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ABSTRACT. A vector space partition of Fvq is a collection of subspaces such that every non-zero vector is contained in a
unique element. We improve a lower bound of Heden, in a subcase, on the number of elements of the smallest occurring
dimension in a vector space partition. To this end, we introduce the notion of qr-divisible sets of k-subspaces in Fvq . By
geometric arguments we obtain non-existence results for these objects, which then imply the improved result of Heden.

1. INTRODUCTION

Let q > 1 be a prime power, Fq be the finite filed with q elements, and v a positive integer. A vector space partition P
of Fvq is a collection of subspaces with the property that every non-zero vector is contained in a unique member of P .
If P contains md subspaces of dimension d, then P is of type kmk . . . 1m1 . We may leave out some of the cases with
md = 0. Subspaces of dimension d are also called d-subspaces. 1-subspaces are called points, (v − 1)-subspaces are
called hyperplanes, and each k-subspace contains

[
k
1

]
q

:= qk−1
q−1 points. So, in a vector space partition P each point

of the ambient space Fvq is covered by exactly one point of one of the elements of P . An example of a vector space
partition is given by a k-spread in Fvq , where

[
v
1

]
q
/
[
k
1

]
q
k-subspaces partition the set of points of Fvq . The corresponding

type is given by kmk , where mk =
[
v
1

]
q
/
[
k
1

]
q
. If k divides v then considering the points of Fv/k

qk
as k-dimensional

subspaces over Fq gives a construction of k-spreads. If k does not divide v, then no k-spreads exist. Vector space
partitions of type kmk1m1 are known under the name partial k-spreads. More precisely, a partial k-spread in Fvq is a
set K of k-subspaces such that each point of the ambient space Fvq is covered at most by one of its elements. Adding
the set of uncovered points, which are also called holes, gives a vector space partition of type kmk1m1 . Maximizing
mk = #K is equivalent to the minimization of m1. If d1 is the smallest dimension with md1 6= 0, we call md1 the
length of the tail and call the set of the corresponding d1-subspace the tail. Vector space partitions with a tail of small
length are of special interest. In [4] Olof Heden obtained:

Theorem 1. (Theorem 1 in [4]) Let P be a vector space partition of type dl
ul . . . d2

u2d1
u1 of Fvq , where u1, u2 > 0

and dl > · · · > d2 > d1 ≥ 1.

(i) If qd2−d1 does not divide u1 and if d2 < 2d1, then u1 ≥ qd1 + 1;
(ii) if qd2−d1 does not divide u1 and if d2 ≥ 2d1, then either d1 divides d2 and u1 =

[
d2
1

]
q
/
[
d1
1

]
q

or u1 > 2qd2−d1 ;
(iii) if qd2−d1 divides u1 and d2 < 2d1, then u1 ≥ qd2 − qd1 + qd2−d1 ;
(iv) if qd2−d1 divides u1 and d2 ≥ 2d1, then u1 ≥ qd2 .

Moreover, in Theorem 2 and Theorem 3 he classified the possible sets of d1-subspaces for u1 = qd1 + 1 and
u1 =

[
d2
1

]
q
/
[
d1
1

]
q
, respectively. The results were obtained using the theory of mixed perfect 1-codes, see e.g. [6].

In [2] the authors improved a lower bound of Heden on the size of inclusion-maximal partial 2-spreads by translating
the underlying techniques into geometry. Here we improve Theorem 1(ii). The underlying geometric structure is the
setN of d1-subspaces of a vector space partition P of type dlul . . . d2

u2d1
u1 . For d1 this is just a set of points in Fvq . It

can be shown that the existence ofP implies #N ≡ # (N ∩H) (mod qd2−1) for every hyperplaneH of Fvq , see e.g.
[7]. Taking a vector representation of the elements of N as columns of a generator matrix, we obtain a corresponding
(projective) linear code C over Fq . The modulo constraints for N are equivalent to the property that the Hamming
weights of the codewords of C are divisible by qd2−1. The study of so-called divisible codes, where the Hamming
weights of the codewords of a linear code are divisible by some factor ∆ > 1, was initiated by Harold Ward, see e.g.
[9]. The MacWilliams identities, linking the weight distribution of a linear code with the weight distribution of its
dual code, can be relaxed to a linear program. Incorporating some information about the weight distribution of a linear
code may result in an infeasible linear program, which then certifies the non-existence of such a code. This technique
is known under the name linear programming method for codes and was more generally developed for association
schemes by Philip Delsarte [3]. In [8] analytic solutions of linear programs for projective qr-divisible linear codes
have been applied in order to compute upper bounds for partial k-spreads. Indeed, all currently known upper bounds
for partial k-spreads can be deduced from this method, see [7] for a survey.
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Here, we generalize the approach to the case d1 > 1 by studying the properties of the set N of d1-subspaces of a
vector space partition P of Fvq of type dlul . . . d2

u2d1
u1 in Section 2. It turns out that we have #N ≡ #(N ∩ H)

