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Abstract

A well known class of objects in combinatorial design theory are group
divisible designs. Here, we introduce the g-analogs of group divisible de-
signs. It turns out that there are interesting connections to scattered
subspaces, g-Steiner systems, design packings and ¢"-divisible projective
sets.

We give necessary conditions for the existence of g-analogs of group di-
vsible designs, construct an infinite series of examples, and provide further
existence results with the help of a computer search.

One example is a (6, 3,2,2)2 group divisible design over GF(2) which
is a design packing consisting of 180 blocks that such every 2-dimensional
subspace in GF(2)° is covered at most twice.

1 Introduction

The classical theory of g-analogs of mathematical objects and functions has its
beginnings as early as in the work of Euler [Eul53]. In 1957, Tits [Tit57] further
suggested that combinatorics of sets could be regarded as the limiting case ¢ — 1
of combinatorics of vector spaces over the finite field GF(q). Recently, there has
been an increased interest in studying g-analogs of combinatorial designs from
an applications’ view. These g-analog structures can be useful in network coding
and distributed storage, see e.g. [GPel8].

It is therefore natural to ask which combinatorial structures can be general-
ized from sets to vector spaces over GF(g). For combinatorial designs, this ques-
tion was first studied by Ray-Chaudhuri [BRC74], Cameron [Cam74a, Cam74b]
and Delsarte [Del76] in the early 1970s.

Specifically, let GF(q)” be a vector space of dimension v over the finite
field GF(g). Then a t-(v,k,A), subspace design is defined as a collection of
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k-dimensional subspaces of GF(q)”, called blocks, such that each ¢-dimensional
subspace of GF(q)? is contained in exactly A blocks. Such ¢-designs over GF(q)
are the g-analogs of conventional designs. By analogy with the ¢ — 1 case,
a t-(v,k, 1), subspace design is said to be a ¢-Steiner system, and denoted
S(t,k,v),.

Another well-known class of objects in combinatorial design theory are group
divisible designs [MGO7]. Considering the above, it therefore seems natural to
ask for g-analogs of group divisible designs.

At first glance, this seems like a somewhat artificial task without much
justification. But quite surprisingly, it turns out that ¢-analogs of group divisible
designs have interesting connections to scattered subspaces which are central
objects in finite geometry, as well as to coding theory via ¢"-divisible projective
sets. We will also discuss the connection to ¢-Steiner systems [BEC)‘*‘IG} and to
design packings [EZ18].

Let K and G be sets of positive integers and let A be a positive integer. A
(v, K, A\, G)-group divisible design of index A and order v is a triple (V, G, B),
where V is a finite set of cardinality v, G, where #G > 1, is a partition of V
into parts (groups) whose sizes lie in G, and B is a family of subsets (blocks)
of V (with #B € K for B € B) such that every pair of distinct elements of
V occurs in exactly A blocks or one group, but not both. See—for example—
[MGO07, Han75] for details. We note that the “groups” in group divisible designs
have nothing to do with group theory.

The g-analog of a combinatorial structure over sets is defined by replacing
subsets by subspaces and cardinalities by dimensions. Thus, the g-analog of a
group divisible design can be defined as follows.

Definition 1 Let K and G be sets of positive integers and let A\ be a positive
integer. A g-analog of a group divisible design of index A and order v — denoted
as (v, K,\,G)g-GDD — is a triple (V, G, B), where

- V is a vector space over GF(q) of dimension v,

— G is a vector space partition' of V into subspaces (groups) whose dimen-
sions lie in G, and

— B is a family of subspaces (blocks) of V,
that satisfies

1. #G > 1,

2. if B € B thendim B € K,

3. every 2-dimensional subspace of V occurs in exactly A blocks or one group,
but not both.

A (v, K, X\, {9})q-GDD is called g-uniform. Subsequently, if K or G are one-
element sets, we denote it by small letters, e.g. (v,k, X, g)q-GDD for K = {k}
and G = {g}.

1A set of subspaces of V such that every 1-dimensional subspace is covered exactly once is
called vector space partition.



