q-analogs of group divisible designs

Marco Buratti^{*}, Michael Kiermaier[†], Sascha Kurz[‡], Anamari Nakić[§], Alfred Wassermann[¶]

April 30, 2018

Abstract

A well known class of objects in combinatorial design theory are group divisible designs. Here, we introduce the q-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, q-Steiner systems, design packings and q^r -divisible projective sets.

We give necessary conditions for the existence of q-analogs of group divsible designs, construct an infinite series of examples, and provide further existence results with the help of a computer search.

One example is a $(6, 3, 2, 2)_2$ group divisible design over GF(2) which is a design packing consisting of 180 blocks that such every 2-dimensional subspace in GF(2)⁶ is covered at most twice.

1 Introduction

The classical theory of q-analogs of mathematical objects and functions has its beginnings as early as in the work of Euler [Eul53]. In 1957, Tits [Tit57] further suggested that combinatorics of sets could be regarded as the limiting case $q \rightarrow 1$ of combinatorics of vector spaces over the finite field GF(q). Recently, there has been an increased interest in studying q-analogs of combinatorial designs from an applications' view. These q-analog structures can be useful in network coding and distributed storage, see e.g. [GPe18].

It is therefore natural to ask which combinatorial structures can be generalized from sets to vector spaces over GF(q). For combinatorial designs, this question was first studied by Ray-Chaudhuri [BRC74], Cameron [Cam74a, Cam74b] and Delsarte [Del76] in the early 1970s.

Specifically, let $GF(q)^v$ be a vector space of dimension v over the finite field GF(q). Then a t- $(v, k, \lambda)_q$ subspace design is defined as a collection of

^{*}Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, 06123 Perugia, Italy, buratti@dmi.unipg.it

[†]Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, michael.kiermaier@uni-bayreuth.de

 $^{^{\}ddagger}\textsc{Department}$ of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, <code>sascha.kurz@uni-bayreuth.de</code>

[§]Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia, anamari.nakic@fer.hr

[¶]Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany, alfred.wassermann@uni-bayreuth.de

k-dimensional subspaces of $GF(q)^v$, called blocks, such that each t-dimensional subspace of $GF(q)^v$ is contained in exactly λ blocks. Such t-designs over GF(q)are the q-analogs of conventional designs. By analogy with the $q \to 1$ case, a t- $(v, k, 1)_q$ subspace design is said to be a q-Steiner system, and denoted $S(t, k, v)_q$.

Another well-known class of objects in combinatorial design theory are group divisible designs [MG07]. Considering the above, it therefore seems natural to ask for q-analogs of group divisible designs.

At first glance, this seems like a somewhat artificial task without much justification. But quite surprisingly, it turns out that q-analogs of group divisible designs have interesting connections to scattered subspaces which are central objects in finite geometry, as well as to coding theory via q^r -divisible projective sets. We will also discuss the connection to q-Steiner systems [BEÖ⁺16] and to design packings [EZ18].

Let K and G be sets of positive integers and let λ be a positive integer. A (v, K, λ, G) -group divisible design of index λ and order v is a triple $(V, \mathcal{G}, \mathcal{B})$, where V is a finite set of cardinality v, \mathcal{G} , where $\#\mathcal{G} > 1$, is a partition of V into parts (groups) whose sizes lie in G, and \mathcal{B} is a family of subsets (blocks) of V (with $\#B \in K$ for $B \in \mathcal{B}$) such that every pair of distinct elements of V occurs in exactly λ blocks or one group, but not both. See—for example—[MG07, Han75] for details. We note that the "groups" in group divisible designs have nothing to do with group theory.

The q-analog of a combinatorial structure over sets is defined by replacing subsets by subspaces and cardinalities by dimensions. Thus, the q-analog of a group divisible design can be defined as follows.

Definition 1 Let K and G be sets of positive integers and let λ be a positive integer. A q-analog of a group divisible design of index λ and order v — denoted as $(v, K, \lambda, G)_q$ -GDD — is a triple $(V, \mathcal{G}, \mathcal{B})$, where

- V is a vector space over GF(q) of dimension v,
- \mathcal{G} is a vector space partition¹ of V into subspaces (groups) whose dimensions lie in G, and
- \mathcal{B} is a family of subspaces (blocks) of V,

that satisfies

- 1. $\# \mathcal{G} > 1$,
- 2. if $B \in \mathcal{B}$ then dim $B \in K$,
- 3. every 2-dimensional subspace of V occurs in exactly λ blocks or one group, but not both.

A $(v, K, \lambda, \{g\})_q$ -GDD is called g-uniform. Subsequently, if K or G are oneelement sets, we denote it by small letters, e.g. $(v, k, \lambda, g)_q$ -GDD for $K = \{k\}$ and $G = \{g\}$.

 $^{^1\}mathrm{A}$ set of subspaces of V such that every 1-dimensional subspace is covered exactly once is called vector space partition.

In the rest of the paper we study the case $K = \{k\}$ and $G = \{g\}$. The latter implies that the vector space partition \mathcal{G} is a partition of the 1-dimensional subspaces of V in subspaces of dimension g. In finite geometry such a structure is known as (g-1)-spread. Additionally, we will only consider so called simple group divisible designs, i.e. designs without multiple appearances of blocks.

A possible generalization would be to require the last condition in Definition 1 for every t-dimensional subspace of V, where $t \ge 2$. For t = 1 such a definition would make no sense.

An equivalent formulation of the last condition in Definition 1 would be that every block in \mathcal{B} intersects the spread elements in dimension of at most one. The *q*-analog of concept of a *transversal design* would be that every block in \mathcal{B} intersects the spread elements exactly in dimension one. But for *q*-analogs this is only possible in the trivial case g = 1, k = v. However, a related concept was defined in [ES13].

Among all 2-subspaces of V, only a small fraction is covered by the elements of \mathcal{G} . Thus, a $(v, k, \lambda, g)_q$ -GDD is "almost" a 2- $(v, k, \lambda)_q$ subspace design, in the sense that the vast majority of the 2-subspaces is covered by λ elements of \mathcal{B} . From a slightly different point of view, a $(v, k, \lambda, g)_q$ -GDD is a 2- $(v, k, \lambda, g)_q$ packing design of fairly large size, which are designs where the condition "each t-subspace is covered by exactly λ blocks" is relaxed to "each t-subspace is covered by at most λ blocks" [BKW18a]. In Section 6 we give an example of a $(6, 3, 2, 2)_2$ -GDD consisting of 180 blocks. This is the largest known 2- $(6, 3, 2)_2$ packing design.

