HEDEN'S BOUND ON THE TAIL OF A VECTOR SPACE PARTITION

SASCHA KURZ*

Abstract

A vector space partition of \mathbb{F}_{q}^{v} is a collection of subspaces such that every non-zero vector is contained in a unique element. We improve a lower bound of Heden, in a subcase, on the number of elements of the smallest occurring dimension in a vector space partition. To this end, we introduce the notion of q^{r}-divisible sets of k-subspaces in \mathbb{F}_{q}^{v}. By geometric arguments we obtain non-existence results for these objects, which then imply the improved result of Heden.

1. Introduction

Let $q>1$ be a prime power, \mathbb{F}_{q} be the finite filed with q elements, and v a positive integer. A vector space partition \mathcal{P} of \mathbb{F}_{q}^{v} is a collection of subspaces with the property that every non-zero vector is contained in a unique member of \mathcal{P}. If \mathcal{P} contains m_{d} subspaces of dimension d, then \mathcal{P} is of type $k^{m_{k}} \ldots 1^{m_{1}}$. We may leave out some of the cases with $m_{d}=0$. Subspaces of dimension d are also called d-subspaces. 1 -subspaces are called points, $(v-1)$-subspaces are called hyperplanes, and each k-subspace contains $\left[\begin{array}{c}k \\ 1\end{array}\right]_{q}:=\frac{q^{k}-1}{q-1}$ points. So, in a vector space partition \mathcal{P} each point of the ambient space \mathbb{F}_{q}^{v} is covered by exactly one point of one of the elements of \mathcal{P}. An example of a vector space partition is given by a k-spread in \mathbb{F}_{q}^{v}, where $\left[\begin{array}{c}v \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}k \\ 1\end{array}\right]_{q} k$-subspaces partition the set of points of \mathbb{F}_{q}^{v}. The corresponding type is given by $k^{m_{k}}$, where $m_{k}=\left[\begin{array}{c}v \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}k \\ 1\end{array}\right]_{q}$. If k divides v then considering the points of $\mathbb{F}_{q^{k}}^{v / k}$ as k-dimensional subspaces over \mathbb{F}_{q} gives a construction of k-spreads. If k does not divide v, then no k-spreads exist. Vector space partitions of type $k^{m_{k}} 1^{m_{1}}$ are known under the name partial k-spreads. More precisely, a partial k-spread in \mathbb{F}_{q}^{v} is a set \mathcal{K} of k-subspaces such that each point of the ambient space \mathbb{F}_{q}^{v} is covered at most by one of its elements. Adding the set of uncovered points, which are also called holes, gives a vector space partition of type $k^{m_{k}} 1^{m_{1}}$. Maximizing $m_{k}=\# \mathcal{K}$ is equivalent to the minimization of m_{1}. If d_{1} is the smallest dimension with $m_{d_{1}} \neq 0$, we call $m_{d_{1}}$ the length of the tail and call the set of the corresponding d_{1}-subspace the tail. Vector space partitions with a tail of small length are of special interest. In [4] Olof Heden obtained:

Theorem 1. (Theorem 1 in [4]) Let \mathcal{P} be a vector space partition of type $d_{l}{ }^{u_{l}} \ldots d_{2}{ }^{u_{2}} d_{1}{ }^{u_{1}}$ of \mathbb{F}_{q}^{v}, where $u_{1}, u_{2}>0$ and $d_{l}>\cdots>d_{2}>d_{1} \geq 1$.
(i) If $q^{d_{2}-d_{1}}$ does not divide u_{1} and if $d_{2}<2 d_{1}$, then $u_{1} \geq q^{d_{1}}+1$;
(ii) if $q^{d_{2}-d_{1}}$ does not divide u_{1} and if $d_{2} \geq 2 d_{1}$, then either d_{1} divides d_{2} and $u_{1}=\left[\begin{array}{c}d_{2} \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}d_{1} \\ 1\end{array}\right]_{q}$ or $u_{1}>2 q^{d_{2}-d_{1}}$;
(iii) if $q^{d_{2}-d_{1}}$ divides u_{1} and $d_{2}<2 d_{1}$, then $u_{1} \geq q^{d_{2}}-q^{d_{1}}+q^{d_{2}-d_{1}}$;
(iv) if $q^{d_{2}-d_{1}}$ divides u_{1} and $d_{2} \geq 2 d_{1}$, then $u_{1} \geq q^{d_{2}}$.

Moreover, in Theorem 2 and Theorem 3 he classified the possible sets of d_{1}-subspaces for $u_{1}=q^{d_{1}}+1$ and $u_{1}=\left[\begin{array}{c}d_{2} \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}d_{1} \\ 1\end{array}\right]_{q}$, respectively. The results were obtained using the theory of mixed perfect 1-codes, see e.g. [6].