(mod qd2−d1) for every hyperplane H of Fvq , see Lemma 3, which we introduce as a definition of a qd2−d1 -divisible
set of k-subspaces with trivial intersection. By elementary counting techniques we obtain a partial substitute for the
MacWilliams identities, see the equations (1) and (2). These imply some analytical criteria for the non-existence of
such sets N , which are used in Section 3 to reprove Theorem 1. By an improved analysis we tighten Theorem 1 to
Theorem 12. More precisely, the second lower bound of Theorem 1(ii) is improved. We close with some numerical
results on the spectrum of the possible cardinalities of N and pose some open problems.

2. SETS OF DISJOINT k-SUBSPACES AND THEIR INCIDENCES WITH HYPERPLANES

For a positive integer k letN be a set of pairwise disjoint, i.e., having trivial intersection, k-subspaces in Fvq , where we
assume that the k-subspaces fromN span Fvq , i.e., v is minimally chosen. By ai we denote the number of hyperplanes
H of Fvq with #(N ∩H) := #{U ∈ N : U ≤ H} = i and set n := #N . Due to our assumption on the minimality
of the dimension v not all n elements from N can be contained in a hyperplane. Double-counting the incidences of
the tuples (H), (B1, H), and (B1, B2, H), where H is a hyperplane and B1 6= B2 are elements of N contained in H
gives:

n−1∑
i=0

ai =

[
v

1

]
q

,

n−1∑
i=0

iai = n ·
[
v − k

1

]
q

, and
n−1∑
i=0

i(i− 1)ai = n(n− 1) ·
[
v − 2k

1

]
q

. (1)

For three different elements B1, B2, B3 ofN their span 〈B1, B2, B3〉 has a dimension i between 2k and 3k. Denoting
the number of corresponding triples by bi, double-counting tuples (B1, B2, B3, H), where H is a hyperplane and
B1, B2, B3 are pairwise different elements of N contained in H , gives:

n−1∑
i=0

i(i− 1)(i− 2)ai =

3k∑
i=2k

bi

[
v − i

1

]
q

and
3k∑
i=2k

bi = n(n− 1)(n− 2). (2)

Given parameters q, k, n, and v the so-called (integer) linear programming method asks for a solution of the equation
system given by (1) and (2) with ai, bi ∈ R≥0 (ai, bi ∈ N). If no solution exists, then no corresponding set N can
exist. For k = 1 the equations from (1) and (2) correspond to the first four MacWilliams identities, see e.g. [7].

If there is a single non-zero value ai the system can be solved analytically.

Lemma 2. If ai = 0 for all i 6= r > 0 and k < v in the above setting, then there exists an integer s ≥ 2 with v = sk

and N is a k-spread. Additionally we have r = qv−k−1
qk−1

.

PROOF. Solving (1) for r, ar, and n gives n = q2v−k−qv−qv−k+1
qv−qv−k−qk+1

. Writing v = sk+ t with s, t ∈ N and 0 ≤ t < k we

obtain n =
∑s
i=1 q

v−ik + qv−k+t−qv−k−qt+1
qv−qv−k−qk+1

. Since n ∈ N and 0 ≤ qv−k+t − qv−k − qt + 1 < qv − qv−k − qk + 1

we have qv−k+t − qv−k − qt + 1 = 0 so that t = 0 and n = qv−1
qk−1

. Counting points gives that N partitions Fvq . �

We remark that r = 0 forces n ∈ {0, 1} so thatN is empty or consists of a single k-subspace in Fkq and v = k implies
the latter case. So, these degenerated cases correspond to s ∈ {0, 1} in Lemma 2. As pointed out after [4, Theorem
2], such results can be proved in different ways. While the case that only one ai is non-zero is rather special, we can
show that many ai are equal to zero in our setting.

