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1 Abstract

During the last years, the performance of organic solar cells as well as of organic elec-

tronics has been continuously increasing. This stimulates further research in the field of

organic semiconductors such as conjugated polymers. The active layer of these devices

consists mostly of solution-processed conjugated polymer films or blends which addi-

tionally contain small molecules with opposite charge affinity. In contrast to inorganic

semiconductors, the performance of organic devices is not mainly correlated with high

crystallinity and long-range order. It rather depends on a finely tuned coexistence of

ordered (crystalline) and disordered (amorphous) phases in the polymer films. However,

the interplay between structural (dis)order and optoelectronic properties is still not well-

addressed and understood. One of the reasons for this is the experimental difficulty to

disentangle the respective contributions from ordered and disordered phases. Moreover,

even the influence of structural disorder on the photophysical properties of single chains

is still under debate and a challenging question for both theory as well as experiment.

A widely used class of conjugated polymers for this basic research are polythiophenes,

including thiophene-based low-band gap co-polymers. The working horse of this class is

the alkyl-substituted poly(3-hexylthiophene) (P3HT). Despite its importance, the degree

of structural and electronic disorder in defect-free P3HT is debated controversially, as

several conflicting reports exist. As the detailed conformation of single, isolated chains

cannot be resolved in real space, a correlation between intra-chain disorder (e.g. distri-

bution of dihedral angles between the monomers) and spectroscopic observables (e.g.

transition energy, inhomogeneous linewidth, vibronic progression) is not established yet.

Furthermore, the impact of intra-chain disorder on the excited state properties (e.g.

charge-transfer character, conjugation length, electron-phonon coupling) is challenging

for theoretical modelling due to the size of the system and its many degrees of freedom.

A recent development in synthesis is the modification or replacement of side-chains to

optimize the morphology and mutual orientation of the chains within polymer films.

Apart from that, the influence of the side-chains on the intrinsic photophysical prop-

erties of isolated chains has not been clearly evaluated yet. But also when leaving the

single-chain picture, the impact of intra-chain disorder on inter-chain interactions in

crystalline aggregates is highly debated.

The main part of this thesis is devoted to reveal a clearer picture of intra-chain disorder

and its influence on the photophysical properties of polythiophenes with single-molecule
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1 Abstract

spectroscopy. We use highly defined samples and a specific sample preparation technique

to study the intrinsic properties of nearly defect-free polythiophenes on the single-chain

level. The experiments are conducted at cryogenic temperatures (T=1.5 K) to resolve

details of vibronic progression and to get insights into line-broadening mechanisms (dy-

namic disorder). In combination with molecular dynamics and excited state calculations,

the impact of structural disorder and of side-chains on the excited state properties is

evaluated. Based on the knowledge from single-molecule spectroscopy the focus shifts to

crystalline structures to study the effects of intra-chain disorder on inter -chain interac-

tions. Finally, we investigate the influence of the degree of crystallinity on the emission

spectra in highly defined single crystals of a thiophene-based oligomer.

The first publication (section 4.1) characterises the properties of isolated, non-interact-

ing P3HT chains with single-molecule spectroscopy. Surprisingly, P3HT chains possess

a low degree of intrinsic electronic disorder on the length scale of the emitting site (< 10

repeating units), as shown by the narrow inhomogeneous distribution (< 300 cm−1)

of single-chain zero-phonon lines. The second central finding is that the average over

many single-chain spectra does not reproduce the ensemble PL spectrum of an amor-

phous P3HT sample measured under essentially identical conditions. Supported by time-

dependent density functional theory calculations, we ascribe this discrepancy to the

formation of ’loose aggregates’ in bulk samples leading to aggregation-induced partial

planarisation and long-range electronic coupling between segments of adjacent P3HT

chains. In conclusion, we develop a comprehensive picture of the photophysical prop-

erties of P3HT from single chains over amorphous, disordered samples to crystalline

aggregates.

The second publication (section 4.2) deals with the question, how and whether the

intra-chain disorder can be controlled by side-chain engineering. The results on P3HT

from publication 1 are compared with poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT),

a second polythiophene, which has sterically very demanding side-chains but the same

backbone. We find that the PDOPT single-chain spectra are strongly red-shifted by over

2000 cm−1 with respect to P3HT, which is not obvious from the corresponding ensemble

spectra. Furthermore strong changes in electron-phonon coupling and dynamical dis-

order are observed. Quantum-classical atomistic simulations show that this substantial

spectral shift is caused by a side-chain induced backbone planarisation in PDOPT which

increases the electronic coupling between the repeating units. The bulky side-chains of

PDOPT adopt a helical structure which enforces backbone planarity. Surprisingly, the

conjugation length is unaffected by the planarisation in PDOPT. This stands in contrast

to the common notion that a higher planarity leads to a longer conjugation. Instead,

the stronger electronic coupling between the repeating units is reflected in the charge-

transfer character. Our results suggest that this parameter is worth a closer look in

theoretical studies, as in many models the charge-transfer character is treated as con-

2



1 Abstract

stant. Furthermore we reveal an unexpected strategy to control intra-chain order by a

substitution with bulky side-chains.

Based on the knowledge of the intra-molecular order in single PDOPT chains, the

third publication (section 4.3) addresses the interplay between intra-chain and inter-

chain electronic coupling in well defined crystalline PDOPT aggregates (spherulites).

By heating these up to and beyond their melting temperature, intra- and inter-chain

disorder are gradually increased. The spectral signatures in absorption and emission

upon this order-disorder transition are interpreted in the context of the known crystal

structure, differential scanning calorimetry measurements as well as the single-chain

data. These results show nicely that a decrease in intra-chain coupling does not only

lead to a rise transition energy (see publications 1 and 2) but also to an enhancement of

inter-chain electronic coupling. Similar to publications 1 and 2, the essential degree of

freedom is the dihedral angle between the monomers within the backbone. It determines

the intra-chain coupling but as a consequence thereof it also influences the inter-chain

interactions.

Highly defined single crystals of thiophene-benzene-thiophene (3TBT) oligomers are

studied in publication 4 (section 4.4). They are compared with less ordered (spincoated)

3TBT films to investigate the impact of variable degree of order on the photophysical

properties. Absorption and emission spectra are analysed in a framework for molecu-

lar H-aggregates and show the impact of structural disorder on the vibronic progres-

sions. Spatially resolved emission spectra on both 3TBT crystals and films allow to

reveal the high suppression of the pure electronic transition within the single crystals.

Low-temperature emission spectra show the high electronic and structural homogene-

ity (narrow inhomogeneous linewidth) as well as the rich vibronic progression of the

3TBT crystals. These results emphasize the importance of optical spectroscopy for the

characterisation of disorder in organic semiconductors.
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Zusammenfassung

In den letzten Jahren ist die Effizienz organischer Solarzellen und organischer Elektronik

deutlich gestiegen. Dies motiviert zur weiteren Grundlagenforschung im Gebiet der orga-

nischen Halbleiter, zu denen auch die konjugierten Polymere gehören. Die aktive Schicht

der Bauelemente ist meist ein aus Lösungsmittel prozessierter, dünner Polymerfilm oder

ein Blend, welcher zusätzlich kleine Moleküle mit gegenteiliger Ladungsaffinität enthält.

Im Gegensatz zu inorganischen Halbleitern ist die Effizienz der organischen Bauelemente

nicht hauptsächlich durch eine langreichweitige Ordnung und hohe Kristallinität bedingt.

Vielmehr hängt sie von einer fein abgestimmten Koexistenz geordneter (kristalliner) und

ungeordneter (amorpher) Phasen innerhalb des Polymerfilms ab. Allerdings ist der ge-

naue Zusammenhang zwischen struktureller (Un-)Ordnung und den optoelektronischen

Eigenschaften bisher kaum verstanden. Einer der Gründe dafür liegt in der experimentel-

len Schwierigkeit, die Beiträge der jeweiligen Phasen sauber zu trennen. Darüber hinaus

ist sogar der Einfluss struktureller Unordnung auf die Photophysik einzelner Polymer-

ketten nicht geklärt.

Eine weit verbreitete Klasse konjugierter Polymere im Bereich der Grundlagenfor-

schung und Anwendung sind Polythiophene. Als Modellsystem dient dabei meist das

alkyl-substituierte Poly(3-hexylthiophene) (P3HT). Trotz dessen Bedeutung sind die

intrinsischen photophysikalischen Eigenschaften dieses Polymers bisher nicht eindeutig

bestimmt und werden kontrovers diskutiert. Da die detaillierte Konformation einzelner

Ketten nicht durch Strukturaufklärung ermittelt werden kann, ist es bisher nicht ge-

lungen, eine fundierte Korrelation zwischen Intra-Ketten-Unordnung (z.B. Verteilung

der Torsionswinkel zwischen den Monomeren) und spektroskopischen Observablen (z.B.

Übergangsenergie, inhomogene Linienbreite, vibronische Progression) zu etablieren. Auf-

grund der Größe der Moleküle und ihrer zahlreichen Freiheitsgrade ist es auch eine große

Herausforderung für die theoretische Modellierung, die optischen und elektronischen Ei-

genschaften (z.B. Ladungstrennungs-Charakter, Konjugationslänge, Elektron-Phonon-

Kopplung) als Funktion der Intra-Ketten-Unordnung zu beschreiben. Ein weiterer Ein-

flussfaktor sind Seitenketten, welche es erlauben die Morphologie und Orientierung der

Ketten innerhalb eines Polymerfilms oder Blends gezielt zu beeinflussen. Allerdings ist

der Einfluss der Seitenketten auf die intrinsischen photophysikalischen Eigenschaften

bisher noch nicht genauer untersucht worden. Noch komplexer wird es, wenn man das
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1 Abstract

Einzelmolekül-Bild verlässt. So ist beispielsweise der Einfluss intra-molekularer Unord-

nung auf die elektronische Wechselwirkung zwischen benachbarten Ketten nicht geklärt.

Der Hauptteil dieser Arbeit widmet sich der Aufgabe, mittels Einzelmolekülspektros-

kopie ein genaueres Bild der Intra-Ketten-Unordnung und deren Einfluss auf die photo-

physikalischen Eigenschaften von Polythiophenen zu erlangen. Mit Hilfe wohldefinier-

ter Proben und einer speziellen Probenpräparation können wir die intrinsischen Eigen-

schaften nahezu defekt-freier Polythiophene auf Einzelmolekülebene untersuchen. Die

Experimente finden bei kryogenen Temperaturen (T=1.5 K) statt, was einen detaillier-

ten Einblick in die vibronische Progression und Linienverbreiterungsmechanismen (dy-

namische Unordnung) erlaubt. In Kombination mit Molekulardynamik-Simulationen,

zeitabhängiger Dichtefunktionaltheorie und quanten-klassisch atomistischer Simulatio-

nen wird der Einfluss struktureller Unordnung sowie der von Seitenketten auf die struk-

turellen und photophysikalischen Eigenschaften untersucht. Basierend auf den Erkennt-

nissen der Wissen aus der Einzelmolekülspektroskopie, werden im Anschluss die Aus-

wirkungen von Intra-Ketten-Unordnung auf die Inter -Ketten-Wechselwirkung studiert.

Schließlich beschäftigen wir uns mit dem Einfluss der Kristallinität auf die Emissionspek-

tren in hochdefinierten Einkristallen eines thiophen-basierten Oligomers.

In der ersten Veröffentlichung (Abschnitt 4.1) werden die Eigenschaften isolierter,

nicht-wechselwirkender P3HT-Ketten mittels Einzelmolekülspektroskopie genauer cha-

rakterisiert. Überraschenderweise besitzt P3HT einen niedrigen Grad intrinsischer elek-

tronischer Unordnung auf der Längenskala der emittierenden Spezies (< 10 Wiederho-

leinheiten), was sich in der schmalen inhomogenen Verteilung (< 300 cm−1) der Über-

gangsenergien widerspiegelt. Die zweite wichtige Erkenntnis ist die, dass der Mittel-

wert vieler Einzelmolekülspektren nicht dem Ensemblespektrum eines amorphen P3HT

Films entspricht. Mit Hilfe von Dichtefunktionaltheorie können wir diese Diskrepanz der

Bildung lockerer Aggregate (“loose aggregates”) zuordnen. Dies führt zu aggregations-

induzierter Planarisierung und langreichweitiger elektronischer Wechselwirkung zwischen

einzelnen Segmenten benachbarter P3HT-Ketten. Dadurch können wir ein zusammen-

hängendes Bild der photophysikalischen Eigenschaften von P3HT entwerfen, von der

Einzelkette über amorphe, ungeordnete Proben bis hin zu kristallinen Aggregaten.

Die zweite Veröffentlichung, Abschnitt 4.2, beschäftigt sich mit der Frage, welchen

Einfluss Seitenketten auf die Struktur und Photophysik einzelner Ketten besitzen. Dafür

vergleichen wir die Einzelmolekülspektren von P3HT aus Veröffentlichung 1 mit Poly(3-

,(2,5-dioctylphenyl)thiophene) (PDOPT), einem zweiten Polythiophen, welches sterisch

anspruchsvolle Seitenketten aber ein identisches Polymerrückgrat besitzt. Es zeigt sich,

dass die PDOPT Einzelmolekülspektren im Vergleich zu P3HT über 2000 cm−1 rot-

verschoben sind. Darüber hinaus kann eine großer Unterschied in der Elektron-Phonon

Kopplung und der Linienverbreiterung (dynamische Unordnung) festgestellt werden. Si-

mulationen zeigen, dass die Rotverschiebung durch eine Planarisierung des Rückgrates
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verursacht wird, welche die elektronische Kopplung zwischen den Wiederholeinheiten

verstärkt. Die sperrigen Seitenketten von PDOPT legen sich in einer helikalen Struk-

tur um das Rückgrat, welches dadurch planarisiert und stabilisiert wird. Überrasch-

enderweise ist die Konjugationslänge unabhängig von der Torsion des Rückgrates. Dies

steht im Gegensatz zur allgemeinen Interpretation, wonach die erhöhte Planarität in

PDOPT eine größere Konjugationslänge zur Folge haben müsste. Interessanterweise ist

es der Elektron-Loch Abstand (Ladungstrennungs-Charakter) des angeregten Zustan-

des, in dem sich die stärkere elektronische Kopplung zwischen den Wiederholeinheiten

widerspiegelt. Unsere Resultate deuten darauf hin, dass dieser Parameter zukünftig ge-

nauer untersucht werden sollte, da er bisher in vielen Modellen als von der Unordnung

unbeeinflusst angenommen wird. Darüber hinaus zeigen wir die unerwartete Möglichkeit

auf, die Planarität des Polymerrückgrates mit Hilfe sperrige Seitenketten zu verbessern.

Basierend auf dem Wissen über Intra-Ketten-Unordnung in einzelnen PDOPT-Ketten

wendet sich die dritte Publikation (Abschnitt 4.3) dem Zusammenwirken von Intra- und

Inter-Ketten-Wechselwirkung in wohldefinierten kristallinen PDOPT Aggregaten (Sphe-

ruliten) zu. Durch Aufheizen dieser Strukturen bis zum Schmelzpunkt und darüber hin-

aus erhöhen wir schrittweise die Intra- und Inter-Ketten-Unordnung. Die Veränderungen

in den Absorptions- und Emissionsspektren während des Ordnungs-Unordnungs-Über-

gangs wurden im Kontext bekannter Kristallstrukturanalysen, Differenzkalorimetrie-

Messungen und der Einzelmoleküldaten interpretiert. Dabei zeigt sich, dass eine Ab-

nahme der Intra-Ketten-Kopplung nicht nur zu einem Anstieg der Übergangsenergie

führt, sondern auch zu einer Verstärkung der Inter-Ketten-Wechselwirkung. Ähnlich wie

in den ersten beiden Publikationen ist der Torsionswinkel entlang des Polymerrückgrates

der zentrale Parameter, da er direkt die Intra-Ketten-Kopplung aber in Folge davon auch

die Inter-Ketten-Wechselwirkung beeinflusst.

Hochdefinierte Einkristalle aus Thiophen-Benzen-Thiophen Oligomeren (3TBT) wer-

den in Publikation 4 (Abschnitt 4.4) näher untersucht. Die Kristalle werden dabei mit

weniger geordneten 3TBT Filmen verglichen, um den Einfluss struktureller Unordnung

zu untersuchen. Absorptions- und Emissionsspektren werden mit Hilfe eines Modells für

molekulare H-Aggregate analysiert und verdeutlichen die Auswirkungen struktureller

Unordnung auf die vibronische Progression. Ortsaufgelöste Emissionsspektren an 3TBT

Kristallen als auch Filmen verdeutlichen die starke Unterdrückung des rein elektroni-

schen Übergangs innerhalb der Kristalle, was auf einen hohen Ordnungsgrad schließen

lässt. Tieftemperatur-Emissionspektren an einzelnen Kristallen zeigen sowohl eine hohe

elektronische und strukturelle Homogenität (schmale inhomogene Linienbreite) als auch

eine strukturierte vibronische Progression.
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2 Introduction

2.1 Motivation

The discovery of the conducting properties of conjugated polymers in 1977 [1] was

awarded with the Nobel Prize in the year 2000 as it opened the door to a new class

of materials with a broad range of potential applications. The research activity continu-

ously increased, driven by the promise of cheap, flexible and efficient solar cells, lighting

devices as well as field effect transistors [2–4]. Besides, conjugated polymers also facilitate

new concepts like indoor light harvesting [5], wearable electronics [6] and inexpensive

thermoelectrics [7]. Water-soluble conjugated polymers are attributed great potential in

biological and medical applications like imaging, diagnostics and therapy [8–10].

The recent progress in device performance and the variety of applications stimulated

fundamental research to understand the basic physical processes occurring within poly-

mer films and single conjugated polymers. The active layer of these devices consists

mostly of solution-processed conjugated polymer films or blends which contain addi-

tional small molecules with opposite charge affinity. The complexity of these polymer

layers lies in the manifold of conformational degrees of freedom of the polymer chains,

which results in complex morphologies and microstructures; Ordered, crystalline domains

(aggregates) which are mostly formed by π-π-stacking of the chains are interrupted by

disordered (amorphous) regions on the length scale of nanometres. Therefore, the re-

search focussed on reducing the amount of disordered chains and promoting long-range

crystalline order [11].

Recently, it was shown that mere crystallinity is not favourable for device performance.

In contrast, the coexistence of ordered and disordered phases is beneficial as charge

transport is maintained by disordered chains which connect the crystalline phases [12].

It is suggested to improve both the short-range order in crystalline regions as well as the

interconnectivity between these domains by providing an accurate amount of disordered

chains [13].

Quantifying, understanding and predicting disorder phenomena in conjugated poly-

mers is thus a key element for further development. Due to the coexistence of ordered and

disordered phases on the nanometre scale, it is challenging to separate both contribu-

tions with structure elucidation methods or optical spectroscopy. Furthermore, disorder

can be separated in two categories: Firstly, intra-chain disorder (e.g. planarity of the
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2 Introduction

backbone, overall conformation), which defines the properties of the individual chains.

Second, inter-chain disorder (e.g. relative distance and orientation of the chains), which

accounts for differences in site energy and electronic coupling between the chains. Both

contributions are mutually influencing each other [14, 15] making it difficult to estab-

lish clear structure-function properties in thin films on the molecular level. Nevertheless,

experimental signatures are needed to characterise the crystalline regions as well as the

amount and detailed properties of disordered chains.

For such a fundamental “bottom-up” understanding and modelling, the effects of

intra-chain and inter-chain disorder on the optical and electronic properties have to

be disentangled. The logical step is thus to shift the focus of research to the molecu-

lar level and examine the effects of disorder in single conjugated polymers. Above all,

single-molecule spectroscopy has established as a widely used tool to characterize the

photophysical properties of single molecules, since its first realisation around 1990 [16,

17]. The progress of this technique provided the basis of superresolution microscopy,

which boosted the sensitivity and spatial resolution of optical microscopes [18] and was

awarded with the Nobel Prize in Chemistry in 2015.

When applied to conjugated polymers, the technique is able to reveal many interest-

ing features of single chains. By resolving the overall conformation of the chains (e.g.

rod-like or coil-like), structure function relationships with excited state properties were

established [19–21]. When conducted at liquid helium temperatures, insights into static

and dynamic disorder are obtained from transition energies and line shapes [22–24].

However, especially in the important class of prototypical polythiophenes (including

the thiophene-based donor-acceptor co-polymers), there is surprisingly little experimen-

tal consensus on the intrinsic properties of isolated chains. In particular, those of the

important poly(3-hexylthiophene) (P3HT) are highly debated due to conflicting single

molecule studies [21, 25–27]. But also from theoretical point of view, the description of

conjugated polymers is challenging as long-range interactions prohibit simplified mod-

els in these large systems. Furthermore, not only the conjugated backbone but also the

side-chains have a strong influence on the intra-chain disorder, which impedes the mod-

elling even further. Nevertheless, a deeper understanding is needed here, as side-chain

engineering has evolved as a versatile tool to tune the optical, electronic and structural

properties of conjugated polymers [28].

The main part of this work aims at providing experimental data which allows a deeper

understanding of the photophysical processes in single, isolated conjugated polymers. In

a first step, single-molecule spectra of very defined samples of P3HT are acquired and

characterised. These results are compared with a second polythiophene having bulky

side-chains (poly(3-(2,5-dioctylphenyl)thiophene), PDOPT) to reveal the intrinsic in-

fluence of side-chains and how they can be used to control the intra-chain disorder in

conjugated polymers. Both single-molecule studies are supported by theoretical simula-
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2.1 Motivation

tions to get a deeper understanding of excited state properties in conjugated polymers.

Based on this, the influence of intra-chain disorder on inter-chain electronic interaction

is investigated in crystalline PDOPT aggregates. Finally, single crystals of a thiophene-

based oligomer serve as model system to study disorder in highly defined crystalline

structures.

This thesis is organised as follows: in section 2.2, the basic properties of conjugated

polymers and recent theories are presented. Section 2.3 first introduces basic photophys-

ical principles and then focuses on the optical properties of single conjugated polymers

and the signatures of disorder in single-chain spectra. In section 2.4, common models for

describing inter-chain interactions are presented and spectroscopic signatures of order

and disorder in aggregates are briefly explained. A short summary and the connection

between the publications is given in chapter 3. The publications can be found in chap-

ter 4.
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2.2 Conjugation and conjugated polymers

The unique properties of conjugated polymers, e.g. semiconductivity and interaction

with light in the visible range, derive from the sequence of alternating single and double

carbon bonds which extends along the polymer backbone. In the elementary form, the

four valence electrons of carbon occupy the 2s-orbitals and two of the three 2p-orbitals.

Upon bonding, these four orbitals degenerate and mix, resulting in hybrid orbitals which

are linear combinations of the initial orbitals. Depending on the number of mixing or-

bitals, different bonds form, ranging from the sp3-hybridisation with all four orbitals

participating, over the sp2-hybridisation to the sp-configuration where only one p- mixes

with the s-orbital. Each of the hybridised orbitals forms σ-bonds with the correspond-

ing orbitals of the neighbouring atoms, whereas the remaining p-orbitals, which do not

participate in the mixing, orient perpendicular to the sp- (or σ-) bonds [29].

In Figure 2.1a, the basic properties of the most prototypical conjugated polymer,

polyacetylene, are shown on the example of its oligomer representative butadiene. The

carbon atoms in the backbone are all sp2-hybridised. In consequence, each carbon has

a free pz-orbital sticking perpendicular out of the plane which is spanned by the σ-

bonded carbon atoms, see Figure 2.1a. The neighbouring pz-orbitals overlap slightly and

it is energetically beneficial for them to mix and create a delocalised π-electron system

along the backbone. In Figure 2.1b such a π-electron system, also called “conjugated

path”, is illustrated on a thiophene oligomer. Crucial for the degree of delocalisation

and coupling of π-electrons along the backbone is the overlap of the neighbouring pz-

orbitals. In real systems, it is weakened by torsions, chemical defects and alternations of

the bond length along the conjugated path as discussed in detail below. The resulting

semi-conductivity (and conductivity upon doping) of the delocalised electron system

allows to design flexible electronics [3]. Furthermore, the resonance frequency of the

electron system lies in the range of visible light, making conjugated polymers suitable

for lighting applications [4] as well as photovoltaics [2].

Starting from simplest conjugated polymer polyacetylene (basic unit see Figure 2.1a),

other conjugated polymers were synthesised such as the ladder-type poly(p-phenylene)s

(PPs), the more flexible poly(p-phenylene vinylene)s (PPVs) and poly(thiophene)s (PTs,

see Figure 2.1b). The conjugated backbones themselves are however not soluble which

hinders defined synthesis (in terms of polydispersity and regioregularity) as well as pro-

cessability. This problem was circumvented with solubilising side-chains such as linear

or branched alkanes. These substituted polymers allow for solution processing and es-

pecially poly(3-hexylthiophene) (P3HT, see Figure 2.1c) established as a widely used

model system for investigating the fundamental processes and to build devices with high

efficiencies [30].
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2.2 Conjugation and conjugated polymers

Figure 2.1: Conjugation and conjugated polymers. a) sp2-hybridisation in butadiene with the
corresponding pz-orbitals (green). b) The resulting conjugated path (green) illus-
trated on tetrathiophene, consists of alternating single and double bonds. The
chemical structure of the monomers of c) poly(3-hexylthiophene) (P3HT) and d)
poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) which are studied in this thesis.
The number of repeating units of the polymers is denoted by n.

Over many years, the main research was focused on the tuning of the optoelectronic

properties of the conjugated backbones, especially by optimizing the spectral overlap

between absorption spectra and the black-body radiation of sunlight (e.g. low band-gap

donor-acceptor polymers). However, in devices like solar cells, other conditions have to

be fulfilled, for example the morphology of the polymer films and the orientation of

the molecules at the (charge-separation) interfaces are of equal importance [31]. These

factors depend mainly on the side-chains of the polymers which are modified via targeted

side-chain engineering, a subject that gained recent attention in research [28]. A reliable

prediction of the properties of conjugated polymers is however still not within reach, as

the side-chains may also impact the backbone structure through sterical or non-bonding

interactions. Publication 2 of this thesis will address this issue and focus on the change

of the optical properties upon variation of the side-chains. The polymer analysed there

is poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT), its chemical structure is shown in

Figure 2.1d.

2.2.1 π-electron models

As outlined in the motivation, the molecular understanding of photophysical and elec-

tronic processes in single conjugated polymers is the basis for further development of

the corresponding devices. Accordingly, a brief overview over past and recent models to

describe conjugated polymers is given in the following.

The optical and electronic properties of conjugated polymers are in general described

by the many-body Hamiltonian

H = Hnn(Ri) +Hee(ri) +Hen(Ri, ri), (2.1)
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where Ri(ri) is the set of nuclear (electron) coordinates [32]. The term Hnn (Hee) on the

right hand side of equation 2.1 describes the kinetic and mutual potential energy of the

nuclei (electrons). Hen contains the potential energy arising from Coulomb interaction

between nuclei and electrons and depends on both electron and nuclear coordinates.

The Schrödinger equation with the full many-body Hamiltonian is only solvable exactly

for simple systems like the hydrogen atom in free space. Therefore, approximation are

made which simplify the many-body problem and allow the modelling of conjugated

polymers [32].

A widely-used simplification to describe photophysical processes is the (adiabatic)

Born-Oppenheimer approximation [33]. As the nuclei are much heavier than the electrons

(mn/me ≈ 104), they are not able to follow their fast movements instantaneously. This

allows to separate the time scales of electron and nuclear motion. The electronic part

of the Hamiltonian includes therefore static or slowly changing fields generated by the

nuclei. The Hamiltonian for the nuclei contains the averaged fields of the rapidly moving

electrons [33].

One of the very first approaches to describe photophysics in conjugated polymers was

the Hückel model which treats only the π-electron system along the conjugated backbone

[34]. The σ-bonded electrons are fixed in time and space and define the geometry. Fur-

thermore, the π-system is modelled in a one-electron picture, thus no electron-electron

interaction is involved. This leads to an overestimation of the delocalisation of the π-

electron system. Within this simple, particle-in-the-box-like, picture, the band gap should

vanish for infinitely long chains [34]. This drastic oversimplification does not hold against

experiment, as the optical gap saturates with increasing chain length [35].

Further early models like the Pariser-Parr-Pople (PPP) Hamiltonian included the

electron-electron interaction under the assumption of fixed nuclear coordinates [32]. In

contrast, the Su-Schrieffer-Heeger (SSH) model [36] drops the electron-electron interac-

tion but takes the electron-phonon interaction into account. Subsequent semi-empirical

methods combined both electron-electron interaction as well as electron-phonon coupling

[32, 37]. They treated the excitations in conjugated polymers as bound electron-hole pairs

which are dressed by local modes of the conjugated backbone [37–39]. In literature, these

quasi-particles are referred to as excitons or sometimes exciton-polarons. The coupling

to the normal modes as well as disorder lead to a localisation of the exciton wavefunc-

tion on a small subunit of the polymer, usually of the size of several repeating units [35,

40–43]. Therefore, not the whole conjugated chain interacts with light, but only parts of

it. These parts are often called chromophores. The detailed mechanism behind the local-

isation are still up for debate, as there are several factors which have a strong impact;

Apart from the coupling to normal modes, also long-ranging electron-electron interac-

tions as well as electronic and conformational disorder have to be taken into account for a

proper description of realistic systems [38, 39]. Due to the many conformational degrees
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2.2 Conjugation and conjugated polymers

of freedom of polymer chains and the one-dimensionality of the system, disorder plays

a particularly important role. Recent approaches that meet the challenge of modelling

disorder in conjugated polymers will be presented at the end of this chapter.

2.2.2 Structural and electronic disorder in conjugated polymers

First it is reasonable to introduce the degrees of freedom and different types of disorder

in single, conjugated polymers. In Figure 2.2, these are schematically illustrated on the

example of a polythiophene backbone and will be discussed in the following step-by-step

in the context of experimental and theoretical single-molecule studies.

Structural disorder

Bond-length alternation: As mentioned above, the backbone of conjugated polymers

intrinsically consists of alternating single and double carbon bonds, which have slightly

different equilibrium bond lengths. This causes an alternating pz-overlap and therefore

alternating coupling between the single carbon atoms. This basic disorder in conjugated

polymers is sufficient for a disorder-induced localisation of the exciton wavefunction and

a saturation of the optical gap with increasing chain length [35]. In real systems also

other factors (see below) which weaken or disrupt the conjugation result in a disorder-

induced localisation as well. Furthermore, the double (single) bonds lengthen (shorten)

upon excitation and reduce the degree of bond-length alternation in the excited state

[34]. This strong electron-phonon coupling plays an important role in the analysis of

optical spectra, see below.

Torsion: A central degree of freedom in polythiophenes is the angle φ between sub-

sequent repeating units, usually called dihedral angle or simply torsion (see Figure 2.2).

This angle influences the π-overlap (and therefore the intra-chain coupling) between

neighbouring repeating units. The coupling is maximised for a planar geometry (cis-

planar with φ = 0◦ or trans-planar with φ = 180◦) and weakens upon deviation from

planarity [44]. The torsional degree of freedom for a whole chain is characterised by the

mean dihedral angle φ0 and the variation σφ around this mean value. The width of the

distribution of dihedral angles is termed as “torsional disorder” hereafter. The mean

dihedral angle is also referred to as degree of planarity. From an experimental point of

view, the dihedral angle of single chains is not accessible directly as structure elucidation

methods are not sensitive enough. In single-molecule spectroscopy, the distribution of

transition energies is depends on the torsional potential (see publication 2). However in

many studies, especially when using long polymers, the intrinsic planarity of conjugated

polymers is often hidden due to other effects such as planarisation upon back-folding or

regioirregularities. Up to now, detailed studies on the influence of the dihedral angle on

the photophysical properties were mostly restricted to oligomers [45, 46].
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Chemical defects: Obviously, the chemical purity and quality of the polymers has

a tremendous effect on the properties. Chemical defects which interrupt the conjugated

path along the backbone alter the photophysical and conformational properties. Espe-

cially in poly(p-phenylene vinylene)- and poly(p-phenylene)-based polymers a signifi-

cant number of defects along the backbone leads to changes in overall conformation and

photophysics of single chains [19, 38, 47, 48]. For polythiophenes the problem of the

disruption of the conjugated backbone due to synthesis is less pronounced. Nevertheless,

such defects can be induced by photochemical effects [49, 50].

Figure 2.2: Origins of structural and electronic disorder in (single) conjugated polymers.

Side-chains: Originally introduced for a better solubility [30], side-chains are mean-

while extensively studied as they allow to influence backbone planarity and overall ge-

ometry [28, 51–55]. Also energy-transfer processes [56, 57] and the overall conformation

[58] of single conjugated polymer chains are sensitive to the size of the side-chains. In-

corporation of heteroatoms such as fluorine, nitrogen or oxygen introduce non-covalent

interactions [59], which allow to tune the properties of isolated chains and bulk structures

[60, 61]. Moreover, push-pull effects of atoms like fluorine with its high electro-negativity

are further changing the electronic properties of the conjugated system. However, pre-

dicting the exact electronic and geometric changes is not straightforward, for details see

references [62–64].

Regioregularity: Due to the side-chains, many monomers are asymmetric as for ex-

ample in the case of P3HT and PDOPT. As a consequence, the monomers can bind in

different orientations upon polymerisation. If the side-chains in the resulting polymer

are all placed at the same ring-position, the polymer is referred to as 100% regioregu-

lar. Each deviation from this ideal case is called regioirrelgularity or regiodefect. The

grade of regioregularity is determined by the corresponding chemical shifts observed

with nuclear magnetic resonance spectroscopy [65]. Regioirregular defects often lead to

steric hindrance which often results in larger dihedral angles [28] and thus also effect the
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overall conformation [66, 67], electron-nuclear coupling [68] and energy transfer [21] in

single conjugated polymers. To reduce these undesired effects, much effort is spend on

optimizing synthetic routes to gain highly regioregular conjugated polymers [28, 30, 69,

70].

Dielectric environment: The electrostatic dispersion interaction between the conju-

gated polymer and the local dielectric environment causes for example solvent-dependent

shifts of the transition energies [71]. These arise due to differences in chain-solvent in-

teraction in the electronic ground state and excited state [72]. Furthermore, dynamic

changes within the direct dielectric environment impact the line-shape and evolution of

single-molecule spectra [23, 73]. As these interactions vary from chain to chain, the de-

gree of this static disorder is reflected in the width of ensemble spectra (inhomogeneous

broadening), see also section 2.3.2.

Inter-chain interaction: Leaving the picture of the single, isolated chains for a mo-

ment, in dense bulk samples the photophysical properties are dominated by inter-chain

interactions. These interactions can i) be of (non-resonant) dispersive nature leading for

example to shifts in transition energies, ii) induce structural changes like mutual planari-

sation iii) and promote electronic coupling between transition dipole moments of chain

segments. In the first publication we will show, that these interactions are also present

in dilute systems, when attractive interactions between the backbones lead to formation

of loose aggregates.

Overall conformation: The overall chain conformation of single, conjugated poly-

mers is widely studied as it can be determined with polarisation resolved spectroscopy

[20, 74, 75], often in combination with molecular dynamic simulations [19, 58]. Therefore,

structure-function relationships connecting the overall conformation and the photophys-

ical properties like transition energy and intra-chain energy transfer were established. It

has been shown, that the conformation is strongly affected by the choice of the solvent:

using a good solvent leads to (Gaussian) random-coil conformations, whereas bad sol-

vents induce rod-like geometries, where the chain folds back upon itself due to strong

π-attraction of the π-electron systems [19, 67, 76]. However, when chain segments of the

same polymer get in close proximity to each other, a variety of interactions is possible (see

inter-chain interactions above). Accordingly, it is non-trivial to interpret the results as nu-

merous aspects influence the photophysical properties. One example is the red-site emis-

sion in single poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)

chains, which probably originates from back-folding and the resulting mutual planarisa-

tion of chain segments [48, 77].

In terms of classical polymer physics, conjugated polymers are described as semi-

flexible polymers. This means they are rigid at length scales comparable to their per-

sistence length and flexible at larger length scales [67, 78–80]. By using short chains

in the scale of the persistence length, the effects of solvent and potentially backfolding
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are reduced. As no chain-chain contacts are possible in a single short chain, its confor-

mation is independent of the quality of the solvent and is only driven by entropy and

intra-molecular degrees of freedom. The latter are given by regioregularity and side-chain

chemistry [67], and one can refer to this as “intrinsic disorder”. In this regime of short,

isolated chains, the overall conformation is of minor photophysical relevance as long as

the intra-chain order (especially the degree of planarity) is not affected and no electronic

coupling emerges between the transition dipole moments of chain segments.

Optical and electronic properties

As explained above, all these factors strongly impact the optical and electronic proper-

ties of conjugated polymers. Excitations in conjugated polymers are mostly described

as weakly bound electron-hole pairs, which delocalise over several repeating units and

are dressed by a lattice distortion (electron-phonon coupling), see Figure 2.3. All three

properties, but also the observables which arise from them are affected by disorder, as

discussed in the following.

Electron-phonon coupling: As mentioned above, the most prominent structural

changes upon excitation are those of the alternating carbon single and double bonds:

Upon excitation, the carbon double (single) bonds lengthen (shorten), reducing the de-

gree of bond-length alternation [34]. These collective movements of the backbone are

described by collective modes which have an energy around ~ω ≈ 1400 cm−1 for poly-

thiophenes. This strong electron-phonon coupling emerges in absorption and emission

spectra as a prominent vibronic progression, see section 2.3. The strength of this cou-

pling also depends on the planarity of the backbone and is therefore sensitive to intra-

chain disorder (see section 2.2.3). Also other vibrations of the backbone like torsional

or ring-stretching modes may couple to the electronic transition. Especially low-energy

torsional modes (~ω < 200 cm−1) seem to play an important role in the relaxation upon

excitation and energy transfer rates [23, 39, 81–84]. Furthermore, coupling to low-energy

environmental modes (phonons) is also observed [85]. The total dissipated energy upon

geometric relaxation after excitation plays further a significant role for the energy trans-

fer efficiency in conjugated polymer films [39].

Electron-hole distance: The mean distance between the electron and hole wave-

function (see Figure 2.3) quantifies the charge-transfer character of the excited state.

It depends on detailed electron-electron interactions, which are sensitive to intra-chain

disorder [86] as well as to doping [29]. In undoped conjugated polymers, the first ex-

cited state can usually be described as a Frenkel exciton with an electron-hole dis-

tance less than one repeating unit and a binding energy in the order of 8000 cm−1(1 eV)

[43]. Charge-transfer excitons, as they occur upon doping or at interfaces, have a larger

electron-hole distance and a smaller binding energy 1600 cm−1(0.2 eV) [43]. This thesis
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however focuses alone on Frenkel-type excitons. In many models for describing conju-

gated polymers (e.g. in the frameworks of Barford, Spano and co-workers, see below),

the electron-hole distance is separated from the excited state calculations and assumed

to be constant for different realisations of disorder. In publication 2 (chapter 4.2) we

will show that the charge-transfer character of the lowest excited state is sensitive to

backbone disorder as well.

Figure 2.3: Excited states in conjugated polymers are generally described as weakly bound
electron-hole pair, which localise on a part of the chain (“chromophore”). The
localisation length of the electron (blue) and hole (red) wavefunctions is referred to
as conjugation length. The distance between their centres is denoted as electron-hole
distance or charge-transfer character. Furthermore, the exciton couples to normal
modes of the backbone (electron-phonon coupling). Depending on the chain-length
and nature of disorder, also several chromophores can exist within one chain.

Conjugation Length: As stated above, the excitation is only localised on a few

repeating units. This “smallest unit within a polymer backbone which interacts with

light” is also defined as “chromophore” [87]. Conformational and electronic disorder

as well as electron-phonon coupling lead to a localisation of the exciton wavefunction.

Usually, the size of these “chromophores” (also referred to as conjugation length1) is

taken as quantity for the degree of order in conjugated polymers. Large chromophores

are associated with high intra-chain order while disorder results in shorter chromophores.