In the rest of the paper we study the case K = {k} and G = {g}. The latter
implies that the vector space partition G is a partition of the 1-dimensional
subspaces of V' in subspaces of dimension ¢. In finite geometry such a structure
is known as (g — 1)-spread. Additionally, we will only consider so called simple
group divisible designs, i.e. designs without multiple appearances of blocks.

A possible generalization would be to require the last condition in Defini-
tion 1 for every t-dimensional subspace of V, where ¢ > 2. For ¢ = 1 such a
definition would make no sense.

An equivalent formulation of the last condition in Definition 1 would be
that every block in B intersects the spread elements in dimension of at most
one. The g-analog of concept of a transversal design would be that every block
in B intersects the spread elements exactly in dimension one. But for g-analogs
this is only possible in the trivial case ¢ = 1, k = v. However, a related concept
was defined in [ES13].

Among all 2-subspaces of V', only a small fraction is covered by the elements
of G. Thus, a (v,k, A, g)-GDD is “almost” a 2-(v, k, \), subspace design, in
the sense that the vast majority of the 2-subspaces is covered by A elements of
B. From a slightly different point of view, a (v, k, A, 9)~GDD is a 2-(v, k, A, g)4
packing design of fairly large size, which are designs where the condition “each
t-subspace is covered by exactly A blocks” is relaxed to “each t-subspace is
covered by at most A blocks” [BKW18a]. In Section 6 we give an example of a
(6,3,2,2)2-GDD consisting of 180 blocks. This is the largest known 2-(6, 3, 2)2
packing design.

We note that a g-analog of a group divisible design can be also seen as a
special graph decomposition over a finite field, a concept recently introduced
in [BNW]. It is indeed equivalent to a decomposition of a complete m-partite
graph into cliques where: the vertices are the points of a projective space
PG(n,q); the parts are the members of a spread of PG(n,q) into subspaces
of a suitable dimension; the vertex-set of each clique is a subspace of PG(n, q)
of a suitable dimension.

2 Preliminaries

For 1 < m < v we denote the set of m-dimensional subspaces of V', also called
Grassmannian, by [m . It is well known that its cardinality can be expressed

by the Gaussian coefficient

o, = o), - e

Definition 2 Given a spread in dimension v, let [Z]; be the set of all blocks
that contain no 2-dimensional subspace which is already covered by the spread.

The intersection between a k-dimensional subspace B € [‘2/]; and all elements

of the spread is at most one-dimensional. In finite geometry such a subspace
li

Be Dﬂq is called scattered subspace with respect to G [BBL00, BLOO].

Incase g =1, ie. G = [‘I/]q7 no 2-dimensional subspace is covered by this
trivial spread. Then, (V,B) is a 2-(v,k, A),; subspace design. See [BKW18b,



BKW18a] for surveys about subspace designs and computer methods for their
construction.

Let g-s = v and V = GF(g)". Then, the set of 1-dimensional subspaces
of GF(¢%)® regarded as g-dimensional subspaces in the g¢-linear vector space

CF ()", ic. [GF( | }
G @

qg
is called Desarguesian spread.

A t-spread G is called normal or geometric, if U,V € G then any element W &€
G is either disjoint to the subspace (U, V) or contained in it, see e.g. [Lun99].
Since all normal spreads are isomorphic to the Desarguesian spread [Lun99], we
will follow [Lav16] and denote normal spreads as Desarguesian spreads.

If s € {1,2}, then all spreads are normal and therefore Desarguesian. The
automorphism group of a Desarguesian spread G is PT'L(s, ¢9).

“Trivial” g-analogs of group divisible designs. For subspace designs, the
empty set as well as the the set of all k-dimensional subspaces in GF(q)” always
are a designs, called trivial designs. Here, it turns out that the question if trivial
g-analogs of group divisible designs exist is rather non-trivial.

Of course, there exists always the trivial (v, k, 0, g)-GDD (V,G,{}). But it
is not clear if the set of all scattered k-dimensional subspaces, i.e. (V,G, [‘2];),
is always a ¢-GDD. This would require that every subspace L € [‘2/] ‘ that is not
covered by the spread, is contained in the same number Ay of blocks of [‘g] ;.
If this is the case, we call (V, [‘,j;,g) the complete (v, k, Amax, g)q-GDD.