We note that a q-analog of a group divisible design can be also seen as a special graph decomposition over a finite field, a concept recently introduced in [BNW]. It is indeed equivalent to a decomposition of a complete m-partite graph into cliques where: the vertices are the points of a projective space PG(n,q); the parts are the members of a spread of PG(n,q) into subspaces of a suitable dimension; the vertex-set of each clique is a subspace of PG(n,q) of a suitable dimension.

2 Preliminaries

For $1 \leq m \leq v$ we denote the set of *m*-dimensional subspaces of *V*, also called *Grassmannian*, by $\begin{bmatrix} V \\ m \end{bmatrix}_q$. It is well known that its cardinality can be expressed by the *Gaussian coefficient*

$$\# \begin{bmatrix} V \\ m \end{bmatrix}_q = \begin{bmatrix} v \\ m \end{bmatrix}_q = \frac{(q^v - 1)(q^{v-1} - 1)\cdots(q^{v-m+1} - 1)}{(q^m - 1)(q^{m-1} - 1)\cdots(q - 1)} \,.$$

Definition 2 Given a spread in dimension v, let $\begin{bmatrix} V \\ k \end{bmatrix}'_q$ be the set of all blocks that contain no 2-dimensional subspace which is already covered by the spread.

The intersection between a k-dimensional subspace $B \in {V \choose 2}'_q$ and all elements of the spread is at most one-dimensional. In finite geometry such a subspace $B \in {V \choose k}'_q$ is called *scattered subspace with respect to* \mathcal{G} [BBL00, BL00].

In case g = 1, i.e. $\mathcal{G} = \begin{bmatrix} V \\ 1 \end{bmatrix}_q$, no 2-dimensional subspace is covered by this trivial spread. Then, (V, \mathcal{B}) is a 2- $(v, k, \lambda)_q$ subspace design. See [BKW18b,

BKW18a] for surveys about subspace designs and computer methods for their construction.

Let $g \cdot s = v$ and $V = GF(q)^v$. Then, the set of 1-dimensional subspaces of $GF(q^g)^s$ regarded as g-dimensional subspaces in the q-linear vector space $GF(q)^v$, i.e.

$$\mathcal{G} = \begin{bmatrix} \operatorname{GF}(q^g)^s \\ 1 \end{bmatrix}_{q^g}$$

is called *Desarguesian spread*.

A *t*-spread \mathcal{G} is called *normal* or *geometric*, if $U, V \in \mathcal{G}$ then any element $W \in \mathcal{G}$ is either disjoint to the subspace $\langle U, V \rangle$ or contained in it, see e.g. [Lun99]. Since all normal spreads are isomorphic to the Desarguesian spread [Lun99], we will follow [Lav16] and denote normal spreads as Desarguesian spreads.

If $s \in \{1, 2\}$, then all spreads are normal and therefore Desarguesian. The automorphism group of a Desarguesian spread \mathcal{G} is $P\Gamma L(s, q^g)$.

"Trivial" q-analogs of group divisible designs. For subspace designs, the empty set as well as the set of all k-dimensional subspaces in $GF(q)^v$ always are a designs, called *trivial designs*. Here, it turns out that the question if trivial q-analogs of group divisible designs exist is rather non-trivial.

Of course, there exists always the trivial $(v, k, 0, g)_q$ -GDD $(V, \mathcal{G}, \{\})$. But it is not clear if the set of all scattered k-dimensional subspaces, i.e. $(V, \mathcal{G}, {V \brack_{k}}'_{q})$, is always a q-GDD. This would require that every subspace $L \in {V \brack_{2}}_{q}$ that is not covered by the spread, is contained in the same number λ_{\max} of blocks of ${V \brack_{k}}'_{q}$. If this is the case, we call $(V, {V \atop_{k}}'_{q}, \mathcal{G})$ the *complete* $(v, k, \lambda_{\max}, g)_q$ -GDD.

If the complete $(v, k, \lambda_{\max}, g)_q$ -GDD exists, then for any $(v, k, \lambda, g)_q$ -GDD $(V, \mathcal{G}, \mathcal{B})$ the triple $(V, \mathcal{G}, \begin{bmatrix} V \\ 2 \end{bmatrix}'_q \setminus \mathcal{B})$ is a $(v, k, \lambda_{\max} - \lambda, g)_q$ -GDD, called the *supplementary q*-GDD.

For a few cases we can answer the question if the complete q-GDD exists, or in other words, if there is a λ_{max} . In general, the answer depends on the choice of the spread. In the smallest case, k = 3, however, λ_{max} exists for all spreads.

Lemma 1 Let \mathcal{G} be a (g-1)-spread in V and let L be a 2-dimensional subspace which is not contained in any element of \mathcal{G} . Then, L is contained in

$$\lambda_{\max} = \begin{bmatrix} v-2\\ 3-2 \end{bmatrix}_q - \begin{bmatrix} 2\\ 1 \end{bmatrix}_q \begin{bmatrix} g-1\\ 3-2 \end{bmatrix}_q$$

blocks of $\begin{bmatrix} V \\ 3 \end{bmatrix}'_q$.

PROOF. Every 2-dimensional subspace L is contained in $\begin{bmatrix} v-2\\ 3-2 \end{bmatrix}_q$ 3-dimensional subspaces of $\begin{bmatrix} V\\ 3 \end{bmatrix}_q$. If L is not contained in any spread element, this means that L intersects $\begin{bmatrix} 2\\ 1 \end{bmatrix}_q$ different spread elements and the intersections are 1-dimensional. Let S be one such spread element. Now, there are $\begin{bmatrix} g-1\\ 1 \end{bmatrix}_q$ choices among the 3-dimensional subspaces in $\begin{bmatrix} V\\ 3 \end{bmatrix}_q$ which contain L to intersect S in dimension two. Therefore, L is contained in

$$\lambda_{\max} = \begin{bmatrix} v-2\\ 3-2 \end{bmatrix}_q - \begin{bmatrix} 2\\ 1 \end{bmatrix}_q \begin{bmatrix} g-1\\ 3-2 \end{bmatrix}_q$$

blocks of $\begin{bmatrix} V \\ 3 \end{bmatrix}'_{a}$.

In general, the existence of λ_{\max} may depend on the spread. This can be seen from the fact that the maximum dimension of a scattered subspace depends on the spread, see [BL00]. However, for a Desarguesian spread and g = 2, k = 4, we can determine λ_{\max} .