However, there is no possibility to measure the length of a chromophore directly up to

now. As the excited state wavefunction delocalises only over a few repeating units, optical

microscopy is not able to resolve chromophores in real space. Yet, two spectroscopic

observables have shown dependencies on the conjugation length: The transition energy

1Please note, that in the following the terms conjugation length, exciton (de-)localisation length, chro-
mophore size and coherence length are used as synonyms.
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between electronic ground state and first excited state and the shape of the vibronic

progression.

Chromophores in conjugated polymers

The oligomer approach uses the transition energy between ground state and first ex-

cited state to estimate the conjugation length. This method is based on the comparison

of the optical band gap (usually measured in solution) of a series of (mostly planar)

oligomers with that of the corresponding polymer [35]. For small oligomers a particle in

the box-model is applied which qualitatively describes the decrease in transition energy

with increasing length of the molecules. As described above, the transition energy sat-

urates with increasing chain length, usually at around 20 double bonds. The saturation

behaviour is fitted by the Kuhn model [29, 35] which is a classical approach, taking the

bond-length alternation into account. This is conceptually reasonable as on the quantum

mechanical level, the bond-length alternation refers to changes in the π-overlap along

the conjugated path. The saturation point of this fit2 is then taken as an “effective con-

jugation length” of the polymer. In other words, the polymer behaves like an oligomer

of a certain length with respect to its photophysical properties [35].

This model delivers reliable results if absorption and emission spectra are analysed

carefully to extract the true value of the optical gap [35]. Yet, extrapolating the oligomer

values to the polymer limit is only reasonable when there is no length-dependent change

of the intra-chain disorder (e.g. mean dihedral angle or bond-length alternation). Other-

wise the Kuhn model (assuming a constant disorder) breaks down. Moreover, for highly

disordered polymers the saturation at the polymer limit may not be directly related to

the conjugation length [64].

The oligomer approach inspired the picture of conjugated polymers as a sequence

of stiff, planar chromophores, which are separated by strong kinks, twists or defects

[75, 88]. Following a particle-in-the-box-like approach, the length of these chromophores

determines their transition energy. Long segments are red-shifted in absorption and

emission with respect to shorter segments. This picture is also in line with the observed

multi-chromophoric emission in single conjugated polymers [24, 75, 89, 90].

The idea of planar segments which are separated by chemical or torsional defects

is challenged by calculations which show that the electronic coupling is preserved also

in the presence of large dihedral angles [91]. Even though the π-overlap is limited in

these cases, the Coulomb-type through-space coupling JDD between the transition dipole

moments of the monomers is sufficient to retain strong coupling across the torsional

defect [38]. Furthermore, classical polymer physics implies that the dihedral angles are

rather continuously distributed around a mean value [41, 67, 78, 79]. In most defect-

2Please note that several definitions exist [64]
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free polymers, large fluctuations like kinks and strong torsions are rather unlikely. The

distribution and mean value are given by the torsional potential of the dihedral angle,

see above. In the case of a rigid-rod like poly(p-phenylene vinylene) derivative (MEH-

PPV) this abrupt flip model (i.e. conjugation is assumed to be broken above a specific

threshold angle) did not fit with experimental results. The description of the excited

state properties by random conformational disorder has been more successful [92].

Based on this picture of a rather smoothly disordered polymer chain (if free of de-

fects and regioirregularities), the continuous disorder model [93] is more appropriate.

The extend of the initial excitation is defined by electron-phonon coupling and by An-

derson localisation via energetic and structural disorder. The latter one is a well known

phenomenon, especially in low-dimensional materials [94]. Therefore, not the number of

conjugation breaks is important but the detailed distribution of torsional angles, which

defines the intra-chain disorder and electron-phonon coupling. However the dihedral an-

gle is only measurable with structure elucidation methods for crystalline aggregates but

not for disordered polymer films or even single chains. We show in publication 2, that

the transition energy in single-molecule spectroscopy is quite sensitive to the distribution

of dihedral angles. It should be noted that the conjugation length is not static. Exper-

imental data suggest a dynamic localisation of the exciton wavefunction after initial

excitation [84, 95]. This can happen along different vibrational modes or by disorder-

induced Anderson localisation [82, 83, 94, 96].

The mechanism that determines the number of chromophores within a single con-

jugated polymer is still not fully understood. As stated above, the abrupt flip model,

which cuts the polymer into planar segments, explains the multi-chromophoric emission

in single chains but disagrees with other experimental results and polymer statistics.

On the other hand, within the continuous disorder model, all neighbouring monomers

are basically coherently connected in a defect-free chain. Despite the localisation of the

wavefunction, the oscillator strength of long oligomers rises with chain length. This led

to the picture of localised excitons which migrate coherently along the chain [35]. Indeed,

in the case of well prepared polydiacetylene chains, a coherent coupling over several mi-

crometre was observed at low temperatures [97]. In these experiments, the chains were

polymerised in their monomer crystal, leading to ideally stretched chains with very low

(torsional) disorder and a homogeneous dielectric environment. In contrast, in the case

of highly disordered polymer conformations, the variation of intra-chain coupling and

dielectric environment may lead to the segmentation of the chain to incoherently coupled

chromophores [29].

An established technique to address this question is single-molecule spectroscopy as the

number of emitters can be determined for example by blinking and anti-bunching exper-

iments. Most of the studies observe several emitters [75, 98, 99] or absorbers [100] within

a single conjugated polymer chain. Also single-chromophoric emission has been detected,
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often explained by inter-chromophore energy transfer towards the lowest-energy site [20,

75, 100]. However, the experimental results depend strongly on the chemical quality of

the sample (e.g. chemical defects or chain length) as well as on the sample preparation

technique (e.g. environment or overall conformation). Unfortunately, in most cases the

number of defects is not known and thus no correlations between the photophysical

properties and the chemical quality of the samples can be given. It is an open ques-

tion whether there is a lower threshold for torsional and environmental disorder below

which a coherent coupling within a polymer chain is achieved. A step towards this are

more defined samples and sample preparation techniques as used in publication 1 and

2 on PDOPT and P3HT. But also in these experiments, a discrepancy was observed

as there are strong indications that P3HT is a single-chromophoric system, whereas for

PDOPT multi-chromophoric emission was detected under otherwise identical conditions.

Further chemical defects in the side-chains of PDOPT, or similar, yet unknown effects,

which have a huge impact on the torsional disorder, may lead to the formation of several

chromophores per chain.

The quantification of chromophores is also challenging from a theoretical point of

view. This is reflected above all in the various notations and definitions of the size of a

chromophore which are found in literature. One concept is to use the change in bond-

length alternation upon excitation as a measure for the extend of the excitation [34, 101].

Others take the extend of frontier molecular orbitals (HOMO/LUMO) as measure for the

delocalisation of electron and hole wavefunction[102]. However, the delocalisation of the

excitation is not directly correlated with topologies of the frontier MOs when studying

polymers with large dihedral angles (weak intra-chain coupling) [64]. Furthermore, if not

carefully analysed, it may lead to false predictions about the charge-transfer character

of the excitation if further orbital pairs contribute significantly [103]. Measuring the

extend of the most dominant natural-transition orbital (NTO) pair circumvents these

issues [42, 103, 104]. Other examples of definitions are the extend of the nodeless exciton

ground states [105, 106] or the radius of gyration of the exciton wavefunction [86, 107].

The variety of definitions has its origin in the very different theoretical approaches and

the definitions cannot be easily transferred to another model. Therefore, quantitative

comparisons of conjugation lengths are only reasonable within one model.

Furthermore, using the conjugation length as a quality parameter for the degree of

order or intra-molecular coupling can be misleading. As shown in publication 2 (section

4.2), the changes in intra-molecular coupling are not necessarily reflected in the conju-

gation length. For a proper description, the electron-hole displacement has to be taken

into account as well.
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2.2.3 Recent theoretical models

Due to the mere number of atoms as well as electron-electron interactions, electron-

phonon coupling, conformational (structural) disorder and their mutual influence on

each other, conjugated polymers are a challenging system for theoretical modelling. In

the following, recent concepts to treat disorder and their results are briefly presented.

The discussion focuses on those which are direct subject of research or discussion in the

publications.

Absorption and emission spectra of conjugated polymers show a vibronic progression

due to the coupling of the electronic transition to vibrational modes. In the last years

Barford, Spano and co-workers derived expressions that connect the vibronic progression

to the conjugation length. This connection of vibronic progression to intra-molecular

disorder is interesting for spectroscopy as it provides a second observable apart from the

transition energy. Both models are based on Frenkel-Holstein Hamiltonians and describe

conjugated polymers as a linear chain of coupled monomers, with additional coupling to

mostly a single effective vibrational carbon stretching mode.

Barford and co-workers use the Frenkel-Holstein model in the (adiabatic) Born-

Oppenheimer limit to describe conjugated polymers as a linear arrangement of monomers

which couple via the exciton transfer integral J . Furthermore, the total exciton wavefunc-

tion is split into a relative-electron-hole wavefunction, which describes the electron-hole

separation, and into the centre-of-mass wavefunction [43, 44]. The latter one is used to

describe the light-matter interaction and the delocalisation of the exciton over several

repeating units and is studied as a function of disorder.

The coupling between the repeating units J = JDD +JSE cos2(φ) consists of two con-

tributions: Firstly, the through-space dipole-dipole coupling JDD between the transition

dipole moments of neighbouring repeating units, which depend on their mutual orienta-

tion and distance. Secondly, the through bond (super-exchange) interaction JSE cos2(φ),

which is a function of the π-overlap of neighbouring monomer units. Accordingly, it

depends on the dihedral angle φ between the monomers which allows to study the influ-

ence of torsional disorder and planarity on the transition energy and conjugation length.

Generally, a more planar backbone leads to lower energies of the excited state. Further-

more enhancing the torsional disorder – in terms of fluctuations around a given mean

value – shortens the conjugation length. Also an analytical expression connecting the

vibronic progression of emission spectra with the coherence length is derived [87], see

section 2.3.3.

Spano and co-workers initially developed a theory for molecular aggregates includ-

ing exciton-phonon coupling and were able to relate the shape of the vibronic progres-

sion to the exciton delocalisation along the stack of molecules (see also section 2.4.3).

By applying this theory to conjugated polymers, strong photophysical similarities with

23



2 Introduction

molecular J-aggregates were highlighted [108, 109]. Similar to a molecular J-type ag-

gregate, the monomer transition dipoles in conjugated polymers are arranged in-line,

resulting in a negative excitonic coupling between them. Equivalent to Barford, an ex-

pression for the relation between the vibronic progression and the exciton coherence

length was formulated (see section 2.3.3 for details). Furthermore, the model is able

to explain the temperature dependence of the vibronic progression in single highly or-

dered polydiacetylene chains. Torsional disorder is however treated only indirectly via a

variation of intra-chain coupling.

Although this model presents a tempting idea of thinking about conjugated polymers,

some essential features are lacking. In contrast to the model of Barford, the exciton

transfer between the molecules is based only on Coulomb-type dipole-dipole coupling.

However, the through-bond coupling between the monomer units in conjugated polymers

is much stronger than the through-space coupling as in the case of molecular aggregates.

In addition, Spano uses the antiadiabatic regime (assuming that exciton motion is much

slower than phonon motion) but in conjugated polymers the intra-chain coupling is

stronger than the typical local normal mode energies. This leads to different predic-

tions about the vibronic progression in absorption, for more details see the appendix of

reference [44].

Density functional theory (DFT) is based on the Hohenberg-Kohn theorem [110]

and relies on the particle density instead of the many-particle wavefunction. In the

Kohn-Sham formulation [111], the interacting many-body problem is transferred to a

non-interacting many-body problem in an effective potential. The effective potential is

constructed such that the new system has (in principle) the same density as the real

interacting one and includes the many-body interactions such as Coulomb-, exchange-

and correlation-interaction. The observables of the system are then calculated from func-

tionals of the particle density. Time-dependent density functional theory (TDDFT) ad-

ditionally allows to calculate excited state properties [112, 113].

As a first principles method, DFT is formally exact, but in practice approximations

have to be introduced, primarily for the exchange-correlation energy and potential [104].

These lead for example to a wrong description of charge-transfer excitations. The use of

generalised Kohn-Sham theory and the development of a new class of (non-empirical)

functionals, the optimally tuned range separated hybrid (RSH) functionals, surpass this

limitation [114]. In a recent work, de Queiroz and Kümmel applied this formalism to non-

substituted oligothiophenes with up to 24 repeating units. Realistic, disordered chain

conformations were generated by a preceding molecular dynamics simulation. It was

shown that the conformational distortions increase the transition energy of the first ex-

cited state by up to 4000 cm−1 (0.5 eV) [42, 104]. Besides, the localisation length (defined

by the extent of the natural transition orbitals) decreases with increasing disorder. But

also for a planar configuration, the extent is limited to around 10-12 repeating units.
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2.2 Conjugation and conjugated polymers

Furthermore, for an accurate calculation of the optical gap, the solvent molecules have

to be taken into account [104]. TDDFT calculations are used by our collaborators in

publication 1 (section 4.1) to examine the role of structural disorder on the photophys-

ical properties and to explore the long-range interactions between neighbouring P3HT

chains.

Density functional theory is further used to calculated the torsional potential of the

dihedral angle φ connecting the thiophene units, which is the central degree of freedom

for modelling conformational and electronic disorder in conjugated polymers. This is

particularly challenging when (non-covalent) interactions between the backbone and the

side-chains are involved. Moreover, it was realised that dimers are not large enough

to model the torsional potential and relaxed geometries for the corresponding polymer

correctly [115]. Therefore, longer oligomers and polymers have to be modelled with

their full side-chains to capture meaningful dihedral potentials and relaxed ground-state

conformations [64, 102, 116, 117].

Quantum classical atomistic simulations belong to the class of semi-empirical

methods which are a compromise as they allow to treat larger systems at acceptable

computational costs. On the downside, the reliability of their results depends strongly

on the accuracy of the experimental data and approximations that are put into the

model. Recently, Simine and Rossky applied the quantum mechanical consistent force

field for π-electrons (QCFF/PI) method to P3HT [86]. The thiophene π-electrons are

treated quantum-mechanically, whereas the rest of the polymer is treated classically by

force-fields which capture bonding and non-bonding interactions. This allowed to cre-

ate disordered conformations of a 30-monomer P3HT for a broad range of temperatures

(T=10 K to 298 K) including side-chains which were modelled fully atomistic. The poten-

tial for the dihedral angle φ was then calculated from the thermal population of dihedral

angles by a Boltzmann inversion. At low temperatures, the potentials show a quasi-

harmonic minimum around φ = 145◦. As a result, the chains are uniformly twisted. At

room temperature, the trans-planar configuration (φ = 180◦) gets thermally accessible.

The absorption spectra of the corresponding thermal ensembles of P3HT were calcu-

lated with the semi-empirical Pariser-Parr-Pople Hamiltonian for π-electrons including

electron-electron interaction at the level of configuration interaction singles (CIS). The

conjugation length (localisation length) is defined here as the radius of gyration of the

exciton wavefunction. The transition energies from electronic ground state to the first

excited state slightly decrease upon heating, while the conjugation lengths get shorter

at the same time. This seems contradicting first, as one would expect that a stronger

delocalisation is connected to a red-shift (see above, particle-in-the-box picture). Here

however, the chromophores at room temperature are shorter but more planar than their

cooler counterparts which are in contrast uniformly, but relatively gently twisted. Thus

the π-overlap is enhanced in the short chromophores as they are more planar. Interest-
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ingly, this is also reflected in the electron-hole separation (or charge-transfer character)

of the first excited state which increases with a more twisted backbone and increas-

ing conjugation length. Our collaborators use this method in publication 2 to simulate

the conformation and photophysical properties of a bulky-substituted polythiophene

(PDOPT).

In general, this chapter about the basic concepts of single, isolated chains showed that

the roles of electron-electron interaction, electron-phonon coupling, intra-chain disorder

and their mutual influence on each other are highly debated. Recent models made it

possible to take the role of intra-chain disorder into account with a special focus on

torsional disorder and torsional potentials.

All these theoretical studies are performed on single, isolated chains. However, de-

tailed experimental data which examines transition energy and electron-phonon coupling

under the influence of torsional disorder is missing. Low-temperature single-molecule

spectroscopy on conjugated polymers can give insights into transition energies, electron-

phonon coupling and – with a proper choice of samples – the influence of structural and

torsional disorder on these parameters. The aim of this thesis is thus to provide exper-

imental data which, in combination with recent theoretical calculations, gives deeper

insights into the photophysics of conjugated polymers.
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2.3 Photophysics of isolated conjugated polymers

This chapter focuses on the photophysical properties of isolated conjugated polymers.

After introducing the basic concepts of a chromophore interacting with light, the impact

of disorder and its signatures on the emission spectra of single conjugated polymer chains

are discussed [29, 33, 39].

2.3.1 Electronic and vibronic transitions

At first, a chromophore within a conjugated polymer, which consists of two electronic

levels and corresponding vibrational levels is considered, see Figure 2.4. The solutions of

the Schrödinger equation of the many-body Hamiltonian (equation 2.1) are wavefunc-

tions which depend on both electron and nuclear coordinates (under the neglection of

spin). Within the Born-Oppenheimer approximation, see section 2.2.1, the time scales of

electron and nuclei dynamics can be separated. This allows to express the wavefunction

as a product of electronic and vibrational contribution:

|Ψ〉 = |Ψe(Ri, ri)〉 |Ψv(Ri)〉 . (2.2)

Here, |Ψe(Ri, ri)〉 denotes the electronic wavefunction which depends on the set of elec-

tron coordinates ri and parametrically on the set of nuclei coordinates Ri. The vi-

brational wavefunction |Ψv(Ri)〉 describes the dynamics and mutual interaction of the

nuclei.

In the simplest case of a diatomic molecule, the potential energy term of the vibrational

wavefunction is often approximated by a harmonic potential describing the movement

around the equilibrium bond length. The energies of the vibrational levels ν = 1, 2, 3, . . .

are then equally separated by ~ω, where ω is the vibrational frequency of the bond.

For larger molecules, the nuclear motions have to be regarded as a system of coupled

oscillators and are usually described by their effective (eigen)modes or vibrations. The

potential energy surface of a distinct mode i with frequency ωi is then expressed in the

normal mode coordinate Qi, see Figure 2.4.

Due to the displacement of the charge densities upon excitation, the vibrational po-

tentials differ in ground state and excited state. As illustrated in Figure 2.4 the potential

energy surface shifts by ∆Qi along the normal mode coordinate Qi upon transition be-

tween electronic ground state |Ψ0〉 and excited state |Ψ1〉. The vibronic excitations which

emerge in this potential are denoted by the vibrational quantum number ν, see Figure

2.4. A combination of an electronic and a vibrational wavefunction is usually referred to

as vibronic state.

The strength of the optical transition between these vibronic states is given by the

square of the transition dipole moment µif from, in general, initial state |Ψi〉 to final
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state |Ψf 〉, which is defined as

µif = 〈Ψf |p |Ψi〉 = 〈Ψf
e |p |Ψi

e〉 〈Ψf
v |Ψi

v〉 (2.3)

The integral is split up into the electronic and the vibrational part, which both have to be

non-zero for an allowed transition. The transition dipole operator p = er with the set r

of electronic coordinates is an uneven function. Therefore, the pure electronic transition

between the two states is only possible when they differ in parity. The Franck-Condon

integral 〈Ψf
v |Ψi

v〉 is only non-zero if there is a significant overlap between the vibrational

functions of initial and final states. As optical transitions occur vertical, the probability of

a transition between two vibronic states depends on the shift ∆Q of the potential energy

surface. Usually this overlap is expressed by the Huang-Rhys parameter S ∝ ∆Q2. Thus

a large Huang-Rhys parameter denotes an effective coupling of the respective vibration

to the electronic transition (electron-phonon coupling). As already mentioned in section

2.2.2, in conjugated molecules this is especially the case for vibrations which promote a

change in (carbon) bond-length alternation upon excitation. In conjugated polymers, the

(effective) Huang-Rhys factor for the carbon-bond stretching modes (~ω ≈1400 cm−1) is

usually in the order of Seff ≈ 1.
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Figure 2.4: Absorption and emission processes: a) Ground state |Ψ0〉 and excited state |Ψ1〉 po-
tential energy surfaces are shifted by ∆Qi with respect to each other along the con-
figurational coordinate Qi of an effective mode. The wavefunctions of the vibronic
excitations ν are sketched in grey. b) Vibronic (Franck-Condon) progressions in
absorption (blue) and emission (red) for a Huang-Rhys parameter of S = 1. Please
note that only a single mode Qi is shown here, but usually several modes are cou-
pling to the electronic transition. Adapted from [29].

A non-zero Huang-Rhys parameter allows absorption and emission into higher lying

vibronic states (arrows in Figure 2.4a). The intensities of the distinct transitions in

the corresponding spectra are determined by the so-called vibronic (Franck-Condon)
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2.3 Photophysics of isolated conjugated polymers

progression which follows a Poisson distribution. For emission, the peak ratios write

as I0−ν ∝ | 〈Ψ0
ν |Ψ1

0〉 |2 = e−S S
ν

ν! as emission takes place from the vibration-less lowest

excited state after non-radiative relaxation of the vibrational quanta. The formula for

absorption is similar for this case, resulting in a mirror-symmetry of absorption and

emission as displayed in Figure 2.4b. In conjugated polymers, this mirror symmetry

may be broken, when different species contribute to absorption and emission due to

structural relaxation upon excitation, inter-chromophore energy transfer or violation of

the Born-Oppenheimer approximation [35, 44].

2.3.2 Signatures of disorder in single-molecule spectra

In this chapter, the low-temperature emission spectra of single molecules are discussed

with focus on conjugated polymers. In short, such a spectrum is taken by exciting a single

molecule with a focused laser beam and detecting the subsequent emitted fluorescence

with a spectrograph and a CCD camera. The samples discussed in this thesis are cooled

down to T = 1.5 K in a home-built helium-bath cryostat. For further experimental details

see [118, 119] or the supporting information of publication 1 (section 4.1). In Figure 2.5b

the main features of a low-temperature emission spectra of a single, isolated conjugated

polymer chain are sketched. The highest energy peak, the so called zero phonon line

(ZPL), corresponds to the pure electronic (0-0) transition from the vibration-less excited

state to the ground state.

In general, the homogeneous linewidth (FWHM) of the ZPL is given by Γ(T ) =
1

2πT1
+ 1

πT2(T )
. Here T1 is the excited state lifetime and T2(T ) accounts for dephasing

processes due to the scattering of phonons during the excited state lifetime which leads

to a rapid and random shift in energy levels. The latter process freezes out at low

temperatures. In this case the linewidth Γsinglehom is only limited by the lifetime of the

excited state (natural homogeneous line width) [22, 119–122].

However, the observed ZPL widths are usually inhomogeneously broadened due to

averaging over dynamical processes. For amorphous environments, structural relaxation

and subsequent changes in the local dielectric environment of the polymer chain happens

on all time scales. The resulting fluctuations of the electrostatic dispersion interaction be-

tween the conjugated polymer and its environment lead to shifts of the transition energy

[22, 23]. The spectral shifts, also called spectral diffusion, are averaged over the inte-

gration time of a single spectrum (typically around 1s) resulting in an inhomogeneously

broadened observed line width Γsingleinhom , see Figure 2.5a. Thus the dynamic disorder in

direct vicinity of the emitting site is reflected in the ZPL width. In the case of substi-

tuted conjugated polymers, the side-chains contribute most to the dynamic disorder as

they are directly attached to the backbone [23]. For an example of side-chain induced

dynamic disorder, see publication 2 (chapter 4.2).
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Figure 2.5: Inhomogeneous broadening mechanisms in low-temperature single-molecule spec-
tra. a) Due to dynamic changes in the dielectric environment, the transition energy
changes statistically during the acquisition time of an emission spectrum. This leads
to an inhomogeneously broadened observed linewidth Γsingleinhom b) Sketched single-
molecule spectrum with the characteristic zero-phonon line (ZPL), phonon-side
band (PSB) and vibronic transitions (i-iv). The energy scale is set relative to the
pure electronic transition (ZPL). c) The inhomogeneous distribution of transition
energies leads to broadened ensemble statistics, described by the inhomogeneous
linewidth Γensinhom.

Spectral diffusion occurring on time scales slower than the integration time of a single

spectrum are recorded as a function of time, by taking sequences of spectra [22, 123].

The width and frequency of these spectral jumps contain detailed information about

the dynamic disorder in the environment [23]. On the other hand, this slow diffusion

leads also to an additional line broadening of the integrated signal of the entire sequence

of spectra. This effect can be overcome by applying sorting algorithms to the stack of

spectra [23, 124].

Apart from the pure electronic transition, the spectrum in Figure 2.5b shows features

of electron-phonon coupling at lower energies with respect to the ZPL. The shoulder next

to the ZPL arises due to the coupling to phonons of the surrounding matrix in which

the molecule is embedded (phonon side band, PSB) [85, 118–120]. The distinct peaks i)

to iv) at lower energies result from electron-phonon coupling to intra-molecular modes.

Lines with vibrational energies smaller than ~ω ≈ 250 cm−1(peak i)) are usually ascribed

to collective stretching modes of the backbone. Intermediate peaks (~ω . 1000 cm−1,

ii)) can for example arise due to ring-deformations of the monomer units [118].

Vibrational energies around ~ω = 1400 cm−1 (peaks iii) and iv)) arise from electron-

phonon coupling to carbon-bond stretching modes. Recent calculations in the context

of Raman studies suggest that the energies and relative intensities of these modes are

strongly connected to the conformation of the conjugated backbone [68, 125, 126]. Indeed,

when comparing the single-molecule spectra of two conjugated polymers with different

degrees of backbone planarity, a significant change in the vibrational signature can be

observed as shown in Figure 2.6. This sensitivity of the vibrational modes gives thus a
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Figure 2.6: Histogram of vibrational energies for a planar (solid blue) and non-planar (hatched
black) polythiophene between 500 cm−1 and 1650 cm−1. The peak energies are given
in the Figure, the error is the standard deviation.

further method to distinguish between different backbone conformations. In ensemble

measurements, this dependence of vibrational energies and relative intensities on the

backbone conformation is also known as missing mode effect [127], which can lead to

misinterpretations of ensemble spectra.

The spectral distribution of transition energies of an ensemble of single molecules – the

so-called inhomogeneous distribution function – is shown in Figure 2.5c. As outlined in

section 2.2.3, recent calculations have shown that the dihedral angle φ has a profound ef-

fect on the transition energy [42, 86, 104, 117, 128]. In experiment, each chain experiences

an individual distribution of dihedral angles leading to the inhomogeneous distribution

of transition energies. The width Γensinhom of this distribution is a measure for the amount

of static energetic disorder and is thus connected to the dihedral potential, see pub-

lication 2. Additionally to torsional disorder, each emitting site experiences a slightly

different dielectric environment (see also section 2.2.2), leading to further broadening

of the inhomogeneous distribution [120, 129–131]. As a note, the determination of the

true inhomogeneous distribution function from ensemble spectra is not always straight

forward, as the spectra can be substantially broadened by electron-phonon coupling to

low-energy modes [118] or due to unintended inter-molecular coupling (see publication 1).

2.3.3 Connection between coherence length and vibronic progression

As already mentioned in chapter 2.2.3, the groups of Spano, Barford and co-workers

recently developed frameworks which connect the shape of the vibronic progression to

the conjugation length and to intra-molecular disorder. As a note, usually, only a single

mode is used for the description of the vibronic progression (with ~ω ≈ 1400 cm−1).
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As illustrated in Figures 2.5b and 2.6, this is not necessarily the case for conjugated

polymers. When analysing single-chain spectra within these frameworks, the modes have

to be treated as effective modes with an effective Huang-Rhys parameter Seff which is

determined by numerical integration of the peak areas.

In Barfords treatment, the displacement ∆Q of this mode upon excitation is propor-

tional to local exciton density. It can then be shown, that the corresponding Huang-Rhys

factor Seff decreases with increasing coherence length L. The integrated peak ratio in

emission is connected to the exciton coherence length via

I0−1
I0−0

= Seff =
Smon∑
|Ψ(n)|4

= 2
Smon
L

. (2.4)

Here, |Ψ(n)〉 is the Frenkel exciton centre-of-mass wavefunction, Smon is the Huang-

Rhys factor of a single repeating unit (for polythiophenes Smon ≈ 1.4− 1.9 [132]) and L

denotes the conjugation length [44, 87].

Spano and co-workers formulated a similar relationship in their framework which treats

conjugated polymers as molecular J-aggregates with exciton-vibrational coupling:

I0−1
I0−0

= Seff = κ
Smon
L

. (2.5)

Here, κ is a measure of the electron-hole distance which approaches unity for Frenkel

excitons in conjugated polymers and decreases with increasing charge-transfer character

[133, 134].

In both models, an increase in the observed peak ratio and thus Huang-Rhys param-

eter Seff implies a decrease in conjugation length. In publication 2 (chapter 4.2) we

compare two polythiophenes with different degree of backbone planarity and thus dif-

ferent strength in intra-chain coupling. We observe a change in the I0−1/I0−0 peak ratio

which suggests a change in coherence length according to the usual interpretation of the

equations 2.4 and 2.5. In combination with direct quantum-classical atomistic simula-

tions we can show that the conjugated length does not change, but the electron-hole

distance does. Thus, the peak ratio is not necessarily a good measure for the extend of

delocalisation along the backbone. For a proper description also a possible change in the

charge-transfer character has to be taken into account (e.g. via κ).

In this thesis, electronic and structural disorder is investigated by careful analysis of

the line-shape, spectral position and intensity ratios of single-molecule spectra. Further-

more it is shown that these details are only visible at the single-molecule level as the

electronic coupling in amorphous and crystalline domains brings up new phenomena,

which are introduced in the next section.
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2.4 Photophysics of electronically interacting conjugated

polymers

In this section, the concept of electronic coupling between the transition dipole moments

of chromophores in adjacent polymer chains is introduced. Understanding the underlying

mechanism helps to separate intra-chain effects from inter-chain interactions and connect

single-chain and bulk experiments. [29, 33, 135]

2.4.1 Two-level systems

In the following, two chromophores on adjacent polymer chains are approximated as a

pair of electronically interacting two level systems. Vibrational levels are neglected for

simplicity first and will be introduced again later. Therefore, the systems consist of the

electronic ground states |01〉 and |02〉 (with corresponding energy Eg = 0) as well as the

excited states |11〉 and |12〉. Energetic disorder leads to slightly differing excited state

energies E1 and E2, separated by 2∆ = |E1−E2|, see Figure 2.7a. The transition between

ground and excited state of each molecule is described by the transition dipole moments

µ1 and µ2. The excitation of one of the molecules writes as the states |1〉 ≡ |11〉 |02〉 and

|2〉 ≡ |01〉 |12〉, for excitation in molecule 1 or 2, respectively. With these as eigenstates,

the Hamiltonian of the total system H = H1+H2 is diagonal. This changes as a coupling

V between the molecules is introduced3

H ′ = H1 +H2 + V, (2.6)

where the new off-diagonal matrix elements describe a coupling between the transition

dipole moments of the chromophores.

Diagonalisation gives the new eigenstates |k+〉 and |k−〉 which are a superposition of

the initial eigenstates |1〉 and |2〉 [135]. These are called exciton states and describe a

delocalisation of the excitation over both molecules. The corresponding eigenvalues write

as

E± =
E1 + E2

2
±
√

1

4
(E1 − E2)2 + |V |2 = Em ±

√
∆2 + |V |2. (2.7)

This splitting of the energy levels, called Davydov splitting, depends on the strength

of coupling V as well as the energy difference ∆ of the two initial energy levels, see

Figure 2.7b. This basic principle of electronic interaction can easily be expanded to a

linear chain of N interacting molecules with the similar consequences. An exciton band

containing N eigenstates emerges with an energy level splitting of ∆E = 4V in the

absence of disorder (∆ = 0).

3in the limit V << E1, E2, i.e the molecules preserve their individuality
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Figure 2.7: Davydov splitting in electronically interacting dimers: Energy level diagrams for a)
isolated molecules and b) strongly coupled molecules showing excited-state splitting
∆E (Davydov splitting). Shifts due to non-resonant intermolecular interactions are
neglected for simplification, adapted from [135].

To describe realistic systems, static and dynamic fluctuations of the energy levels and

of the electronic coupling have to be taken into account. Static electronic (diagonal)

disorder (∆), arises due to different polarizabilities of the environment and intra-chain

fluctuations of the energy levels. Changes in mutual orientation and distance between

the molecules lead to deviations in the electronic coupling V (off-diagonal disorder).

In general, a distinction is made between two coupling limits by comparing coupling

strength with the amount of static electronic disorder. In the strong coupling regime

(|V | >> ∆), the new eigenstates are delocalised over both molecules, i.e. the exciton

delocalises over the whole system. In the case of weak coupling (|V | << ∆) the eigen-

states approximately represent the initial states |1〉 and |2〉. In this case, the excitation

is localised by disorder on one of the molecules with a remaining weak splitting of the

excited state energy levels.

2.4.2 H- and J-type aggregation

The oscillator strength of the excited states of the electronically interacting chromophores

depends on the relative orientation of the transition dipole moments with respect to each

other. As introduced by Kasha [135], the electronic coupling V between the transition

dipole moments µ1 and µ2 can be approximated by the electrostatic Coulomb-type

point-dipole interaction

V =
1

4πεε0

µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

r3
. (2.8)
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Here, r̂ = r/r denotes the unit vector connecting the two dipoles and εε0 reflects the

dielectricity of the surrounding. Depending on the sign of the coupling V , a distinc-

tion between H-type aggregation (V > 0) and J-type aggregation (V < 0) is made.

This is illustrated in Figure 2.8 on the example of a molecular dimer with arbitrary

(but coplanar) mutual orientation. In a predominant parallel arrangement, the lowest

excited state carries no oscillator strength as the transition dipole moments are interfer-

ing destructively. In these H-type aggregates, the highest excited state carries most of

the oscillator strength, accordingly the absorption blue-shifts with respect to the non-

interacting molecule. Due to Kashas rule, emission occurs from the red-shifted lowest

excited state, resulting in a large Stokes-shift. In ideal H-aggregates, this transition is

optically forbidden. This rule is however weakened in real systems by several factors, see

below.

Figure 2.8: Interacting Dimers: Electronic coupling of a molecular dimer with coplanar tran-
sition dipole moments as a function of the mutual orientation. Parallel oriented
transition dipoles (θ = 90◦) result in H-type coupling with a symmetry forbidden
lowest excited state (no oscillator strength). J-type coupling is achieved by in-line
arrangement of the transition dipole moments, where the lowest excited state car-
ries all oscillator strength (θ = 0◦). For arbitrary orientation angles θ in-between
the two extreme cases, an intermediate situation arises with weakly allowed (solid
grey line) or forbidden transitions (dotted grey line). The change point (V = 0)
between H- and J-aggregation occurs at θ = 54.7◦. Adapted from [135].

In contrast, a negative coupling emerges (V < 0) when the molecules are primarily

arranged in-line. Such systems are called J-type aggregates where the lowest excited

state is optically allowed and carries most of the oscillator strength as the phases of the

dipoles add up constructively. Absorption and emission are thus red-shifted and show a

small Stokes-shift. As above, this basic principle of electronic interaction can easily be

expanded to a chain of N interacting molecules.
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The point-dipole approximation is quite useful to catch the basic photophysical con-

sequences. In molecular aggregates, this approximation is too simplifying as the inter-

molecular distance is of the same order as the size of the molecules. The point-dipole

approximation is not valid for these distances and quantum chemical methods give a

more reliable output, see References [136, 137]. This has a qualitative impact as the

red-shift for J-aggregates is less pronounced and the inversion point (V = 0) depends

on the nature of the molecule, the intermolecular separation and non-nearest neighbor

interactions.

Additionally, in real systems, structural disorder weakens the H- and J-type character-

istics due to deviations from the perfect geometry. Moreover, the Kasha model gives only

information about the oscillator strengths but not about efficiencies. Changes in non-

radiative decay channels (i.e. internal conversion, inter-system crossing or quenching)

are not included in this model as they rely on other parameters like the concentration of

trap states, exciton diffusion length and Herzberg-Teller coupling to vibrational modes

[137–139]. Defect-free H-type single crystals (see publication 4, section 4.4) can indeed

have a high quantum yield [137].

The relative spectral shifts compared to the non-interacting molecule have to be anal-

ysed carefully, as they may additionally be superimposed by aggregation-induced changes

in molecular structure and polarisability of the environment. Both are especially pro-

nounced in π-stacking systems of conjugated molecules like P3HT [140], see also publica-

tion 1 (section 4.1). The shift alone is thus no indicator for H- or J-type aggregation and

also the (non-)radiative rates, vibronic progression as well as the impact of structural

and electronic disorder have to be taken into account.

2.4.3 Signatures of disorder in molecular aggregates

A more detailed picture which allows for a quantitative analysis of steady state absorp-

tion and emission spectra of molecular aggregates was developed in the last decade by

Spano and co-workers [133, 141–145]. In addition to the Kasha-Model, electron-phonon

(“exciton-phonon”) coupling to a collective carbon-bond stretching mode (~ωeff ≈
1400 cm−1) is considered. Furthermore, the effect of disorder can be modelled and an-

alytical expressions are derived which allow a quantitative analysis of absorption and

emission spectra. The key concept of this framework is to include vibronic/vibrational

pairs in the modelling of excitations. These consist of an electronically and vibrationally

excited molecule (vibronic excitation) and a neighbouring molecule which is only vibra-

tionally excited in the electronic ground state. The numerical evaluation with a Frenkel-

Holstein-type Hamiltonian contains excitonic coupling, exciton-phonon coupling as well

as site-correlated energy disorder. Furthermore, analytical formulas are derived, where

disorder is treated perturbatively. Within the definition of Kasha (see above), the cou-
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2.4 Photophysics of electronically interacting conjugated polymers

pling between the molecules is assigned to the strong to intermediate coupling regime

as V > ∆. Spano further distinguishes between weak and strong “excitonic coupling

regimes” by comparing the inter-chain coupling, i.e. the free exciton bandwidth W = 4V ,

with the nuclear relaxation energy S~ωeff [141, 145]. The weak excitonic coupling regime

is therefore valid for W < S~ωeff . Alternatively, this limit is also referred to as strong

“exciton-phonon coupling regime” [141].

Within this regime, each vibrational level of the excited state splits up into an exciton

band upon aggregation (see Figure 2.9a). In the case of H-type interaction, the absorp-

tion takes place into the highest excited state |Ai〉 of each band which carry most of the

oscillator strength. According to Kashas rule, the emission stems only from the lowest ex-

cited state |em〉, whereas the pure electronic transition (I0−0) is forbidden by symmetry

in ideal H-type aggregates (see above). The resulting vibronic progressions in absorption

and emission are thus distorted with respect to the progression of non-interacting chains

as discussed in the following.

Figure 2.9: Energy level diagram and vibronic signatures in H-type aggregates. a) Energy level
structure for a H-type aggregate in the weak exciton phonon coupling regime in com-
parison to the isolated molecule. The coupling results in a splitting of the vibrational
levels ν into exciton bands with the width We−SSν/ν!. In absorption (blue) the
bulk of oscillator strength resides in the highest energy level |Aν〉, whereas emission
(red) takes place from the lowest excited state |em〉. b) In absorption and emission
spectra the coupling results in distorted vibronic progressions with suppressed A1

and I0−0 peaks, respectively, as illustrated on the example of aggregated P3HT.
Data taken from [144].

Absorption As a result of the inter-chain interactions (expressed by the bandwidth

W ), the A1 peak intensity decreases with respect to A2 while that of A3 increases.

To analyse the full absorption spectrum quantitatively, the modified Franck-Condon

progression

A(~ω)

~ωn
∝
∑
ν=0

e−SSν

ν!