If the complete (v, k, Amax, §)q-GDD exists, then for any (v, k, A, g),-GDD
(V,G, B) the triple (V, G, [‘2/]; \ B) is a (v, k, Amax — A, 9)4-GDD, called the sup-
plementary q-GDD.

For a few cases we can answer the question if the complete ¢-GDD exists, or
in other words, if there is a Apax. In general, the answer depends on the choice
of the spread. In the smallest case, k = 3, however, A\, exists for all spreads.
Lemma 1 Let G be a (g—1)-spread in V and let L be a 2-dimensional subspace
which is not contained in any element of G. Then, L is contained in

e e R il )

PROOF. Every 2-dimensional subspace L is contained in [

blocks of [‘g];

;:;]q 3-dimensional
subspaces of [‘g] ” If L is not contained in any spread element, this means that L
intersects m . different spread elements and the intersections are 1-dimensional.
Let S be one such spread element. Now, there are [gzl]q choices among the

3-dimensional subspaces in [‘3/]q which contain L to intersect S in dimension
two. Therefore, L is contained in

=[] [0



blocks of [g] ;. O

In general, the existence of A\,.x may depend on the spread. This can be seen
from the fact that the maximum dimension of a scattered subspace depends on
the spread, see [BL00]. However, for a Desarguesian spread and g = 2, k = 4,
we can determine Apax.

Lemma 2 Let G be a Desarquesian (g — 1)-spread in V' and let L be a 2-
dimensional subspace which is not contained in any element of G. Then, L
s contained in

- [ oo [

blocks of [Z];
v—2

PRrOOF. Every 2-dimensional subspace L is contained in [ 4o

] . 4-dimensional

subspaces. If L is not covered by the spread this means that L intersects m

spread elements Si,...,Sg41, which span a 4-dimensional space F'. All other
spread elements are disjoint to L. Since L < F, we have to subtract one
possibility. For each 1 <i < ¢+ 1, (S;, L) is contained in q[”#]q 4-dimensional
subspaces with a 3-dimensional intersection with F'. All other spread elements S’
of F satisfy (S", L) = F. If S” is one of the [ﬂq/ [ﬂq - mq/ [ﬂq spread elements
disjoint from F, then F" := (S” L) intersects F' in dimension 2. Moreover,
F" does not contain any further spread element, since otherwise F”’ would be
partitioned into g% 4 1 spread elements, where ¢ + 1 of them have to intersect

L. Thus, L is contained in exactly Apax elements from Dﬂ; O

3 Necessary conditions on (v, k, A, g),

The necessary conditions for a (v, k, A, g)-GDD over sets are g | v, k < v/g,
A —1)g=0 (mod k —1), and A{ (5 — 1)g> =0 (mod k(k — 1)), see [Han75].

For g-analogs of GDDs it is well known that (g — 1)-spreads exist if and only
if g divides v. A (g — 1)-spread consists of mq/ [g]q blocks and contains

1
{ q 1 q 1 q
2-dimensional subspaces.

Based on the pigeonhole principle we can argue that if B is a block of a
(v,k, A, g)q ¢-GDD then there can not be more points in B than the number of
spread elements, i.e. if mq < [?]q/[ﬂq. It follows that (see [BLOO, Theorem
3.1])

k<v—g. (1)

This is the g-analog of the restriction k < v/g for the set case.
If G is a Desarguesian spread, it follows from [BL00, Theorem 4.3] for the
parameters (v, k, A, g)4 to be admissible that

k<wv/2.



By looking at the numbers of 2-dimensional subspaces which are covered by
spread elements we can conclude that the cardinality of B has to be

2], — I8, - 1,/ 3],
2],
A necessary condition on the parameters of a g-uniform ¢-(k, A\) GDD is that

the cardinality in (2) is an integer number.
Any fixed 1-dimensional subspace P is contained in [

#B =)

(2)

1 . .
'] } . 2-dimensional

subspaces. Further, P lies in exactly one block of the spread and this block cov-
ers [g Il]q 2-dimensional subspaces through P. Those 2-dimensional subspaces
are not covered by blocks in B. All other 2-dimensional subspaces containing
P are covered by exactly A k-dimensional blocks. Such a block contains P and
there are [kfl}q 2-dimensional subspaces through P in this block. It follows
that P is contained in exactly

[T, - 7],
7],

k-dimensional blocks and this number must be an integer. The number (3) is
the replication number of the point P in the ¢-GDD.