Lemma 2 Let \mathcal{G} be a Desarguesian (g-1)-spread in V and let L be a 2dimensional subspace which is not contained in any element of \mathcal{G} . Then, L is contained in

$$\lambda_{\max} = \begin{bmatrix} v-2\\4-2 \end{bmatrix}_q - 1 - q \begin{bmatrix} 2\\1 \end{bmatrix}_q \begin{bmatrix} v-4\\1 \end{bmatrix}_q - \begin{bmatrix} v\\1 \end{bmatrix}_q / \begin{bmatrix} 2\\1 \end{bmatrix}_q + \begin{bmatrix} 4\\1 \end{bmatrix}_q / \begin{bmatrix} 2\\1 \end{bmatrix}_q$$

blocks of $\begin{bmatrix} V\\4 \end{bmatrix}_q'$.

PROOF. Every 2-dimensional subspace L is contained in $\begin{bmatrix} v-2\\4-2 \end{bmatrix}_q$ 4-dimensional subspaces. If L is not covered by the spread this means that L intersects $\begin{bmatrix} 2\\1 \end{bmatrix}_{q}$ spread elements S_1, \ldots, S_{q+1} , which span a 4-dimensional space F. All other spread elements are disjoint to L. Since $L \leq F$, we have to subtract one possibility. For each $1 \leq i \leq q+1$, $\langle S_i, L \rangle$ is contained in $q \begin{bmatrix} v-4 \\ 1 \end{bmatrix}_q$ 4-dimensional subspaces with a 3-dimensional intersection with F. All other spread elements S' of F satisfy $\langle S', L \rangle = F$. If S'' is one of the $\begin{bmatrix} v \\ 1 \end{bmatrix}_q / \begin{bmatrix} 2 \\ 1 \end{bmatrix}_q - \begin{bmatrix} 4 \\ 1 \end{bmatrix}_q / \begin{bmatrix} 2 \\ 1 \end{bmatrix}_q$ spread elements disjoint from F, then $F'' := \langle S'', L \rangle$ intersects F in dimension 2. Moreover, F'' does not contain any further spread element, since otherwise F'' would be partitioned into $q^2 + 1$ spread elements, where q + 1 of them have to intersect L. Thus, L is contained in exactly λ_{\max} elements from $\begin{bmatrix} V \\ 4 \end{bmatrix}'_{a}$.

Necessary conditions on $(v, k, \lambda, g)_a$ 3

The necessary conditions for a (v, k, λ, g) -GDD over sets are $g \mid v, k \leq v/g$, $\lambda(\frac{v}{g}-1)g \equiv 0 \pmod{k-1}$, and $\lambda \frac{v}{g}(\frac{v}{g}-1)g^2 \equiv 0 \pmod{k(k-1)}$, see [Han75]. For *q*-analogs of GDDs it is well known that (g-1)-spreads exist if and only if g divides v. A (g-1)-spread consists of $\begin{bmatrix} v \\ 1 \end{bmatrix}_q / \begin{bmatrix} g \\ 1 \end{bmatrix}_q$ blocks and contains

$$\begin{bmatrix} g \\ 2 \end{bmatrix}_q \cdot \begin{bmatrix} v \\ 1 \end{bmatrix}_q / \begin{bmatrix} g \\ 1 \end{bmatrix}_q$$

2-dimensional subspaces.

Based on the pigeonhole principle we can argue that if B is a block of a $(v, k, \lambda, g)_q$ q-GDD then there can not be more points in B than the number of spread elements, i.e. if ${k \brack 1}_q \leq {v \brack 1}_q / {g \brack 1}_q$. It follows that (see [BL00, Theorem 3.1])

$$k \le v - g \,. \tag{1}$$

This is the q-analog of the restriction $k \leq v/q$ for the set case.

If \mathcal{G} is a Desarguesian spread, it follows from [BL00, Theorem 4.3] for the parameters $(v, k, \lambda, g)_q$ to be admissible that

$$k \leq v/2$$
.

By looking at the numbers of 2-dimensional subspaces which are covered by spread elements we can conclude that the cardinality of \mathcal{B} has to be

$$#\mathcal{B} = \lambda \frac{{\binom{v}{2}}_q - {\binom{g}{2}}_q \cdot {\binom{v}{1}}_q / {\binom{g}{1}}_q}{{\binom{k}{2}}_q} \,. \tag{2}$$

A necessary condition on the parameters of a g-uniform q- (k, λ) GDD is that the cardinality in (2) is an integer number.

Any fixed 1-dimensional subspace P is contained in $\binom{v-1}{1}_q$ 2-dimensional subspaces. Further, P lies in exactly one block of the spread and this block covers $\binom{g-1}{1}_q$ 2-dimensional subspaces through P. Those 2-dimensional subspaces are not covered by blocks in \mathcal{B} . All other 2-dimensional subspaces containing P are covered by exactly λ k-dimensional blocks. Such a block contains P and there are $\binom{k-1}{1}_q$ 2-dimensional subspaces through P in this block. It follows that P is contained in exactly

$$\lambda \frac{\binom{v-1}{1}_q - \binom{g-1}{1}_q}{\binom{k-1}{1}_q} \tag{3}$$

k-dimensional blocks and this number must be an integer. The number (3) is the *replication number* of the point P in the q-GDD.

Up to now, the restrictions (1), (2), (3), as well as g divides v, on the parameters of a $(v, k, \lambda, g)_q$ -GDD are the q-analogs of restrictions for the set case. But for q-GDDs there is a further necessary condition whose analog in the set case is trivial.

Given a multiset of subspaces of V, we obtain a corresponding multiset \mathcal{P} of points by replacing each subspace by its set of points. A multiset $\mathcal{P} \subseteq \begin{bmatrix} V \\ 1 \end{bmatrix}_q$ of points in V can be expressed by its weight function $w_{\mathcal{P}}$: For each point $P \in V$ we denote its multiplicity in \mathcal{P} by $w_{\mathcal{P}}(P)$. We write

$$#\mathcal{P} = \sum_{P \in V} w_{\mathcal{P}}(P) \text{ and } #(\mathcal{P} \cap H) = \sum_{P \in H} w_{\mathcal{P}}(P)$$

where H is an arbitrary hyperplane in V.

Let $1 \leq r < v$ be an integer. If $\#\mathcal{P} \equiv \#(\mathcal{P} \cap H) \pmod{q^r}$ for every hyperplane H, then \mathcal{P} is called q^r -divisible.² In [KK17, Lemma 1] it is shown that the multiset \mathcal{P} of points corresponding to a multiset of subspaces with dimension at least k is q^{k-1} -divisible.

Lemma 3 ([KK17, Lemma 1]) For a non-empty multiset of subspaces of V with m_i subspaces of dimension i let \mathcal{P} be the corresponding multiset of points. If $m_i = 0$ for all $0 \le i < k$, where $k \ge 2$, then

$$\#\mathcal{P} \equiv \#(\mathcal{P} \cap H) \pmod{q^{k-1}}$$

for every hyperplane $H \leq V$.