(
1− We−S

2~ωeff
Gν

)2

× exp

(
(~ω − EA1 − ν~ωeff )2

2σ2

)
(2.9)
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was derived [144, 146]. Additional to the peak energy EA1 and peak width σ, the exciton

bandwidth W is determined by fitting this formula to the experimental data. The vibra-

tional levels are denoted by ν. The factor Gν =
∑

ν 6=n S
n/n!(n− ν) is a sum over the

vibrational quantum number n [146]. In the fitting process, the Huang-Rhys parameter

S and the vibrational energy ~ωeff are usually kept fixed. They are extracted with a

standard Franck-Condon progression from an emission spectrum taken in solution. This

is based on the assumption that the Huang-Rhys factor obtained from the solution spec-

trum is identical to that of the non-interacting building block of the aggregate. However,

there is no fixed Huang-Rhys parameter S for a given conjugated polymer, as it strongly

depends on the planarity of the backbone (see chapter 2.2 or publication 2). Depending

on the flexibility of the backbone, conjugated polymers may planarise upon aggregation,

leading to a change in the Huang-Rhys factor of the isolated polymer. This has to be

taken into account in the interpretation and analysis of aggregate spectra.

The strength of inter-chain interaction or exciton bandwidth W does not only rely on

the orientation and distance of the chains as in the simple model by Kasha. In aggregates

of conjugated polymers, the excitation can delocalise in two directions: Along the chains

(intra-molecular) and between chains (inter-molecular). Which of these two dominates is

the result of a subtle interplay between intra- and inter-chain coupling. It has been shown

that an increasing intra-chain delocalisation reduces the inter-chain coupling [15, 37, 147]

when the separation between the chains is smaller than the chain length, what is usually

the case here. Therefore, intra-chain degrees of freedom like the dihedral angle φ which

determines the intra-chain coupling have in consequence also a strong impact on the

inter-chain interaction and the free exciton bandwidth W . The shape of absorption thus

gives insights into the intra-chain coupling strength and disorder as well. The absorption

spectrum of P3HT in Figure 2.9b shows only a weak dependence on the temperature.

The blue-shift upon cooling is mainly due to thermal expansion of the lattice and the

corresponding change in dielectric environment.

Emission The peak ratio I0−0/I0−1 in emission is sensitive to the exciton coherence

length (along the stacking direction) as well as to disorder. At T = 0 and in absence of

any intra-aggregate disorder, the I0−0 emission is forbidden due to the perfect destructive

interference in |em〉 (coherent origin of I0−0). This rule is weakened by thermal, structural

and energetic disorder. As shown in Fig 2.9b on the example of P3HT, the I0−0 peak

intensity increases with temperature. Thermal excitation allows to access excited states

with higher oscillator strength close to the bottom of the lowest vibronic band (with

respect to |em〉). Furthermore, symmetry rules are softened and torsional angles are

thermally excited and introduce a stronger site energy disorder. As a consequence of all,

the I0−0 peak increases in (relative) intensity and broadens (inter-aggregate disorder)

upon heating.

38



2.4 Photophysics of electronically interacting conjugated polymers

In contrast, the relative peak intensities of the vibronic transitions I0−ν (ν > 0) are

not sensitive to disorder and coherence. Accordingly, the total emission spectrum can be

fitted by a modified Franck-Condon progression with a suppressed I0−0 peak intensity:

I(~ω)

(~ω)3n
∝ α exp

(
(~ω − E0−0)

2

2σ2

)
+
∑
ν=1

Sν

ν!
exp

(
(~ω − E0−0 − ν~ωeff )2

2σ2

)
. (2.10)

Here α denotes the suppression of the I0−0 peak with respect to the unperturbed Franck-

Condon progression (solution spectrum).

The emission spectrum is very sensitive to the nature of the disordered landscape.

Emission may stem from trap states which are populated via intra- and inter-aggregate

energy transfer. Not only intra-chain and intra-aggregate disorder but also inter-aggre-

gate energetic disorder has to be taken into account for the interpretation of emission

spectra. Thus, there is no simple relationship which connects the exciton coherence length

to the shape of the emission spectrum, as it is a complex function of exciton bandwidth,

the nature of disorder and the vibronic coupling. The correlation with other data as for

example absorption spectra or structure elucidation is useful to differentiate between the

individual contributions.

In Publication 3 we show that this framework can also be applied to non-π-stacking

conjugated polymers with bulky side-chains. Spano and co-workers extended this frame-

work to describe conjugated polymers as molecular J-type aggregates (see section 2.2.3).

Based on that, the two-dimensional exciton delocalisation in aggregates of conjugated

polymers can be described as a “H/J-aggregate”[133]. Nevertheless, one has to keep the

simplifications of this model in mind. As already mentioned, the assumption that the

Huang-Rhys parameter in solution is identical to that of a non-interacting planar chain

can be misleading in systems where different conformations exist in solution and crys-

talline aggregates, for example due to effects like planarisation upon aggregation (see

publication 1). Furthermore, Gierschner and co-workers showed the importance of non-

nearest neighbour interactions in molecular aggregates, which are largely neglected in

the framework of Spano [35].

Also in many studies within this framework, a single (effective) mode is assumed to

couple to the optical transition. As already shown for single molecules, usually several

modes are coupling to the electronic transition. These and especially low-energy modes

are neglected in this framework (an exception is Reference [148]). In low-temperature

spectra of single oligomer crystals (see publication 4) these modes are visible. The rich

vibronic features of such oligomer crystals cannot be reproduced by this model and a

more sophisticated approach is needed [149].
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3 Overview of the publications

3.1 Connection

Understanding, quantifying and predicting disorder phenomena in conjugated polymers

is an important step towards higher device efficiencies in the field of organic semiconduc-

tors. Disorder does not only influence the morphology of the polymer films and blends

but has fundamental impact on the photophysical properties of single conjugated poly-

mers and aggregates.

Despite this importance, systematic studies on the impact of disorder on the molecu-

lar level are scarce. One reason is the complexity and the numerous degrees of freedom

of conjugated polymers even at the level of single chains. As shown in Figure 3.1, the

polymers can adopt various overall conformations and explore a set of dihedral angles φ

between the repeating units given by the torsional potential. Both degrees of freedom are

influenced by artefacts from synthesis like regioirregularities or chemical defects which

disrupt the conjugated path. In addition, there are non-covalent interactions introduced

by side-chains as well as structural disorder within the dielectric environment. All these

factors influence the photophysical and excited state properties like electron-phonon cou-

pling, conjugation length or electron-hole separation. Complexity and disorder rise even

more upon including inter-chain interactions. Electronic coupling between the chains as

well as potential changes in the conformation and the dielectric environment depend

strongly on the distance and mutual orientation of neighbouring chains.

As a consequence, the approach of this thesis was to start at the molecular level and

develop a comprehensive picture of the influence of disorder on single chains (publications

1 and 2). Based on these studies, inter-chain disorder in larger, crystalline aggregates

was investigated (publications 3 and 4), see Figure 3.1. As a model system we chose

polythiophenes, which are widely used for organic photovoltaics and electronics. In par-

ticular poly(3-hexylthiophene) (P3HT) is both used as a benchmark system for device

engineering and fundamental research on electronic processes in organic semiconductors.

However, from experimental as well as theoretical point of view there is still no general

consensus about the intrinsic properties of this important polymer. Especially the degree

of (inhomogeneous) intra-chain electronic disorder, the influence of the side-chains on the

torsional potential and the impact of the chain length on the photophysical properties

are up for debate.
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Single-molecule spectroscopy allowed us to exclude the various effects of inter-chain

interactions. Furthermore, we use defined samples of high chemical quality, i.e. low poly-

dispersity and high regioregularity (Ruth Lohwasser & Mukundan Thelakkat, Daniel

Schiefer & Michael Sommer, Bayreuth and Freiburg). The influence of the overall con-

formation (and thus potential intra-chain inter-chromophoric interactions) was excluded

by the choice of short chains in which the possibility of back-folding and the influence of

the solvent on the conformation is negligible. Cryogenic temperatures (T = 1.5 K) gave

detailed insights into line broadening mechanism (dynamic disorder) and vibronic signa-

tures which are not resolvable at room temperature. The static energetic disorder (inho-

mogeneous distribution) further allowed us to estimate the intrinsic electronic disorder

of a given sample. The measurements were further supported by time-dependent density

functional theory (Thiago de Queiroz & Stephan Kümmel, Bayreuth) and quantum-

classical atomistic simulation (Lena Simine & Peter Rossky, Rice University Houston).

By this combination of single-molecule experiments and simulations, a deeper under-

standing of the influence of disorder on exciton delocalisation lengths and charge-transfer

character of the excitations was developed.

In the first publication (section 4.1) we studied single, isolated regioregular P3HT

chains with different, but well-defined molecular weights, to reveal intra-chain properties

of their emitting sites. It turns out that the emitting species in P3HT is surprisingly

well-defined and furthermore strongly blue-shifted with respect to disordered ensemble

spectra. We ascribe this differences to planarisation upon aggregation as well as long-

range electronic interactions between polymer segments in disordered films. Importantly,

such loose aggregates are also the dominant emitting species in (dilute) solutions of

good solvents. By comparing the results to amorphous and crystalline films as well as

concentration-dependent measurements, we developed a comprehensive picture of P3HT,

ranging from single, isolated chains to bulk structures. Thus, this publication provides

important reference parameters for theoretical modelling (i.e. position and width of

the inhomogeneous distribution of transition energies) as well as valuable input for the

interpretation of ensemble spectra.

Based on these results, the second publication (section 4.2) is devoted to the influence

of side-chains on the photophysical properties of a given conjugated backbone. Therefore,

we examined a second polythiophene, poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT)

which, in contrast to P3HT, has very bulky side-chains, see Figure 3.1. Again, we selected

defined samples of high regioregularity, low polydispersity and controlled chain lengths

and performed the experiments under identical conditions as for P3HT. Surprisingly, the

single-chain spectra showed strong differences in transition energy, vibronic signatures

(electron-phonon coupling) as well as static and dynamic disorder. Quantum-classical

atomistic simulations confirmed the shift in transition energy which originates in a side-

chain induced backbone planarisation in PDOPT. At the same time, the conjugation
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Figure 3.1: Overview of the thesis. The effects of disorder in conjugated polymers were studied
at the single-chain level as well as in macroscopic bulk structures. First, well defined
P3HT chains were studied with single-molecule spectroscopy. These results were
compared with PDOPT, an equally defined thiophene with a bulkier side-chain.
Based on that, the spectral characteristics of PDOPT spherulites were examined
in publication 3 as a function of thermally induced disorder. Finally, highly defined
single crystals of a thiophene-based oligomer were investigated in publication 4.

length is unaffected by the enhanced planarity. However, a reduction of the electron-hole

separation in PDOPT in comparison to P3HT was observed. Furthermore we showed a

new possibility to control the dihedral angle in conjugated polymers, which is of central

importance for the photophysical properties. In the absence of other contributions (like

aggregation induced planarisation) the inhomogeneous distribution function is strongly

connected to the torsional potential of the dihedral angle. Up to now, this quantity is not

measurable with other techniques in the case of isolated, non-interacting chains and thus

emphasizes the importance of single-molecule spectroscopy on conjugated polymers.

In the third publication (section 4.3) we departed from the single-molecule perspec-

tive and transferred our knowledge of single PDOPT chains to defined crystalline films.

By isothermal crystallisation of PDOPT, spherulitic crystals (spherulites) with a diam-

eter of several 100 µm and a well-defined molecular order were grown (Fanuel Keheze
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& Günter Reiter, Freiburg). We gradually increased intra- and inter-chain disorder by

heating this structure up to and beyond its melting temperature. The spectral signatures

in absorption and emission upon this order-disorder transition were correlated with the

known crystal structure, with differential scanning calorimetry measurements as well as

with single-chain properties. Although the PDOPT chains do not aggregate by direct π-

π-stacking, they can nevertheless be described as H-type aggregates since the transition

dipole moments of neighbouring chromophores are oriented parallel with respect to each

other. This allowed us to quantify the order-disorder transition by analysing absorp-

tion and emission with the distorted vibronic progressions for molecular H-aggregates

introduced by Spano and co-workers. The thermal induced increase in torsional disorder

dominates the changes in absorption and emission spectra; The reduced intra-chain does

not only lead to a rise in transition energy (see papers 1 and 2) but in consequence also

to an enhancement of the inter-chain electronic coupling. Therefore, also in crystalline

structures, the exact knowledge about the distribution of dihedral angles is of central

importance for modelling and understanding inter-chain interactions.

In publication 4 (chapter 4.4), we focused on highly defined, macroscopic crystals of a

thiophene-based oligomer (Sajedeh Motamen & Günter Reiter, Freiburg). By changing

the processing conditions (slowly crystallised vs. spin-coated), we investigated the impact

of variable degree of structural order on the electronic coupling between the chains. The

macroscopic dimensions and the high quality of the single crystals allowed us to address

differently processed crystallites separately. Both crystalline phases show the spectral

characteristics of H-type aggregates in absorption as well as emission. The single crystal

exhibits a higher excitonic coupling and a stronger suppression of the I0−0 peak in

emission with respect to the more disordered film, which consists of smaller crystallites

with potential non-interacting chains in-between. Low-temperature emission spectra of

single crystals show, similar as observed for P3HT single chains, that not only vibronic

carbon-bond stretching modes (~ω ≈ 1400 cm−1) but also vibrations with intermediate

energy (~ω ≈ 200− 1000 cm−1) are coupling significantly to the electronic transition.

The main results of the publications are shortly summarised in the following. More

details about the samples, experiments and analysis can be found in the respective

sections 4.1 - 4.4.
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3.2 Individual Contribution

Publication 1: D. Raithel, S. Baderschneider, T. B. de Queiroz, R. Lohwasser, J. Köhler,

M. Thelakkat, S. Kümmel, R. Hildner

Emitting Species of Poly(3-hexylthiophene): From Single, Isolated Chains to Bulk

Macromolecules 49 (2016) 9553.

Contribution: I performed all described measurements, including low-temperature single-

chain spectra of P3HT and low-temperature concentration dependent measurements. I

analysed the experimental data and interpreted it in the context of the simulations by

Thiago B. de Queiroz. Furthermore I wrote the paper together with Richard Hildner.

Publication 2: D. Raithel, L. Simine, S. Pickel, K. Schötz, F. Panzer, S. Baderschnei-

der, D. Schiefer, R. Lohwasser, J. Köhler, M. Thelakkat, M. Sommer, A. Köhler, P.J.

Rossky, R. Hildner

Direct observation of backbone planarisation via side-chain alignment in single bulky-

substituted polythiophenes

Proc. Nat. Acad. Sci. U.S.A. 115 (2018) 2699.

Contribution: I measured the low-temperature single-chain spectra of PDOPT together

with Sebastian Pickel. I assisted in the Franck-Condon analysis of the temperature de-

pendent solution spectra. I analysed all experimental data, compared it with our recent

results on P3HT (see above) and interpreted it in the context of the simulations by Lena

Simine. Furthermore I wrote the paper together with Lena Simine and Richard Hildner.

Publication 3: F. M. Keheze, D. Raithel, T. Wu, D. Schiefer, M. Sommer, R. Hildner,

G. Reiter

Signatures of Melting and Recrystallization of a Bulky Substituted Poly(thiophene) Iden-

tified by Optical Spectroscopy

Macromolecules 50 (2017) 6829.

Contribution: I supported Fanuel Keheze in practical aspects of spectroscopy. Further-

more I performed the whole quantitative analysis of absorption and photolumines-

cence spectra with a home-written python script based on modified Franck-Condon-

progressions. I interpreted the results of the fits, wrote the corresponding part of the

manuscript together with Richard Hildner and reviewed the paper.
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Publication 4: S. Motamen, D. Raithel, R. Hildner, R. Khosrow, T. Jarrosson, F.

Serein-Spirau, L. Simon, G. Reiter

Revealing Order and Disorder in Films and Single Crystals of a Thiophene-Based Oligo-

mer by Optical Spectroscopy

ACS Photonics 3 (2016) 2315.

Contribution: I performed and analysed low-temperature measurements on the single

crystals together with Sebastian Pickel. I interpreted the spectra together with Richard

Hildner and reviewed the paper.

Additional publication which is not part of this thesis:

S. Motamen, C. Schörner, D. Raithel, J.-P. Malval, T. Jarrosson, F. Serein-Spirau,

L. Simon, R. Hildner, G. Reiter

Low loss optical waveguiding in large single crystals of a thiophene-based oligomer

Phys. Chem. Chem. Phys. 19 (2017) 15980.
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3.3 Key results

Publication 1: Emitting Species of P3HT: From Single, Isolated Chains to

Bulk

The polythiophene P3HT established as working horse for research in the field of con-

jugated polymers. It is not only used to design prototypical organic solar cells and

field effect transistors but also for fundamental studies regarding the photo-physical and

electronic properties of conjugated polymers. Despite the broad research, the intrinsic

properties of P3HT are still under debate from theoretical as well experimental point

of view. Several single-molecule studies ascribe contradicting properties to the emitting

species in single P3HT chains.

The first publication (section 4.1) of this thesis aims at resolving these conflicting

reports by using defined samples and a controlled preparation technique. As samples we

chose short P3HT chains with a length of about 16 repeating units (P3HT16, Mn =

2.6 kDa) and long chains with 144 repeating units (P3HT144, Mn = 24 kDa) with both

high regioregularity (a single defect at the end of each chain) and low polydispersity

(< 1.17). The two chain lengths were selected to study spectral features from non-folding

(P3HT16) and potentially folding chains (P3HT144). The high regioregularity reduces

structural defects, which would otherwise have a strong impact on the torsional disorder

of the backbone. The goal is to get insights into the intrinsic, “defect-free” structural

and energetic disorder in poly(3-hexylthiophene).

Figure 3.2a,b show two representative low temperature photoluminescence (PL) spec-

tra of a single P3HT16 and P3HT144 chain, respectively (both embedded in shock-frozen

n-hexadecane). Interestingly, the spectra of short and long chain look nearly identical,

apart from a more pronounced phonon side band in the case of the long chains. Vari-

ous intra-molecular vibrational modes accompany the ZPL, interestingly there are also

modes below 1000 cm−1 which are coupling to the electronic transition. Furthermore we

observe only a single ZPL for all chains, indicating that there is only a single emitter in

P3HT.

The following discussion focuses on the ZPL which was analysed for about 100 mole-

cules for each chain length. For both samples the mean ZPL width (FWHM) of about

30 cm−1 (see Figure 3.2c,d) gives insights into the conformation of the emitting site. The

lines are broadened in comparison to the lifetime-limited natural line width by unresolved

spectral diffusion processes, which is characteristic for a disordered guest-host system.

The random, entropic conformation of isolated P3HT chains is therefore transferred to

and frozen in the n-hexadecane solution.

The distribution of ZPL energies (Figure 3.2e,f) are centred around 18 800 cm−1 and

18 900 cm−1 for the short and long chains, respectively. Furthermore, the histograms
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Figure 3.2: Low-temperature photoluminescence (PL) spectra of single poly(3-hexylthiophene),
P3HT. a,b) Single-chain PL spectra of P3HT in n-hexadecane, c,d) distributions
of line widths (FWHM) of the zero phonon lines (ZPL), and e,f) distributions of
spectral positions of the ZPLs for P3HT with a molecular weight of 2.6 kDa, i.e.,
about 16 repeating units (P3HT16, red), and 24 kDa, i.e., about 144 repeating units
(P3HT144, blue), respectively. The spectra in a) and b) have been obtained after
partial temporal averaging using a pattern recognition algorithm. The chemical
structure of P3HT is shown as an inset in a).

feature a surprisingly narrow width (FWHM) of only 480 cm−1 for the short chains and

300 cm−1 for the long chains. These inhomogeneous distributions are directly connected

to the energetic disorder of the emitting sites. The narrow distribution indicates that dis-

persive interactions as well as torsional disorder (i.e. variation around the mean dihedral

angle) along the backbone are surprisingly defined in single, isolated P3HT chains. Var-

ious quantum-chemical calculations suggest a mean dihedral angle around φ =130-145◦.

Of central interest is the spectral position of the ZPLs (Figure 3.2e,f) in comparison

to the corresponding low-temperature PL spectrum of a disordered P3HT16 film as

shown in Figure 3.3. Remarkably, the ZPL distribution is not only much narrower but

also substantially blue-shifted by over 1200 cm−1 with respect to the transition of the

disordered film. This is an unexpected observation as the PL from disordered ensembles

is usually attributed to highly amorphous regions, i.e. the conformation of the emitting

sites in disordered films and in our single-chain experiments is thought to be very similar.
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Consequently, the line shape of the amorphous film spectrum should be identical to the

spectral distribution of ZPL positions (i.e. the inhomogeneous distribution function).

This apparent contradiction can be resolved by the assumption that the emitting

sites in disordered films and solution are predominantly species that are formed by

chain-chain contacts due to high (local) concentrations. These close contacts induce

on one hand a partial planarisation of the thiophene backbone and at the same time

they allow electronic Coulomb coupling between their transition dipole moments. Both

effects lead to a red-shift and strong broadening of the bulk spectra. The affinity of

P3HT to form loose aggregates in solution was also demonstrated by concentration-

dependent measurements. Even for the short chains (P3HT16) which should be less

prone to aggregation, isolated chains exist only at the very lowest concentration. A

slight increase in concentration leads to formation of aggregates, which are identified by

their strong red-shift (see Figure 2 in section 4.1).

Further support for this hypothesis stems from time-dependent density functional the-

ory (TDDFT) calculations on polythiophenes using long-range separated hybrid func-

tionals (Thiago B. de Queiroz, Bayreuth). These simulations highlight the strong impact

of (partial) planarisation and long-range inter-molecular electronic coupling in polythio-

phenes. The transition energy of a planar chain is red-shifted by up to 4800 cm−1 in

comparison to a torsionally disordered chain (obtained by molecular dynamics simula-

tions prior to the excited state calculations). This value is of course an upper boundary

for the planarisation-induced red-shift. Additionally, calculations on a H-type coupled

thiophene dimer reveal that even for chain-chain distances of about 8 Å the lowest ex-

cited state of the dimer is shifted by 900 cm−1. As this are realistic distances for loose

aggregates in solution and amorphous films, the resulting electronic coupling will also

have a strong impact on the spectral shifts and the photophysics in general in these

systems.

In conclusion, the common interpretation of disordered P3HT bulk spectra as non-

interacting chains does not hold against experiment. The disordered ensemble PL spectra

are strongly red-shifted and broadened in comparison to the narrowly distributed ZPLs of

single, isolated chains. Based on TDDFT calculations we account this to partial backbone

planarisation and concomitant electronic coupling between transition dipole moments

upon formation of loose aggregates in bulk samples. The degree of (partial) planarisation

and electronic coupling is both ill-defined in disordered films, due to the random mutual

arrangement of the P3HT chain segments. This strong variation leads to a broadening

of the disordered film spectra with respect to the distribution of single molecules.

In π-stacked H-aggregates, planarisation and electronic coupling are both stronger but

more defined, leading to a red-shift and a narrowing of the inhomogeneous linewidth in

comparison to the disordered bulk spectra. Interestingly, even low-temperature aggregate

spectra are broader than the distribution of single, isolated chains, emphasizing the low
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Figure 3.3: Bridging the gap between the single-chain ZPL distributions and the ensemble PL
spectra. The single-chain spectrum (red line) and the corresponding histogram of
ZPL positions at around 19 000 cm−1 (red bars) result from PL of single sites on
isolated, disordered P3HT16 chains. The ensemble PL spectrum from disordered
regions of a thin P3HT16 film (gray line) is red-shifted due to the formation of loose
aggregates with concomitant planarisation of P3HT segments and inter-chain elec-
tronic interaction. Finally, in ordered regions of P3HT films PL below 16 000 cm−1

is observed (black), which results from π-stacked H-type aggregates with strong
inter-chain electronic interaction. This situation is shown at the top with the il-
lustration of an isolated chain (right), a loose aggregate prevailing in disordered
films (centre), and a π-stacked H-aggregate (left). The grey shaded areas indicate
the spatial extend of the excited state of the emitting species. The corresponding
energy level schemes demonstrate that aggregation-induced planarisation and the
concomitant electronic coupling of neighbouring chains leads to the formation of
exciton bands, which results in red-shifted emission for both loose and π-stacked
aggregates.

intrinsic disorder of P3HT. The impact of loose and strong aggregation on the bulk

spectra in comparison to single, isolated chain is again depicted in Figure 3.3. This

study shows, that single, spatially isolated P3HT chains appear to be a remarkably

well-defined system independent of the molecular weight. The narrow ZPL distributions

demonstrate the low degree of energetic (and thus torsional) disorder at least on length

scales of the emitting sites.
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Publication 2: Direct observation of backbone planarisation via side-chain

alignment in single bulky-substituted polythiophenes

In the last years it was realised, that not only the structure of the electronic backbone

can be tuned, but the side-chains have to be chosen in an appropriate way as well to

achieve high-performance devices. Therefore, side-chain engineering has evolved as a

versatile tool-kit for manipulating and optimising the relevant structural and electronic

properties as it allows to influence the backbone planarity as well as mutual orientations

of the molecules in bulk film. In most cases, non-covalent interactions introduced by

heteroatoms (like fluorine or oxygen) within the side-chains are used to control the back-

bone disorder. However, the experimental studies to investigate the structural changes

are restricted to bulk structure elucidation (X-Ray or electron diffraction) of crystalline

domains, often in combination with density functional theory calculations.

Based on the results from publication 1 on P3HT, we investigate the impact of side-

chains on the optical, electronic and structural properties directly on the level of single,

isolated molecules. Therefore, after studying the influence of backbone disorder in con-

jugated polymers, we shift the focus to the question how this disorder can be controlled.

Under identical experimental conditions as for P3HT, we examined a second polythio-

phene, poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) with sterically very demanding

side-chains but identical chemical backbone.

For the single-chain experiments we used again defined samples with low polydisper-

sity, high regioregularity and selected two different chain lengths of 16 repeating units

(Mn = 6.1 kDa, PDOPT16) and 89 repeating units (Mn = 33.7 kDa, PDOPT89). Figure

3.4a,b shows two representative single-chain PL spectra of PDOPT16 and PDOPT89.

Both have a prominent ZPL at 17 022 cm−1 and 16 777 cm−1 with line widths (FWHM)

of 33 cm−1 and 64 cm−1 for PDOPT16 and PDOPT89, respectively. The ZPLs are ac-

companied by a broad phonon side-band (PSB) as well as a distinct vibronic transition

around 1480 cm−1, which is attributed to a carbon-bond stretching mode. The single-

chain PL spectra for short and long chains of PDOPT are almost independent of the

chain length with respect to shape and transition energy. However, in contrast to P3HT,

PDOPT is a multi-chromophoric system. In polarisation resolved measurements we ob-

served downhill energy transfer between different chromophores (see Figure S2 in section

4.2).

The ZPL widths (Figure 3.4d,e) are unaffected by the chain length, but with an

average value of around 70 cm−1 twice as broad as those of P3HT (Figure 3.4f). This

difference arises due to librational motions of the phenyl ring within the side-chains. The

resulting fluctuations of the local dielectric environment of the emitting site causes strong

spectral diffusion which broadens the ZPLs. Furthermore, the change in the vibronic

signature (e.g. one carbon-bond stretching mode in the case of PDOPT, several for
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Figure 3.4: Low-temperature single-chain (PL) spectroscopy on single polythiophene chains.
a,b) Single-chain PL spectra of poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) for
two different chain lengths embedded in n-hexadecane. c) Single-chain PL spec-
trum of poly(3-hexylthiophene), P3HT, in n-hexadecane. d,e,f) Distribution of line
widths (FWHM) of the zero phonon lines (ZPL). g,h,i) Distributions of spectral
positions of the ZPLs. The dashed lines in g) and h) are low-temperature ensemble
PL spectra of the corresponding matrix-isolated PDOPT sample (in n-hexadecane).
In a-c) the chemical structures are shown as insets, n denotes the mean number
of repeating units. The peaks in b) marked with asterisks denote additional weak
ZPLs from the same single PDOPT-chain. The data in c),f) and i) have been taken
from publication 1.

P3HT) indicates a different backbone geometry, as these modes are known to be sensitive

to the conformation of the π-conjugated backbone, see section 2.3.2.

In the following, the focus is drawn to the comparison of the ZPL distributions (Figure

3.4g-i) of P3HT and PDOPT. The first observation is that the transition energies of the

PDOPT chains are spread over a significant wider range. This larger inhomogeneous

broadening is also reflected in PDOPT ensemble spectra, dashed lines in Figure 3.4g,h

and is explained by a higher static energetic disorder in comparison to P3HT. The

most interesting result is the red-shift of the absolute transition energies of PDOPT

by around 2200 cm−1 in comparison to P3HT. This is not obvious from the ensemble

solution spectra alone, mainly because the solution spectra of P3HT does not represent

isolated molecules. Based on the calculations from publication 1, we propose that the

PDOPT chains are more planar but less defined (larger inhomogeneous broadening)
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Figure 3.5: Quantum-classical atomistic simulations of the conformational, optical, and elec-
tronic properties of single PDOPT and P3HT chains. a) Top: Snapshots from tra-
jectories of PDOPT16 and P3HT30 chains highlighting the backbone conformation.
Bottom: Corresponding potential of mean force (PMF) as a function of the dihedral
angle φ (blue: P3HT, black: PDOPT). b) Snapshots showing the side-chain align-
ment of the two polythiophenes. c) Dashed Lines: Calculated absorption spectra
from thermal ensembles of PDOPT (black) and P3HT (blue). Solid lines: Gaussian
fits to the calculated spectra. d) Distribution of coherence lengths L and e) dis-
tribution of electron-hole separation distances Re−h (both in number of repeating
units) for P3HT (solid blue) and PDOPT (hatched black).

with respect to P3HT. In line with this assumption, temperature dependent PL solution

spectra also showed a stronger planarisation preceding aggregation in P3HT as compared

to PDOPT (Figure 2 in section 4.2).

To gain further insights into the structural and optical properties of PDOPT, Lena

Simine (Rice University, Houston) performed quantum-classical atomistic simulations on

single PDOPT16 chains. The simulations showed that PDOPT chains adopt a stable,

trans-planar conformation at room temperature, with the side-chain phenyl rings ori-

ented perpendicular to the backbone and the octyl chains wrapped around the backbone,

see Figure 3.5a,b. This unusual configuration results overall in a dihedral potential with

a minimum at trans-planarity (φ = 180◦).

The results are compared to recent, equivalent simulations on P3HT (see also section

2.2.3). Here, the side-chains do not adopt a structural motif. In contrast, the repulsive

S· · ·H interaction between the sulphur of the thiophene and the side-chain of the neigh-

bouring monomer lead to a minimum in the torsional potential at around φ = 145◦.

Using a Pariser-Parr-Pople (PPP) Hamiltonian with configuration-interaction-singles

(CIS), the optical and electronic properties of a thermal ensemble were calculated for

63



3 Overview of the publications

both PDOPT and P3HT. This includes the transition energy between electronic ground

state and excited state, the coherence length L (defined as the radius of gyration of

the exciton wavefunction) as well as the electron-hole displacement Re−h. The absorp-

tion spectra show a red-shift of 2000 cm−1 for PDOPT in comparison to P3HT, which

is in agreement with the experimental value (2200 cm−1). Interestingly, the calculated

coherence lengths are similar for both systems around L = 6.5 repeating units. This

finding is rather surprising as the spectral red-shift, in line with the higher planarity of

the PDOPT backbone, would conventionally be associated with an increase in coherence

length L. In contrast, the stronger coupling along the backbone (in the sense of stronger

π-overlap) in PDOPT is reflected in the magnitude of the electron-hole displacement

Re−h, which is reduced in PDOPT (0.11 repeating units) in comparison to P3HT (0.45

repeating units), see Figure 3.5e.

In this context it is worth to note, that in the common interpretation of the I0−1/I0−0

ratio in the frameworks of Spano and Barford, the electron-hole displacement (i.e the

charge transfer character of the exciton) is assumed to be constant. Accordingly, a change

in the peak ratio is usually interpreted as a change in coherence length of the emitting

site. Our results suggest that the electron-hole distance is worth a closer look in future

research, especially as it is sensible to the intra-chain disorder of conjugated polymers.

This paper furthermore presented a new, unexpected possibility to control disorder

in isolated conjugated polymers with bulky side-chains which adopt a shielding confor-

mation and support the planarity of the backbone. This might stimulate new ideas for

synthesis.
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Publication 3: Signatures of Melting and Recrystallization of a Bulky

Substituted Poly(thiophene) Identified by Optical Spectroscopy

In the first two publications we studied the effects of structural (torsional) disorder on

the intra-molecular photophysical properties of single polythiophenes in both experiment

and theory. Based on this, we turn to crystalline PDOPT aggregates in publication 3

and study inter -molecular interactions as a function of structural disorder.

Spherulitc crystals were grown in a melt of PDOPT chains (Mw = 28 kDa, D = 1.86)

via isothermal crystallisation at 100 ◦C for 50 hours (Fanuel Keheze & Günter Reiter,

Freiburg). The spherulites have a diameter of several 100 µm, show a high birefringence

and anisotropic absorption and photoluminescence, see Figure 3.6a-c. This is a result

of the orientation of the thiophene backbones, which are aligned perpendicular to the

radial growth direction of the spherulite.

Figure 3.6: Anisotropic optical properties and spectra of spherulitic PDOPT crystals and the
surrounding film. Polarised optical microscopy images a) under crossed polarisers
(arrows) showing strong birefringence, b) of absorption and c) of emission upon
excitation with polarised light for a spherulitic crystal surrounded by a rapidly
crystallised film. The polarisation direction is indicated by the horizontal white
arrows. d) Absorption (dashed) and PL spectra (solid) of PDOPT spherulites (red),
disordered crystalline film (blue) and solution (black).

The spectral shape in absorption and PL of the PDOPT spherulites and the surround-

ing disordered, crystalline film (Figure 3.6d) resemble the spectral signatures of H-type

aggregates, as the A1 peak in absorption and I0−0 peak in emission are suppressed with

respect to the solution spectrum. Yet, in contrast to usual π-stacked H-type aggregates,

the bulky side-chains of PDOPT impede direct π-π-stacking of the backbones. This weak-

ens the electronic coupling between the transition dipole moments along the π-π-stacking

direction (backbone-backbone distance 1.45 nm). Perpendicular to the π-stacking direc-

tion however, the chains are also aligned parallel to each other at a distance of 0.55 nm,

resulting in a H-type coupling as well. The amorphous, solution-like contribution to the

absorption spectrum of spherulites (Figure 3.6, red) is a signature of remaining disor-

dered regions between the lamellae of the radially growing spherulitic crystal.

The knowledge about the type of the electronic coupling and different contributions of

the spectra allowed a quantitative analysis of absorption and emission spectra with the

formalism developed by Spano and co-workers. The influence of structural disorder was
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studied by heating the sample above the melting point at around 120 ◦C up to 150 ◦C

at a rate of 2 ◦C/min. The melt was subsequently cooled down to room temperature at

the same rate. The aggregate spectra in both absorption and PL blue-shift continuously

until the melting temperature is reached, where they change to solution-like spectra as

expected for a disordered, molten film. During the cooling cycle, this shape remains until

recrystallisation around 75 ◦C, where the structured aggregate peaks rise again. However,

no birefringence is observed any more, as the rapid cooling and recrystallisation process

did not allow the re-formation of the spherulitic crystal, resulting in a crystalline film

without long-range order.
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Figure 3.7: Results of the fits to the temperature-dependent contribution of crystalline domains
to the absorption spectra (left) as well as to the PL spectra (right). Absorption:
a) Free exciton bandwidth W , b) energy EA1 and c) linewidth σA1 of the A1

peak, evaluated for 30 ◦C to 120 ◦C for heating (red symbols) and cooling (75 ◦C
to 30 ◦C, blue). Photoluminescence: e) Peak position E0−0 and f) linewidth σ0−0

of the I0−0 peak, g) vibronic energy ωvib, h) relative amplitude α of the peak I0−0

for the heating (red) and cooling (blue) cycle, respectively. d) Differential scanning
calorimetry heat flow curve for heating and cooling spherulitic crystals at a rate of
2 ◦C/min.

The results from the quantitative analysis of the absorption spectra are shown in

Figure 3.7a-c. Scattering experiments have demonstrated that the thiophene backbones

of PDOPT are perfectly planar in the spherulitic crystals at room temperature. Upon

heating, thermally activated torsional disorder in the backbone should reduce the π-

overlap leading in a first step to a weaker intra-chain coupling and as a consequence
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to an enhanced inter-chain interaction. Indeed, the inter-chain interaction and thus the

bandwidth W increases from 50 meV to 87 meV upon heating. The absolute value for

W is smaller than the usual values for P3HT owing to the larger backbone-backbone

distance (0.38 nm for P3HT and 0.55 nm for PDOPT). This is also in line with the blue-

shifting peak energy EA1 which stems from the increase in bandwidth as well as from

the decreased intra-chain coupling. Similarly, the linewidth σA1 reflects the thermally

increased backbone disorder, which saturates due to a cold crystallisation peak around

85 ◦C, see DSC curve in Figure 3.7d.

In emission, the peak energy E0−0, the line width σ0−0, the relative I0−0 amplitude α

as well as the effective vibronic mode energy ωvib increase continuously with temperature

up to the melting point, indicating a gradual growth of backbone disorder (Figure 3.7e-

h, red). The phase transition from crystal to melt becomes noticeable by a sudden

rise in the fitting parameters (E0−0, σ0−0, ωvib, α). Finally above 120 ◦C, the inter-

chain coupling weakens as the crystalline structure is lost in the melt. This is consistent

with the absorption spectra, where the crystalline vibronic progression vanishes at the

same time. Nevertheless, the emitting chain segments in the melt experience weak H-

type coupling as the I0−0 peak is still slightly suppressed (α = 0.7) in comparison to

the solution spectra. Please note in this context, that a strong increase in torsional

disorder would result in a larger effective Huang-Rhys parameter for the I0−n(n > 0)

progression. However, the peak ratios within this low-energy part of the PL spectrum

are well described by the initial Huang-Rhys parameter S = 0.7 for the planar chain. In

the context of the molecular dynamics simulations in publication 2 we suggest therefore,

that the side-chains of PDOPT stabilize the backbone planarity even in the melt.

Upon cooling and recrystallisation (around 75 ◦C), all trends show a reverse behaviour

(Figure 3.7e-h, blue). The final saturation values at 30 ◦C are in most cases however

slightly higher than the initial starting parameters. This indicates, that the resulting

crystalline domains have a higher structural disorder in comparison to the slowly crys-

tallised spherulites as the side-chains could not rearrange perfectly during the fast re-

crystallisation process. Furthermore, this study showed that the intra-chain torsional

disorder is not only important for the interpretation of single-molecule data. The dis-

tribution of dihedral angles is also a central parameter for the description of inter-chain

coupling in crystalline films of polythiophenes.
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Publication 4: Revealing order and disorder in films and single crystals of a

thiophene-based oligomer by optical spectroscopy

In the third publication, the order-disorder transition upon the melting process in

PDOPT spherulites was examined. However, due to the remaining dispersity and re-

gioirregularity of the polymer chains and the nature of radial growth of the spherulites,

the crystallinity is limited by lattice disorder and grain boundaries. In publication 4

we study highly defined single crystals with optical spectroscopy. The comparison to

disordered, spincoated films allows to examine the effect of structural disorder on the

photophysical properties of crystalline aggregates.

Highly defined (100% regioregularity) thiophene-benzene-thiophene oligomers (3TBT,

see Figure 3.8a), were used to grow millimetre-long needle-like single crystals in solution

with a width of several micrometres (Sajedeh Motamen & Günter Reiter, Freiburg). The

well-defined molecular order results in a high optical anisotropy which was characterised

with polarised light microscopy and spectroscopy. In Figure 3.8b the transmission of

a 3TBT single crystal under crossed polarisers is shown, demonstrating the high bire-

fringence. Similarly, in Figure 3.8c the PL microscopy image of the same crystal shows

a homogeneous PL intensity. The anisotropic absorption and PL (not shown) indicate

that the transition dipole moment (and thus the backbone of the oligomer) is oriented

perpendicular to the long axis of the crystal.
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Figure 3.8: Optical and spectroscopic properties of 3TBT single crystals. a) Structural formula
of the 3TBT oligomer. b) Optical microscopy image (800 µm × 600 µm) under
crossed polarisers of a 3TBT single crystal. c) PL microscopy image (800 µm ×
600 µm) of the same crystal as in b), excited between 450 nm to 490 nm. Normalised
d) absorption and e) PL spectra of a homogeneous 3TBT solution (red), a spin-
coated film (black) and a single crystal (blue).