A (3)

Up to now, the restrictions (1), (2), (3), as well as g divides v, on the
parameters of a (v,k, A, g),~GDD are the g-analogs of restrictions for the set
case. But for ¢-GDDs there is a further necessary condition whose analog in the
set case is trivial.

Given a multiset of subspaces of V', we obtain a corresponding multiset P of
points by replacing each subspace by its set of points. A multiset P C [Y]q of
points in V can be expressed by its weight function wp: For each point P € V'
we denote its multiplicity in P by wp(P). We write

#P =Y wp(P) and #(PNH)= Y wp(P)

PeVv PeH

where H is an arbitrary hyperplane in V.

Let 1 < r < v be an integer. If #P = #(P N H) (mod ¢") for every
hyperplane H, then P is called q"-divisible.? In [KK17, Lemma 1] it is shown
that the multiset P of points corresponding to a multiset of subspaces with
dimension at least k is ¢*~'-divisible.

Lemma 3 ([KK17, Lemma 1]) For a non-empty multiset of subspaces of V
with m; subspaces of dimension i let P be the corresponding multiset of points.
If m; =0 for all0 < i < k, where k > 2, then

H#P=#(PNH) (mod qkfl)

for every hyperplane H < V.

2Taking the elements of PP as columns of a generator matrix gives a linear code of length
#P and dimension k whose codewords have weights being divisible by ¢".



PrOOF. We have #P = >""  m; [2’] . The intersection of an i-subspace U <V
with an arbitrary hyperplane H < V has either dimension ¢ or ¢ — 1. Therefore,

for the set P’ of points corresponding to U, we get that #P = mq and that

#(P' ﬂH) is equal to mq or [izl]q. In either case, it follows from mq = [’:1} .
(mod ¢*~!) that
#(P'NH)= [ﬂ (mod ¢ 1).
q
Summing up yields the proposed result. (Il

If there is a suitable integer A such that wp(P) < A for all P € V', then we can
define for P the complementary weight function

@(P) = X — w(P)

which in turn gives rise to the complementary multiset of points P. In E(Kl?,
Lemma 2] it is shown that a ¢"-divisible multiset P leads to a multiset P that
is also ¢"-divisible.

Lemma 4 ([KK17, Lemma 2]) If a multiset P inV is q"-divisible with v < v
and satisfies wp(P) < X for all P € V then the complementary multiset P is
also q" -divisible.

PrROOF. We have

_ _ —1
#Pm A—#P  and #(PnH)r’l ] A~ #(PNH)
a a
for every hyperplane H < V. Thus, the result follows from mq = [“Il}q
(mod ¢") which holds for r < v. O

These easy but rather generally applicable facts about ¢"-divisible multiset of
points are enough to conclude:

Lemma 5 Let (V,G,B) be a (v,k, )\, 9)y-GDD and 2 < g < k, then ¢*9 divides
A

PrROOF. Let P € [Y]q be an arbitrary point. Then there exists exactly one

spread element S € G that contains P. By Bp we denote the elements of B that
contain P. Let S” and B denote the corresponding subspaces in the factor
space V/P.

We observe that every point of [5:] is disjoint to the elements of B} and
q

that every point in [V{P]q\ [Sll
dimension k — 1). We note that B!, gives rise to a ¢~ 2-divisible multiset P of
points. So, its complement P, which is the A-fold copy of S’, also has to be
¢"~2-divisible. For every hyperplane H not containing S’, we have #(PNH) =
A[P7%], and #P = A[7]] . Thus, \g?"* = #P — #(P N H) = 0 (mod ¢"~2),

so that ¢*~9 divides \. O

]q is met by exactly A elements of B} (all having

We remark that the criterion in Lemma 5 is independent of the dimension
v of the ambient space. Summarizing the above we arrive at the following
restrictions.