Lemma 3. Let P be a vector space partition of type dl
ul . . . d2

u2d1
u1 of Fvq , where u1, u2 > 0, and let N be the set

of d1-subspaces. Then, we have #N ≡ #(N ∩H) (mod qd2−d1) for every hyperplane H of Fvq .

PROOF. For each U ∈ P we have dim(U ∩H) ∈ {dim(U),dim(U)− 1}. So counting points in Fvq and H gives the
existence of integers a, a′ withm ·

[
d2
1

]
q
+aqd2 +u1

[
d1
1

]
q

=
[
v
1

]
q

andm ·
[
d2−1

1

]
q
+a′qd2−1 +u′1q

d1−1 +u1

[
d1−1

1

]
q

=[
v−1

1

]
q
, wherem :=

∑l
i=2 ui and u′1 := #(N ∩H). By subtraction we obtainmqd2−1 +aqd2−a′qd2−1 +u1q

d1−1−
u′1q

d1−1 = qv−1, so that u1q
d1−1 ≡ u′1qd1−1 (mod qd2−1). �

Definition 4. Let N be a set of k-subspaces in Fvq . If there exists a positive integer r such that ai is non-zero only if
#N − i is divisible by qr and the k-subspaces are pairwise disjoint, then we call N qr-divisible.

Using the notation of Lemma 3, N is qd2−d1 -divisible. As mentioned in the introduction, for d1 = 1, taking the
elements of N as columns of a generator matrix, we obtain a projective linear code, whose Hamming weights are
divisible by qd2−1.

Example 5. For integers k ≥ 2 and r = ak + b with 0 ≤ b < k let N be a k-spread of F(a+2)k
q . Starting from

a (a + 2)k-spread in F2(a+2)k
q we obtain a vector space partition P by replacing one (a + 2)k-dimensional spread
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element withN . From Lemma 3 and qr|q(a+2)k−k = q(a+1)k we deduce that the setN of k-subspaces is qr-divisible.
Its cardinality is given by

[
(a+2)k

1

]
q
/
[
k
1

]
q
.

Example 6. For integers k ≥ 2 and r ≥ 1 let n = k + r and consider a matrix representation M : Fqn → Fn×nq

of Fqn/Fq , obtained by expressing the multiplication maps µα : Fqn → Fqn , x 7→ αx, which are linear over Fq ,
in terms of a fixed basis of Fqn/Fq . Then, all matrices in M(Fqn) are invertible and have mutual rank distance
dR(A,B) := rk(A−B) = n, see e.g. [7] for proofs of these and the subsequent facts. In other words, the matrices of
M(Fqn) form a maximum rank distance code with minimum rank distance n and cardinality qn.

Now let B ⊆ Fk×nq be the matrix code obtained from M(Fqn) by deleting the last n− k rows, say, of every matrix.
Then B has cardinality minimum rank distance k. Hence, by applying the lifting construction B 7→ (Ik|B), where Ik
is the k × k identity matrix, to B we obtain a partial k-spread N in Fvq of size qn = qk+r. Since precisely the points
outside the (k + r)-subspace S =

{
x ∈ Fvq : x1 = x2 = · · · = xk = 0

}
are covered, P = N ∪ {S} is a vector space

partition of F2k+r
q and N is qk+r-divisible with cardinality qk+r.

From the first two equations of (1) we deduce:

Lemma 7. For a qr-divisible set N of k-subspaces in Fvq , there exists a hyperplane H with #(N ∩H) ≤ n/qk.

PROOF. Let i be the smallest index with ai 6= 0. Then, the first two equations of (1) are equivalent to
∑
j≥0 ai+qrj =[

v
1

]
q

and
∑
j≥0 (i+ qrj) · ai+qrj = n

[
v−k

1

]
q
. Subtracting i times the first equation from the second equation gives∑

j>0 q
rjai+qrj = n · q

v−k−1
q−1 − i · q

v−1
q−1 . Since the left-hand side is non-negative, we have i ≤ qv−k−1

qv−1 · n ≤
n
qk

. �
Stated less technical, the proof of Lemma 7 is given by the fact that the hyperplane with the minimum number of

k-subspaces contains at most as many k-subspaces as the average number of k-subspaces per hyperplane.
Taking also the third equation of (1) into account implies a quadratic criterion:

Lemma 8. Letm ∈ Z andN be a qr-divisible set of k-subspaces in Fvq . Then, τ(n, qr, qk,m)·qv−2k−2r−m(m−1) ≥
0, where τ(n,∆, u,m) := ∆2u2m(m− 1)− n(2m− 1)u(u− 1)∆ + n(u− 1)(n(u− 1) + 1).