A less ordered sample was obtained by spincoating a 3TBT solution, resulting in

a disordered film which consists of both fiber-like crystalline aggregates and probably

also non-interacting chains. The spectral properties of both crystalline film and single

crystal 3TBT are measured individually. Compared to solution spectrum, the absorption

(Figure 3.8d) in film and single crystal shows a strong red-shift and a distinct vibronic

progression, with a suppressed A1 peak. Both effects are more pronounced in the single

crystal than in film and were further quantified by applying the H-aggregate model
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developed by Spano and co-workers. The extracted excitonic coupling J between the

oligothiophene chains of J = 11 meV (89 cm−1) for the film and J = 41 meV (330 cm−1)

for the single crystal reveals that the chains are more densely and ordered packed in the

single crystal in comparison to the film.

In the PL spectra, see Figure 3.8e, the I0−0 peak is suppressed in film and even

stronger in the crystal in comparison to the solution spectrum. This is in line with the

absorption data, indicating a higher H-type interaction within the crystal. Interestingly,

the crystal PL spectrum cannot be fitted by a corresponding vibronic progression with

a peak spacing of 1400 cm−1. Therefore, low-temperature (T = 1.5 K) PL spectra of

3TBT single crystals were acquired. The reduction of the homogeneous line width and

the low structural and electronic disorder result in a narrow highest energy transition

(FWHM < 300 cm−1) and allows to resolve the rich vibronic structure of the single

crystal (Figure 3.9b). Similar to the room temperature spectra, the most prominent

peaks are assigned to the vibronic progression of the carbon-bond stretching modes with

an energy of around ~ω ≈ 1400 cm−1. The other peaks and shoulders result from various

low-energy intra-molecular modes which couple to the optical transition. Due to thermal

broadening, these vibrational peaks are not resolvable individually any more at room

temperature and merge into effective modes. As consequence, the room-temperature

crystal is fitted with three peaks for the vibronic progression of the carbon-stretching

modes and two additional effective modes which account for the coupling of probably

several modes with energies in between the main peaks, see Figure 3.9a.

b)a) c)

Figure 3.9: Photoluminescence spectra and peak ratios of 3TBT crystals. a) Normalised PL
spectrum of a 3TBT crystal at room temperature (black), together with a fit of
five Gaussian peaks to reproduce the vibronic structure (green). b) Normalised PL
spectrum of a 3TBT crystal at 1.5 K (red), together with a fit of eight Gaussian
peaks to reproduce the vibronic structure (black). c) I0−1/I0−0 intensity ratio of
the room-temperature PL spectrum as a function of the detection diameter (black),
together with the corresponding values measured for a spin-coated film (red). Inset:
Superposed on an AFM topography image (size 16.5×16.5 µm2), schematic repre-
sentation of the change in detection area centred on the crystal measured in c).
The PL spectrum in a) (b) was acquired from a single crystal with a width of 4 µm
(1 µm) using a detection area of 1 µm (600 nm). The width of the crystal in c) is
4 µm.
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3 Overview of the publications

The knowledge about the vibrational structure of 3TBT allows the quantitative anal-

ysis of the I0−1/I0−0 peak ratio as a function of disorder. This was realised by centring

the detection focus on a single crystal whose width is around 4 µm. By expanding the de-

tection diameter from 1 µm to 20 µm, the contribution of the small disordered crystallites

lying on the substrate next to crystal is gradually increased. As a result, the I0−1/I0−0

peak ratio decreases with increasing contribution from disordered areas, as expected

for less ordered H-aggregates, see Figure 3.8c. Thus, 3TBT single crystals serve as nice

model system to study the impact of structural disorder on the photophysical properties

on conjugated oligomers.

However, a more detailed analysis is needed to understand all spectroscopic features

of 3TBT. According to the model of Spano and co-workers, in such defined systems the

I0−0 transition should loose intensity upon cooling as the H-type symmetry strengthens

and no thermally activated transitions from the lowest-energy exciton band would be

possible. In contrast, I0−0 peak intensity increases with decreasing temperature in 3TBT

single crystals, see Figure 3.9b. Please note in this context, that this model includes

strong simplifications as for example non-nearest neighbour interactions are not included

in the framework of Spano and co-workers but may play a role in 3TBT crystals due

to strong coupling of J = 41 meV (330 cm−1). Furthermore, the rich vibronic structure

and the temperature dependence of the low-energy modes cannot be modelled with the

corresponding Hamiltonian. Temperature-dependent absorption, emission and lifetime

measurements of single crystals have been measured and are currently analysed to get

detailed insights into the inter-molecular coupling in 3TBT.
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ABSTRACT: The photophysical properties of films of alkyl-substituted
polythiophenes are governed by a subtle interplay between intra- and
interchain electronic couplings. The intramolecular properties, however,
are still not entirely clear because polythiophenes possess a strong
tendency to form π-stacked aggregate structures with appreciable
interchain couplings. Here we employ low-temperature single-molecule
photoluminescence spectroscopy on isolated regioregular poly(3-hexyl-
thiophene), P3HT, chains with different, but well-defined molecular
weights to reveal the intrachain properties of their emitting sites. We find
that the inhomogeneous distribution function of the zero-phonon lines
(ZPL) is very narrow (<480 cm−1, 60 meV), which indicates a low degree
of torsional disorder of the P3HT backbone on length scales of the
emitting sites (despite a large mean dihedral angle). Moreover, the single-
chain ZPLs are exclusively located in the high energy tail of the
corresponding spectrum of a disordered ensemble. Using concentration-dependent measurements in combination with time-
dependent density functional theory, we show that this spectral shift stems from aggregation-induced partial planarization and
concomitant electronic coupling between segments of neighboring P3HT chains.

■ INTRODUCTION

The prototypical conjugated polymer poly(3-hexylthiophene)
(P3HT) is widely used in organic electronics and photovoltaic
applications.1,2 For the optimization of such devices, it is of key
importance to understand the electronic structure of the excited
states in films and nanostructures as well as the relation
between electronic structure and sample morphology. Gen-
erally, in condensed phase the nature of excited states in P3HT
is determined by an interplay between intrachain and interchain
coupling, which strongly depends on processing conditions,
molecular weight, and regioregularity, among other factors.3−6

For instance, neat P3HT films usually exhibit H-type behavior
with excitations possessing predominantly interchain character,
whereas P3HT nanofibers were shown to exhibit H-type or J-
type behavior (excitations with predominant intrachain
character) depending on molecular weight and experimental
conditions (pressure, temperature).7−10

To precisely predict and model the nature of excited states of
P3HT in condensed phase, a clear discrimination of intra- and
interchain effects is therefore required. Often this discrim-
ination is based on changes of optical spectra of films and
nanostructures with respect to the spectra from disordered
ensembles (usually dilute solutions).3,6,11 This approach,
however, should be taken with care: There are in many cases
discrepancies between disordered ensemble and single-chain

photoluminescence (PL) spectra of P3HT, even if measured
under essentially identical conditions.12−14 Since single-chain
spectra should represent the properties of isolated (non-
interacting) chains, this observation indicates some influence of
interchain effects in disordered ensembles. Yet, there are also
strong discrepancies between different single-molecule studies
on alkyl-substituted polythiophenes, and essentially all studies
suggest PL at different photon energies (often simultane-
ously).12−17 In general, PL at energies below 16 500 cm−1 (2.06
eV) is ascribed to originate either from sites with planar
backbone and thus large conjugation length (“red sites”) or
from ordered π-stacked aggregates.12−17 PL around 17 500
cm−1 (2.19 eV) is attributed to single polythiophene chains that
possess what is usually called solution conformation (“solution
sites”).12,15−17 Rarely PL between 18 400 and 19 300 cm−1

(2.28−2.38 eV) was observed (“blue sites”); that is thought to
stem from sites with particularly short conjugation length.13−15

An extraordinary case was the observation of PL spectra that
are continuously spread over an extremely wide range (20 650−
12 800 cm−1; 2.58−1.60 eV).12 Also, the degree of regior-
egularity strongly influences PL spectra:13 The fraction of “blue
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site” PL is higher for single regiorandom chains, whereas highly
regioregular chains feature predominantly “solution” and “red
site” PL, which was related to their more ordered and folded
conformation and enhanced intrachain energy transfer.17 These
discrepancies arise from the fact that both ensemble and single-
molecule studies were often performed on chains with high
molecular weight (>50 kDa, sometimes >150 kDa), which are
prone to formation of π-stacked aggregates even in “good”
solvents, such as o-DCB or THF.18,19 Furthermore, chains with
molecular weight larger than ∼10 kDa may exhibit back-folding
of the backbone, which is another factor for aggregate
formation.20−23

Here we aim at resolving these conflicting observations and
at unravelling the intrinsic properties of the emitting species of
P3HT chains by employing low-temperature single-molecule
PL spectroscopy (see Supporting Information for technical
details). On the basis of these data, we develop a
comprehensive picture of the spectral changes observed from
isolated chains to disordered ensembles and finally ordered
π−π-stacked structures. We investigate P3HT samples with 16
and 144 repeating units (P3HT16, Mn = 2.6 kDa and
P3HT144, Mn = 24 kDa), respectively, low polydispersity
(<1.17), and high regioregularity, that were synthesized via
catalyst transfer polymerization24 (see Supporting Information,
Figure S1, for details and room temperature solution spectra).
The two extreme examples of very low and high molecular
weight samples were selected to study spectral features from
nonfolding (stretched chains) and possibly folded chains.22 For
single-molecule spectroscopy the P3HT samples were diluted
in the good solvent chloroform down to nearly single-chain
level (15 nM). To ensure that we exclusively observe isolated
chains and to provide a matrix, we further diluted this solution

by a factor of 50 (v/v) using n-hexadecane, a common host in
single-molecule studies.25−27 A drop of the P3HT/n-
hexadecane solution was then pipetted onto a quartz substrate,
shock frozen in liquid nitrogen, and cooled to 1.5 K. From each
single chain we recorded sequentially up to 500 individual
spectra with an integration time of 1 s using a home-built
confocal microscope. A single-chain spectrum is created by
partial temporal averaging of these 500 spectra using a pattern
recognition algorithm to improve the signal-to-noise ratio (see
Figures S2 and S3).

■ RESULTS AND DISCUSSION

Two representative single-chain spectra of P3HT16 and
P3HT144 are depicted in Figures 1a and 1b. Both spectra
show a prominent and narrow zero-phonon line (ZPL) due to
the purely electronic transition, which is located at 18 897 cm−1

(2.34 eV) for P3HT16 and at 19 030 cm−1 (2.36 eV) for
P3HT144; the corresponding ZPL widths are 32 cm−1 (4 meV)
and 40 cm−1 (5 meV, full width at half-maximum, fwhm),
respectively. At lower energies the ZPLs are accompanied by
broad, structureless phonon side-bands (PSB), which indicate
only weak electron−phonon coupling to low-energy vibrations
of the host material.28 Moreover, up to seven less intense sharp
lines appear that can be attributed to various intramolecular
vibrational modes of P3HT (Figures S2 and S3). This vibronic
structure is independent of the chain length and highly
reproducible from chain to chain. The only significant
differences between the single-chain spectra of P3HT16 and
P3HT144 are the more pronounced PSB and the typically
brighter emission signal of the longer P3HT144. Interestingly,
for both P3HTs we very often find only a single ZPL in the
spectra. Hence, there exists only a single emitting site per chain,

Figure 1. Low-temperature photoluminescence (PL) spectra of single poly(3-hexylthiophene), P3HT. (a, b) Single-chain PL spectra of P3HT in n-
hexadecane, (c, d) distributions of line widths (fwhm) of the zero phonon lines (ZPL), and (e, f) distributions of spectral positions of the ZPLs for
P3HT with a molecular weight of 2.6 kDa, i.e., ∼16 repeating units (P3HT16, red), and 24 kDa, i.e., ∼144 repeating units (P3HT144, blue),
respectively. The spectra in (a) and (b) have been obtained after partial temporal averaging using a pattern recognition algorithm; see Methods
section in Supporting Information. The chemical structure of P3HT is shown as an inset in (a).
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which is further supported by the observation of digital on−off
blinking and bleaching of the PL signal (Figure S2) as well as
by polarization-resolved measurements (Figure S3).
ZPL Widths: Conformation of the Emitting Site. In the

following we focus on a quantitative analysis of the line widths
(fwhm) and spectral positions of the ZPLs by fitting a Gaussian
or Lorentzian function to their high-energy tails.29 The
resulting histograms are shown in Figures 1c−f for in total 97
(110) single P3HT16 (P3HT144) chains. The distributions of
ZPL widths are essentially indistinguishable and centered
around mean values of 28 cm−1 (3.5 meV) for P3HT16 and 32
cm−1 (4.0 meV) for P3HT144 (Figure 1c,d). In both
histograms the widths of the narrowest ZPLs are determined
by the spectral resolution of our setup of ∼10 cm−1. The ZPL
widths are about 3 orders of magnitude broader than the
corresponding lifetime-limited value of about 0.01 cm−1 given
an excited state lifetime of ∼0.5 ns.13,30 The additional line
broadening is likely to be caused by fast unresolved spectral
diffusion processes, i.e., by random spectral jumps of the
emission line due to structural fluctuations in the local
environment of the emitting site (see Figure S2). Because
these processes occur on all time scales, they give rise to a
substantial broadening of the recorded ZPLs as shown
recently.29,31,32 Such pronounced spectral diffusion is character-
istic for a disordered guest−host system.29,31−34 Therefore,
these data suggest that the random entropic conformation of
isolated P3HT chains in chloroform solution is transferred to
and frozen in the n-hexadecane host at 1.5 K, which is forced to
form (at least locally) a disordered matrix around the P3HT
chains. In this context, we stress that the solvent quality does
not influence the conformation of a polymer chain on length
scales of the persistence length.35,36 For P3HT the persistence
length is ∼8 repeating units,37 which approximately corre-
sponds to the effective conjugation length of the emitting
sites.38−43 Hence, for both P3HT16 and P3HT144 it can be
expected that the emitting sites adopt a similar, random
entropic conformation both in the good solvent chloroform
and in the bad solvent n-hexadecane.
Distributions of ZPL Positions: Torsional Disorder of

the Emitting Sites. The distributions of the spectral positions
of the ZPLs, plotted in Figures 1e,f, are virtually independent of
chain length as well. The histograms are centered at 18 806
cm−1 (2.33 eV) and 18 888 cm−1 (2.34 eV) for the short and
long chains, respectively. Furthermore, these distributions
feature a remarkably narrow width (fwhm) of only 480 cm−1

(60 meV) for P3HT16 and 300 cm−1 (37.5 meV) for
P3HT144, which is substantially narrower than the inhomoge-
neous line width of bulk PL spectra (see Figure 2a, Figures S1
and S4). We exclude preferential excitation of subensembles of
P3HT chains because we employed different excitation
wavelengths (see Supporting Information, Methods section).
These defined ZPL distributions indicate, on the one hand, very
small variations of dispersive interactions with the local
environment from chain to chain.44 On the other hand, they
imply only small variations of the dihedral angle between
thiophene rings around a mean angle, i.e., a small degree of
torsional disorder of the emitting site.45−48 Here, the mean
dihedral angle is rather large with 35°−50°49,50 because we have
frozen in the ground state conformation that single P3HT
chains adopt in solution (see above). The slightly broader ZPL
histogram for P3HT16 compared to P3HT144 may be related
to the single regiodefect per chain introduced by our synthetic
route, which influences the torsional disorder of the emitting

site of a short chain to a greater extend with respect to a longer
chain.47,49,51,52 Our interpretation of only small torsional
disorder in P3HT is supported by our recent observation of
comparably narrow (<390 cm−1 or 49 meV) ZPL distributions
for ladder-type oligomers and polymers, for which torsion is
inhibited by synthesis.32

When comparing the single-chain ZPL distribution with the
corresponding low-temperature PL spectrum of a disordered
(amorphous) film (both P3HT16, Figure 2a), we find that the
ZPL distribution is not only much narrower but also
significantly shifted by about 1200 cm−1 (∼150 meV) to
higher energies with respect to the bulk data. This discrepancy
is rather remarkable because the amorphous film PL is usually
associated with largely noninteracting chain segments (sites)
with disordered conformations that are transferred from
solution by drop- or spin-casting. Because the conformation
of the emitting sites does not depend on solvent, the
conformation should be similar in both bulk and single-chain
experiments (see also Supporting Information, section 4).
Moreover, the electron−phonon coupling to low-energy
phonon modes is only weak as shown by our single-chain
spectra (Figure 1a,b). Consequently, the inhomogeneously
broadened electronic line shape of the film spectrum in Figure

Figure 2. Concentration-dependent PL spectra of P3HT at low
temperatures. (a) PL spectrum from a disordered (amorphous) region
of a thin P3HT16 film (gray line) and the ZPL distribution of isolated
P3HT16 chains (red bars). The PL spectrum of a single P3HT16
chain is shown as light red line. (b) PL spectra of P3HT16 at different
concentrations in n-hexadecane. The concentration increases from 0.3
nM up to 10 μM (from bottom to top curve). Upon increasing the
concentration, the sharp ZPLs of isolated chains disappear and broad,
unstructured bands below ∼17 000 cm−1 appear, which are character-
istic for the emission of π-stacked aggregates with moderate order.
Notably, at energies between 17 300 and 18 000 cm−1 no transitions
are observed at any concentration.

Macromolecules Article

DOI: 10.1021/acs.macromol.6b02077
Macromolecules 2016, 49, 9553−9560

9555



2a should be identical to the spectral distribution of ZPL
positions, the so-called inhomogeneous distribution func-
tion.44,53−56 Obviously, this is not the case for P3HT, in
contrast to e.g. ladder-type (p-phenylenes).32

Bridging the Gap between Single-Chain and Ensem-
ble Level. To resolve this discrepancy between bulk and
single-chain data, we propose that in disordered ensembles
(films and solutions) the emitting sites are predominantly
species that are formed by chain−chain contacts due to the
high concentrations involved (with respect to single-molecule
experiments). Such chain−chain contacts tend to partially
planarize the P3HT backbone, and at the same time the close
proximity between chain segments gives rise to electronic
Coulomb coupling between their transition dipole moments
(importantly, this does not imply perfect π−π-stacking of
chains). Both effects cause the noticeable red-shift and line
broadening of (disordered) bulk spectra (see below). In
contrast, we attribute the envelopes of the histograms of the
single-chain ZPLs to the intrinsic inhomogeneous line shape of
the emitting species of P3HT chains without chain−chain
interactions. Notably, the nearly identical ZPL distributions for
P3HT16 and P3HT144 (Figure 1e,f) indicate that even the
long P3HT144 (Mn ∼ 24 kDa) does not form low-energy
emitting sites at the single-chain level due to e.g. back-folding of
the backbone on itself.
The strong tendency of P3HT to form chain−chain contacts

is demonstrated by concentration-dependent measurements
specifically on the short P3HT16 embedded in n-hexadecane
(Figure 2b) because P3HT16 is usually less prone to
aggregation and back-folding does not occur:22 At the lowest
concentration (0.3 nM) only a single ZPL is observed; i.e., only
spatially isolated chains exist. Upon slightly increasing the
concentration (1−10 nM), several P3HT16 chains, each with a
single ZPL between 18 500 and 19 000 cm−1 (2.25 and 2.35 eV,
cf. Figures 1e,f), are in the confocal excitation spot. At the same
time an additional broad and red-shifted feature appears around
16 500 cm−1 (2.05 eV), which is characteristic for π-stacked
aggregates with moderate order.6 For higher concentrations
(≥100 nM) exclusively aggregate emission prevails.
It is very intriguing, though in line with recent work by

vanden Bout et al.,57 to find aggregates already at
concentrations of ∼1 nM in the P3HT16/n-hexadecane
samples. This corresponds to ∼50 nM in the P3HT16/
chloroform solution, prior to the last dilution step into n-
hexadecane and shock-freezing. Hence, even in the good
solvent chloroform at such low concentration a significant
fraction of chains must exist that interact by van der Waals
forces between their π-electron systems. In chloroform
solution, these interactions do not force the chains into
ordered π-stacks; they rather lead to bundling of short
segments of neighboring P3HT chains (“loose” aggregation),
which is in dynamic equilibrium with spatially isolated chains.
Upon adding n-hexadecane, the bundled segments will
rearrange into more ordered π-stacked H-type structures to
avoid this bad solvent. The presence of loose P3HT aggregates
with a hydrodynamic radius of 50−60 nm in good solvents was
verified in light-scattering experiments.19,58 In amorphous
regions of rr-P3HT films, Russell et al. have recently identified
domains with very short-range order,59 which should be
characteristic for loose aggregates. In fact, comparing Figures
2a and 2b suggests that the PL of an amorphous film is a
superposition of emission from disordered, noninteracting sites
and predominantly from loose aggregates that emit probably in

the range between 16 500 and 18 500 cm−1 (between π-stacked
structures and isolated chains). As shown above, both species
already exist in (dilute) solution using good solvents and are
then transferred to films.

TDDFT Calculations: Impact of Torsional Disorder and
Long-Range Electronic Coupling. To gain quantitative
insights into the magnitudes of the spectral red-shifts due to
partial planarization and electronic coupling associated with the
formation of loose aggregates, we performed time-dependent
density functional theory (TDDFT) simulations. These
calculations are based on a nonempirical optimally tuned
range separated hybrid,60−62 in which excited states are
obtained in excellent agreement with experimental results43

and with self-consistent many-body BSE-GW.63

The influence of planarization is estimated by comparing the
transition energy between the ground state and the lowest-
energy optically allowed excited state of an isolated planar
thiophene chain with that of a torsionally disordered chain
obtained by MD simulations prior to the TDDFT calculations
(P3HT with 16 repeating units; for details see Figures S5−S7).
The results show that the effective conjugation length increases
from about 6 to 10 repeating units with a concomitant decrease
of the transition energy of up to about 4800 cm−1 (0.6 eV)
when going from a torsionally disordered to a planar backbone.
The effect of planarization on the transition energies in our
experiments can be expected to be much smaller because
planarization is certainly not complete upon loose aggregation.6

Hence, our calculations yield an upper bound for the shift
between single-chain and ensemble PL, and our experimental
findings are well within that bound.
In the next step we calculated the spectral shift of the lowest

energy transition for an electronically coupled H-type dimer
with two planar cofacially arranged oligothiophenes with 6 or
12 repeating units as a function of distance between the chains
(Figure S8). We find that already at distances of 4.9 Å, larger
than the typical π-stacking distance of ∼3.8 Å,64 the lowest
energy transition of the dimer is red-shifted by about 1750
cm−1 (∼0.22 eV) with respect to that of an isolated, planar
chain. Notably, this electronic coupling in the dimer is rather
long range, and even for chain−chain distances of ∼8 Å the
dimer’s lowest-energy transition is still red-shifted by ∼900
cm−1 (0.11 eV), in agreement with previous calculations.65 In
ensembles the geometric arrangement of interacting chain
segments (in loose aggregates) as well as their torsional
disorder will vary strongly. Orientations distinct from perfect
cofacial arrangements tend to reduce the Coulomb coupling,
i.e., reduce the red-shift, whereas higher intrachain disorder (for
a given mutual arrangement) localizes electronic excitations and
enhances electronic chain−chain couplings,11,65 which increases
the red-shift.

■ CONCLUDING DISCUSSION
For the prototypical conjugated polymer P3HT, we inves-
tigated the discrepancies between the PL spectra of single
chains and of amorphous films, in which disordered P3HT
chains are usually thought of as noninteracting in the sense that
spectral shifts due to Coulomb coupling between transition
dipole moments do not play a role. We found that the single-
chain ZPL distributions are blue-shifted by about 1200 cm−1

(∼150 meV) in comparison to the electronic transition in the
amorphous film PL spectrum; moreover, the inhomogeneous
line width in the film is significantly broadened. Based on
TDDFT calculations, this spectral shift can be accounted for by
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partial backbone planarization and concomitant electronic
coupling between transition dipole moments upon bundling
of P3HT chain segments, i.e., by the formation of loose
aggregates in bulk samples as illustrated in Figure 3. The precise

value for the red-shift is determined by the interplay between
the mutual spatial arrangement of P3HT chain segments, their
degree of planarization, and π-electron delocalization; the
strong variations of these parameters in a disordered ensemble
gives rise to the broad inhomogeneous line width of bulk
spectra.
Importantly, in concentration-dependent measurements we

provided evidence that loose aggregates are the dominating
emitting species also in (dilute) P3HT solutions using good
solvents, such as chloroform. Although one should be careful
comparing low and room temperature data, we find that in the
latter (P3HT in chloroform solution, Figure S1) the relative
intensity of the (effective) carbon-bond stretch modes with
respect to the electronic transition appears to be higher than in
the single-chain PL spectra (Figure 1a,b). Because the Huang−
Rhys factor for these high-energy modes (∼1400 cm−1 or 175
meV) is rather independent of temperature,66 this change in

relative intensity indicates H-type electronic interactions
between chain segments in loose aggregates3,11,67 that exist in
solution. Hence, while planarization is probably the dominating
contribution to the observed red-shift from single chains to
bulk, the influence of electronic coupling between chain
segments is certainly not negligible.
Ultimately, loose aggregates can be forced to rearrange into

ordered π-stacked H-aggregates by annealing of films or by
reducing solvent quality (e.g., decrease of temperature,
admixture of a bad solvent4,6,68). Such H-aggregated P3HT
chains feature a characteristic spectrum (Figure 3, thick solid
line) with the further red-shifted electronic transition at 15 500
cm−1 (1.9 eV), a distorted vibrational progression due to strong
electronic Coulomb coupling (of up to 1600 cm−1 or 200 meV)
between chains,3,4,65 and an inhomogeneous line width of only
760 cm−1 (95 meV)68 reflecting a higher degree of order
compared to solutions and disordered films. It is noteworthy
that in another prototypical conjugated polymer, MEH-PPV, a
similar spectral red-shift from single chains to solutions and
films was observed.69 However, in contrast to P3HT, for MEH-
PPV this red-shift was shown to be exclusively caused by chain
planarization, i.e., reduced conformational disorder, and not by
interchain coupling.69−71 This is probably related to a different
packing with larger center-of-mass distance between neighbor-
ing chains in MEH-PPV aggregates because, for instance,
distyrylbenzenes, substituted with methoxy groups at the
central ring, form only weakly coupled H-type aggregates.72

In contrast to ensembles with their broad inhomogeneous
line widths, single spatially isolated P3HT chains appear to be a
remarkably well-defined system independent of the molecular
weight. The very narrow (<480 cm−1) ZPL distributions
demonstrate that the degree of (torsional) disorder is very
small, at least on length scales of the emitting sites, which is
about 5−6 repeating units based on our TDDFT calculations.
This length scale is in good agreement with the coherence
length of the emitting site defined by Spano, Barford, and co-
workers,45,73,74 who describe isolated conjugated polymer
chains as J-type aggregates with the repeating units as building
blocks (see Supporting Information, section 6). A conjugated
polymer with a similar low degree of disorder as P3HT is e.g.
represented by ladder-type (p-phenylene), LPP,32 in which the
backbone is forced into a rigid, ordered structure by synthesis.
The prototypical example for an ordered system is a defect-free
single polydiacetylene (PDA) chain embedded in its own
monomer crystal as extensively investigated by Schott et
al.75−77 The common motif in the PL spectra of P3HT, LPP,
and PDA is that the ZPLs are the most intense transitions, with
the relative ZPL intensity showing an increasing trend in the
order P3HT, LPP, PDA. Within the framework of the J-
aggregate theory by Spano et al., this trend implies an increase
in the coherence length in the same order. In particular, in PDA
the ZPL intensity is strongly enhanced at low temperatures
(about 100 times stronger than the intensities of the carbon-
bond stretch modes), which yields a coherence length of several
micrometers,78 as indeed observed.76,79

Although our single-chain P3HT spectra are reminiscent of
the high-energy “blue-site” emission,13−15 which was attributed
to stem from sites with exceptionally short effective conjugation
length, we provided evidence that those “blue sites” are the
emitting species of isolated poly(3-alkylthiophenes) without
chain−chain interactions. We note that the ZPL energies
measured here are also in good quantitative agreement with
recent calculations on isolated P3HT chains at low temper-

Figure 3. Bridging the gap between the single-chain ZPL distributions
and the ensemble PL spectra. The single-chain spectrum (red line) and
the corresponding histogram of ZPL positions at ∼19 000 cm−1 (red
bars) result from PL of single sites on isolated, disordered P3HT16
chains. The ensemble PL spectrum from disordered regions of a thin
P3HT16 film (gray line) is red-shifted due to the formation of loose
aggregates with concomitant planarization of P3HT segments and
interchain electronic interaction. Finally, in ordered regions of P3HT
films PL below 16 000 cm−1 is observed (black), which results from π-
stacked H-type aggregates with strong interchain electronic
interaction. This situation is shown at the top with the illustration
of an isolated chain (right), a loose aggregate prevailing in disordered
films (and solutions, center), and a π-stacked H-aggregate (left). The
gray shaded areas indicate the spatial extend of the excited state of the
emitting species. The corresponding energy level schemes demon-
strate that aggregation-induced planarization and the concomitant
electronic coupling of neighboring chains leads to the formation of
exciton bands, which results in red-shifted emission for both loose and
π-stacked aggregates.
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atures.50 “Solution” and “red site” emission (as defined above in
the Introduction) often found in single-chain experiments are
thus already a result of (loose) aggregation, which is difficult to
avoid even at very low concentrations in good solvents.
Our results on single P3HT chains have strong implications

for theoretical concepts that aim at describing the nature of
electronic excitations in ordered P3HT films and nanostruc-
tures, such as H or HJ models put forward by Spano and co-
workers.3,11,80 In such models, solution spectra are usually the
starting point and are assumed to represent the PL/absorption
of isolated, noninteracting chains. However, our data clearly
show that this “solution approach” has several shortcomings:
First, this approach strongly underestimates the spectral red-
shift from isolated chains to densely π-stacked aggregates in
films and nanostructures. Second, the single-chain Huang−
Rhys parameter for the carbon-stretching modes is usually
retrieved from solution spectra (and is thus about unity).
However, our data clearly show that emission from loosely
aggregated chains dominates the solution PL, and hence this
approach overestimates the single-chain Huang−Rhys factor
(although we note that the Huang−Rhys factor determined
from our PL spectra varies from chain to chain due to variations
of the conjugation or coherence length of the emitting site; in
this sense there is no well-defined Huang−Rhys parameter for a
single chain). Finally, the “solution approach” strongly
overestimates energy disorder of isolated chains because the
inhomogeneous width of the electronic transition in solution
spectra is much larger than that of the single-chain ZPL
distributions. Hence, our data may help to improve the
modeling and prediction of the properties of electronically
excited states in device relevant P3HT films.
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N.; Côte,́ M.; Reynolds, L. X.; Haque, S. A.; Stingelin, N.; Spano, F. C.;
Silva, C. Two-dimensional spatial coherence of excitons in semi-
crystalline polymeric semiconductors: Effect of molecular weight. Phys.
Rev. B: Condens. Matter Mater. Phys. 2013, 88 (15), 155202.
(6) Panzer, F.; Bas̈sler, H.; Lohwasser, R. H.; Thelakkat, M.; Köhler,
A. The Impact of Polydispersity and Molecular Weight on the Order−
Disorder Transition in Poly(3-hexylthiophene). J. Phys. Chem. Lett.
2014, 5 (15), 2742−2747.
(7) Niles, E. T.; Roehling, J. D.; Yamagata, H.; Wise, A. J.; Spano, F.
C.; Moule,́ A. J.; Grey, J. K. J-Aggregate Behavior in Poly-3-
hexylthiophene Nanofibers. J. Phys. Chem. Lett. 2012, 3 (2), 259−263.
(8) Baghgar, M.; Labastide, J.; Bokel, F.; Dujovne, I.; McKenna, A.;
Barnes, A. M.; Pentzer, E.; Emrick, T.; Hayward, R.; Barnes, M. D.
Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-
hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. J.
Phys. Chem. Lett. 2012, 3 (12), 1674−1679.
(9) Martin, T. P.; Wise, A. J.; Busby, E.; Gao, J.; Roehling, J. D.; Ford,
M. J.; Larsen, D. S.; Moule,́ A. J.; Grey, J. K. Packing dependent
electronic coupling in single poly(3-hexylthiophene) H- and J-
aggregate nanofibers. J. Phys. Chem. B 2013, 117 (16), 4478−4487.
(10) Baghgar, M.; Labastide, J. A.; Bokel, F.; Hayward, R. C.; Barnes,
M. D. Effect of Polymer Chain Folding on the Transition from H- to J-
Aggregate Behavior in P3HT Nanofibers. J. Phys. Chem. C 2014, 118
(4), 2229−2235.
(11) Spano, F. C.; Silva, C. H- and J-aggregate behavior in polymeric
semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477−500.
(12) Thiessen, A.; Vogelsang, J.; Adachi, T.; Steiner, F.; Vanden Bout,
D. A.; Lupton, J. M. Unraveling the chromophoric disorder of poly(3-
hexylthiophene). Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (38), E3550.
(13) Chen, P.-Y.; Rassamesard, A.; Chen, H.-L.; Chen, S.-A.
Conformation and Fluorescence Property of Poly(3-hexylthiophene)
Isolated Chains Studied by Single Molecule Spectroscopy: Effects of
Solvent Quality and Regioregularity. Macromolecules 2013, 46 (14),
5657−5663.
(14) Palacios, R. E.; Barbara, P. F. Single molecule spectroscopy of
poly 3-octyl-thiophene (P3OT). J. Fluoresc. 2007, 17 (6), 749−757.
(15) Hu, Z.; Zou, J.; Deibel, C.; Gesquiere, A. J.; Zhai, L. Single-
Molecule Spectroscopy and AFM Morphology Studies of a Diblock
Copolymer Consisting of Poly(3-hexylthiophene) and Fullerene.
Macromol. Chem. Phys. 2010, 211 (22), 2416−2424.
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Revealing the Electron−Phonon Coupling in a Conjugated Polymer
by Single-Molecule Spectroscopy. Adv. Mater. 2007, 19 (15), 1978−
1982.
(29) Hildner, R.; Winterling, L.; Lemmer, U.; Scherf, U.; Köhler, J.
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1. Materials

Using catalyst transfer polymerization we synthesized P3HT with various chain lengths and

low dispersity.1 For our studies we used short chains with 16 repeating units (P3HT16: Mn =2.6

kg/mol, regioregularity ~ 93% Đ=1.17, MALDI-TOF MS) and long chains with 144 repeating

units  (P3HT144:  Mn =24.0  kg/mol,  regioregularity  >  98%,  Đ=1.15,  MALDI-TOF  MS).

Especially the short  chains  are  a very defined system, as  e.g.  back-folding can be excluded;

moreover, the number of repeating units is only slightly larger than the effective conjugation

length of < 10 repeating units (see main text, SI section 5 and references 2–7).

The room temperature ensemble spectra of both P3HT samples in chloroform (Fluka,  ≥

99.8  %) solution  are  depicted  in  Fig.  S1  (P3HT16:  red;  P3HT144:  blue).  Prior  to  the

measurements  both  samples  have  been  heated  up  to  about  60°C  to  dissolve  P3HT  and

subsequently cooled down to room temperature. The absorption spectra (dashed lines) exhibit the

well-known structureless shape with a peak at ~ 22500 cm-1 (corresponding to 2.81 eV or 444

nm) for P3HT16 (red) and at ~ 22000 cm-1 (corresponding to 2.73 eV or 455 nm) for P3HT144

(blue), respectively.
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Figure  S1:  Normalized  absorption  (dashed  lines)  and  photoluminescence  spectra  (solid)  of
P3HT16  (red)  and  P3HT144  (blue)  dissolved  in  chloroform  at  room  temperature.  The
concentrations were 5 µM for P3HT16 and 0.5 µM for P3HT144. 

The  PL spectra  (solid  lines)  of  the  short  (red)  and  long  chains  (blue)  are  virtually

identical, which is reasonable given the effective conjugation length of < 10 repeating units for

polythiophenes.2–7 Both spectra feature their maximum at around 17300 cm-1 (2.16 eV or 578 nm)

and a vibrational progression due to electron-phonon coupling to aromatic carbon-bond stretch

modes with energies of ~ 1400 cm-1. The inhomogeneous line width of the electronic transition is

~ 1500 cm-1 (full width at half maximum, FWHM). 
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2. Methods

Ensemble  absorption  and  PL  spectra  were  recorded  using  commercial  spectrometers

(Lambda  750  UV/VIS  Spectrometer,  Perkin  Elmer  and  Cary  Eclipse  Fluorescence

Spectrophotometer, Varian) using chloroform (Fluka, ≥ 99.8 %) as solvent.

For the low-temperature single-chain and concentration-dependent experiments P3HT was

dissolved and further diluted in chloroform (Fluka,  ≥ 99.8 %). Only the last dilution step (by a

factor of 50, vol/vol) was carried out into n-hexadecane (Fluka, ≥ 98 %). The final concentration

for  single-chain  measurements  on  those  samples  was  about  0.3  nM;  for  the  concentration-

dependent measurements the numbers are given in the main text (Fig. 2b). A drop of the top layer

of this  solution was sandwiched between a quartz substrate and a microscopy coverslip.  The

sample was then shock-frozen by inserting into liquid nitrogen and subsequently cooled down to

liquid  helium temperature  (1.5  K).  This  procedure  allows  us  to  prepare  samples  in  a  very

controlled way, because  n-hexadecane is a bad solvent for P3HT and thus the chains can only

exist in two states: truly isolated or in ordered p-stacked H-aggregates. First, at very low (single-

molecule) concentration P3HT chains are largely spatially isolated already in the highly diluted

chloroform  solution,  and  hence  isolated,  non-interacting  chains  will  also  exist  in  the  n-

hexadecane  solution  after  the  last  dilution  step.  In  other  words,  true  single-chain  level  is

achieved.  Second,  at  higher  concentrations,  chains  in  close  proximity  to  each  other  (which

eventually form loose aggregates) in chloroform solution, immediately start to form  p-stacked

aggregates upon adding n-hexadecane to avoid contact with this bad solvent (Fig. 2).  

The  low-temperature  single-chain  and  concentration-dependent  experiments  were

conducted on a home-built confocal microscope. In order to exclude preferential excitation of
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specific sub-ensembles of P3HT chains, we excited P3HT with wavelength of 450 nm and 488

nm,  using  diode  lasers  (LDH-P-C-450B,  PicoQuant  with  Clean-Up  filter  BP 440/40,  AHF;

Alphalas  Monopower 488-50-MM with  Clean-Up filter  BP488/6,  AHF).  The laser  light  was

focused into the sample plane by an objective (NA=0.65, Laser2000; NA=0.85, Edmund Optics;

NA=0.9, Microthek) that was mounted inside the cryostat and immersed in liquid helium. The

emitted light was collected by the same objective and passed the beam splitter (z488RDC or

458DCR, both AHF) as well as long-pass filters (514LP, 496LP or 467LP, all AHF). Finally, it

was  focused  onto  the  entrance  slit  of  a  spectrometer  (SpectraPro-150,  Acton  Research

Corporation, 300 lines/mm grating), equipped with a water-cooled electron-multiplying charge-

coupled device (emCCD) camera (iXon DV-887, Andor). The total spectral resolution was 11

cm-1  (1.38 meV; corresponding to  0.3 nm at  530 nm).  From each single chain we measured

consecutively up to 500 individual spectra with an integration time of 1 s per spectrum. For

polarization-resolved  measurements  we  additionally  inserted  a  motorized  polarizer  in  the

emission path in front of the spectrometer.