In [2] the authors improved a lower bound of Heden on the size of inclusion-maximal partial 2 -spreads by translating the underlying techniques into geometry. Here we improve Theorem 1 (ii). The underlying geometric structure is the set \mathcal{N} of d_{1}-subspaces of a vector space partition \mathcal{P} of type $d_{l}{ }^{u_{l}} \ldots d_{2}{ }^{u_{2}} d_{1}{ }^{u_{1}}$. For d_{1} this is just a set of points in \mathbb{F}_{q}^{v}. It can be shown that the existence of \mathcal{P} implies $\# \mathcal{N} \equiv \#(\mathcal{N} \cap H)\left(\bmod q^{d_{2}-1}\right)$ for every hyperplane H of \mathbb{F}_{q}^{v}, see e.g. [7]. Taking a vector representation of the elements of \mathcal{N} as columns of a generator matrix, we obtain a corresponding (projective) linear code \mathcal{C} over \mathbb{F}_{q}. The modulo constraints for \mathcal{N} are equivalent to the property that the Hamming weights of the codewords of \mathcal{C} are divisible by $q^{d_{2}-1}$. The study of so-called divisible codes, where the Hamming weights of the codewords of a linear code are divisible by some factor $\Delta>1$, was initiated by Harold Ward, see e.g. [9]. The MacWilliams identities, linking the weight distribution of a linear code with the weight distribution of its dual code, can be relaxed to a linear program. Incorporating some information about the weight distribution of a linear code may result in an infeasible linear program, which then certifies the non-existence of such a code. This technique is known under the name linear programming method for codes and was more generally developed for association schemes by Philip Delsarte [3]. In [8] analytic solutions of linear programs for projective q^{r}-divisible linear codes have been applied in order to compute upper bounds for partial k-spreads. Indeed, all currently known upper bounds for partial k-spreads can be deduced from this method, see [7] for a survey.

[^0]Here, we generalize the approach to the case $d_{1}>1$ by studying the properties of the set \mathcal{N} of d_{1}-subspaces of a vector space partition \mathcal{P} of \mathbb{F}_{q}^{v} of type $d_{l}{ }^{u_{l}} \ldots d_{2}{ }^{u_{2}} d_{1}{ }^{u_{1}}$ in Section 2 It turns out that we have $\# \mathcal{N} \equiv \#(\mathcal{N} \cap H)$ $\left(\bmod q^{d_{2}-d_{1}}\right)$ for every hyperplane H of \mathbb{F}_{q}^{v}, see Lemma 3. which we introduce as a definition of a $q^{d_{2}-d_{1}}$-divisible set of k-subspaces with trivial intersection. By elementary counting techniques we obtain a partial substitute for the MacWilliams identities, see the equations (1) and (2). These imply some analytical criteria for the non-existence of such sets \mathcal{N}, which are used in Section 3 to reprove Theorem 1 By an improved analysis we tighten Theorem 1 to Theorem 12 More precisely, the second lower bound of Theorem 1 (ii) is improved. We close with some numerical results on the spectrum of the possible cardinalities of \mathcal{N} and pose some open problems.

2. SETS OF DISJOINT k-SUBSPACES AND THEIR INCIDENCES WITH HYPERPLANES

For a positive integer k let \mathcal{N} be a set of pairwise disjoint, i.e., having trivial intersection, k-subspaces in \mathbb{F}_{q}^{v}, where we assume that the k-subspaces from \mathcal{N} span \mathbb{F}_{q}^{v}, i.e., v is minimally chosen. By a_{i} we denote the number of hyperplanes H of \mathbb{F}_{q}^{v} with $\#(\mathcal{N} \cap H):=\#\{U \in \mathcal{N}: U \leq H\}=i$ and set $n:=\# \mathcal{N}$. Due to our assumption on the minimality of the dimension v not all n elements from \mathcal{N} can be contained in a hyperplane. Double-counting the incidences of the tuples $(H),\left(B_{1}, H\right)$, and $\left(B_{1}, B_{2}, H\right)$, where H is a hyperplane and $B_{1} \neq B_{2}$ are elements of \mathcal{N} contained in H gives:

$$
\sum_{i=0}^{n-1} a_{i}=\left[\begin{array}{l}
v \tag{1}\\
1
\end{array}\right]_{q}, \quad \sum_{i=0}^{n-1} i a_{i}=n \cdot\left[\begin{array}{c}
v-k \\
1
\end{array}\right]_{q}, \quad \text { and } \quad \sum_{i=0}^{n-1} i(i-1) a_{i}=n(n-1) \cdot\left[\begin{array}{c}
v-2 k \\
1
\end{array}\right]_{q}
$$

