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Short summary 

Composite sandwich structures offer excellent lightweight properties for the aviation industry. 

Replacing thermoset based materials and honeycomb structures with thermoplastic composite 

(TPC) materials and foam cores seems promising for lowering manufacturing and in-service 

costs and thereby the direct operating costs of aviation vehicles. 

Consequently, this thesis deals with the development of sandwich structures based on carbon 

fibre (CF) reinforced Polyetheretherketone (PEEK) skins and Polyetherimide (PEI) foam cores 

for structural sandwich applications in helicopters. Skins and core are joined cohesively by 

fusion bonding, a technique which leads to high bond strengths while being realisable in short 

cycle times. However, CF/PEEK skins and PEI foam cannot be readily joined due to their 

incompatible processing requirements, therefore the ‘Thermabond’ principle, which is based 

on enriching thermoplastic composite laminates with a second polymer to simplify the fusion 

bonding process, is adapted to the sandwich manufacturing process. To understand the 

process governing mechanisms, and to define a process window which enables high bond 

strengths while preventing skin de-consolidation and core collapse, a theoretical model based 

on ‘intimate contact’ and ‘healing’ is deduced for the manufacturing process. This model 

enables the prediction of the skin-to-core bond depending on varying skin and core 

temperatures. In the following, experimental trials are conducted according to the parameters 

resulting from the model for verification. The comparison shows a reasonably good agreement 

between predicted and experimentally obtained skin-to-core bond strengths with skin 

temperatures in the range of 290 °C – 320 °C. However, while the model predicts that core 

heating leads to an improvement of the bond strength, experiments show that core heating 

often leads to core collapse, which is not considered in the model. Therefore, it is proposed 

that the modelling approach is complemented with an analysis of the heat flow into core. Based 

on the defined skin temperatures and further process parameters, such as core compaction 

distance and PEI film thickness, a complementary characterisation of the sandwich structures 

is performed. The sandwich structures are tested according to several testing standards to 

characterise the skin-to-core bond, the core structure as well as the sandwich as a whole. The 

characterisation reveals that the proposed process parameters enable a strong fusion bond. 

Nevertheless, temperature and core compaction distance are observed to influence the core 

cell structure, which often leads to a weakening of the core performance. Based on the 

characterisation, it is proposed to manufacture the sandwich structures at a skin temperature 

of 300 °C, a compaction distance of 2 mm and to enrich the CF/PEEK skins with a 125 µm 

thick PEI film. Subsequently, the developed sandwich structures are compared to thermoset 

based state-of-the-art sandwich structures, namely prepreg-Nomex® (® = registered 

trademark) and Polymethacrylimide (PMI) foam based structures, and defined requirements. 

In general, the assessment shows lesser performance of the developed TPC sandwich 

structures, though reveals promising short manufacturing cycle times which can be half that of 

cycle times for state-of the-art aviation sandwiches. To improve the performance and be able 

to fulfil the requirements, concepts based on pin integration into the foam core are proposed 

and the potential of strengthening the core is illustrated. Finally, a formed panel is realised to 

show the performance of thermoplastic sandwich structures for formed parts. Thereby, it is 

shown that skins and core need to be formed prior to the fusion bonding process. 

 



 

Kurzfassung 

Faserverstärkte Sandwichstrukturen bieten großes Leichtbaupotential für die Luftfahrt. Der 

Austausch duroplastischer Materialien durch faserverstärkte thermoplastische Materialien, 

sowie der Ersatz von Nomex®-Waben (® = registered trademark) durch Schaumkern-

strukturen ist vielversprechend für die Senkung der Herstellungs- sowie Wartungskosten von 

Luftfahrzeugen. 

Aus diesem Grund beschäftigt sich diese Arbeit mit der Entwicklung von luftfahrttauglichen 

Sandwichstrukturen aus karbonfaserverstärkten (CF) Polyetheretherketon (PEEK) 

Deckhäuten und einem Polyetherimid (PEI) Schaumkern sowie deren Herstellungsprozess. 

Ziel dabei ist es, die Deckhäute und den Schaumkern über eine Schmelzverbindung, welche 

hohe Verbindungsfestigkeiten in kurzen Zykluszeiten ermöglicht, zu fügen. Vorversuche 

zeigen jedoch, dass sich die CF/PEEK-Deckhäute und der PEI-Schaumkern aufgrund ihrer 

divergierenden Verarbeitungsfenster im Hinblick auf Temperatur und Druck nicht ohne 

Weiteres über eine Schmelzverbindung fügen lassen. Aus diesem Grund wird der 

Herstellprozess an den “Thermabond“-Prozess, welcher auf der Anreicherung einer Deckhaut-

Seite mit einem zweiten Polymersystem (in diesem Fall mit einer PEI-Schicht) basiert, 

angepasst und ein konvergentes Prozessfenster geschaffen. Um Verständnis für die Prozess-

dominierenden Mechanismen zu gewinnen sowie ein geeignetes Prozessfenster zu 

identifizieren, wird ein theoretisches Modell für den Herstellprozess abgeleitet. Dieses Modell 

ermöglicht die Vorhersage der Deckhaut-Kern-Verbindungsfestigkeit in Abhängigkeit von 

verschiedenen Deckhaut- und Kerntemperaturen. Experimentelle Untersuchungen verifizieren 

in den meisten Fällen die vorhergesagten Verbindungsfestigkeiten und zeigen, dass 

Deckhauttemperaturen im Bereich von 290 °C bis 320 °C zu den erwünschten 

Verbindungsfestigkeiten führen. Jedoch zeigen die Experimente, dass neben der 

Verbindungfestigkeit auch die Formstabilität des Kernes betrachten werden muss, da es im 

Falle von erhöhten Kerntemperaturen zu einem Kollabieren des Kernes und somit zu 

Abweichungen zu den vorhergesagten Festigkeiten kommt. In einer ergänzenden Studie wird 

der Einfluss der Deckhauttemperatur, des Kernkompaktierungswegs und der Dicke der PEI-

Oberflächenschicht auf die Verbindungsfestigkeit, die Kernstruktur sowie auf die gesamte 

Sandwichstruktur tiefergehend untersucht. Die Ergebnisse der ergänzenden Studie 

untermauern die hohen Deckhaut-Kern-Verbindungsfestigkeiten der Sandwichstrukturen, 

zeigen jedoch, dass bei erhöhten Deckhautemperaturen und hohen 

Kernkompaktierungswegen die Kernstruktur im Randbereich beeinflusst und somit die 

Kernstruktur geschwächt wird. Resultierend aus den Untersuchungen wird eine 

Deckhauttemperatur von 300 °C, 2 mm Kernkompaktierungsweg und 125 µm PEI-

Deckhautbeschichtung für die Herstellung empfohlen. Die experimentell nachgewiesenen 

Eigenschaften im Vergleich mit duroplastischen Referenz-Sandwichstrukturen verdeutlichen 

das Potential der thermoplastischen Sandwichstrukturen im Hinblick auf die hohen 

Verbindungsfestigkeiten und die wesentlich kürzeren Herstellungszykluszeiten, heben jedoch 

auch den PEI-Schaumkern als Schwachstelle der Strukturen hervor. Daraufhin wird eine 

Methode zur Verstärkung der Schaumkerne vorgestellt, welche es ermöglicht, die 

Kerneigenschaften bzw. die Eigenschaften der gesamten Sandwichstruktur zu verbessern.  

Im letzten Kapitel wird die Prozesstauglichkeit der thermoplastischen Sandwichstrukturen am 

Beispiel eines geformten, dreidimensionalen Schubpaneels nachgewiesen.  
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Adh Adhesive 

B.l. Coh Boundary layer cohesive 
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                 Formular symbols 

 
a0  Initial height of the rectangular elements (ideal material surface) 
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b(t)  Width after the time t of deformation (ideal material surface) 
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Cmaint Cost for maintenance, repair, overhaul 
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Cfin Cost for financing strategy 

c Specific heat capacity 

dcompaction Core compaction distance 
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δP Polar cohesion (solubility) parameter 
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λ Thermal conductivity 

m,n Node label 

η Polymer viscosity 

papp  Applied pressure  

p Pressure 

Φ'' Heat generation  

q Amount of time intervals 

Ro  Radius of interaction sphere in Hansen space 

Ra Distance in Hansen space 

Red  RED number 

ρ  Density  

S Sandwich thickness 
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tp  Process time 

σ Fracture stress 

σ∞ Fracture stress of a fully healed interface 

�̅�Tensile Normalised Tensile strength 

Tcore Core temperature 
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Tg Glass transition temperature 

Tm Melting temperature 

𝑇𝑚,𝑛
𝑖+1   Temperature for the time point i+1 for node m,n 

Tp Processing temperature 

Tr Reptation time 
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TSkin Skin temperature (in contact with core) 

TSkin pre-heat Skin pre-heat temperature (skin temperature in oven) 

TTransfer plate Temperature of transfer plate in oven 

τ Shear stress 
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�̇� Shear velocity 
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min Minutes 

MPa Mega Pascal 
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1. INTRODUCTION AND MOTIVATION  

Flying like birds, swimming like fish and constructing like insects: desires which have driven 

humans since the cradle of humankind to adapt natural phenomena into technology. One of 

the best-known examples is the myth of Daedalus and Icarus, who constructed wings based 

on the model of birds to escape from the tyrant Minus. Today, a scientific discipline in itself, 

referred to as bionics, engages with the adaptation of natural models into innovations. 

The concept of sandwich structures is also based on natural principles [1]. Good examples are 

tree branches and bones in skeletons (Figure 1), both striving for the minimum use of material 

while obtaining maximum performance [1]. 

 

Figure 1: Cross-section of a flat bone shows the spongy bone lined on either side by a layer 
of compact bone [2] 

Today, in engineering science, a sandwich is defined as a structure consisting of a relative 

thick, low density core material covered by relative thin skin materials [3]. Skins and core are 

force-fitted joined, in most cases by means of an adhesive capable of transmitting shear and 

axial loads from and to the core [4]. Under load, the skins bear tensile and compressive forces 

and are meant to protect the core against impacts [3]. The core separates the skins to the 

designated distance, while carrying compression and shear loads. This sandwich principle is 

comparable to the I-Beam concept [5]. Additionally, the core is supposed to stabilise the skins 

and support them against buckling and kinking [3]. Separating the skins by means of the core 

increases the mass moment of inertia of the panel while adding only little weight [4]. Thus, a 

structure is created which features a high resistance to bending and buckling. However, a 

strong bond between skins and core, more specifically a bond which is not the weakest link 

within the structure, is required to allow the sandwich principle to function [6]. By using typical 

values for skin and core density, the flexural stiffness and strength-to-weight ratio can be 

significantly improved compared to a monolithic panel, see Table 1. Further advantages of 

sandwich structures are acoustic and thermal insulation [1]. 

Compact bone

Spongy bone
Periosteum
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Table 1: Structural efficiency of sandwich panels in terms of weight in comparison to 
monolithic structures according to Petras [4]  

 

 

Relative bending stiffness 1 7.00 37.00 

Relative bending strength 1 3.50 9.20 

Relative weight 1 1.03 1.06 

Common materials for skins are aluminium, steel and wood, or composite materials for high 

performance applications, reinforced either by glass- or carbon fibres [4,5]. Core materials can 

be divided into two categories: isotropic and anisotropic core materials [3]. Materials such as 

cork or in some cases foams feature directional-independent properties (isotropic materials), 

while balsa wood, honeycomb and oriented foam cores show directional dependent features 

(anisotropic materials) [3,5]. 

The first description of the sandwich construction principle, consisting of iron sheets riveted to 

a wood core, was awarded to W. Fairbairn back in 1849 in England [7,8]. Since one of the 

major challenges in aircraft design is to decrease weight without sacrificing strength, engineers 

introduced the sandwich design into the aviation industry a long time ago [1]. Already in 1924 

sandwich structures were first applied in aviation as a fuselage structure for a glider plane, 

followed by sandwich elements in wing structures [8,9]. In the thirties sandwich structures were 

used in powered aircraft such as the Comet Racer, the Albatross or the famous De Havilland 

Mosquito, which was regarded as one of the fastest operational aircraft in World War II [8]. For 

these aircraft sandwich structures, wood skins were combined with a balsa core and joined by 

the use of an adhesive based on phenolic resin [1,8,10]. In the late 1940’s the concept for 

modern honeycombs was invented by a circus proprietor [11]. Metal-wood based sandwich 

panels were used in the Fokker F27 in 1955 [1,8]. In the early 60’s the first sandwich rotor 

blades were designed for the BO 105, consisting of composite skins and foam in order to 

prevent local buckling of the skins [12]. By landing on the moon, the Apollo project showed the 

great potential of sandwich structures for aerospace engineering in 1969 [13]. Airbus began to 

make use of composite sandwiches structures in 1983, when the first Airbus aircraft was 

equipped with a composite honeycomb rudder [1]. 

With an increasing wealth of the world’s population, the demand for personal mobility and 

especially for air travel has increased over the last few decades [14], leading to over 6 trillion 

revenue passenger kilometres in 2015 according to the International Civil Aviation 

Organization [15]. In order to satisfy the increasing demand of air traffic, but to stay profitable, 

aircraft manufacturers and airlines have been forced to drive the development of more-fuel 

efficient aircraft to minimise the direct operating costs (DOC) such as increasing fuel costs 

[16]. As a result, lightweight design has stepped more and more into the focus. Metallic parts 

have been partly replaced by composites and sandwich structures used in a variety of aviation 

applications. In today’s aircraft, the typical structural sandwich elements are aerodynamic 

t

4t
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fairings, covers and doors [1,17]. Some examples are radomes, belly fairings, leading and 

trailing edge fairings, engine cowlings and landing gear doors. Meanwhile applications in 

aircraft interiors such as fairings and floor panels have also become standard [18]. Since the 

whole weight of a helicopter has to be lifted by its rotating engines, lightweight design plays an 

even more important role for helicopters [19]. Up to 85 % of the structure is realised in 

composite materials today, such as in the Airbus NH90 helicopter [20]. Additionally, sandwich 

structures can be found in floor panels, cowlings, beams and frames, and rotor blades to further 

lower the weight, see Figure 2 [21]. 

 

Figure 2: Typical applications for sandwich structures in helicopters 

Today, the predominant skin material in aircraft and helicopter construction are glass- or 

carbon fibre reinforced prepregs (pre-impregnated) with epoxy or phenolic resins [1]. As core 

material, mostly honeycombs consisting of aramid paper impregnated with a phenolic resin 

are used [1,5]. Aramid/Phenolic honeycomb cores feature excellent stiffness and strength 

characteristics and have positive FST (Fire, Smoke & Toxicity) properties for interior 

applications [18]. It is considered highly doubtful that other sandwich structures can compete 

with honeycomb based structures regarding the weight-performance ratio, as shown in    

Figure 3. 

However, despite their excellent performance and the wide background of knowledge on 

handling and design, honeycomb core structures have various drawbacks. 

Prepreg/honeycomb sandwich structures are costly, due to raw material prices [5], time and 

cost intensive production and required high machine investments [22]. Figure 4 gives an 

overview of the drawbacks of Prepreg/honeycomb based sandwiches in terms of 

manufacturing costs and impact on the environment during the whole life cycle. The production 

Beams & frames Rotor blades

Floor Cowling

Fenestron blades
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of honeycomb core sandwiches is cost prohibitive due to time intensive processing which 

requires manual labour [23]. 

 

Figure 3: Strength and stiffness of various core materials according to Campbell [5] 

Already the first production step, the forming of the core, is labour intensive. Since 

honeycombs are hard to form into complex parts, they have to be shaped or machined 

individually [18]. Due to the hexagonal and open structure, honeycombs require filling, potting 

and sealing [21]. Additionally, honeycomb cores tend to crush when subjected to lateral forces 

during processing, leading to the need of stabilisation [24]. 

After preparing and draping the prepreg stacks and adhesive layers, a vacuum-bag-setup has 

to be installed by manual labour, followed by consolidation and curing at elevated temperature 

and pressure in an autoclave [23]. Layup and vacuum bagging can be performed in a few 

hours, while autoclave consolidation takes up to a full day [23]. In addition, honeycomb 

sandwiches often require time-consuming post processing stages. Surface recesses, referred 

to as telegraphing, can be caused by the hexagonal structure of the honeycomb cores leading 

to the need of additional processing of the skins [18]. During service, honeycomb structures 

require costly and frequent maintenance since the honeycomb may fill up with water under 

certain circumstances such as porous surface skins [17,25]. The water freezes and expands 

at low temperatures at high altitude and can thereby damage the honeycomb cells [17,25]. 

In addition to the time intensive manufacturing processes, prepreg/honeycomb based 

sandwiches have a considerable environmental footprint. The production of aramid/phenolic 

structures itself and the manufacturing of thermoset based sandwich structures has a negative 

impact on the environment and workers’ health, due to the chemistry of the thermoset resin 

[22,26,27]. Furthermore, recycling concepts for thermoset based sandwiches are rare, leading 

to a negative environmental impact after service [22].  

 

 

 

Density Density

S
tr

e
n
g
th

S
tif

fn
e
s
s

PVC foam

PVC foam

Aluminium honeycomb

(5052,5056)
Aluminium honeycomb

(5052,5056)

Nomex®

(HRH-10,HRH-78)

Nomex®

(HRH-10,HRH-78)

 



1 Introduction and motivation  5 

__________________________________________________________________________ 

 

 

Figure 4: Negative influence of prepreg/honeycomb sandwiches on the DOC of aircraft and 
the environment during the life-cycle 

1.1 MOTIVATION  

According to [28] the demand of mobility, especially the demand for high speed traffic such as 

air traffic, will increase significantly until the year 2050. Airbus Helicopters expects a growth of 

50 % in the world civil helicopter fleet in service over the next 20 years [29], and Airbus 

Commercial Aircrafts expects a demand for more than 33,000 new passenger and freight 

aircraft in this period [30]. However, the likely division of market share amongst the Original 

Equipment Manufacturers (OEMs) is hotly debated, and the competition is strong [31]. In order 

to stay competitive, OEMs need to provide aviation vehicles that have low design and 

manufacturing costs as well as being competitive in terms of operating costs, since in the end, 

operators are interested in cost savings throughout the lifetime of the product, i.e. low 

acquisition, operating and disposal costs [32]. The life cycle cost (LCC) analysis considers the 

cost of a product or system over its entire lifetime [33]. However, the aircraft operator is not 

particularly interested in LCC, but rather more in the direct operating cost (DOC), which can 

be described as 

𝐷𝑂𝐶 = 𝐶𝑓𝑙𝑡 + 𝐶𝑚𝑎𝑖𝑛𝑡 + 𝐶𝑑𝑒𝑝𝑟 + 𝐶𝑙𝑛𝑟 +  𝐶𝑓𝑖𝑛 Equation 1 

Cflt = Cost(crew, fuel, insurance), Cmaint = Cost(maintenance, repair, overhaul), 

Cdepr  = Cost(price, flight hours), Clnr = Cost(landing and navigations fees, registry taxes), 

Cfin = Cost(financing strategy) [32]. 

In order to make an aviation vehicle competitive, the goal is to minimise the DOC. From an 

engineering point of view, crew costs, financing strategies, landing and other fees can be 

excluded [32]. The potential to reduce fuel consumption with weight savings has, for the most 

part, been exhausted by the application of sandwich structures. Any potential to increase the 

competitiveness of aviation vehicles hence lies in reducing the cost of acquisition by means of 

reduction in production costs and reduction of maintenance and repair during service. 
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Furthermore, besides this economic pressure, the environmental footprint of aviation vehicles 

is moving ever further into the spotlight. End of life solutions including recycling and 

dissembling solutions are being requested more and more by aviation vehicle operators, who 

need to cope with IS0 14000 requirements [34]. In his former position as CEO of Eurocopter 

(today Airbus Helicopters), Dr. Lutz Bertling highlighted that the protection of the 

environment is today at the heart of the company’s innovation strategy [35]. 

Due to the lightweight potential of sandwich structures and based on the drawbacks of 

prepreg/honeycomb sandwich structures, it is not surprising that there is increasing demand 

for new cost-effective production technologies for sandwich structures to make the products 

more competitive in the future. In addition, due to increasing interest in reducing the 

environmental impact of aviation vehicles, there have been moves to replace environmentally 

harmful materials and processes with innovative, environmentally friendly materials and 

manufacturing techniques. However, any novel structures will have to fulfil the requirements 

without compromising on the weight advantage already achieved. 

The introduction of thermoplastic materials for sandwich structures seems promising in 

lowering manufacturing costs, and lessening the environmental impact, and thereby in 

increasing the competitiveness of sandwich structures [22]. Thermoplastic materials are 

characterised by molecules chains associate reversibly through intermolecular forces (such as 

Van der Waals forces), which allow disconnection and thereby softening (melting) of the 

material by the input of heat, solvents or mechanical forces [36]. Material softening offers the 

potential to be thermoformed or fusion joined [37]. Cooling or removal of the solvent returns 

the polymer to a solid [38,39]. This property enables a more automated process chain including 

lower manufacturing costs compared to thermoset based structures. Additionally, the 

application of thermoplastic polymers improves recyclability and damage tolerance [22,38,40].  

Thermoplastic composite (TPC) parts have been applied ever more frequently in aviation in 

recent years and further growth is expected [41]. For example, over 1000 individual parts, 

representing 7.5 percent of the aircraft’s total composite airframe flyaway weight, have been 

incorporated into the A380 of Airbus. Meanwhile, up to 8000 parts have been realised as TPC 

structures in the A350 XWB, the newest model of the Airbus fleet [41]. Besides the possibility 

to manufacture thermoplastic composite in short cycle times by means of heat and pressure 

[42], thermoplastic materials and manufacturing technologies offer greater environmental 

benefits compared to commonly used aerospace materials over all of their life phases [43]: 

• Less energy consumption for storage 

• Less energy-consuming manufacturing technologies due to short cycle times 

• Enhanced maintenance through easier disassembly and repair 

• More possibilities for recycling 

In addition to the introduction of thermoplastic materials for sandwich structures, it would seem 

advantageous to apply foam cores instead of honeycomb structures. Foam cores are already 

used in the aviation industry, though they find fewer applications than honeycomb structures. 

One good example for successful application of foam cores is Polymethacrylimide (PMI) foam 

in rotor blades [21]. In general, foam cores feature lower mechanical performance than 

honeycomb structures but they are cheaper, require less processing steps and allow more 

design flexibility due to their thermoformablity [5,23]. According to [44], the application of foams 

in sandwiches can reduce production cost by up to 30 %. Furthermore, closed cell foam cores 
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feature an even distribution of pores leading to isotropic behaviour and minimal water 

absorption, reducing the need for maintenance. Furthermore, telegraphing can be avoided by 

using foams [45]. Even though the structural performance of foams is inferior to that of 

honeycombs, a detailed comparison of several foam and honeycomb sandwiches for aviation 

applications revealed that foams do show advantages regarding their impact behaviour [45]. 

To tackle the manufacturing costs of sandwich structures and to reduce the environmental 

footprint of structural parts, the goal of this study is the development of a time-efficient and 

cost-efficient manufacturing process for thermoplastic composite sandwiches for structural 

helicopter applications. In addition, it is aimed to apply thermoplastic foam cores instead of 

honeycomb structures to further decrease manufacturing times and to reduce maintenance 

effort. To show the potential of the sandwich structures thus developed, technical and 

economic results will be assessed based on a comparison to state-of-the-art sandwiches, and 

according to requirements for structural sandwich parts. Finally, a three-dimensional (3D) 

demonstrator will show the feasibility of thermoplastic composite sandwich structures for 

formed applications in aviation.  

1.2 REQUIREMENTS 

Besides the motivation to reduce manufacturing costs and to lower the environmental footprint, 

it is important that newly developed sandwich structures fulfil diverse helicopter case specific 

requirements without suffering loss in their weight advantage. In general, sandwich structures 

find application in helicopters in two-dimensional (2D) as well as 3D sandwich components in 

external structural and internal parts, see Figure 2. To enable the possible application for every 

use case, the sandwich structures and materials should offer a high dimensional flexibility. This 

means, that the aimed sandwich structure should be realisable with different shapes and 

dimensions such as skin and core thickness, which are defined (based on existing structures) 

to be in the thickness range of 0.5 mm – 5 mm for the skins and up to 50 mm for the core. 

During service sandwich structures are exposed to different load cases. External structures 

have to withstand high operational temperatures (for example downwash of engine exhaust 

gases) and high aerodynamic loads. Internal structural structures must additionally meet FST 

requirements, and they also must withstand discrete loads caused by passengers, such as 

sharp stones under soles of shoes. For this study, it assumed that common carbon fibres used 

in aviation applications offer the required properties for skin laminates. Therefore, the focus for 

the skin materials is more on the fibre volume content (~58 vol % for unidirectional (UD) 

reinforced materials and ~55 vol % for fabric based skins) and the properties of the matrix 

material at elevated temperatures (135 °C). For the latter, the skin matrix material is required 

to have its glass transition temperature above 140 °C. Since the loads, which are acting on the 

sandwich, are transferred into the core, the skin-to-core bond strength need to be high. This 

strength can be evaluated based on the peel strength, which needs to be higher than 

0.8 N/mm. Furthermore, the core structure itself need to feature high mechanical properties. 

While for example the weights of passengers lead to compressive loads perpendicular to skins, 

aerodynamic loads cause bending moments which lead to shear loads within the core. Based 

on experiences of actual applications and load cases, the core should feature a compressive 

strength at least of 1.4 MPa and a shear strength of > 1.1 MPa. Nevertheless, to limit the 

weight increase of the envisaged sandwiches in comparison to Nomex® based sandwich 

structures, the density of the foam core should be below 110 kg/m³. Furthermore, it is required 
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that core shows a low moisture absorption (< 2.1 %) to limit further weight increase and to 

avoid significant performance reduction under hot wet conditions. 

Moreover, the structures need to show a high resistance against several chemical substrates 

such as cleaning agents, kerosene and hydraulic fluids. In order to improve the environmental 

impact and to protect the works heath during production, the material needs to be HSE 

conform. These requirements are much more stringent than requirements for automotive 

applications, where the mechanical performance and the thermal stability play a less important 

role. Automotive requirements focus more on weight and cost savings. 

Table 2 gives a summary of the derived requirements, which are both application- and 

manufacturing-driven. This enables on the one hand the evaluation of state-of-the-art 

sandwiches and the selection of novel materials and processes. On the other hand, these 

requirements give indication for the manufacturing cycle time reduction, which is aimed to lie 

below 4 hours.  

However, it should be noted that the work presented here is part of a research project on a 

technology that is at a low level of maturity. Therefore, the requirements can only be 

understood as an aid for decisions during the research activities, and not as final requirements 

for specific applications.  

Table 2: Summary of requirements 

 Criterion Value Unit Standard 

Skin Skin thickness 0.5 – 5 mm  

Fibre volume content UD: ~58; Fabric: ~55 vol % EN 2564 

Glass transition temperature > 140  °C  Tg onset 

Foam Core thickness  10 – 50 mm  

Core density < 110  kg/m³  

Moisture uptake < 2.1  %  

Glass transition temperature > 140 °C  

Compressive strength > 1.4 MPa DIN 53291 

Core shear strength > 1.1 MPa DIN 53294 

Sand-
wich 

Skin-core drum peel strength (foam) > 0.8 N/mm DIN EN 2243-3 

Residual compressive strength  

after impact (CAI 5J) 

> 150 MPa AITM 1.0010 

Process
-ing 

Processing temperature < 400 °C  

Target cycle time < 4 h  

In-
service  

Media resistance against Kerosene, hydraulic fluid, cleaning agents, etc. 

Painting Yes 

UV-resistance Yes 

FST requirements  (UL-94 V-0) 

HSE Components to be avoided 

that are 

Toxic, mutagenic, carcinogenic 

Disposal Recyclability, re-use 
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2. STATE OF THE ART  

Thermoplastic composite (TPC) sandwich structures promise to be advantageous for more 

than just the aviation applications, therefore they have been investigated in the past by different 

researchers for the automotive and rail industry.  

In order to identify suitable manufacturing methods for thermoplastic sandwich structures in 

aviation applications that require the use of so called “high performance thermoplastics”, a 

review of the public literature on manufacturing methods for thermoplastic sandwich structures 

is conducted. Firstly, thermoplastic skin and core materials, applied in investigations as well 

as in commercial products, are presented. Secondly, the manufacturing methods for flat, two-

dimensional (2D) sandwich structures, investigated by different researchers, are presented 

and discussed in detail. Thirdly, manufacturing approaches for three-dimensional (3D) 

thermoplastic composite sandwiches are reviewed separately. Finally, analytical modelling 

approaches which describe and investigate the joining and forming process of thermoplastic 

sandwich structures are presented. 