We performed data analysis with a home-written php-program which allowed to correct for

background signals  and the  quantum efficiency of  the  detector  as  well  as  to  fit  the  spectra.

Furthermore we employed a multivariate statistical pattern recognition algorithm (MSA) for data

analysis to overcome spectral diffusion on time scales slower than the integration time for an

individual spectrum (1 s). The algorithm sorts each individual spectrum from a single chain into a

predetermined number of classes (here: 4 – 14) according to their statistical similarity, such that

the variance between the classes is maximized and the total intraclass variance is minimized.

Subsequent averaging over spectra within the same class, i.e. over sufficiently similar spectra,
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results in so called class averaged spectra (CAS). These CAS exhibit narrower ZPLs and allow to

reveal more spectral details compared to the spectra that are temporally averaged over entire

stacks of up to 500 individual spectra,8–10 see Section 3. 

3. Single-chain spectra

In Figs.  S2  and  S3  the  data  analysis  of  single-chain  PL spectra  is  illustrated  on  two

examples. To demonstrate the power of the MSA algorithm we show in Fig. S2 (top left) a stack

of 400 sequentially recorded PL spectra of a single P3HT144 chain. 

Strong  spectral  diffusion  as  well  as  one-step  blinking  (e.g.  around  200  s)  and  a

photobleaching event (at ~ 340 s) are clearly visible. All these observations indicate that the long

chain behaves as a single emitter. The time-averaged spectrum over all 400 individual spectra is

displayed in the bottom panel and shows a ZPL at ~ 19000 cm-1 with a broad width of 180 cm-1

(FWHM). Applying the MSA algorithm to this stack of spectra, the 400 individual spectra are

grouped into 8 classes, as described above. Fig. S2 (right) shows three examples of CAS that

feature substantially reduced ZPL widths down to 36 cm-1. Due to the narrow ZPLs, also the

vibronic lines feature a smaller width, making it possible to resolve details that are otherwise

hidden in the time-averaged spectrum (see below for an assignment of vibrational modes).
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Figure S2: Low temperature PL spectrum of a single isolated P3HT144 chain embedded in n-
hexadecane.  Top  left:  2-dimensional  representation  of  a  stack  of  400  sequentially  acquired
spectra with an integration time of 1 s per spectrum. As vertical axis we display the measurement
time, the horizontal axis is the photon energy and the PL intensity is colour-coded. The white line
shows the spectrally integrated intensity for each spectrum as a function of time. Bottom: PL
spectrum averaged over the full acquisition time of 400 s. The ZPL is located at 18980 cm-1 with
a FWHM of 180 cm-1. Top right: Three examples of class averaged spectra (out of a total of 8
classes) as obtained after applying the MSA algorithm. The ZPL widths (FWHM) are indicated
at the spectra.
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Fig. S3 (top left) displays a stack of 485 consecutively recorded spectra from a P3HT16

chain with an integration time of 1 s each. Between two successive spectra the polarizer in front

of the spectrometer is rotated by 0.9°, which results in a clear modulation in the PL intensity from

that chain. Integrating the emission intensity of the ZPL from 18865 to 18931 cm-1 (Fig. S3, top

right) reveals a full modulation between maximum intensity and background signal as a function

of the polarization angle. This observation is in good agreement with  a cos²-dependency (grey

line) and is a strong indication for a single emitter. Notably, the emission of this P3HT chain is

spectrally very stable, i.e. it features essentially no spectral diffusion on time scales slower than

the  acquisition  time  for  an  individual  spectrum.  Hence,  applying  the  MSA algorithm is  not

necessary, and we directly analysed the time-averaged spectrum of this particular chain (i.e. the

average over all 485 individual spectra, Fig. S3 bottom), which exhibits its ZPL at ~ 18900 cm -1

with a width of only 32 cm-1 (FWHM). 
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Figure S3: Low temperature PL spectrum of a single isolated P3HT16 chain embedded in  n-
hexadecane.  Top  left:  2-dimensional  representation  of  a  stack  of  485  sequentially  acquired
spectra  with  an  integration  time  of  1  s  per  spectrum.  Between  two  successive  spectra  the
polarizer in the emission path is rotated by 0.9°. As vertical axis we display the measurement
time, the horizontal axis is the photon energy and the PL intensity is colour-coded. Bottom: PL
spectrum averaged over the full acquisition time of 485 s. Top right: PL intensity of the ZPL,
spectrally integrated from 18865 to 18931 cm-1 as a function of the polarization angle. The grey
line is a cos²-fit to the data. 
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There are several important points that we would like to comment on: First, as already

mentioned in the main text, we very often find only one single ZPL in the spectra of both P3HT

samples,  i.e.  there  exists  only a  single  emitting  site  per  chain  independent  of  the  molecular

weight. This  observation  is  supported  by  the  polarization  dependency  of  the  emission,  the

spectral  diffusion and the one-step blinking and bleaching events shown in  Figs.  S2 and S3,

which are all hallmarks for single-emitter detection. For the short P3HT16 chains emission from

a single site only seems reasonable, given an effective conjugation length of < 10 repeating units

for polythiophenes (see also Section 5 below).2–7 For the long P3HT144 chains, however, this

finding is very surprising, because for other conjugated polymers, such as MeLPPP11 and MEH-

PPV,12 the number of ZPLs (or emitting sites) observed per chain increases with chain length.

Second, the strong spectral diffusion processes observed in Fig. S2 occur on time scales

slower than the acquisition time of 1 s for an individual spectrum. Since this integration time is

arbitrarily chosen to obtain a reasonable signal-to-noise and signal-to-background ratio for data

analysis, there is no reason why spectral diffusion should be limited to (this arbitrary) time scale

of ≥ 1 s. In fact, it has been shown that these processes take place on essentially all time scales

even at low temperatures.9,10,13–16 Fast (≤ 1 s) spectral diffusion gives rise to ZPL widths of single

P3HT chains that are ~ 3 orders of magnitude broader than expected from their excited state

lifetime.  In  other  words,  all  ZPLs  from  P3HT  chains  in  this  work  are  inhomogeneously

broadened by spectral diffusion. We stress that fast spectral diffusion is also the line broadening

mechanism for the specific example shown in Fig. S3. Although there is apparently no spectral

diffusion visible on time scales slower than 1 s in this case, the ZPL features typically a Gaussian

line shape, which is a clear indication of inhomogeneous line broadening by spectral diffusion.
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For a detailed discussion on spectral diffusion on different time scales and the corresponding line

broadening mechanisms, we refer to our previous work in Ref. 10.

Finally, we note that the (up to seven) sharp vibronic peaks in the single-chain spectra (after

application of the MSA algorithm) can be attributed to intra-molecular vibrational modes. The

lines with vibrational energies of 1300 – 1600 cm-1 (i.e. at lower energies with respect to the

corresponding ZPLs) are ascribed to aromatic carbon-bond stretch modes,17 lines with energies of

550 cm-1 originate from ring-deformations,18 and the peaks at with vibrational energies smaller

than 250 cm-1 arise from collective stretching modes of the backbone or librational motions of the

thiophene rings. Moreover, a rather broad and unstructured phonon side band (PSB) appears in

the low-energy wing of the ZPLs. These PSBs result probably from electron-phonon coupling to

low-energy (< 100 cm-1) phonon modes of the n-hexadecane matrix.9,10
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4. Frank-Condon analysis of PL spectra of a disordered P3HT film at 1.5 K

Usually, thin film PL spectra of P3HT at low temperatures exclusively feature emission

from  π-stacked aggregates, although the corresponding absorption spectra consistently yield a

substantial fraction of non-aggregated (disordered) chains in the films.19 This observation means

that the size of domains in the film with predominantly disordered chains (amorphous regions) is

smaller than twice the exciton diffusion length of ca. 10 nm. Hence,  to be able to record an

“amorphous”  PL spectrum  of  a  P3HT film,  the  size  of  the  amorphous  domains  has  to  be

increased. We prepared such a film from our P3HT16 sample by dropping some 10 µl from a

P3HT16/chloroform solution (0.01 mg/ml) onto a cover slip. Because the cover slip was pre-

heated to  ~ 90° C,  the solvent  rapidly evaporated and an  orange/brownish film immediately

formed, indicating the presence of large amorphous domains. This sample was then cooled to 1.5

K and the resulting PL spectrum upon excitation at 450 nm is shown in Fig. S4a (orange line).

The emission between about  13000 and 16000 cm-1 stems from the aggregated phase of  the

P3HT16 film,19 and the signal around 18000 cm-1 is ascribed to arise from amorphous regions of

the film.

The PL spectrum of the amorphous part is extracted following an approach based on a

Franck-Condon  (FC)  analysis,  as  described  by  several  authors.19–22 In  the  first  step  a  FC

progression according to eq. (1) 

IPL(E)∝E3∑
i=0

Sm

m!
exp(−12 [

E−(E0−0−mEvib)
σ ]

2

) (1)

is  fitted to the film spectrum between 16000 and 21000 cm-1.  Here,  E is  the photon energy,

E0-0 is the centre energy of the purely electronic (0-0) transition, Evib represents the energy of an
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effective carbon-stretching mode, S denotes the Huang-Rhys factor, m represents the vibrational

quantum number, and s is a Gaussian line width (disorder parameter). From the fit we obtained

Evib = 1350 cm-1 and S = 0.84; for the inhomogeneous line width we obtained a value of σ = 1283

cm-1 (corresponding to 3015 cm-1 FWHM) with a peak energy of E0-0 = 17756 cm-1 for the purely

electronic transition. The resulting fit curve is shown as grey line in Fig. S4a. In a second step,

this  fit  curve  is  subtracted  from  the  film  spectrum,  which  yields  the  pure  aggregate  phase

emission (black curve) at energies between 12000 and 16000 cm-1. Note that this aggregate PL

exhibits a strongly suppressed high-energy peak at ~ 15000 cm-1 with respect to the peak at 13600

cm-1, which indicates the formation of H-aggregates with a rather high degree of order.23 

Figure S4:  a) Low temperature PL spectrum of a thin P3HT16 film (orange). The Franck-
Condon fit to the amorphous contribution to the film spectrum is shown in grey. The black
curve corresponds to the aggregate emission from this film, obtained by subtracting the grey
fit  curve  from the  orange  total  spectrum.  b)  Comparison  of  low-temperature  amorphous
spectra of the P3HT16 film from part a (orange, together with the FC-fit in grey), of P3HT16
embedded at high concentration in polystyrene (green), and of a regio-random P3HT film
(blue). The peak labelled by an asterisk in a and b is a Raman line.
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To verify that the PL between 16000 and 21000 cm-1 in Fig. S4a indeed corresponds to PL

from an amorphous region of the P3HT16 film, we also measured a film of P3HT16 embedded in

polystyrene as well as of a regio-random P3HT, both at 1.5 K. The former sample was prepared

by dissolving P3HT16 in chloroform at a concentration of 1 mg/ml, further diluting by a factor of

105 (vol/vol), adding a polystyrene/chloroform solution, and drop-casting. The rra-P3HT (MW =

40 kDa, PDI = 2.4) was dissolved in chloroform at a concentration of 0.05 mg/ml and spin-

coated. In particular, rra-P3HT is known to form large amorphous domains without long-range

order,  and only small  aggregated regions.24 Since all  three PL spectra agree very well  in the

spectral range between 16000 and 21000 cm-1, we can confidently attribute this signal to PL from

amorphous regions with disordered P3HT chains. Note that the amorphous PL of P3HT exhibits a

very peculiar, nearly triangular, line shape. According to Rebane et al. such line shapes can arise

from an inhomogeneous distribution of line widths of the underlying zero-phonon lines that add

up to yield such ensemble spectra.25 Given the high degree of intra- and inter-chain disorder (both

structurally  and  electronically)  in  amorphous  P3HT  film  regions,  such  an  observation  is

reasonable. 

Based on the  following reasons,  the substantial  energy difference of  around 1200 cm-1

between the single-chain ZPL distributions and the electronic transition energy of the amorphous

film PL spectrum (Fig. 2a) is rather surprising: First, the film PL is usually attributed to emission

from highly amorphous regions,26,27 i.e., the conformation of the emitting sites in disordered films

and in our single-chain experiments should be very similar (as mentioned in the main text, the

conformation  of  polymer  chains  on  scales  of  the  persistence  length  –  equivalent  to  the

conjugation length for P3HT – is independent of the solvent, and this solution conformation is
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transferred to films). Second, transient planarization of chains with concomitant transient spectral

red-shift after photoexcitation is strongly inhibited in solid environments.28 Third, this difference

can not result from inter-chain energy transfer to energetically lower lying sites in densely packed

films. Such inter-chain transfer usually gives rise to a red-shift and apparent narrowing of the

inhomogeneous line in PL spectra. Yet, in the P3HT16/polystyrene film, in which P3HT16 exists

in very low concentration, this inter-chain transfer should be largely suppressed. Because the PL

spectrum of this P3HT16/polystyrene sample is identical to that of the neat P3HT16 film, we

conclude that in neat P3HT16 films inter-chain energy transfer is also not important. Fourth, a

spectral shift due to different dielectric constants for P3HT-films (P3HT in its own matrix) and

for single P3HT chains (in n-hexadecane matrix) can be expected to be only minor, because the

refractive indices of amorphous P3HT (≈ 1.7)27 and frozen n-hexadecane (≈ 1.6)29 are very similar

in the relevant spectral region. 
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5. TDDFT simulations on oligothiophenes

We performed time-dependent density functional theory (TDDFT) calculations on isolated

oligothiophenes with various chain lengths for both optimized planar geometries in vacuum and

after  molecular  dynamics  (MD)  simulations  either  in  vacuum or  immersed  in  dioxane  (see

reference 6 for MD details). Additionally, dimers composed of a pair of oligothiophenes with 6 or

12 repeating units in a face-to-face configuration are investigated in vacuum as a function of the

distance between the chains. The optimized geometries of the dimers are obtained using density

functional  theory  (DFT)  including  dispersive  forces  as  introduced  by  the  semi-empirical

dispersion correction DFT-D3.30 From the inter-molecular equilibrium distances, the molecules

are displaced in steps of 0.5 or 1.0 Å for further calculations. Excited states are calculated with

TDDFT using the range separated hybrid functional ωPBE31 optimized for each particular system,

enforcing that the first ionization energies and the Kohn-Sham frontier orbital eigenvalues agree

as closely as possible.7,32 The functional optimizations are performed in vacuum and in dioxane

by explicitly representing the solvent, as reported in reference 7.

5.1 Isolated oligothiophenes – The effect of torsional disorder

To investigate  the  influence  of  torsional  disorder,  we calculated  the  transition  energies

between the ground state and the first excited state of oligothiophenes with planar and torsionally

distorted  configurations.  For  this  study  we  neglected  the  influence  of  the  solvent,  as  the

solvatochromic  shifts  are  independent  of  the  conjugation  length.6,7 The  calculations  were

performed  for  oligomers  with  lengths  varying  from  2  to  24  repeating  units,  such  that  the
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transition energy saturation,  i.e.  the effective conjugation length in the polymer limit,  can be

estimated via a Kuhn plot.6,7

Figure S5: Comparison of the experimental optical gap of oligothiophenes in dioxane solution
(blue diamond) with TDDFT calculations as function of the inverse number of double bonds.
The TDDFT first excitation energies for vacuum-optimized geometries (ωvacPBE) are denoted in
black  squares.  The  corresponding  results  for  MD  configurations  calculated  using  the  RSH
functional optimized in vacuum (ωvacPBE/MD) are shown in green triangles. The purple circles
are  the  results  for  MD configurations  calculated  using  the  OT-RSH  optimized  in  solvated
systems  and  adding  the  implicit  model  C-PCM  representing  the  dielectric  medium
(ωext

solvPBE/CPCM/MD). In case  of  the MD configurations,  the optical  gap is  taken from a
composed spectrum, averaged over 25 configurations. Solid lines are fits according to the Kuhn
model. Data taken from reference 7.

As shown in Fig. S5, the P3HT chains with planar geometry (ωvacPBE, black) exhibit a

lower transition energy in comparison to the ones with distorted geometry (ωvacPBE/MD, green).

The fits according to the Kuhn model3 saturate at values of  17700 cm-1 (2.19 eV, planar) and
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22500 cm-1 (2.79 eV, distorted). This difference of 4800 cm-1 (0.6 eV) in transition energy stems

solely from the enhanced disorder along the chain and gives an upper boundary for the energy

shift which can be attributed to dihedral and conformational disorder (see main text).

Furthermore,  we  looked  at  the  influence  of  torsional  disorder  on  the  spatial  extend

(conjugation  length)  of  the  first  electronically excited  state.  In  Fig.  S6  the  natural  transition

orbital (NTO) of the first excited state of a planar thiophene with 16 repeating units is shown. The

NTO  is  not  spread  over  the  whole  chain  but  restricted  to  about  10  repeating  units.  For  a

disordered chain with a conformation taken from a MD snapshot, the NTO of the dominant hole-

electron pair of the first excited state for a thiophene with 16 repeating units is shown in Fig. S7a.

For this particular conformation the spatial extend of the NTO is restricted to about 6 repeating

units due to the dihedral disorder. In Fig. S7b the same is shown for a thiophene chain with 24

repeating units. Again,  the spatial extend of the NTO is restricted to about 5 repeating units,

emphasising the great effect of torsional disorder on the electronic structure of polythiophenes.

Figure S6: Natural transition orbital (NTO) of the dominant hole-electron pair of the first singlet
excited state for thiophene with 16 repeating units with optimized structures (dihedral angles ~
± 0.7°). The NTO is not delocalized over the whole chain but restricted to 10-12 repeating units
with a transition energy of 17100 cm-1 (2.12 eV). Plots are generated with translucent surfaces
and contour value of 0.015.
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Figure S7: NTO of the dominant hole (h) – electron (e) pair of the first singlet excited state
for a thiophene with a) 16 repeating units and b) 24 repeating units with a conformation
taken from a MD snapshot. The NTO localizes on about 5-6 monomers for both disordered
conformations. The transition energies from the ground state to the lowest excited state are
a) 19900 cm-1 (2.47 eV) for 16 repeating units and b) 19400 cm-1 (2.40 eV) for 24 repeating
units. In a) the dihedral angles between neighbouring thiophene rings are also displayed.
Plots are generated with translucent surfaces and contour value of 0.015. 
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5.2. Oligothiophene dimers

In addition to the TDDFT simulations on isolated oligothiophenes we investigated dimers

composed of  oligothiophenes  with  6 or  12 repeating  units  in  a  face-to-face  configuration  in

vacuum as a function of the distance between the chains. This approach allows us to elucidate the

influence of the electronic coupling between neighbouring chains with distances greater than the

usual  π-π-stacking distance  of  3.8  Å33 on the transition energy (from ground state  to  lowest

excited state). Note that for perfect cofacially aligned H-type dimers, this lowest energy transition

is  usually  optically  forbidden  and  has  no  oscillator  strength,  if  only  electronic  states  are

considered.  However,  due  to  electron-phonon  coupling  to  e.g.  carbon-bond  stretch  modes,

transitions  into  excited  states  dressed  with  molecular  vibrations  satisfy  the  momentum

conservation  and  make  such  transitions  optically  allowed.34 Moreover,  in  real  systems  with

disorder, such as in weakly ordered H-aggregates and especially in loose aggregates or disordered

amorphous films, the symmetry is broken, making the transition from/to the lowest excited state

optically active (weakly allowed). 

We  were  able  to  observe  a  long-range  interaction  between  the  two  parallel  aligned

polythiophenes (Fig. S8). For distances close to 5 Å, the transition into the lowest excited state is

red-shifted by about 1700 cm-1 (0.21 eV) compared to that into the excited state of an isolated

chain with the same length. The red-shift decreases monotonously, yet, at about 8  Å, it is still

about 900 cm-1 (0.11eV). We note that Gierschner et al. found even for chain-chain distances of

12 Å electronic couplings exceeding 100 cm-1.35 This coupling is still comparable to the energy

disorder of ~ 300 cm-1 as estimated from the width of the ZPL distributions in Fig. 1e,f, and gives

rise to a noticeable spectral red-shift. In our calculations, non-nearest neighbor interactions are
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not included, which further enhance the inter-chain coupling as shown by Gierschner et al..35 In

amorphous films or in solution with loose aggregates this long-ranging dimerization is of huge

importance and contributes to the differences in transition energies we observed between single,

isolated chains and the corresponding ensemble spectra. 

Figure  S8:  TDDFT  calculated  shifts  in  transition  energy  of  H-type  dimers  at  various
intermolecular  distances  in  comparison  with  the  results  from  the  corresponding  isolated
oligothiophene chain. T6 (T12) denotes a thiophene with 6 (12) repeating units.

In total,  the spectral  red-shift from isolated chains over loosely aggregated chains to  π-

stacked films contains several effects (see main text and Fig. 3). First, planarization (mediated by

neighboring chains) takes an important role and leads to a shift in transition energy of the intra-

chain  excitations  (see  Section  5.1).  The  electronic  coupling  between  neighboring  chains  (or

segments of neighbouring chains) leads to a dimerization and thus an additional red-shift of the

lowest  energy transition  due to  electronic  coupling  between their  transition  dipole  moments.
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Finally,  in  H-aggregates  strong inter-chain  coupling  gives  again  an additional  redshift  of  the

lowest excited state, resulting in total in an energy difference of more than 0.6 eV (4800 cm-1)

between the isolated chains and the bulk aggregate spectra (see Fig. 3 and reference 19). Note

that in aggregated films, an additional factor for the red-shift is the so-called gas-to-crystal shift,

i.e. the change of the dielectric constant that individual chains experience between gas phase (or

solution) and crystal. 

6. Coherence length of the emitting sites

According to a theoretical work by Yamagata and Spano, the photophysics of isolated, non-

interacting conjugated polymer chains can be described in terms of a J-aggregate built up from

thiophene monomers. The (de-)localisation of an excitation on an electronically disordered chain

is quantified by the coherence length Ncoh (number of monomers or repeating units), which can be

determined from PL spectra using:36,37

Ncoh = Rem·Smon.

Here  Rem is the 0-0/0-1 intensity ratio of the PL spectra,  i.e. in our single-chain data the ratio

between the relative area of the ZPL and the areas of the (four) lines at 1400 cm-1 below the ZPL

(~ 17600 cm-1 in the data shown in Fig. 1a and b). From our data we find  Rem ~ 1.4 – 2.  Smon

represents an effective Huang-Rhys factor for a thiophene monomer for the several vibrational

lines around 1400 cm-1,  which was determined to be Smon = 1.4 – 1.9.23 From these numbers we

obtain Ncoh ~ 2 – 4. 
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Barford  and co-workers38,39 derived a  slightly different  expression  for  the  mean  spatial

extend of the emitting site (in units of number of monomers)

N = 2·Smon·Rem (E01/E00)³,

with E01 (E00) being the energy of the 0-1 (0-0) transition, which yields (E01/E00)³ = 0.79 from our

single-chain spectra. We thus obtain values of  N ~ 3 – 6. Given that real polymer chains also

possess some degree of conformational disorder and can thus be curved, these values of Ncoh and

N are lower bounds only.40,41 Hence, there is good agreement with the conjugation length of 5 – 6

repeating units determined above from our TDDFT calculations on conformationally disordered

chains. 
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The backbone conformation of conjugated polymers affects, to a
large extent, their optical and electronic properties. The usually
flexible substituents provide solubility and influence the packing
behavior of conjugated polymers in films or in bad solvents. However,
the role of the side chains in determining and potentially controlling
the backbone conformation, and thus the optical and electronic
properties on the single polymer level, is currently under debate.
Here, we investigate directly the impact of the side chains by studying
the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT)
and the common poly(3-hexylthiophene) (P3HT), both with a defined
molecular weight and high regioregularity, using low-temperature
single-chain photoluminescence (PL) spectroscopy and quantum-
classical simulations. Surprisingly, the optical transition energy of
PDOPT is significantly (∼2,000 cm−1 or 0.25 eV) red-shifted relative to
P3HT despite a higher static and dynamic disorder in the former. We
ascribe this red shift to a side-chain induced backbone planarization in
PDOPT, supported by temperature-dependent ensemble PL spectros-
copy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl
side chains of PDOPT adopt a clear secondary helical structural motif
and thus protect conjugation, i.e., enforce backbone planarity, whereas,
for P3HT, this is not the case. These different degrees of planarity in
both thiophenes do not result in different conjugation lengths, which
we found to be similar. It is rather the stronger electronic coupling
between the repeating units in the more planar PDOPT which gives
rise to the observed spectral red shift as well as to a reduced calculated
electron−hole polarization.

conjugated polymers | single-molecule spectroscopy | quantum-classical
atomistic simulations | side-chain engineering | organic electronics

Device applications of conjugated polymers are strongly de-
termined by their structural, electronic, and optical proper-

ties. However, the design of new polymers is not straightforward,
as often conflicting demands have to be satisfied simultaneously
to achieve optimum device performance (1). For instance, ap-
plication in organic light-emitting diodes requires strong and effi-
cient emission as well as efficient transport of injected charges. The
charge transport characteristics strongly depend on film morphol-
ogy, orientation with respect to interfaces, and the strength of in-
terchain interactions (2). However, dense packing of conjugated
polymers into typically π−π-type arrangements reduces emission
quantum yield. Hence, suppression of π stacking, while maintain-
ing high intrachain and interchain order, is important for lighting
applications (3).
To manipulate and optimize the relevant structural and elec-

tronic properties of conjugated polymers for specific applica-
tions, side-chain engineering has emerged as a versatile toolkit in
recent years (note that “side-chain engineering” is to be understood
here in its widest sense, i.e., direct backbone substitution with
heteroatoms and modifying large side groups) (4–8). Noncovalent

interactions between backbone and substituents (e.g., CH···S,
CH···F, CH···O, or F···S interactions) have a strong impact on the
backbone conformation of isolated chains (9). In combination with
interactions between chains, such as π−π- or hydrogen-bonding
interactions, which direct self-assembly, the resulting film mor-
phologies can be controlled (10). In particular, fluorination has
attracted attention, because it can introduce steric interactions with
neighboring groups and thus modify backbone conformation (10).
Moreover, fluorine possesses the highest electronegativity, which
was shown to stabilize the highest occupied molecular orbital (HOMO)
and/or lowest unoccupied molecular orbital (LUMO; see e.g.,
ref. 5 for a recent review). However, disentangling structural and
electronic effects of fluorination is very challenging (4). An alter-
native approach is to increase the density or bulkiness of side groups.
For example, enhancing the side-chain density of a donor−acceptor
copolymer, which is widely used for organic solar cells, improved its
luminescence properties significantly, thus allowing for application
in light-emitting devices (11). Appending sterically demanding groups
like dendrimers (12) stiffens the backbone through steric repulsion

Significance

Conjugated polymers are promising materials for flexible
electronics and photovoltaics. Recent progress in polymer de-
sign led to a rise in device efficiency. Tailoring intramolecular
interactions is a central design element, which allows fine-
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of neighboring side chains. The resulting increase in persistence
length was recently highlighted as a new design aspect to op-
timize optical absorption and thus solar cell performance (13).
However, a high persistence length alone is not sufficient; only
a concomitant backbone planarization enhances absorption
due to an increase in transition dipole moment (14–16). How-
ever, more bulky side groups are usually associated with a larger
torsion of the conjugated backbone, i.e., with a large distribution
of interring dihedral angles (17–19), which localizes electronic
excitations and gives rise to less favorable material properties.
Here, we show that, contrary to this common notion, bulky

side chains can force the backbone of conjugated polymers into a
more planar conformation via side-chain alignment. We combine
single-molecule low-temperature photoluminescence (PL) spec-
troscopy with quantum-classical atomistic simulations to inves-
tigate two polythiophenes with defined molecular weight and
high regioregularity but different substitution patterns (Fig. 1 D–

F, Insets): First, poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT)
with sterically very demanding 2,5-dioctylphenylene side-chains,
which prevent direct π−π interaction of neighboring backbones
(20, 21). Second, the prototypical poly(3-hexylthiophene) (P3HT)
with relatively short hexyl side groups. For P3HT, interchain π−π
interactions play an important role and determine the transition
energy, to a large extent (22). Particularly, this latter system was
studied extensively by ensemble (16, 23–25) and single-molecule
spectroscopy (26–28).
We find that the PDOPT single-chain PL spectra are strongly

red-shifted by >2,000 cm−1 (>0.25 eV) with respect to P3HT,
which is not obvious from the corresponding, very similar en-
semble spectra (Fig. S1). We were able to ascribe this substantial
spectral shift to side-chain induced backbone planarization in
PDOPT that increases the electronic coupling between repeating
units. This is accompanied by a reduction in the difference be-
tween the centers of mass of the electron/hole wave functions—
the electron−hole polarization (29), which is a measure for the
charge transfer character of the excited state.

Results and Discussion
PL Spectroscopy of Single PDOPT Chains. We investigated two
PDOPT samples, PDOPT16 and PDOPT89, with number aver-
age molecular weights of Mn = 6.1 kDa (∼16 repeating units,
PDOPT16 with a dispersity of 1.07 and a regioregularity of >93%),
andMn = 33.7 kDa (∼89 repeating units, PDOPT89 with a dispersity
of 1.66 and a regioregularity of >98%); see Methods and Materials
and SI Methods and Materials. Fig. 1 A and B depicts two repre-
sentative single-chain PL spectra of PDOPT16 and PDOPT89 after
partial temporal averaging (see SI Methods and Materials). Both
spectra show a prominent zero-phonon line (ZPL) at 17,022 cm−1

and 16,777 cm−1 with line widths of 33 cm−1 and 64 cm−1 (FWHM)
for PDOPT16 and PDOPT89, respectively. A broad phonon-side
band appears in the low-energy shoulder of the ZPLs and indicates
weak electron−phonon coupling to low-energy vibrational modes of
the backbone or the host matrix (30, 31). The dominating vibrational
transition is offset from the ZPL by around 1,480 cm−1 to lower en-
ergies and is associated with aromatic carbon-bond stretching
modes (32). The PL spectra of PDOPT16 feature only one ZPL
(Fig. 1A), i.e., only a single emitting site per chain as expected from
the effective conjugation length of approximately eight repeating
units for polythiophenes (33–36). In contrast, for PDOPT89, we
observe two additional weak lines at high energies (Fig. 1B, as-
terisks). The independent blinking and spectral diffusion of these weak
peaks (Fig. S2) demonstrates multichromophoric behavior with several
emitting sites (ZPLs) per chain.
We evaluated, in total, 88 (102) ZPLs of PDOPT16 (PDOPT89)

by fitting Gaussian or Lorentzian functions to their high-energy tails.
The resulting histograms of the ZPL width (Fig. 1D and E) and ZPL
energy (Fig. 1 G and H) show only a little difference between the
systems. The average ZPL width (FWHM) is 70 cm−1 for the short
and 67 cm−1 for the long chains. Both distributions are very broad,
with maximum ZPL widths of ∼250 cm−1. For other conjugated
polymers, such as P3HT (22) and ladder-type poly(p-phenylenes)
(37), we showed that the ZPLs are broadened by unresolved spectral
diffusion, i.e., by random jumps of the transition energy on time
scales faster than the temporal resolution of our measurement (here
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Fig. 1. Low-temperature PL spectroscopy on single polythiophene chains. (A and B) Single-chain PL spectra of poly(3-(2,5-dioctylphenyl)-thiophene), PDOPT,
for two different chain lengths embedded in n-hexadecane. (C) Single-chain PL spectrum of poly(3-hexyl-thiophene), P3HT, in n-hexadecane. (D–F) Distri-
butions of line widths (FWHM) of the ZPL. (G–I) Distributions of spectral positions of the ZPLs. The dashed lines in G and H are low-temperature ensemble PL
spectra of the corresponding matrix-isolated PDOPT sample (in n-hexadecane). In D–F, the chemical structures are shown as Insets; n denotes the mean
number of repeating units, and Oct and Hex stand for n-octyl and n-hexyl groups. The peaks in Bmarked with asterisks denote additional weak ZPLs from the
same single PDOPT chain (see also Fig. S2). The data in C, F, and I are taken from ref. 22.
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1 s to 3 s). This dynamic disorder is induced by structural fluctuations
of groups of atoms or molecules in the local environment of the
emitting site (31, 37–40). Accordingly, we ascribe the broad ZPLs of
PDOPT to unresolved spectral diffusion processes as well.
For PDOPT16 (PDOPT89), the histograms of ZPL energies range

from 16,276 cm−1 to 17,738 cm−1 (15,787 cm−1 to 17,480 cm−1) and
are centered around 16,975 cm−1 (16,633 cm−1); see Fig. 1 G and
H. The electronic transition of the corresponding low-temperature
matrix-isolated ensemble spectra (dashed lines, Fig. 1 G and H)
with maxima at 16,858 cm−1 (PDOPT16) and 16,505 cm−1

(PDOPT89) provide good envelopes to these histograms. We
attribute the red shift of about 350 cm−1 from PDOPT16 to
PDOPT89 in both single-chain and bulk data to intrachain downhill
energy transfer within the multichromophoric PDOPT89 chains.
Such energy transfer rapidly populates predominantly lower-energy
emitting sites (41), whereas higher-energy sites are only weakly
emitting (Fig. 1B, asterisks) or do not emit at all. In contrast, for
PDOPT16 with only a single emitting site, the ZPL distribution is
entirely determined by dispersive interactions of the emitting site with
the local environment (42, 43) as well as by the degree of planarity of
the polymer backbone, both of which vary for each chain (43–45).

PDOPT vs. P3HT. It is now interesting to compare our PDOPT
single-chain data with those of the prototypical P3HT that we
have reported recently (Fig. 1 C, F, and I and ref. 22). The P3HT
samples investigated possess anMn of 2.6 kDa (∼16 repeating units,
P3HT16 with a dispersity of 1.17 and a regioregularity >93%) and
an Mn of 24 kDa (∼144 repeating units, P3HT144 with a dis-
persity of 1.15 and a regioregularity >98%). For both PDOPT
and P3HT, there is no difference between the corresponding
spectra of short and long chains (Fig. 1 and Fig. S3), and we
thus focus on the long chains (PDOPT89 and P3HT144) in the
following discussion.
Dynamic and static disorder. The first obvious differences are the on
average significantly broader ZPLs of PDOPT with respect to
those of P3HT (mean ZPL width 67 cm−1 and 32 cm−1, re-
spectively, Fig. 1 E and F). These data indicate a high degree of
dynamic disorder in PDOPT due to very pronounced spectral
diffusion processes with large unresolved spectral jumps
compared with P3HT. The magnitude of these jumps incre-
ases with decreasing distance between the thiophene backbone
and the fluctuating unit in its local environment (31, 42, 46).
We therefore suggest that this strong spectral diffusion in
PDOPT originates from librational motions of its side-group
phenyl rings (47, 48), which are directly appended to the con-
jugated backbone.
Furthermore, for PDOPT, the inhomogeneous width (FWHM)

of the distribution of ZPL energies is larger by a factor of 2.5
(PDOPT89, 770 cm−1; P3HT144, 300 cm−1; see Fig. 1 H and I),
indicating a higher static disorder in comparison with P3HT. The
only difference between the samples is the more bulky side group
of PDOPT, and thus steric effects induced by these groups proba-
bly play an important role (vide infra). These observations demon-
strate that the side groups possess a strong influence on the
photophysics of polythiophenes that is not obvious from ensemble
PL data alone (Fig. S1).
ZPL energies. The most unexpected finding is that the ZPL ener-
gies of single PDOPT chains are red-shifted by more than
2,200 cm−1 (0.27 eV) in comparison with P3HT (Fig. 1 H and I).
We have recently shown, by calculations on thiophene deriva-
tives, that the transition energy of the absorbing/emitting sites
red-shift by up to 4,800 cm−1 (0.6 eV) for increasing planarity
(22, 29), in agreement with other reports (36, 44, 45, 49). Based
on this work, we propose that the observed red shift between
isolated PDOPT and P3HT is largely caused by backbone pla-
narization in PDOPT, at least on length scales of an emitting
site, via noncovalent interactions with the bulky side groups (7,
9). A further factor, that may in part contribute to this red shift,

is the more polarizable local environment for the emitting sites
(50, 51) provided by the aromatic phenyl rings of PDOPT
compared with the hexyl groups of P3HT.
Ensemble PL spectroscopy: Planarization preceding aggregation. In-
dependent evidence for our hypothesis comes from temperature-
dependent PL spectroscopy on solutions of PDOPT89 and
P3HT144. This approach yields insights into the aggregation
process upon cooling (16); in particular, we found that an initial
backbone planarization of the disordered solution phase occurs
before the transition to the aggregated phase. The signature of
this initial planarization is a continuous red shift of the solution
PL spectrum with decreasing temperature.
For both PDOPT and P3HT dissolved in THF, we quantified

the spectral red shifts of the disordered phase by fitting the
temperature-dependent PL spectra (Fig. 2, Inset) with Franck−
Condon (FC) progressions (16) and retrieving the energies of
the purely electronic (0−0) transition (Fig. 2 and SI Franck–
Condon Analysis). A linear fit to the temperature-dependent
0–0 positions reveals an average red shift of 1.6 cm−1/K for PDOPT
(black) and 4.1 cm−1/K for P3HT (blue). Note that the transition
from disordered chains to aggregates occurs at 180 K for PDOPT
and at 240 K for P3HT. Hence, the initial rate of red shift upon
cooling (but before aggregation) is less pronounced for PDOPT
than for P3HT, as can be expected for a more planar chain and from
our single-chain data. Similar experiments on methyl-substituted
ladder-type poly(para-phenylene) (MeLPPP) (52) result in a very
small slope of about 0.60 cm−1/K. Since the rigid rod-like MeLPPP
represents the prototype of a highly planar system, these en-
semble data provide further evidence that PDOPT possesses a
rather planar conformation in solution—a conformation in which
we expect PDOPT chains to exist in our single-molecule experi-
ments as well owing to the rapid cooling procedure during sample
preparation (22).

Quantum-Classical Atomistic Simulations. To gain further insight
into the origin of the pronounced red shift of the ZPLs between
PDOPT and P3HT, we performed quantum-classical atomistic
simulations of PDOPT16 and compared with our recent results
for P3HT (29). Following the same protocol as in ref. 29, we used
a modified Quantum Mechanical Consistent Force Field for
π-electrons (QCFF/PI) method (53, 54) to generate a thermal
ensemble of single PDOPT16 at room temperature (298 K), by
generating 1,000 structures and running a thermal trajectory for
∼1 ns. We then calculated the optical and electronic properties
using the semiempirical Pariser−Parr−Pople (PPP) Hamiltonian
for π-electrons at the level of configuration interaction singles
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(CIS). The choice of high temperature was motivated by the ex-
perimental conditions, in which the rapid cooling of the sample is
expected to trap the molecules in typical high-temperature con-
formations. For details of the simulations, seeMethods and Materials
and SI Simulation Protocol.
Backbone and side-chain conformations. For PDOPT, we initialized our
molecular dynamics simulations with single PDOPT16 structures
similar to those in crystals (20) with all thiophene units in trans
configuration (interring dihedral angle ϕ = 180°), and with the
phenyl rings at 90° to the backbone. The torsional free energy, cal-
culated as potential of mean force [PMF = −kBT log P(ϕ)], shows a
minimum at 180° (Fig. 3A), which reflects a stable transplanar
backbone. The minimum is rather flat, and thus a large set of di-
hedral angles is thermally accessible, which allows for a large degree
of torsional disorder—the variation around the mean angle—in
agreement with our single-chain data. The n-octyl chains on adjacent
monomers were found to form stable contacts, which lead to the
emergence of helical wrapping, resembling barber’s pole stripes,
around the thiophene backbone (Fig. 3B). These contacts stabilize
the perpendicular orientation between thiophene and phenyl units,
and balance steric repulsions leading to the backbone planarization.
In contrast, in single-molecule P3HT, the backbone is more

exposed, and side chains do not form an identifiable structural
motif. We recently showed that the PMF of P3HT (see Fig. 3A)
possesses a clear minimum around a dihedral angle of ϕ = 145°
(29), and, in consequence, the chain conformation is rather
disordered, as illustrated in Fig. 3A, Top. This behavior is in line
with other work on P3HT, in which repulsive S···H interactions
between the sulfur atom and the hydrogen atoms of the closest
methylene unit in the adjacent hexyl group were shown to lead to
nonplanar optimal structures (27, 32, 49, 55).
Optical and electronic properties. Our simulated absorption spectra
of the thermal ensembles of PDOPT and P3HT at room temperature
are depicted in Fig. 3C. Notably, they exhibit a spectral shift of ca.