For three different elements B_{1}, B_{2}, B_{3} of \mathcal{N} their span $\left\langle B_{1}, B_{2}, B_{3}\right\rangle$ has a dimension i between $2 k$ and $3 k$. Denoting the number of corresponding triples by b_{i}, double-counting tuples $\left(B_{1}, B_{2}, B_{3}, H\right)$, where H is a hyperplane and B_{1}, B_{2}, B_{3} are pairwise different elements of \mathcal{N} contained in H, gives:

$$
\sum_{i=0}^{n-1} i(i-1)(i-2) a_{i}=\sum_{i=2 k}^{3 k} b_{i}\left[\begin{array}{c}
v-i \tag{2}\\
1
\end{array}\right]_{q} \quad \text { and } \quad \sum_{i=2 k}^{3 k} b_{i}=n(n-1)(n-2)
$$

Given parameters q, k, n, and v the so-called (integer) linear programming method asks for a solution of the equation system given by (1) and (2) with $a_{i}, b_{i} \in \mathbb{R}_{\geq 0}\left(a_{i}, b_{i} \in \mathbb{N}\right)$. If no solution exists, then no corresponding set \mathcal{N} can exist. For $k=1$ the equations from (1) and (2) correspond to the first four MacWilliams identities, see e.g. [7].

If there is a single non-zero value a_{i} the system can be solved analytically.
Lemma 2. If $a_{i}=0$ for all $i \neq r>0$ and $k<v$ in the above setting, then there exists an integer $s \geq 2$ with $v=s k$ and \mathcal{N} is a k-spread. Additionally we have $r=\frac{q^{v-k}-1}{q^{k}-1}$.
Proof. Solving $\sqrt{17}$ for r, a_{r}, and n gives $n=\frac{q^{2 v-k}-q^{v}-q^{v-k}+1}{q^{v}-q^{v-k}-q^{k}+1}$. Writing $v=s k+t$ with $s, t \in \mathbb{N}$ and $0 \leq t<k$ we obtain $n=\sum_{i=1}^{s} q^{v-i k}+\frac{q^{v-k+t}-q^{v-k}-q^{t}+1}{q^{v}-q^{v-k}-q^{k}+1}$. Since $n \in \mathbb{N}$ and $0 \leq q^{v-k+t}-q^{v-k}-q^{t}+1<q^{v}-q^{v-k}-q^{k}+1$ we have $q^{v-k+t}-q^{v-k}-q^{t}+1=0$ so that $t=0$ and $n=\frac{q^{v}-1}{q^{k}-1}$. Counting points gives that \mathcal{N} partitions \mathbb{F}_{q}^{v}.
We remark that $r=0$ forces $n \in\{0,1\}$ so that \mathcal{N} is empty or consists of a single k-subspace in \mathbb{F}_{q}^{k} and $v=k$ implies the latter case. So, these degenerated cases correspond to $s \in\{0,1\}$ in Lemma2] As pointed out after [4], Theorem 2], such results can be proved in different ways. While the case that only one a_{i} is non-zero is rather special, we can show that many a_{i} are equal to zero in our setting.

Lemma 3. Let \mathcal{P} be a vector space partition of type $d_{l}{ }^{u_{l}} \ldots d_{2}{ }^{u_{2}} d_{1}{ }^{u_{1}}$ of \mathbb{F}_{q}^{v}, where $u_{1}, u_{2}>0$, and let \mathcal{N} be the set of d_{1}-subspaces. Then, we have $\# \mathcal{N} \equiv \#(\mathcal{N} \cap H)\left(\bmod q^{d_{2}-d_{1}}\right)$ for every hyperplane H of \mathbb{F}_{q}^{v}.
Proof. For each $U \in \mathcal{P}$ we have $\operatorname{dim}(U \cap H) \in\{\operatorname{dim}(U), \operatorname{dim}(U)-1\}$. So counting points in \mathbb{F}_{q}^{v} and H gives the existence of integers a, a^{\prime} with $m \cdot\left[\begin{array}{c}d_{2} \\ 1\end{array}\right]_{q}+a q^{d_{2}}+u_{1}\left[\begin{array}{c}d_{1} \\ 1\end{array}\right]_{q}=\left[\begin{array}{c}v \\ 1\end{array}\right]_{q}$ and $m \cdot\left[\begin{array}{c}d_{2}-1 \\ 1\end{array}\right]_{q}+a^{\prime} q^{d_{2}-1}+u_{1}^{\prime} q^{d_{1}-1}+u_{1}\left[\begin{array}{c}d_{1}-1 \\ 1\end{array}\right]_{q}=$ $\left[\begin{array}{c}v-1 \\ 1\end{array}\right]_{q}$, where $m:=\sum_{i=2}^{l} u_{i}$ and $u_{1}^{\prime}:=\#(\mathcal{N} \cap H)$. By subtraction we obtain $m q^{d_{2}-1}+a q^{d_{2}}-a^{\prime} q^{d_{2}-1}+u_{1} q^{d_{1}-1}-$ $u_{1}^{\prime} q^{d_{1}-1}=q^{v-1}$, so that $u_{1} q^{d_{1}-1} \equiv u_{1}^{\prime} q^{d_{1}-1}\left(\bmod q^{d_{2}-1}\right)$.
Definition 4. Let \mathcal{N} be a set of k-subspaces in \mathbb{F}_{q}^{v}. If there exists a positive integer r such that a_{i} is non-zero only if $\# \mathcal{N}-i$ is divisible by q^{r} and the k-subspaces are pairwise disjoint, then we call $\mathcal{N} q^{r}$-divisible.