²Taking the elements of \mathcal{P} as columns of a generator matrix gives a linear code of length $\#\mathcal{P}$ and dimension k whose codewords have weights being divisible by q^r .

PROOF. We have $\#\mathcal{P} = \sum_{i=0}^{v} m_i \begin{bmatrix} v \\ i \end{bmatrix}_q$. The intersection of an *i*-subspace $U \leq V$ with an arbitrary hyperplane $H \leq V$ has either dimension *i* or *i*-1. Therefore, for the set \mathcal{P}' of points corresponding to U, we get that $\#\mathcal{P} = \begin{bmatrix} i \\ 1 \end{bmatrix}_q$ and that $\#(\mathcal{P}' \cap H)$ is equal to $\begin{bmatrix} i \\ 1 \end{bmatrix}_q$ or $\begin{bmatrix} i-1 \\ 1 \end{bmatrix}_q$. In either case, it follows from $\begin{bmatrix} i \\ 1 \end{bmatrix}_q \equiv \begin{bmatrix} i-1 \\ 1 \end{bmatrix}_q \pmod{q^{i-1}}$ that

$$#(\mathcal{P}' \cap H) \equiv \begin{bmatrix} i \\ 1 \end{bmatrix}_q \pmod{q^{i-1}}.$$

Summing up yields the proposed result.

If there is a suitable integer λ such that $w_{\mathcal{P}}(P) \leq \lambda$ for all $P \in V$, then we can define for \mathcal{P} the complementary weight function

$$\bar{w}_{\lambda}(P) = \lambda - w(P)$$

which in turn gives rise to the *complementary* multiset of points $\overline{\mathcal{P}}$. In [KK17, Lemma 2] it is shown that a q^r -divisible multiset \mathcal{P} leads to a multiset $\overline{\mathcal{P}}$ that is also q^r -divisible.

Lemma 4 ([KK17, Lemma 2]) If a multiset \mathcal{P} in V is q^r -divisible with r < vand satisfies $w_{\mathcal{P}}(P) \leq \lambda$ for all $P \in V$ then the complementary multiset $\overline{\mathcal{P}}$ is also q^r -divisible.

PROOF. We have

$$\#\bar{\mathcal{P}} = \begin{bmatrix} v \\ 1 \end{bmatrix}_q \lambda - \#\mathcal{P} \quad \text{and} \quad \#(\bar{\mathcal{P}} \cap H) = \begin{bmatrix} v - 1 \\ 1 \end{bmatrix}_q \lambda - \#(\mathcal{P} \cap H)$$

for every hyperplane $H \leq V$. Thus, the result follows from $\begin{bmatrix} v \\ 1 \end{bmatrix}_q \equiv \begin{bmatrix} v-1 \\ 1 \end{bmatrix}_q \pmod{q^r}$ which holds for r < v.

These easy but rather generally applicable facts about q^r -divisible multiset of points are enough to conclude:

Lemma 5 Let $(V, \mathcal{G}, \mathcal{B})$ be a $(v, k, \lambda, g)_q$ -GDD and $2 \leq g \leq k$, then q^{k-g} divides λ .

PROOF. Let $P \in {V \brack 1}_q$ be an arbitrary point. Then there exists exactly one spread element $S \in \mathcal{G}$ that contains P. By \mathcal{B}_P we denote the elements of \mathcal{B} that contain P. Let S' and \mathcal{B}'_P denote the corresponding subspaces in the factor space V/P.

We observe that every point of $\begin{bmatrix} S'\\1 \end{bmatrix}_q$ is disjoint to the elements of \mathcal{B}'_P and that every point in $\begin{bmatrix} V/P\\1 \end{bmatrix}_q \setminus \begin{bmatrix} S'\\1 \end{bmatrix}_q$ is met by exactly λ elements of \mathcal{B}'_P (all having dimension k-1). We note that \mathcal{B}'_P gives rise to a q^{k-2} -divisible multiset \mathcal{P} of points. So, its complement $\bar{\mathcal{P}}$, which is the λ -fold copy of S', also has to be q^{k-2} -divisible. For every hyperplane H not containing S', we have $\#(\bar{\mathcal{P}} \cap H) = \lambda \begin{bmatrix} g-2\\1 \end{bmatrix}_q$ and $\#\bar{\mathcal{P}} = \lambda \begin{bmatrix} g-1\\1 \end{bmatrix}_q$. Thus, $\lambda q^{g-2} = \#\bar{\mathcal{P}} - \#(\bar{\mathcal{P}} \cap H) \equiv 0 \pmod{q^{k-2}}$, so that q^{k-g} divides λ .

We remark that the criterion in Lemma 5 is independent of the dimension v of the ambient space. Summarizing the above we arrive at the following restrictions.

Theorem 1 Necessary conditions for a $(v, k, \lambda, g)_q$ -GDD are

- 1. g divides v,
- $2. \ k \le v g,$
- 3. the cardinalities in (2), (3) are integer numbers,
- 4. if $2 \le g \le k$ then q^{k-g} divides λ .

If these conditions are fulfilled, the parameters $(v, k, \lambda, g)_q$ are called admissible.

Table 1 contains the admissible parameters for q = 2 up to dimension v = 14. Column λ_{Δ} gives the minimum value of λ which fulfills the above necessary conditions. All admissible values of λ are integer multiples of λ_{Δ} . In column # \mathcal{B} the cardinality of \mathcal{B} is given for $\lambda = \lambda_{\Delta}$. Those values of λ_{\max} that are valid for the Desarguesian spread only are given in italics, where the values for (v, g, k) = (8, 4, 4) and (9, 3, 4) have been checked by a computer enumeration.

For the case $\lambda = 1$, the online tables [HKKW16]

http://subspacecodes.uni-bayreuth.de

may give further restrictions, since \mathcal{B} is a constant dimension subspace code of minimum distance 2(k-1) and therefore

$$#\mathcal{B} \le A_q(v, 2(k-1); k).$$

The currently best known upper bounds for $A_q(v, d; k)$ are given by [HHK⁺17, Equation (2)] referring back to partial spreads and $A_2(6, 4; 3) = 77$ [HKK15], $A_2(8, 6; 4) = 257$ [HHK⁺17] both obtained by exhaustive integer linear programming computations, see also [KK17].

4 *q*-GDDs and *q*-Steiner systems

In the set case the connection between Steiner systems 2-(v, k, 1) and group divisible designs is well understood.

Theorem 2 ([Han75, Lemma 2.12]) A 2-(v + 1, k, 1) design exists if and only if a (v, k, 1, k - 1)-GDD exists.