2.1 MATERIALS 

2.1.1 Skin material 

Skins for TPC sandwiches consist of fibre reinforced laminates with a thermoplastic matrix in 

which either short or continuous fibres are used. Thermoplastic composite skins are available 

as fully consolidated laminates, semi-prepregs or prepregs. The thermoplastic matrix polymers 

in general range from commodity plastics such as Polypropylene (PP) or engineering polymers 

such as Polyamide (PA) to high performance polymers such as Polyetherimide (PEI) or 

Polyetheretherketone (PEEK). Table 3 gives an overview of thermoplastic composite sandwich 

skin materials reported in the published literature. Commodity plastics in combination with 

reinforcing glass fibres are mostly employed as skin materials for TPC sandwich structures. 

Especially PP based composites are applied that are traded under the Twintex® name. This 

can be explained by the low price of the material and the ease of processability of PP since 

most investigation have been performed for automotive application where manufacturing times 

need to be reduced drastically [46,47]. The most widely applied high performance polymer in 

TPC sandwich skins of interest to the aviation industry is PEI, often combined with reinforcing 

glass fibres. 

2.1.2 Core material 

Sandwich cores are usually of lower density than the skin materials and can be classified into 

three classes, according to their architecture, see Figure 5: corrugated or truss core (a), foam 

or solid core (b), honeycomb core with hexagonally shaped cells, circular or square cells (c) 

[4]. The core types most commonly described in the investigated literature are thermoplastic 

foams or honeycomb cores, both utilising different kinds of thermoplastic polymers such as PP 

or PEI (see Table 4). Honeycomb structures in general feature better performance in terms of 

strength and stiffness than foams, though they are often more expensive as illustrated in Figure 

6 [5]. Thermoplastic honeycomb structures can be produced via different routes. One kind of 

thermoplastic honeycomb structure is realised by the use of thermoplastic tubes, which are 

bonded to each other at their sides [48].   
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Table 3: Overview of thermoplastic composite materials applied as sandwich skins as reported in public literature 

Application   Polymer Reinforcement Fibre content* Trade name Supplier Reference 
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PP Glass fibre mat (GMT) 40 wt %, GCMP®40 Georgia Composite, Inc., USA [49] 

PP Short random fibres 30 wt %, 23 vol % / Quadrant Composites, Switzerland [50] 

PP Glass fibre mat 50 wt % / Montell Italia, Italy [39] 

PP Continuous glass fibre  / Advanced Composite Systems, 
Austria 

[51] 

PP Glass fibre unidirectional 60 wt % / / [52,53] 

PP Glass fibre fabric / / / [54,55] 

PP Glass fibre fabric 60 wt %, 35 vol % Twintex® Saint Gobain Vetrotex, France [40,46,47,49,50,56–64] 

PP GMT /Continuous glass 
fibres 

40 wt %,65 wt % Plytron® / [65] 

PP PP fibre > 90 vol % / / [50] 

PA Glass fibre fabric 52 vol % Vestropreg® Hüls, Germany [62,66–70] 

PA Glass fibre knit 50 wt % / / [62] 
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PEI Glass fibre warp knitted 
fabric 

27.5 vol % / Tencate, Netherlands; Tec-Knit, 
Germany 

[71–74] 

PEI Glass fibre fabric 50 vol % Cetex® Tencate, Netherlands [37,75–80] 

PEI Carbon fibre fabric 50 vol % Cetex® Tencate, Netherlands [37] 

PEEK Carbon fibre unidirectional 68 wt % Thermo-Lite® Phoenixx TPC, Inc. USA [81] 

PPS Glass fibre fabric 50 vol % / / [80] 

* wt = weight, vol = volume 
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During production, a coating made of an adhesively-active thermoplastic material is applied to 

the outside surface of the tubes in a co-extrusion process. Then the tubes are lined up 

alongside each other. By thermal treatment under pressure in a subsequent processing step, 

the coating is activated and the tubes are joined after cooling [48]. 

 

Figure 5: Different core types: a) corrugated core, b) foam core, c) honeycomb core [4] 

Another production method for thermoplastic honeycombs is described in patent US4957577 

[82]. The honeycomb structure consists of thermoplastic strips which are welded selectively at 

nodes and expanded to hexagonal cells. In the first step, two thermoplastic strips are 

superimposed on one another throughout their entire length. The strips are fusion bonded 

together at evenly spaced nodes by ultrasonic welders. Subsequently, more strips are welded 

one by one, on top, to a bundle of film strips in accordance with step one. Release films are 

placed in-between the strips to ensure that welding only occurs at the designated spots. After 

all welds have been completed, the bundle of strips is exposed to heat. Reaching the softening 

temperature of the thermoplastic material, the bundle of stripes is expanded to form hexagonal 

cells and cooled afterwards while holding the web in the expanded position to rigidify the 

honeycomb configuration [82]. Another manufacturing process is known as the ThermHex® 

concept [83]. The core structure can be produced on one production line in a continuous 

process. Starting from an endless thermoplastic foil, a half-hexagonal web is formed by deep 

drawing or vacuum forming. This half hexagonal web is then folded to build the honeycomb 

core followed by internal bonding of the cell walls. In a subsequent step, the skin laminates 

can be directly fusion bonded to the core [83]. Meanwhile, an origami-like core is traded under 

the name Foldcore®, which is folded from a planar base material into a three-dimensional 

structure [84]. Foldcores® can be produced from papers, metals and any kinds of thermoplastic 

foils [85]. In the next generation fibre reinforced thermoplastic Foldcores® are envisaged.  

a)

b)

c)
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Foams show lower mechanical properties than honeycombs, though they feature some 

advantages such as acoustic damping and thermal insulation [5]. Additionally, thermoplastic 

foams exhibit good thermoformability. 

 

Figure 6: Cost versus performance of core materials according to Campbell [5] 

Foam, more specifically polymeric foam, is the term for cellular structures made out of 

polymers in the form of cell walls and webs as well as foam cells filled with gas [86]. Foams 

can be classified by several characteristics, where density and cell structure are considered to 

be some of the most important properties [86]. Since foams with an open cell structure usually 

feature low mechanical performance, they do not play a significant role in terms of structural 

parts such as sandwiches. A detailed overview of foam classifications is given in [87]. Several 

manufacturing methods such as extrusion or injection moulding, etc. can be used to produce 

foams [87]. Foam cores are made by using a foaming or blowing agent that expands during 

manufacturing and realises a porous, cellular structure. In doing so, the production of polymeric 

foams can be divided into five physical steps: dispersion of blowing agent, homogenisation, 

cell nucleation, cell growth and stabilisation [86]. For thermoplastic polymers, the following 

commercial processes enable the production of foams: foam extrusion offers the ability to 

produce blanks, films, as well as gas-loaded or foamed particles. Foamed particles can be 

further processed into particle foams. Injection moulding enables the near-net shape 

production of parts and integral foams [86]. In-situ film foaming refers to a technology where 

the foam is built up from a blowing agent loaded film, which expands in-situ during the 

sandwich production process [76]. Theoretically, almost any polymer can be used to produce 

foams by adding an appropriate blowing agent [5], however the production of semi-crystalline 

thermoplastic foams entails major challenges. The crystalline microstructure is considered to 

be the main reason for its challenging processing, allowing only a small process window for 

processing [88]. An overview of the core (foams and honeycombs) materials and structures 

described in the reviewed literature is given in Table 4. 
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Table 4: Overview of materials used in thermoplastic sandwich cores as reported in public literature 

Application Structure Polymer Density (kg/m³) Tradename Supplier Reference 

A
u

to
m

o
ti
v
e

, 
ra

il 
o

r 
fo

o
d

 t
ra

n
s
p
o

rt
  

 

Foam PP 60,64,96 Strandfoam® Dow Automotive (Chemical Company), USA [40,49,59,60,63,65,89] 

Foam PP 100 RPF Sekisui, Japan [50] 

Foam (Particle foam) PP 40,60,80 EPP, Neopolen® BASF SE, Germany [57,65] 

Foam PP 90,100 / Kaneka, Belgium [61,89] 

Foam PP 100 / Montell Italia, Italy [39] 

Foam PP / Armourlite® FST / [56] 

Foam PET 80,110 Divinycell® P Diab, Sweden [46,58] 

Foam PET 75,109,156 Cobifoam 0 Mossi & Ghisolfi S.p.A Italy [133] 

Foam PA12 / / / [91] 

Foam PMI 52,70,75,110 Rohacell® Röhm (Evonik), Germany [56,64,66–70] 

Foam PES / Ultratec® Advanced Composite Systems, Germany [51] 
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Foam PET  Divinycell® P Diab, Sweden [80] 

Foam PES 90 Divinycell® F Diab, Sweden [80] 

Foam PEI 60,80 Airex® Airex AG, Switzerland [64,71–73,80] 

Foam (in-situ foamed) PEI 80-240 FITS panel, Dynatech FITS-technology, Netherlands;SMTC,France [75,76,78,91,92] 

Foam Carbon 380 KFoam Koppers, USA [81] 
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Honeycomb PP 80 PP30-5-1 Plascore®, Germany [49] 

Honeycomb PP 43,80,120 Wavecore® Tubus Bauer, Germany [49,50,61,90] 

Honeycomb PP 110 Nida-core® / [49] 

Honeycomb PP 60,80  Nidaplast® Nidaplast, France [52,53,65] 

Honeycomb PP 80,120 / / [47,93,94] 

Honeycomb PA12 94 / Hüls, Germany [69] 

Aviation Honeycomb Aramid/Phenolic / Nomex® DuPont, USA [37,79] 
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Table 4 illustrates that mostly commodity plastics such as PP or Polyethylenterephthalate 

(PET) are applied as foam core structures for automotive or rail applications, which can be can 

be explained by cost reasoning [47], availability [49] and the aim to realise sandwich structures 

which consist only of one polymer throughout the whole sandwich for recycling reasons [50]. 

It is also obvious that Polymethacrylimide (PMI) cores, traded under the name Rohacell®, are 

used by a number of researchers. Although PMI cannot be melted, which defeats the recycling 

concept for all-thermoplastic sandwiches, the high temperature resistance of up to 180 °C in 

combination with its thermoformability makes PMI attractive for application in TPC sandwiches 

[38,95]. In the area of high performance thermoplastic polymers, Polyethersulfone (PES) and 

especially PEI cores are favoured. With an operation temperature of up to 180 °C and excellent 

FST (Fire, Smoke & Toxicity) properties, PEI is an interesting material for the aviation industry 

[96,97]. In comparison to other core materials, PEI cores often originate during the production 

(in-situ) of the sandwich structure. Due to the combination of a PEI film with a blowing agent, 

the material expands under heat treatment [75,76,91]. Furthermore, Table 4 illustrates that 

cores with a density in the range of 40 kg/m³ - 380 kg/m³ are utilised, with a trend towards 

lower densities < 110 kg/m³. 

In the case of thermoplastic honeycomb cores mainly PP is used for automotive applications. 

This can be as well explained by cost reasoning, availability and the aim to realise a single 

polymer sandwich. Furthermore, some researches combine thermoplastic skins with the 

Nomex®-honeycomb, which is well established on the aviation market. 

2.2 SKIN-CORE JOINING 

In order to produce a TPC sandwich structure of sufficient quality, a good bond between skins 

and core needs to be achieved. A good bond between skins and core is defined as a bond 

which does not represent the weakest link within the sandwich structure and which allows the 

transition of forces between skins and core [4,6]. The following Figure 7 gives an overview of 

different skin-to-core joining techniques for thermoplastic composite sandwich structures, 

which have been investigated in the past. The processes for skin-to-core joining can be divided 

into two main groups: adhesive bonding and fusion bonding. Several processes for adhesive 

and fusion bonding of skin and core have been described in the public literature. These 

processes as well as some commercial technologies and products are presented in the 

following sections. 
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Figure 7: Processing routes for skin-to-core joining of TPC sandwiches 

2.2.1 Adhesive bonding 

2.2.1.1 Thermoset-based technologies  

Joining of thermoplastic composite skins and a thermoplastic core can be achieved by the use 

of a supplementary material such as a thermoset-based adhesive film, in which experience 

gained from bonding of monolithic composite structures can be beneficial. A fundamental look 

into adhesive bonding in general is given by Pizzi and Mittal [98]. Campbell [5] presents an 

insight into adhesive bonding of monolithic composites as well as composite sandwich 

structures for aerospace applications. TPC sandwich structures can also be joined with similar 

epoxy based adhesive materials. For example, Rozant et al. [71,73] applied a 150 g/m² epoxy 

film to combine glass fibre reinforced PEI skins with a PEI foam core. Offringa [37,79] describes 

TPC sandwich applications for aircraft floor panels, where PEI fibre reinforced laminates are 

adhesively bonded to a Nomex®-honeycomb core. This joint is also created by a structural 

epoxy adhesive film. However, in order to achieve a good bond with thermoset adhesives 

contaminants present on the components surface, such as release agents, machine oils or 

fingerprints, first need to be eliminated [99,100]. Additionally, surface treatments can ensure 

an improvement of the bond strength caused by wetting improvement of low energy surfaces, 

chemical modification of surfaces or by increasing the surface roughness [100]. Typical surface 

treatments for composites such as plasma treatment or grit blasting are presented by Wingfield 

[99]. To this end, Haslam [101], for example, studied different surface treatment/adhesive 

material (e.g. epoxies or urethanes) combinations to enable bonding between Polypropylene 

or Nylon composites and balsa wood or Polyurethane foam cores.  

Adhesive bonding is generally considered time and labour intensive, due to extensive surface 

treatment and long curing cycles involved (e.g. 90 minutes at 110 °C for 3M Scotch Weld 

Structural adhesive film AF163-2 [102]) [100]. Additionally, this concept often causes a 

relatively weak skin-to-core bond for thermoplastic materials, since the chemical and physical 

compatibility between the adhesive material and the skin and core is generally not ideal [22]. 
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Moreover, thermoplastic materials often feature low surface energies, making wetting of the 

surfaces by an adhesive difficult [99,103]. 

2.2.1.2 Thermoplastic-based technologies  

Another approach for adhesive joining of skins and core can be realised by applying 

thermoplastic hot melt films [100]. The polymer film is placed between skin and core, softened 

for example by heat and finally solidified by cooling with the result that the film functions as an 

adhesive glue [50]. In the case of modified thermoplastic hot melt films, heating techniques 

such as microwave activation are also possible to soften the polymer [104]. The thermoplastic 

adhesive hot melt concept is considered a faster (no curing has to take place) and eco-

friendlier alternative (possible recycling by disassembling after re-heating) in comparison to 

thermoset based adhesive materials [98,100]. Additionally, joining by means of hot melt 

adhesives offers the advantage that dissimilar polymers/substrates can be combined [105]. 

Usually thermoplastic hot melt films possess a lower softening temperature than core and skins 

[50]. Skins and core stay in the solid state during the joining process with the result that 

interdiffusion of the molecules of skins and core does not take place. The joining process is 

controlled by the heating temperature, pressure and consolidation time. To obtain a fully 

recyclable thermoplastic sandwich structure, Cabrera et al. [50] developed an all-

Polypropylene (PP) sandwich panel. They applied a low sealing temperature PP copolymer 

film to adhesively bond PP self-reinforced and glass fibre reinforced PP laminates to PP foam 

and honeycomb cores. At processing temperatures between 135 °C and 145 °C and a 

pressure of 0.04 MPa, sandwich skins were successfully joined to the core without influencing 

the structure of either the core or the skins. The sandwich specimens were manufactured in a 

press or with a vacuum setup. The skin-to-core bond was tested by means of a peel test. It 

was shown that the application of a hot melt film improved the face to core bond compared to 

sandwiches without a hot melt adhesive. Average peel forces per width of approximately 

8 N/cm could be achieved for the foam and the honeycomb sandwiches. Pappada et al. [46] 

tried to improve the core-skin interfacial bond of glass fibre reinforced PP skins and a PET 

foam by integrating a low temperature melting PET film. By means of either vacuum bagging 

or compression moulding, the film was melted at temperatures of 160 °C to 180 °C where skins 

and core were joined under pressure. The samples were tested by means of an adapted three-

point bending test. An elevated pressure of 0.2 MPa realised with a press led to better results 

than achieved with vacuum pressure, due to the limited flow capability of the hot melt film under 

low pressure. The average interfacial fracture energy for the specimens produced by means 

of the press amounted to 110 J/m². 

An example of a commercial sandwich product manufactured by means of a thermoplastic hot 

melt film is the Cetex®System3® by Tencate and Tubus Bauer [106]. A copolyester 

thermoplastic adhesive is placed in between the fibre reinforced PEI skins and the PEI 

honeycomb core. An excellent bond can be achieved when the stack is heated to 150 °C, a 

temperature that does not alter the PEI components. The System3® sandwiches feature peel 

strengths of 5.07 N/mm when tested according to EN 2243-3.  

Melting only one component of the sandwich, preferably the skins, and realising the bond 

based on mechanical interlocking between the surfaces is another way to achieve a 

thermoplastic adhesive bond between skins and core [67]. Here, thermoplastic composite 
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skins possess a lower softening temperature than the core structure [51,64,66,70]. Nowacki’s 

prototype [64] of a seat structure can be taken as an example, since it consists of glass fibre 

reinforced PP skins (Glass transition temperature Tg = -10 °C, Melting temperature 

Tm = approx. 170 °C [107]) and a PEI foam core (Tg = 215 °C [107]). The skin polymer is heated 

and softened followed by applied pressure, which forces the molten polymer of the skins to 

flow into the surface cells of the foam core [70]. After solidification of the skin polymer, 

mechanical interlocking is obtained and an adhesive bond is created [67]. Since an increased 

amount of polymer along the skin-core interface improves the bonding strength, the application 

of additional polymer at the interface material seems to be beneficial [22,67]. Thermoplastic 

sandwich structures based on Polyamide 12 (PA12) composite skins and PMI foam cores are 

produced according to this method by some researchers [66,69,70]. McGarva et al. [38,66,67] 

consolidated glass fibre reinforced PA12 skins on a PMI foam core. The skins were heated to 

180 °C – 280 °C to soften the polymer matrix, which was then forced under pressure of 

0.25 MPa – 1.75 MPa to flow into the cells of the PMI core. The PMI core was compacted 

during this process, though not molten. Therefore, bonding of skins and core is only based on 

adhesive forces on the surface. The modified double cantilever beam test was applied to 

determine the critical strain energy release rate GC, which indicates the degree of skin-core 

bonding. McGarva found that adding a separate pure PA12 film into the interface improves the 

skin-to-core bond, since a larger amount of PA12 is available to flow into the cells. Strain 

energy release rates of up to 0.8 N/mm were achieved [67]. Breuer et al. [69] produced 3D 

(hemisphere shape) PA12/PMI thermoplastic sandwiches in one step. PA12 based skins and 

a PMI core were stacked during heating and then joined and formed into a 3D part in less than 

one minute. Breuer showed that temperature control during heating is essential to keep the 

temperature of skins and core within the process window. The optimal heating temperature 

was determined to be between 180 °C – 190 °C for the PMI and 185 °C – 210 °C for the PA12 

composite skins.  

Brown et al. [56] applied the vacuum bagging technique to combine glass fibre reinforced PP 

laminates with a PP nanocarbon or PMI core. Skins and core were assembled in glass prepreg 

tools and consolidated at 190 °C for 3 hours. BASF SE released a press report [51] on a 

sandwich structure, which finds application as an automotive seat. Heated glass fibre 

reinforced PP skins were joined with a cold Polyethersulfone (PES) foam core in a press. 

Reyes et al. [81] described carbon fibre reinforced PEEK skins that were combined with a 

carbon-foam (Kfoam by Koppers, USA). Carbon fibre reinforced PEEK-plies, separate layers 

of pure PEEK and the carbon foam were placed in a mould, which was heated to 380 °C for 

about 10 minutes. Then the mould was transferred to a cold press, which applied a pressure 

of 1.75 MPa until the mould was cooled down to ambient temperature. The bond between the 

PEEK based skins and the carbon foam is created by interlocking of the PEEK polymer and 

the pores of the cellular core. Interfacial fracture energies of up to 170 J/m² were obtained by 

testing the sandwiches by means of a single cantilever beam test. Mühlbacher et al. [80] joined 

glass fibre reinforced PPS skins with PET and PES foam cores, but a strong bond could not 

be achieved. The manufactured samples failed adhesively with bond strengths which were 

significantly lower than the core strength itself. The low bonding strength is explained by 

degradation effects on the PPS skin surfaces, which complicate and hinder adhesion between 

skin and core. 
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2.2.2 Fusion bonding processes 

Another approach to join thermoplastic skins and core is fusion bonding. This process is only 

suitable for thermoplastic materials and is characterised by a joint formed by intermolecular 

diffusion of the polymers of the components, also referred to as adherents, to be joined [108]. 

This is opposed to adhesive joining, where the joint is created by mechanical interlocking of 

the two dissimilar substrates on the surface. Fusion bonding, also called welding, is a well-

established joining process for thermoplastics, and different technologies for joining 

thermoplastic composites have been studied by various researchers. An overview is given by 

Ageorges in [100]. Due to the interdiffusion of the molecules, the joint can approach the bulk 

properties of the adherents [109,110]. Additionally, fusion bonding can be performed in short 

cycle times and needs only nominal surface treatment [111]. 

Fusion bonding of thermoplastic materials can be explained by the ‘autohesion’ or ‘self-

adhesion’ theory [112]. According to this theory the bonding occurs when the polymer 

molecules near the surface become mobile and the bond is developed through a combination 

of surface rearrangement, wetting, diffusion and randomisation of the polymers, see Figure 8 

[113]. 

 

Figure 8: Fusion bonding model according to Akermo et al. [6] 

In some applications, e.g. packaging, a combination of different polymers is required [114]. 

Fusion bonding of two or more chemically different polymers poses some challenges, since it 

requires miscibility of the polymers [115]. It is often not even possible to join two dissimilar 

polymers by means of fusion bonding [115]. Interdiffusion of the molecules is highly influenced 

by the temperature, composition, miscibility, molecular weight distribution, chain orientation 

and molecular structure of the adherents [113,115,116]. In addition, the mechanical properties, 

such as strength at the interphase can be affected when the combination is not ideal [113,116]. 

With the same polymer in both adherents resulting in interdiffusion of chemically coinciding 

molecules, the fusion bonded interface can achieve the bulk properties of the material [22]. 

Furthermore, sandwiches containing one single polymer in skin and core offer recycling 

potential (scrap and components) or even possibilities for postforming [22,53]. 

In theory fusion bonding of thermoplastic composite skins and thermoplastic core structures 

with the same polymer should be readily possible according to the ‘autohesion’ theory 

[22,39,57]. However, several researchers have highlighted some challenges. To ensure 

molecular interdiffusion between the core polymer and the skin polymer, the skins as well as 
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the core, more precisely the core surface, need to be molten. By applying pressure to achieve 

intimate contact the core can be compacted due to its low density or can collapse due to 

extensive heating [22,40]. In order to prevent this, only a small process window exists to 

establish a good bond between skin and core [40,69].      

2.3 MANUFACTURING TECHNOLOGIES FOR TPC SANDWICHES 

In the following section technologies for producing a skin-core fusion bond, investigated in the 

public literature, are described. Most publications focus on the manufacturing of 2D sandwich 

panels. The investigations and manufacturing processes for production of 3D sandwich parts 

are mentioned in an additional section. The manufacturing technologies for 2D structures can 

be categorised as 

• Vacuum moulding 

• Compression moulding 

• Double belt laminating 

• In-situ foaming  

2.3.1 Vacuum moulding 

In the vacuum moulding process a stack of skins, core and potentially interlayer films are 

placed between a tool and transfer plate and sealed under an impermeable membrane as 

shown in Figure 9 [60]. The air under the impermeable membrane is evacuated with the result 

that the ambient pressure presses the single components together. To bond the parts together 

according to the ‘autohesion’ process, heat has to be applied to soften the thermoplastic matrix 

of the skins and core [40]. Moreover, a breather-material to guarantee uniform air flow is used. 

An additional release film eases the removal of the moulded sandwich after the process. The 

manufacturing setup is adapted from the manufacturing method for thermoset based sandwich 

structures [40]. 

 

Figure 9: Vacuum moulding setup 

According to Skawinski et al. [57], the heating of the sandwich components can be conducted 

isothermally or non-isothermally. The process is called isothermal when the whole stack is 

heated and pressure is applied simultaneously [57]. For a certain time, both skin and core have 
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a constant (isothermal) temperature. The temperature evolution during isothermal processing 

is illustrated in Figure 10a. The main process parameters are the heating temperature, the 

heating/holding time and the pressure. Isothermal vacuum moulding is characterised by a 

simple setup and basic equipment, though the chance of core collapse is high due to heating 

of the whole core. In fact, no public literature about fusion bonding by means of isothermal 

vacuum moulding is noted, though the process is applied in thermoplastic composite sandwich 

manufacturing by means of a hot melt adhesive (refer chapter 2.2.1).  

Separation of the heating process from the bonding process is referred to as non-isothermal 

[40,57]. First, the skins are heated in a separate stage, e.g. an oven, then combined with the 

core (often a cold core is used) and transferred to a vacuum table using transfer plates [40]. 

The core, especially the core surface, is heated by conduction from the skins. Figure 10b 

illustrates the heat evaluation during processing. The vacuum bag membrane is sealed around 

the stack, the air is evacuated and the sandwich is consolidated [59,60,89]. 

 
   a) 

 
   b) 

Figure 10: Temperature evolution during a) isothermal and b) non-isothermal TPC sandwich 
manufacturing 

In comparison to the isothermal method, this process can be regulated by different parameters. 

The most significant variables are the skin pre-heat temperature, mould or vacuum table 

temperature, moulding time and vacuum moulding pressure. Other parameters are the transfer 

time, skin thickness, transfer plate characteristics and core pre-heat temperature [40]. The 

main advantage of the non-isothermal process is that the core is only heated at the surface 

when sandwiched with the hot skin, which reduces the likelihood of core collapse. Kulandaival 

et al. [40,59,60,63,89] investigated the process window for manufacturing a TPC composite 

sandwich consisting of glass fibre reinforced PP skins and a PP foam core by means of non-

isothermal vacuum moulding. The pre-impregnated skins were heated up to approximately 

180 °C – 220 °C in a hot air oven to ensure homogenous heating. Pre-heated (180 °C) transfer 

plates were used to minimise a temperature drop of the skins during the stacking process and 

the transport to the vacuum table. A low vacuum pressure of 0.6 bar – 0.95 bar sufficed to 

consolidate both skins and the skin-to-core interface. Kulandaival showed that the skin 

thickness and the skin pre-heat temperature are the most influential processing parameters 

for a successful skin-core bond [40,63]. Testing of the sandwiches resulted in approximately 
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16.5 MPa interlaminar shear strength (ILSS) for the skins and 730 N peak load in three-point-

bending of the sandwich. 

2.3.2 Compression moulding 

The term compression moulding is used when the sandwich is manufactured in a mould by 

means of a press. Compression moulding is an industrially applied method for producing 

thermoplastic composites and thermoplastic composite sandwich structures [38]. Skins and 

core are stacked and placed in a mould before pressure is applied by a press. However, the 

comparatively low mechanical properties of the light weight cores limit the application of 

pressure [65]. As with vacuum moulding (refer to chapter 2.3.1), heating can be conducted 

isothermally (heating the whole stack while applying pressure) and non-isothermally as 

illustrated in Figure 11 (separate heating of the components before skin-core consolidation) 

depending on the heating method [38,57]. Similar to vacuum moulding, the main parameters 

for isothermal compression moulding are the heating temperature, moulding time and 

pressure. By separating the heating procedure from the bonding process, the non-isothermal 

compression moulding process can additionally be controlled by the skin and core pre-heating 

temperature and transfer time. Compression moulding was applied on PP based skins and PP 

core sandwiches by several researchers [39,49,57,65]. 