2,000 cm−1, in good quantitative agreement with our experiments.
These results clearly show that the observed differences in back-
bone conformation between PDOPT and P3HT, induced by very
different side groups, result in the experimentally measured, pro-
foundly distinct optical properties.
We further calculated a coherence length L and an electron−

hole displacement distance Re-h. L is a measure for the size of
the emitting/absorbing sites (“chromophores”) and is defined as
the “radius of gyration” of the exciton wave function (56). Re-h is
computed as the difference between the centers of mass of the
electron/hole wave functions, and is a measure of electron−hole
polarization, i.e., of the charge transfer character of the excited
state. Interestingly, the calculated coherence lengths L are sim-
ilar for both systems, ∼6.5 repeating units; see Fig. 3D. This
finding is rather surprising, as the spectral red shift would con-
ventionally be interpreted as being due to an increase in L, or
chromophore size, because of the planarization of the PDOPT
backbone. Hence, we must depart from this “particle-in-a-box
model” view, and notice that it is the magnitude of the electron−
hole displacement, Re-h, that distinguishes the two systems: The
mean <Re-h> is reduced in PDOPT (0.11 repeating units) with
respect to P3HT (0.45 repeating units); see Fig. 3E. We recall
that the transition energy of conjugated polymers does not de-
pend only on the coherence length but also on the electronic
π-overlap coupling (or conjugation) between repeating units.
Given that the mean coherence lengths are similar in both ma-
terials, the reduced transition energy in single PDOPT neces-
sarily implies a stronger electronic coupling in this system, which
is witnessed by the smaller calculated Re-h (29). Computationally,
for the more disordered P3HT, the wave function of the lowest
excited state is dominated by Slater determinants describing the
promotion of an electron from HOMO to LUMO as well as from
HOMO to LUMO+1. In particular, the latter results in a more
pronounced charge transfer character of the excited state in
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P3HT. For PDOPT, in contrast, the relative contribution of Slater
determinants for the HOMO to LUMO+1 promotion is signifi-
cantly reduced. Hence, the higher degree of planarity in PDOPT
enhances conjugation, which results in more tightly bound excitons
with less pronounced charge transfer character (reduced Re-h), com-
pared with P3HT. For further details, see the discussion of the
polarization index parameter D in our recent work (29).
In this context, we note that, according to the simplified models

of Spano, Barford, and coworkers (57, 58), the ratio between the
area of the ZPL and the area of the effective vibrational mode (here
around 1,480 cm−1) in the experimental spectra is usually inter-
preted as a measure for the coherence length L of the absorbing/
emitting sites, with a relatively stronger ZPL indicating a larger L.
From such analysis, we find an increase in coherence length by
roughly a factor of 2 from the disordered P3HT to the more planar
PDOPT (Fig. S4), in agreement with common notion, but in con-
trast to our results of a direct calculation. Although largely ignored
in the literature, the framework developed by Spano and coworkers
(57, 59) also allows for the possibility to account for different peak
ratios by distinct electron−hole separations for a given coherence
length. Consistent with our results, a larger electron−hole distance
is predicted to give rise to a decreased peak ratio between the ZPL
and the vibrational mode (SI Coherence Length of the Emitting Site).
We conclude that the experimental ratio between ZPL and the
effective vibrational mode may rather reflect the strength of the
conjugation controlled by backbone conformation, but not the co-
herence length. Finally, we emphasize that this shifts the discussion
from the comparison of coherence lengths in two materials to a
discussion of a so far overlooked physical quantity affected by the
conjugation, the electron−hole polarization.

Conclusion
Based on our combined experimental and theoretical investigation
of the two polythiophene derivatives PDOPT and P3HT on the
single-chain and bulk level, we have demonstrated that, contrary to
common notion, the bulky side groups of PDOPT actually induce a
stable planarization of the conjugated backbone via noncovalent
interactions. This more planar backbone leads to a red shift
of >2,000 cm−1 (0.25 eV) of its electronic transition relative to that
in the more conformationally disordered P3HT single chains. In-
triguingly, this side-chain induced planarization does not give rise to
an increase in mean coherence length (spatial extent of the absorbing/
emitting sites), which is essentially identical for both polythiophenes.
It is rather the conjugation, i.e., the electronic π-overlap between
thiophene rings, that is stronger in PDOPT, and ultimately causes the
observed red shift in transition energy and reduces the electron−hole
polarization.
Our spectroscopic data strongly indicate that the bulky dio-

ctylphenyl side groups of PDOPT have a strong impact on the
static and dynamic disorder, and must be involved in planariza-
tion. According to our simulations of single chains, their phenyl
rings are rotated ∼90° out of the backbone plane (Fig. 3A).
Recent work on arene−thiophene systems suggests that such a
T-shaped arrangement is indeed a stable, energetically favorable
configuration (60). In PDOPT, this orientation is arguably further
stabilized by the interaction between the n-octyl side chains which
extend across its backbone. The importance of the side groups for
structural properties in PDOPT is also manifest in its crystallization
behavior. Despite the absence of π−π stacking, spherulitic structures
of several hundred micrometers diameter and a high degree of

crystallinity can be grown under appropriate conditions (61). The
main driving forces for spherulite formation are noncovalent in-
teractions between side groups of neighboring chains (20). In the
resulting configuration, the phenyl rings and n-octyl chains are
oriented perpendicularly to the plane of the backbones, with a
dense interdigitation of adjacent n-octyl chains (62). Interestingly,
the concept of side-chain induced stabilization of polymers’ sec-
ondary and tertiary structures is also known in biological systems.
Interactions of side groups, such as aromatic−aromatic interac-
tions, routinely lead to a stabilization of the ternary structure of
proteins (63, 64). Such interactions are also conceivable between
adjacent phenyl rings of a PDOPT chain, with a mean distance
slightly larger than ∼7 Å in spherulites (20).
Further studies are clearly required to develop broader insight

into the structural variation obtainable via side-chain manipu-
lation. The backbone planarization in PDOPT suggests that this
control may ultimately pave the road for the design of optimized
structures for efficient optoelectronics applications.

Methods and Materials
Experimental Methods. Single-molecule PL experiments on PDOPT were
performed employing a home-built confocal microscope, as reported recently
(22). For sample preparation, PDOPT was diluted in n-hexadecane, shock-
frozen in liquid nitrogen, and subsequently cooled down to 1.5 K in a home-
built bath cryostat. For each chain, we measured up to 500 sequential
spectra with an integration time of 1 s to 3 s each. Temperature-dependent
ensemble PL spectra were measured in a home-built setup described in de-
tail elsewhere (65). In brief, the polymers were dissolved in THF, and the
sample was placed in an electrically heatable continuous flow cryostat. Each
temperature was stabilized for 15 min before measurement to ensure a
homogeneous temperature across the sample. See SI Methods and Materials
for details.

Materials. To synthesize PDOPT with a defined molecular weight, low dis-
persity, and high regioregularity, a Kumada catalyst-transfer polycondensation
including a nickel catalyst with a hybrid P,N ligand was used (21). P3HT was
synthesized via catalyst transfer polymerization (66). Both PDOPT and P3HT
contain only a single regiodefect at one end of each chain which is introduced
by the synthetic route (23, 66, 67).

Simulation. To compare the optical properties of single-molecule P3HT with
those of PDOPT, we repeated the calculation recently published by two of us
in ref. 29. The polymers were modeled with a nonpolar environment
through the alkane-like dielectric constant « = 2.7. The relevant properties
of the lowest energy excited state, i.e., the coherence length L and the
electron−hole displacement distance Re-h, were derived using the CIS mixed
density matrix. Importantly, since the side chains in both thiophenes are not
expected to contribute to the spectrum in the relevant energy window, they
were modeled via classical equations of motion with an appropriate force
field. In P3HT, this is justified due to the alkyl character of the side chains,
while, in PDOPT, the conjugation between the thiophene backbone and the
substituted aromatic phenyl rings is broken due to steric interactions in our
simulations at all times. See SI Simulation Protocol for details.
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SI Methods and Materials
Ensemble absorption and PL spectra were recorded using
commercial spectrometers (Lambda 750 UV/VIS Spectrometer;
Perkin-Elmer and Cary Eclipse Fluorescence Spectrophotometer;
Varian) using chloroform (Fluka, ≥99.8%) for P3HT and n-
hexadecane (Fluka, ≥98%) for PDOPT.
For low-temperature single-chain PL spectroscopy, PDOPT

was dissolved and further diluted in n-hexadecane (Fluka, ≥98%)
to a final concentration of about 0.3 nM and subsequently cooled
down to liquid helium temperature (1.5 K). The experimental
setup is based on a home-built confocal microscope (1, 2). To
exclude preferential excitation of specific subensembles of
PDOPT chains, we used excitation wavelengths between 420 nm
and 460 nm using a FemtoPower1060 Supercontinuum Laser
(Fianium SC 400-4) or a pulsed 450-nm diode laser (LDH-P-C-
450B; PicoQuant) in combination with the Clean-Up filter BP
440/40, the dichroic beam splitter 458DCR, and the long-pass
filter 467LP (all AHF). For polarization-resolved measure-
ments, we additionally inserted a half-wave plate (Thorlabs)
mounted in a motorized rotating mount (Owis) in the excitation
path. The PL signal was dispersed by a spectrometer (300 lines
per millimeter grating, SpectraPro-150; Acton Research Corpo-
ration) and imaged onto an electron-multiplying charge-coupled
device camera (iXon DV-887; Andor). From each single chain,
we typically acquired several hundred PL spectra with integration
times between 1 s and 3 s.
We performed data analysis with a home-written software

which allowed correction for background signals and the quan-
tum efficiency of the detector as well as to fit the spectra. Further-
more, we employed a multivariate statistical pattern recognition
algorithm (MSA) for data analysis to overcome spectral diffusion on
time scales slower than the integration time for an individual spec-
trum (1 s to 3 s) by averaging only statistically similar spectra. For
details, see ref. 1.
Temperature-dependent ensemble PL spectra were measured

in a home-built setup which is described in detail elsewhere (3).
In brief, the polymers were dissolved in THF and poured into
fused silica cuvettes. The sample was then placed in an electri-
cally heatable continuous flow cryostat (Oxford Instruments). It
was excited using a continuous-wave diode laser with an excita-
tion wavelength of 405 nm. The emitted light of the samples was
focused into a spectrograph (Shamrock SR303i; Andor) and
detected with a CCD camera (iDus; Andor). Each temperature
was stabilized for 15 min before measurement to ensure a ho-
mogeneous temperature across the sample. The emission spectra
were corrected for the transmission through the setup. Sub-
sequently, the temperature-dependent 0–0 transition energy was
extracted by an FC analysis, assuming that only a single effective
vibrational mode with an energy of around 1,400 cm−1 (0.17 eV)
couples to the electronic transition; see SI Franck–Condon
Analysis.

SI Ensemble Spectra
Normalized absorption and PL spectra of both PDOPT and
P3HT in solution are shown in Fig. S1.

SI Single-Chain Spectra and Statistics
In Fig. S2, the temporal evolution of the emission spectra of a
single, isolated PDOPT89 chain is shown. In this experiment, the
half-wave plate was placed in the excitation path to rotate the
polarization of the excitation light by 2.75° between successively
recorded spectra. The intensity of the resulting emission follows

a clear cos2 modulation as a function of the polarization of the
excitation light, which is shown in Fig. S2, Top Right by the
spectrally integrated intensity of the main ZPL at 16,800 cm−1

and the corresponding fit (gray line). These data lead us to the
conclusion that only one absorbing unit/chromophore is excited
resonantly with the linearly polarized excitation light.
On the high-energy side of the prominent ZPL, at 16,800 cm−1,

two additional weak peaks are observed (marked with asterisks
in Fig. S2), which follow the same polarization dependence as
the main ZPL. Since the weak lines show blinking and spectral
diffusion independent from each other and from the main ZPL
at 16,800 cm−1, we interpret these two weak peaks as additional
ZPLs on the same chain. These (weakly) emitting ZPLs are
populated by downhill intrachain energy transfer from the same
absorbing unit/chromophore. The long PDOPT chains are therefore
multichromophoric systems. In contrast, the long P3HT144 chains
showed only single-chromophoric emission; that is, we observed only
a single emitting site per chain (1).

SI Coherence Length of the Emitting Sites
According to Spano, Barford, and coworkers (4–7), an increasing
backbone planarization gives rise to a larger delocalization of
electronic excitations (in terms of the coherence length Ncoh, in
units of monomers), and concomitantly to an increase in peak
ratio Pem = I0–0/I0–1 between the intensity I0–0 of the ZPL and the
intensity I0–1 of the effective carbon bond stretch mode around
1,400 cm−1. The peak ratio for PDOPT89 can be easily extracted
from single-chain spectra (Fig. 1B) or the matrix-isolated spectra
(dotted line in Fig. 1H, and Fig. S4). The resulting value of Pem =
I0–0/I0–1 = 2.7 translates into a coherence length of about Ncoh =
Pem·Smon/κ = 3.8 to 5 monomers according to Spano and
Yamagata (4, 5) or Ncoh = 2·Pem·Smon = 7.6 to 10 monomers
according to Barford and coworkers (6, 7). Here, Smon represents
an effective Huang−Rhys factor for a thiophene monomer for
the several vibrational lines around 1,400 cm−1, which was de-
termined to be Smon = 1.4 to 1.9 (8). The electron−hole distance
parameter κ is usually assumed to be unity in the analysis of
optical spectra of conjugated polymers using Spano’s approach.
For P3HT144, we find a peak ratio of Pem = I0–0/I0–1 ≈ 1.3 (Fig.

S4), which corresponds to Ncoh = 2 to 2.5 monomers (Spano) and
Ncoh = 4 to 5 monomers (Barford), respectively. Irrespective of
the definition of the delocalization of electronic excitation and
the exact value of Smon, this means a nearly doubled coherence
length for PDOPT in comparison with P3HT, as the ratio is
defined as

NPDOPT
coh

NP3HT
coh

=
PPDOPT
em

PP3HT
em

=
2.7
1.3

= 2.1.

This finding supports the idea of a more planar backbone in
PDOPT.
Note, however, that the increase in Pem from P3HT to PDOPT

may not necessarily reflect a larger coherence length of elec-
tronic excitations but may, in fact, be rather a consequence of the
stronger electronic coupling between repeating units in the more
planar PDOPT, which results in different electron−hole polari-
zations in these two materials; see our discussion in the main
text. This is also captured in the framework of Hestand and
Spano (9) by the electron−hole distance parameter κ which can
be approximated in conjugated polymers as
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κ≈
1

hFEi+ 2ð1− hFEiÞ=
1

2− hFEi

with <FE> being the Frenkel component of the lowest energy
emissive eigenstate. A smaller Frenkel, and thus a higher charge
transfer contribution (1 − <FE>), leads to a smaller κ and thus a
decreased peak ratio (Pem = I0–0/I0–1 = κ·Ncoh/Smon) for a given
coherence length. Thus, considering this electron−hole distance
parameter κ, the decreased peak ratio observed here for P3HT
can be rationalized by a stronger charge transfer character of the
electronic excitations in P3HT compared with PDOPT, which is
consistent with our simulations.

SI Franck–Condon Analysis
The temperature-dependent PL spectra of PDOPT and P3HT
dissolved in THF were analyzed following an approach based on
an FC analysis, as described in previous work (3, 10). Assuming
that a single effective carbon bond stretching mode with an energy
of ∼1,400 cm−1 couples to the 0–0 transition, the PL spectra can
be satisfactorily be fitted by the FC progression

IPLðEÞ∝E3
X

i=0

Sm

m!
exp

�
−1
2

�
E− ðE0−0 −mEvibÞ

σ

�2�
.

Here, E is the photon energy, E0–0 is the center energy of the
0–0 transition, Evib represents the energy of an effective carbon
bond stretching mode, S denotes the Huang−Rhys factor of this
mode, m represents the vibrational quantum number, and σ is a
Gaussian line width (disorder parameter). The Huang−Rhys pa-
rameter S and the vibrational energy Evib were kept fixed for all
temperatures at S = 0.9 (S = 1.0) and Evib = 1,346 cm−1 (Evib =
1,411 cm−1) for PDOPT (P3HT). From this fitting, we obtain the
temperature-dependent evolution of the inhomogeneous line
width σ and the peak energy E0–0, with the latter one being
displayed in Fig. 2.

SI Simulation Protocol
As mentioned in the main text, we use the modified QCFF/PI
method (11, 12), with thermalizing stochastic Langevin dynamics
to generate a thermal ensemble of 16-poly(3-(2,5-dioctylphenyl)
thiophene) (PDOPT16) at room temperature (298 K). The ab-
sorption spectra are computed at the level of CIS, and the
properties of the exciton, i.e., the centers of mass of the electron,
and, separately, of the hole, and their localization lengths are
derived using a reduced description starting from the CIS mixed
density matrix,

ρ=
X
i

pijΦiihΦij=
X

i, a, r, b, s

crac
sp
b jΨr

a

�
i

�
Ψs

bji [S1]

where the index i runs over all accessible nuclear configurations
in the thermal ensemble, the weight pi represents the probability
of the ith nuclear configuration, and the wave function jΦii is
given by the configuration interaction series with coefficients
cra, c

s
b and the Slater determinants jΨr,s

a,bii for which the indices
a, b run over the ground state orbitals and r, s run over the virtual
orbitals.
The reduced density matrix is constructed for the excited

electron by tracing out the contributions from all but one relevant
MO and is given in the space of virtual MOs by

ρe =
X

a,r,s
crac

sp
a jϕυ

r

��
ϕυ
s j. [S2]

Analogously, by tracing out all of the states occupied by electrons,
we arrive at the reduced density matrix for the hole,

ρh =
X

a,r
jcraj2jϕoc

a

��
ϕoc
a j. [S3]

The superscripts v and oc emphasize that the orbital is virtual or
occupied.
The mapping from MO basis to atomic basis is achieved by

the usual unitary matrix of MO coefficients. The observables
(O) are computed for the excited electron and for the hole
separately as

�
Oe=h

�
=Tr

�
Oρe=h

	
.

Following Barford et al. (13), the electron/hole localization length
Le/h is defined as the “radius of gyration” of the exciton wave
function

Le=h = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2ie=h − hni2e=h,

q
[S4]

where n = [1, 2, ..., 80] is a discrete coordinate corresponding to
the position of the π atoms within the polymer, and the averages
are performed using the density matrix ρe=h as hne=hi=Trðnρe=hÞ
and hn2e=hi=Trðn2ρe=hÞ.
QCFF/PI. Here we provide the minimal details of the method,
described previously in ref. 11, necessary for the discussion. The
ground state potential is divided into the classical Vσ and
quantum Vπ parts,

VTOT =Vσ +Vπ . [S5]

The classical part captures the dynamics of the nuclei, while the
quantum part represents the π electrons and includes the inter-
action between electrons and nuclei via electrostatic potential.
The dynamics were integrated using a generalization of the Ve-
locity Verlet algorithm (14), known as OVRVO, with the Mers-
enne Twister pseudorandom number generator (15). At each
temperature, the ensemble was constructed by picking configu-
rations from a 1-ns-long trajectory at 1-ps intervals. The trajec-
tory was seeded with an initial structure, taken from a separate
room-temperature trajectory.

Molecular Mechanics Force Field.An empirical force field describes
the mechanical interactions between all atoms in the simulated
system. The classical potential Vσ is composed of bonded (B) and
nonbonded (NB) interactions

Vσ =VB
σ,conj +VB

σ,conj−sat +VB
σ,UD +VNB

σ [S6]

where the subscript conj stands for the subset of atoms in the
systems which contribute electrons to the π network, sat refers
to saturated atoms, which are electronically inert, and UD
stands for the unique dihedral potential for the intermonomer
torsions. The bonded potential between conjugated atoms is
given by

VB
σ,conj =

X
i
e2αðbi−b0Þ − 2eαðbi−b0Þ

+ 1 =2
X

i
Kθðθi − θ0Þ2 +Fðqi − q0Þ2

+ 1 =2
X

i
K ð1Þ
ϕ cosϕi +K ð2Þ

ϕ cos 2ϕi

+
X

i
Kθ,θ′ðθi − θ0Þðθi′ − θ0Þcosϕi

[S7]

where the first term is a Morse potential, which captures the
bond stretching between two adjacent π atoms, with bi as
the position coordinate and b0 as an equilibrium bond length;
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the second term captures the angular bending with θi—the
angle defined by three directly bonded atoms—and qi—the
distance between the first and the third atoms with the force
constants Kθ,F, respectively. The torsional potential in the third
term describes the torsional angles ϕi formed by three consec-
utive bonds, with one-fold K ð1Þ

ϕ and twofold K ð2Þ
ϕ force constants.

The last term adds a contribution from the interaction of
pairs of two bending angles and the dihedral angle, sharing
a common bond.
The bonded potential is given by

VB
σ,conj−sat =

1 =2
X

i
Kbðbi − b0Þ2 + 2Db

+ 1 =2
X

i
Kθðθi − θ0Þ2 +Fðqi − q0Þ2

+ 1 =2Kð2Þ
ϕ cos  2ϕi,

[S8]

where Kb,Db are harmonic force constants, and Kθ,F and Kð2Þ
ϕ

are as before.
Finally, the uniquely defined torsional potential for the

torsional angles ϕT
j between the thiophene monomers is

given by

VB
UD =

X
j
KUD
1 cos

�
ϕT
j

	
+KUD

2 cos
�
2ϕT

j

	
[S9]

with the index j running over all intermonomer bonds.
The nonbonded term is given by

VNB
σ =

X
ij
Aije−μij rij −Bijr−6ij [S10]

where rij is the distance between two nonbonded atoms, and
parameters Aij, Bij, and μij determine the shape of interaction.
Most of the parameters for the classical force field were taken
from ref. 16, with the exception of the force constants associated
with the intermonomer dihedrals, for which the following values
were adopted: KUD

1 = 5.725 and KUD
2 = 0.11.

PPP Hamiltonian. The electronic part of the potential is given by

Vπ =
X

μν
Pμν

�
Hμν +Fμν

�
[S11]

where Pμν, Hμν, and Fμν are the elements of the bond-order
matrix P, the one-electron Core matrix H, and the Fock matrix
F, respectively, with the indices μ, ν running over the π atoms.
The bond-order matrix

Pμν = 2
X

ciμc
i
ν [S12]

represents the electronic overlaps between all pairs of π atoms,
with the index i running over the occupied molecular orbitals
(MOs), and ciμ, c

i
ν are the MO coefficients at atoms μ and ν. Fock

matrix elements are described by

Fμν =Hμν − 1 =2Pμνγμ,ν

Fμμ =Hμμ + 1 =2Pμνγμ,ν +
X

ρ≠μ
Pρργμ, ρ

[S13]

where the electron−electron Coulomb repulsion matrix elements
γμν are given by

γμ, μ = γ0μ, μ +Gse
−2μβ

�
Rμ, μ+1−R

eq
μ, μ+1

�
cos2

�
ϕμ, μ+1

�

+Gse
−2μβ

�
Rμ, μ−1−R

eq
μ, μ−1

�
cos2

�
ϕμ, μ−1

�

γμ, μ+1 =
e2

«
�
Rμ, μ±1 + aμ, μ±1

�+Gse
−2μβ

�
Rμ, μ±1−R

eq
μ, μ±1

�
cos2

�
ϕμ, μ±1

�

γμ, μ±1 =
e2

«
�
Rμ,μ±m + aμ,μ±m

�,m> 1

[S14]

with

aμ,ν =
e2

γ0μ,μ + γ0ν,ν
. [S15]

In the above, e is the charge of the electron, Rμυ is the interatomic
distance between two π atoms, and ϕμ,ν is the torsional angle used
to parametrize the disruption in π conjugation between π orbitals
of atoms μ and υ due to misalignment of π orbitals for a particular
arrangement of the nuclei. Furthermore, Gs is the Slater orbital
overlap matrix parameter (16) renormalized by the dielectric con-
stant « = 2.7; γ0μ,μ = I −A=« is calculated as the ratio of the differ-
ence between the valence ionization potential I and the electron
affinity A, and the dielectric constant of the medium, «.
The off-diagonal elements of the one-electron core matrix H

are treated at the level of Hückel theory

Hμν = β0μν cos
�
ϕμ,ν

�
, [S16]

where μ, υ are restricted to the nearest neighbors and β0μν is the
electronic resonance parameter. The Hückel parameters at per-
fect conjugation are given by

β0μν =
Z2

meRμν

dSμν
dRμν

, [S17]

where Z is the reduced Planck’s constant, me is the electron mass,
and Sμν is the overlap integral of the pz orbitals for atoms μ and ν.
These are approximated by the Linderberg expression

β0μν = e−ζμνðRμν−R
eq
μνÞ�βμν1 + βμν2

�
Rμν −Req

μν

		
[S18]

fitting Eq. S16 using ζμν, β
μν
1 , and βμν2 parameters.

The diagonal elements of H are given by

Hμμ = αμ −
X

ρ≠μ
Zργμρ, [S19]

where αμ represents the valence ionization parameter at the
atom μ, while the electron−core repulsion is given by the second
term, with Zρ—the nuclear charge on atom ρ (equal to the num-
ber of π electrons this atom contributes). The MO coefficients
then follow from the self-consistent field calculation.
The parametrization of the PPPHamiltonian was adopted from

previous work by the Rossky group; for a complete list of pa-
rameters, see the supplementary materials in refs. 17 and 18, with
the exception of S (Sulfur), for which the following parameters
were used: γ0μμ = 9.79=«eV , α0μ =−20.0eV ,Gs = 8.16=«, μβ = ζCS =

1.54Å
−1
,Req

CS = 1.41Å, βCS1 =−2.12eV, βCS2 = 1.31eV=Å.
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Fig. S1. Normalized absorption (dashed lines) and PL spectra (solid lines) of P3HT16 (red) and P3HT144 (blue) dissolved in chloroform in comparison with
PDOPT16 (green) and PDOPT89 (black) dissolved in n-hexadecane. All spectra were measured at room temperature. The concentrations were 5 μM for P3HT16, 0.5 μM
for P3HT144, 3 μM for PDOPT16, and 0.3 μM for PDOPT89. In absorption, the redshift of around 2,000 cm−1 between the maxima of P3HT and PDOPT already indicates
a more planar ground state conformation of PDOPT in solution.
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Fig. S2. Low-temperature PL spectrum of a single isolated PDOPT89 chain embedded in n-hexadecane. (Top Left) Two-dimensional representation of a stack
of 200 sequentially acquired spectra with an integration time of 2 s per spectrum. Between two successively recorded spectra, the polarization of the excitation
light was rotated by 2.75°. As vertical axis, we display the measurement time; the horizontal axis is the photon energy, and the PL intensity is color-coded.
(Bottom) PL spectrum averaged over the full acquisition time of 400 s. The asterisks mark two additional weak ZPLs. (Top Right) PL intensity of the main ZPL,
spectrally integrated from 16,720 to 16,865 cm−1 (gray box) as a function of the polarization angle. The gray line is a cos2 fit to the data.
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Fig. S3. Low-temperature single-chain PL spectra and ZPL statistics of A, E, and I) PDOPT16 (green), (B, F, and J) PDOPT89 (black), (C, G, and K) P3HT16 (red),
and (D, H, and L) P3HT144 (blue). (A−D) Representative single-molecule spectra, (E−H) distributions of ZPL widths (FWHM), and (I−L) distributions of spectral
positions of the ZPLs. In A–D, the chemical structures are shown as Insets. Data for P3HT were taken from ref. 1. n, mean number of repeating units.

1. Raithel D, et al. (2016) Emitting species of poly(3-hexylthiophene): From single, isolated chains to bulk. Macromolecules 49:9553–9560.
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Fig. S4. Extracting the Huang−Rhys parameter from (sub)ensembles of matrix-isolated polythiophene chains embedded in n-hexadecane at T = 1.5 K. Both
spectra are corrected for the photon density of states; thus the Huang−Rhys parameters can be determined from the ratios of peak areas. (A) PL of matrix
isolated PDOPT89 (black), fitted with a sum of two Lorentzian functions (red). We find I0–1/I0–0 = S = 1/Rem = 0.37 and thus Rem = 2.7. (B) PL of a subensemble of
P3HT144, i.e., the sum of 11 single-chain spectra, yields a Huang−Rhys factor of S = 0.77 ± 0.03 and thus a peak ratio of Rem = 1.3 (±0.05). The error stems from
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ABSTRACT: As-cast and slowly crystallized films of con-
jugated polymers can contain (partially) ordered and less
ordered (amorphous) regions with structural defects. Crystal-
lization allows to generate chains with highly planarized
backbones, embedded in structures exhibiting long-range
order. In the present study, we used spatially resolved optical
spectroscopy to quantify differences in the degree of order of a
bulky substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT). In particular, we compared absorption and photo-
luminescence (PL) measurements from large spherulitic crystals, and the same region rapidly recrystallized after melting, which
allowed to identify characteristic features of ordered and less ordered regions. In addition, on the basis of temperature-dependent
absorbance and PL measurements, we followed in situ melting and recrystallization processes, i.e., transitions between ordered
and disordered phases. A multipeak analysis of absorption and PL spectra based on a modified Franck−Condon progression
showed changes in for example the relative intensities of each peak, the excitonic bandwidth, and the vibronic energy as a
function of temperature. Most importantly, at the phase transition temperature, a clear change in the positions of the peaks (i.e.,
their wavelengths, corresponding to the energy of the emitted photons) was detected. In particular, the relative absorption and
PL intensities depended sensitively on the extent of order within PDOPT samples. Furthermore, on the basis of a comparison
with calorimetric measurements, we have confirmed correlations between changes in the relative absorbance and PL intensities
with variations in order/disorder occurring during melting and recrystallization.

■ INTRODUCTION
In order to understand optoelectronic properties of conjugated
polymer systems and to establish ways for enhancing their
performance in optoelectronic applications, previous studies
have measured absorption and emission spectra as a function of
packing and order in thin films.1−7 To a large extent, optical
properties of conjugated systems are determined by intra- and
interchain interactions,8,9 which also strongly influence energy
and charge transfer. A conjugated polymer chain can be viewed
as a system of many coupled chromophores. Although the
contour length of a polymer chain may be more than 100 nm,
the presence of disorder of different kinds leads to localization
of the exciton wave function on a smaller sequence of the
polymer chain, to the ultimate extent that each individual
chromophore along a polymer chain may act as an
(independent) emitter. For instance, in a solution of poly-
(phenylenevinylene) (PPV), excitons are localized on segments
with a size range of 5−10 monomer units, corresponding to a
typical length of ca. 3−6 nm.10 Hence, because of variations in

the degree of delocalization of the exciton along the chain,
emission from a long polymer chain will generally have a broad
spectrum resulting from a superposition of individual spectral
lines.10 Depending on the extent of delocalization, emission
ranges from rather short (blue) to long (red) wavelengths. In
addition, the wavelength of emitted photons detected in a
photoluminescence (PL) experiment is influenced by the
nature of the morphology, solvent, concentration, and temper-
ature.11−14 In particular, the formation of highly ordered
structures is meant to planarize the chains and to reduce the
number of defects, e.g., due to twisting of the backbone, and
hence to increase the conjugation length.15,16 In addition,
crystallization may cause a change of intermolecular distances
and thus may affect the electronic and vibrational coupling of
chromophores. Hence, crystallization may give rise to changes
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in the energy levels and energy transfer processes and thus in
the optical properties of the conjugated polymer.
Having said that, large intermolecular spacing and corre-

spondingly weaker intermolecular interactions may also have a
significant influence on molecular ordering. Bulky side chains
attached to conjugated polymers may separate the polymer
backbones from each other, and this can lead to changes of the
final optoelectronic properties of these materials. Except for a
few recent reports,6,14,17−20 a clear understanding of the
relationship between ordering of molecules with bulky side
chains, the resulting morphology, and optoelectronic properties
of conjugated systems having a large interchain separation
distance (>1 nm), and thus no π−π interactions, has yet to
emerge. Recently, large spherulites of poly(3-(2,5-
dioctylphenyl)thiophene) (PDOPT) were reported.1,19 Ac-
cording to previous studies, the bulky dioctylphenyl side groups
separate the thiophene backbones of PDOPT by ca. 1.47
nm.1,6,17,19 Hence, π−π interactions do not play an important
role in PDOPT.1,12,14 Moreover, the weakened interchain
interactions in PDOPT lead to a much lower melting
temperature as compared to poly(3-hexylthiophene)
(P3HT)16 and most other polythiophenes.16 Large interchain
separation can also strongly affect the photoluminescence
quantum efficiency (PLQE), i.e., the ratio of the number of
emitted photons to the number of absorbed photons, of
conjugated systems.6,17,21,22 Polythiophenes for which the
electronic energy gap is increased by steric hindrance show
low PLQE, in both film and solution. This low PLQE originates
from a nonradiative decay of excited states.17,22

Morphology-induced thermochromism is a frequently
encountered phenomenon in conjugated polymers. It was
first observed when studying the fluorescence from poly-
diacetylene in solution.11 In polydiacetylene, depending on
temperature, the relative emission intensity was high either
from a high-energy state (blue phase) or from a lower-energy
state (red phase). Temperature-dependent PLQE of poly(9,9-
dioctylfluorene) (PFO) films with different morphologies
showed that PLQE depended on morphology.2

In most theoretical treatments of the electronic properties of
polymer aggregates, it is assumed that every noninteracting
chromophore can be represented by individual, well-defined (S0
→ S1) electronic transitions.23 Vibronic progression peaks,
observed in both absorption and PL spectra, accompany these
electronic transitions. These vibronic progression peaks result
from coupling to vibronic wave functions of the ground state
and excited states. Often, the most intense peak is represented
by the transition which takes place between the lowest energy
level in the excited state and the zero vibronic level in the
ground state for both emission and absorption (the so-called
0−0 transition).
If crystallites of conjugated polymers are formed, and thus

interchain interactions (between chromophores) are consid-
ered, electronic excitations become delocalized over several
chromophores; i.e., exciton manifolds form. As a consequence,
both the absorption and emission spectra shift and the vibronic
progression become distorted with respect to that of the spectra
of the noninteracting chromophores.24−27 In the resulting
emission spectra, the change of the 0−0/0−1 ratio character-
izes the degree of order in the crystallites. In the absorption
spectra, the corresponding peak ratio is a measure for the
strength of the interchain interactions. Hence, the energy
distribution in the excited state is a fundamental property of an
ensemble of chromophores constituting an organic semi-

conductor, which is controlled by interactions between
chromophores. Manifestations of the latter are changes in the
optical spectra as well as modified charge and energy transfer
rates that are of paramount importance to the operation of
optoelectronic devices.28

In this study, we performed temperature-dependent optical
spectroscopy on as-cast thin films and spherulitic crystals of
PDOPT in order to understand, in particular, the relationship
between emission probability and changes in morphology from
ordered crystalline regions to disordered molten chains.
Specifically, we focused on properties of highly ordered
polymer chains resulting from crystallization and the changes
induced by melting. Crystallization of PDOPT is expected to
planarize the backbone, thereby increasing the effective
conjugation length. In our system, we observed distinct
differences in optical spectra obtained from slowly formed
spherulitic crystals and the same molecules after melting. In
addition, we correlated PL spectra with calorimetric data in
order to establish a relation between thermal and optical
properties.

■ EXPERIMENTAL DETAILS
Materials and Preparation. Poly(3-(2,5-dioctyl phenyl)-

thiophene) (PDOPT) (Figure 1) was synthesized through Kumada

catalyst transfer polycondensation.1 The weight-average molecular
weight (Mw) of the PDOPT sample used was 28 kg/mol with a
dispersity Đ = 1.86. All studied samples were prepared from a 3.3 mg/
mL PDOPT solution in toluene. To ensure complete dissolution, the
vial was placed in an oil thermostat at an elevated temperature of 60
°C for 10 h. A thin film of thickness 200 nm was made by casting
approximately 10 μL of this hot solution of PDOPT on 1 cm2 glass or
silicon substrates, which earlier were carefully cleaned in an ultrasonic
bath at 45 °C for 15 min using acetone, followed by a 30 min
treatment in a UV-ozone chamber.

Isothermal Crystallization of Pristine PDOPT Films. Large
spherulitic crystals were grown via isothermal crystallization from
molten films. First, to erase memory effects, films were brought to a
temperature well above the nominal melting temperature Tm of
PDOPT (Tm ≈ 115 °C), i.e., to 150 °C for ca. 2 min.1 Sample
temperature was controlled to a precision of ca. 0.1 °C by a hot stage
purged with nitrogen (Linkam Scientific Instruments, UK). Then, the
sample was cooled to selected crystallization temperatures Tc (e.g., to
Tc = 100 °C) at a rate of 10 °C/min and isothermally crystallized for
up to 50 h. Highly birefringent large spherulitic crystals (Figure 2a)
were formed. The size of the spherulites varied from 10 μm to more
than 250 μm in diameter, depending on when nucleation occurred
during the crystallization process (see Figure S1a).

Optical Microscopy and Spectroscopy. To characterize the
morphology of the spherulitic crystals formed, optical micrographs
were taken using a Zeiss Axio 100 microscope. In order to gain insight
into the origin of the optical properties, spatially resolved (with a
diameter of 10 μm for the detected area) absorption and PL spectra
were recorded on different regions in as-cast films and spherulitic

Figure 1. Schematic representation of the chemical structure of
poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT).
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crystals, enabling the identification of contributions from different
regions of order and different morphologies to optical spectra.
Absorption measurements with a USB 2000 Ocean Optics
spectrometer and Ocean Optics optical fibers were performed in
combination with the Zeiss Axio 100 microscope, allowing for such
localized measurements. In situ photoluminescence spectra were taken
as a function of temperature in order to gain insight into how a change
from an ordered crystalline phase (spherulitic crystal) to a disordered
molten phase is reflected in optical properties. As light source for PL
measurements, we used an Ocean Optics TS-LED light source
combined with a filter set having a band-pass for the incident light
ranging from 450−500 nm, a long pass starting at 500 nm for the
emitted light, and a beam splitter with 99% transmission above 500 nm
(all filters were purchased from AHF analysentechnik AG, Tübingen,
Germany). In this study, while absorption spectra were collected in
transmission mode, PL spectra were collected in reflection mode using
an optical fiber of diameter 200 μm and a 20× objective of the Zeiss
Axio 100 microscope (see also Figure S7).

■ RESULTS AND DISCUSSION

Morphology of PDOPT Crystals. When observed under
crossed polarizers at room temperature, the spherulitic crystals
showed the characteristic Maltese cross,29 indicating a pattern
of radially oriented crystalline lamellae (Figure 2a). The high

molecular order within the lamellae resulted in strong
birefringence. The edges of the spherulitic crystals were not
sharp but rather diffuse, indicating that lamellae grew in parallel
but with some lag time. The absorption image (Figure 2b)
clearly showed that only lamellae in the direction orthogonal to
the polarization direction of the incoming light were strongly
absorbing. Accordingly, emission was only observed in regions
where absorption was occurring (Figure 2c). Interestingly,
emission from the spherulitic crystal was less than from the
surrounding quenched and thus rapidly crystallized film.