Theorem 1 Necessary conditions for a (v,k, X, g)q-GDD are
1. g divides v,
2. k<v-—gy,
3. the cardinalities in (2), (3) are integer numbers,
4. if 2 < g <k then ¢*=9 divides \.
If these conditions are fulfilled, the parameters (v, k, A, g)q are called admissible.

Table 1 contains the admissible parameters for ¢ = 2 up to dimension v = 14.

Column A gives the minimum value of A which fulfills the above necessary

conditions. All admissible values of A are integer multiples of A4. In column

#B the cardinality of B is given for A = Aa. Those values of Ayax that are

valid for the Desarguesian spread only are given in italics, where the values for

(v,9,k) = (8,4,4) and (9, 3,4) have been checked by a computer enumeration.
For the case A = 1, the online tables [HKKW16]

http://subspacecodes.uni-bayreuth.de

may give further restrictions, since B is a constant dimension subspace code of
minimum distance 2(k — 1) and therefore

#B < Ay(v,2(k — 1) k).

The currently best known upper bounds for A, (v, d; k) are given by [HHK'17,
Equation (2)] referring back to partial spreads and A3(6,4;3) = 77 [HKK15],
A5(8,6;4) = 257 [HHK™'17] both obtained by exhaustive integer linear pro-
gramming computations, see also [KK17].

4 ¢-GDDs and ¢-Steiner systems

In the set case the connection between Steiner systems 2-(v,k,1) and group
divisible designs is well understood.

Theorem 2 ([Han75, Lemma 2.12]) A 2-(v + 1,k,1) design exists if and
only if a (v, k, 1,k —1)-GDD exists.

There is a partial g-analog of Theorem 2:

Theorem 3 If there exists a 2-(v+1,k, 1), subspace design, then a (v,k,q? k—
1)¢-GDD exists.

PROOF. Let V' be a vector space of dimension v+ 1 over GF(g). We fix a point
Pe [‘i }q and define the projection

7:PG(V') = PG(V'/P), U (U+ P)/P.
For any subspace U < V' we have

dim(U) -1 if P<U,
dim(U) otherwise.

dim(w(U)) = {



Table 1: Admissible parameters for (v, k, \, g)2-GDDs with v < 14.

v g k Aa Amax #B  #G

6 2 3 2 12 180 21

6 3 3 3 6 252 9

8 2 3 2 60 3060 85

8 2 4 4 480 1224 85

8 4 3 7 42 10200 17

8 4 4 7 14 2040 17

9 3 3 1 118 6132 73

9 3 4 10 1680 12264 73
10 2 3 14 252 347820 341
100 2 4 28 10080 139128 341
10 2 5 8 8976 341
10 5 3 21 210 507408 33
10 5 4 35 169136 33
10 5 5 15 16368 33
12 2 3 2 1020 797940 1365
12 2 4 28 171360 2234232 1365
12 2 5 40 720720 1365
12 2 6 16 68640 1365
12 3 3 3 1014 1195740 585
12 3 4 2 159432 585
12 3 5 1860 33480720 585
12 3 6 248 1062880 585
12 4 3 1 1002 397800 273
12 4 4 7 556920 273
12 4 5 62 1113840 273
12 4 6 124 530400 273
12 6 3 1 930 393120 65
12 6 4 1 78624 65
12 6 5 155 2751840 65
12 6 6 31 131040 65
14 2 3 2 4092 12778740 5461
14 2 4 4 2782560 5111496 5461
14 2 5 248 71560944 5461
14 2 6 496 34076640 5461
14 2 7 32 536640 5461
14 7 3 21 3906 133161024 129
14 7 4 35 44387008 129
14 7 5 465 133161024 129
14 7 6 651 44387008 129
14 7 7 63 1048512 129



Let D= (V',B’) be a 2-(v + 1, k, 1), subspace design. The set
G={n(B)|BeB,PeB}

is the derived design of D with respect to P [KL15], which has the parameters
1-(v, k —1,1),. In other words, it is a (k — 2)-spread in V’/P. Now define

B={n(B)|BeB,P¢Byand V=V'/P.