Using the notation of Lemma $3, \mathcal{N}$ is $q^{d_{2}-d_{1}}$-divisible. As mentioned in the introduction, for $d_{1}=1$, taking the elements of \mathcal{N} as columns of a generator matrix, we obtain a projective linear code, whose Hamming weights are divisible by $q^{d_{2}-1}$.
Example 5. For integers $k \geq 2$ and $r=a k+b$ with $0 \leq b<k$ let \mathcal{N} be a k-spread of $\mathbb{F}_{q}^{(a+2) k}$. Starting from a $(a+2) k$-spread in $\mathbb{F}_{q}^{2(a+2) k}$ we obtain a vector space partition \mathcal{P} by replacing one $(a+2) k$-dimensional spread
element with \mathcal{N}. From Lemma 3 and $q^{r} \mid q^{(a+2) k-k}=q^{(a+1) k}$ we deduce that the set \mathcal{N} of k-subspaces is q^{r}-divisible. Its cardinality is given by $\left[\begin{array}{c}(a+2) k \\ 1\end{array}\right]_{q} /\left[\begin{array}{l}k \\ 1\end{array}\right]_{q}$.
Example 6. For integers $k \geq 2$ and $r \geq 1$ let $n=k+r$ and consider a matrix representation $M: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q}^{n \times n}$ of $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$, obtained by expressing the multiplication maps $\mu_{\alpha}: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q^{n}}, x \mapsto \alpha x$, which are linear over \mathbb{F}_{q}, in terms of a fixed basis of $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$. Then, all matrices in $M\left(\mathbb{F}_{q^{n}}\right)$ are invertible and have mutual rank distance $d_{\mathrm{R}}(A, B):=\operatorname{rk}(A-B)=n$, see e.g. [7] for proofs of these and the subsequent facts. In other words, the matrices of $M\left(\mathbb{F}_{q^{n}}\right)$ form a maximum rank distance code with minimum rank distance n and cardinality q^{n}.

Now let $\mathcal{B} \subseteq \mathbb{F}_{q}^{k \times n}$ be the matrix code obtained from $M\left(\mathbb{F}_{q^{n}}\right)$ by deleting the last $n-k$ rows, say, of every matrix. Then \mathcal{B} has cardinality minimum rank distance k. Hence, by applying the lifting construction $B \mapsto\left(I_{k} \mid B\right)$, where I_{k} is the $k \times k$ identity matrix, to \mathcal{B} we obtain a partial k-spread \mathcal{N} in \mathbb{F}_{q}^{v} of size $q^{n}=q^{k+r}$. Since precisely the points outside the $(k+r)$-subspace $S=\left\{x \in \mathbb{F}_{q}^{v}: x_{1}=x_{2}=\cdots=x_{k}=0\right\}$ are covered, $\mathcal{P}=\mathcal{N} \cup\{S\}$ is a vector space partition of $\mathbb{F}_{q}^{2 k+r}$ and \mathcal{N} is q^{k+r}-divisible with cardinality q^{k+r}.

From the first two equations of (1) we deduce:
Lemma 7. For a q^{r}-divisible set \mathcal{N} of k-subspaces in \mathbb{F}_{q}^{v}, there exists a hyperplane H with $\#(\mathcal{N} \cap H) \leq n / q^{k}$.
Proof. Let i be the smallest index with $a_{i} \neq 0$. Then, the first two equations of 11 are equivalent to $\sum_{j \geq 0} a_{i+q^{r} j}=$ $\left[\begin{array}{l}v \\ 1\end{array}\right]_{q}$ and $\sum_{j \geq 0}\left(i+q^{r} j\right) \cdot a_{i+q^{r} j}=n\left[\begin{array}{c}v-k \\ 1\end{array}\right]_{q}$. Subtracting i times the first equation from the second equation gives $\sum_{j>0} q^{r} j a_{i+q^{r} j}=n \cdot \frac{q^{v-k}-1}{q-1}-i \cdot \frac{q^{v}-1}{q-1}$. Since the left-hand side is non-negative, we have $i \leq \frac{q^{v-k}-1}{q^{v}-1} \cdot n \leq \frac{n}{q^{k}}$. \square

Stated less technical, the proof of Lemma 7 is given by the fact that the hyperplane with the minimum number of k-subspaces contains at most as many k-subspaces as the average number of k-subspaces per hyperplane.