There is a partial q-analog of Theorem 2:

Theorem 3 If there exists a 2- $(v+1, k, 1)_q$ subspace design, then a $(v, k, q^2, k-1)_q$ -GDD exists.

PROOF. Let V' be a vector space of dimension v + 1 over GF(q). We fix a point $P \in {V' \choose 1}_{q}$ and define the projection

$$\pi : \mathrm{PG}(V') \to \mathrm{PG}(V'/P), \quad U \mapsto (U+P)/P.$$

For any subspace $U \leq V'$ we have

$$\dim(\pi(U)) = \begin{cases} \dim(U) - 1 & \text{if } P \le U, \\ \dim(U) & \text{otherwise.} \end{cases}$$

v	g	k	λ_{Δ}	$\lambda_{ m max}$	$\#\mathcal{B}$	$\#\mathcal{G}$	
6	2	3	2	12	180	21	
6	3	3	3	6	252	9	
8	2	3	2	60	3060	85	
8	2	4	4	480	1224	85	
8	4	3	7	42	10200	17	
8	4	4	7	14	2040	17	
9	3	3	1	118	6132	73	
9	3	4	10	1680	12264	73	
10	2	3	14	252	347820	341	
10	2	4	28	10080	139128	341	
10	2	5	8		8976	341	
10	5	3	21	210	507408	33	
10	5	4	35		169136	33	
10	5	5	15		16368	33	
12	2	3	2	1020	797940	1365	
12	2	4	28	171360	2234232	1365	
12	2	5	40		720720	1365	
12	2	6	16		68640	1365	
12	3	3	3	1014	1195740	585	
12	3	4	2		159432	585	
12	3	5	1860		33480720	585	
12	3	6	248		1062880	585	
12	4	3	1	1002	397800	273	
12	4	4	7		556920	273	
12	4	5	62		1113840	273	
12	4	6	124		530400	273	
12	6	3	1	930	393120	65	
12	6	4	1		78624	65	
12	6	5	155		2751840	65	
12	6	6	31		131040	65	
14	2	3	2	4092	12778740	5461	
14	2	4	4	2782560	5111496	5461	
14	2	5	248		71560944	5461	
14	2	6	496		34076640	5461	
14	2	7	32		536640	5461	
14	7	3	21	3906	133161024	129	
14	7	4	35		44387008	129	
14	7	5	465		133161024	129	
14	$\overline{7}$	6	651		44387008	129	
14	7	7	63		1048512	129	

Table 1: Admissible parameters for $(v,k,\lambda,g)_2\text{-}\text{GDDs}$ with $v\leq 14.$

Let $\mathcal{D} = (V', \mathcal{B}')$ be a 2- $(v + 1, k, 1)_q$ subspace design. The set

$$\mathcal{G} = \{ \pi(B) \mid B \in \mathcal{B}', P \in B \}$$

is the derived design of \mathcal{D} with respect to P [KL15], which has the parameters $1-(v, k-1, 1)_q$. In other words, it is a (k-2)-spread in V'/P. Now define

$$\mathcal{B} = \{\pi(B) \mid B \in \mathcal{B}', P \notin B\}$$
 and $V = V'/P$.

We claim that $(V, \mathcal{G}, \mathcal{B})$ is a $(v, k, q^2, k - 1)_q$ -GDD. In order to prove this, let $L \in {V \brack 2}_q$ be a line not covered by any element in \mathcal{G} . Then L = E/P, where $E \in \begin{bmatrix} V' \\ 3 \end{bmatrix}_q$, $P \leq E$ and E is not contained in a block of the design \mathcal{D} . The blocks of \mathcal{B} covering L have the form $\pi(B)$ with $B \in \mathcal{B}'$ such that $B \cap E$ is a line in E not passing through P. There are q^2 such lines and each line is contained in a unique block in \mathcal{B}' . Since these q^2 blocks B have to be pairwise distinct and do not contain the point P, we get that there are q^2 blocks $\pi(B) \in \mathcal{B}$ containing L.

Since there are $2 \cdot (13, 3, 1)_2$ subspace designs [BEÖ⁺16], by Theorem 3 there are also $(12, 3, 4, 2)_2$ -GDDs.

The smallest admissible case of a 2- $(v, 3, 1)_q$ subspace design is v = 7, which is known as a q-analog of the Fano plane. Its existence is a notorious open question for any value of q. By Theorem 3, the existence would imply the existence of a $(6, 3, q^2, 2)_q$ -GDD, which has been shown to be true in [EH17] for any value of q, in the terminology of a "residual construction for the q-Fano plane". In Theorem 4, we will give a general construction of q-GDDs covering these parameters. The crucial question is if a $(6, 3, q^2, 2)_q$ -GDD can be "lifted" to a $2-(7,3,1)_q$ subspace design. While the GDDs with these parameters constructed in Theorem 4 have a large automorphism group, for the binary case q = 2 we know from [BKN16, KKW18] that the order of the automorphism group of a putative $2 - (7, 3, 1)_2$ subspace design is at most two. So if the lifting construction is at all possible for the binary $(6, 3, 4, 2)_2$ -GDD from Theorem 4, necessarily many automorphisms have to "get destroyed".

In Table 2 we can see that there exists a $(8,3,4,2)_2$ -GDD. This might lead in the same way to a 2- $(9, 3, 1)_2$ subspace design, which is not known to exist.

$\mathbf{5}$ A general construction

A very successful approach to construct $t(v, k, \lambda)$ designs over sets is to prescribe an automorphism group which acts transitively on the subsets of cardinality t. However for q-analogs of designs with $t \geq 2$ this approach yields only trivial designs, since in [CK79, Prop. 8.4] it is shown that if a group $G \leq P\Gamma L(v, q)$ acts transitively on the t-dimensional subspaces of V, $2 \leq t \leq v - 2$, then G acts transitively also on the k-dimensional subspaces of V for all $1 \le k \le v - 1$.

The following lemma provides the counterpart of the construction idea for q-analogs of group divisible designs. Unlike the situation of q-analogs of designs, in this slightly different setting there are indeed suitable groups admitting the general construction of non-trivial q-GDDs, which will be described in the sequel. Itoh's construction of infinite families of subspace designs is based on a similar idea [Ito98].

Lemma 6 Let \mathcal{G} be a (g-1)-spread in $\mathrm{PG}(V)$ and let G be a subgroup of the stabilizer $\mathrm{PFL}(v,q)_{\mathcal{G}}$ of \mathcal{G} in $\mathrm{PFL}(v,q)$. If the action of G on $\begin{bmatrix} V\\2 \end{bmatrix}_q \setminus \bigcup_{S \in \mathcal{G}} \begin{bmatrix} S\\2 \end{bmatrix}_q$ is transitive, then any union \mathcal{B} of G-orbits on the set of k-subspaces which are scattered with respect to \mathcal{G} yields a $(v,k,\lambda,g)_q$ -GDD $(V,\mathcal{G},\mathcal{B})$ for a suitable value λ .