Skawinski et al. [57] compared isothermal and non-isothermal compression moulding 

processes for the manufacture of TPC sandwiches consisting of glass fibre reinforced PP 

composites and PP foam cores. He found non-isothermal compression method unsuitable for 

the manufacturing of TPC sandwiches because of poor skin-to-core bonding and a low skin 

surface quality. Rapid cooling of the pre-heated skins during transport prevented skin-core 

fusion bonding. In contrast, isothermal compression moulding led to successful production of 

sandwich parts which withstood tensile loads of approximately 3 kN. Total core compression 

could be prevented by the choice of an initially thicker core, which was compressed during the 

process [57].  

 

Figure 11: Non-isothermal compression moulding process according to McGarva [38] 

Reynolds et al. [65] applied the non-isothermal compression moulding process for 

manufacturing flat panels as well as slightly curved sandwich beams. Glass fibre PP based 

mat thermoplastics (GMT) were combined with continuous glass fibre reinforced PP tapes for 

the skins. For the core structure two different PP foams and one PP honeycomb structure were 

investigated. The skins were heated in an infrared field, combined with a cold core and 

transferred to the mould, pre-installed in the press. The press was closed and pressure was 

applied. At the beginning of the fusion bonding process the skin-core interface reached a 
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maximum temperature of 170 °C before cooling down. After approximately 50 seconds, the 

skin-core interface was cooled down below 100 °C, which enabled demoulding. The 

mechanical performance of the sandwiches was investigated by means of a three-point 

bending test. Peak loads of up to 12 kN were achieved. 

Akermo et al. [39] performed a detailed study with different settings of skin pre-heat 

temperature, moulding pressure, moulding time, forming rate and mould temperature for fusion 

bonding of glass fibre reinforced PP laminates and a PP foam core by non-isothermal 

compression moulding. Shear testing, transverse tensile testing, flexural testing and sandwich 

thickness measurements were chosen for the characterisation of the sandwich specimens.  

Muzzy et al. [49] investigated the flexural rigidity and the impact properties of sandwiches 

based on glass fibre mat reinforced PP skins and PP honeycomb cores, for which they made 

use of a two-step non-isothermal compression moulding process. In the first press the skins 

were heated sufficiently high to melt them, before being stacked and consolidated with the 

core in a second cold press.  

Kulandaivel [40] applied the non-isothermal compression moulding technique to produce 

reference sandwiches for comparison of vacuum moulded sandwiches (refer chapter 2.3.1). 

He pursued two different compression moulding techniques: In the multi-step method, the 

skins were fully pre-consolidated prior to being re-heated and moulded together with the core. 

Pre-heating stacks of PP based pre-impregnated products, which were simultaneously 

consolidated and fusion bonded to the core, was considered a single step method. In both 

cases Kulandaivel applied mould stops to control the compaction of the core. The single step 

compression moulding methods provided the best results (ILSS ~ 18 MPa, 830 N peak load), 

although the skin quality was inferior to that which can be achieved in compression moulded 

TPC laminates. Re-heating the laminates during the multistep compression moulding methods 

led to lower mechanical performance caused by degradation of the material as a result of 

excessive heating. Passaro et al. [61,89] also investigated one-step and two-step non-

isothermal compression moulding with either PP foam core or PP honeycomb cores. The 

investigated parameters were core pre-heating temperature, pressure and press platens 

temperature. Moreover, the influence of an extra PP film layer (thickness up to 450 µm) in the 

interface on the bond quality was observed. The one-step process led to 20 % better tensile 

strengths than the two step-process (1.2 MPa tensile strength), bringing additional advantages 

such as time and energy saving. Pressure and thickness of the extra PP-layer turned out to 

be the most significant parameters. 

Venture Peguform, France [47] uses the non-isothermal compression moulding process for 

the production of PP based sandwich Sandwiform® panels. The pre-stacked skins and core 

are heated in an infrared (IR) oven before being transferred to a press. There, the sandwich is 

stamped in a cold tool at 10 bar pressure. 

Mühlbacher et al. [80] describe fusion bonding investigations on glass fibre reinforced PEI 

skins with PEI and PET foam cores realised by non-isothermal compression moulding. 

Although different materials in skin (PEI) and core (PET) are used, a fusion bond can be 

created since both materials are miscible [117]. Mühlbacher et al. [80] show the promising 

properties of the thermoplastic sandwiches by tensile, climbing drum-peel and 4-point bending 

testing, which can be realised in short cycle times below 4 minutes and compared the results 
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to Nomex® based sandwiches. However, the thermoplastic sandwich structures are limited to 

thin skin materials, which fail during 4-point bending in the area of the loading spans. 

2.3.3 Double-belt laminating 

A continuous production of thermoplastic composite sandwiches based on fusion bonding can 

be performed by a double-belt laminator [62,118]. The process is considered efficient and cost-

effective since the continuous production enables speeds of several meters per minute [119]. 

First skins and core are automatically stacked, before entering a group of contact heating 

elements. The sandwich stack is heated and fusion bonded under pressure. Then a group of 

cooling elements solidifies the sandwich under pressure, see Figure 12. During the process 

the temperature needs to be monitored to avoid overheating which could lead to core collapse. 

After the consolidated sandwich leaves the double-belt laminator it can be cut into individual 

pieces [90,118]. 

 

Figure 12: Double belt laminating accorting to Fan et al. [90] 

Process variables such as material type, thickness and belt speed, pressure as well as heating 

and cooling temperatures affect the process [90]. The belt, which ensures the continuous 

transfer, is made of materials such as Polytetrafluorethylene (PTFE) to avoid sticking of the 

molten polymer on the belt [90]. MonoPan® sandwich panels (Figure 13) are produced by the 

double-belt laminating process by Wihag Composites GmbH, Germany [54,55]. MonoPan® 

sandwiches consist of PP glass fibre composite skins and a PP honeycomb core. With a 

production speed of 4 metres per minute large panels boasting a width of up to 3 metres can 

be manufactured continuously. 

 

Figure 13: MonoPan® Panel 
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Fan et al. [90] developed a heat conduction model for the continuous production of TPC 

sandwich with a honeycomb core by means of a double-belt laminator. Besides the 

theoretically generated information, he produced 600 mm wide panels with a height of 8 mm. 

The skins as well as the honeycomb core were made from PP. The heating temperature of the 

laminator was set to 210 °C. The sandwich panel underwent a heating period of 8 seconds to 

heat the top of the honeycomb core through the skins up to 165 °C, followed by a 12 second 

lasting cooling period at a production speed of 5 metres per minutes.  

Mayer et al. [62] developed a high-speed manufacturing method based on double-belt 

laminating for the production of TPC sandwich systems. Semi-finished glass fibre reinforced 

Polyamide 6 (PA6) laminates are stacked with a 3D mesh of a glass fibre PA6 co-knitted core 

and consolidated by using a double-belt press to an intermediate product. The knitted core is 

thereby maximally compressed. Both core and skins are completely impregnated with the 

thermoplastic material at a temperature above the melting point of PA6 and a pressure of more 

than 5 bar. In a second step, the intermediate product is heated again above the melting point 

of the thermoplastic matrix which leads to a self-expansion of the core to its original thickness. 

The self-expansion is caused by the release of internal stress stored in the threads during the 

compression and consolidation [62]. 

Isosport Verbundteile GmbH [121] describes in a patent the manufacturing process of a PP 

based thermoplastic laminate by double-belt laminating. In a first step, two non-woven fabrics 

are pulled through an extrusion die while being impregnated with molten PP. Simultaneously 

a PP based foam core is transported through a hot air jet. Then the hot and impregnated non-

woven fabrics are stacked on both sides on the core and the set-up is transported into a 

double-belt press. The sandwich is consolidated under pressure and cooled down during the 

continuous transport through the press. 

Giehl [122] reports on a semi-continuous press process, which enables the production of TPC 

sandwiches of different shapes in one step. A semi continuous press was therefore installed 

at the Institut für Verbundwerkstoffe GmbH at the University of Kaiserslautern, Germany. It is 

a combination of two press sections, which can cooperate or work individually.  

2.3.4 In-situ foaming 

Another process to achieve a skin-to-core fusion bond for TPC sandwiches is in-situ foaming, 

where foam is developed during the manufacturing process. Compared to other TPC sandwich 

manufacturing processes, the production of the core occurs simultaneously to the bonding of 

the core to the skins [76]. As the name indicates, this method only works for foam structures. 

Different methods exist to foam in-situ [76,123,124]. One process makes use of a 

thermoplastic film which is soaked with a blowing agent. The film is stacked with the 

thermoplastic composite skins and transferred to a press. The press closes and heat and 

pressure are applied. Fusion bonding between skins and film, which will later become the 

foam, is achieved. The solvent contained in the film improves the fusion bond by dissolving or 

softening the inner surface of the skins [75]. The heat additionally activates the blowing agent 

and the foam starts to expand, see Figure 14. The press must open slightly to define the 

thickness and the density of the foam. By cooling the sandwich, the structure becomes solid 

and a bond between foam and skins has developed [75,76,125,126]. The film foaming process 

depends on several parameters, which are partly interrelated. On the one hand, the process 
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is affected by material parameters such as type of blowing agent, amount of polymer and 

blowing agent as well as type of skins. On the other hand, the properties of the final product 

can be controlled by choice of temperature, pressure, heating time, opening speed and 

opening height of the mould and the cooling rate [76]. Schreiner Luchtvaart Groep B.V. applied 

for a patent [127] for PEI and PES based sandwich structures, which refers to the in-situ 

foaming method. Brouwer [75] reported on the production of PEI based sandwiches.  

 

Figure 14: Principle of film foaming method according to Beukers [125] 

In a first step so called pre-compacted PEI fibre reinforced laminates and a PEI film containing 

Methylene Chloride (MC) are produced in a press at high temperatures. A first linkage between 

the fibre reinforced laminate and the thermoplastic film is realised. In a following step the pre-

compacted laminate is exposed to heat, which leads to de-compacting. This step is conducted 

in a press again. Film foaming starts within seconds and the press opens to allow expansion 

of the film. In the case of a PEI film loaded with 17 % MC, a foaming temperature of 175 °C is 

suitable. The thermoplastic film is able to expand to approximately 16 times its original volume. 

Upon reaching the desired thickness, the opening of the press is stopped and the sandwich is 

cooled down. Additionally, the sandwich has to be dried afterwards to remove any remaining 

solvents. The PEI based sandwich specimens feature a tensile strength of 3.8 N/mm. Provo 

Kluit further developed the film foaming process in [76] by improving the process parameters, 

such as the cooling rate. Additionally, he investigated the application of other blowing agents 

such as Acetone. Film foamed panels, mostly based on PEI, were manufactured and 

distributed by the company FITS Technology (Driebergen, The Netherlands). The sandwich 

panels feature a compression strength of up to 3.5 MPa, a shear strength of up to 1.5 MPa 

and a tensile strength of up to 5 MPa. Furthermore, the sandwhich panels feature a climbing 

drum peel strength of up to 125 N.mm/mm [78]. Seven worldwide patents such as [126,128] 

protect the sandwich panels as well as the manufacturing methods. Today, the company 

SMTC (Boufféré Cedex, France) distributes the film foamed panels under the trade name 

DYNATECH®.  

Thermoplastic films soaked with solvents/blowing agents can also be used for the 

manufacturing of sandwich structures without taking advantage of the foaming characteristic 

[75]. Placing the solvent loaded thermoplastic film in between skin and core structures made 
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of the same polymer, the solvent vaporises out of the film and dissolves the inside of the skin 

surface as well as the core surface leading to a fusion bonding between skin, film and core 

[75]. Additional heating of the setup speeds up the bonding process. Since only the skin and 

core surface are dissolved, the method is suitable for sandwich structures. Additionally, the 

loaded thermoplastic film offers the advantage of being expandable, which improves the joining 

of surfaces with large tolerances and roughness. Beukers [129] presented a sandwich 

structure with a honeycomb and an in-situ foam core combination. A thermoplastic foaming 

film is used to combine skins and honeycomb core. The honeycomb core features high specific 

strength and stiffness whereas the in-situ foamed core ensures a continuous bond to the skins 

with a filling character. 

Another in-situ foaming method is injection foaming, also referred to as the TSG-method 

(Thermoplast-Schaumspritzgießen) [86]. The core polymer and blowing agent are separately 

mixed in a batch. The skins are positioned in a mould. Then the foam is injected at a pressure 

of approximately 20 bar in between the skins [93]. In doing so, a fusion bond between foam 

and skins is realised and the sandwich is consolidated in-situ [93,123]. Zepf [93] presented a 

PA12 based composite sandwich produced by injection moulding. The PA12 core featured a 

density of 0.5 g/cm3.  

Roch et al. [130] conducted investigations concerning injection moulded PP based composite 

sandwiches. The skins were manufactured out of unidirectional orientated glass fibre/PP 

tapes, which were automatically placed and consolidated by vacuum or compression 

moulding. In the following step (step A in Figure 15) the two consolidated laminates, which 

function as skins, were fixed in the mould cavity. To allow fusion bonding to the core, the 

surfaces of the skins were heated indirectly, see step B in Figure 15. Next, the mould was 

closed as quickly as possible in order to minimise heat loss, followed by injection of the gas-

loaded PP melt, see step C in Figure 15. After filling of the cavity had been completed, a 

pressure drop was created by expansion of the mould, which led to foaming of the core, see 

step D in Figure 15. The sandwich dimensions were controlled by the expansion of the mould. 

After cooling, the sandwich was released, see step E in Figure 15. Sandwiches with a total 

height of 6.4 mm and skin thickness of 0.26 mm as well as 1 mm were realised.  

 

Figure 15: Manufacturing steps of injection foaming according to Roch et al. [131] 
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Another approach which should be mentioned briefly is the combination of injection moulding 

compounding (IMC) and foam injection moulding (FIM). Long glass fibres and a thermoplastic 

melt such as PP, loaded with a blowing agent such Nitrogen (N2), are injected into a mould. 

The foam is compacted at the outer area, in contrast to the centre, where a lower density 

structure is realised. The result is an in-situ produced integral foam, which has similar 

characteristics to a thermoplastic composite sandwich based on the density gradient [123,131]. 

In 2014, novel PET or Polybutylene terephthalate (PBT) thermoplastic particle foams, which 

show high impact resistance or form-stability at high temperatures were introduced to continue 

the successful history of particle foams, which started with the development of the particle 

foam Styropor® by BASF SE 60 years ago [86,124]. Today, expanded PP particle foams, 

named EPP, are often applied in automotive interior parts. Particle foams are produced by 

micro-granulate, loaded with a blowing agent, which is foamed to foam pearls (particles) in a 

first step. Further processing to the final part is then conducted in five steps: The foam pearls 

are introduced into the cavity of the tool under pressure (1.5 bar – 4 bar) and compressed. The 

amount of pressure influences the resulting density. In the next step the cavity is vented by 

means of steam. Subsequently, the steam leads to softening of the polymers at the foam pearl 

surface with the result that fusion bonding between neighbouring pearls takes place [124]. The 

steam temperature during processing plays an important role, since the pearls are only meant 

to be softened at the surface, while the rest shall stay cool, which is needed for the stabilisation 

of the particles. Finally, cooling is conducted and the part can be released [124]. In combination 

with TPC skins, consisting of the same polymer used for the particle foam, a TPC sandwich 

can be realised in just one manufacturing step [124]. 

2.4 MECHANICAL PERFORMANCE AND SANDWICH TESTING 

In the previous chapters, several research activities as well as developed sandwich structures 

are presented. Besides the development, sandwich structures have been mechanically and 

optically characterised in order to evaluate the mechanical performance of skins and core, the 

skin-to-core bonding strength, as well as the properties of the sandwich as a whole. The 

sandwich structures have been mechanically characterised by several testing standards: 

• Tensile testing (ASTM C279 [39,57,67,76,78,90], DIN EN ISO 5624 [80]) 

• Peel testing (ASTM D1781 [50,78], EN 2243-3 [106], VDI 2019 [80]) 

• Flexural testing (ASTM C393 [39,46,50,67,80], AITM 1.0018 [106], BS EN 2746 [40]) 

• Shear testing (ASTM C273 [39,67,76,77]) 

• Compression testing (ASTM C365 [76,77], ASTM D1621 [90]) 

• Interfacial fracture testing (DCB after ASTM D5528 [67], SCB [81]) 

• Impact testing (ASTM D3763 [49]) 

However, due to different applied sandwich geometries such as skin and core thickness, length 

and width but as well as due to the different testing standards, a comparison of the mechanical 

performances of the presented structures is not possible. 
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2.5  MANUFACTURING OF 3D SANDWICHES 

Until now only processes for the manufacturing of 2D TPC sandwich panels have been 

discussed. Several researches mentioned that the process window for fusion bonding of skins 

and core is narrow, since it is limited on the one hand by a weak interfacial bond at lower 

temperatures and on the other by core collapse and skin de-consolidation at higher 

temperatures. Another point of complexity is added when 3D sandwich structures need to be 

created, for which, the temperature and pressure distribution is more difficult to control. This 

section presents efforts as described in the public literature to realise 3D TPC sandwich 

structures. For manufacturing 3D sandwich structures, the mechanisms responsible for skin-

to-core bonding are the same as for 2D sandwich structures [22]. Lightly curved panels may 

even be manufactured in a similar way to flat panels with the use of a shaped mould. More 

complex geometries may require shaping of the core to near net-shape prior to the application 

of the skins, which for example can be realised by machining, thermoforming or expansion to 

the desired shape [22]. The more complex the curvature, the greater the need for additional 

pre-forming of the skins [22].  

2.5.1 One-step (direct) manufacturing of 3D TPC sandwiches 

In the literature, a few investigations on simultaneous (direct) forming and joining of 3D 

sandwich structures applying compression moulding or in-situ foaming are reported 

[47,65,69,91,132]. For example, Reynolds et al. [65] applied non-isothermal compression 

moulding for manufacturing PP based composite sandwich structures. Besides investigations 

on flat panels, he also studied one-step manufacturing of slightly curved 3D sandwich beams 

featuring a 4000 mm radius. Renault [47] reported on thermoforming of the Sandwiform®-

panel, consisting of PP composites and a PP honeycomb core, while simultaneously 

consolidating it in a press. Core and skins are stacked, heated in an IR-field and then formed 

and joined in a single step during moulding. Sandwich structures with a complex shape can 

be realised in cycle times of about 1 minute and pressure as low as 10 bar with this process. 

Breuer et al. [69] applied the compression moulding process for manufacturing GF/PA12 and 

PA12 honeycomb core and PMI foam core 3D sandwiches. The components were stacked 

and heated by contact heating and transferred into the press. A hemispherical mould was used 

to shape the sandwich. To facilitate the forming of the sandwich, a vacuum was applied in the 

negative mould. The process temperature was identified to be in the range of 185 °C – 210 °C.  

Henning et al. [132] reported on a direct compression moulding process of 3D thermoplastic 

composite sandwiches. The core was extruded directly between the heated outer layers, 

followed by a forming and consolidation process. The skins were based on glass fibre 

reinforced PP, while the core consisted of recycled glass mat thermoplastic (GMT) or long fibre 

thermoplastic (LFT) materials.  

Nowacki [64] described direct compression moulding of 3D sandwich in the shape of a seat 

shell for the automotive industry. In order to meet the suitable process window for forming skin 

and core, while simultaneously ensuring a bond between skin and core, the temperature is 

recorded for the skins, the core surface and the core centre by thermocouples. However, due 

to the application of different materials (GF/PP for the skins and PEI foams as the core), where 

the core is not softened, the process is simplified in comparison to a one polymer sandwich, 

but a fusion bond between skins and core cannot be achieved. 
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The in-situ foaming methods (film foaming and injection foaming) can also be suitable for the 

production of 3D sandwich structures [91]. Since the internal pressure during the foaming 

process can reach up to 10 bar for film foaming and up to 20 bar for injection foaming, the skin 

sheets can be formed using this pressure into a mould, and a 3D sandwich realised in one 

step. Nevertheless, the skins can be formed in a previous step as well. Thermoplastic particle 

foams can be easily introduced into a 3D mould with previously shaped skins. 

2.5.2 Two-step manufacturing of 3D TPC Sandwiches 

Thermoforming of initially assembled flat sandwich structures is another method of realising 

3D sandwich parts. Although it is an additional step, it can be an effective way to obtain 

complex sandwich structures [71]. The thermoplastic composite skins and the thermoplastic 

core are heated up to the softening temperature of the polymers, followed by a stamping step 

in a cold or tempered mould. Phenomena such as skin de-consolidation during heating, or core 

collapse due to high pressure and temperatures are nonetheless challenges in using the 

process [71]. For a sandwich, based on the same thermoplastic polymer in core and skins, the 

process window (temperature and pressure) for thermoforming skins and core can be 

illustrated as in Figure 16 [71]. Figure 16 shows that the process window varies for skins and 

core in terms of temperature and pressure. The core needs to be heated to such an extent 

(lower temperature limit) that it allows forming without destroying the cell structure (foam 

tearing) or causing internal stress after cooling. However, the core must not melt (upper 

temperature limit) in order to prevent the core from collapsing and to maintain a sufficient form- 

or compression-stability to enable precise shaping [71]. 

 

Figure 16: Schematic processing window for thermoforming a TPC sandwich based on a 
single polymer in skins and core according to Rozant et al. [71] 

Some amorphous thermoplastic cores offer suitable characteristics for thermoforming. Due to 

their amorphous structure they feature a broad softening temperature range and only lose their 

complete form-stability at very high temperatures [91]. The pressure limits for the core are set 

on the one hand by an insufficient forming pressure (lower pressure limit) and on the other by 

a pressure which causes core compaction (upper pressure limit) since it exceeds the 

compression strength of the core. Forming of thermoplastic composite skins requires sufficient 
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heating due to the rigidity limitations of the materials (lower temperature limit) while the upper 

temperature limit is given by extensive heating which leads to material degradation. Heating 

the laminates above the softening temperature of the skin matrix polymer may lead to de-

consolidation of the skins caused by the release of elastic energy stored in the skins during 

consolidation, which can be prevented by supplying sufficient pressure (lower pressure level) 

[71]. An upper pressure level for the skins may be given by matrix material squeeze out or 

fabric deformation, though it is not mentioned in [71]. 

Rozant et al. [71,73] studied the forming behaviour of PEI based sandwich materials, which 

included the drapeability of skin materials. Glass fibre double warp-knitted bar knits were 

selected for the reinforcement since they feature high drapeability, low forming energy and 

quasi-isotropic behaviour. PEI foams (Airex® R.82.80, Airex AG, Switzerland) were used as 

the core. Skins and core were adhesively bonded with an epoxy film before being 

thermoformed in a following step. By investigating the mechanical behaviour relative to the 

temperature of the PEI core and the PEI sandwiches separately, the optimal process window 

was defined. A processing temperature of 165 °C – 185 °C seems to be optimal for the core, 

whereas the skins need to be heated up to above 280 °C. A forming pressure range between 

0.03 MPa and 0.11 MPa seems to be suitable for both parts. In order to fulfil the temperature 

process window, a strong thermal gradient must be created between the skins and the core. 

By applying thermal simulations, a two-step heat conduction setup was developed. In the first 

step, the temperature of the whole sandwich structure was elevated between two hot plates. 

In the following step, a fast heating of the skins was conducted before the sandwich was 

transported into the mould for shaping. The results showed that a PEI based sandwich could 

be shaped successfully into a hemispherical-ellipsoidal shape in less than 7 min.  

Beukers [125] presented thermoforming technologies for in-situ foamed PEI sandwiches. A 

production machine was developed for edge forming of the sandwiches, see Figure 17. This 

machine consists of four individual adjustable stamps. Two stamps function as deformation 

stamps, and two as consolidation stamps. The sandwich panel is transferred into the machine 

first, see step 1 in Figure 17. In a second step, the deformation stamps that are heated up to 

temperatures of 320 °C (upper stamp) and 150 °C (lower stamp) close resulting in edge 

forming. In the following step (step 3 in Figure 17) the sandwich is transferred to the 

consolidation stamps which ensure a full forming and consolidation of the pre-formed edge of 

step two. The result is a sandwich panel with formed edges.  

Another method presented by Beukers [129] is the folding process. A pre-heated die 

penetrates a sandwich halfway at the spot where the folding is to take place. The die has a 

wedge-shaped form, which produces a groove and ensures pre-folding of the panel. In a 

following step the shanks of the sandwich are folded around the groove. Since the pre-heated 

die softens the sandwich skin in the area of the groove, the sandwich skin can be fusion 

bonded again in the bent corner. 
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Figure 17: Principle of edge forming according to Beukers [125] 

Another thermofolding approach is presented by Offringa [37]. Heat is locally applied at one 

sandwich skin by a heated knife, where a fold line is created. During folding, the heated skin 

is pressed into the sandwich panel and a butt weld at the inner radius of the sandwich is 

obtained, see Figure 18. A strong edge is created, even though the weld is not fibre reinforced. 

 

Figure 18: Thermofolding of TPC sandwiches according to Offringa [37] 

One last point that needs to be highlighted is the deformation of the core during 3D sandwich 

manufacturing. L. Sorrentino et al. [133] investigated the thermoforming behaviour of PET 

foam cores.  A mould with a 90° forming angle was designed for planar deformations (L-shape) 

of the foams. The samples were heated for 10 minutes at the intended temperature (> 160 °C) 

and then thermoformed by pressing them into the mould by means of a cold indenter. The 

tests were performed in order to define the minimum thermoforming temperature and to 

investigate the effect of deformation on cellular morphology. PET foams were successfully 

thermoformed at temperatures above 160 °C (85 °C higher than Tg). However, many samples 

showed a spring back effect due to residual strain stresses caused by the high crystallinity of 

the PET material applied. Moreover, the formed foams featured a cell aspect ratio gradient 
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which induces a variation in the cell morphology through the thickness, which was more 

pronounced for higher temperatures. Compared to an undeformed foam (cell aspect ratio ~ 1), 

the centre cells were compressed (aspect ratio ≥ 1), while the outer cells were stretched 

(aspect ratio ≤ 1).  

2.6 MODELLING OF SANDWICH PRODUCTION 

The key for producing thermoplastic composite sandwich structures is the right selection of 

relevant processing parameters such as heating temperature, pressure, etc. The process 

window can be determined by experimental investigations, as presented in the previous 

sections. Modelling is another approach. It helps to understand the influence of the parameters 

and materials. In the past, some models have been developed to support the manufacturing 

of thermoplastic sandwiches, which will be briefly presented in the following section. 

2.6.1 Heat transfer 

Heat transfer is an important phenomenon for a thorough understanding of the manufacturing 

of thermoplastic composite sandwiches [22]. During fusion bonding of composite skins and 

core, the interface temperature is critical for the bond [68]. To avoid core collapse, the core in 

general has to be kept below the softening temperature, while the surface of the core and skins 

must be in the molten state to allow interdiffusion of molecules [22,68]. Applying the non-

isothermal compression moulding method, the skins are heated above the melting temperature 

before being placed on the cold core and consolidated under pressure. To find the right heating 

temperature, the temperature evolution within the laminates, interface and core is of great 

interest. To this end, Trende et al. [68] worked out a heat transfer model to predict the 

temperature evolution during fusion bonding.  They applied a 1D heat transfer and 

crystallisation model for heating and cooling of glass fibre reinforced PA12 laminates and for 

the assembly of the PA12 composites skins and a PMI core. PMI was chosen for the core. 

Although not being a thermoplastic material, it simplifies the modelling and presents an 

adequate system. Later the model was extended to a 3D model, implemented in a finite 

element program. The simulations were compared with experimental data. Although difficulties 

such as the determination of the thermal contact conductivity between skin and core occurred, 

they showed that it is possible to obtain good relation between predicted and experiential 

obtained data. 

Passaro et al. [89] used one-dimensional (1D) finite element analysis to simulate thermal 

conduction through the stacked layers and the core during non-isothermal compression 

moulding. The modelling was designed to calculate temperatures at the skin-to-core interface 

and in the middle plane of the core. The predictive analysis was essential to choosing 

parameters which ensured the melting of the PP in the interface and to avoiding core collapse 

as a result of too extensive heating. Figure 19 shows typical temperature curves obtained with 

simulations and experimental data. The graph refers to a sandwich with PP composite skins 

and a PP honeycomb core. During processing the skins were heated to the melting 

temperature (approx. 200 °C) and then combined with the cold plates and core.  
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Figure 19: Temperature history during non-isothermal compression moulding according to 
Passaro et al. [89] 

Fan et al. [90] developed a 1D heat transfer approach for modelling the heat conduction during 

fusion bonding of thermoplastic skins to a honeycomb core by double belt laminating. Three 

entities, namely heating/cooling elements, a PTFE belt and the homogenised honeycomb 

sandwich were considered for the model. The 1D heat transfer equation was solved by means 

of the finite difference approximation and boundary conditions such as Dirichlet and Robbins 

conditions. By means of in-situ temperature measurements, the model was subsequently 

verified. PP based skins and a PP honeycomb core were fed into the double belt laminator. 