Taking also the third equation of (1) into account implies a quadratic criterion:
Lemma 8. Let $m \in \mathbb{Z}$ and \mathcal{N} be a q^{r}-divisible set of k-subspaces in \mathbb{F}_{q}^{v}. Then, $\tau\left(n, q^{r}, q^{k}, m\right) \cdot q^{v-2 k-2 r}-m(m-1) \geq$ 0 , where $\tau(n, \Delta, u, m):=\Delta^{2} u^{2} m(m-1)-n(2 m-1) u(u-1) \Delta+n(u-1)(n(u-1)+1)$.
Proof. With $y=q^{v-2 k}, u=q^{k}$, and $\Delta=q^{r}$, we can rewrite the equations of 1 to $u^{2} y-1=(q-1) \sum_{i \in \mathbb{Z}} a_{i}$, $n \cdot(u y-1)=(q-1) \sum_{i \in \mathbb{Z}} i a_{i}$, and $n(n-1) \cdot(y-1)=\sum_{i \in \mathbb{Z}} i(i-1) a_{i} \cdot(n-m \Delta)(n-(m-1) \Delta)$ times the first minus $2 n-(2 m-1) \Delta-1$ times the second plus the third equation gives $y \cdot \tau(n, \Delta, u, m)-\Delta^{2} m(m-1)=$ $(q-1) \sum_{i \in \mathbb{Z}}(n-m \Delta-i)(n-(m-1) \Delta-i) a_{i}=(q-1) \sum_{h \in \mathbb{Z}} \Delta^{2}(m-h)(m-h+1) a_{n-h \Delta} \geq 0$.

As a preparation we present another classification result:
Lemma 9. If \mathcal{N} is a q-divisible set of k-subspaces in \mathbb{F}_{q}^{v} of cardinality $q^{k}+1$, then \mathcal{N} partitions $\mathbb{F}_{q}^{2 k}$.
Proof. Setting $c_{i}:=(q-1) a_{1+i q}$ and $l:=q^{k-1}-1$ we can rewrite the equations of 11) to $\sum_{i=0}^{l} c_{i}=q^{v}-1$, $\sum_{i=0}^{l}(1+i q) c_{i}=\left(q^{k}+1\right)\left(q^{v-k}-1\right)$, and $\sum_{i=0}^{l} i q(1+i q) c_{i}=\left(q^{k}+1\right) q^{k}\left(q^{v-2 k}-1\right)$. Since $q l+1$ times the second minus $q l+1$ times the first minus the third equation gives $0 \leq \sum_{i=0}^{l} i q^{2}(l-i) c_{i}=-q^{k+1}\left(q^{v-2 k}-1\right)$, we have $v=2 k$. Every point of \mathbb{F}_{q}^{v} is covered by an element from \mathcal{N} due to $\left[\begin{array}{c}2 k \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}k \\ 1\end{array}\right]_{q}=q^{k}+1$.

3. Proof of Heden's results and further improvements

Let \mathcal{P} be a vector space partition of type $d_{l}{ }^{u_{l}} \ldots d_{2}{ }^{u_{2}} d_{1}{ }^{u_{1}}$ of $\mathbb{F}_{q}^{v^{\prime}}$, where $u_{1}, u_{2}>0, d_{l}>\cdots>d_{2}>d_{1} \geq 1$. Let \mathcal{N} be the set of d_{1}-subspaces and V be the subspace spanned by \mathcal{N}. By n we denote the cardinality of \mathcal{N} and by a_{i} we denote the number of hyperplanes of V that contain exactly i elements from \mathcal{N}.

Assume that $q^{d_{2}-d_{1}}$ does not divide u_{1}. We have $\#(\mathcal{N} \cap H) \geq 1$ for every hyperplane H of V due to Lemma 3 . so that Lemma 7 gives $u_{1} \geq q^{d_{1}}$. Thus, we have $u_{1} \geq q^{d_{1}}+1$. If $u=q^{d_{1}}+1$ then we can apply Lemma 9 for the classification of the possible sets \mathcal{N}. If $u_{1}<2 q^{d_{2}-d_{1}}$ then for $a_{i}>0$ we have $i<q^{d_{2}-d_{1}}$ and $i \equiv u_{1}\left(\bmod q^{d_{2}-d_{1}}\right)$ so that we can apply Lemma 2. Thus, either d_{2} divides d_{1} and $u_{1}=\left(q^{d_{2}}-1\right) /\left(q^{d_{1}}-1\right)$ or $u_{1}>2 q^{d_{2}-d_{1}}$. The first case can be attained by a d_{2}-spread where one d_{2}-subspace is replaced by a d_{1}-spread, see Example 5 . We remark that no assumption on the relation between d_{2} and d_{1} is used in our derivation. However, if $d_{2}<2 d_{1}$ then d_{1} cannot divide d_{2} and $q_{1}^{d}+1>2 q^{d_{2}-d_{1}}$.