Melting: A Phase Transition from Order to Disorder.
Optical Microscopy. PDOPT spherulites exhibited a clear
anisotropy (see Figure 2), demonstrating that the transition
dipole moment of PDOPT (along the chain, i.e., c-axis) in
spherulitic crystals was perpendicular to the radius. Optical
micrographs with crossed polarizers (i.e., birefringence images)
taken during the heating process (Figure 3) also showed this
anisotropy. However, the birefringence intensity from the
spherulitic crystals decreased with increasing temperature and
disappeared upon melting of the spherulitic crystal. The
corresponding PL images in Figure 3 from the central
spherulite showed an analogous behavior. Interestingly, at 30
°C, PL emission was more intense in the film surrounding the

Figure 2. Optical micrographs (a) under crossed polarizers (indicated by the white arrows) showing strong birefringence and (b) of absorption and
(c) of emission upon excitation with polarized light (polarization direction is indicated by the horizontal white arrows) for a spherulitic crystal grown
at 100 °C for 50 h in a molten thin film (ca. 200 nm) of PDOPT. All micrographs were taken after the sample was quenched to room temperature;
i.e., the surrounding molten film was rapidly crystallized. The scale bar indicates a length of 50 μm.

Figure 3. First and third rows show the birefringence from a spherulitic crystal during heating from 30 to 125 °C. The second and fourth rows show
the corresponding PL images, when the spherulite was excited by light polarized in the direction indicated by the white arrows. The crystal was
grown at 100 °C for 50 h. The scale bar indicates a length of 20 μm.

Macromolecules Article

DOI: 10.1021/acs.macromol.7b01080
Macromolecules 2017, 50, 6829−6839

6831



spherulitic crystal. However, the relative intensity of emission
from the spherulitic crystal increased with increasing temper-
ature until it matched the intensity of the surrounding film at
around 125 °C, when the spherulite was molten completely.
This temperature-dependent change of optical properties, i.e.,
the thermochromic behavior observed in PL, can be directly
mapped to melting of the spherulite, i.e., a change in
morphology. Interestingly, fully consistent with the well-
known Hoffman−Weeks relation of polymer crystals, i.e., the
dependence of melting temperature of a polymer crystal on its
crystallization temperature,30 the film surrounding the spher-
ulite (which crystallized upon quenching the sample to room
temperature) showed the thermochromic change in the PL
spectrum reflecting the melting process at a ca. 11° lower
temperature.
Temperature-Dependent Absorption Spectra. To gain

further insight into the influence of molecular conformation
and order on the photophysical properties of PDOPT
spherulites, we studied in situ changes in absorption spectra
while heating the PDOPT spherulites from 30 to 150 °C and
subsequently cooling of the melt back to 30 °C, both at a rate
of 2 °C/min. The corresponding absorption spectra measured
with 10 μm spatial resolution at the position of a spherulite are
shown in Figure 4a for the heating process and in Figure 4c for
the cooling process from the melt.

The absorption spectrum of the spherulite at 30 °C (Figure
4a, black) showed three distinct peaks between 2.12 and 2.5 eV
and a broad shoulder at higher energies around 2.6 eV. Upon
heating the sample, the intensity of the lower-energy peaks
dropped and peak positions shifted to higher energies. Above
the nominal melting temperature of around 120 °C (see also
Figure 3), only the higher-energy contribution survived. In the
subsequent cooling process, absorption at higher energy
prevailed down to about 75 °C. Below 75 °C, structured
absorption features started to dominate once more at lower
energies. The spectrum of the sample cooled back to 30 °C
looked qualitatively very similar to the initial 30 °C spectrum
before heating, but with significantly higher absorbance.

It should be noted that the spherulites were grown by slow
isothermal crystallization of PDOPT and grew in the radial
direction. The PDOPT chains arranged in a well-ordered
fashion into radially growing lamellar crystals, with the polymer
backbones being oriented perpendicular to the growth
direction,6,19 giving rise to clearly observed anisotropy under
crossed polarizers (see Figures 2 and 3). The space in between
these lamellar crystals contained disordered chain segments (or
chain ends).31 Both the shape of the 30 °C absorption
spectrum of the PDOPT spherulite and the sample
morphology (crystalline lamellae intertwined with disordered
regions) were similar to that found for semicrystalline films of
the prototypical poly(3-hexylthiophene).32−34 Hence, we
attribute the 30 °C spectrum from a PDOPT spherulite to a
superposition of absorption from a lower-energy (2.12−2.5 eV)
crystalline phase with reasonable interchain interactions that
features a distorted vibronic progression with a peak spacing of
about 170 meV and a broad unstructured absorption from a
disordered phase, dominating at higher energies around 2.6 eV.
Upon heating, the spherulitic structure of PDOPT disappeared
above ca. 120 °C. At higher temperatures, exclusively the
spectrum from the disordered melt prevailed, which closely
resembled that of a dilute solution (see later, Figure 9),
suggesting a loss of significant interaction between PDOPT
chains. After rapid cooling from the melt, PDOPT recrystallized
at around 75 °C, as evidenced by the reappearance of the
corresponding peaks at lower energies in the absorption
spectrum. Yet, formation of macroscopic spherulites did not
occur, as demonstrated under polarized illumination (see
Figure S1c), where no significant anisotropy in PL was
observed. Hence, a semicrystalline film was formed containing
randomly oriented nanometer-sized crystallites embedded in a
matrix of disordered polymers.
The similarity between PDOPT and P3HT with respect to

the spectral shape and position of the crystalline absorption
(relative to that of the disordered contribution) suggested that
PDOPT crystallites form H-type aggregates both in iso-
thermally grown spherulites and in semicrystalline films after
rapid cooling from the melt. At first glance, this observation
might be surprising as in contrast to P3HT, there is no π−π
stacking in PDOPT, suggesting that crystallization was driven
by side-chain interactions.6,19 The crystal structure of PDOPT
features a distance of 1.47 nm between backbones in π−π
stacking direction, while the smallest backbone−backbone
distance is about 0.55 nm, measured perpendicular to the
stacking direction of backbone planes.6,19 However, it is
important to realize that the appearance of H-type spectra
does not require π−π stacking. The transition dipole moments
that are oriented along the PDOPT backbone only have to be
arranged in a parallel fashion with respect to each other to give
rise to a positive interchain interaction characteristic of H-type
structures.35 For PDOPT, the interchain coupling is therefore
almost exclusively determined by the smallest backbone−
backbone distance perpendicular to the π−π stacking direction.
Hence, using the framework for H-type spectra put forward by
Spano and co-workers,36,37 an analysis of the contribution to
the absorption resulting exclusively from crystalline regions was
possible (see also Figure S4).
Such quantitative analysis of the absorption spectra required

a “deconvolution” of the contributions from disordered and
crystalline regions. In short, we assumed that absorption at 125
°C (or at higher temperatures T) stemmed solely from
disordered chains in the melt. Scaling this contribution to the

Figure 4. Optical absorption and PL spectra of a spherulitic crystal
showing (a, c) absorbance and (b, d) emitted photons during (a, b)
heating and (c, d) cooling at a rate of 2 °C/min. The numbers in blue
represent temperature in °C (for curves measured at additional
temperatures, see Figures S8 and S9). Note that during these
measurements the number of molecules interacting with light was
always constant.
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absorption spectrum to the high-energy tails of the spectra
measured for T < 120 °C (for a heating run) and T < 70 °C
(for a cooling run), and subtracting this so-adjusted
contribution, allowed us to extract the part of the absorption
spectrum resulting from the crystalline regions, as illustrated in
Figure 5.32−34

To comply with Spano’s notation, the peaks of this latter
spectrum were labeled Ai (i = 1, 2, 3, ...) in order of increasing
energy. The crystalline absorption was then fitted by a modified
Franck−Condon (FC) progression (see eq 1) put forward by
Spano and co-workers.36,37
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Here, A(E) is the intensity of absorption, S is the Huang−Rhys
parameter of disordered chains (S = 0.7), and the vibrational
energy Ed = 167 meV (1350 cm−1) of the effective carbon-
stretching mode was extracted from solution spectra with a
standard FC progression (see Figure S3). The remaining free
parameters are the vibrational quantum number m, the free
exciton bandwidth W (related to the interchain electronic
coupling J by W = 4J), the transition energy EA1

of the lowest-

energy peak A1, and the width σA1
of the Gaussian line shape

functions. Note that we used a modified version of the fitting
function proposed by Spano et al. in order to allow for a
different (narrower) Gaussian line width σA1

of the absorption
peak A1 compared to the line width σ of the absorption peaks
Ai (i > 1). As shown in detail in Figure S4, this modification
significantly enhanced the quality of the fits. This modified
Franck−Condon progression was fitted to all deconvoluted
crystalline absorption spectra, for both heating and cooling
runs. The resulting temperature-dependent evolution of the

relevant fitted parameters is displayed in Figure 6a−c, i.e., the
free exciton bandwidth W, the center energy EA1

and width σA1

of the A1 peak versus temperature (red symbols: heating; blue
symbols: subsequent cooling).

During the process of heating PDOPT spherulites, the free
exciton bandwidth W, the A1 peak position EA1

, and its line

width σA1
increased rather steadily from 50 to 87 meV (W),

from 2.109 to 2.142 eV (EA1
), and from 53 to 56 meV (σA1

),
respectively. These changes in absorption from the crystalline
regions clearly indicated an increasing degree of structural and
electronic disorder up to the melting temperature (reached at
ca. 120 °C, for the spherulite).6 It has been shown that the
backbones of PDOPT chains in crystallites are fully planar at
room temperature.6 Increasing temperature activates torsional
degrees of freedom of the backbone, and thus deviations from
planarity become more and more evident. For an isolated and
disordered chain, this effect gives rise to a localization of the
wave function of intrachain electronic excitations. In an H-type
crystalline arrangement, this temperature-activated localization
results in a stronger interchain electronic interaction and thus
in a larger free exciton bandwidth (W).38,39 Upon heating,
thermal expansion of the crystalline lamellae in the spherulite
gives rise to an increasing interchain distance and thus a
decreasing W. In a previous work, upon heating the interchain
distance was found to increase by ≈3%.17 Hence, this effect can
be neglected. Importantly, our value for the free exciton
bandwidth W of around 50 meV at 30 °C is substantially
smaller than the value found for crystalline P3HT at room
temperature, which is up to 120 meV, depending on processing

Figure 5. Extraction of the contribution to the measured spectrum
(black) resulting from the aggregated phase of PDOPT at 30 °C. The
spectrum of the disordered, molten film at 125 °C (red) was scaled to
the high-energy tail of the 30 °C spectrum (black). The difference
curve (blue) is taken for further fitting.

Figure 6. Results of the fits to the temperature-dependent
contribution of crystalline domains to the absorption spectra: (a)
Free exciton bandwidthW, (b) energy EA1

and (c) line width σA1
of the

A1 peak, evaluated for 30−120 °C for heating (red symbols) and for
30−70 °C for cooling (blue symbols). (d) Heat flow curve for heating
and cooling spherulitic crystals at a rate of 2 °C/min, prepared in an
aluminum cap by crystallizing the molten polymers at Tc = 100 °C for
50 h (see Figure S6). The red and the blue curves represent heating
and cooling, respectively.
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conditions.4,33,37 This substantially larger value of W for P3HT
is related to the smaller backbone−backbone distance as
compared to PDOPT (0.38 nm for π−π stacked P3HT and
0.55 nm for PDOPT).
The blue-shift in the A1 peak position EA1

was partly caused
by the increase in W from 50 to 87 meV (from 30 to 110 °C)
because the upper (absorbing) exciton state in the lowest
energy exciton band shifts to higher energy with larger W.
However, this effect was not large enough to account for the
observed peak shift of 32 meV (from 2.109 to 2.141 eV)
because the width of the lowest exciton band is given by W·
e−S,26 with the Huang−Rhys factor S = 0.7 for an isolated,
disordered chain. A further contribution to the blue-shift of EA1

arises from the increasing localization of intrachain wave
functions due to increasing structural disorder, as discussed
above. Moreover, upon heating the sublattice of the dioctyl-
phenylene side groups will eventually melt as well and thus lose
its perfect order. As a consequence, the local dielectric
environment for the polymer backbones changes. The resulting
different local polarization energy may contribute to the shift of
EA1

to higher energies (similar to a recent observation for
P3HT34).
In addition to this increasing intrachain (and thus intra-

crystallite) disorder that modified W and EA1
as a function of

temperature, the line width σA1
of the A1 peak increased

continuously up to 70−80 °C and then reached a plateau. This
inhomogeneous width σA1

is determined by disorder between
different crystallites probed in our measurement, implying that
intercrystallite disorder did not change anymore above ca. 80
°C (despite high spatial resolution of 10 μm, we still probe
many crystalline lamellae within the detected area inside the
spherulite).
The temperature-dependent absorption spectra upon heating

suggested that the melting of a spheruliteor more precisely of
the crystalline lamellae arranged within the spheruliteis a
rather continuous process over a wide temperature range, in
which the structural and thus electronic order is being
continuously reduced until it is lost completely at the melting
temperature of ca. 120 °C.
Upon cooling from the melt, signs of absorption from

crystalline regions reappeared at around 75 °C. However, no
(macroscopic) spherulites but many randomly arranged small
crystallites were formed. Below 75 °C, both W and EA1

were
consistently higher with respect to the corresponding values at
the same temperatures upon heating the spherulite. This
difference suggests that the crystallites formed upon cooling
from the melt did not possess the same degree of structural
perfection as the crystalline lamellae in the initial spherulite,
slowly grown at 100 °C for 50 h. Caused by the rather fast
cooling process, chains did not have enough time to re-form the
better ordered macroscopic spherulitic structure. In fact, the
higher energy EA1

after cooling is consistent with the recent
observation of a more blue-shifted absorption of as-cast
semicrystalline (rapidly quenched) PDOPT films as compared
to the spherulite absorption,19 which further supports our
interpretation of the formation of less perfectly crystalline films
upon rapid cooling and recrystallization. The inhomogeneous
line width σA1

is identical before and after melting, implying that
disordered segments between lamellar crystals in a spherulite

are not differing much from disordered segments between
lamellar crystals in rapidly crystallized films.
It is now interesting to compare the changes in these spectra

with the corresponding variations in thermal properties as
determined by differential scanning calorimetry (DSC) (Figure
6d). Upon heating (red curve), a cold crystallization peak
appeared around 80 °C. This peak indicates that even after 50 h
at Tc = 100 °C not all parts of the sample were completely
crystallized (see also Figures 2 and 3, where the spherulites are
surrounded by regions which only crystallized upon quenching
the sample to room temperature). Alternatively, some
reorganization of molecules, which may not have been aligned
appropriately in the spherulite structure, may have occurred.
Such reorganization is consistent with the observed plateau in
the σA1

line width (i.e., the constant intercrystallite disorder)
above 70 °C. At around 115 °C, DSC indicated the melting of
the spherulites. The melting peak from DSC agreed with the
disappearance of the crystalline absorption; i.e., any long-range
order and thus electronic interchain interactions were lost upon
melting. Upon cooling, the DSC curve (Figure 6d, blue line)
showed the recrystallization peak at around 50 °C. This low
temperature may appear to be in conflict with the higher
recrystallization temperature of ≈70 °C observed in the
absorption spectra (appearance of a low-energy peak at around
2.14 eV). Tentatively, this difference may be attributed to a
higher (re)nucleation probability in the region of molten
spherulites, as randomization of chain conformations requires
time and some polymers may “remember” their ordered states
for times longer than the characteristic relaxation time.40,41

Correlations between thermal and optical properties in
crystalline regions are probably related to the rather long-
range nature of electronic interchain interactions between
thiophene backbones, as demonstrated recently,38,42 that have a
strong impact on the shape and position of optical spectra.
Hence, spatially resolved optical spectroscopy can be used to
study melting and recrystallization of polythiophenes.

Temperature-Dependent Photoluminescence Spectra. To
gain further insight into the influence of molecular
conformation and order, we additionally studied in situ changes
in emission spectra when increasing or decreasing temperature
at a rate of 2 °C/min, focusing in particular on the processes of
melting of spherulites grown via isothermal crystallization at
100 °C (Figures 2 and 3) and their subsequent recrystallization.
The emission spectra from a PDOPT spherulite measured with
nonpolarized light in reflection mode with a spatial resolution
of 10 μm are shown in Figures 4b and 4d. During heating and
cooling, a spectrum was recorded after typically a temperature
change of 5 °C. At room temperature, the emission spectra
allowed to identify clearly three peaks,4,34 with a suppressed 0−
0 emission peak which is characteristic for PL of H-type
crystallites that could be associated with a distorted single
Franck−Condon progression.43 With temperature increasing
up to 120 °C, we observed a significant increase of the overall
intensity, followed by a (small) decrease in intensity and the
emergence of new peaks in higher energy regions at higher
temperatures. These high-temperature spectra closely resemble
PL from solution (see later, Figure 9) with its dominating 0−0
emission, in agreement with the loss of order in the melt.
Furthermore, from Figures 4b and 4d, we can observe a
significant broadening of the PL peaks at elevated temperatures.
Melting of the spherulitic crystal led to a significant increase

of emission intensity of the PDOPT structures (Figure 4b).
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Above 120 °C, there is increased PLQE due to increasing
disorder (decreasing H-type character). It should be noted that
disorder breaks the symmetry of (weakly) interacting
molecules, allowing for 0−0 emission.25 For ideal H-aggregates
at 0 K, 0−0 emission is forbidden by symmetry rules of
emission.25−27,44 Increasing disorder (e.g., by increasing
temperature) allows for 0−0 emission and thus gives rise to
an overall increase in PL intensity. The spectra of Figure 4b
showed that for increasing temperature the emission intensity
increased, with a bias toward higher energies, a signature which
we tentatively attribute to increasing disorder,14,18,45,46 in
agreement with the absorption data presented above.
In order to determine more quantitatively the corresponding

changes in the PL spectra with temperature and to identify the
origin of the PL peaks, in an approach fully consistent with the
discussion on absorption data, we used the framework of
analysis developed by Spano and co-workers.4 In the
deconvolution of absorption spectra, it was argued that analysis
of the contributions from crystalline regions (aggregates) in
PDOPT was only possible using the H-aggregate type spectra.
For the analysis of the emission spectra, we therefore also
adopted the H-type model. The peaks of the emission spectra
were labeled from highest energy to the lowest energy as Li (i =
1, 2, ...). Each emission spectrum was therefore fitted with the
modified Franck−Condon progression (see eq 2) as suggested
by Spano and co-workers.4
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where nf is the real part of the refractive index, ℏω is the photon
energy, L(ω) is the intensity of emission, m denotes the
vibrational quantum number, S is the Huang−Rhys factor for
the dominant carbon bond stretch mode of disordered chains
(S = 0.70), EL1 is the 0−0 transition energy, Ed (= EL1 − EL2) is
the CC symmetric stretching vibration coupling of electronic
transition (ca. 0.16 eV), Γ is the line shape function (Gaussian
with constant width), and α gives the “suppression” factor for
the 0−0 emission peak. Note that for simplicity we used eq 2
also to fit the high-temperature PL spectra above 120 °C,
although there was no emission from H-type crystallites
anymore. In this situation α approaches 1, yielding a nearly
undistorted vibronic progression as expected for the emission
of a disordered ensemble.
Based on eq 2, the modified Franck−Condon progression

was fitted to all PL spectra for both heating and subsequent
cooling (see Figure S5). Figures 7a−d represent the resulting
temperature-dependent evolution of some of the fitted
parameters, i.e., the peak position EL1 and the width σL1 of
the L1 peak, the variation of the vibronic energy Ed (C−C
stretching mode), and amplitude IL1 of the L1 peak during the
heating and cooling cycle.
A closer look at the evolution of these parameters with

temperature (EL1, σL1, Ed, and amplitude of IL1) showed a steady

increase from 2.024 to 2.117 eV (EL1), from 47 to 83 meV

(σL1), from 0.154 to 0.1705 eV (Ed), and from 0.314 to 0.66

(IL1), as temperature increased from 30 to 150 °C (Figure 7a−

d). Figure 7d revealed a steady increase of the intensity IL1 up to
around the nominal melting temperature of PDOPT. This
could be attributed to an increasing degree of thermally
induced structural disorder, in line with the absorption data.47

The peak position EL1 (Figure 7a) increased steadily and
changed only by 20 meV up to ca. 110 °C, where a steep
increase was observed, shifting the peak by ca. +70 meV, which
reflects the transition from crystalline H-type to amorphous
(solution-like) PL spectra. Likewise, during the cooling process
(Figure 7a), a reverse transition could be observed at ca. 70 °C,
where the peak positions also changed by ca. −70 meV. It
should be noted that the observed transitions at ca. 110 °C and
ca. 70 °C were at temperatures close to the nominal melting
and crystallization temperatures, in agreement with absorption
data (Figure 6). The variations in vibronic energy Ed during
heating and cooling cycles could be associated with the varying
degree of order of the emitting crystalline lamellae.48,49 The
relative increase in emission intensity of the 0−0 peak L1 with
temperature is a typical characteristic of disorder in H-
aggregates systems.25 The line width σL1 (Figure 7b) increased
steadily with temperature increasing from 30 to 150 °C and
followed a reverse trend during the cooling cycle. The
increasing (decreasing) line width σL1 during heating (cooling)
is a signature of increasing (decreasing) disorder. Interestingly,
at room temperature, both before the heating and after the
cooling cycle, Ed and σL1 were quite similar, indicating that the
degree of disorder of the emitting crystallites is very similar in
both situations, as explained above.
A comparison of peak positions and maximum intensity of all

the peaks L1, L2, L3, and L4 showed that at temperatures below
the melting transition all peaks hardly changed their position
(only a rather small increase by about 20 meV could be
observed). However, at temperatures above ca. 120 °C, there
was a clear change in position by over +70 meV (Figure 8a,b).
This confirms that the energy of a peak is a function of

Figure 7. Results of the fits to the temperature-dependent PL spectra.
(a) Peak position EL1

and (b) line width σL1
of the L1 peak, (c) vibronic

energy Ed, (d) relative amplitude IL1
of the L1 peak for the heating (red

symbols) and cooling (blue symbols) cycle, respectively, and (e) heat
flow curve for heating (red) and cooling (blue) spherulitic crystal (see
also Figure 6d and Figure S6).
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temperature. The maximum peak intensity of L2 dropped
relative to L1, with the peak intensity ratio R = IL1/IL2 changing
from R < 1 for temperatures less than ca. 110 °C to R > 1 for
temperatures above ca. 120 °C during the heating cycle (Figure
8b,c).
Comparing Optical Properties of PDOPT As-Cast Thin

Films and Spherulitic Crystals. Figure 9 compares spatially

resolved (detecting a small circular area having a diameter of 10
μm) absorption and PL spectra, collected at room temperature
from an as-cast film and from a region within a spherulite. We
observed qualitatively similar spectra for both samples,
characterized by broad peaks and a small red-shift of ca. 0.02
eV in absorbance spectra for the spherulite with respect to the
as-cast film. Interestingly, this shift was similar to that between
the spectra acquired from a spherulite before heating and from
the same area taken in the semicrystalline film obtained after
cooling the molten spherulite down to 30 °C (see Figure 6b).
Hence, the small shift in absorption spectra indicated that the
crystalline structures formed in as-cast films did not possess the
high structural order observed for the crystalline lamellae grown
during slow isothermal crystallization in spherulites, as
discussed above. Yet, the structured low-energy contribution

to the absorbance spectra still indicates the formation of
excitons delocalized over several chromophores in the
crystalline regions of the as-cast film. From the same data, it
was observed that the spherulite had lower absorption and
emission relative to the film. This could be attributed to the
interdigitation of side chains during slow crystallization of the
spherulites, reducing the intermolecular distance and hence
reducing the quantum yield.17 At room temperature, emission
from the spherulitic crystal showed a number of vibronic peaks.
It was interesting to note that at room temperature the
emission intensity from the film was almost a factor of 2 higher
than from the spherulitic crystal. Besides low emission from the
spherulitic crystal, we observed a small red-shift (ca. 0.02 eV),
just like in absorption spectra.
At room temperature, owing to thermally induced structural

disorder, vibronic peaks were rather broad. In the PL spectra
taken at room temperature, three clearly identifiable peaks were
observed at 2.02 ± 0.02, 1.87 ± 0.02, and at 1.76 ± 0.02 eV for
both the as-cast film and the spherulitic crystal. The solution of
PDOPT in toluene also had two peaks and a big blue-shift
relative to the spherulitic crystal. We attribute the first two
peaks to the 0−0 (L1) and 0−1 (L2) transitions.

39 To precisely
identify the vibronic peaks due to contributions from more
ordered spherulitic crystal and less ordered as cast film and to
quantify differences in the spectra, we used a set of four
Gaussian functions for a deconvolution of the spectra (Figures
10a and 10b) without imposing any constraints on the fit

parameters. In addition to three clearly visible peaks, a fourth
but very small Gaussian peak close to 1.6 eV was included in
the fitting procedure to ensure that the width of the peak at ca.
1.75 eV was comparable to the width of the other peaks. From
Figure 10a−c, we can find the energy gap between E1 and E2 to
be ca. 0.145 eV, which is within a margin of error for the
typically observed energy for C−C stretching modes in
substituted polythiophenes (0.16 ± 0.02 eV).39

In the following discussion, we rely on the sensitivity of
photoluminescence spectra with respect to changes in order
and morphology.5,14,23 By using a series of four Gaussian
functions, we simulated the vibronic progressions of the 0−0,

Figure 8. Results of the fits to the temperature-dependent PL spectra.
(a) Peak positions (ELi), (b) maximum intensities of peaks (ILi), and

(c) peak intensity ratio R = IL1/IL2
for the heating (full symbols) and

cooling (open symbols) cycle.

Figure 9. Absorbance (dotted curves) and photoluminescence spectra
(solid curves) of PDOPT from solution (black), an as-cast film (blue),
and a spherulitic crystal (red) grown at 100 °C for 50 h in a molten
thin film (ca. 200 nm), taken at room temperature at an area of a
diameter of 10 μm and an integration time of 5 s, measured with
nonpolarized light. For comparison, we also added results for a dilute
PDOPT solution in toluene.

Figure 10. PL spectra measured at room temperature (same as in
Figure 3), decomposed into four Gaussian functions, for (a) an as-cast
film and (b) a spherulitic crystal. (c) Bar chart of the intensity of the
individual Gaussians for the film and the spherulitic crystal. The energy
E of the emitted photons is decreasing from peak L1 to peak L4, as can
be seen also in (a) and (b).
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0−1, 0−2, and 0−3 peaks. Energy gaps of most conjugated
systems show a vibronic progression as a result of symmetric
vinyl stretching modes.14,23,25,39,45 Fourier transform infrared
spectroscopy results for PDOPT have shown that electronic
transitions couple strongly to the aromatic carbon-bond
stretching of the thiophene ring within an energy range from
0.148 to 0.20 eV and a strong peak at 0.18 eV (Figure S2).
Absorption and emission spectra of virtually all phenyl- and
thiophene-based conjugated molecules reveal vibronic pro-
gressions, mainly due to symmetric ring breathing stretching
modes or a group of such modes.27

The comparison of results (Figures 9 and 10) from such a
spectral analysis of the emission spectra for as-cast films and
spherulitic crystals at room temperature showed that the
positions of the four peaks (in terms of their emission energy)
were (almost) independent of morphology (Figure 10a−c).
Interestingly, while peak positions matched, intensities clearly
differed. For the highly ordered structures within spherulitic
crystals, the relative emission intensities were higher in the low-
energy region while for the less ordered PDOPT molecules in
as-cast thin films intensities were more pronounced in the high-
energy region (Figure 10c). This observation is corroborated by
the fact that in crystalline regions PDOPT chains are better
ordered. Crystallization of the bulky 2,5-dioctylphenyl side
groups of PDOPT could assist in planarizing the polymer
backbone. Local molecular order and changes in conformation
also affect the exciton radiative recombination probability and
thus the resulting photoluminescence intensity.2 Relative
changes in PL intensity of the emitting species, taken at a
given wavelength, for different morphologies may differ due to
changes in intermolecular and intramolecular interactions.14,50

Tentatively, the difference in spectral PL intensity between as-
cast film and spherulitic crystal may be attributed to an
improved planarized thiophene backbone induced by crystal-
lization,5 i.e., due to different degrees of order and hence
differences in quantum efficiency as seen in temperature-
dependent experiments above.

■ CONCLUSIONS

We have demonstrated that crystallization and melting of
poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) were accom-
panied by significant changes in optical properties. The change
in morphology, i.e., changing from an ordered to a disordered
state, induced by melting of a spherulitic crystal was
accompanied by particular changes in emission and absorption
spectra, reflecting a change in color and an increase of emission
intensity. Furthermore, upon melting, birefringence was
completely lost due to a loss of preferential orientation of the
transition dipole moments within the crystalline structure. We
observed that well-ordered spherulitic crystals emit less than
the same polymers when rapidly recrystallized after being
molten. Moreover, molten polymers showed a significantly
higher emission probability although the absorbance rather
decreased. Thus, characteristic changes in absorption and
emission spectroscopy on samples of substituted polythio-
phenes allow to follow melting and recrystallization processes
and to establish relations between optical properties and the
corresponding changes in molecular conformations and order.
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Optical microscopy measurements: 

 

Large spherulitic crystals were grown via isothermal crystallization from molten films. The size 

of the spherulites varied from 10 µm to more than 150 µm in diameter, depending on when 

nucleation occurred during the crystallization process.1 in the melt state, i.e., at 150 °C, there is 

complete loss of birefringence and the cooled film does not show birefringence either.                          

(a) (c)(b)30	°C 30	°C150	°C

 

Figure S1: Birefringence (first row) and PL (second row, the light used for excitation was 

polarized in the direction indicated by the white arrows) images of (a) PDOPT spherulites 

grown on a silicon substrate for 50 hours at crystallization temperature of 100 °C. (a) Images 

were measured after crystallization at 100 °C and cooling to 30 °C, (b) after heating the 

spherulitic crystals up to 150 °C and (c) after cooling the molten spherulites back to 30 °C.  

Heating and cooling rates were 2 °C /min. The scale bar represents a length of 50 µm. 

 

Rapid recrystallization that occurred when the molten PDOPT spherulites (see Figure S1b) were 

cooled from 150 °C to 30 °C (see Figure S1c). Such crystallization was accompanied by the 

formation of many small and randomly oriented crystallites, which did not become visible under 

crossed polarizers, i.e., birefringence was absent. Crystallization leads to a homogeneous 

change in color as observed in PL spectra.  
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FTIR measurements: 
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 Figure S2: PDOPT FTIR Spectra for poly (3-(2, 5-dioctyl-phenyl) - thiophene) (PDOPT) 

showing various stretching modes. 

Figure S2 shows that the  electronic transitions couples strongly to stretching phonon mode (C-

C stretching of the phenyl ring) with a peak ranging from 1200 cm-1 (148  meV) to 1611 cm-1 

(200 meV), most strongly absorbing at 1462 cm-1  (180 meV). The C-C stretching mode can be 

used to estimate the separation between peaks in a Franck-Condon progression. 
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Franck-Condon -Fit to solution spectrum of PDOPT: 
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Figure S3: The PL spectra of PDOPT dissolved in toluene solution (black) is fitted with a 

Franck-Condon progression (red). The resulting Huang-Rhys parameter S=0.7 and the vibronic 

Energy Ed = 167 meV is used for fitting the absorption spectra. The 0-0 transition energy is E0 

= 2.12 eV. The spectrum is corrected for the photon density of states. 

Fitting Absorption 

For fitting the remaining aggregate absorption the progression developed by Spano and 

coworkers.2,3 
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The Huang-Rhys parameter S=0.7 and the vibronic energy Ed=167 meV of the effective carbon-

stretching mode are extracted from solution spectra with a standard FC progression (see above). 
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The remaining free parameters are the free exciton bandwidth W, the transition energy EA1 of 

the lowest-energy crystalline absorption peak and the line width σ of the absorption peaks.  

In Figure S4a, the spectra of absorption at 30° C (after subtraction of the disordered 

contribution) is fitted by equation (1). The fit did not systematically match the positions and 

widths of the peaks. A closer look at the peaks shows that, the A1 peak is narrower than the Ai 

(i>1) peaks. The above discrepancy could be explained by the possible existence of two or 

several different species within the spheruilte which contribute to the total absorption spectra. 

However, from single-molecule spectroscopy on polythiophenes4 we know that the Ai (i>1) 

peaks consist of several vibrational modes and not just a single one what leads to broader Ai 

(i>1) peaks (“effective vibronic mode”) in bulk measurements. A further possibility is the 

formation of Fermi-resonances between the excitons and further dark states which also 

broadens the Ai (i>1) peaks with respect to the A1 peak.2 Usually this effect is only resolvable 

in a regime where the disorder is small in comparison to the excitonic coupling between the 

chains. (This may apply for the spherulites). Consequently, a different (fitting) model has to be 

applied, in which we introduced the line width of the A1 peak as additional parameter σA1 (with 

σA1< σ): 
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 (2) 

The resulting fit is shown in Figure S4 b. Compared to the fit with formula (1) (see Fig. S4 a), 

the fit reproduced the experimental data much better over the entire energy range.        
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Figure S4: Fitting the absorption spectra of the spherulitic crystal at 30°C after subtraction of 

the disordered high-energy contribution with (a) equation (1) and (b) equation (2). 

Fitting photoluminescence (PL) spectra: 

For fitting the emission spectra, the progression developed by Spano and coworkers5 was used 

(equation 2 in the main paper). The intensity of the spectra were first normalized by dividing 

by energy (E3) to correct for photon the density of states. Thereafter, the intensities were 

normalized to between 0 and 1. Lastly, the normalized Spectra were then fitted with a single 

FC progression with Huang-Rhys parameter S=0.7 and a vibronic energy of around ca. 1350 

cm-1 (167 meV), as measured in solution and used for fitting absorption spectra (Figure S3). 

The vibronic energy Ed, line the width σA1 and amplitudes of peaks were set as a free parameters 

of the emission peaks. The peaks were labelled as Li (i > 1) starting with highest energy.  In 

Figure S5, intensity of the various fits were multiplied by the normalizing factors to rescale to 

the absolute intensities  

Finally, we note that reproducing the temperature-dependent changes of the absorption 

and PL spectra with a variable Huang-Rhys parameter is not possible. There is always non-zero 

inter-chain interaction (or free exciton bandwidth W) required, which further shows the 

importance of this inter-chain interaction in PDOPT crystalline lamellae despite the absence of 

-stacking.  
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Heating series: 
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Cooling series: 
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Figure S5: Sample fits for the PL spectra of the spherulitic crystal during heating and cooling 

circles between 30°C and 150 °C according to equation 2 of the main text.  



Page 9 of 14 
 

DSC measurements on spherulitic crystals: 

Spherulitic crystals were prepared in a DSC pan in order to correlate thermal and optical 

properties of spherulitic crystals. First, the mass of an empty DSC pan was measured, followed 

by drop casting a solution of PDOPT in toluene into the pan. The DSC pan was then placed in 

a vacuum chamber at 50 °C and left there for 24 hours to dry completely. The total mass of 

DSC pan with the resulting thin PDOPT film was also measured. This film was then molten at 

150 °C for 3 minutes and crystalized isothermally at 100 °C for 50 hours in a Linkam TMS 94 

device purged with nitrogen. Optical images of the spherulitic crystals formed were taken 

(Figure S6). This sample was then used for DSC measurements. 

 

Figure S6: Birefringence image of PDOPT spherulites grown on a DSC pan for 50 hours at Tc 

= 100 °C.  The spherulitic crystals varied in sizes, a consequence of variations in the local 

nucleation density.  
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In-situ temperature –dependent absorption and photoluminescence measurements 

Temperature-dependent absorption and PL spectroscopy measurements were performed using 

the USB2000 Ocean Optics spectrophotometer, Ocean Optics optical fibers of 400 µm diameter 

and the Zeiss Axio 100 microscope combinations allowing for spatially resolved measurements. 

Ocean Optics TS-LED light sources were used for excitation and PL measurements. For these 

latter measurements an excitation filter transmitting between 450 and 500 nm was used as well 

as a 500 nm long-pass filter (both AHF) in front of the detector. Glass and silicon (100) wafers 

were used as substrates. Si-wafers were supplied by Silchem Handelsgesellschaft mbH, D-

09599, Freiberg, Germany. The heating and cooling of the samples was achieved with a hot 

stage purged with nitrogen and controlled by a Linkam TMS 94 device (Linkam Scientific 

instruments, Surrey, Kt20 5HT, UK). 

The sample temperature was increased or decreased at a rate of 2 °C/minute. Figure S7 shows 

the setups used for absorption and for photoluminescence experiments while Figures S8 and S9 

show the corresponding spectra obtained with these set-ups for absorption and PL 

measurements, respectively.   
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Figure S7: Schematic illustration of set-up used to measure (a) absorption and (b) 

photoluminescence of spherulitic crystals.  
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Figure S8: A series of absorption spectra during the heating (a) and cooling (b) cycles between 

30°C and 150 °C. The heating rate was 2 °C / min for a spherulitic crystal grown at 100 °C for 

50 hours.  
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Figure S9: A series of photoluminescence spectra during the heating (a) and cooling (b) cycles 

between 30°C and 150 °C. The heating rate was 2 °C / min for a spherulitic crystal grown at 

100 °C for 50 hours.  
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ABSTRACT: Depending on processing conditions, ordered
microstructures of conjugated oligomers or polymers exhibit
variable amounts of grain boundaries, lattice disorder, and
amorphous (disordered) regions. These structural details can
be determined very precisely. Their correlations with optical or
electronic properties, however, are very difficult to establish,
because, for example, optical spectra are usually averaged over
regions with different degrees of disorder. In an attempt to
facilitate the interpretation of optical spectra, we performed
systematic studies on thin films and μm-sized single crystals of
thiophene-based conjugated molecules, which allowed identify-
ing the relative contributions of ordered and disordered regions in optical emission spectra. A detailed multipeak analysis of the
emission spectra showed that the peak positions, the energies of the emitted photons, showed only minor changes, independent
if highly ordered or rather disordered samples were examined. However, the relative emission intensity changed significantly
between samples. In particular, for highly ordered single crystals the purely electronic 0−0 transition nearly vanished, that is, it
was essentially optically forbidden as theoretically predicted. Thus, changes in emission probability are correlated with the degree
of structural order in semiconducting conjugated systems and provide a possibility to quantify structural order.

KEYWORDS: single crystal, local spectroscopy, anisotropic behavior, degree of structural order, organic conjugated oligomers

Triggered by their tunable photophysical and electronic
properties, organic semiconducting materials have been

widely studied, mainly in view of various optoelectronic
applications.1−6 Currently, strong efforts are undertaken for
improving our understanding of the relation between morphol-
ogy and electronic structure. Detailed knowledge of this relation
may help to improve the performance of devices such as field
effect transistors and organic photovoltaics,7,8 in which various
organic materials with ordered nano/microstructures have been
used as the active layer.9 Triggered by the observation of high
charge-carrier mobilities and of long-range energy transport in
highly ordered (supramolecular) structures, much effort was
invested on the improvement of structural order in organic
conjugated materials.10−12 However, in most of the studied
devices the active layer possessed a complex morphology with a
large amount of ordered and disordered regions, and grain
boundaries, which depended on processing conditions. The
simultaneous existence of highly ordered (crystalline) and
structurally more disordered regions make it difficult to interpret
electronic behavior unambiguously and to establish a clear

relation between structural features and electronic properties.
Structural disorder implies a reduction of overall intrachain
(planarity), reduced conjugation length and low interchain order,
which give rise to energetic disorder, that is, variations in energy
levels across the material.13 By controlling processing conditions,
we can achieve samples of variable degrees of order and thus
investigate the impact of regions of variable degrees of order on
electronic features. This may help to identify pathways, allowing
to tune optoelectronic properties of conjugated nanostructures.
In this work, we systematically control molecular order using

different processing methods (growth of single crystals vs spin-
coated films of a thiophene-based conjugated oligomer) and
quantify the degree of structural order from optical properties by
performing spectroscopy measurements. By controlling the
nucleation stage, we have grown millimeter-long needle-like
single crystals of thiophene-benzene-thiophene (3TBT)
oligomers. 3TBT is a trimer with each monomer having two
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thiophene (T) units separated by one dialkoxybenzene (B) unit.
Compared to molecules composed of only thiophene units,
3TBT exhibits better photostability at ambient conditions.14,15

The well-defined molecular order of single crystals over
macroscopic dimensions results in high anisotropy in structure
as well as in optical properties. However, depositing these
crystals from solution leads to the coexistence of randomly
oriented crystalline fibers and amorphous molecules around
these crystals. Local spectroscopic measurements allow to
spatially distinguish disordered and ordered regions and thus
to identify the contribution of these regions in emission spectra.