Thermocouples were positioned between the heating/cooling elements and belt, between belt 

and sandwich panel and at the centre of the honeycomb core to record the temperature history 

during processing. Fan et al. [90] was able to show that the model approach is valid for the 

heating stage, though they obtained no good agreement with the measured results during 

cooling. The deviations between measured and predicted temperature development during 

cooling are related to the complexity of the cooling tool, which cannot be accurately 

implemented in the model. 

Rozant et al. [72,73] investigated the thermoforming process of PEI based sandwiches. He 

developed a two-stage heating process to enable the optimal forming conditions for skins and 

core. Additionally, a finite element thermal model was worked out to simulate the temperature 

profiles in the sandwich during heating. By using an inverse method, the thermal properties 

and the boundary conditions were determined.  

2.6.2 Face to core bond 

A good level of bonding between composite skin and core is important for the unrestricted 

performance of the sandwich. The interface should feature a mechanical performance which 

is at least comparable to the mechanical performance of the constituents [6,22]. Therefore, it 

is relevant to understand the bond strength by modelling the process as a function of materials 

and processing conditions. 

Akermo and Aström report [6,52,53] on a bonding model for thermoplastic honeycomb 

sandwiches. The model assumes that the edges of the cell walls of the core are melted by the 
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heat of the pre-heated skins. This enables intimate contact between skins and core walls, so 

that molecular diffusion across the interface can take place. The bonding model considers 

several submodels such as a heat transfer submodel, a contact submodel and a bonding 

submodel [6]. The heat transfer model was described by a 1D heat conduction equation. The 

contact submodel considers the deformation of the cell walls, which melt during the 

consolidation process. As a result, the bonding area is increased. The bonding submodel 

refers to the ‘autohesion’ theory, which suggests that bonding occurs when the molecules near 

the surface become mobile and the bond strength develops through a combination of surface 

rearrangement, wetting, diffusion and randomisation. These steps depend on processing 

conditions such as temperature and compression time. Describing the diffusion takes the 

reptation model of molecules by de Gennes [134] into account. Akermo and Aström [6,52,53] 

transform all these submodels into one expression, as in reality these phenomena occur at the 

same time. The resulting degree of bonding is the sum of the products of contact surface and 

degree of non-isothermal bonding. The key parameters determining the final bond strength are 

thereby the temperature during processing, pressure and overall processing time. In 

combination with the material properties these parameters enable modelling of all submodels 

which contribute to the final degree of bonding. The modelling was verified by experimental 

trials [53]. 

Akermo and Aström additionally presented in [70] a model to predict the bond strength 

between thermoplastic skins and a rigid, closed cell foam core. The approach is based on the 

assumption that the bond strength is to some extent proportional to the amount of resin that 

flows during consolidation into the open cells of the core to bond the constituents by 

mechanical interlocking. Therefore, the matrix flow at the skin-to-core interface has been 

modelled with the intention of determining the influence of the processing parameters and 

material properties on the penetration depth of the matrix flow into the core. Akermo and 

Aström provided an expression for the matrix penetration depth depending on the matrix flow 

into the surface cell, the gas permeation and the gas pressure in open cells. The model was 

applied to a numerical example. Glass fibre reinforced PA12 skins and a PMI foam core were 

taken as materials. Additionally, results of the numerical approach were compared to an 

experimental study of compression moulding of glass fibre/PA12 skins and a PMI core. The 

results of the numerical approach showed that matrix penetration depth increase with 

increasing pressure up to about 1 MPa. This approach also shows that matrix penetration 

depth decreases with increasing skin temperature due to the increasing gas pressure within 

the core cells. According to the assumption that the bond strength is proportional to the matrix 

penetration depths, the model predicts that a high bond strength can be obtained by applying 

as high a pressure as the core can sustain at lowest possible temperature. The prediction 

could be partly substantiated by the experimental results. 

2.6.3 Forming models 

Möller et al. [135,136] proposed mathematical approaches for describing material behaviour 

for simulations of the forming process of thermoplastic sandwich structures. In particular, the 

mathematical description of mechanical behaviour of the fabric reinforced thermoplastic 

composites is based on a separate consideration of the behaviour of matrix material and the 

reinforcing fibres and the additional overlap of both contributions. The mathematical approach 

for the description of the behaviour of the foam is based on decomposition of the foam into two 
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parts. The foam is considered a parallel connection of a skeleton and a nonlinear elastic 

continuum. The material models were verified by experimental results of a forming process of 

sandwich panels in spherical geometries. 

Besides the heat-transfer model (refer section 2.6.1), Rozant et al. [72,74] also suggested a 

finite element approach to simulating the forming behaviour of PEI based sandwich panels. 

The skins were modelled by using shell elements while the foam core was described by volume 

elements. By means of mechanically testing the skins and core at high temperatures a bilinear 

isotropic material model for the sandwiches was implemented. For thermoforming 

experiments, initially flat preforms were pressed into a mould with double constant curvature.  

The forming model was validated by the experimental displacements of the shaped parts. The 

displacements were measured by a Moiré technique. The forming predictions showed good 

qualitative (shape) and quantitative (values of displacements) agreements compared to the 

experimental approach.  

Maculuso et al. [91] performed a deep drawing finite element approach to PP based 

sandwiches with a honeycomb core. First, the influence of the out-of plane core shear strength 

on the minimum forming radius of the tool was investigated.  For a PP honeycomb sandwich 

with a core cell size of 6.4 mm, wall thickness of 0.16 mm, core thickness of 7.3 mm and skin 

thickness of 0.8 mm the out-of-plane shear behaviour was modelled by using ABAQUS. With 

calculated core shear strength of 0.8 MPa, the minimal allowed tool radius was identified to be 

77 mm. Based on these investigations a deep drawing simulation with bending in one direction 

and in two directions was conducted. 

2.7 CONCLUSION 

The application of thermoplastic composite skins and thermoplastic core materials for 

sandwich structures is advantageous due to material properties, minimised production cycle 

times and environmental sustainability. To achieve a sandwich structure of sufficient quality, 

the thermoplastic composite skins and thermoplastic core should be properly joined. Several 

different methods for skin-to-core joining are described in public literature. The processes for 

skin-core joining can be divided into two main groups: adhesive bonding and fusion bonding. 

Using a supplementary material to join skins and core is considered an adhesive joining 

technique and has the advantage of the structure of the constituents not really being affected 

while joining. However, adhesive bonding of skins and core is generally considered time and 

labour intensive and furthermore often created a weak skin-to-core bond. Another method of 

joining thermoplastic skins and core is fusion bonding, which is based on molecular exchange 

across the interface. By fusion bonding skins and core together, the interface can approach 

the bulk properties of the adherents. Moreover, fusion bonding can be performed in short cycle 

times.  

Different methods such as vacuum moulding, compression moulding and double-belt 

laminating make use of heat to soften the polymers and pressure to fusion bond the core and 

skins. A critical point for fusion bonding is the definition of the process window for the 

production of a well consolidated sandwich, since it is limited on the one hand by a weak 

interfacial bond at lower temperatures and on the other by core collapse or compaction and 

skin de-consolidation at higher temperatures. These phenomena depend on the properties of 

the polymers such as softening temperature (glass transition temperature or melting 
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temperature) and the rheological behaviour. Therefore, care needs to be taken by the choice 

of processing conditions. 

To date, most manufacturing processes have primarily focused on the production of 2D 

sandwich structures. Manufacturing of curved 3D sandwiches poses even more challenge. 

Therefore, most thermoplastic sandwich structures are being formed in a separate step, where 

heat is applied in a controlled manner on the 2D sandwich structure before formed. Since 

simultaneous forming and consolidation of the TPC sandwich seems most economical, the 

direct forming process of 3D sandwich structures requires more investigation.  

Another method of producing thermoplastic composite sandwich structures can be realised by 

in-situ foaming methods such as film foaming, injection foaming or particle foams. The core is 

foamed during the process by the expansion of a thermoplastic material with the help of a 

blowing agent, injection of polymer foam or by stabilisation of particle foams by means of 

steam. Core collapse is not an issue here. In addition, the pressure produced during foaming 

can be used to shape the skins in one step. Therefore, these manufacturing methods look 

promising for the production of 3D sandwich structures. The film foaming method is already 

being successfully applied in PEI based sandwiches, particle foams or injection foaming for 

commodity polymer foams. 

Furthermore, several researchers describe process models to understand the process 

governing mechanisms, and to narrow down the process window before conducting 

experimental trials. 
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3. GOAL AND APPROACH 

3.1 GOAL 

The motivation of this study as stated in chapter 1 is the development of a manufacturing 

process for sandwich structures in order to lower the manufacturing cost by reduced cycle 

times (< 4 hrs), minimise maintenance during service and improve the environmental footprint 

of sandwich structures. Thereby, it is pursued to develop a process based on thermoplastic 

skin materials and a thermoplastic foam core, which are both suitable for structural helicopter 

applications. To ensure the principle of function in these sandwich structures, a good bond 

between skins and core must be achieved. Thus, the skin-to-core joining process plays a key 

role during manufacturing. Furthermore, the skin-to-core joining process has a significant effect 

on processing times and manufacturing cost. 

Analysis of state-of-the-art of thermoplastic sandwich processing reveals that fusion bonding 

of skins and core is an efficient way to realise a strong bond between skins and core in short 

cycle times (below three minutes [124]). Other joining techniques such as adhesive joining by 

epoxy based supplements do not show a significant cycle time reduction advantage in 

comparison to state-of-the-art Nomex® sandwiches. Several investigations on fusion bonding 

of thermoplastic skin and core materials have been performed in the past, and a few 

commercial sandwich structures realised by fusion bonding are available on the market. 

However, fusion bonding of skin and core materials suitable for structural helicopter 

applications has not been investigated yet. The investigated and available sandwich structures 

are either based on commodity or engineering polymers envisaged for automotive or 

packaging applications, which do not fulfil the high material requirements of helicopter 

structures, see requirements table in chapter 1. The applied sandwich materials cannot fulfil 

for example the required characteristics and performance at elevated temperatures above 

135 °C and feature insufficient FST characteristics. In the case of high performance material 

applications such as PEI, which could withstand the high operational temperatures, sandwich 

structures are limited with regard to design freedom, for instance in the use of multi-ply skins, 

which leads to limited possible applications. 

Furthermore, several researchers have noted various challenges such as core collapse, which 

occur during fusion bonding of skins and core, and have highlighted the importance of utilising 

appropriate process parameters in order to produce a sandwich of sufficient quality. Moreover, 

little experience exists on the production of formed sandwiches, since forming complicates 

processing requirements, and narrows the processing window even further. 

This leads to the specific goals of this thesis: 

• Selection of materials, which fulfil the requirements for helicopter applications 

(chapter 1) as well as a suitable manufacturing process. 

• Investigations on the fusion bonding process of skin and core, in order to realise a good 

bond between skins and core. A good bond means that the skin-to-core bond does not 

represent the weakest link within the structure and is capable of transmitting shear and 

axial loads to and from the core. For that purpose, the process governing mechanisms 

shall be investigated in detail allowing the proposition of a manufacturing process 



3 Goal and Approach 38 

__________________________________________________________________________ 

 

window. Furthermore, the influence of processing conditions on the skin-to-core bond 

quality as well as on the sandwich as a whole shall be characterised. 

• Assessment of the mechanical performance of developed sandwich structures as well 

as production conditions by comparison to thermoset based state-of-the-art sandwich 

structures and according to aviation material requirements. 

• Determination of process conditions for the realisation of formed panels as well as the 

proof of feasibility of a shaped demonstrator.  

 

3.2 APPROACH 

In order to achieve the above-mentioned goals, the approach pursued in this thesis is 

illustrated in Figure 20. Firstly, various requirements, deduced from different helicopter 

applications (refer chapter 1), serve as a guideline for the material selection (chapter 4.1). 

Based on analysis of state-of-the-art of thermoplastic sandwich manufacturing methods (refer 

chapter 2) and the chosen materials, compression moulding is selected as the manufacturing 

process (chapter 4.3), which is developed and adapted according to the ‘Thermabond’ process 

(joining processes for thermoplastic composites based on dual polymer bonding) to allow a 

process window (chapter 5). In chapter 5.5, the governing mechanisms of a fusion bond, 

namely ‘intimate contact’ and ‘healing’, are studied in detail and a theoretical model to predict 

the skin-to-core bond strength is proposed (chapter 5.5.1 to 5.6.4). Subsequently, the process 

is investigated experimentally and the model verified (chapter 5.7). The influence of processing 

conditions on the mechanical performance of the sandwich structures is characterised by 

several testing standards and presented in chapter 6. By using two reference thermoset-based 

sandwich structures and the requirements, the performance of the TPC sandwich structures 

as well as the manufacturing process is evaluated (chapter 7). The assessment of the 

sandwich structures shows the manufacturing potential but also the lower performance of the 

resulting sandwich structures. Therefore, a further development, particularly a method of 

modifying thermoplastic foam cores to improve the overall mechanical performance of 

developed sandwich structures, is presented (chapter 8). In chapter 9, the process window for 

manufacturing formed sandwiches is investigated and an approach based on a two-step 

compression moulding process is proposed and implemented. Finally, conclusions with 

respect to the goals are drawn and an outlook is given (chapter 10). 
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Figure 20: Schematic illustration of thesis approach 
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4. MATERIALS AND PROCESS SELECTION 

4.1 MATERIALS SELECTION 

Based on aviation material requirements, only high-performance polymers as defined in Figure 

21 will be considered for skin and core components in the following study. In general, the 

aviation industry focuses on high performance materials due to stringent technical 

requirements aviation vehicles are subjected to, which becomes apparent by taking a look at 

applied materials in aviation vehicles today [137].                       

 

Figure 21: Polymer performance pyramid 

 

4.1.1 Skin Materials 

As mentioned in chapter 2, skins for thermoplastic composite (TPC) sandwiches consist of a 

fibre reinforcement and a polymer matrix system. Besides the selection of high performance 

polymers as the polymer matrix material, mostly carbon fibres are applied as reinforcement 

due the stringent requirements in the aviation industry for structural parts, and will be 

considered the only fibre reinforcement in this study. Carbon fibres exhibit the following high- 

performance properties.  

• High strength to weight ratio 

• High stiffness 

• Chemical resistance 

• Low thermal expansion 

The production of thermoplastic composites, especially the impregnation of fibres with the 

polymer matrix, poses some challenges due to the high viscosity of thermoplastic polymers. 

Several TPC suppliers have specialised in the manufacturing of semi-finished fibre reinforced 

thermoplastic products, which are further processed to a final consolidated laminate in a 

separate step in-house or by other companies. Semi-finished thermoplastic products are 

available in the form of impregnated unidirectional tapes or textile fabrics. 
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In Table 5 several commercially available reinforced thermoplastic semi-finished products are 

presented. All semi-finished products are exclusively reinforced by carbon fibres. The matrix 

polymer, structure of the reinforcement, producing company and trade names are listed. These 

materials were evaluated in detail according to the requirements given in chapter 1 in Table 2. 

The evaluation showed that due to high requirements concerning chemical resistance, only 

semi-crystalline polymers can be utilised as skin material. Therefore, Polyetheretherketone 

(PEEK) and Polyphenylensulfide (PPS) based skin materials have been shortlisted for further 

evaluation. PEEK based materials are in general costlier compared to PPS based prepregs, 

but they feature slightly better properties such as a higher glass transition temperature (Tg) 

and melting temperature (Tm). 

Table 5: Available prepreg materials with high-performance polymers as matrix material 

Polymer Structure Company Name 

PEEK UD  Tencate Cetex® UD 

PEEK Fabric Tencate Cetex® RTL 

PEEK UD Toho Tenax Tenax®-E TPUD 

PEEK Fabric Toho Tenax Tenax®-E TPCL  

PEEK UD Cytec (Solvay) APC-2-PEEK 

PEEK UD  Suprem SupremTM T  

PEEK Fabric Porcher Pi preg® 

PES UD Tape Suprem SupremTM T 

PES Fabric Tencate Cetex® RTL 

PPS UD Tencate Cetex® UD 

PPS Fabric Tencate Cetex® RTL 

PPS UD Tape Suprem SupremTM T 

PPS UD  Ticona (Celanese) Celstran® CFR-TP 

PPS Fabric Porcher Pi preg® 

PPS Fabric Bond Laminates Tepex® Dynalite 

PEI UD  Tencate Cetex® UD 

PEI Fabric Tencate Cetex® RTL 

PEI UD Tape Toho Tenax Tenax®-E TPUD 

PEI Prepreg Porcher Pi preg® 

PEKK UD  Cytec (Solvay) APC PEKK Prepreg 

PEKK Fabric Tencate Cetex® RTL 
 

4.1.2 Core Materials 

As reported in chapter 2, thermoplastic foam as well as honeycomb cores were applied in 

investigations published in literature. Furthermore, commercially available products based on 

thermoplastic honeycomb cores (Monopan®, Wihag-Composites) as well as foam cores 

(Dynatech®, SMTC) are available on the market. However, this study pursues to apply 

thermoplastic foams (chapter 1) since they offer several benefits in comparison to honeycomb 

cores: 
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• Isotropic properties 

• Thermoformable 

• Easier to shape by machining 

• No telegraphing effect 

• Less sealing and potting during manufacturing necessary 

• Less water absorption 

• Cost 

As mentioned above, the focus concerning thermoplastic materials is very much on materials 

with high performance properties such as high thermal stability (Tg > 140 °C). On the market, 

a small assortment of high performance thermoplastic cores can be found. Polymer, trade 

name, structure and supplier of these high-performance thermoplastic cores are presented in 

Table 6. 

Table 6: Available high-performance thermoplastic foam cores 

 Material Name Density range Supplier 

PEI Ultem® foam 60 - 110 kg/m³ Sabic (US) 

PEI Airex® R82 60 - 110 kg/m3 Airex AG (CH) 

PPSU Radel® Foam PXM 45 - 200 kg/m3 Solvay (US) 

PESU, PSU, PPSU Ultratect® *  BASF (GER) 

PES Divinycell® F 40 - 130 kg/m² Diab (SWE) 

 * Reported in literature, but no longer commercially available. 

A detailed comparison of the aforementioned foam cores showed that they all feature similar 

mechanical properties at a comparable density level as well as high service temperatures and 

good FST (Fire, Smoke and Toxicity) properties. However, due to the fact that Polytherimide 

(PEI), Polythersulfone (PES) and Polyphenylsulfone (PPSU) are amorphous polymers, these 

foams have a drawback concerning chemical resistance against cleaning agents or solvents 

such as Methyethylketone (MEK) or Dichloremethane (DCM). However, the lack of chemical 

resistance would be acceptable if the core were to be fully covered by a skin, which has 

resistance against these chemical substrates. 

4.1.3 Skin and core material selection – Miscibility of polymers 

In order to realise a strong skin-to-core bond while keeping manufacturing cycle times short, 

the aim is to fusion bond skin and core materials, see chapter 2.2. Due to the fact that one 

specific high performance polymer does not exist and fulfil the requirements for composite 

prepregs for the skins and foam core structure, a hybrid combination has to be considered. 

The aim is therefore to cover the amorphous polymer based foam with semi-crystalline polymer 

based skins to ensure chemical resistance of the whole structure. This means that two 

chemically different polymers must be joined or mixed, which is often referred to as blending. 

Fusion bonding of two dissimilar polymers is no trivial task, since it requires the miscibility of 

the polymer pair [115]. Miscibility is here defined as the ability to form an indistinguishable 

homogenous phase [138]. However, most polymer combinations are not miscible or only 

miscible by means of a compatibiliser [139].  

Krause [140] states that polymer pairs can be compatible even if the polymer pair is not 

miscible and that the published literature does not deal consistently with the terms ’miscible’ 
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or ‘compatible’. In the polymer industry, a compatible polymer pair is often a simple one which 

shows the desirable characteristics after being mixed as a solid or in solution. Often such 

polymer pairs are not miscible, since several amorphous phases with different compositions 

are present, but they are referred to as compatible for the case that there is good adhesion 

between the phases [140]. 

There are some indicators for the miscibility of polymers which are listed below, though it is no 

easy matter to estimate the compatibility of dissimilar polymers [138]. 

• Similar molecular structure  

• Similar molecular weight 

• Polarity 

In order to investigate the miscibility of polymers, several methods exists [138–141]: 

1. Study of the optical behaviour of the polymer blend to determine blurring 
2. Measurement of glass transition temperatures to determine polymer phases 
3. Nuclear magnetic resonance spectroscopy to investigate the polymer structure  
4. Theoretical study to predict the affinity of the polymers to each other by 

a. Flurry Huggins theory 
b. Hansen parameter 

In the case of joining skins and foam core, the miscibility of the polymer pair is of great interest, 

since the aim is to fusion bond skin and foam core with the result of obtaining high bond 

strength. 

The following investigations are performed in the framework of this thesis in order to investigate 

the miscibility of skin and core polymers: 

1. Fusion bonding trials followed by mechanical testing 
2. Measurement of glass transition temperatures 
3. Hansen parameter determination 
4. Literature research for miscibility of the specific polymer pairs 

4.1.3.1 Fusion bonding investigations followed by mechanical testing 

The compatibility of the polymer combinations resulting from suitable available skin and core 

polymers is investigated by fusion bonding experiments. The different polymers, applied as 

films, are joined and tested according to a T-peel test (based on DIN EN ISO 11339 [142]) to 

investigate the bond strength. 

Polymer film A and polymer film B are placed in a hot press. In order to strengthen the films 

for testing, the films are reinforced by a steel mesh. A polyimide (PI) film, covered with release 

agent (Release-All 45 by Airtech, Luxemburg) is brought between both polymer films along a 

specific section. The whole stack is heated in the hot press and the polymer films are, if 

possible, fusion bonded. The PI film functions as a crack initiator with the result that a part of 

the blend is not joined. The result is a sample with a bonded area and two shanks, which are 

needed for the T-peel test, see Figure 22. 

Combining each suitable skin polymer (PEEK, PPS) with each available core material (PEI, 

PES, PPSU) leads to the combinations to be investigated as illustrated in Table 7.  
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Figure 22: Film peel testing 

Polymer pairs with PEEK are fusion bonded at 360 °C, 0.2 MPa pressure for 15 minutes, 

whereas PPS based combinations are joined at 295 °C under 0.2 MPa of pressure with a 

holding time of 15 minutes. 5 samples for each combination are tested. 

Table 7: Polymer blend combinations for compatibility investigations (skin/core material) 

  Core material 

S
k

in
 

m
a

te
ri

a
l  PEI PES PPSU PEEK PPS 

PEEK PEEK/PEI PEEK/PES PEEK/PPSU PEEK/PEEK / 

PPS PPS/PEI PPS/PES PPS/PPSU / PPS/PPS 
       

 

Based on the peel test results in Figure 23 and the failure mechanisms, the miscibility of the 

polymer pairs can be differentiated into three categories: miscible, partially miscible 

(compatibility) and not miscible. The combination of PEEK/PEI leads to high peel-forces. 

During testing, the samples fail within a shank indicating a strong bond. The miscibility is 

therefore rated as good. PEEK/PEEK and PPS/PPS pairs fail as well in the shanks, indicating 

the right selection of processing conditions. PEEK/PPSU pairing shows partial miscibility, 

which might be considered according to Krause [140] as compatibility. Both films can be 

separated at an average peel force of 35 N.  

The results of the PEEK/PES, PPS/PEI, PPS/PES and PPS/PPSU combinations show that 

these materials are not miscible. With low forces around 2 N the films are easily peeled off. 

Microscopic pictures confirm these results. As an example, the samples of the PEEK/PEI 

combination show no distinct interface, leading to the assumption that molecular interdiffusion 

has taken place, see Figure 24a. In contrast PEEK/PPSU (Figure 24b) and PEEK/PES   

(Figure 24c) samples show phase separation and a clear interface, indicating that the material 

are not miscible but obviously in the case of PEEK/PPSU compatible as shown with the T-Peel 

test results. 
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Figure 23:  Compatibility of polymers: peel forces 

 
  a) 

 
  b)  

 
  c)  

Figure 24: Interphase of a) PEEK/PEI, b) PEEK/PPSU, c) PEEK/PES 

4.1.3.2 Measurement of glass transition temperatures 

The most common method to determine the miscibility of a polymer pair is the measurement 

of glass transition temperatures (Tg) by thermoanalytical methods such as differential scanning 

calorimetry (DSC) [139]. The existence of a single Tg of the polymer combination indicates 

mixing of the polymers, whereas the appearance of two Tg’s indicates a two phase immiscible 

polymer pair [139].  

Exemplarily, Figure 25 shows the DSC plot of pure PEEK and PEI as well as the DSC plot of 

a PEEK/PEI blend (50/50 share). The glass transition temperature of approximately 217 °C 

can be determined for PEI and 147 °C for PEEK. For the PEEK/PEI blend, only one Tg is 
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discernible at approximately 207 °C, which indicates that the polymers are miscible. The 

influence on the crystallisation behaviour of PEEK is discussed later in this chapter. 

 

Figure 25: DSC graphs of PEEK, PEI and a PEEK-PEI blend 

In comparison Figure 26 present the thermoanalysis of PEEK, PES, and the PEEK/PES 

(50/50 share) blend. For the virgin materials, the glass transition temperatures can be 

determined to be 148 °C for PEEK and 227 °C for PES. The PEEK /PES blend features two 

Tg’s at 147 °C and 225 °C, indicating two phases. 

 

Figure 26: DSC graphs of PEEK, PES and the PEEK/PES blend 

PEI

PEEK-PEI (50:50)

PEEK

PES

PEEK-PES (50:50)

PEEK



4 Materials and process selection 47 

__________________________________________________________________________ 

 

Table 8 gives a summary of the measurements of glass transition temperatures, which shows 

that according to this method only PEEK and PEI are miscible. 

Table 8: Results from glass transition temperature measurement 

  Core material 

S
k

in
 

m
a

te
ri

a
l  PEI (217 °C) PES (227 °C) PPSU (218 °C) 

PEEK (147 °C) 207 °C 147 °C/225 °C 150 °C /189 °C 

PPS (98 °C) 95 °C/211 °C 99 °C/221 °C 105 °C/210 °C 

     

 

4.1.3.3 Hansen Solubility Parameter 

The solubility parameter as proposed by Hansen [141,143] can be used to predict the 

compatibility of polymers. The theoretical basis of the Hansen solubility parameter is the 

interaction between polymers, which is derived from cohesive energies from interactions of a 

given molecule with another. There are three major types of interactions in common organic 

materials leading to three major cohesive energies: dispersion cohesive energy ED, polar 

cohesive energy EP and hydrogen bonding energy EH. Dividing the energies by the molar 

volume leads to the three solubility parameters, namely 

• δD = Dispersion cohesion (solubility) parameter 

• δH = Hydrogen bonding cohesion (solubility) parameter 

• δP = Polar cohesion (solubility) parameter 

Hansen and co-workers [143] developed the ratio RED (Relative energy difference), which 

allows the prediction of polymer (between polymer 1 and polymer 2) affinity with 

𝑅𝐸𝐷 =  
𝑅𝑎

𝑅𝑜
 Equation 2 

where Ro is the radius of the interaction sphere in the Hansen space and Ra is the distance 

in the Hansen space. Ra is defined as:  

𝑅𝑎² = 4(δ𝐷2 − δ𝐷1)2
+ (δ𝑃2 − δ𝑃1)2

+ (δ𝐻2 − δ𝐻1)2
 Equation 3 

A RED number less than 1.0 indicates high affinity of the molecules, while a RED number more 

than 1.0 indicates progressively lower affinities. A RED number equal or close to 1.0 is a 

boundary condition [143]. Input data must be experimentally determined or derived from 

databases. 

Table 9 gives a summary of the RED numbers, calculated according to the Hansen parameter 

for the investigated polymer combination. Data for PPSU were not available. 

Table 9: Results for RED for several polymer blends based on data according to Hansen [143]  

  Core material 

S
k

in
 

m
a

te
ri

a
l 

 PEI PES PPSU 

PEEK 0.2 6.6 n/a 

PPS 4.2 6.0 n/a 
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According to the solubility parameter of Hansen, only the PEEK/PEI pair shows affinity with 

each other. 