Assume that $q^{d_{2}-d_{1}}$ divides u_{1}. Setting $\Delta=q^{d_{2}-d_{1}}, u=q^{d_{1}}, n=\Delta l$, and $m=\dagger^{\dagger}$ for some integer l, we conclude $\tau(n, \Delta, u, m)=\Delta l(\Delta l-\Delta u+u-1) \geq 0$ from Lemma 8 , so that $l \geq\left\lceil u-\frac{u}{\Delta}+\frac{1}{\Delta}\right\rceil$. The right-hand side is equal to $u=q^{d_{1}}$ if $d_{2} \geq 2 d_{1}$ and to $u-u / \Delta+1=q^{d_{1}}-q^{2 d_{1}-d_{2}}+1$ otherwise, which is equivalent to $n \geq q^{d_{2}}$ and $n \geq q^{d_{2}}-q^{d_{1}}+q^{d_{2}-d_{1}}$. We remark that equality is achievable in the latter case via the 2 -weight codes constructed in [1] (with parameters $n^{\prime}=d_{1}$ and $m=d_{2}-d_{1}$). We do not know whether the corresponding $q^{d_{2}-d_{1}}$-divisible set of d_{1}-subspaces can be realized as a vector space partition of $\mathbb{F}_{q}^{v}{ }^{\ddagger}$ For the first case see Example 6 .

[^1]The above comprises [4, Theorems 1-4]. Given the stated examples, just Theorem 1]ii), for the case where d_{1} does not divide d_{2}, leaves some space for improving the lower bound on u_{1}. To that end we analyze Lemma 8 in more detail. Since the statements look rather technical and complicated we first give a justification for the necessity of this fact. Via the quadratic inequality of Lemma 8 intervals of cardinalities can be excluded for different values of the parameter m. However, some cardinalities are indeed feasible. If $r=a k+b$ with $0 \leq b<k$ then the two constructions from Example 5 and Example 6 give q^{r}-divisible set of k-subspaces of cardinality $\left[\begin{array}{c}(a+2) k \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}k \\ 1\end{array}\right]_{q}$ and q^{k+r}, respectively. For $q=2, r=3, k=2$ the cardinalities of these two examples are given by 21 and 32 . In general, each two q^{r}-divisible sets \mathcal{N}_{1} and \mathcal{N}_{2} of k-subspaces can be combined to a q^{r}-divisible set of k-subspaces of cardinality $\# \mathcal{N}_{1}+\# \mathcal{N}_{2}$. Since $\left[\begin{array}{c}(a+2) k \\ 1\end{array}\right]_{q} /\left[\begin{array}{c}k \\ 1\end{array}\right]_{q}$ and q^{k+r} are coprime there exists some integer $F_{q}(k, r)$ such that q^{r}-divisible sets of k-subspaces exist for every cardinality $n>F_{q}(k, r)$. Below that number some cardinalities can be excluded, but their density decreases with increasing n. Our numerical example is continued after the proof of Theorem 12
Proposition 10. Let \mathcal{N} be a q^{r}-divisible set of k-subspaces in \mathbb{F}_{q}^{v}, $u=q^{k}$ and $\Delta=q^{r}$. Then, $n \notin\left[1, \frac{q^{k+r}-1}{q^{r}-1}\right)$ and

$$
n \notin\left[\left[\frac{1}{u-1} \cdot\left(\Delta u m-\frac{\Delta u+1}{2}-\frac{1}{2} \sqrt{\omega}\right)\right],\left\lfloor\frac{1}{u-1} \cdot\left(\Delta u m-\frac{\Delta u+1}{2}+\frac{1}{2} \sqrt{\omega}\right)\right]\right]
$$