PROOF. With y = qv−2k, u = qk, and ∆ = qr, we can rewrite the equations of (1) to u2y − 1 = (q − 1)
∑
i∈Z ai,

n · (uy − 1) = (q − 1)
∑
i∈Z iai, and n(n − 1) · (y − 1) =

∑
i∈Z i(i − 1)ai. (n −m∆)(n − (m − 1)∆) times the

first minus 2n − (2m − 1)∆ − 1 times the second plus the third equation gives y · τ(n,∆, u,m) −∆2m(m − 1) =
(q − 1)

∑
i∈Z(n−m∆− i)(n− (m− 1)∆− i)ai = (q − 1)

∑
h∈Z ∆2(m− h)(m− h+ 1)an−h∆ ≥ 0. �

As a preparation we present another classification result:

Lemma 9. If N is a q-divisible set of k-subspaces in Fvq of cardinality qk + 1, then N partitions F2k
q .

PROOF. Setting ci := (q − 1)a1+iq and l := qk−1 − 1 we can rewrite the equations of (1) to
∑l
i=0 ci = qv − 1,∑l

i=0(1 + iq)ci = (qk + 1)
(
qv−k − 1

)
, and

∑l
i=0 iq(1 + iq)ci = (qk + 1)qk

(
qv−2k − 1

)
. Since ql + 1 times the

second minus ql + 1 times the first minus the third equation gives 0 ≤
∑l
i=0 iq

2(l − i)ci = −qk+1
(
qv−2k − 1

)
, we

have v = 2k. Every point of Fvq is covered by an element from N due to
[
2k
1

]
q
/
[
k
1

]
q

= qk + 1. �

3. PROOF OF HEDEN’S RESULTS AND FURTHER IMPROVEMENTS

Let P be a vector space partition of type dlul . . . d2
u2d1

u1 of Fv′q , where u1, u2 > 0, dl > · · · > d2 > d1 ≥ 1. Let N
be the set of d1-subspaces and V be the subspace spanned by N . By n we denote the cardinality of N and by ai we
denote the number of hyperplanes of V that contain exactly i elements from N .

Assume that qd2−d1 does not divide u1. We have #(N ∩H) ≥ 1 for every hyperplane H of V due to Lemma 3,
so that Lemma 7 gives u1 ≥ qd1 . Thus, we have u1 ≥ qd1 + 1. If u = qd1 + 1 then we can apply Lemma 9 for the
classification of the possible sets N . If u1 < 2qd2−d1 then for ai > 0 we have i < qd2−d1 and i ≡ u1 (mod qd2−d1)
so that we can apply Lemma 2. Thus, either d2 divides d1 and u1 = (qd2 − 1)/(qd1 − 1) or u1 > 2qd2−d1 . The first
case can be attained by a d2-spread where one d2-subspace is replaced by a d1-spread, see Example 5. We remark
that no assumption on the relation between d2 and d1 is used in our derivation. However, if d2 < 2d1 then d1 cannot
divide d2 and qd1 + 1 > 2qd2−d1 .

Assume that qd2−d1 divides u1. Setting ∆ = qd2−d1 , u = qd1 , n = ∆l, andm = l† for some integer l, we conclude
τ(n,∆, u,m) = ∆l(∆l −∆u+ u− 1) ≥ 0 from Lemma 8, so that l ≥

⌈
u− u

∆ + 1
∆

⌉
. The right-hand side is equal

to u = qd1 if d2 ≥ 2d1 and to u − u/∆ + 1 = qd1 − q2d1−d2 + 1 otherwise, which is equivalent to n ≥ qd2 and
n ≥ qd2 − qd1 + qd2−d1 . We remark that equality is achievable in the latter case via the 2-weight codes constructed in
[1] (with parameters n′ = d1 and m = d2 − d1). We do not know whether the corresponding qd2−d1 -divisible set of
d1-subspaces can be realized as a vector space partition of Fvq .‡ For the first case see Example 6.

