 1.2 2.6 

 

Table S 4 shows the calculated kintr values. 
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Table S 4. Used values for Fig. 4.5. 

Oxide 
Run 

no. 
pH kintr log kintr ΔG° 

   (min
-1

) (min
-1

) (kJ mol
-1

) 

Ferrihydrite 14 4 6.77E-06 -5.11 -156.75 

Ferrihydrite 16 4 1.93E-05 -4.73 -156.75 

Lepidocrocite 15 4 3.00E-06 -5.53 -143.5 

Lepidocrocite 18 4 5.18E-06 -5.26 -143.5 

Goethite 10 4 3.81E-06 -5.44 -121.4 

Goethite 11 4 3.38E-06 -5.42 -121.4 

Goethite 12 4 1.39E-05 -5.81 -121.4 

Goethite 13 4 4.47E-06 -5.29 -121.4 

Bayferrox Lepidocrocite 20 4 7.79E-07 -5.78 -120.23 

Bayferrox Lepidocrocite 21 4 1.91E-07 -6.12 -120.23 

Bayferrox Goethite 17 4 1.59E-06 -6.23 -116.79 

Bayferrox Goethite 19 4 8.89E-07 -5.67 -116.79 

      

Ferrihydrite 4 7 7.16E-04 -3.19 -106.5 

Ferrihydrite 7 7 1.42E-04 -4.46 -106.5 

Lepidocrocite 3 7 1.70E-04 -3.81 -93.49 

Lepidocrocite 6 7 5.09E-04 -3.43 -93.49 

Goethite 2 7 8.60E-06 -5.07 -71.22 

Goethite 8 7 9.38E-06 -5.05 -71.22 

Bayferrox Lepidocrocite 22 7 4.41E-05 -4.39 -71.77 

Bayferrox Lepidocrocite 23 7 4.34E-05 -4.39 -71.77 

Bayferrox Goethite 1 7 3.69E-05 -4.86 -69.5 

Bayferrox Goethite 5 7 5.36E-06 -5.27 -69.5 

Bayferrox Goethite 9 7 3.88E-06 -5.42 -69.5 
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5. Conclusion 

 

The primary goal of this study was to establish a generalized kinetic model for the abiotic 

anaerobic H2S oxidation by ferric (hydr)oxides in the pH range of 4 to 7. In particular the 

main objectives were (i) the determination of the reaction rate coefficients of various ferric 

(hydr)oxides towards dissolved sulphide with regard to different pH and their influencing 

factors, (ii) identify the processes occurring at the ferric (hydr)oxide surfaces by chemical 

analysis, spectroscopy and microscopy measurements, (iii) elucidate the role and dynamics of 

Fe
2+

 and its various species, and (vi) improve our understanding of the pathway of pyrite 

formation. 

 

Batch experiments with various ferric minerals and dissolved sulphide suggested that the 

reaction progress was highly dynamic and occurs at different reaction rates with pyrite as the 

final product. On the basis of wet chemistry the reaction of Fe(III) oxides with dissolved 

sulphide could be divided into three phases: (i) dissolved sulphide was rapidly consumed and 

S(0) and acid extractable Fe(II) were generated, (ii) a continuous but slower formation of S(0) 

and acid extractable Fe(II), and (iii) decrease of acid extractable Fe(II) and S(0) due to the 

formation of pyrite. The reactivity of the used Fe(III) oxides decreased in the order of 

ferrihydrite ~ lepidocrocite > goethite whereby dissolved sulphide was consumed within the 

first 15 minutes in the experimental solution of ferrihydrite and lepidocrocite. Goethite 

requires more than 5 hours to consume dissolved sulphide completely.  

It could be shown that FeS was formed at the oxide surfaces in the first phase of reaction. In 

the case of lepidocrocite and goethite the FeS consisted of mackinawite while only 

amorphous FeS was formed in the experimental solution of ferrihydrite. TEM measurements 

revealed also an interfacial magnetite layer between mackinawite and lepidocrocite. The 

magnetite layer can be seen as an intermediate stage linking two reactions, the formation of 

mackinawite which reduces ferric iron at the lepidocrocite surface on one hand and the 

transport of electrons in the deeper regions of the lepidocrocite bulk crystal on the other hand. 