where $\omega=(\Delta u-2 m)^{2}+\left(2 \Delta u+1-4 m^{2}\right)$, for all $m \in \mathbb{N}$ with $2 \leq m \leq\left\lfloor\frac{\Delta u}{4}+\frac{1}{2}+\frac{1}{4 \Delta u}\right\rfloor$.
PROOF. We set $\bar{\Delta}=\Delta u$ and $\bar{n}=n(u-1)$ so that $\tau(n, \Delta, u, m)=\bar{\Delta}^{2} m(m-1)-\bar{n} \bar{\Delta}(2 m-1)+\bar{n}(\bar{n}+1)$. We have $\tau(n, \Delta, u, m) \leq 0$ iff $\left|\bar{n}-\bar{\Delta} m+\frac{\bar{\Delta}+1}{2}\right| \leq \frac{1}{2} \sqrt{\bar{\Delta}^{2}-4 m \bar{\Delta}+2 \bar{\Delta}+1}$ and $m \leq \frac{\bar{\Delta}}{4}+\frac{1}{2}+\frac{1}{4 \bar{\Delta}}$. Rewriting and applying Lemma 8 with $1 \leq m \leq\left\lfloor\frac{\Delta u}{4}+\frac{1}{2}+\frac{1}{4 \Delta u}\right\rfloor$ gives the result since $m(m-1)>0$ for $m \geq 2$.
Proposition 11. Let \mathcal{N} be a q^{r}-divisible set of k-subspaces in \mathbb{F}_{q}^{v}, where $r=a k+b$ with $a, b \in \mathbb{N}, 0<b<k$ and $a \geq 1$. Then, $n \geq \frac{q^{(a+2) k}-1}{q^{k}-1}=q^{r} \cdot q^{k-b}+\frac{q^{r} \cdot q^{k-b}-1}{q^{k}-1}=\Delta q^{k-b}+q^{k} \Theta+1$, where $\Delta:=q^{r}$ and $\Theta:=\frac{q^{a k}-1}{q^{k}-1}$.
Proof. From Lemma 2 we conclude $n \geq 2 q^{r}$ and set $u=q^{k}$. For $2 \leq m \leq q^{k-b}$ we have $2 \Delta u+1-4 m^{2}>0$, so that Proposition 10 gives $n \notin\left[\left\lceil\frac{\Delta u(m-1)-1 / 2+m}{u-1}\right\rceil,\left\lfloor\frac{\Delta u m-1 / 2-m}{u-1}\right\rfloor\right]$. Since $\Delta(m-1) \leq\left\lceil\frac{\Delta u(m-1)-1 / 2+m}{u-1}\right\rceil=$ $\Delta(m-1)+\left\lceil\frac{\Delta(m-1)-1 / 2+m}{u-1}\right\rceil \leq \Delta m$ and $\left\lfloor\frac{\Delta u m-1 / 2-m}{u-1}\right\rfloor=\Delta m+m q^{b} \Theta+\left\lfloor\frac{m q^{b}-1 / 2-m}{q^{k}-1}\right\rfloor=\Delta m+m q^{b} \Theta$, we conclude $n \notin\left[\Delta m, \Delta m+m q^{b} \Theta\right]$ for $2 \leq m \leq q^{k-b}$.

It remains to show $n \notin\left[\Delta m, \Delta m+m q^{b} \Theta+1, \Delta(m+1)-1\right]=: I_{m}$ for all $2 \leq m \leq q^{k-b}-1$. If $n \in I_{m}$, then we can write $n=\Delta m+m q^{b} \Theta+x$ with $x \geq 1$ and $m q^{b} \Theta+x<\Delta$, so that $q^{k} \cdot\left(m q^{b} \Theta+x\right)=\Delta m+m q^{b} \Theta+$ $\left(x q^{k}-m q^{b}\right)<\Delta m+m q^{b} \Theta+x=n$, which contradicts Lemma 7

In other words, in the case of Theorem 1 (ii), where $d_{2}=a d_{1}+b$ with $0<b<d_{1}$ and $a, b \in \mathbb{N}$, we have $u_{1} \geq q^{d_{2}-d_{1}} \cdot q^{d_{1}-b}+\frac{q^{(a+1) d_{1}}-1}{q^{d_{1}-1}}=\frac{q^{(a+2) d_{1}}-1}{q^{d_{1}-1}}$, which can be attained by an d_{1}-spread in $\mathbb{F}_{q}^{(a+2) d_{1}}$. Without the knowledge of b, we can state $u_{1} \geq q \cdot q^{d_{2}-d_{1}}+\left\lceil\frac{q^{d_{2}+1}-1}{q^{d_{1}-1}}\right\rceil$, which also improves Theorem 1 (ii) and is tight whenever $d_{2}+1$ is divisible by d_{1}. Summarizing our findings we obtain our main theorem:
Theorem 12. For a non-empty q^{r}-divisible set \mathcal{N} of k-subspaces in \mathbb{F}_{q}^{v} the following bounds on $n=\# \mathcal{N}$ are tight.
(i) We have $n \geq q^{k}+1$ and if $r \geq k$ then either k divides r and $n \geq \frac{q^{k+r}-1}{q^{k}-1}$ or $n \geq \frac{q^{(a+2) k}-1}{q^{k}-1}$, where $r=a k+b$ with $0<b<k$ and $a, b \in \mathbb{N}$.
(ii) Let q^{r} divide n. If $r<k$ then $n \geq q^{k+r}-q^{k}+q^{r}$ and $n \geq q^{k+r}$ otherwise.