We claim that (V,G, B) is a (v, k,¢? k — 1),-GDD.
In order to prove this, let L € [‘2/](1 be a line not covered by any element in

G. Then L = E/P, where E € [‘gl]q, P < E and F is not contained in a block

of the design D. The blocks of B covering L have the form 7(B) with B € B
such that BN E is a line in E not passing through P. There are ¢? such lines
and each line is contained in a unique block in B’. Since these ¢? blocks B have
to be pairwise distinct and do not contain the point P, we get that there are g2
blocks 7(B) € B containing L. O

Since there are 2-(13,3, 1), subspace designs [BEO116], by Theorem 3 there
are also (12,3,4,2)2-GDDs.

The smallest admissible case of a 2-(v, 3, 1), subspace design is v = 7, which
is known as a g-analog of the Fano plane. Its existence is a notorious open
question for any value of q. By Theorem 3, the existence would imply the
existence of a (6,3,q?,2),~-GDD, which has been shown to be true in [EH17]
for any value of ¢, in the terminology of a “residual construction for the ¢-
Fano plane”. In Theorem 4, we will give a general construction of ¢-GDDs
covering these parameters. The crucial question is if a (6, 3, ¢%,2),-GDD can be
“lifted” to a 2-(7, 3, 1), subspace design. While the GDDs with these parameters
constructed in Theorem 4 have a large automorphism group, for the binary case
g = 2 we know from [BKN16, KKW18] that the order of the automorphism
group of a putative 2-(7,3, 1), subspace design is at most two. So if the lifting
construction is at all possible for the binary (6, 3,4,2)2-GDD from Theorem 4,
necessarily many automorphisms have to “get destroyed”.

In Table 2 we can see that there exists a (8,3,4,2)2-GDD. This might lead
in the same way to a 2-(9, 3, 1), subspace design, which is not known to exist.

5 A general construction

A very successful approach to construct t-(v, k, ) designs over sets is to prescribe
an automorphism group which acts transitively on the subsets of cardinality .
However for g-analogs of designs with ¢ > 2 this approach yields only trivial
designs, since in [CK79, Prop. 8.4] it is shown that if a group G < PT'L(v, q)
acts transitively on the ¢-dimensional subspaces of V, 2 < ¢t < v — 2, then G
acts transitively also on the k-dimensional subspaces of V for all 1 <k <wv—1.

The following lemma provides the counterpart of the construction idea for
g-analogs of group divisible designs. Unlike the situation of g-analogs of designs,
in this slightly different setting there are indeed suitable groups admitting the
general construction of non-trivial ¢-GDDs, which will be described in the se-
quel. Itoh’s construction of infinite families of subspace designs is based on a
similar idea [I1t098].

10



Lemma 6 Let G be a (g9 — 1)-spread in PG(V') and let G be a subgroup of the
stabilizer PTL(v, q)g of G in PTL(v,q). If the action of G on [‘Q/]q \ Useg [g}q
is transitive, then any union B of G-orbits on the set of k-subspaces which
are scattered with respect to G yields a (v,k, X, 9)q-GDD (V, G, B) for a suitable
value A.

PROOF. By transitivity, the number A of blocks in B passing through a line
Le [‘Q/]q \ Useg [‘g]q does not depend on the choice of L. O

In the following, let V' = GF(¢9)*, which is a vector space over GF(q) of

dimension v = gs. Furthermore, let G = [}] 4o be the Desarguesian (g — 1)-

spread in PG(V). For every GF(q)-subspace U < V we have that

dimGF(qg) (<U>GF(q9)) < dlmGF(q)(U)

In the case of equality, U will be called fat. Equivalently, U is fat if and only if
one (and then any) GF(g)-basis of U is GF(¢9)-linearly independent. The set
of fat k-subspaces of V' will be denoted by F.

We remark that for a fat subspace U, the set of points {(z)gp(gs) : 2 € U}
is a Baer subspace of V' as a GF(¢9)-vector space.

Lemma 7

£ () TP 1

= 2 . .