The electrons appeared to be transferred between lepidocrocite and mackinawite through 

magnetite as an interfacial layer acting as an “electron shuttle”. With proceeding reaction, 

TEM measurements indicated that mackinawite completely dissolved from the surface of 

lepidocrocite while the precipitation of pyrite occurred separated from the lepidocrocite 

surface, as well as, for the other minerals. The pyrite formation is coupled to mackinawite 
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dissolution and probably accompanied by the formation of FeS clusters and polysulphides that 

serve as precursors. Although, the pyrite formation may also occurred via a reaction of FeS 

with dissolved Fe
2+

. The exact pathway of the pyrite formation in this study could not be 

clarified. Concluding, the kinetics of precursor formation from reductive dissolution of ferric 

(hydr)oxides by hydrogen sulfide and the subsequently pyrite formation are kinetically 

decoupled.  

This study has also demonstrated that the amount of excess-Fe(II) differed for each mineral 

which depends on their electron transfer properties and on their ability to accommodate Fe(II) 

within the structure. The production of excess-Fe(II) was more facilitated for ferrihydrite and 

lepidocrocite due to their higher specific surface area compared to goethite. When dissolved 

sulphide was completely consumed, the system evolution and the type and concentrations of 

secondary minerals being formed dependent on the amount of excess-Fe(II) and on the 

reactivity of the remaining Fe(III) (hydr)oxide phase. This means, that the lower solubility of 

goethite and lepidocrocite relative to ferrihydrite resulted in lower aqueous Fe(III) and 

aqueous Fe(II) concentration. Thus, we observed for both minerals only the pyrite formation, 

for lepidocrocite the magnetite formation as well and the host minerals remained. Only small 

amounts of goethite were transformed to hematite. Within 2 weeks, ferrihydrite was 

transformed completely via dissolution-precipitation processes into new and more stable 

phases such as hematite, magnetite, and pyrite.  

The geochemical reaction sequences of the processes for the different ferric (hydr)oxides 

occurred at different reaction kinetics based on different sulphide sources (dissolved S(-II), 

FeS). The extent of transformation depends on the current ferric (hydr)oxide and the 

production of excess-Fe(II). Furthermore, the presence of excess-Fe(II) seems to stimulate 

pyrite formation. 

 

The mechanisms for the reductive dissolution of ferric (hydr)oxides towards dissolved 

sulphide have been studied in detail (Canfield et al., 1992; Dos Santos Afonso and Stumm, 

1992; Peiffer et al. 1992; Peiffer and Gade, 2007; Poulton et al., 2004; Pyzik and Sommer, 

1981; Yao and Millero, 1996). These studies were carried out as batch experiments and 

determined an initial rate for the reaction, while the surface properties of Fe(III) oxides were 

considered constant. Contrary, in the current study a flow-through reactor was developed in 

which initial conditions at every point in time and the reaction coefficients kobs are determined 

by the decrease of the surface area in the reactor.  
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The experiments showed that the mineral reactivity decreased in the sequence ferrihydrite > 

lepidocrocite > goethite following a second order rate law. kobs for the oxidation of sulphide 

(kobs_H2S) and the formation of Fe(II) (kobs_Fe(II)) increased with pH and specific surface area 

and it seems, that minerals with a lower crystal degree and a higher surface area are more 

reactive than minerals with a higher crystal degree. Furthermore, it could be shown, that there 

is a relationship between kintr for the oxidation of sulphide and free energy of the Fe(III) solid 

phase.  

The flow-through experiments validate the results of the batch experiments and showed also 

the decoupled formation of Fe(II) and S(0) during the reaction. This decoupling can be 

explained by the surface complexation model. That is, first the adsorption of dissolved 

sulphide to the Fe(III) (hydr)oxide surfaces which resulted in the formation of Fe(II) and S(-

I). At circumneutral pH, Fe(II) remained at the surface while S(-I) is released into solution. In 

the presence of ferrihydrite and lepidocrocite, the Fe(II) interact with the structural Fe(III) 

which lead to an electron transfer between them. The new Fe(III) surface is then available to 

oxidize another S(-II) or S(-I) ion. Due to this incorporation of Fe(II) into the bulk crystal, 

Fe(II) is formed in excess. Results suggested, that Fe(II) accelerate the reductive dissolution 

of ferrihydrite and lepidocrocite by dissolved sulphide. Although, goethite behaved 

differently; the adsorption of Fe(II) occurred without an electron transfer. Fe(II) seems to be 

inhibiting the reactivity of goethite.  

The Fe(II) which is either associated with the oxide surface or incorporated into the bulk 

crystal may affect the redox potential of the reaction suspension, which in turn, affects the 

semiconducting properties of Fe(III) oxides and thus, their reactivity. Hence, the reactivity 

depends on different lattice stabilities of the Fe(III) solid phases and on the dynamics of 

Fe(II). Thus, the formed Fe(II) and its further reaction to FeS or its interaction with the oxide 

surface control the reaction of ferric (hydr)oxides and dissolved sulphide. 