4.1.3.4 Conclusion 

Table 10 provides a summary of the miscibility investigations of polymer pairs suitable for skin 

and core materials. In addition, references found in public literature confirm the obtained 

miscibility results. Table 10 shows clearly, that PEEK and PEI are compatible and even 

miscible. Therefore, they embody a good polymer pair to be fusion bonded for sandwich 

manufacturing. 

Table 10: Summary of investigations concerning miscibility of polymer blends 

Polymer pair Fusion bond & 
peel testing 

Tg measurement Hansen Literature 

PEEK/PEI + + + +      [144] 

PEEK/PES - - - -       [145] 

PEEK/PPSU 0 - n/a -       [146] 

PPS/PEI - - - -       [147] 

PPS/PES - - - 0      [148] 

PPS/PPSU - - n/a 0      [149] 

where + indicates miscibility, 0 partial miscibility /compatibility and – incompatibility/immiscibility 

Therefore, the materials that will be considered in this study are: 

• Skin: CF/PEEK  

• Core: PEI foam core 

In the following sections these materials will be discussed in more detail. 

4.2 MATERIALS – PROPERTIES 

4.2.1 Polyetheretherketone 

Polyetheretherketone (PEEK) is a semi-crystalline high-performance polymer, which belongs 

to the polyaryletherketone (PAEK) family [107,150]. The polymerisation of PEEK was first 

conducted in 1962 [151]. PEEK was originally developed for the aerospace industry, but due 

to its excellent mechanical properties, high temperature and chemical resistance it is today 

appreciated in several other industries such as dental medicine [152]. The structural formula 

of PEEK is illustrated in Figure 27. 

 

Figure 27: Structural formula of PEEK 
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Some properties of PEEK are summarised in Table 11. 

Table 11: Properties of Polyetheretherketone [107,151] 

General properties Unit Value Test standard 

Density g/cm³ 1.32 ISO 1183-1 

Moisture take-up % 0.2 ISO 62 

FST - V0/V0 UL 94 

Mechanical properties 
 

  

Yield Stress MPa 97 ISO 527 

Ultimate elongation % > 60 ISO 527 

E-Modulus (Tensile) MPa 3600 ISO 527 

Thermal properties    

Melting temperature °C ~343 ISO 11357 

Glass transition temperature °C ~143 ISO 11357 

Service temperature (long time) °C -65 - +240 - 

Thermal conductivity °C 0.25 DIN 52 612 

 

4.2.2  PEEK used in skin material 

In this study carbon fibre reinforced PEEK is applied as skin material. Primarily skins reinforced 

with carbon fibre fabrics but also unidirectional (UD) tapes are used. The composite materials 

are summarised in Table 12. 

Table 12: Properties of the CF/PEEK composite materials [153–155] 

Reinforcement Fibre Fibre areal weight FVC Supplier 

Fabric 5HS 3K HS 285 g/m² 58 % Toho Tenax 

Fabric 4HS 3K HS 220 g/m² 56 % Porcher Industures 

UD Tape 12K HTS45 145 g/m² 66 % Toho Tenax 

 

4.2.3 Polyetherimide 

Polyetherimide (PEI) is an amorphous high-performance polymer, which was developed in the 

early 1980s [156]. The structural formula is presented in Figure 28. PEI is appreciated for its 

good mechanical properties and high temperature resistance. However, due to the amorphous 

character, PEI has some drawbacks concerning chemical resistance to Dichlormethane (DCM) 

or Skydrol®, for example [107].Table 14 presents several properties of PEI. 
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Figure 28: Structural formula of PEI 

4.2.4 PEI used as core material 

In this study, PEI is used as the core material in form of a closed cell foam. The PEI foams 

Airex® R.82 provided by Gaugler and Lutz, Germany with two different densities, namely 

60 kg/m³ and 110 kg/m³, are used. The foam properties are summarised in Table 13. 

Table 13: Properties of Airex® R.82 foams [96] 

Property Test standard Unit R.82.60 R.82.110 

Density ISO 845 kg/m³ 60 110 

Compression strength ISO 844 MPa 0.7 1.4 

Tensile strength ISO 527 1-2 MPa 1.7 2.2 

Shear strength ISO 1922 MPa 0.8 1.4 

Thermal conductivity ISO 8301 W/mK 0.036 0.04 

 

Table 14: Properties of Polyetherimide [107,157] 

General properties Unit Value Test standard 

Density g/cm³ 1.27 ISO 1183-1 

Moisture take-up % 0.5 ISO 62 

FST - V0/V0 UL 94 

Mechanical properties 
 

  

Yield Stress MPa 105 ISO 527 

Ultimate elongation % 60 ISO 527 

E-Modulus (Tensile) MPa 3200 ISO 527 

Thermal properties    

Melting temperature °C - ISO 11357 

Glass transition temperature °C ~217 ISO 11357 

Service temperature (long time) °C -100 – +170 - 

Thermal conductivity °C 0.24 DIN 52612 
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4.2.5 PEEK-PEI blend 

Investigations showed that blends of PEEK and PEI are found to be molecularly miscible in all 

compositions [144]. Furthermore, several studies revealed that blending of PEEK and PEI 

leads to a change of various properties such as glass transition temperature, solvent 

resistance, crystallisation rate and toughness. Crevecoeur et al. [158] studied the 

crystallisation behaviour of PEEK in its blends with PEI using thermal analysis and small angle 

x-ray scattering. He showed that PEI only weakly influences the crystallisation of PEEK and 

the melting temperature of PEEK is only slightly depressed by the addition of PEI. Moreover, 

by blending PEEK and PEI the amorphous phase is enriched in PEI, so the glass transition 

temperature increases. Harris et al. [159] studied the mechanical behaviour of PEEK/PEI blend 

in different compositions. Their results show that by blending PEEK with PEI, the tensile 

strength and the tensile impact strength are increased in comparison to pure PEEK, while the 

tensile modulus and the notched izod strength are slightly decreased. Furthermore, it was 

revealed that additional annealing influences the properties significantly. Thereby, the 

composition influences the change of the properties. In addition, Harris et al. [159] investigated 

the influence of blending PEEK and PEI on chemical resistance in comparison to pure PEEK. 

He found that adding PEI leads to a decrease of the mechanical properties (stress crack 

resistance) after treatment with chemical substances such as toluene or trichloroethylene. 

However, at a small fraction (< 30 %) of PEI, the mechanical behaviour is only slightly 

influenced as illustrated in Figure 29. 

 

Figure 29: Influence of blending PEEK and PEI on the chemical resistance according to 
Harris et al. [159] 

Based on results presented above, and due to the fact that blending during fusion bonding of 

CF/PEEK skins and a PEI foam core will only occur at the inner surface of the skins or to the 

surface of the core, it is assumed that blending will not significantly influence the properties of 

the skins and core. 

 

xxx

x x x

xx

T
e
n
s
ile

 s
tr

e
s
s
 [M

P
a
]

40

30

20

10

0
0.01 0.1 1.0 10 100

Time to rupture [Hours]

ESCR of PAEK/PEI blends in Toluene (23  C)

PEI

70 % PEI

50 % PEI 30 % PEI

PAEK



4 Materials and process selection 52 

__________________________________________________________________________ 

 

4.3 MANUFACTURING PROCESS SELECTION 

As presented in chapter 2.2, there are different manufacturing methods for the production of 

thermoplastic composite sandwiches which can be categorised into adhesive and cohesive 

joining. Adhesive joining is a simple technique that does not influence the properties of the 

individual sandwich constituents. However, intensive surface preparation and a poor bond 

strength might result from this technique [22,100]. Adhesive joining is therefore not further 

pursued in this study. 

Fusion bonding is based on the interdiffusion of molecules across the surface leading to a 

cohesively strong joint between the adherents and can additionally be realised in short cycle 

times [109,111]. Several manufacturing techniques based on fusion bonding have been 

presented in public literature. In the following section these techniques are evaluated for the 

ability of manufacturing 2D and 3D sandwich structure for helicopter applications according to 

criteria worked out in accordance with the advantages and disadvantages of the manufacturing 

methods and by using the requirements presented in chapter 1.2. 

4.3.1 Evaluation and selection 

Table 15 shows the evaluation of the manufacturing processes according to several criteria. 

Where a manufacturing process is evaluated with “- -“ for any criterion, the process will not be 

further pursued (knock out - criterion). 

Table 15: Manufacturing process evaluation 

Manufacturing methods Sandwich 

properties 

Cost Application Processing  

 

P
re

v
e
n

ti
o

n
 o

f 
c
o

re
 

c
ru

s
h

in
g

 

E
x
p

e
c
te

d
 s

k
in

 q
u

a
li
ty

 

E
q

u
ip

m
e
n

t 
c
o

s
ts

 

In
fr

a
s
tr

u
c
tu

re
 a

v
a
il
a
b

le
 

fo
r 

th
e

 s
tu

d
y
?

 

A
p

p
li

c
a
b

le
 f

o
r 

h
ig

h
 

p
e

rf
o

rm
a
n

c
e
 p

o
ly

m
e
rs

 

3
D

 p
o

s
s
ib

le
?

 

V
a
ri

o
u

s
 c

o
n

fi
g

u
ra

ti
o

n
s

 

p
o

s
s
ib

le
?

 

E
a
s
e
 o

f 
o

p
e

ra
ti

o
n

 

C
y
c
le

 t
im

e
 

H
S

E
 r

e
q

u
ir

e
m

e
n

ts
 

T
o

ta
l 

Vacuum moulding – isotherm - - 0 + + + + + + 0 + - - 

Vacuum moulding -  non-isotherm 0 - + + - - + + 0 + + - - 

Compression moulding – isotherm - - 0 0 + + + + + 0 + - - 

Compression moulding -  non-isotherm 0 - 0 + + + + 0 + + 5+ 

Double belt moulding + + - - - 0 - + + + + - - 

Film foaming + + + + + - - - + + - - - 

Injection foaming + + - - - - + + 0 + 0 - - 

Bead foams + + - - - - + + + + + - - 

Solvent bonding + + + + 0 + + + + - - - - 
            

With + = positive, 0 = neutral/ evaluation not possible, - = negative and - - = k.o. 

The evaluation shows that only the non-isothermal compression moulding process seems to 

be suitable and feasible for manufacturing of TPC within the framework of this study. 
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Isothermal processes cannot be applied to manufacturing since the whole sandwich setup, 

consisting of skins and core is heated and compressed, leading to core collapse. These 

methods are only feasible in specific cases where the foam features a higher softening 

temperature than the skins. Double-belt moulding cannot be investigated in this project, since 

the infrastructure is not available and only 2D sandwich plates can be produced. In contrast, 

film foaming is a promising technique to produce sandwiches based on high performance 

polymers such as PEI. Sandwiches manufactured with this method are already commercially 

available, though the method is only applicable for sandwiches with thin skins (limited number 

of plies) and for some matrix polymers, because the blowing agent has to evaporate during 

processing and requires permeable skins. Meanwhile, in-situ foaming techniques such as 

injection moulding or particle foams show great potential for the production of TPC 

sandwiches. However, the infrastructure of such machines and tools is not available within the 

framework of this study and therefore cannot be further pursued. Moreover, further research 

in foaming of high performance polymers has to be performed to make this technique suitable 

for aviation applications. Solvent bonding is a promising technique which can be conducted in 

short cycle times. Skins and core are not influenced, since the solvent is applied only 

superficially on skins and foam. However, the chemical substances usually required for 

dissolution of the polymer can be hazardous to health and have a negative impact on the 

environment for dissolution of the polymers, and therefore the method shall not be investigated 

in this study. 

4.3.2 Non-isothermal compression moulding process  

The basic idea of non-isothermal compression moulding is that the sandwich is produced in a 

two-step pressing process. First the skins are heated separately, before being stacked on the 

core and consolidated under pressure. During the process, heat energy is transferred from the 

skins into the core, with the aim of softening the core only superficially while the main structure 

of the core stays relatively cold. This allows fusion bonding of skins and core, while the core 

centre remains stable and core collapse can be avoided.  

Summarising, the advantages (+) and disadvantages (-) of the non-isothermal compression 

moulding process are:  

 Non-isothermal heating reduces the risk of core collapse, since the core centre is not 

heated above the softening temperature. 

 Machines and equipment are available. Therefore, this method seems to be realisable 

within the frame work of this study. 

 Compression moulding is state-of-the-art technology for processing of high 

performance polymers. Therefore, the machinery is dimensioned for the high 

temperatures involved. 

 Since only the skins (low mass) are heated, the non-isothermal process is appreciated 

for its short cycle times. 

 The process is flexible for part dimensions (2D, 3D) as well skin and core 

thicknesses. 

- Possible de-consolidation of the skins during the heating process, since no pressure 

is applied on the laminates. This might further narrow the process window. 
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5. PROCESS DEVELOPMENT 

5.1 PRE-TRIALS 

As discussed in chapter 2.2, a good bond between skins and core needs to be achieved to 

obtain a thermoplastic composite (TPC) sandwich of sufficient quality, which this study aims 

to realise by means of fusion bonding. For this, fusion bonding requires the skins as well as 

the core, more precisely the core surface, to be molten in order to allow molecule interdiffusion 

[113]. 

The following chapter describes fusion bonding investigations of carbon fibre reinforced 

Polyetheretherketone (CF/PEEK) skins and a Polyetherimide (PEI) foam core by means of 

non-isothermal compression moulding. Materials and process have been selected according 

to aviation requirements, see material and process selection in chapter 4. To enable molecular 

mobility for the fusion bonding process, the PEEK based skin material must be heated above 

its melting temperature (Tm) of ~343 °C, see chapter 4.2.1. Meanwhile, the PEI based foam 

core needs to be processed at temperatures above ~217 °C (glass transition temperature (Tg) 

of PEI), see chapter 4.2.3. 

In first experimental trials, the skins (consolidated CF/PEEK laminates, 8 plies of 5HS fabric 

285 g/m², see chapter 4.2.2) are heated in a circulating air oven (NA 500/45, Nabertherm, 

Germany) above a temperature (TSkin pre-heat) of 350 °C (TSkin pre-heat > Tm(PEEK)), transferred 

into a press (Platenpress P 400 P, Dr. Collin GmbH, Germany) and placed on top of the cold 

(core temperature TCore = 23 °C) PEI foam core before being consolidated under a pressure of 

0.2 MPa. To simplify the process, the skins were joined separately to each core side. However, 

the pre-trials revealed that this method of joining of CF/PEEK skins to a PEI foam core is not 

readily possible due to several challenges. 

The skin laminates soften during heating in the oven. Transferring the skins from the oven to 

the press leads to deformation of the skin shape during their handling. Even though the skins 

are placed on top of the core and loaded by the press, the initial shape cannot be restored. 

Indeed, deformation of TPC blanks during transfer is a common phenomenon of thermoplastic 

composite processing such as hot stamping. It is referred to as sagging and is often caused 

by gravity during heating and transfer [160]. However, during stamp forming the initial shape 

can be restored (or the desired shape be realised) since the composite blank is pressed into 

a steel mould. Unfortunately in the sandwich case, the desired composite skin shape cannot 

be restored since the core cannot withstand the temperature and pressure and is compacted 

unevenly or collapses, as illustrated in Figure 30. 

Moreover, it is observed that the initial fully consolidated skin laminates show a porous and 

open structure after the joining process, see Figure 31. In public literature the phenomenon of 

‘lofted’ skin layers after heating has been reported by several researchers of thermoplastic 

composite processing [161–165]. The change of the laminate structure is referred to as thermal 

de-consolidation [161]. Experiments [164,165] revealed that the initially well consolidated 

laminates have a significant negative change in their meso-structure as well as in their macro-

performance when exposed to heat.  
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 a) 

 
 b) 

Figure 30: a) Deformed skin laminate and b) unevenly compacted core at a skin processing 
temperature above 350 °C 

Rozant et al. [71] also report on the de-consolidation phenomenon during TPC sandwich 

processing and considers de-consolidation as one of the limiting phenomena of TPC 

processing. Akermo et al. [39] describe fibre lofting during sandwich processing and highlights 

that the skins cannot be compressed to the initial thickness on the foam core. De-consolidation 

is explained by different mechanisms such as release of the elastic energy stored in the fibre 

reinforcement after compaction [71,163] or the release of thermal stress induced by non-

uniform temperature fields [164]. Thermal de-consolidation is associated with an increase in 

void content, which can increase by 10 % - 20 % [161]. According to [165] the flexural strength 

of glass fibre reinforced Polyamide12 composite sheets decreases by about 38 %, when the 

void content increases from 1 % to 12 %. Therefore, thermal de-consolidation must be avoided 

in order to prevent weakening of the skins and of the sandwich as a whole. 

 

Figure 31: Porous skin laminates 

Figure 32 shows the de-consolidation behaviour of CF/PEEK laminates (3 plies) when heated 

to different temperatures (330 °C – 390 °C) in the absence of pressure in comparison to an 

initial fully consolidated laminate. 

Skin de-consolidation
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Figure 32: De-consolidation of CF/PEEK laminates at different heating temperatures in the 
absence of pressure in comparison to an initial fully consolidated laminate 

Several trials attempting to re-consolidate the laminate on the foam did not succeed. The 

laminates still possessed a high void content. Processing conditions for re-consolidation of 

CF/PEEK laminates will be discussed in more detail in chapter 9. In addition, during processing 

the core was compacted to a high extent, see exemplarily Figure 33. Core compaction is 

thereby defined as (sort of controlled) compression of the core under heat and pressure, 

whereas core collapse takes place in an uncontrolled manner caused by extensive heating. 

 

Figure 33: Core compaction caused by extensive heating of the skins 

In contrast, by reducing the skin pre-heat temperature to below 343 °C (Tm of PEEK) to avoid 

de-consolidation, loss of form-stability of the skins as well as core compaction and collapse, a 

bond between skin and core cannot be realised (see Figure 34). Joining by fusion bond is 

restricted by the lack of mobility of the PEEK material, while adhesive joining by flowing of the 

molten PEI polymer (the surface of the PEI core is obviously softened without collapse of the 

core) into the surface of the PEEK laminate and creating inter-mechanical locking is hindered 

by the low surface energy of PEEK leading to low wetting [166].  

Summarising, to prevent skin sagging and de-consolidation the skin temperature should be 

below the melting temperature of PEEK (TSkin pre-heat < Tm(PEEK) = ~343 °C). To avoid core 

collapse, pressure and temperature should be kept at a minimum. However, although skin 

temperatures below Tm of PEEK lead to superficial softening of the core without collapsing, a 

bond between skins and core cannot be achieved. Therefore, another solution is required to 

establish fusion bonding of skins and core.  

330  C 345  C 360  C 375  C 390  CInitial
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Figure 34: Joining of skins and core at skin pre-heat temperatures below 343 °C could not be 
realised 

5.2 PROCESS ADAPTATION 

To enable a fusion bond between CF/PEEK skins and a PEI foam core by means of 

compression moulding, the process is adapted to the concept of the ‘Thermabond’ process 

[167]. The basic idea of the ‘Thermabond’ process is that thermoplastic (preferably semi-

crystalline polymer based) composite parts are bonded with the aid of a second polymer 

system (preferably amorphous based) with a lower softening temperature than the first 

polymer. However, this second polymer is not applied as a hot melt film, but rather a cohesive 

bond between the two polymers is created [167]. Therefore, the thermoplastic composites to 

be joined are superficially enriched with the second polymer system by fusion bonding. In the 

case of manufacturing TPC sandwiches according to the ‘Thermabond’ principle, the CF/PEEK 

skins are superficially enriched on one side with a PEI film at temperatures above the Tm of 

PEEK, as illustrated schematically in Figure 35. 

 

Figure 35: 1st step of the manufacturing process of TPC sandwich adapted to the 
‘Thermabond’ principle 

In a following step the two parts to be joined, in this case skins and core, are fusion bonded by 

means of heat and pressure. According to the non-isothermal compression moulding process, 

heat is introduced mainly by heating the skins, whereas the core can be pre-heated or kept at 

room temperature. However, it is aimed to keep the core, more precisely the core centre below 

the softening temperature (TCore centre < Tg,Core) to maintain its form-stability. By heating the skins, 

the surface-enrichment-layer (PEI layer) is heated sufficiently above the softening temperature 

(TSkin > Tg,TP enrichment  = Tg,(PEI)) to enable molecular diffusion, yet not so high as to melt the 

composite polymer of the skin (TSkin < Tm, Composite = Tm(PEEK)). This allows the physical and 

     om o   e          

      m      

       n    h            r a e

T ≥ Tm, Composite
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mechanical properties of the CF/PEEK skins to be not compromised. The molecular mobility 

of the PEI foam surface is enabled by heat transfer from the skins into the core surface, while 

the core centre stays relatively cold. The joining step is illustrated in Figure 36. 

 

Figure 36: 2nd step of the manufacturing process of TPC sandwich adapted to the 
‘Thermabond’ principle 

By adapting the ‘Thermabond’ process, CF/PEEK skins and the PEI core can be theoretically 

joined in the temperature range Tg(PEI) < ~220 °C – ~340 °C < Tm(PEEK), however more likely 

is the range of 260 °C – 320 °C according to [167], as illustrated in Figure 37. The viscosity of 

PEI is low enough for molecular diffusion. PEEK still shows a high form-stability over the 

temperature range and the properties are not compromised. 

 

Figure 37: Process window for fusion bonding CF/PEEK skins and PEI core enabled by the 
‘Thermabond’ principle according to Smiley et al. [167] 

TPC sandwich

Tg,TP enrichment < TSkin < Tm,Composite

Heat & Pressure
TPC skin with TP surface

TCore center < Tg,Core Interdiffusion of molecules

TCore surface > Tg,Core

TP core (PEI foam)
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Adapting the non-isothermal compression moulding process to the ‘Thermabond’ process 

offers several advantages:  

• Enriching the CF/PEEK composite skins with the PEI film by means of fusion bonding 

in a separate step, high temperatures and pressure are only acting on the composite 

skin which can withstand these processing conditions. Furthermore, composite sagging 

and de-consolidation do not pose a challenge since the joining step can be conducted 

in steel tools which allow consolidation or re-consolidation, by means of high pressure. 

Skins of high quality featuring, for example, low void content can be realised. 

• By keeping the skins below the melting temperature of the skin composite matrix 

material during the skin-to-core joining, the skins are form-stable and mechanical 

properties are not compromised. Sagging and de-consolidation do not challenge the 

process. 

• Processing the skins at lower temperatures, the risk of core collapse and compaction 

due to extensive heating is reduced since less energy is transferred to the core. 

• CF/PEEK skins and the PEI film enrichment as well as skins and the PEI foam core 

are joined by fusion bonding, which results in a high bond strength. 

5.3 SKIN PREPARATION 

The superficial PEI enrichment of CF/PEEK is first performed by vacuum moulding. This 

technique uses atmospheric pressure and temperature to fusion bond PEEK and PEI. An 

advantage of the vacuum bagging technique is that this technique ensures an evenly 

distributed pressure on the parts to be joined. The initial, fully consolidated CF/PEEK laminates 

(8 plies of 5HS fabric with a fibre areal weight of 285 g/m² per ply) are stacked with a PEI film 

(on one side) and sandwiched between two release films. A caul plate on top supports the 

pressure transfer on the CF/PEEK/PEI stack. An additional breather ensures air-circulation. 

The setup is covered with a vacuum bag, which is sealed by means of sealant tape. A valve 

in the vacuum setup allows the evacuation of air out of the bag. The setup is heated to 380 °C 

and held at this level for 20 minutes before cooling down. Figure 38 shows a microscopic 

picture of cross section of a CF/PEEK laminate with a PEI layer at the surface, in which it is 

clearly visible (in Figure 38 highlighted with red circles) that a small amount of PEI (PEI nests) 

has flowed into the PEEK structure. Further investigations reveal that a minimum PEI film 

thickness of 150 µm is required to ensure a fully covered surface.  

 

Figure 38: CF/PEEK laminate enriched with PEI on the surface by vacuum moulding 

The production of the skins by means of vacuum moulding is time intensive and requires 

several manual labour steps, which contradicts the aim of this study to realise short 

manufacturing cycle times. However, this step can be done by commercial companies with 

CF/PEEK fabric

PEI surface layer

PEI nest
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equipment that enables faster processing. Besides, as the skin-to-core bonding process is the 

main topic of investigation, it was decided to keep persist with this process for the first trials 

(trials in chapter 5) in this thesis. Consolidated skins, consisting of 8 plies (0°,90°)8 of the 5HS 

fabric reinforced PEEK (chapter 4.2.2) are used and enriched with 150 µm PEI film. 

In investigations performed at a later time (trials in chapter 6 and following), compression 

moulding is used to consolidate the CF/PEEK laminates while simultaneously enriching the 

surface with PEI. This enables the direct production of CF/PEEK-PEI skins without the need 

for a separate labour-intensive step. The PEI is stacked with the CF/PEEK prepregs and 

consolidated at 375 °C with 1 MPa pressure for 5 minutes. However, first trials showed that 

the PEI diffuses to a greater extent into the CF/PEEK structures and through the structure for 

skins with only three plies. By applying CF/PEEK unidirectional (UD) layers between the PEI 

film and the CF/PEEK fabric, the flow of PEI into the laminates can be reduced, since the UD 

reinforcement hinders the PEI in diffusing through the fibre layer. Due to the fact that this study 

is concerned with the application of fabric reinforced skins, to enable a comparison to 

thermoset reference sandwiches at a later time (chapter 7), a good compromise involves 

replacing only the upper (adjacent to the PEI layer) fabric ply, by two UD layers. Figure 39 

shows the profile of the laminate consisting of seven fabric plies (0°,90°)7, two UD layers 

(0°,90°) and a 125 µm PEI layer at the upper skin surface. 

 

Figure 39: CF/PEEK laminate consisting of seven fabric plies, two UD plies and the PEI 
surface layer 

Further investigations show that the use of the UD layers has the advantage of less PEI being 

required to enrich the surface, since the amount of PEI which diffuses into the CF/PEEK 

structure is reduced. Moreover, interlaminar shear strength (ILSS) reveals that if PEI flows into 

the structure (CF/PEEK+PEI), the composite laminate is weakened after chemical contact 

such as with Dichloremethane (DCM) in comparison to pure CF/PEEK laminates, see Figure 

40a. In the case of unalloyed superficial PEI enrichment resulting from the application of UD 

layers (CF/PEEK-UD+PEI) the quality is not influenced by chemicals compared to pure 

CF/PEEK laminates with UD layers (CF/PEEK-UD), see Figure 40b. 

CF/PEEK fabric

PEI surface layer

CF/PEEK UD
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a) 

 
b) 

Figure 40: Normalised (to reference without treatment) ILSS testing results of a) CF/PEEK 
and CF/PEEK + PEI laminates after conditioning and b) CF/PEEK-UD and CF/PEEK-UD + PEI 
laminates after conditioning 

5.4 DEFINITION OF PROCESS PARAMETERS 

To understand the adapted non-isothermal compression moulding process for CF/PEEK skins 

and a PEI foam core, and to determine a suitable processing window, the influence of 

processing conditions shall be studied. Since the process is complex, the investigations will 

only focus on the influence of the following processing parameters, see Figure 41. 

According to healing theory (chapter 2.2.2), both interface temperature and process time play 

a major role during fusion bonding, since molecular mobility needs to be provided. The 

temperature during non-isothermal compression moulding can be influenced by the skin 

temperature (TSkin) and the core temperature (TCore). Since the compression moulding 

process is implemented non-isothermally in this study, processing time (t) cannot be directly 

influenced, but rather depends on the skin and core temperatures. Furthermore, pressure (p) 

is needed to ensure intimate contact and thereby to allow interdiffusion of the molecules, 

though it does not influence the interdiffusion process of the molecules [168]. Due to the 

pressure sensitivity of the core, the aim is to keep the pressure as low as possible. Therefore, 

intimate contact will be established by the core compaction distance (dcompaction) of the skins 

into the core at the lowest possible pressure. The core compaction distance is the difference 

between the initial core height and the aimed core height after controlled compaction. A 

variation of the initial core height leads to a variation of the core compaction distance. The core 

compaction distance is distance-controlled, realised by the mould stops which allows 

controlled core contact, more precisely core compaction, but hinders extensive compaction of 

the core. It is assumed that the core will be compacted only in the outer core area, more 

specific in the area which is softened, leading to a density gradient within the core structure.  
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In addition, it is assumed that the PEI film thickness (hPEI) can have an influence on the bond 

quality, since PEI is needed on both surfaces to ensure wetting and molecular interdiffusion.  