#Fk =4q H) o

PROOF. A sequence of k vectors in V' is the GF(g)-basis of a fat k-subspace if
and only if it is linearly independent over GF(¢9). Counting the set of those
sequences in two ways yields

k—1 k—1
#Fe- [ =) =] (@) = ()",
i=0 i=0
which leads to the stated formula. O

We will identify the unit group GF(¢)* with the corresponding group of s x s
scalar matrices over GF(¢9).

Lemma 8 Consider the action of SL(s,q%)/ GF(q)* on the set of the fat k-

subspaces of V.. For k < s, the action is transitive. For k = s, Fy, splits into

q;:ll orbits of equal length.

PROOF. Let U be a fat k-subspace of V and let B be an ordered GF(g)-basis
of U. Then B is an ordered GF(q7)-basis of (U)ar(qgs)-

For k < s, B can be extended to an ordered GF(¢9)-basis B’ of V. Let A
be the (s x s)-matrix over GF(¢9) whose columns are given by B’. By scaling
one of the vectors in B’ \ B, we may assume det(A) = 1. Now the mapping
V = V,z+— Azisin SL(s, ¢?) and maps the fat k-subspace (e, ...,ex) to U (e;
denoting the i-th standard vector of V). Thus, the action of SL(s,¢9)/ GF(q)*
is transitive on Fj.

It remains to consider the case k = s. Let A be the (s x s)-matrix over
GF(¢?) whose columns are given by B. As any two GF(q)-bases of U can be

11



mapped to each other by a GF(g)-linear map, we see that up to a factor in
GF(q)*, det(A) does not depend on the choice of B. Thus,

det(U) := det(A) - GF(q)* € GF(¢%)*/ GF(q)*

is invariant under the action of SL(s,qY) on Fi. It is readily checked that
every value in GF(¢9)*/ GF(q)* appears as the invariant det(U) for some fat
s-subspace U, and that two fat s-subspaces having the same invariant can be
mapped to each other within SL(s,¢?). Thus, the number of orbits of the
action of SL(s,¢9) on F; is given by the number #(GF(¢?)*/ GF(¢)*) = q;:ll
of invariants. As SL(s,¢9) is normal in GL(s, ¢?) which acts transitively on Fy,
all orbits have the same size. Modding out the kernel GF(q)* of the action yields
the statement in the lemma. O

Theorem 4 Let V be a vector space over GF(q) of dimension gs with g > 2 and
s > 3. Let G be a Desarguesian (g—1)-spread in PG(V'). Fork € {3,...,s—1},
(V. G, Fi) is a (gs,k, A, 9)q-GDD with

A= (gl quk 1_1'

Moreover, for each a € {1,..., %}, the union B of any « orbits of the action
of SL(s,q%)/ GF(q)* on Fs gives a (gs,s, A, g)q-GDD (V,G, B) with

A = ago (G Hqg *11
P

PrOOF. We may assume V = GF(¢?)* and G = [Y]
the elements of G are exactly the non-fat GF(g)-subspaces of V' of dimension
2. By Lemma 6 and Lemma 8, (V,G, F) is a GDD. Double counting yields
H#Fo A= H#Fi - [g]q. Using Lemma 7, this equation transforms into the given
formula for A.

In the case k = s, by Lemma 8, each union B of a € {1,..., qqg:11} orbits
under the action of SL(s, ¢)/ GF(¢)* on F; yields a GDD with

The lines covered by

q9°

(s— 7)_1

18 qg qg_1
N = ag@D( -1 4 (g H(( 1)

]

Remark 1 In the special case g = 2, s = 3 and a = 1 the second case of
Theorem 4 yields (6,3,¢% 2),-GDDs. These parameters match the “residual
construction for the q-Fano plane” in [EH17].

Remark 2 A fat k-subspace (k € {3,...,s}) is always scattered with respect
to the Desarguesian spread [‘1/] o The converse is only true for g = 2. Thus,

Theorem 4 implies that the set of all scattered k-subspaces with respect to the
Desarguesian line spread of GF(q)* is a (25, k, Amax, 2)q-GDD.