†The choice for m can be obtained by minimizing τ(n,∆, u,m), i.e., solving ∂τ(n,∆,u,m)
∂m

= 0 and rounding.
‡A suitable test case might be to decide whether a vector space partition of type 44313526 exists in F10

2 .
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The above comprises [4, Theorems 1-4]. Given the stated examples, just Theorem 1(ii), for the case where d1

does not divide d2, leaves some space for improving the lower bound on u1. To that end we analyze Lemma 8 in
more detail. Since the statements look rather technical and complicated we first give a justification for the necessity
of this fact. Via the quadratic inequality of Lemma 8 intervals of cardinalities can be excluded for different values
of the parameter m. However, some cardinalities are indeed feasible. If r = ak + b with 0 ≤ b < k then the two
constructions from Example 5 and Example 6 give qr-divisible set of k-subspaces of cardinality

[
(a+2)k

1

]
q
/
[
k
1

]
q

and
qk+r, respectively. For q = 2, r = 3, k = 2 the cardinalities of these two examples are given by 21 and 32. In
general, each two qr-divisible sets N1 and N2 of k-subspaces can be combined to a qr-divisible set of k-subspaces
of cardinality #N1 + #N2. Since

[
(a+2)k

1

]
q
/
[
k
1

]
q

and qk+r are coprime there exists some integer Fq(k, r) such that
qr-divisible sets of k-subspaces exist for every cardinality n > Fq(k, r). Below that number some cardinalities can
be excluded, but their density decreases with increasing n. Our numerical example is continued after the proof of
Theorem 12.

Proposition 10. Let N be a qr-divisible set of k-subspaces in Fvq , u = qk and ∆ = qr. Then, n /∈
[
1, q

k+r−1
qr−1

)
and

n /∈
[⌈

1

u− 1
·
(

∆um− ∆u+ 1

2
− 1

2

√
ω

)⌉
,

⌊
1

u− 1
·
(

∆um− ∆u+ 1

2
+

1

2

√
ω

)⌋]
,

where ω = (∆u− 2m)
2

+
(
2∆u+ 1− 4m2

)
, for all m ∈ N with 2 ≤ m ≤

⌊
∆u
4 + 1

2 + 1
4∆u

⌋
.

PROOF. We set ∆ = ∆u and n = n(u − 1) so that τ(n,∆, u,m) = ∆
2
m(m − 1) − n∆(2m − 1) + n(n + 1). We

have τ(n,∆, u,m) ≤ 0 iff
∣∣∣n−∆m+ ∆+1

2

∣∣∣ ≤ 1
2

√
∆

2 − 4m∆ + 2∆ + 1 and m ≤ ∆
4 + 1

2 + 1
4∆

. Rewriting and

applying Lemma 8 with 1 ≤ m ≤
⌊

∆u
4 + 1

2 + 1
4∆u

⌋
gives the result since m(m− 1) > 0 for m ≥ 2. �

Proposition 11. Let N be a qr-divisible set of k-subspaces in Fvq , where r = ak + b with a, b ∈ N, 0 < b < k and

a ≥ 1. Then, n ≥ q(a+2)k−1
qk−1

= qr · qk−b + qr·qk−b−1
qk−1

= ∆qk−b + qkΘ + 1, where ∆ := qr and Θ := qak−1
qk−1

.

PROOF. From Lemma 2 we conclude n ≥ 2qr and set u = qk. For 2 ≤ m ≤ qk−b we have 2∆u + 1 − 4m2 > 0,
so that Proposition 10 gives n /∈

[⌈
∆u(m−1)−1/2+m

u−1

⌉
,
⌊

∆um−1/2−m
u−1

⌋]
. Since ∆(m − 1) ≤

⌈
∆u(m−1)−1/2+m

u−1

⌉
=

∆(m− 1) +
⌈

∆(m−1)−1/2+m
u−1

⌉
≤ ∆m and

⌊
∆um−1/2−m

u−1

⌋
= ∆m + mqbΘ +

⌊
mqb−1/2−m

qk−1

⌋
= ∆m + mqbΘ, we

conclude n /∈
[
∆m,∆m+mqbΘ

]
for 2 ≤ m ≤ qk−b.