 

Figure 41: Process influencing parameters 

The following section focuses on the influence of the process parameters TSkin and TCore. 

The influence of other parameters is presented in chapter 6. 

5.5 DETERMINATION OF PROCESS WINDOW – THEORETICAL APPROACH 

In this section, the fusion bond process is approached theoretically, in order to identify the 

governing process mechanisms and to simplify the determination of the process window by 

experimental trials. Firstly, a theoretical background for fusion bonding is given, which provides 

an understanding of the governing process parameters affecting the quality of the skin-to-core 

bond. Secondly, a theoretical approach is deduced for the compression moulding process of 

sandwiches. Thirdly, tensile bond strengths in flatwise plane between skins and core are 

predicted depending on varying skin and core temperatures. By comparing the calculated 

tensile bond strengths to the tensile properties of the core, expected failure mechanisms are 

prognosticated. Finally, the theoretical approach is verified by experimental trials. 

5.5.1 Theoretical background 

Fusion bonding of thermoplastic materials aims to join two parts in order to produce one 

structure, with the strength of its joint approaching that of the parent materials [169]. Since the 

quality of the final part depends on the quality of the joint, it is important to understand the 

parameters affecting joint strength, including material properties and process conditions [170]. 

Fusion bonding involves the application of heat and pressure to the interface between the two 

parts to be joined. This usually requires temperatures above the glass transition temperatures 

(Tg) for amorphous polymers and above the melting temperature (Tm) for semi-crystalline 

polymers in order to lower the viscosity and to allow a high mobility of the polymer molecules 

[171]. The parts to be joined are then brought in contact under pressure. In theory the 

development of a fusion bond is divided into five steps [169,172]: 1) surface arrangement, 2) 

surface approach, 3) wetting, 4) diffusion and 5) randomization. These steps can be combined 

and two main mechanisms that contribute to strength development have been proposed for 

modelling in the literature: ‘intimate contact’ (step 1-3) and ‘healing’ (step 4-5) [169,170]. 

Intimate contact describes the amount of surface area that is physically in contact between 

the interface of both parts at any time [170]. Healing refers to the interdiffusion of polymer 

molecules across the interface [170], which is the determining factor for strength development. 

As full surface contact is a premise to allowing the interdiffusion of the molecules, both 

Pressure p

Core compaction distance dCompaction

Skin temperature TSkin

Processing time t

Core temperature TCore

PEI film thickness h
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mechanisms have to be considered for a successful fusion bond [170]. Both mechanisms have 

been studied extensively and theoretical models have been proposed in public literature 

[113,169–171,173–176] of which a short review is given below. 

5.5.1.1 Intimate contact 

When two surfaces of the parts to be joined are brought together, only a fraction of the surface 

area is in contact, since materials never have perfectly smooth surfaces and contain surface 

asperities. Intimate contact is dependent on the surface roughness, which can be changed by 

temperature and pressure. By applying temperature and pressure, the materials soften, the 

asperities can be deformed and the amount of surface area increased [170]. In literature 

intimate contact is modelled by different researchers [174–176] and the degree of intimate 

contact Dic is defined as the fraction of the total surface that is in contact. In these models the 

surfaces are idealised and described by a wave of rectangular elements [174–176]. The latest 

model, the Mantell-Springer model [174], assumes that rectangular elements representing the 

irregular surface are deformed by pressure, as shown schematically by the dashed line in 

Figure 42. 

This model [174] accounts for time-varying material properties and conditions. The degree of 

intimate contact Dic is therefore expressed by 

𝐷𝑖𝑐 =  
𝑏(𝑡)

𝑤0 + 𝑏0
 Equation 4 

where b0 is the width of the initial rectangular elements, w0 the initial width between the 

rectangular elements and b(t) the width after the time t of deformation. Furthermore, a0 is the 

initial height of the elements and a(t) the height after deformation, see Figure 42.  Based on 

the assumption that the element volume remains constant and with the law of conservation of 

mass, the degree of intimate contact can be expressed according to [174] as  

𝐷𝑖𝑐 =
1

1 + 
𝑤0
𝑏0

 [1 + 5 (1 +
𝑤0

𝑏0
) (

𝑎0

𝑏0
)

2

∫
𝑝𝑎𝑝𝑝

𝜂

𝑡𝑝

0

𝑑𝑡]

1/5

 
Equation 5 

where η is the polymer viscosity, papp the applied pressure, a0 the initial height of the 

rectangular element and tp the time of the pressure application. 

 

Figure 42:  Schematic illustration of the deformation of surface asperities according to 
Mantell et al. [174] 
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5.5.1.2 Healing 

When two thermoplastic materials are brought into contact above the glass transition 

temperature for amorphous polymers or the melting temperature for semi-crystalline polymers 

(below these temperatures molecular interdiffusion is restricted due to lack of polymer 

mobility), interdiffusion of polymer chain segments back and forth across the interface takes 

place [169,170]. The interface of the materials to be joined disappears (it ‘heals’) and after a 

certain period the bulk material properties of the polymer can be achieved. The motion of a 

polymer chain in an amorphous material has been modelled by DeGennes [134] with the 

following equation: 

𝑙

𝐿
=  (

𝑡

𝑇𝑟
)

1
2
 

Equation 6 

where L is the length of the fictitious tube in which the polymer chain is confined, l the polymer 

chain end that exits the tube, t the time and the reptation time Tr, when the chain has totally 

exited the original tube (l=L), see Figure 43 [169]. The motion of a polymer chain depends on 

the polymer chain characteristics such as weight average molecular weight (Mw).  

 

Figure 43: Model of motion of polymer chains according to Bastien et al. [169] 

Regarding interdiffusion, it is possible to define an average interpenetration distance χ (Figure 

44) of the chains across the interface, which varies with the square root of the minor chain 

length l [113]. χ is then described as: 

χ

χ∞
=  (

𝑙

𝐿
)

1/2

= (
𝑡

𝑇𝑟
)

1/4

 Equation 7 

 

Figure 44: Definition of interpenetration distance of polymer chains 
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The healing theory [113,172] derives the mechanical properties ‘strength’ and ‘toughness’ from 

the parameters l and χ, by making assumptions on two failure mechanisms: chain pull-out and 

chain breakage. For both failure mechanisms, the time dependence on the fracture stress σ 

and energy Gc is the same and the relations can be expressed as:  

𝜎

𝜎∞
=  (

𝑡

𝑇𝑟
)

1/4

 Equation 8 

𝐺𝑐

𝐺𝑐∞
=  (

𝑡

𝑇𝑟
)

1/2

 Equation 9 

where σ∞ and Gc∞ are the fracture stress and fracture energy of the fully healed interface, which 

is achieved at t=𝑇𝑟. The relations are valid for isothermal conditions at a temperature T. For a 

non-isothermal process, the process time tp can be divided into q time intervals (ti+1- ti = ∆t= 

t/q) in which the temperature Ti* is assumed to be constant [169]. This leads to the following 

equation 

𝜎

𝜎∞
=  ∑

𝑡𝑖+1
1/4

− 𝑡𝑖
1/4

𝑇𝑟
∗1/4

𝑡𝑝/∆𝑡

𝑖=0

 Equation 10 

𝐺𝑐

𝐺𝑐∞
=  [ ∑

𝑡𝑖+1
1/4

− 𝑡𝑖
1/4

𝑇𝑟
∗1/4

𝑡𝑝/∆𝑡

𝑖=0

]

2

 Equation 11 

 

where Tr* is the reptation time at the temperature Ti*. The degree of healing Dh is represented 

by the ratio of the achieved strength σ by healing and the maximum realisable strength of the 

material σ∞: 

Dh = 
σ

 𝜎∞
 Equation 12 

5.5.1.3 Coupled model 

Different approaches can be found in public literature irrespective of whether intimate contact 

or healing governs the bonding process, depending on the processing parameters. For 

instance at high temperatures above the glass transition or melting temperature, healing 

occurs instantaneously, therefore intimate contact is the governing mechanism (thealing < tintimate 

contact) [52,169,177]. At lower temperatures the time to obtain full strength (Dh = 1) is much 

longer than the time to achieve full intimate contact (Dic = 1), therefore healing governs the 

process (thealing > tintimate contact) [169,178]. Other approaches are also available where both 

models are combined since healing can only occur across areas where intimate contact is 

already achieved at the interface [6,170,179,180]. Therefore, the degree of bonding Db is the 

result of a combination of the degree of intimate contact and the degree of healing, for which 

Butler et al. [170] proposed a model and thereby provides a more realistic description of the 

fusion bonding process than by considering the mechanisms independently. In the model, it is 

considered that only the contact area can heal. The area of contact where healing can take 

place is increased by applying pressure for a certain time. The degree of bonding Db is defined 

as: 
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𝐷𝑏 = 𝐷𝑖𝑐(0) ∗ 𝐷ℎ +  ∫ 𝐷ℎ

𝑡

0

(𝑡 − 𝑡′) ∗  �̇�𝑖𝑐(𝑡′)𝑑𝑡′ Equation 13 

The lead term accounts for healing over the area initially in contact Dic (0). The derivative of 

Dic accounts for the new area that has come in contact during the time interval t’ to t’ + dt. The 

quantity Dh(t-t’) is the amount of healing that has occurred over the new area that has been in 

contact for a time t-t’. 

5.5.2 Bonding model deduction 

The prediction of the tensile bond strength between CF/PEEK skins, which are superficially 

enriched with the PEI layer, and a PEI foam core, is the focus of the current study. As shown 

in chapter 5.1 the process window is constrained due to skin de-consolidation and core 

collapse at higher temperatures (T > 343 °C). This means that temperatures below the usual 

PEI processing temperatures (~370 °C [153]) are recommended during the fusion bonding 

process to prevent skin de-consolidation. In addition, the PEI foam possesses a rough surface. 

Therefore, in this study both intimate contact and healing mechanisms are considered. In 

addition, the bonding process occurs under highly non-isothermal conditions since the non-

isothermal compression moulding process is selected as manufacturing technique (refer 4.3). 

To predict the bond strength σ(t) for the CF/PEEK-PEI foam sandwiches, the modelling 

approach by Butler et al [170] is applied. By combining  Equation 4, Equation 5, Equation 10 

and Equation 13 and dividing the process time tp into q time intervals in which the temperature 

T and the viscosity η are approximately constant, the bond strength can be calculated by: 

 

σ(𝑡𝑖) =  𝜎∞ ∗ ∑ [(
𝑏0

𝑏0 + 𝑤0
) ∗

𝑡
𝑖+1

1
4 − 𝑡

𝑖

1
4

𝑇𝑟

∗
1
4

+ (
𝑏(𝑡𝑖)

𝑏0 + 𝑤0
−

𝑏0

𝑏0 + 𝑤0
) ∗

𝑡𝑖+1
1/4

− 𝑡𝑖
1/4

𝑇𝑟
∗1/4

]

𝑡𝑝/∆𝑡

𝑖=1

 Equation 14 

with 

𝑏(𝑡𝑖) =  𝑎𝑡𝑖−1
𝑏𝑡𝑖−1

[
1

𝑎𝑡𝑖−1

5 + 5 
𝑝𝑎𝑝𝑝(𝑏𝑡𝑖−1

+ 𝑤𝑡𝑖−1
)

𝜂(𝑡𝑖)𝑎𝑡𝑖−1

3 𝑏𝑡𝑖−1

3 (𝑡𝑖 − 𝑡𝑖−1)]

1/5

 Equation 15 

and 

𝑎𝑡𝑖
=

𝑎𝑡𝑖−1
𝑏𝑡𝑖−1

𝑏𝑡𝑖

 Equation 16 𝑤𝑡𝑖
=  𝑏𝑡𝑖−1

+  𝑤𝑡𝑖−1
− 𝑏𝑡𝑖

 Equation 17 

5.5.3 Determination of model input parameters 

To predict the bond strength according to Equation 14, input for the following parameters is 

needed: 

1. Process parameters: Interface temperature T and Process time tp during the 
compression moulding process, Applied pressure papp 

2. Material properties: Reptation time Tr, Surface roughness a0, b0, w0, Viscosity η, 
Tensile strength σ∞ 

In the following sections the input parameters are determined. 
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5.5.3.1 Interface temperature T and process time tp 

The temperature T with time of the skin-to-core interface during processing is of major 

importance as it allows prediction of polymer mobility which enables polymer flow to achieve 

intimate contact and interdiffusion. Therefore, prediction of temperature evolution at the 

interface is necessary in order to determine the process time tp as well as to supply input for 

reptation time Tr and the viscosity η in Equation 14 and Equation 15. Both are highly dependent 

on the process temperature.  

To describe the heat transfer from the heated skins into the foam core a simplified non-

isothermal heat transfer model is used. The model is based on the manufacturing process 

which is schematically illustrated in Figure 45. Here, the focus lies on the heat transfer from 

skins into the core by means of heat conduction. 

 

Figure 45: Non-isothermal compression moulding process 

This process contains the following steps: 

Heating: The skin is placed on a transfer plate and heated in an oven until it reaches the pre-

determined skin pre-heat temperature TSkin pre-heat.  

Transfer: Skin and transfer plate are transferred into the press and integrated into a male 

mould. The transfer takes around 10 - 15 seconds and the heat loss during transfer is 

~1.5 °C/sec. Pre-trials showed that the application of a transfer plate is necessary to reduce 

loss during transfer (more details in chapter Fehler! Verweisquelle konnte nicht gefunden 

werden.). 

Pressing: The cold or pre-heated core is already positioned in the female mould which is 

installed on the upper press platen. Once transfer plate and skin are integrated into the male 

mould, the mould is closed and pressure is applied. 

In this process the temperature evolution at the interface TInterface is mainly dependent on the 

skin pre-heat temperature TSkin pre-heat, transfer plate pre-heat temperature TTransfer plate, core 

temperature TCore as well as on temperatures of the periphery (e.g. press). The temperature 

evolution of the interface TInterface can be described dependent on the time t and the location 

(x,y,z)  by applying a non-isothermal heat transfer equation [181]. 

𝜌𝑐
𝜕𝑇

𝜕𝑡
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(𝜆
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) +
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where λ is the thermal conductivity, ρ the density, c the specific heat capacity and Φ''' the heat 

generation (e.g. exothermal reactions). Equation 18 can be simplified for a two-dimensional 

case and without the additional heat generation to: 

ρc
∂T

∂t
=  [

∂

∂x
(λ

∂T

∂x
) +

∂

∂y
(λ

∂T

∂y
)] Equation 19 

The finite difference method is implemented to solve the numerical approach, where the 

derivatives are substituted by differential quotients. This leads to: 

𝑇𝑚+1,𝑛
𝑖+1 − 2 𝑇𝑚,𝑛

𝑖+1 + 𝑇𝑚−1,𝑛
𝑖+1

(∆𝑥)2
+

𝑇𝑚,𝑛+1
𝑖+1 − 2 𝑇𝑚,𝑛

𝑖+1 +  𝑇𝑚,𝑛−1
𝑖+1

(∆𝑦)2
=

ρc

λ

 𝑇𝑚,𝑛
𝑖+1 − 𝑇𝑚,𝑛

𝑖

∆𝑡
 Equation 20 

where 𝑇𝑚,𝑛
𝑖+1 is the temperature for the time point i+1 after the time step ∆t. ∆x and ∆y are the 

distances between two nodes, which are labelled with m und n (refer Figure 46).  

 

Figure 46: Arrangement of elements and nodes 

Reordering Equation 20 leads to the energy balance equation of every node 
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Equation 21 

 with 

𝜏 =
∆𝑡

∆𝑥 ∆𝑦 𝑐𝑝 𝜌
 Equation 22 

A relation between the individual energy balances of every volume element is achieved by the 

multiplication of a coefficient-matrix 𝐴 and the temperatures 

∆

∆
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𝑨 × 𝑻𝑖+1 = 𝑻𝑖. Equation 23 

In order to reduce the modelling extent, the following assumptions are taken into account: 

• Skins and transfer plate are uniformly heated in a convection oven 

• The core is kept at room temperature or heated up uniformly 

• Skins and transfer plate cool down ~20 °C during transfer from the oven into the press 

(driven by convection and emissions) 

• The model is effective after the press is closed and press platen, transfer plate, skin 

and core are in full contact. 

• From here TSkin is referred to as the temperature of the skin in the press 

• The model is implemented for one skin and the core up the core centre (mirror-line) 

because of the symmetric setup 

• Heat loss to the environment at the periphery of the skins is neglected since the area 

of the skins is much larger than the thickness of the skins and transfer plate 

• After several repetitions of the process, the press surface will warm up. This influences 

the heat transfer and might influence the bond strength development. However, for this 

study it is neglected and the surface press temperature is assumed to be at room 

temperature for every trial. 

• Material properties (specific heat capacity, density, heat conductivity, etc.) are 

considered to be constant for a material phase 

• The core area adjacent to the skin collapses at temperatures above Tg(PEI) and from 

then material properties are considered to be valid for a bulk PEI material   

• The periphery is considered to be adiabatic 
 

Figure 47 displays the manufacturing setup for the implementation of the heat model, with 

• dx = node distance in x-direction 

• hP = Height of press 

• dhP = Node distance (Press elements) 

• hT = Height of Transfer plate 

• dhT = Node distance (Transfer plate elements) 

• hS = Height of Skin 

• dhS = Node distance (Skin) 

• hc = Height of core 

• dhc = Node distance core (Core) 

• dhc,small = Node distance (Core, when compacted) 

The values for the dimensions as well as material properties for the press, transfer plate, 

skin, core and compacted core material are given in Appendix A. 



5 Process development 70 

__________________________________________________________________________ 

 

 

Figure 47: Discretisation of manufacturing setup 

By formulating the energy balance for every element, the input of the boundary conditions and 

material data in Appendix A, Equation 23 can be solved and the temperature evolution with 

time at the interface predicted. 

Experimental trials are conducted to validate the heat transfer model results. Thermocouples 

(Typ K, GG-KI-36-SLE-(*), Ø = 0.13 mm by Omega Engineering, Germany) are integrated into 

the skins, below the core surface (~1 mm below the core surface) as well as into the core 

centre (~2 mm – ~5 mm) and the temperature evolution of skins, core surface and core centre 

is recorded, see Figure 48. Due to the wire diameter and the manual integration, a hundred 

percent exactness of positioning cannot be assured, which can lead to deviations.  

 

Figure 48: Integration of thermocouples to monitor heat flow from skin into core 
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Figure 49 shows a comparison of the predicted (dashed lines) and the experimentally 

determined (solid lines) temperature evolution for the skin, the core just below (~1 mm) the 

surface as well as for the core centre at different core depths. For purpose of simplification, 

the illustration of temperature evolution of the transfer plate and the periphery is omitted. The 

skin is pre-heated in an air-circulating oven to a temperature of 330 °C (TSkin pre-heat). The core 

is kept at room temperature. As the model is valid after the press is closed (see assumptions), 

where all parts are in close contact, the prediction starts with a temperature of 310 °C for the 

skin (TSkin). The temperature difference is related to the heat loss during transfer from the oven 

into the press, which is neglected in the model. 

 

Figure 49: Temperature evolution (predicted and measured) of skin and core (at different 
core depths) for TSkin = 310 °C and TCore = 23 °C 

Figure 49 shows that there is a reasonable agreement between predicted and measured 

temperature evolutions. Slight deviations between predicted and measured temperatures can 

be attributed to the assumptions (adiabatic periphery, material properties) in the model and 

inaccuracy of the thermocouple location. The higher starting temperatures of the measured 

temperature graphs can be explained by the heat conduction from the skin into the core before 

the press is fully closed. The unsteadiness of the predicted temperature profile of the core 

during the heating phase can be ascribed to the change of material properties between solid 

and softened aggregate state as well as core compaction which is considered by a change of 

the cell size in the model. 

Since only the temperature evolution of the interface is relevant for the bond strength 

prediction, further temperature evolution graphs are simplified with focus on temperature 
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evolution of the skin and interface, see Figure 50. Here, the interface temperature is defined 

as an average temperature of skin and core surface temperatures. 

In order to ensure correctness and reproducibility of the results, temperature measurements 

have been conducted multiple times and deviations during processing are determined, which 

are displayed with the red bandwidth in Figure 50. Except for the difference of the starting 

temperatures (caused by heat conduction from the skin into the core before the press is fully 

closed) the predicted temperature profile conforms to the measured temperature profile. A 

satisfying agreement between the temperature evolution prediction and measured 

temperature evolution is achieved. Therefore, the predicted temperature evolution depending 

on the skin and core temperature is used to supply input for the process time tp in Equation 14 

and for the reptation time Tr (see following section) in the fusion bond modelling approach. 

 

Figure 50: Skin and interface temperature evolution (predicted and measured) for   

 TSkin = 310 °C and TCore = 23 °C  

5.5.3.2 Applied pressure papp 

The pressure influences the time to achieve intimate contact, while the healing process runs 

pressure-independent. In contrast to fusion bonding of reinforced thermoplastic monolithic 

parts or thermoplastic bulk materials, foam cores are sensitive to pressure under elevated 

temperatures. In order to minimise the risk of core crushing under load, a low pressure (p or 

papp) of 0.2 MPa is chosen for all manufacturing trials and not further investigated. The pressure 

of 0.2 MPa is lowest pressure realisable with the available manufacturing equipment. 
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5.5.3.3 Reptation time Tr 

For the fusion bonding process, the reptation time Tr represents the time which is needed to 

achieve a fully healed interface, which has properties equaling the bulk material. Therefore, 

the reptation time Tr is a key parameter for the prediction of the bond strength according to 

Equation 14 and therefore the reptation time of PEI Tr(PEI) is of great interest to this study. Tr 

is a material depend parameter, which needs to be determined individually for every envisaged 

material. For the sandwich case, Bastien et al. [169] already investigated the reptation time for 

amorphous polymers, specifically for PEI, during non-isothermal processing based on the 

minor chain length l and the interpenetration distance χ. Bastien et al. showed that the average 

interpenetration distance χ of the polymer chain across the interface is the most representative 

model to predict the bond strength for non-isothermal processes [169]. By experimental trials 

the reptation time for PEI was defined dependent on different temperatures, see Figure 51. 

 

Figure 51: Reptation time for PEI depending on the temperature according to Bastien et al. 
[169] 

As shown in Figure 51 the reptation time is highly dependent on the temperature. For the 

implementation of the bond strength model, the reptation time of PEI Tr(PEI) must be related 

to the interface temperature T with time, which is described by the heat transfer model. 

5.5.3.4 Surface roughness 

In [182] it is considered that the rougher surface of the parts to be joined is the limiting surface 

to achieve intimate contact. For the bonding process in this study, it is therefore assumed that 

the PEI surfaces of the skins are very smooth compared to the foam core surfaces. The time 

needed for flattening of the core surface is the limiting parameter for the development of 
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intimate contact between the PEI surface of the skins and core. The surface roughness of the 

foam core is therefore experimentally characterised using a DektakXT® stylus profiler by 

Bruker, Billerica Massachusetts, USA. Figure 52 shows a representative surface profile of the 

initial PEI foam core. 

 

Figure 52: Representative surface profile of the PEI foam 

The obtained surface profile is fitted to the idealised surface model of Mantell and Springer 

[174] leading to the required values a0, b0, w0 (see Table 16) in Equation 14, Equation 15, 

Equation 16 and Equation 17. 

Table 16: Values of the idealised PEI foam surface 

Parameter a0 b0 w0 

Value [µm] 26.98 174.49 171.74 
 

It is assumed that during processing the surface roughness is changed by means of pressure 

even before PEI is softened by temperature above its Tg. Due to the low-density structure of 

the core, the surface asperities might be reduced and flattened plastically by means of the 

pressure and elevated temperatures, which are close to but albeit below the Tg. To verify this, 

the initial foam is compacted in a trial at temperatures of 200 °C and 210 °C (temperatures 

close to the Tg(PEI)) for 1 second under a pressure of 0.2 MPa. Figure 53 shows the plastic 

change of the PEI foam surface between the initial foam (Figure 53a) and the compressed 

foam at a temperature of 210 °C, see Figure 53b.The compaction of the foam surface leads to 

a  densified material structure which can be compared to bulk material.  

Table 17 presents the measured surface roughness of the initial PEI foam surface and PEI 

foam surfaces treated with 200 °C and 210 °C under 0.2 MPa for 1 second.  
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Table 17: Measured PEI foam surface profiles 

Temperature [°C] Pressure [MPa] a0 [µm] b0 [µm] w0 [µm] 

23 / 26.98 174.49 171.74 

200 0.2   8.58 145.41   99.30 

210 0.2   5.91 130.59   87.23 
 

Since these results show that the surface of the foam core is already flattened and presumably 

thereby the contact area increased before the materials softens above Tg, the surface 

roughness parameters a0(210 °C), b0(210 °C), w0(210 °C) and not a0(23 °C), b0(23 °C), 

w0(23 °C) are taken as the starting input parameters for the bond  strength model in Equation 

14, Equation 15, Equation 16 and Equation 17. 

 
 a) 

 
 b)  

Figure 53: Microscopic picture of the surface of a) an initial PEI foam and b) a PEI foam after 
treatment with 210 °C, 0.2 MPa for 1 sec 

 

5.5.3.5 Viscosity 

In general, the viscosity depends very much on the shear velocity, temperature and on several 

polymer characteristics such as molecular weight [183]. However, for low shear velocities of 

polymers, which is assumed to be valid for compression moulding, shear velocity can be 

neglected. In this case the polymer melt can be treated as a Newtonian fluid. The viscosity of 

PEI is determined by means of rheometric analysis and can be empirically described as 

𝜂𝑃𝐸𝐼(𝑇) = 2 ∗ 1034 ∗ 𝑇−12.03 Equation 24 

Combined with the temperature evolution during processing at the interface, the viscosity of 

PEI during fusion bonding can be described for every time interval and used in Equation 14. 

5.5.3.6  en   e   reng h σ∞ 

This study aims to predict the tensile strength of the interface, since it can be compared with 

the tensile strength of the core, which enables a statement on which part of the sandwich will 
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be the weakest link. During the fusion bonding process the surface of the foam is softened and 

compressed with the result that ‘bulk’ material at the surface is formed, see Figure 53b. This 

means that a bulk PEI skin surface (PEI film) is joined to a ‘bulk’ PEI foam surface with the aim 

to achieve a fully healed PEI bulk material. Therefore, for the prediction of the skin-to-core 

tensile bond strength according to Equation 14, the reference tensile strength σ∞   σTensile (PEI) 

= 105 MPa [157] of a fully healed PEI bulk material is used.  

5.6  IMPLEMENTATION OF BOND MODEL 

According to Equation 14 the tensile bond strength can be predicted depending on the process 

parameters and material properties, quantities that have been determined in the previous 

section. In this theoretical study, the focus is on the investigation of the interface temperature 

influence on the bond strength of sandwich specimens.  

5.6.1 Parameter definition 

The interface temperature can be influenced by heating the parts to be joined, namely the 

skins as well as the core. As presented in chapter 5.1, the process window for joining CF/PEEK 

skins and the PEI core is narrow since extensive heating (TSkin > 340 °C) leads to skin de-

consolidation and to core collapse. Lower temperatures (TSkin < 230 °C) do not enable fusion 

bonding based on the healing theory (refer to Figure 51). Therefore, in consideration of heat 

loss during transfer, the bond strength is to be predicted for skin temperatures (TSkin) between 

260 °C and 320 °C in steps of 10 °C and core temperatures (TCore) of room temperature 

(TR = 23 °C), 100 °C and 200 °C. A core temperature of 200 °C is considered the maximum 

possible core pre-heat temperature (in consideration of heat loss during transfer) since core 

collapsing was observed at core temperatures above Tg of the core. The pressure for 

manufacturing is kept constant at a low level of 0.2 MPa to avoid extensive core compaction. 

In the following section the results are presented and discussed. Here, the predicted tensile 

strength is normalised to the strength of a fully healed interface �̅� =  
𝜎

𝜎∞
 ∗ 100 % =

 
𝜎

𝜎T(PEI)
∗  100 %.  

Furthermore, the results are compared to the tensile strength of the core, which was 

characterised according to DIN53292 (chapter 5.7.2.2) and determined to be 2.64 % (also 

normalised to the bulk material strength). As a result, sandwiches featuring a predicted tensile 

strength below 2.64 % of the reference tensile strength 𝜎∞ are expected to fail adhesively 

(Adh) within the interface, while sandwiches with a predicted normalised tensile strength above 

2.64 % will probably fail cohesively (Coh) within the core, based on the assumption of the 

weakest link. 