12



Table 2: Existence results for (v, k, A, g)q-GDD for ¢ = 2.

v g k Aa Amazr A comments

6 2 3 2 12 4 [EH17]
2,4, ...,12 (o)
o, o =1,2,3 Thm. 4

6 3 3 3 6 3,6 (o?t)

8 2 3 2 60 2,58 (o, ¢%)
4,6, ..., 54, 56, 60 (o, P)

8 2 4 4 480 20, 40, ..., 480 (o, P)
160a, « = 1,2,3 Thm. 4

8 4 3 7 42 7,21, 35 (o)
14, 28, 42 (o, P)

8 4 4 7 14 7,14 (o)

9 3 3 1 118 2,3,...,115, 116, 118 (o, P)
16, a=1,...,16 Thm. 4

9 3 4 10 1680 30,60, ..., 1680 (o, P)

10 2 3 14 252 14, 28, ..., 252 (o, P)

10 2 5 8 23040, a =1,...,3 Thm. 4

10 5 3 21 210 105, 210 (o, ¢?)

12 2 3 2 1020 4 [BEO+16]

12 2 6 16 12533760, « = 1,...,3 Thm. 4

12 3 4 2 215040, o =1,...,7 Thm. 4

12 4 3 1 1002 6da,a=1,...,15 Thm. 4

6 Computer constructions

An element 7 € PI'L(v, ¢) is an automorphism of a (v, k, A, g);-GDD if 7(G) = G
and 7(B) = B.

Taking the Desarguesian (g — 1)-spread and applying the Kramer-Mesner
method [KM76] with the tools described in [BKL05, BKW18b, BKW18a] to the
remaining blocks, we have found (v, k, A, g),-GDDs for the parameters listed in
Tables 2, 3. In all cases, the prescribed automorphism groups are subgroups
of the normalizer (o, ) of a Singer cycle group generated by an element o of
order ¢¥ — 1 and by the Frobenius automorphism ¢, see [BKW18a]. Note that
the presented necessary conditions for Ay turn out to be tight in several cases.

Example. We take the primitive polynomial 1 + = + 23 + 2* + 25, together
with the canonical Singer cycle group generated by

010000
001000
000100
000010
000001
110110

For a compact representation we will write all « x 8 matrices X over GF(q)

13



Table 3: Existence results for (v, k, A, g)q-GDD for ¢ = 3.

v g k Aa Amaz = A comments

6 2 3 3 36 9 [EH17]
9o, a=1,...,4 Thm. 4
12, 18 (013, ¢)

6 3 3 4 24 12,24 (ot ¢)

8 2 4 9 9720 2430, a=1,...,4 Thm. 4

8 4 3 13 312 52, 104, 156, 208, 260, 312 (o, P)

9 3 3 1 1077 8la, a=1,...,13 Thm. 4
10 2 5 27 22044960 5511240c, a« = 1,...,4 Thm. 4
12 2 6 81 439267872960 109816968240c, « = 1,...,4 Thm. 4
12 3 4 3 5373459, o =1,...,13 Thm. 4
12 4 3 1 29472 729, a=1,...,40 Thm. 4

with entries z; ;, whose indices are numbered from 0, as vectors of integers
§ . E o
[ Zo,59" -+ -, La—1,59 ]’
J J

ie. o =12,4,8,16,32,27].

The block representatives of a (6, 3,2,2)2-GDD can be constructed by pre-
scribing the subgroup G' = (0”) of the Singer cycle group. The order of G is
9, a generator is [54,55, 53,49, 57,41]. The spread is generated by [1, 14], under
the action of G the 21 spread elements are partitioned into 7 orbits. The blocks
of the GDD consist of the G-orbits of the following 20 generators.

3,16, 32], [15, 16,32], [4,8,32], [5, 8, 32], [19, 24, 32], [7, 24, 32], [10, 4, 32],
[18,28,32], [17,20,32], [1,28,32], [17, 10, 32], [25, 2, 32], [13, 6, 32], [29, 30, 32],
(33,12, 16], [38, 40, 16], [2, 36, 16], [1, 36, 16], [11, 12, 16], [19, 20, 8]
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