PROOF. By transitivity, the number λ of blocks in \mathcal{B} passing through a line $L \in {V \brack 2}_q \setminus \bigcup_{S \in \mathcal{G}} {S \brack 2}_q$ does not depend on the choice of L.

In the following, let $V = GF(q^g)^s$, which is a vector space over GF(q) of dimension v = gs. Furthermore, let $\mathcal{G} = \begin{bmatrix} V \\ 1 \end{bmatrix}_{q^g}$ be the Desarguesian (g - 1)-spread in PG(V). For every GF(q)-subspace $U \leq V$ we have that

$$\dim_{\mathrm{GF}(q^g)} \left(\langle U \rangle_{\mathrm{GF}(q^g)} \right) \le \dim_{\mathrm{GF}(q)} (U)$$

In the case of equality, U will be called *fat*. Equivalently, U is fat if and only if one (and then any) GF(q)-basis of U is $GF(q^g)$ -linearly independent. The set of fat k-subspaces of V will be denoted by \mathcal{F}_k .

We remark that for a fat subspace U, the set of points $\{\langle x \rangle_{\mathrm{GF}(q^g)} : x \in U\}$ is a Baer subspace of V as a $\mathrm{GF}(q^g)$ -vector space.

Lemma 7

$$\#\mathcal{F}_k = q^{(g-1)\binom{k}{2}} \prod_{i=0}^{k-1} \frac{q^{g(s-i)} - 1}{q^{k-i} - 1}$$

PROOF. A sequence of k vectors in V is the GF(q)-basis of a fat k-subspace if and only if it is linearly independent over $GF(q^g)$. Counting the set of those sequences in two ways yields

$$\#\mathcal{F}_k \cdot \prod_{i=0}^{k-1} (q^k - q^i) = \prod_{i=0}^{k-1} ((q^g)^s - (q^g)^i),$$

which leads to the stated formula.

We will identify the unit group $GF(q)^*$ with the corresponding group of $s \times s$ scalar matrices over $GF(q^g)$.

Lemma 8 Consider the action of $SL(s, q^g)/GF(q)^*$ on the set of the fat k-subspaces of V. For k < s, the action is transitive. For k = s, \mathcal{F}_k splits into $\frac{q^g-1}{q-1}$ orbits of equal length.

PROOF. Let U be a fat k-subspace of V and let B be an ordered GF(q)-basis of U. Then B is an ordered $GF(q^g)$ -basis of $\langle U \rangle_{GF(q^g)}$.

For k < s, B can be extended to an ordered $GF(q^g)$ -basis B' of V. Let A be the $(s \times s)$ -matrix over $GF(q^g)$ whose columns are given by B'. By scaling one of the vectors in $B' \setminus B$, we may assume $\det(A) = 1$. Now the mapping $V \to V, x \mapsto Ax$ is in $SL(s, q^g)$ and maps the fat k-subspace $\langle e_1, \ldots, e_k \rangle$ to $U(e_i)$ denoting the *i*-th standard vector of V). Thus, the action of $SL(s, q^g)/GF(q)^*$ is transitive on \mathcal{F}_k .

It remains to consider the case k = s. Let A be the $(s \times s)$ -matrix over $GF(q^g)$ whose columns are given by B. As any two GF(q)-bases of U can be

mapped to each other by a GF(q)-linear map, we see that up to a factor in $GF(q)^*$, det(A) does not depend on the choice of B. Thus,

$$\det(U) := \det(A) \cdot \operatorname{GF}(q)^* \in \operatorname{GF}(q^g)^* / \operatorname{GF}(q)^*$$

is invariant under the action of $\operatorname{SL}(s, q^g)$ on \mathcal{F}_k . It is readily checked that every value in $\operatorname{GF}(q^g)^*/\operatorname{GF}(q)^*$ appears as the invariant $\det(U)$ for some fat *s*-subspace U, and that two fat *s*-subspaces having the same invariant can be mapped to each other within $\operatorname{SL}(s, q^g)$. Thus, the number of orbits of the action of $\operatorname{SL}(s, q^g)$ on \mathcal{F}_s is given by the number $\#(\operatorname{GF}(q^g)^*/\operatorname{GF}(q)^*) = \frac{q^g-1}{q-1}$ of invariants. As $\operatorname{SL}(s, q^g)$ is normal in $\operatorname{GL}(s, q^g)$ which acts transitively on \mathcal{F}_s , all orbits have the same size. Modding out the kernel $\operatorname{GF}(q)^*$ of the action yields the statement in the lemma. \Box

Theorem 4 Let V be a vector space over GF(q) of dimension gs with $g \ge 2$ and $s \ge 3$. Let \mathcal{G} be a Desarguesian (g-1)-spread in PG(V). For $k \in \{3, \ldots, s-1\}$, $(V, \mathcal{G}, \mathcal{F}_k)$ is a $(gs, k, \lambda, g)_q$ -GDD with

$$\lambda = q^{(g-1)\binom{k}{2}-1} \prod_{i=2}^{k-1} \frac{q^{g(s-i)}-1}{q^{k-i}-1}.$$

Moreover, for each $\alpha \in \{1, \ldots, \frac{q^g - 1}{q - 1}\}$, the union \mathcal{B} of any α orbits of the action of $\operatorname{SL}(s, q^g) / \operatorname{GF}(q)^*$ on \mathcal{F}_s gives a $(gs, s, \lambda, g)_q$ -GDD $(V, \mathcal{G}, \mathcal{B})$ with

$$\lambda = \alpha q^{(g-1)\binom{s}{2}-1} \prod_{i=2}^{s-2} \frac{q^{gi}-1}{q^i-1}$$

PROOF. We may assume $V = \operatorname{GF}(q^g)^s$ and $\mathcal{G} = \begin{bmatrix} V \\ 1 \end{bmatrix}_{q^g}$. The lines covered by the elements of \mathcal{G} are exactly the non-fat $\operatorname{GF}(q)$ -subspaces of V of dimension 2. By Lemma 6 and Lemma 8, $(V, \mathcal{G}, \mathcal{F}_k)$ is a GDD. Double counting yields $\#\mathcal{F}_2 \cdot \lambda = \#\mathcal{F}_k \cdot \begin{bmatrix} k \\ 2 \end{bmatrix}_q$. Using Lemma 7, this equation transforms into the given formula for λ .