It remains to show n /∈
[
∆m,∆m+mqbΘ + 1,∆(m+ 1)− 1

]
=: Im for all 2 ≤ m ≤ qk−b − 1. If n ∈ Im,

then we can write n = ∆m+mqbΘ +x with x ≥ 1 and mqbΘ +x < ∆, so that qk ·
(
mqbΘ + x

)
= ∆m+mqbΘ +(

xqk −mqb
)
< ∆m+mqbΘ + x = n, which contradicts Lemma 7. �

In other words, in the case of Theorem 1(ii), where d2 = ad1 + b with 0 < b < d1 and a, b ∈ N, we have
u1 ≥ qd2−d1 · qd1−b + q(a+1)d1−1

qd1−1
= q(a+2)d1−1

qd1−1
, which can be attained by an d1-spread in F(a+2)d1

q . Without the

knowledge of b, we can state u1 ≥ q · qd2−d1 +
⌈
qd2+1−1
qd1−1

⌉
, which also improves Theorem 1(ii) and is tight whenever

d2 + 1 is divisible by d1. Summarizing our findings we obtain our main theorem:

Theorem 12. For a non-empty qr-divisible set N of k-subspaces in Fvq the following bounds on n = #N are tight.

(i) We have n ≥ qk + 1 and if r ≥ k then either k divides r and n ≥ qk+r−1
qk−1

or n ≥ q(a+2)k−1
qk−1

, where r = ak + b

with 0 < b < k and a, b ∈ N.
(ii) Let qr divide n. If r < k then n ≥ qk+r − qk + qr and n ≥ qk+r otherwise.

For (i) the lower bounds are attained by k-spreads, see Example 5. For (ii) the second lower bound is attained by a
construction based on lifted MRD codes, see Example 6. In the other case the 2-weight codes constructed in [1] attain
the lower bound. Thus, Theorem 12 is tight and implies an improvement of Theorem 1(ii).

While the smallest cardinality of a non-empty qr-divisible set of k-subspaces over Fq has been determined, the
spectrum of possible cardinalities remains widely unknown. For k = 1 [7, Theorem 12] states that either n > rqr+1

or there exist integers a, b with n = a
[
r+1

1

]
q

+ bqr+1 and bounds for the maximum excluded cardinality have been
determined in [5]. However, Lemma 7 and Lemma 8, applied via Proposition 10, give restrictions going far beyond
Theorem 12. For q = 2, r = 3, k = 2, and n ≤ 81 we exemplarily state that only n ∈ {21, 31, 32, 33, 42,
43, 44, 52, . . . , 55, 62, . . . , 66, 72, . . . , 78} might be attainable. The mentioned constructions cover the cases n ∈
{21, 32, 42, 53, 63, 64, 74} ⊆ {21a + 32b : a, b ∈ N}. Replacing the lines by their contained 3 points, we obtain
24-divisible sets of 1-subspaces in Fvq of cardinality 3n, for which two further exclusion criteria have been presented
in [7], excluding the cases n ∈ {33, 44}. [7, Lemma 23] is based on a cubic polynomial obtained from (1) and (2),
similar to the quadratic polynomial from Lemma 8 obtained from (1). Here, the presence of k additional bi-variables
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may make the analysis more difficult for k > 1. For a qr-divisible set N of 1-subspaces we have that N ∩ H is
qr−1-divisible for every hyperplane H , which allows a recursive application of the linear programming method. For
k > 1 we need to consider k-subspaces and k− 1-subspaces in H , see [7, Section 6.3], which makes the bookkeeping
more complicated.

The determination of the possible spectrum of cardinalities of qr-divisible sets of k-subspaces remains an interesting
open problem. Even for small parameters this might be challenging. A possible intermediate step is the determination
of the number Fq(k, r) being similar to the Frobenius number. Extending the small list of constructions is also
worthwhile.
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M.O. Pavčević, N. Silberstein, and A. Vazquez-Castro, eds.), Springer, 2018, pp. 131–170.
[8] S. Kurz, Packing vector spaces into vector spaces, The Australasian Journal of Combinatorics 68 (2017), no. 1, 122–130.
[9] H.N. Ward, Divisible codes, Archiv der Mathematik 36 (1981), no. 1, 485–494.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BAYREUTH, 95440 BAYREUTH, GERMANY

E-mail address: sascha.kurz@uni-bayreuth.de


	1. Introduction
	2. Sets of disjoint k-subspaces and their incidences with hyperplanes
	3. Proof of Heden's results and further improvements
	Acknowledgement
	References