For (i) the lower bounds are attained by k-spreads, see Example 5 . For (ii) the second lower bound is attained by a construction based on lifted MRD codes, see Example 6 In the other case the 2-weight codes constructed in [1] attain the lower bound. Thus, Theorem 12 is tight and implies an improvement of Theorem 1 (ii).

While the smallest cardinality of a non-empty q^{r}-divisible set of k-subspaces over \mathbb{F}_{q} has been determined, the spectrum of possible cardinalities remains widely unknown. For $k=1$ [7] Theorem 12] states that either $n>r q^{r+1}$ or there exist integers a, b with $n=a\left[\begin{array}{c}r+1 \\ 1\end{array}\right]_{q}+b q^{r+1}$ and bounds for the maximum excluded cardinality have been determined in [5]. However, Lemma 7 and Lemma 8, applied via Proposition 10, give restrictions going far beyond Theorem 12 For $q=2, r=3, k=2$, and $n \leq 81$ we exemplarily state that only $n \in\{21,31,32,33,42$, $43,44,52, \ldots, 55,62, \ldots, 66,72, \ldots, 78\}$ might be attainable. The mentioned constructions cover the cases $n \in$ $\{21,32,42,53,63,64,74\} \subseteq\{21 a+32 b: a, b \in \mathbb{N}\}$. Replacing the lines by their contained 3 points, we obtain 2^{4}-divisible sets of 1-subspaces in \mathbb{F}_{q}^{v} of cardinality $3 n$, for which two further exclusion criteria have been presented in [7], excluding the cases $n \in\{33,44\}$. [7] Lemma 23] is based on a cubic polynomial obtained from (1) and 22, similar to the quadratic polynomial from Lemma 8 obtained from (1). Here, the presence of k additional b_{i}-variables
may make the analysis more difficult for $k>1$. For a q^{r}-divisible set \mathcal{N} of 1 -subspaces we have that $\mathcal{N} \cap H$ is q^{r-1}-divisible for every hyperplane H, which allows a recursive application of the linear programming method. For $k>1$ we need to consider k-subspaces and $k-1$-subspaces in H, see [7] Section 6.3], which makes the bookkeeping more complicated.

The determination of the possible spectrum of cardinalities of q^{r}-divisible sets of k-subspaces remains an interesting open problem. Even for small parameters this might be challenging. A possible intermediate step is the determination of the number $F_{q}(k, r)$ being similar to the Frobenius number. Extending the small list of constructions is also worthwhile.

Acknowledgement

I am very thankful for the comments of two anonymous reviewers, which helped to improve the paper.

References

[1] J. Bierbrauer and Y. Edel, A family of 2-weight codes related to BCH-codes, Journal of Combinatorial Designs 5 (1997), no. 5, 391.
[2] A. Blokhuis, A.E. Brouwer, and H.A. Wilbrink, Heden's bound on maximal partial spreads, Discrete Mathematics 74 (1989), no. 3, 335-339.
[3] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips research reports (1973), no. 10, 103.
[4] O. Heden, On the length of the tail of a vector space partition, Discrete Mathematics 309 (2009), no. 21, 6169-6180.
[5] D. Heinlein, T. Honold, M. Kiermaier, S. Kurz, and A. Wassermann, Projective divisible binary codes, The Tenth International Workshop on Coding and Cryptography 2017, 2017.
[6] M Herzog and J Schönheim, Group partition, factorization and the vector covering problem, Canad. Math. Bull 15 (1972), no. 2, $207-214$.
[7] T. Honold, M. Kiermaier, and S. Kurz, Partial spreads and vector space partitions, Network Coding and Subspace Designs (M. Greferath, M.O. Pavčević, N. Silberstein, and A. Vazquez-Castro, eds.), Springer, 2018, pp. 131-170.
[8] S. Kurz, Packing vector spaces into vector spaces, The Australasian Journal of Combinatorics 68 (2017), no. 1, 122-130.
[9] H.N. Ward, Divisible codes, Archiv der Mathematik 36 (1981), no. 1, 485-494.

[^0]: * Grant KU 2430/3-1 - Integer Linear Programming Models for Subspace Codes and Finite Geometry - German Research Foundation.

[^1]: ${ }^{\dagger}$ The choice for m can be obtained by minimizing $\tau(n, \Delta, u, m)$, i.e., solving $\frac{\partial \tau(n, \Delta, u, m)}{\partial m}=0$ and rounding.
 ${ }^{\ddagger}$ A suitable test case might be to decide whether a vector space partition of type $4^{4} 3^{135} 2^{6}$ exists in \mathbb{F}_{2}^{10}.