In the case k = s, by Lemma 8, each union \mathcal{B} of $\alpha \in \{1, \ldots, \frac{q^g - 1}{q - 1}\}$ orbits under the action of $\operatorname{SL}(s, q) / \operatorname{GF}(q)^*$ on \mathcal{F}_s yields a GDD with

$$\lambda = \alpha q^{(g-1)\binom{s}{2}-1} \frac{q-1}{q^g-1} \prod_{i=2}^{s-1} \frac{q^{g(s-i)}-1}{q^{s-i}-1} = \alpha q^{(g-1)\binom{s}{2}-1} \prod_{i=2}^{s-2} \frac{q^{gi}-1}{q^i-1}.$$

Remark 1 In the special case g = 2, s = 3 and $\alpha = 1$ the second case of Theorem 4 yields $(6,3,q^2,2)_q$ -GDDs. These parameters match the "residual construction for the q-Fano plane" in [EH17].

Remark 2 A fat k-subspace $(k \in \{3, \ldots, s\})$ is always scattered with respect to the Desarguesian spread $\begin{bmatrix} V\\1 \end{bmatrix}_{q^g}$. The converse is only true for g = 2. Thus, Theorem 4 implies that the set of all scattered k-subspaces with respect to the Desarguesian line spread of $GF(q)^{2s}$ is a $(2s, k, \lambda_{\max}, 2)_q$ -GDD.

		,		,	,	
v	g	k	λ_{Δ}	λ_{max}	λ	comments
6	2	3	2	12	4	[EH17]
					$2, 4, \ldots, 12$	$\langle \sigma^7 \rangle$
					$4\alpha, \alpha = 1, 2, 3$	Thm. 4
6	3	3	3	6	3, 6	$\langle \sigma^{21} \rangle$
8	2	3	2	60	2, 58	$\langle \sigma, \phi^4 \rangle$
					$4, 6, \ldots, 54, 56, 60$	$\langle \sigma, \phi \rangle$
8	2	4	4	480	$20, 40, \ldots, 480$	$\langle \sigma, \phi angle$
					$160\alpha, \alpha = 1, 2, 3$	Thm. 4
8	4	3	7	42	7, 21, 35	$\langle \sigma \rangle$
					14, 28, 42	$\langle \sigma, \phi \rangle$
8	4	4	7	14	7, 14	$\langle \sigma \rangle$
9	3	3	1	118	$2, 3, \ldots, 115, 116, 118$	$\langle \sigma, \phi \rangle$
					$16\alpha, \alpha = 1, \dots, 16$	Thm. 4
9	3	4	10	1680	$30, 60, \ldots, 1680$	$\langle \sigma, \phi \rangle$
10	2	3	14	252	$14, 28, \ldots, 252$	$\langle \sigma, \phi \rangle$
10	2	5	8		$23040\alpha, \alpha = 1, \dots, 3$	Thm. 4
10	5	3	21	210	105, 210	$\langle \sigma, \phi^2 \rangle$
12	2	3	2	1020	4	[BEÖ ⁺ 16]
12	2	6	16		$12533760\alpha, \alpha = 1, \dots, 3$	Thm. 4
12	3	4	2		$21504\alpha, \alpha = 1, \dots, 7$	Thm. 4
12	4	3	1	1002	$64\alpha, \alpha = 1, \dots, 15$	Thm. 4

Table 2: Existence results for $(v, k, \lambda, g)_q$ -GDD for q = 2.

6 Computer constructions

An element $\pi \in P\Gamma L(v, q)$ is an automorphism of a $(v, k, \lambda, g)_q$ -GDD if $\pi(\mathcal{G}) = \mathcal{G}$ and $\pi(\mathcal{B}) = \mathcal{B}$.

Taking the Desarguesian (g-1)-spread and applying the Kramer-Mesner method [KM76] with the tools described in [BKL05, BKW18b, BKW18a] to the remaining blocks, we have found $(v, k, \lambda, g)_q$ -GDDs for the parameters listed in Tables 2, 3. In all cases, the prescribed automorphism groups are subgroups of the normalizer $\langle \sigma, \phi \rangle$ of a Singer cycle group generated by an element σ of order $q^v - 1$ and by the Frobenius automorphism ϕ , see [BKW18a]. Note that the presented necessary conditions for λ_{Δ} turn out to be tight in several cases.

Example. We take the primitive polynomial $1 + x + x^3 + x^4 + x^6$, together with the canonical Singer cycle group generated by

$$\sigma = \left(\begin{array}{c} 010000 \\ 001000 \\ 0000100 \\ 000001 \\ 000001 \\ 110110 \end{array} \right)$$

For a compact representation we will write all $\alpha \times \beta$ matrices X over GF(q)

Table 3: Existence results for $(v, k, \lambda, g)_q$ -GDD for q = 3.

v	g	k	λ_{Δ}	λ_{max}	λ	comments
6	2	3	3	36	9	[EH17]
					$9\alpha, \alpha = 1, \dots, 4$	Thm. 4
					12, 18	$\langle \sigma^{13}, \phi \rangle$
6	3	3	4	24	12, 24	$\langle \sigma^{14}, \phi \rangle$
8	2	4	9	9720	$2430\alpha, \alpha = 1, \dots, 4$	Thm. 4
8	4	3	13	312	52, 104, 156, 208, 260, 312	$\langle \sigma, \phi \rangle$
9	3	3	1	1077	$81\alpha, \alpha = 1, \dots, 13$	Thm. 4
10	2	5	27	22044960	$5511240\alpha, \alpha = 1, \dots, 4$	Thm. 4
12	2	6	81	439267872960	$109816968240\alpha, \alpha = 1, \dots, 4$	Thm. 4
12	3	4	3		$5373459\alpha, \alpha = 1, \dots, 13$	Thm. 4
12	4	3	1	29472	$729\alpha, \alpha = 1, \dots, 40$	Thm. 4

with entries $x_{i,j}$, whose indices are numbered from 0, as vectors of integers

$$\left[\sum_{j} x_{0,j} q^{j}, \dots, \sum_{j} x_{\alpha-1,j} q^{j}\right],$$

i.e. $\sigma = [2, 4, 8, 16, 32, 27].$

The block representatives of a $(6, 3, 2, 2)_2$ -GDD can be constructed by prescribing the subgroup $G = \langle \sigma^7 \rangle$ of the Singer cycle group. The order of G is 9, a generator is [54, 55, 53, 49, 57, 41]. The spread is generated by [1, 14], under the action of G the 21 spread elements are partitioned into 7 orbits. The blocks of the GDD consist of the G-orbits of the following 20 generators.

$$\begin{split} &[3,16,32], [15,16,32], [4,8,32], [5,8,32], [19,24,32], [7,24,32], [10,4,32], \\ &[18,28,32], [17,20,32], [1,28,32], [17,10,32], [25,2,32], [13,6,32], [29,30,32], \\ &[33,12,16], [38,40,16], [2,36,16], [1,36,16], [11,12,16], [19,20,8] \end{split}$$

Acknowledgements

The authors are grateful to Anton Betten who pointed out the connection to scattered subspaces.