 

However, these results are a major simplification compared to what happens in a natural 

environment, where often a significant part of the iron oxide present is reduced (Larsen and 

Postma, 2001; Postma, 1993). In natural sediments, the most reactive ferric (hydr)oxides will 

be removed resulting in changes in the mineralogy and the particle size distribution of the 

remaining pool of ferric (hydr)oxides. Furthermore, the reactivity of ferric (hydr)oxide 

reduction will decrease, and is in natural environments affected by intrinsic reactivity, the 

effectiveness of the reducing agent, and by microbial catalysis (Postma, 1993). Thus, 

experiments with natural sediments consisting of various ferric (hydr)oxides are important, as 
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well as, experiments with ferric (hydr)oxides in the absence and presence of iron reducing 

bacteria. As such, understanding the factors influencing the reductive dissolution of ferric 

(hydr)oxides by dissolved sulphide provides a framework for further flow-through 

experiments to predict the reductive dissolution of ferric (hydr)oxides in natural systems and 

to establish a generalized kinetic model. Furthermore, secondary mineralization pathways in 

sulphide-rich systems are complex and involve an interplay between a number of geochemical 

factors and competing Fe(II)-induced mineralization pathways. Therefore further 

investigations on the reaction of ferric (hydr)oxides and dissolved sulphide are necessary; e.g. 

the influence of organic matter should be further investigated. Furthermore, research is 

required to identify the mineral specific variation in reactivities also in quantitative terms such 

as the Fe
2+

 variations of Fe(III) oxides. 

 

The current work provides an improved understanding of the possible reaction pathways of 

ferric (hydr)oxides in sulphide-rich systems involved the interaction of Fe(II) with the oxide 

surface and with dissolved sulphide. The study imply, that in aqueous systems enriched with 

iron and periodically formation of sulfide (e.g. movement of the capillary fringe in ground 

waters, inundation of coastal plains), ferric hydroxides may undergo “charging” with reduced 

substances that may lead to pyrite (and magnetite) formation, even in the absence of dissolved 

sulfide. Furthermore, the understanding of pyrite formation kinetics in these environments 

under these conditions is related to the nature of FeS clusters species, their transformation into 

precursor substances for pyrite precipitation, and their physical behaviour in terms of aqueous 

solubility and diffusivity. Also the dynamics and nature of Fe
2+

 species are related to the 

pyrite formation and contribute to the understanding of kinetics of pyrite formation. 

As illustrated in the introduction, ferric (hydr)oxides can adsorb potential contaminants such 

as arsenic, phosphate, uranium, removing them from the hydrosphere and biosphere. As such, 

knowledge of the stability of ferric (hydr)oxides are important for containing these 

contaminants. For example, the reaction sequences in the batch experiments have implications 

for the retention of toxic metals by adsorption on nanocrystalline mackinawite. These toxic 

metals may get mobilized by further reaction to pyrite.  
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Contribution to the different studies 

 

Study 1 

Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces 

 

K. Hellige   55 % Laboratory work, Manuscript preparation 

K. Pollok   15 % TEM analysis, Discussion of results 

P. Larese-Casanova  5 % Mössbauer spectroscopy analysis, Discussion of results 

T. Behrends   5 % Concept, Discussion of results, Manuscript preparation 

S. Peiffer   20 % Concept, Discussion of results, Manuscript preparation 

 

Study 2 

The influence of structural properties of ferric hydroxides 6-line ferrihydrite, lepidocrocite, 

and goethite on reaction pathways with sulphide 

 

K. Hellige   55 % Laboratory work, Manuscript preparation 

K. Pollok   15 % TEM analysis, Discussion of results 

P. Larese-Casanova  5 % Mössbauer spectroscopy analysis, Discussion of results 

T. Behrends   10 % Concept, Discussion of results, Manuscript preparation 

S. Peiffer   15 % Concept, Discussion of results, Manuscript preparation 

 

Study 3 

Intrinsic rate constants for the abiotic oxidation of sulfide by various ferric hydroxides 

 

K. Hellige   85 % Laboratory work, Manuscript preparation 

S. Peiffer   15 % Concept, Discussion of results, Manuscript preparation 

 

 

The studies are based on each other. Hence, study 2 will be submitted when the first study is 

accepted and the third study will be submitted when the first ones are accepted. 
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