5.6.2 Bond strength prediction depending on skin temperature 

The temperature of the skins influences the bond strength to a large extent because the skins 

supply most of the heat energy to soften the polymer and to enable molecular mobility to 

achieve intimate contact and to allow polymer interdiffusion.  

As an example, Figure 54 shows the calculated temperature with time for a skin laminate 

temperature of 260 °C and the interface temperature with time, as well as the predicted 

normalised tensile bond strength. The core is thereby kept at room temperature. Since the 
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temperature of the interface stays relatively low (~230 °C), where the motion of the molecules 

is slow and the reptation time is high, the predicted tensile bond strength is low. The model 

predicts a normalised tensile bond strength, which is 0.56 % of the bulk PEI tensile strength. 

The prediction of the normalised strength of 0.56 % means that the sandwich will feature an 

insufficient (lower than the core strength) bond quality and that the sandwich will probably fail 

within the interface, since the core itself features a normalised tensile strength of 2.64 % in.  

In comparison, Figure 55 exemplarily displays the predicted normalised tensile bond strength 

based on the temperature evolution for a skin temperature of 310 °C. Due to the higher 

temperature of the skins, the interface temperature is increased up to approximately 260 °C, 

where interdiffusion of the polymers occurs to a larger extent (Tr ~ 639 sec). Therefore, the 

model predicts that the bond quality is improved and the sandwiches feature a normalised 

tensile bond strength of approximately 7.85 % in comparison to the reference tensile strength. 

Since the normalised tensile strength of the core is around 2.64 %, the model predicts that the 

bond quality is sufficient (not the weakest link), albeit low in comparison to the bulk material 

strength, and failure of the sandwich will occur within the core.  

Table 18 summarises the predicted normalised bond strength for skin temperatures in the 

range 260 °C – 320 °C. For all predictions, the core temperature is kept at room temperature. 

In addition, a prognostication about the expected failure mechanisms is given.  

Table 18: Predicted normalised bond strength and failure mechanisms for different skin 

temperatures 

TSkin [°C] 260 270 280 290 300 310 320 

Predicted �̅� =  
𝜎

𝜎∞
 [%] 0.56 1.34 2.2 3.35 5.05 7.85 13.13 

Expected failure 
mechanism [Adh/Coh] 

Adh Adh Adh Coh Coh Coh Coh 

 

From Table 18 it becomes clear that the model predicts that sandwiches manufactured with 

skin temperatures above 290 °C and a core kept at room temperature will feature sufficient 

bond strength, since a cohesive failure within the core is prognosticated.  
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Figure 54: Normalised tensile bond strength prediction for a skin temperature of 260 °C 

 

Figure 55: Normalised tensile bond strength prediction for a skin temperature of 310 °C 
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5.6.3 Bond strength prediction depending on core temperature 

The model shows that heating the core leads to an improvement of the bond strength since 

the temperature level of the core or core surface is already elevated before the heat from the 

skins is transferred into the core. In combination with heated skins, high temperatures at the 

interface can be achieved, which improves bond development. Table 19 gives a summary of 

the predicted normalised bond strengths for several skin temperatures and elevated core 

temperatures as well as expected failure mechanisms. For a sandwich manufactured with 

260 °C heated skins, the sandwich will probably fail adhesively within the interface for core 

temperatures of 23 °C and 100 °C. By heating the core to 200 °C, the model predicts a 

normalised tensile bond strength of 5.65 % and failure of the sandwich is expected to be 

cohesively within the core. In the case of sandwiches manufactured with skins heated to a 

temperature of 280 °C, a core temperature of 100 °C is probably sufficient to achieve a 

cohesive failure within the core, since the normalised tensile strength is increased from 2.2 % 

for a core at room temperature to 7.04 %. An increase of core temperature to 200 °C will lead 

to a further increase of the predicted tensile bond strength. If the skin is heated up to 300 °C, 

core heating will improve the predicted bond strength, however it is expected that even 

sandwiches with the core kept a room temperature feature a sufficient bond quality and will fail 

within the core. Therefore, heating of the core seems to be unnecessary in this case. 

Table 19: Predicted normalised bond strength and failure mechanisms for varying core 
temperatures and different skin temperatures 

TSkin [°C]         260 280      300 

TCore [°C] 23 100 200 23 100 200 23 100 200 

Predicted �̅� =  
𝜎

𝜎∞
 [%] 0.56 1.52 5.65 2.2 7.04 12.41 5.05 9.51 25.97 

Expected failure 
mechanism [Adh/Coh] 

Adh Adh Coh Adh Coh Coh Coh Coh Coh 

5.6.4 Discussion 

The modelling results are valid provided that the core does not collapse due to the increased 

temperature during processing. A statement about core collapse cannot be provided by the 

model. In addition, the model predicts that a skin temperature of more than 370 °C is necessary 

to achieve full healing (�̅� = 100 % = 105 MPa). However, since it is sufficient to achieve a 

tensile bond strength which is superior to the tensile strength of the core itself (weakest link) 

and the fact that 370 °C leads to skin de-consolidation and core collapse, the aim of achieving 

full healing is not further pursued. 

5.7 MODEL VERIFICATION 

This section aims to verify the proposed model with experimental trials in order to determine 

the process window for successful fusion bonding of CF/PEEK skins and a PEI foam core. 

Sandwich samples are manufactured according to the parameters as identified by the model, 

and the skin-to-core bond quality is characterised by mechanical testing. In the following, the 

experimentally obtained results are compared to the modelling results in order to verify the 

theoretical approach and discussed in conclusion. 
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5.7.1 Materials 

The skin material consists of eight PEEK pre-impregnated carbon fibre reinforced fabric plies 

(5HS fabric, 285 g/m² areal weight), symmetrically stacked and consolidated to a thickness of 

1.86 mm. The fibre volume fraction is ~52 %. The skins are on one side superficially enriched 

with Ultem®1000 (Solvay, USA) PEI films with a thickness of 150 µm under a pressure of 

0.1 MPa at 400 °C by vacuum moulding as described in chapter 5.3. The final skin thickness 

is approximately 2 mm. As core structure, the PEI Airex® R82.110 foam with a density of 

110 kg/m³ and 20 mm thickness provided by Gaugler and Lutz oHG, Germany is used. 

5.7.2 Experimental 

5.7.2.1 Specimen preparation 

The skins are joined separately one by one to the core during the experimental trials. Sandwich 

samples with dimensions of 150 mm width and 200 mm length are manufactured, which allows 

for abstraction of five specimens a 50 mm to 50 mm for testing. To preclude periphery effects, 

the sandwiches are trimmed 25 mm on each side. 

The process is conducted according to the non-isothermal compression moulding setup, which 

was defined for the modelling approach, see Figure 45 in chapter 5.5.3.1. 

The skin is placed on an aluminium transfer plate (15 mm thickness) and heated up in an air-

circulating oven (NA 500/45 Nabertherm, Germany) until it reaches the desired skin pre-heat 

temperature. Thermocouples are integrated into the transfer plate to monitor the transfer plate 

temperature, which gives an indication about the skin pre-heat temperature. Subsequently, 

skin and transfer plate are transferred into the press and integrated in a rectangular frame, 

which is combined with the transfer plate considered the male mould. The transfer takes 

around 10 - 12 seconds and the heat loss during transfer approximately 20 °C. Pre-trials 

showed that the use of a transfer plate is necessary to reduce the temperature loss during 

transfer, see Figure 56.  

The skin-to-core joining is performed in a static press (Platenpress P 400 P, Dr. Collin GmbH, 

Germany). The core is positioned into the female mould which is installed on the upper press 

platen. Core pre-heating is performed in a second circulating-air oven before installation into 

the female mould. Once transfer plate and skin are integrated into the rectangular frame 

(installed on the lower press platen), the mould is closed. To avoid core collapse the pressure 

is kept low at p = 0.2 MPa (lowest possible pressure for these dimensions at the press) and 

the process is controlled by the core compaction distance (dcompaction). Closing of the mould is 

stopped when female and male mould touch, see chapter 5.4. Since the press surface is 

heated by heat conduction from the transfer plate, the press is cooled down to room 

temperature before every manufacturing trial. 

Following the modelling results from section 5.6 the skin temperature and the core temperature 

influence the bond quality significantly. To verify these results, the temperatures for specimen 

manufacturing are selected in concordance with the parameters applied in the model. In 

particular, skin temperatures (TSkin) in the range 260 °C – 320 °C are investigated in steps of 

10 °C. For the manufacturing process a skin temperature drop of approximately 20 °C during 

transfer from the oven into the press has to be considered, resulting in oven temperatures of 
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280 °C – 340 °C. The core temperatures (TCore) are selected according to the modelling 

approach as room temperature (23 °C) and elevated temperatures of 100 °C, 200 °C. Similar 

to the definition of the skin temperature, TCore is referred to as the core temperature in the 

press. A core temperature drop during transfer should be considered as well. A core 

compaction distance (dCompaction) of 2 mm for each side is selected with the result that the core 

is 4 mm compacted in total, transitioning an initial core thickness of 20 mm to a final core 

thickness of 16 mm. In combination with the skins having a thickness of approximately 2 mm, 

a final sandwich thickness (Saimed) of 20 mm is pursued.  

 

Figure 56: Cooling rate of skins during transfer with and without transfer plate 

5.7.2.2 Test setup 

Mechanical testing is performed to evaluate the mechanical properties of the skin-to-core 

interface. The tension test in flatwise plane after DIN 53292 [184] (Figure 57) serves for testing 

the tensile strength of sandwich specimens. The sandwich specimens (length a and width b 

are 50 mm) are adhesively bonded to aluminium profiles by means of a thermoset paste 

adhesive DP490 (3M, USA), which can be integrated in a universal testing machine Instron 

5566 (Instron, USA), equipped with a 10 kN load cell. Testing is performed using a constant 

speed of 0.5 mm/min at room temperature and a relative humidity of 50 %. Five samples for 

each parameter set are tested. Failure modes of the sandwich specimens are assessed based 

on the evaluation according to DIN EN ISO 10365 [185], and differentiated between cohesive 

failure in the centre of the core (Coh), cohesive failure in the boundary layer of the core (B.l. 

Coh), adhesive failure (Adh) or a mix of adhesive and cohesive failure.  
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Figure 57: Test setup for the flatwise tension test according DIN 53292 [184] 

 

5.7.3 Bond strength depending on skin temperature 

Figure 58 shows the tensile strength results as well as the failure mechanisms of the sandwich 

specimens manufactured with different skin temperatures. The results are normalised to the 

tensile strength of bulk PEI (σ∞) to enable a comparison with the predicted normalised tensile 

strengths. 
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Figure 58: Normalised tensile bond strength results dependent on skin temperatures 

The results clearly show the strong influence of skin temperature on bond strength. Samples 

manufactured at temperatures below 280 °C feature low tensile strengths, while failing 

adhesively within the interface. For a skin temperature of 280 °C the specimens fail cohesively 

in the boundary layer of the core. Though the tensile bond strength is about 2 % and below 

the strength of the core, therefore the failure is designated as adhesive failure. With skin 

temperatures above 290 °C, the bond strength is significantly increased. However, for 

TSkin = 290 °C failure in the boundary layer and in the core centre occurred, which is considered 

an intermediate failure mode. Above skin temperatures of 300 °C all specimens fail cohesively 

within the core centre, which indicates that the bond is stronger than the core itself. A 

normalised core tensile was already experimentally verified according to DIN 53292, leading 

to a normalised tensile strength of 2.64 % (normalised to the PEI bulk tensile strength). Tensile 

strengths which are higher than the tensile strength of the initial core as characterised for the 

specimens manufactured with TSkin = 310 °C or 320 °C might be explained by a core 

densification of the whole core due to heat and pressure which leads to an increase of the core 

properties. However, a verified conclusion cannot be given since a difference of the failure 

mechanism in the core centre in comparison to the initial core cannot be detected. In Figure 

59 the different failure mechanisms which occur during testing are displayed.  
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   a) 

 
     b)  

 
     c)  

Figure 59: Occurred failure mechanism: a) adhesive failure at TSkin = 260 °C, b) boundary 
layer cohesive failure at TSkin = 280 °C and c) cohesive failure at TSkin ≥ 300 °C and for the 
initial foam 

5.7.4 Bond strength depending on varying core temperatures 

Figure 60 shows the normalised tensile strength results as well as the occurring failure 

mechanisms of sandwich specimens manufactured with varying core and skin temperatures. 

As already presented in Figure 58, the joining process of a core kept at room temperature, and 

heated skins of 260 °C and 280 °C does not lead to a sufficient fusion bond strength due to 

the lack of heat energy within the interface. Heating of the core leads to partial improvement 

of the bond quality, since heat energy needed for the fusion bonding process is complemented 

by the core. By elevating the core temperature to 100 °C, the tensile strengths for specimens 

manufactured with skin temperatures of 260 °C and 280 °C can be increased from 0.57 % to 

1.30 % and from 2.00 % to 2.69 % respectively. 

However, for specimens manufactured with a skin temperature of 260 °C, a core temperature 

of 100 °C is still not high enough to ensure a sufficient fusion bond and the specimens still fail 

adhesively at the interface. In contrast, joining of a 100 °C heated core and skins at a 

temperature of 280 °C leads to an increase in the bond quality compared to joining with a core 

at room temperature with the result that the specimens fail cohesively. Heating the core to 

100 °C in combination with 300 °C heated skins does not improve the measured tensile bond 

strength, but it leads to slight core collapse with the result that evenly distributed contact of the 

core to skin is not ensured. Therefore, a mix of adhesive and cohesive failure occurs, see 

Figure 61.  

Heating the core to a temperature of 200 °C influences the properties of the sandwich 

negatively. Specimens manufactured in combination with 260 °C heated skins feature a 

slightly higher tensile strength compared to specimens manufactured with TCore of 23 °C and 

100 °C, though the use of a 200 °C core leads to high variation in bond quality. The specimens 

fail adhesively as well as cohesively in the boundary layer indicating an uneven distribution of 

interfacial contact. 
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Figure 60: Normalised tensile bond strength dependent on different core temperatures 

 

Figure 61: Adhesive and cohesive failure mix at TSkin = 300 °C and TCore = 100 °C 

Furthermore, specimens manufactured with skin temperatures of 280 °C and 300 °C in 

combination with a core heated up to 200 °C cannot be joined at all. Core collapse due to high 

temperatures is observed. Figure 62 displays the final sandwich thicknesses (S) which help to 

identify uncontrolled core collapse after processing, since the core compaction is limited by 

the mould stops. It can be seen that increasing the core temperature leads to a significant 

decrease of the final sandwich thickness, see Figure 62. In addition, higher skin temperatures 

lead to lower sandwich thicknesses. By regarding the core structures in Figure 62 an 

understanding for the different sandwich thickness can be obtained. For example, at a low skin 

temperature of 260 °C, the core is slightly compacted under load in the boundary layer (Figure 

63a), but the desired thickness (Saimed) of 20 mm is not reached as illustrated in Figure 62. 
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Figure 62: Sandwich thicknesses dependent on varying skin and core temperatures 

An explanation is the lack of temperature to soften and compact the cells under load. The cells 

are only compacted within a layer of approximately 267 µm, see Figure 63a. By increasing the 

skin temperature to 290 °C, the core is compacted more under load and temperature, and the 

aimed thickness of 20 mm is approximately achieved, see Figure 63b. A layer with compacted 

cells of approximately 654 µm can be identified. Further increasing the skin temperature to 

300 °C, leads to a final sandwich thickness of 19.66 mm, which is below the aimed thickness, 

see Figure 62. In the case that the core is heated up to 100 °C and combined with 300 °C 

heated skins the final thickness is even further reduced (S = 17.94 mm). Figure 63c and Figure 

63d show the core structure of specimens manufactured with skins heated to 300 °C and a 

core at room temperature (c) and a core at 100 °C (d). It can be observed that the cells, which 

are close to the skin, are compressed, but further towards the centre of the core the cells are 

stretched and feature an open structure. Remarkably, the potting resin flows into the core 

structures in the boundary layer and not into the cells below, although the core usually features 

a closed cell structure, which hinders substances from flowing into the cells. It indicates that 

the cells in the boundary layer are damaged, specifically the cell walls, leading to an open cell 

structure of the core in the boundary layer. This shows that during processing at high 

temperatures, the core towards the centre collapses and stretches the boundary layer cells, 

since the skin and bonded core surface cannot follow the movement due to the mould stops. 

However, a significant change of the cell structure in the core centre cannot be identified, since 

the initial core already features an unevenly distributed cell size structure. 
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a) TSkin = 260 °C / TCore = 23 °C 

 
b) TSkin = 290 °C / TCore = 23 °C 

 
c) TSkin = 300 °C / TCore = 23 °C 

 
d) TSkin = 300 °C / TCore = 100 °C 

Figure 63: Core structure after processing with a) TSkin = 260 °C and TCore = 23 °C, b) 
TSkin = 290 °C and TCore = 23 °C, c) TSkin = 300 °C and TCore = 23 °C, d) TSkin = 300 °C and 
TCore = 100 °C 

 

Figure 64: Stretched and ripped cells caused by core collapse and a compacted cell surface 
layer at TSkin = 300 °C and TCore = 200 °C 
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In the case of the core being heated to 200 °C and combined with heated skins of 280 °C or 

300 °C, the core collapses to a greater extent and the cells are ripped when stretched, see 

Figure 64. As a result, sandwich manufacturing under these circumstances is not possible. 

5.7.5 Comparison to predicted results 

5.7.5.1 Bond strength depending on varying skin temperatures 

Figure 65 displays the comparison of the predicted and measured normalised tensile strengths 

together with their failure mechanisms depending on the skin temperatures in combination with 

a core kept at room temperature. A good agreement between predicted and measured 

strengths and failure modes for skin temperatures of 260 °C – 280 °C is achieved. According 

to the model, the tensile bond strengths of sandwich samples manufactured with a skin 

temperature in the range 290 °C up to 320 °C and a core kept at room temperature should 

have increased normalised bond strengths from 3.35 % up to 13.13 %. Since the predicted 

strengths are above 2.64 % (normalised core strength), the model predicts cohesive failure. In 

agreement, all experimental sandwiches manufactured with skin temperatures above 290 °C 

fail cohesively within the core, featuring normalised tensile strengths of around 2.7 %. The 

difference between the predicted and measured normalised tensile strengths can be explained 

by the limiting strength of the core, which presents the weakest link and is not taken into 

account in the model. The model is only able to predict the tensile bond strength but not to 

predict the tensile strength of the sandwich as a whole.  

5.7.5.2 Bond strength depending on varying core temperatures 

A comparison between predicted and tested tensile strength (normalised) is given in Figure 

66. According to the model, a skin heated to 260 °C in combination with a core kept at room 

temperature or heated up to 100 °C cannot be fusion bonded properly to the core, which is 

confirmed by experimental trials showing adhesive failure within the interface. In the case of a 

skin temperature of 280 °C and an increase of core temperature to 100 °C the model predicts 

a significant improvement in the bonding quality. The predicted cohesive failure is confirmed 

by experimental trials. An increase of the core temperature to 100 °C in combination with 

heated skins of 300 °C leads to an improvement of the bond quality in comparison to the use 

of a core kept at room temperature according to the model. This is not confirmed by 

experimental trials, because heating the core leads to core collapse, resulting in a decrease of 

the bond strength. According to the model, a further heating of the core up to 200 °C leads to 

higher tensile bond strengths resulting in cohesive failure for all three skin temperatures. 

However, the experimental trials show a negative influence of a core temperature of 200 °C 

since the foam tends to collapse at high temperatures. Core collapse is not considered in the 

modelling approach, therefore, the predictions differ at higher core temperatures from the 

experimentally obtained results and have to be treated with caution. 
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Figure 65: Comparison of measured and predicted bond strength dependent on different 
skin temperatures 

 

Figure 66: Comparison of the measured and predicted bonding strength dependent on 
varying core temperatures and different skin temperatures 
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5.8 DISCUSSION 

The experimental trials show that the modelling approach can successfully predict the tensile 

failure modes of the sandwiches that occur during testing. Since the model predicts the 

normalised tensile bond strength of the interface and not the tensile strength of the sandwich 

as whole, differences between the predicted tensile bond strength and the measured tensile 

strengths occur. In the cases where the interface tensile bond strength is below the tensile 

core strength the model allows an accurate prediction of the bond strength and the mode of 

failure. In the cases where the bond strength is above the core strength, the model is only able 

to predict the mode of failure based on the weakest link, which in these cases is the core and 

not the interface. Furthermore, experimental trials show that extensive heating of the core 

(200 °C) leads to core collapse, which is not considered in the model. In order to avoid incorrect 

model prediction due to the missing evaluation of core collapse, it seems useful to take a 

detailed look at the heat flow from the skins into the core during processing (Figure 67) followed 

by an analysis of the thermal stability of the foam. For example, by heating the skins up to 

300 °C and keeping the core at room temperature, the core surface is heated up far above 

217 °C (Tg of PEI), whereas the core centre (2 mm – 5 mm) stays below 217 °C, see Figure 

67a. The core centre is not softened and core collapse can be avoided. In comparison, if the 

core is heated to 200 °C and combined with 300 °C heated skins, the core surface as well as 

the core centre is heated far above 217 °C (Figure 67b). This means that the whole core 

structure is softened and core collapse can occur. 

 
a)  

 
 b) 

Figure 67: Calculated heat flow into the core for a) TSkin = 300 °C and TCore = 23 °C 
b) TSkin = 300 °C and TCore = 200 °C 
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For the determination of a suitable process window, the following procedure is proposed. 

 

Figure 68: Flow chart for process window determination 
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6. MECHANICAL CHARACTERISATION 

In the previous chapter, the process window for fusion bonding carbon fibre reinforced 

Polyetheretherketone (CF/PEEK) skins, superficially enriched with a Polyetherimide (PEI) 

layer, and a PEI foam is determined based on a modelling approach and verified by tensile 

testing. In particular, the influences of the skin temperature TSkin and the core temperature TCore 

on the skin-to-core bond quality are investigated. According to the theory, TSkin and TCore 

predominantly influence the fusion bond strength. The investigations show that skin 

temperatures in the range of 290 °C – 320 °C in combination with a core kept at room 

temperature are required to enable a fusion bond between skins and core, which is stronger 

than the core strength itself. Furthermore, the investigations show that heating the core can 

slightly improve the bond quality, albeit it leads in most cases to core collapse. 

However, tensile testing results give only a first indication about the sandwich performance, in 

particular the bond strength, since the results are only based on a tensile load case. However, 

during service sandwiches are mostly exposed to compression or bending loads. In order to 

be able to assess the CF/PEEK – PEI sandwiches for possible use cases, further mechanical 

properties need to be characterised, see requirements in chapter 1.2. In addition, as 

highlighted in chapter 5.4 further parameters besides TSkin and TCore, in particular the core 

compaction distance and the PEI film thickness, might also influence the sandwich quality. 

Therefore, these possible influences need to be understood as well.  

To achieve these goals, the influences of varying skin temperatures (TSkin), different core 

compaction distances (dcompaction) as well as varying PEI film thicknesses (hPEI) on the tensile, 

drum-peel, compression, shear, flexural and impact properties are determined and presented 

in this chapter. The core temperature (TCore) is not further investigated due the increased risk 

of core collapse.  

Furthermore, as stated in the goals of this thesis (chapter 3), an additional aim is to compare 

the developed thermoplastic sandwiches with state-of-the-art thermoset sandwiches at a later 

time point (chapter 7). In order to realise sandwich structures on a comparable basis, the 

material configurations used in skins and core in the previous investigations need to be 

changed and adapted to material configuration available for thermoset sandwiches. Materials 

applied in the previous chapter were simply selected according to requirements and 

availability. By adapting the configuration of the TPC sandwich to a comparable level the core 

density is lowered from 110 kg/m³ to 60 kg/m³, and the core thickness is additional reduced 

from 20 mm to 15 mm. Furthermore, the skins configuration is changed to three ply setup 

having lower fibre areal weights.  

By doing so, it is accepted that the process window determined by modelling (chapter 5) cannot 

be transferred par for par to the new material configuration. However, the determination of the 

model input parameter for the new materials goes beyond the scope of this thesis. To ensure 

the ability to produce sandwiches with the new models according to the determined process 

window, pre-trials were conducted which showed the successful production with the changed 

material setup. 

 

 



6 Mechanical characterisation 93 

__________________________________________________________________________ 

 

6.1 MATERIALS 

The sandwich skins consist of two carbon fibre reinforced PEEK fabric plies arranged in (±45°) 

and (0°,90°) orientation combined with two carbon fibre reinforced unidirectional (UD) PEEK 

layers (+45°/-45°). The two UD layers are aimed to substitute one (±45°) fabric ply to ensure 

a quasi-symmetrical setup. The hybrid skin set-up consisting of fabrics and unidirectional 

layers is selected due to the fact that the UD layers avoid extensive diffusion of the PEI polymer 

into the laminate during consolidation, see chapter 5.3. The fibre volume fraction of the 

consolidated laminate is approximately 60 %. The skins are on one side superficially enriched 

with Ultem®1000 (Solvay, USA) PEI films with varying thicknesses (hPEI) of 125 µm and 175 µm 

during consolidation at 375 °C and 1 MPa. For the core structure, PEI Airex® R82.60 foams 

with a density of 60 kg/m³ and varying thicknesses of 17 mm, 19 mm and 21 mm provided by 

Gaugler and Lutz oHG, Germany are used. 

6.2 EXPERIMENTAL 

6.2.1 Specimens preparation 

In this study the influence of the skin temperature (TSkin ), the influence of the core compaction 

distance (dcompaction), and the influence of the PEI enrichment thickness of the skins (hPEI), on 

the sandwich properties will be investigated. The core compaction distance is thereby defined 

as the difference between the initial core height realised by different initial core thicknesses, 

and the aimed or final core height after compaction, see more detail in chapter 5.4. The core 

is kept at room temperature for all investigations. The process parameters are listed in detail 

in the test matrix in Table 20 and specimens are designated according to the following order 

of process parameters: TSkin - hPEI - dcompaction. As a reference for all series a skin temperature 

of 300 °C, a core compaction distance of 2 mm and a PEI film thickness of 125 µm is selected 

(specimens 300 - 125 - 2) and all results are compared and normalised to this parameter 

setup. A final total sandwich thickness (Saimed) of 16.3 mm is aimed for all samples. 

Table 20: Test matrix for complementary characterisation 

Specimen-

designation 

300-125-2 310-125-2 320-125-2 300-125-1 300-125-3 300-175-2 

TSkin [°C] 300 310 320 300 300 300 

TCore [°C] 23 23 23 23 23 23 

dcompaction [mm] 2 2 2 1 3 2 

p [MPa] 0.2 0.2 0.2 0.2 0.2 0.2 

hPEI [µm] 125 125 125 125 125 175 

Thermoplastic composite (TPC) sandwich panels with a dimension of 450 mm by 550 mm are 

manufactured according to the process presented in chapter 5, see Figure 45. This allows the 

extraction of the specimens needed for different types of testing as well as trimming of the 

sandwiches at each side to preclude periphery effects. 

 

 



6 Mechanical characterisation 94 

__________________________________________________________________________ 

 

6.2.2 Test setup 

The tension test in flatwise plane is performed according to DIN 53292 [184]. The sandwich 

specimens are adhesively bonded by means of a room temperature curing thermoset adhesive 

DP490 (3M, USA) to aluminium profiles, which can be integrated in a universal testing machine 

Instron 5566 (Instron, USA), equipped with a 10 kN load cell. Testing is performed using a 

constant speed of 0.5 mm/min at room temperature and a r.H. of 50 %. The specimens have 

dimensions of 50 mm by 50 mm. 

Climbing drum-peel testing is performed according to DIN EN 2243-2 [186]. The dimensions 

of the specimens are 75 mm by 175 mm, though only 125 mm length is considered for the 

determination of the peel force. The peel force is calculated by subtraction of the bending force 

of the skin from the total measured force. Since a considerable amount of skin flexibility is 

required for this test, the outer ±45° fabric ply is left out. Specimens are tested using a universal 

testing machine Zwick 1474 (Zwick GmbH & Co. KG), which is equipped with a 100 kN load 

cell. The testing speed is constant at 5 mm/min. 