References

- [BBL00] Simeon Ball, Aart Blokhuis, and Michel Lavrauw. Linear (q+1)-fold blocking sets in PG $(2, q^4)$. Finite Fields and Their Applications, 6(4):294–301, 2000.
- [BEÖ⁺16] Michael Braun, Tuvi Etzion, Patric R. J. Östergård, Alexander Vardy, and Alfred Wassermann. Existence of q-analogs of Steiner systems. Forum of Mathematics, Pi, 4:e7 (14 pages), 2016.

- [BKL05] Michael Braun, Adalbert Kerber, and Reinhard Laue. Systematic construction of q-analogs of t- (v, k, λ) -designs. Designs, Codes and Cryptography, 34(1):55–70, 2005.
- [BKN16] Michael Braun, Michael Kiermaier, and Anamari Nakić. On the automorphism group of a binary q-analog of the Fano plane. European Journal of Combinatorics, 51:443–457, 2016.
- [BKW18a] Michael Braun, Michael Kiermaier, and Alfred Wassermann. Computational methods in subspace designs. In *Network Coding and Subspace Designs*, Signals and Communication Technology, pages 213–244. Springer, Cham, 2018.
- [BKW18b] Michael Braun, Michael Kiermaier, and Alfred Wassermann. qanalogs of designs: Subspace designs. In Network Coding and Subspace Designs, Signals and Communication Technology, pages 171– 211. Springer, Cham, 2018.
 - [BL00] Aart Blokhuis and Michel Lavrauw. Scattered spaces with respect to a spread in PG(n,q). Geometriae Dedicata, 81(1):231-243, Jul 2000.
 - [BNW] Marco Buratti, Anamari Nakić, and Alfred Wassermann. Graph decompositions in projective geometries. in preparation.
 - [BRC74] Claude Berge and Dijen Ray-Chaudhuri. Unsolved problems. In Claude Berge and Dijen Ray-Chaudhuri, editors, *Hypergraph Seminar: Ohio State University 1972*, number 411 in Lecture Notes in Mathematics, pages 278–287. Springer, Berlin, Heidelberg, 1974.
 - [Cam74a] Peter J. Cameron. Generalisation of Fisher's inequality to fields with more than one element. In T. P. McDonough and V. C. Mavron, editors, *Combinatorics - Proceedings of the British Combinatorial Conference 1973*, number 13 in London Mathematical Society Lecture Note Series, pages 9–13. Cambridge University Press, Cambridge, 1974.
- [Cam74b] Peter J. Cameron. Locally symmetric designs. Geometriae Dedicata, 3:65–76, 1974.
 - [CK79] Peter J. Cameron and William M. Kantor. 2-transitive and antiflag transitive collineation groups of finite projective spaces. *Journal of Algebra*, 60(2):384–422, 1979.
 - [Del76] Philippe Delsarte. Association schemes and t-designs in regular semilattices. Journal of Combinatorial Theory, Series A, 20(2):230– 243, 1976.
 - [EH17] Tuvi Etzion and Niv Hooker. Residual q-Fano planes and related structures. ArXiv e-prints, April 2017.
 - [ES13] Tuvi Etzion and Natalia Silberstein. Codes and designs related to lifted MRD codes. *IEEE Transactions on Information Theory*, 59(2):1004–1017, 2013.

- [Eul53] Leonhard Euler. Consideratio quarumdam serierum quae singularibus proprietatibus sunt praeditae. Novi Commentarii academiae scientiarum imperialis Petropolitanae, III:86–108, 1750 & 1751/1753.
- [EZ18] Tuvi Etzion and Hui Zhang. Grassmannian Codes with New Distance Measures for Network Coding. ArXiv e-prints, January 2018.
- [GPe18] Marcus Greferath, Mario Osvin Pavčević, and Natalia Silberstein María Ángeles Váquez-Castro (eds.). Network Coding and Subspace Designs. Signals and Communication Technology. Springer, Cham, 2018.
- [Han75] Haim Hanani. Balanced incomplete block designs and related designs. Discrete Mathematics, 11(3):255–369, 1975.
- [HHK⁺17] Daniel Heinlein, Thomas Honold, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann. Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. ArXiv e-prints, November 2017.
- [HKK15] Thomas Honold, Michael Kiermaier, and Sascha Kurz. Optimal binary subspace codes of length 6, constant dimension 3 and minimum subspace distance 4. *Contemporary Mathematics*, 632:157– 176, 2015.
- [HKKW16] Daniel Heinlein, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann. Tables of subspace codes. Technical report, Universität Bayreuth, Bayreuth, Januar 2016. https://epub.unibayreuth.de/2670/.
 - [Ito98] Toyoharu Itoh. A new family of 2-designs over GF(q) admitting $SL_m(q^l)$. Geometriae Dedicata, 69(3):261–286, 1998.
 - [KK17] Michael Kiermaier and Sascha Kurz. An improvement of the Johnson bound for subspace codes. *ArXiv e-prints*, July 2017.
 - [KKW18] Michael Kiermaier, Sascha Kurz, and Alfred Wassermann. The order of the automorphism group of a binary q-analog of the Fano plane is at most two. Designs, Codes and Cryptography, 86(2):239– 250, Feb 2018.
 - [KL15] Michael Kiermaier and Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 9(1):105–115, 2015.
 - [KM76] Earl S. Kramer and Dale M. Mesner. t-designs on hypergraphs. Discrete Mathematics, 15:263–296, 1976.
 - [Lav16] Michel Lavrauw. Scattered spaces in Galois geometry. In Anne Canteaut, Gove Effinger, Sophie Huczynska, Daniel Panario, and Leo Storme, editors, *Contemporary developments in finite fields and applications*, pages 195–216. World Sci. Publ., Hackensack, NJ, 2016.

- [Lun99] Guglielmo Lunardon. Normal spreads. Geometriae Dedicata, 75(3):245–261, May 1999.
- [MG07] Ronald C. Mullin and Hans-Dietrich O. F. Gronau. PBDs and GDDs: The basics. In Charles J. Colbourn and Jeffrey H. Dinitz, editors, *Handbook of Combinatorial Designs*, chapter IV.1, pages 231–236. Chapman & Hall/CRC, 2 edition, 2007.
- [Tit57] Jacques L. Tits. Sur les analogues algébriques des groupes semisimples complexes. In Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957.