■ EXPERIMENTAL SECTION

Material and Film Preparation. The studied 3TBT
molecules consisted of a sequence of three TBT monomers,
each having a central dialkoxybenzene unit (denoted by B), with
two octyl side groups attached orthogonally to the main axis of
the molecule, and sandwiched by two thiophene rings (denoted
by T; Figure 1a).15 The molecule was 100% regioregular, with a
number-average molecular weight Mn = 1492.32 g/mol and a
contour length of 3.6 nm. 3TBT molecules were dissolved in
dodecane at a concentration of 10−6 M. Thin films of 3TBT were
prepared by spin coating this solution onto a solid substrate
(glass or Si-wafer).
Crystallization from Solution. A 0.1 g/L solution of 3TBT

in dodecane was prepared at room temperature. 3TBTmolecules
were homogeneously dissolved by heating the solution to 100 °C
for 3 min. Subsequently, this solution was cooled to the

crystallization temperature (60 °C), where it was kept for 1 week.
At this relatively high crystallization temperature, the nucleation
density was low and the crystal growth rate was slow, allowing for
the formation of large and perfect single crystals. Subsequently,
10 μL of this solution containing large crystals was spin-cast at
500 rpm onto a UV-ozone cleaned silicon substrate. Under such
conditions, the resulting sample contained crystals embedded in
a comparatively disordered polycrystalline film (Figure S1).

Optical Microscopy and Spectroscopy. Single crystals on
glass substrates were characterized with an optical microscope
(Zeiss A1). Spatially resolved absorption spectra of these crystals
were obtained in transmission mode by using a UV−vis
spectrometer (USB2000 from Ocean Optics) connected to the
microscope (Zeiss A1) by means of an optical fiber. Photo-
luminescence spectroscopy was performed under nitrogen (N2)
atmosphere with the same setup in reflection mode, employing a
light emitting diode (LED) as an excitation source. For
photoluminescence spectroscopy, we used a narrow wavelength
range (450 nm−490 nm) for excitation, employing the filter set
09 installed in Zeiss microscope. This filter set allowed that
emitted light at wavelengths above 515 nm (2.40 eV) passed to
the detector. Using this microscopy setup, we were able to focus
on areas within the single crystals at a lateral resolution of some
micrometers. Such local spectra allowed for the determination of
the optical properties of single crystals without significant
contributions from surrounding less-ordered, polycrystalline
structures.

Figure 1. (a) Chemical structure of 3TBT. (b) Optical micrograph (800 μm × 160 μm) under crossed polarizers of a 3TBT single crystal on a silicon
substrate, crystallized from a 0.1 g/L solution in dodecane at 60 °C for 1 week. (c) Photoluminescence microscopy image (800 μm× 160 μm) of a single
crystal excited with blue light in the range from 450−490 nm. (d) Polar plot of the birefringence intensity measured for a 3TBT crystal as a function of its
orientation angle with respect to the analyzer.

Figure 2.Normalized (a) UV−visible absorption (of nonpolarized light) and (b) photoluminescence spectra of a homogeneous 3TBT solution, a spin-
coated film, and a single crystal.
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■ RESULTS

Morphology and Structure of 3TBT Single Crystals.The
large 3TBT single crystals grown from solution exhibited needle-
like morphology having a length of several hundred micrometers
and a much smaller width of several micrometers. The thickness,
as measured by atomic force microscopy (AFM), of most crystals
ranged from 2 to 6 μm.
As expected for materials of high molecular order, 3TBT

crystals were birefringent. Under crossed polarizers, these
crystals exhibited a uniform intensity (birefringence; Figure
1b) that varied when the crystals were rotated within the plane of
observation. Moreover, when excited by light in the wavelength
range from 450 to 490 nm, 3TBT single crystals exhibited strong
yellow to red photoluminescence (PL), as shown in Figure 1c for
a 3TBT single crystal on a glass substrate.
Analyzing the birefringence intensity as a function of the

orientation angle (the angle between the long axis of the crystal
and the polarization direction of the polarizer) yielded the
expected periodic minima and maxima every 45°, as shown in
Figure 1d.
Photophysical Properties of 3TBT Single Crystals and

Films. Normalized absorption and photoluminescence (PL)
spectra were obtained from a dilute homogeneous 3TBT/
dodecane solution, from a spin-coated film, and from a needle-
like single crystal, as shown in Figure 2 (see Figure S8 for
absolute absorption coefficients). The absorption spectrum of
the solution exhibited a single broad absorption peak with a
maximum around 2.74 eV (Figure 2a), arising from intrachain
states of isolated molecules.16 Compared to 1TBT, a molecule
with only one TBT monomer, this peak has been red-shifted by
about 70 meV,17 indicating a substantially larger π-electron
delocalization in 3TBT. In fact, quantum mechanical calcu-
lations17 revealed an almost planar arrangement for 3TBT
molecules induced by noncovalent S···O interactions. Hence, the
π electrons can be expected to be delocalized over nearly the
whole 3TBT molecule.18

Compared to the solution absorption, the spectrum of the
spin-coated film was substantially different, with clear peaks at
2.72, 2.64, and 2.44 eV, respectively. The broad peak at 2.72 eV
resembles the absorption of 3TBT in dilute solution, and
absorption at this energy can therefore be attributed to isolated
3TBTmolecules in the film. The more red-shifted features in the
film absorption at 2.64 and 2.44 eV indicate the presence of
aggregated 3TBT molecules. In particular, the smaller intensity
of the lowest-energy peak at 2.44 eV with respect to the 2.64 eV
peak is characteristic for H-type aggregation, with the molecules
being arranged in a cofacial fashion.19,20 During spin-coating,
3TBT molecules were distributed randomly on the substrate.
Due to fast evaporation of the solvent, these molecules did not
have enough time to arrange themselves into large scale ordered
structures. Thus, a large number of only small fiber-like objects
with an ordered, cofacial arrangement of 3TBT molecules could
be formed, as revealed by AFM measurements (see Figure S2).
By contrast, micrometer-sized crystals possessed long-range

order of an enormous number of molecules. Crystals were
deposited on solid substrates and all these crystals showed similar
absorption spectra, which typically exhibited three peaks at about
2.76, 2.45, and 2.26 eV, respectively. The first peak centered
around 2.76 eV was again similar to the absorption peak for the
dilute 3TBT dodecane solution and probably reflects isolated
nonaggregated 3TBT molecules, for example, adsorbed on the
crystal surface.21 The two low-energy peaks centered at 2.45 and

2.26 eV, respectively, showed the same trend in their intensity
ratio with respect to the film spectrum. Hence, the 3TBT
molecules in the crystal are also arranged in a cofacial, H-type
fashion.
However, there are clear differences between the absorption

spectra of the crystal and film, which indicate differences in their
electronic and structural properties. First, the intensity ratio
between the two lowest-energy peaks appears to be smaller in the
crystal spectrum than in the film spectrum, which points toward a
stronger electronic interaction between the transition dipole
moments of 3TBT molecules in the single crystal with respect to
the interaction within the aggregates in spin-coated films.22,23

Indeed, a detailed analysis based on a framework put forward by
Spano and co-workers20,23 shows that the nearest-neighbor
interaction between 3TBT molecules substantially decreases
from 41meV in single crystals to 11meV in films (see Supporting
Information, Figure S3). This stronger interaction in crystals can
be attributed to a more dense and ordered H-type packing of the
3TBT molecules, which is probably related to the much slower
crystallization rate, allowing for more time for the molecules to
arrange properly. Second, the absorption of the 3TBT crystal was
red-shifted by 187 meV with respect to the film spectrum, which
can be explained by a slight change in the dielectric environment
of the 3TBTmolecules. The observation of a more dense packing
in crystals indicates increased nonresonant dispersive inter-
actions between molecules, which typically give rise to a red-shift
compared to the situation with less dense packing in film
aggregates. Furthermore, in crystals the slow crystallization
process (week) allows for a perfect arrangement of the entire
3TBT molecule (i.e., backbone and side chain), whereas in spin-
coated films the molecules rapidly crystallize (seconds) and thus
some degree of disorder also in the side-chain arrangement of
3TBT may be present. These different side chain arrangements
provide then a different dielectric environment that further
contributes to the shift of the absorption between crystals and
films, similar to a recent finding on poly(3-hexyl-thiophene)
aggregates.24 The observed changes in the absorption spectra
therefore suggest that the order (or H-type packing) of the 3TBT
molecules in crystals is significantly improved compared to
aggregates in spin-coated films.
Similar characteristic differences were observed in the

photoluminescence spectra of 3TBT molecules in solution, as-
cast film, and single crystalline state (Figure 2b). For a 3TBT
solution, a peak around 2.42 and shoulders at 2.24 and 2.08 eV
were found. This vibronic structure is due to coupling to
predominantly aromatic carbon-bond stretch modes. Together
with a large Stokes shift between absorption and PL spectra,
these observations are typical for thiophene-based systems.
Compared to the solution, the PL spectra of the single crystal and
the polycrystalline film showed large red shifts of about 120 meV
and a strongly reduced intensity of the highest energy peak,
which is characteristic of the emission of H-type aggregates. The
substantially decreased intensity of the highest energy PL peak at
∼2.3 eV in crystals is again indicative of an improved structural
order of 3TBTmolecules in crystals with respect to aggregates in
films, as discussed above. This higher structural order gives rise to
stronger interchain interactions in crystals, that is, to a larger
exciton bandwidth, and to a different dielectric environment,
which, in total, shifts the PL of the crystal to lower energies with
respect to the PL of the film, as observed in Figure 2b. Notably,
the PL spectra of both crystal and film do not exhibit emission
features that can be associated with disordered, nonaggregated
3TBTmolecules, although the corresponding absorption spectra
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clearly show the presence of isolated molecules in both samples.
This observation shows that energy transfer is highly efficient
from the disordered regions to the crystal, implying that the two
regions are separated by no more than the exciton diffusion
length which is expected to be ∼10−20 nm.
Anisotropic Absorption and Photoluminescence Spec-

tra of 3TBT Single Crystal. In ordered structures, the unique
orientation of all molecules influences directly various optical
properties such as refractive index, polarization state of the

absorbed and emitted light and nonlinear optical activity.25 To
measure the optical anisotropy caused by the regular molecular
orientation in the crystal, we carried out optical spectroscopy
with polarized light, as shown in Figure 3, to reveal the
orientation of 3TBT molecules within the single crystal.
As shown in Figure 3a, the absorption spectra depended on the

polarization direction of the exciting linearly polarized light with
respect to the long axis of the single crystal, characterized by the
angle θ. Both, intensity and shape of the absorption spectra

Figure 3. (a) Absorption spectra of a 3TBT single crystal measured at normal incidence with polarized light, where θ is the angle between the long axis of
single crystal and the polarizer. (b) Dichroic ratio of the 3TBT crystal as a function of energy of absorbed light. (c) Photoluminescence spectra of a 3TBT
single crystal measured at normal incidence with an analyzer, where ψ is the angle between the long axis of single crystal and analyzer (whole crystal
excited by visible LED; spectra at ψ = 0° scaled up by a factor of 15). (d) Photoluminescence intensity measured at the maximum peak at 2.13 eV as a
function of ψ. The solid line shows a cos2 ψ-fit of the intensity.

Figure 4. (a) AFM height image of 3TBT single crystal obtained by crystallization at 60 °C from a 0.1 g/L solution in dodecane and spin-coated onto a
silicon substrate (15 μm× 15 μm). (b) Corresponding height profile along the dashed line shown in (a). (c) Scheme indicating the orientation of 3TBT
molecules within the single crystal.
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changed with θ. We observed the strongest absorption when the
exciting light was polarized in the plane perpendicular to the long
axis of the crystal, that is, θ = 90°. Lowest absorption, especially in
the range from about 2.48 to 2.29 eV, where H-aggregate
absorption prevailed (Figure 3a), was observed when the long
axis of the crystal was parallel to the polarization plane, that is, θ =
0°. Under the latter conditions, the shoulder around 2.29 eV
nearly disappeared. This indicates that the electronic transition at
energies less than about 2.29 eV was only possible for light
polarized perpendicular to the long axis of the crystal. In other
words, the transition dipole moments of the absorbing
aggregates are oriented almost exclusively perpendicular to the
long crystal axis. The dichroic ratio, R = Amax/Amin

26 at 2.29 eV,
shown in Figure 3b, was found to be about 20. The dependence
of the absorption behavior of 3TBT crystals on polarization
direction was highly reproducible. Thus, the crystalline structure
contained well-aligned molecules absorbing light only when
polarized appropriately. The small dichroic ratio R at higher
energies (around 2.8 eV) suggests a more isotropic distribution
of transition dipole moments, which can be related to the

presence of randomly oriented, nonaggregated 3TBT molecules
on the crystal surface.
The most prominent driving force for crystallization is

provided by π−π interactions between coplanar molecules.
Thus, the fastest growth direction is expected to be along this
π−π stacking direction. Considering that the transition dipole
moment of 3TBT molecules is along the long axis of the
molecule,17 the results of Figure 3 indicate that within the crystals
the long axis of 3TBT molecules was orthogonal to the long axis
of the crystal (Figure 4). This orientation is consistent with the
assumption that the fast growth rate induced by π−π stacking of
molecules is responsible for the length of the crystal.
A similar understanding concerning the orientation of the

3TBT molecule within the single crystal can be derived by
determining the polarization direction of the light emitted from a
single crystal (Figure 3c). As expected, the intensity varied when
the analyzer direction was changed. The highest and lowest
emission intensity (Imax and Imin, respectively) were found when
the direction of the analyzer, characterized by the angle ψ, was
perpendicular (ψ = 90°) and parallel (ψ = 0°), respectively, to the
long axis of the single crystal (differences in emission spectra

Figure 5. (a) Normalized PL spectrum (black curve) of a 3TBT crystal at room temperature, together with a fit (green curve) of five Gaussian peaks to
reproduce the vibronic structure. This PL spectrum was acquired from a single crystal with a width of 4 μm using a detection area of 1 μm. (b)
Normalized PL spectrum (red curve) of a 3TBT crystal at 1.5 K, together with a fit (black curve) of eight Gaussian peaks to reproduce the vibronic
structure. This 1.5 K PL spectrumwas recorded from a single crystal with a width of about 1 μmusing a detection area of∼600 nm. (c) Superposed on an
AFM topography image (size 16.5× 16.5 μm2), schematic representation of the change in detection area centered on the crystal. The width of the crystal
is 4 μm. (d) 0−1/0−0 intensity ratio of the room-temperature PL spectrum of the single crystal shown in (c) as a function of detection diameter,
together with the corresponding values measured for a spin-coated film.
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taken at ψ = 90° and ψ = 0° is related to the different absorptions
for light polarized perpendicular (ψ = 90°) and parallel (ψ = 0°)
to the long axis of the crystal, see also Figure S9). The emission
dichroic ratio, defined by Rd = Imax/Imin, was about 15 ± 1.5 for
maximum emission at 2.13 eV, and the corresponding anisotropy
value r = (Rd − 1)/(Rd + 1) was 0.87 ± 0.01. This anisotropy
value is among the highest values reported so far for both,
inorganic and organic materials: r = 0.6 for nanowires of a
conjugated polymer;27 r = 0.7−0.86 for single-crystalline CdSe
nanorods;28 r = 0.80 for organic crystals based on ionic
perylenemonoimide;29 r = 0.82 single-crystalline organic nano-
belts of perylene-carboxylic diimides (PTCDI);30 and r = 0.71 for
organic microbelts generated by hydrogen bonding between
guanidinium cations and stilbene-based sulfonate anions.31 In
addition, the ψ-dependent photoluminescence intensity at 2.13
eV fitted by a cos2 ψ-function (shown in Figure 3d) is supporting
our conclusion of perfectly aligned 3TBT molecules within the
single crystal.
Spectroscopic Signature of Transition from Disorder

to Order. As discussed in the previous sections, large 3TBT
single crystals grown in solution exhibited a high degree of
molecular order. However, during the deposition of the crystals
by spin-coating the solution onto the substrate also dissolved
molecules were adsorbed on both the crystal and the surrounding
substrate, which, after rapid evaporation of the solvent, generated
nanoscopic randomly oriented fiber-like aggregates and isolated
molecules around the crystals, contributing to the PL spectra.
Comparing PL spectra of single crystals with those of spin-coated
films enables us to establish a relation between molecular order
and specific features of the emission spectra. Thus, the emission
spectra can be calibrated to provide ameasure of the contribution
of ordered and disordered regions in the PL spectra.
In order to quantitatively investigate differences in the

spectroscopic features between disordered and ordered 3TBT
structures, we analyzed the emission spectra in terms of
decomposition into Gaussian functions (Figure. 5a). PL spectra
of 3TBT crystals and films taken at room temperature showed
three dominating peaks. Because their relative energy differences
are about 170 meV (1400 cm−1), we associate this structure with
the purely electronic transition, the aromatic carbon-bond
stretch mode with an energy of about 170 meV (1400 cm−1)
and its overtone. In the following, we will refer to these peaks as 0
− n (n = 0, 1, 2) peaks in order of decreasing energy.
Unfortunately, a simple decomposition of the PL spectra using
three Gaussian functions did not yield satisfactory results. We
had to use five Gaussian functions in total, for which their full
widths at half-maximum (fwhm) and their areas were adjustable
parameters, to give the best fit to the experimental data (see
Tables S1 and S2 and Figures S4 and S5 for an illustration of this
decomposition procedure). The energies of the Gaussian peaks
were approximately the same for films and single crystals, but the
relative intensities of the various peaks changed (Figure S6). In
order to justify the use of five Gaussian functions and to reveal
the origin of the additional peaks between the 0−n transitions, we
performed PL spectroscopy on single crystals at 1.5 K (for the
experimental setup, see Supporting Information and our
previous paper32). When reducing the temperature, the line
widths of electronic/vibronic transitions are typically strongly
reduced and therefore subtle features can be resolved in optical
spectra that are blurred out at room temperature (see Supporting
Information, Figure S7). As depicted in Figure 5b, in the PL
spectrum of the crystal at 1.5 K, the three dominating peaks due
to the aromatic carbon-bond stretch mode are still present, yet,

several shoulders and smaller maxima between those main peaks
are clearly identified. This rich structure of the low temperature
spectrum can only be reproduced accurately by, in total, eight
Gaussian functions. The lowest-energy peak A is ascribed to the
purely electronic 0−0 transition of the 3TBT crystal and peaks E
and H represent the 0−1 and 0−2 transitions of the aromatic
carbon-bond stretch. The remaining peaks can be attributed to
various intramolecular vibrational modes, which are discussed in
the Supporting Information, Figure S7).
Notably, the inhomogeneous line width of the 0−0 transition

of the crystal was only 33 meV (fwhm) at 1.5 K, which again
demonstrates the extraordinarily high degree of order within
single crystals. At room temperature, the line width (fwhm) of all
peaks became much broader, so that neighboring lines separated
by less than about 60 meV cannot be resolved in the spectra any
more. Consequently, the use of five Gaussian functions to fit the
room temperature PL is certainly justified, with some peaks
actually representing superpositions of two vibronic transitions
(see Supporting Information for details).
Contributions to the room temperature PL spectra from

ordered and disordered regions in crystals were evaluated by
analyzing the peak intensity ratios between the purely electronic
0−0 and the 0−1 vibrational transition of the carbon-bond
stretch mode, following the approach put forward by Spano and
co-workers. We note that although we are neglecting all other
vibronic modes that are visible in the PL spectra, this approach
still yields qualitatively correct insight into PL from ordered/
disordered regions (see Supporting Information). In a first
experiment, we studied a single crystal with a width of 4 μm, and
we progressively increased the detection area for the PL, ranging
from a small spot with a diameter of 1 μm, which was exclusively
within a single crystal, up to a large area with a diameter of 20 μm,
which covered crystal and surrounding matrix of less-ordered
3TBT molecules (Figure 5c). In this experiment, the whole
sample was excited with a visible LED. As a reference, we
performed the same measurements on a homogeneous spin-
coated film.
As shown in Figure 5d, we found that the 0−1/0−0 intensity

ratio of the PL from the crystal decreased with increasing
detection diameter. The ratio changed from 18, when exclusively
detected from within the crystal, to about 5−6, when PL from
both crystal and surrounding matrix was recorded. In contrast,
for a spin-coated film the 0−1/0−0 intensity ratio was about 2
and independent of the detection area. For determining the error
bar of these values, we took into account uncertainties in
determining the peak position (±10 meV) and the optical
resolution of the microscope for the detection diameter.
For a detection area fully within the crystal, we measured the

emission only from the single crystal and probably a few
molecules underneath and on top of the crystal, which were
deposited there during spin-coating. In this situation, the very
high 0−1/0−0 intensity ratio, or in other words, the strongly
suppressed 0−0 transition reflects the extraordinary structural
order of the crystal. For a detection area bigger than the crystal,
we obtained simultaneously contributions from ordered (single
crystal) and less ordered regions (randomly oriented) nano-
meter-sized aggregates with lower degree of order and smaller
electronic interactions in the surrounding of the crystal). This
yields in total a reduced 0−1/0−0 ratio with increasing detection
area. The film PL was always averaged over many, randomly
oriented nanoscale aggregates (see Figure S2), which renders the
0−1/0−0 peak ratio independent of the detection area.
Moreover, the lower degree of order in these aggregates

ACS Photonics Article

DOI: 10.1021/acsphotonics.6b00473
ACS Photonics 2016, 3, 2315−2323

2320



compared to single crystals is reflected in the smaller 0−1/0−0
peak ratio in the spin-coated film.
Further evidence for distinct contributions from ordered and

less ordered regions to the emission spectra of crystals was
obtained by a second experiment, in which a small detection area
(diameter 4 μm) was scanned across a crystal having a width of 8
μm, as schematically shown in Figure 6a. By moving the
detection area from the disordered to the ordered (crystalline)
region, the 0−1/0−0 intensity ratio increased as expected
(Figure 6b,c, see also Figure S9).
When chromophores arranged in a cofacial π-stacked fashion

interact electronically, the relative peak intensities of the optical
spectra of an ideal disorder-free crystal are changed relative to
those of an isolated chromophore. In particular, the electronic 0−
0 transition is entirely forbidden but becomes (weakly) allowed
when the symmetry is broken by the presence of structural and
electronic disorder. In contrast, the intensities of the 0−1, 0−2
peaks of the dominating carbon−carbon bond stretch are largely
unaffected by the electronic interaction. As a consequence, the
ratio of the oscillator strength of the first two vibronic peaks in
the PL spectra (0−1/0−0) decreases with increasing disor-
der.20,23 The intermolecular interaction-induced changes in the
vibronic line strengths therefore reveal information about the
exciton bandwidth (the magnitude of the electronic interaction),
the degree of disorder, and the exciton coherence lengths.33−35

Our results show that an increase of the contribution from the
ordered region (single crystal) led to an increase in the 0−1/0−0
intensity ratio. Thus, the relative intensities of vibronic peaks in
emission spectra can indeed be considered as signatures of
disorder and order.

■ CONCLUSIONS

In summary, we identified and controlled the contribution of
ordered and disordered regions in emission spectra by
performing local spectroscopic measurements. Our results
show that the characteristic energies of the emitted photons
were almost the same, independent if highly ordered or rather
disordered samples were examined. However, the relative
emission intensities changed significantly between ordered and
disordered samples. Thus, by investigating these changes we
quantified the degree of structural order in our samples of a
semiconducting molecule.
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AFM Measurements: 

Figure S1: a) AFM height image of a 3TBT single crystal obtained by crystallization at 60 °C from 

a 0.1 g/L solution in dodecane and spin-coated onto a solid substrate. b) AFM height image of 

the area within the dashed box in a) showing fluctuations of height on the surface of the 

crystal. 

 

Figure S2: AFM height image of a 3TBT thin film (15±3 nm) spin coated from solution onto a 

solid substrate (2 g/L in dodecane). 

 

 

 

b 
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Absorbance Measurements: 

In order to determine the electronic interaction between nearest-neighbor 3TBT molecules in 

single crystals and in nanoscale aggregates in spin-coated films, we analyzed the corresponding 

room temperature absorption spectra. The absorption from both samples exhibits a 

pronounced peak around 2.7 – 2.8 eV (see Figure 2a and S3), which indicates the presence of a 

non-negligible fraction of non- gg  g      “         ”   TBT          . T              

measured film and crystal spectra for the absorption of non-aggregated molecules, we scaled 

and shifted the solution absorption (Figure. 2a, red spectrum), such that we obtain the best fit 

to the highest-energy part of both the film and crystal absorption. The best agreement is 

achieved with a blue shifted solution spectrum by 120 meV (see Figure S3); this spectral shift 

represents a polarization energy and accounts for different dielectric environments for the non-

aggregated 3TBT molecules (solution: solvent; film/crystal: 3TBT). Note that especially the film 

spectrum is not perfectly reproduced at high energies, which may be due to scattering on the 

nanoscale crystallites (see Figure S2). Subsequently, we subtracted the scaled and shifted 

“        ”              b          b                         v  y  f           g  TBT 

molecules in crystals/films.  

This latter spectrum is then numerically simulated based on the framework developed by 

Spano and co-workers1,2, which allows to retrieve the nearest-neighbor electronic interaction 

between 3TBT molecules. 

These simulations required as input parameters the Huang-Rhys factor S and the vibrational 

energy Evib of the dominating aromatic carbon-bond stretch mode of isolated, non-interacting 

3TBT molecules, which we determined from the PL spectrum of molecularly dissolved 3TBT in 

dodecane (see Figure. 2b of the main text) to S = 0.85 and Evib = 170 meV. Moreover, we limited 

the number of interacting 3TBT molecules to 20, which is a compromise between size of the 

system and computational time. The best agreement between experiment and simulations was 

obtained using a free exciton bandwidth W of 164 meV for the crystal and 43 meV for the film 

(Figure S3). Because W is related to the nearest-neighbor interaction J by W = 4J, we finally get J 

= 41 meV (crystal) and J = 11 meV (film). 
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Figure S3: a) Normalized absorbance spectrum of a 3TBT single crystal (black), the scaled and 

spectrally shifted solution absorption (blue), the difference spectrum (pink), and the simulated 

spectra (green). (b) Normalized absorbance spectrum of a spin-coated 3TBT film (black), the 

scaled and spectrally shifted solution absorption (blue), the difference spectrum (pink), and the 

simulated spectra (green). 

In principle, the data in Figure S3 allow to retrieve the fraction of non-interacting 3TBT 

molecules in both samples from the relative areas under the scaled and shifted solution 

absorption and the difference spectrum (weighted by the different oscillator strengths for 

aggregates and non-interacting molecules). For the spectrum of the spin-coated film the 

relative areas are 45 % for the solution contribution and 55 % for the remaining aggregate 

spectrum. Hence, there is still a substantial fraction of non-interacting molecules, which is 

expected as a result of very fast evaporation of the solvent. For the measured crystal spectrum, 

we obtain a similar ratio of areas: 55 % for solution and 45 % for the crystal contribution. This 

large fraction of non-interacting molecules in the crystal spectrum is clearly a strong 

overestimation, because in the measured crystal spectrum also the absorption of a fraction of 

nanoscale aggregates (as in spin-coated films) will contribute (see AFM image in Figure S1b). 

W                   v         f             y      b                       “    ”   y      

nanoscale aggregate and solution contribution to obtain the relative areas, was not possible (in 

fact such deconvolution would require prior knowledge of the relative areas and exact 
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polarization energies of all contributions, which is not available). From the AFM data (Figure 

S1), we can estimate a non-crystalline contribution of about 10 %.  Also from the sharply 

peaked dichroic ratio of the crystal (Figure 3b) the contribution of both the nanoscale aggregate 

and solution contribution to the measured crystal absorption is visible. The nanoscale 

aggregates absorb at 2.4 eV and higher energies (Figure S3b), yet their orientations on the 

crystal are not unique as for the crystal orientation itself (see Figure S1b), and hence, 

absorption of the aggregates will not show a strong polarization dependence. This explains why 

the dichroic ratio is strongly peaked only around 2.25 eV, where exclusively the crystal with its 

strongly polarization-dependent absorption contributes. 

 

PL Measurements: 

The room-temperature PL spectra of a 3TBT film and a single crystal exhibit three 

peaks/shoulders with an energy spacing of approximately 170 meV (1400 cm-1), representing 

the purely electronic transition, a vibronic transition into the aromatic carbon-bond stretch and 

its overtones (0-0, 0-1, 0-n) (Figure S4 and S5). However, fitting of these spectra with three 

Gaussian functions was not possible, only a fit with five Gaussians yielded satisfactory results. 

The full width at half maximum (fwhm) and the area of the Gaussians were treated as 

adjustable parameters to give the best fit to the experimental data. We attempted to represent 

the data by the smallest as possible number of different vibronic families. In the fits in Figure S4 

and S5 the red curves represent the carbon-carbon bond stretch vibration with energy of 170 

meV (1400 cm-1), while the blue and pink curves can be attributed to (superpositions of) other 

intra-molecular vibrations of 3TBT based on low-temperature spectra (see Figure S7). 
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Figure S4: Normalized PL spectrum (black curve) of 3TBT film at room temperature, together 

with a fit (green curve) of five Gaussian peaks.  

 

TableS1. Fitting parameters used for the decomposition of photoluminescence spectra of the 

film. 
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Figure S5: Normalized PL spectrum (black curve) of a 3TBT crystal at room temperature, 

together with a fit (green curve) of five Gaussian peaks to reproduce the vibronic structure. The 

diameter of the detection area was 1 µm and the width of crystal was 4 µm.  

 

 

TableS2. Fitting parameters used for the decomposition of photoluminescence spectra of the 

crystal. 
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Figure S6: Relative integrated area of five Gaussian peaks fit to the PL spectra of a 3TBT crystal 

and film at room temperature a function of emitting energy. Width of errors was chosen 0.02 

eV. 

 

Low temperature measurements were done using a home-built confocal microscope with a 

spot size of ~ 600 nm diameter and a pulsed 450 nm diode–laser for excitation. The sample was 

placed inside of a helium bath-cryostat and cooled to 1.5 K. Low temperature PL spectra from a 

single crystal exhibited three dominating peaks and a rich sub-structure with minor peaks and 

shoulders (Figure S7 and table S3). Hence, a decomposition required eight Gaussian peaks. Peak 

A can be ascribed to the purely electronic 0-0 transition of the PL of the 3TBT crystal. The peaks 

B – H are attributed to intra-molecular vibrations coupling to the electronic transition based on 

literature data3–5: Peak B (29 meV or 232 cm-1 relative to the 0-0 transition) is attributed to a 

superposition of a stretching vibration of the 3TBT backbone, a libration motion of the rings 

within the 3TBT backbone, and in- and out-of-plane bending. Peaks C (84 meV, 670 cm-1) and D 

(122 meV, 976 cm-1) stem from ring breathing/deformation modes of thiophene and benzene 

as well as from CCH-bending and COC- and CS-stretch modes. In most thiophene-based 

molecules, the aromatic carbon bond stretch with energies around 170 meV (1400 cm-1) couple 

strongly to the electronic transition, which corresponds to peak E. Consequently, peak H (364 
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meV, 2910 cm-1) represents the overtone of the aromatic carbon-bond stretch mode E. Peak F 

(229 meV, 1832 cm-1) may be caused by a carbon-carbon double-bond stretching mode. Peak G 

(295 meV, 2360 cm-1) is probably a combination vibration, e.g. from peak D and peak E. From 

this assignment it is clear that most of the eight peaks that are resolved in the low temperature 

PL spectrum are in fact a superposition of several unresolvable vibrational modes, i.e. 

vibrational modes with energy separations smaller than the inhomogeneous width. Hence, the 

use of different line widths for the different peaks is justified. We note that a fit using the same 

width for all vibronic lines requires in total 10 to 12 Gaussian functions to reproduce the low 

temperature PL spectrum with the same quality and over the same spectral range. Yet, in this 

spectrum we can not identify that many peaks and shoulders, and we therefore did limit 

ourselves to 8 Gaussians only. 

The appearance of this rich vibrational structure in the 1.5 K PL spectrum compared to the 

room temperature PL can be traced back to the strong reduction of the homogeneous line 

width upon cooling down. Typically, for large organic molecules, such as conjugated polymers 

and oligomers, the homogeneous line width is below 0.13 meV (1 cm-1) at 1.5 K6–8. Hence, line 

broadening is dominated by inhomogeneous broadening and all (groups of) vibrational modes 

with energy separations larger than the inhomogeneous width can be discriminated as distinct 

peaks/shoulders in the low temperature PL. From the width of the 0-0 transition (peak A, Figure 

S7 and table S3) the inhomogeneous line width at 1.5 K can be estimated to about 33 meV. In 

contrast, at room temperature the homogeneous line width is up to 60 meV (~ 500 cm-1). 

Consequently, neighboring lines separated by less than ca. 60 meV cannot be resolved as 

distinct lines any more (neglecting a possible increase in the inhomogeneous line width with 

increasing temperature due to increasing thermal disorder). This means that peaks A and B of 

the low temperature spectrum with an energy separation of only 29 meV appear as a single 

broad line (peak 1) in the room temperature PL; similarly peaks C and D merge into peak 2; 

finally, peaks F and G give peak 4. Only the strong aromatic carbon-bond stretch (peaks E and H 

at 1.5 K) still appears as clearly distinct peaks at room temperature as well (peaks 3 and 5).  
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Figure S7: Normalized PL spectra of 3TBT crystal at 1.5 K (red curve) and at room temperature 

(black curve) were fit to families of Gaussian functions to reproduce the vibronic structure. 

 

TableS3. Fitting parameters used for the decomposition of photoluminescence spectra of the 

single crystal at 1.5K.  
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Finally, we note that the relative 0-0 peak intensity decreases from 1.5 K to room temperature 

and thus shows an unusual temperature-dependence. This behavior cannot be explained in a 

     g  f  w    w y w         ’            b                  g                            

the crystal increases which is expected to increase the relative 0-0 peak intensity9,10. However, 

in an perturbative ansatz Spano showed that the 0-0/0-1 intensity ratio is inversely proportional 

to the square of the free exciton bandwidth W in a regime where energy disorder is not too 

large9,10. If we then assume that at 1.5 K the 3TBT molecules in the crystal are nearly perfectly 

arranged and planar, i.e. electronic excitations are fully delocalized over a molecule, whereas at 

higher temperatures thermal energy allows for small torsional degrees of freedom of 3TBT, 

which slightly localizes electronic excitations. Owing to this reduction in delocalization, the 

nearest-neighbor interaction between 3TBT molecules increases with increasing temperature, 

and thus the 0-0/0-1 intensity ratio decreases (again: if disorder does not increase too strongly). 

Since it is very difficult, however, to unambiguously determine the energy disorder from our 

data, we do not wish to make any quantitative statements as to the temperature-dependence 

of the 0-0/0-1 intensity ratio. The 1.5 K PL spectrum is only meant to justify the use of 5 

Gaussian peaks for the fitting of the room temperature data. 

Moreover, there are some limitations  f      ’       y:    y      g    ff    v  v b         

mode is included, whereas we clearly do see a rich vibronic structure; especially low energy 

vibrational modes exhibit a strong temperature dependence, which is also not included in this 

theoretical framework; only nearest-neighbor interactions are considered, which is a rather 

strong approximation for a densely packed system as represented by a 3TBT crystal. Probably, a 

combined quantum chemistry/molecular mechanics approach as used by Beljonne, Gierschner 

et al. might be more suited to reproduce the temperature-dependence of our PL spectra11.  

An alternative interpretation for this unusual temperature-dependence of the relative 0-0 peak 

intensity are temperature-dependent energy transfer rates between disordered and ordered 

regions of the samples. In our PL experiments we predominantly excite disordered regions 

(excitation energy ~ 2.66 eV, compare Figures 2a, 3b, and S3), from where ordered regions are 

populated by incoherent hopping processes prior to emission. The transfer rate for incoherent 

hopping, however, increases with increasing temperature12, i.e. this transfer is slower at 1.5 K 
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than at room temperature. Consequently, at low temperatures we may expect emission also 

from more disordered regions due to incomplete energy transfer to ordered regions. This 

results in PL spectra with a larger relative 0-0 peak intensity. In contrast, at room temperature 

this energy transfer is fast and thus highly efficient, which results in emission from nearly 

exclusively highly ordered regions with a small relative 0-0 peak intensity. Since we cannot 

deduce the energy transfer rates from our PL measurements, we unfortunately cannot tell 

which mechanism is responsible for the unusual temperature-dependence of the relative 0-0 

peak intensity. 

 

Figure S8: Absorption coefficient of solution (red), film (black) and crystal (blue). 

 

Optical Density of Solution, Film and Single Crystal: 

 

  W                  b            ff        α  f       f               g     y             g        

Beer–Lambert law:          
 

    
    with A being the absorbance. The transmittance 

( ) is defined by:            . 

Then   
  

    
         ,  where z is the thickness of the crystal. The extinction coefficient 

( ) for the solution was calculated by using:      , where c is the concentration of the 

solution and l is the length of the optical path (thickness of the solution). 
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 Figure S8 shows the absorption coefficient of the solution (measuring the absorption of light 

for an optical path of 1µm in the solution), film and crystal. All values are of the same order of 

magnitude, consistent with results obtained for P3HT by Clark et al13. 

 

Comparison of PL spectra of Crystal Measured at Different Polarization Direction:  

 

  In Figure S9a, we scaled up the emission spectrum at ψ = 0° (i.e., emitted light is polarized in 

the direction of the long axis of the crystal). As seen in Figure S9, the intensity ratio I0-1/I0-0 

decreased by changing the angle between the long axis of the crystal and the analyzer from 90° 

to 0°. This is related to the different absorptions for light polarized perpendicular (ψ = 90°  and 

parallel (ψ = 0°  to the long axis of the crystal. For PL in the energy range 2.3 eV with 

polarization parallel (ψ = 0°            g           v      w         b              g  g b       

evident from the corresponding absorption spectrum (Figure 3a, red line). Hence, reabsorption 

does not take place. For light polarized perpendicularly, there is some overlap between 

absorption and emission, and some reabsorption takes place. These data provide further 

evidence that reabsorption is only a minor effect in our PL spectra of crystals, and cannot 

account for the difference between film and crystal PL.  

Figure S9b, shows normalized PL spectra taken at the center and the edge of the crystal. By 

moving the detection area (diameter of 4 µm) from the ordered (crystalline) to the disordered 

(film) region, the intensity ratio I0-1/I0-0 changed from 17 to 5. When changing the angle 

between the long axis of the crystal and the analyzer from 90° to 0°, the intensity ratio I0-1/I0-0 

decreased from 12 to 6.5 (Figure S9a). In other words, although reabsorption probably 

contributes in the change of this I0-1/I0-0 ratio, reabsorption certainly cannot account for 

observed change in this ratio when going from the centre to the edge of the crystal. 

Furthermore, we have measured dichroic ratio at the center, edge and far outside of the 

crystal. Figure S9c clearly shows that the dichroic ratio decreased by moving the detection area 

from the ordered (crystalline) to the disordered (film) region. These results confirm that 

changing the contribution of ordered region in the detection area influences the emission 

spectra with respect to the dichroic ration and the intensity ratio I0-1/I0-0.  
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Figure S9: a) Normalized PL spectra of a 3TBT single crystal measured at the center of the 

crystal at normal incidence (dichroic ratio is 15), where ψ is the angle between the long axis of 

the crystal and analyzer together with the normalized PL spectrum from an as-cast 3TBT film. b) 

Normalized PL spectra taken at the edge (gray) and center of the crystal (red). c) Intensity ratio 

I0-1/I0-0 as a function of the distance to the center of the crystal, compared with the 

corresponding dichroic ratio (blue and green). 

 

 

 

 

 

 

a b 
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