Shear tests are performed in accordance with DIN 53294 [187]. The specimens are 250 mm 

long and 50 mm wide and adhesively bonded to steel loading plates by means of a film 

adhesive AF163-2 Scotch-WeldTM (3M, USA), which is cured under load (0.1 MPa) in a press 

at 120 °C. The specimens are tested using a universal testing machine Zwick 1474 (Zwick 

GmbH & Co. KG), which is equipped with a 100 kN load cell. The testing speed is again 

constant at 5 mm/min. For these three test standards failure modes of the sandwich specimens 

are evaluated based on DIN EN ISO 10365 [185], and differentiated between cohesive failure 

in the centre of the core (Coh), cohesive failure in the boundary layer of the core (B.l. Coh), 

adhesive failure (Adh) and a mix of adhesive and cohesive failure (Adh + Coh).  

According to DIN EN 6061 [188] the four-point bending test is performed in order to determine 

the flexural properties of flat sandwich constructions. The test specimens are 500 mm long by 

80 mm wide, supported on 30 mm diameter steel bars at a span of 460 mm and loaded at 

quarter points (300 mm span) also by 30 mm steel bars. Wooden inserts are glued by means 

of a room temperature curing thermoset adhesive paste DP490 (3M, USA) at both ends of the 

sandwich to prevent compression failure at the load bars. Testing is performed at a constant 

speed of 12 mm/min using a universal testing machine Zwick 1474 (Zwick GmbH & Co. KG) 

equipped with a 100 kN load cell. 

The edgewise compressive strength test method is conducted according to the test standard 

ASTM C364 [189]. Specimens with the dimension of 105 mm by 50 mm are tested. To improve 

the force introduction during testing aluminium blocks are integrated by means of a room 

temperature curing thermoset adhesive DP490 (3M, USA) at both ends. A universal testing 

machine Zwick 1474 (Zwick GmbH & Co. KG) is equipped with a 100 kN load cell. Testing is 

performed using a constant speed of 0.2 mm/min. According to the standard failure, modes 

are differentiated between skin separation or skin buckling, skin compression failure and core 

compression or shear failure. 

The compression test in flatwise plane is performed according to DIN 53291 [190]. The 

sandwich specimens have dimensions of 50 mm by 50 mm. Testing is performed using a 

universal testing machine Instron 5566 (Instron, USA), equipped with a 10 kN load cell. The 

testing speed is constant at 1 mm/min.  
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Compression after impact (CAI) testing seeks the determination of residual compression 

strength after impact loading. The test is performed according to AITM 1-0010 [191]. The 

specimens have a length of 150 mm and a width of 100 mm and are equipped with aluminium 

blocks at both ends to ensure improved load introduction during compression testing. The 

specimens are impacted with 3 J and 5 J by a falling weight conducted by a dart-drop testing 

device (Myrenne GmbH, Germany). After impacting, the damaged area is analysed according 

to AITM 1-0010 for damage depth and area. Following, the residual compression strength is 

characterised using a universal testing machine Zwick 1474 (Zwick GmbH & Co. KG) equipped 

with a 100 kN load cell. Testing is performed using a constant speed of 0.5 mm/min. For all 

the presented testing standards, a minimum of five specimens are tested and an average value 

as well as the deviations are calculated. 

The thickness of the sandwich specimens is measured by means of callipers at five locations 

of each individual specimen and averaged for each process parameter series. Furthermore, 

all specimens are weighed using a scale (UW6200H, Shimadzu UK Ltd, UK) after drying for 

24 hours at 80 °C in an oven (Nabertherm NA 500/45, Germany) and the averaged areal 

density (g/m²) is calculated for each combination set of process parameters. 

6.3 RESULTS 

In the following section, an overview of the results concerning each investigated parameter is 

presented in order to reduce the extent of result. More detailed results as well as standard 

deviations are presented in Appendix B. 

6.3.1 Influence of skin temperature (TSkin) 

The investigations on the influence of the skin temperature show that the selected skin 

temperatures of 300 °C, 310 °C and 320 °C enable the successful production of sandwich with 

a strong fusion bond between skins and core. Figure 69 summarises the mechanical properties 

of the TPC sandwiches manufactured with different skin temperatures. All results are 

normalised to the performance of the reference sandwich specimens 300-125-2. The results 

show that heating the skins to higher temperatures (TSkin = 310 °C, 320 °C) in comparison to 

the reference skin temperature of 300 °C significantly improves the tensile and the peel 

strength, while properties such as compression, bending or edgewise compression are 

marginally influenced by a variation of the skin temperature. To highlight the influence on 

tensile strength, Figure 70 shows the normalised tensile strength results depending on varying 

skin temperatures in more detail, including failure mechanisms and sandwich thicknesses. The 

results show that all three skin temperatures ensure a bond strength that is higher than the 

core strength itself, leading to cohesive failure of the core in the area adjacent to the skins, 

which is referred to as the boundary layer, see for example Figure 71. However, on a closer 

examination, different thicknesses of the boundary layer can be observed. For specimens 

manufactured with 300 °C heated skins, failure occurs ~400 µm into the core, see Figure 71a.  

In comparison, Figure 71b shows that for specimens manufactured with a skin temperature of 

320 °C, failure occurs approximately 950 µm away from the core surface. Furthermore, 

differences in the tensile strength can be noticed. The tensile strength of sandwich specimens 

manufactured with TSkin = 300 °C is significantly below the normalised tensile strength of the 

initial foam (𝜎 ̅𝐶𝑜𝑟𝑒 = 1.24), which was characterised as well, while the tensile strength of the 
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specimens manufactured with 310 °C and 320 °C is almost equal to this value. This indicates 

that the core structure and its performance are influenced by joining process. 

 

Figure 69: Influence of the skin temperature on the mechanical properties 

In the previous chapter (chapter 5.7), it was already observed that the process temperatures 

influence the sandwich thickness and thereby the core cell structure. Skin temperatures of 

300 °C in combination with a core kept at room temperature led to core cell compaction in 

the boundary layer, while skin temperatures of 300 °C in combination with a heated core of 

100 °C led to stretched cells in the boundary layer. Stretching of the cells is assumed to 

result from inner core collapse towards the centre. During processing the core collapses due 

to extensive heating, though skin and core surface, which is strongly bonded to the skins, 

cannot follow the core collapsing movement towards the centre due to the limited mobility of 

the skins regulated by mould stops. The relative movement of core centre and core surface 

area leads to stretching of the cells in the boundary layer. Collapse of the core hindered the 

fusion bonding process due to the missing interfacial contact. However, it could not be 

observed that the change of the core influenced the core performance itself. A similar 

phenomenon can be observed in this complementary study, though in contrast to the 

previous results the performance of the core is thereby influenced. Therefore, this 

phenomenon is described in detail in the following section. 
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Figure 70: Influence of the skin temperature on the tensile strength (bars) and sandwich 
thickness (line) 

Figure 70 illustrates the decrease of sandwich thickness with the increase of skin temperature. 

For skin temperatures of 300 °C, the specimens reach approximately the aimed thickness of 

16.3 mm. For skin temperatures of 310 °C and 320 °C the sandwich thicknesses are 

significantly below Saimed = 16.3 mm. Since the mould design hinders extensive compaction of 

the core under load, sandwich thicknesses below 16.3 mm indicate core collapse during 

processing.  Figure 72 shows micrographs of the cell structure of the core close to the skins of 

specimens manufactured with skin temperatures of 300 °C (a) and 320 °C (b), one untreated 

(upper picture) and one potted in epoxy resin and sanded (lower picture). The affected cells in 

the boundary layer are clearly visible in the upper pictures of Figure 72. A visual comparison 

between the cell structures in the core centre or beyond the boundary layer and original core 

cell structures does not reveal a noticeable effect on the cells. As observed in the investigated 

specimens in chapter 5.7, the potting resin flows again into the affected cells in the boundary 

layer, see lower pictures of Figure 72. 
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a)                                                                     b) 

Figure 71: Thickness of the boundary layer of a) specimens 300-125-2 and b) specimens 320-
125-2  

By comparing the affected cell structures in the boundary layer of the specimens 300-125-2 

and 320-125-2 various effects of the temperature on the cells can be detected. Specimens 

manufactured with skin temperatures of 300 °C feature compacted cells in the boundary layer 

(Figure 72a), while those with skin temperatures of 320 °C show compacted and stretched 

cells in a larger boundary layer, see Figure 72b. 
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a) TSkin = 300 °C 

 
b) TSkin = 320 °C 

Figure 72: Cell structure in the boundary of a) specimens 300-125-2 and b) specimens 320-125-2 
(without potting resin in the upper picture and potting resin in the lower picture) 

For better illustration, Figure 73 highlights the stretched in the boundary layer of the specimens 

320-125-2. 
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Figure 73: Highlighted boundary layer with stretched cells (without potting resin) 
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By comparing the cell structures presented in Figure 72 to the location where the failure in the 

boundary layer occurred (Figure 71) it can be observed that the specimens fail at the interface 

between affected and unaffected cells. A similar effect was observed by other researchers 

[39,66]. McGarva et al. [66] describe failure of Polymethylarylimide (PMI) foams parallel to the 

interface between compressed and original cells after joining to heated Polyamide based skins 

during double cantilever beam testing. In contrast PMI foams without compressed cells (joined 

to thermoset based skins) failed with a kinking crack propagation in the centre of the core. 

Akermo et al. [39] report on smooth failure near the core surface of Polypropylene (PP) foam 

cores featuring densified cells in the core surfaces after joining to heated PP based skins. 

Despite this, neither researchers specifically mention a lower strength value for the core in 

comparison to an original core.  

Failure of the core in the boundary layer could be explained by the stiffness discontinuity 

between affected and original cells, which represents a sharp transition inducing stress 

concentration under load. While the stiffness discontinuity between compressed cells and 

original cells may depict a stronger transition than stretched cells to original cell, the 

performance of foam cores with compressed stress cells might be further reduced than the 

performance of cores with stretched cells. This could explain the higher tensile value of the 

specimens 310-125-2 and 320-125-2 where stretched cells are observed opposed to the 

tensile strength of the specimens 300-125-2 where compressed cells in the boundary layer are 

seen. Furthermore, weakening of the core of specimens having a core density of 110 kg/m³ 

could not be observed in chapter 5.7. This might be explained by the softer transition between 

affected and unaffected cells since the original core already features a high cell density. Raster 

electron microscopy of the failure areas did not reveal any additional explanation for failure in 

the interface between affected and original cells. Detailed studies on failure paralleling an 

interface in general are reported by Hutchinson et al. [192]. 

A similar phenomenon in the boundary layer structure can also be observed for the climbing 

drum-peel specimens, leading to increased peel strengths with increasing TSkin, see Figure 69.  

Although the tensile and drum-peel performance can be partially increased by increasing the 

skin temperature, it must be considered that the sandwich thicknesses lay significantly below 

the aimed thickness, which indicates that temperatures of 310 °C and 320 °C cause 

uncontrolled core collapse and lead to unreproducible results. Furthermore, several properties 

such as shear and compression strengths are not significantly improved by increasing TSkin. 

Therefore, a skin temperature of 300 °C seems most reasonable for the manufacturing 

process. 

6.3.2 Influence of core compaction distance (dcompaction) 

The investigations reveal that the core compaction distance has a considerable influence on 

the mechanical properties of the sandwiches, as displayed in Figure 74. Again, all results are 

normalised to reference specimens 300-125-2. 

The results clearly show the influence of the core compaction distance on all characterised 

mechanical properties of the sandwich structures. In the case of sandwiches manufactured 

with 1 mm core compaction distance, the skin-to-core bond strength is low and weaker than 

the core tensile strength itself. The low bond quality can be explained by insufficient contact of 

foam and core which is required for interdiffusion of the molecules, see chapter 5.5.1. 
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Figure 74: Influence of the core compaction distance on the mechanical properties 

Due to heating the core slightly collapse (which occurs for all cases), but the skin cannot follow 

the core and keep contact due to the limited core compaction distance of 1 mm controlled by 

the mould stops. The sandwich thickness is measured to be 1.5 mm below Saimed = 16.3 mm, 

which proves core collapse. In contrast, by applying dcompaction of the 2 mm, the skin can further 

move into the core and keep contact. Therefore, dcompaction of 2 mm leads to the aimed 

thickness. Figure 75 shows partial adhesive failure of the specimens manufactured with 1 mm 

compaction distance in comparison to pure boundary layer failure of specimens manufactured 

with 2 mm compaction distance, where the skin can follow the core collapsing, see Figure 71. 

Adhesive failure leads to a reduced measured tensile strength of specimens 300-125-1. 

 

Figure 75: Adhesive and boundary layer cohesive failure of the specimens 300-125-1 
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Even though the peel strength of the specimens manufactured with 1 mm core compaction 

distance is higher than of the specimen with 2 mm and 3 mm core compaction distance, 

analysis of the failure mechanisms (Figure 76) shows the insufficient bond quality of the 

specimens 300-125-1 leading to partial adhesive failure. A reason for the higher peel strength, 

although adhesive failure occurred, might be that it takes more energy for the crack to 

propagate through interface and foam than for propagating along the pre-defined path in the 

boundary layer at the interface between compressed and original cells as observed for the 

specimens 300-125-2 and 300-125-3. 

 
a) 

 
b) 

Figure 76: Failure mechanisms as occurred during drum peel testing: a) Partial adhesive 
failure in series 300-125-1 and b) Cohesive boundary layer failure in series 300-125-2 

The weak skin-to-core bond for specimens manufactured with 1 mm core compaction distance 

can also be observed during edgewise compression testing. While specimens manufactured 

with 2 mm and 3 mm core compaction distance buckle under load, skin separation is the main 

failure mechanism of the specimens manufactured with 1 mm, see Figure 77. 

 
    a) 

 
      b)  

Figure 77: a) Buckling of the structure during the edgewise compression test as occurred in 
the specimen series 300-125-2 and 300-125-3; b) Skin separation during the edgewise 
compression test as occurred in series 300-125-1 
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Specimens manufactured with 3 mm core compaction distance show also deviating properties 

regarding tensile, shear or edgewise compression performance (Figure 74), albeit similar 

failure modes as for specimens manufactured with dcompaction = 2 mm occur. By increasing the 

core compaction distance to 3 mm, the performance regarding tensile strength is significantly 

reduced in comparison to the tensile strength of specimens with 2 mm core compaction 

distance. An explanation might be again the stiffness discontinuity between affected and 

original cells which causes stress concentrations and thereby core failure. Figure 78 shows 

that the boundary layer cells of specimens 300-125-3 are compressed within a layer of 

approximately 400 µm, which is a comparable affected boundary layer to the specimens 

manufactured with 2 mm compaction distance, see Figure 72. This means that the cells of the 

specimens 300-125-3 are densified to a higher extent in the boundary layer than the cells of 

the specimens 300-125-2, since the core is compacted for 3 mm instead of 2 mm. This leads 

to the assumption that the higher densification of cells in the boundary layer of specimens 300-

125-3 leads to a sharper stiffness discontinuity between affected and originals cells in 

comparison to the stiffness discontinuity resulting from 2 mm core compaction. Following, 

higher stress concentrations lead to a decrease of the tensile performance of the core. 

 

Figure 78: Cell structure of the specimens 300-125-3 (without potting resin) 

Furthermore, the testing results show that a higher core compaction distance additionally leads 

to a reduction of shear strength, see Figure 74.  

In order to eliminate doubts that the decrease of the sandwich performance or core 

performance in the case of the specimen 300-125-3 is affected by an insufficient fusion bond 

between skins and core, but rather caused by a higher cell compression, additional trials that 

aim to compact the core cells locally, are conducted. Therefore, additional trials that compress 

the core surface cells without fusion bonding the core to a skin are performed. By doing so, 
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PEI foam cores (60 kg/m³) are compacted 2 mm and 3 mm in the boundary by means of a 

300 °C heated aluminium plate (so no fusion bonding to CF/PEEK skins takes place) and 

characterised by tensile and shear testing. Figure 79 exemplarily shows the compressed cells 

(without fusion bonding) at the core surface for a core compaction of 2 mm. 

 

Figure 79: Compacted cells in the boundary layer of specimens without fusion bonding 
(without potting resin) 

The comparison of the normalised tensile strength (normalised to the tensile strength of the 

initial untreated core) of the compacted foams to the initial foam shows that compacting the 

foam 2 mm (specimens 300-2), 3 mm (specimens 300-3) respectively, leads to a significant 

decrease of the tensile strength, see Figure 80a. Furthermore, the compacted foams fail 

cohesively in the boundary layer, while the initial foam fails cohesively within the core centre. 

These results confirm the assumption that foam compaction leads to a weakening of the foam 

caused by an interface between affected and original cells. The comparison of the normalised 

shear strength of the compacted foams to the initial foam shows that foam compaction (2 mm 

and 3 mm) leads to a slight decrease of the shear strength, see Figure 80b. However, a 

difference in the failure modes, which is cohesive failure, cannot be observed. A reason for the 

decreased shear strength of the compacted foams could also be stress concentration at the 

interface between affected and original cells, which leads to crack initiation under lower loads. 

 
a) 

 
b)  

Figure 80: a) Tensile strength results of initial and compressed PEI foam cores (60 kg/m³) 
and b) Shear strength results of initial and compressed PEI foam cores (60 kg/m³) 
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Finally, it has to be mentioned that core compaction additionally increases the areal density of 

the sandwiches and thereby negatively influences the performance-to-weight ratio. A core 

compaction of 3 mm in comparison to a core compaction of 2 mm increases the weight by 

approximately 5 %. Summing-up, 2 mm compaction distance seem to be the optimal 

compaction distance in this study.  

6.3.3 Influence of the PEI film thickness (hPEI) 

In Figure 81 skins enriched with different PEI layer thicknesses (125 µm and 175 µm) are 

displayed. The difference of the PEI film thickness on the skin surface can be clearly seen. 

 
a) 

 
b) 

Figure 81: Skins enriched with a) 125 µm PEI film (300-125-2) and b) 175 µm PEI film (300-
175-2) 

Figure 82 illustrates the performance of TPC sandwiches manufactured with different PEI film 

thicknesses on the skin surfaces. The results are again normalised to the performance of 

reference specimens 300-125-2.  

The results show that most properties are not significantly influenced by increasing the PEI 

film thickness. In addition, specimens manufactured with different PEI film thicknesses show 

equal failure modes. An explanation of the slight increase of the tensile, peel and 4pt- bending 

strength of the specimen 300-175-2 might be an improved wetting which leads to a better skin-

to-core bond. Specimens of both series fail cohesively within the boundary layer, though a 

difference within the core cell structure cannot be observed. However, increasing the PEI film 

thickness to 175 µm increases the areal density by approximately 5%, which affects the 

performance-to-weight ratio negatively. 
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Figure 82: Influence of the PEI film thickness on the mechanical properties 

6.4 CONCLUSION 

This chapter presents a detailed performance characterisation of the developed sandwiches 

depending on several process parameters. The investigations show that the proposed process 

window (concerning skin temperatures) resulting from chapter 5 mostly enables a fusion bond 

strength between skins and core that exceeds the core strength and leads in most cases to 

cohesive failure of the core. The high skin-to-core bond strength is mainly shown by tensile 

and drum-peel testing. However, in the case of a minimal core compaction distance of 1 mm 

in combination with skin temperatures in the range of 300 °C – 320 °C, contact between skins 

and core cannot be guaranteed, leading to an insufficient bond and low overall performance 

of the sandwiches.  

Moreover, analysis of the core structure reveals that the processing parameters significantly 

influence the thermoplastic core cell structure in the boundary layer and thereby affect the core 

performance. Mainly the tensile and drum-peel strength but as well shear properties are 

affected by the change of the cell structure. At skin temperatures of 300 °C the core cells in 

boundary layer are compressed, while higher skin temperatures (320 °C) cause core 

collapsing in the core centre, which leads to cell stretching of the cells in the boundary layer. 

Furthermore, a higher core compaction distance (3 mm) causes a higher cell densification in 

the boundary layer. A change of the core cell structure leads to a weakening of the core and 

failure predominantly occurs in the interface between affected and original cells. Failure of the 

core in the boundary layer could be explained by the stiffness discontinuity between affected 

and original cells, which represents a sharp transition inducing stress concentration under load. 
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While the stiffness discontinuity between compressed cells and original cells may depict a 

stronger transition than stretched cells to original cell, the performance of foam cores with 

compressed stress cells might be further reduced than the performance of cores with stretched 

cells. Besides the mechanical performance, by also assessing the manufacturing 

reproducibility and taking the areal weight into account, specimens manufactured with 

TSkin = 300 °C, dcompaction = 2 mm and hPEI = 125 µm show the best performance and 

characteristics.  
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7.   PERFORMANCE AND MANUFACTURING CYLE TIME EVALUATION 

The investigations, presented in the previous chapter, show the influence of several processing 

parameters on several mechanical properties of carbon fibre reinforced Polyetheretherketone 

skin and Polyetherimide foam core (CF/PEEK-PEI) based sandwiches and reveal that 

specimens manufactured with TSkin = 300 °C, dcompaction = 2 mm and hPEI = 125 µm feature the 

best overall performance. However, until now it is not possible to draw any conclusions if the 

developed TPC sandwiches fulfil the envisaged requirements for possible applications and if 

they show advantages in comparison to-state-of-the-art sandwich structures.  

Therefore, this chapter presents a performance and manufacturing cycle time evaluation of 

the developed TPC sandwich structures. The evaluation process is illustrated in Figure 83. In 

a first step, the CF/PEEK-PEI based sandwiches are compared to state-of-the-art honeycomb 

sandwiches. In order to have an additional comparison to a foam based sandwich, sandwich 

structures based on Polymethacrylimide (PMI) foam cores and manufactured by liquid 

composite moulding (LCM) are additionally taken as a reference. LCM technologies offer the 

possibility of producing monolithic composite parts and composite sandwich structures of high 

quality, while reducing production and investment costs compared to prepreg technology. 

Today, novel infusion technologies enable the production of composite structures, which 

feature a similar quality to that achieved with prepreg technology [193,194]. Therefore, this 

technology also seems to be promising and attractive for producing sandwich structures that 

can substitute costly prepreg-Nomex® sandwiches. The foam based sandwich structures in 

this study are manufactured by resin transfer moulding (RTM). The RTM process allows higher 

pressures leading to a speeding up of the infusion process in comparison to other infusion 

technologies such as vacuum assisted infusion processes (VAP). Moreover, due to the double-

sided formative mould, more reproducible parts with smaller tolerances and part thicknesses 

can be achieved [195]. 

In a second step the results are evaluated according to the given requirements. 

 

Figure 83: Approach for evaluation of TPC sandwiches 
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honeycomb (Euro-Composites® S.A., Luxembourg) featuring a density of 48 kg/m³ is chosen. 

The height of the core material is 15 mm. The skins are adhesively bonded by means of an 

epoxy based film (Cytec industries Inc, USA) in an autoclave process. 

The skins for sandwiches manufactured with RTM consist of three plies of a plain fabric (Hexcel 

Corporation, USA), which are stabilised on both sides by 5 g/m² binder. The plain fabric is 

characterised by the use of 12K spread carbon fibre tows, so that undulations are reduced. 

The fabric’s areal weight is 220 g/m². An epoxy based thermoset (Hexcel Corporation, USA) 

is used as matrix resin. Epoxy based resins are common for aviation applications and often 

used for infusion technologies since they feature a high glass transition temperature of about 

183 °C. For the core, PMI foams (Rohacell®) with a densities of 63 kg/m³ by Evonik Industries 

AG, Germany are used. The foams feature closed cells and show a high elongation at break. 

A foam height of 15 mm is chosen. In Table 21 details on the three sandwich structures are 

presented. The material and sandwich dimensions are aligned to each other as good as 

possible. Nevertheless, due to material availability and different manufacturing process setups 

deviations have to be accepted. Furthermore, the TPC sandwiches require the application of 

two unidirectional (UD) reinforcement plies instead of one fabric ply for the skin setup to avoid 

interdiffusion of the PEI surface layer into the structures.  

 

  

S
k
in

s
 

Fibre reinforcement Fabric Fabric Fabric + UD 

Matrix polymer Epoxy Epoxy PEEK 

Number of plies 3 3 5 

Ply sequence [±45;0,90;±-45] [±45;0,90; ±45] [+45,-45;0,90;±45] 

Skin thickness ~0.62 mm ~0.625 mm ~0.69 mm 

Fibre areal weight 660 g/m² 660 g/m2 730 g/m² 

FVC 55 % ~ 60 % ~ 60 % 

Adhesive film 170 g/m² / 160 g/m² 

C
o

re
 

Core structure Honeycomb Foam Foam 

Core material Aramid/Phenolic PMI PEI 

Core density 48 kg/m³ 63 kg/m³ 60 kg/m³ 

(76 kg/m³ after 

compaction) 

Core height 15 mm 15 mm 19 mm 

(Compacted to 15 mm) 

 

 Table 21: Details on sandwich structures 
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7.2 EXPERIMENTAL 

7.2.1 Specimen preparation - Prepreg/Honeycomb Sandwiches 

First the prepregs and adhesive films are cut to the required dimensions. Next, the honeycomb 

core is shaped by machining. Usually sealing and stabilisation of the Nomex® core is required, 

though for flat (two-dimensional) panels such as are tested here these steps can be spared. 

However, for a realistic assessment these manufacturing steps need to be considered. Then 

the adhesive films and prepregs layers are stacked together with the core.  

 

Figure 84: Autoclave cycle for manufacturing of Nomex® based sandwiches 

For the autoclave processing a vacuum setup must be installed. The whole setup is heated to 

approximately 180 °C and consolidated under a pressure of approximately 10 bars for 6 hours 

in an autoclave, see Figure 84. After cooling, the sandwich can be released and post 

processed. Due to the vacuum setup, post processing such as cleaning of the facilities is 

required.  

7.2.2 Specimen preparation - RTM/PMI foam sandwiches 

In a first step, fabrics are cut, placed manually, powdered with binder and kept in position by 

means of a vacuum bag. Then the preform is stabilised in an oven for approximately 20 min at 

120 °C to activate the binder. Subsequently, resin and mould are heated. Then preform and 

core are placed into the mould. By means of 0.3 MPa pressure and a pre-heating temperature 

of 140 °C the matrix resin is injected, before being further heated to 180 °C for curing. Finally, 

the mould is cooled down for de-moulding. In Figure 85 the process cycle is displayed, which 

takes around 3.5 hours. Moreover, labour time for installation of the tool and post processing 

has to be considered. 
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Figure 85: Cycle time for the RTM process 

7.2.3 Test setup 

Tensile, climbing drum-peel, shear, compression, bending and CAI testing is performed with 

the reference sandwiches similar to the characterisation of the CF/PEEK-PEI foam sandwiches 

in chapter 6.2.2. For a full description see chapter 6.2.2. 

7.3 COMPARISON TO REFERENCE SANDWICH STRUCTURES 

7.3.1 Comparison of mechanical performance 

Figure 86 shows the performance comparison of the CF/PEEK-PEI foam sandwiches 

according to parameter set 300-125-2 and the prepreg-Nomex® and PMI based sandwiches. 

The comparison shows significantly superior performance of the prepreg-Nomex® (PH) based 

sandwiches concerning all properties. Furthermore, the comparison reveals that the RTM-PMI 

(RTM63) sandwich structures also show a slightly better performance in comparison to the 

CF/PEEK-PEI foam sandwiches (300-125-2). The sandwich performance differences are 

caused primarily by the performance of the core, since failure during tensile, shear and 

compression testing occurs mostly in the core. This highlights the superior performance of the 

honeycomb structure in comparison to the foam structure, as discussed in chapter 1.  

However, it is surprising that the thermoplastic based sandwiches (300-125-2) do not show a 

significantly better or better performance after impact, since thermoplastic materials are in 

general considered to be tougher and display better damage behaviour. Overall, the obtained 

strength results of thermoplastic sandwiches are significantly lower than that of the other 

sandwiches, see Figure 86. In order to show the decrease of the strength after impact, Figure 

87a visualises the knockdown factor (compression strength normalised to the strength without 

impact (0J)) of the sandwiches after impacting with different impact energies (3J, 4J, 5J). The 

comparison of the knockdown factor shows a lower decrease of the strength after impact of 

the TPC sandwiches (300-125-2) in comparison to the RTM63 sandwiches. However, by 

comparing the decrease of the strength results to the prepreg-Nomex® based sandwiches, no 

advantage of the use of thermoplastic material can be identified. Figure 87b additionally 
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indicates the penetration depth (dpenetration) of the falling weight into the sandwich structures, 

which also shows the intermediate performance of the TPC sandwiches. 

 

Figure 86: Comparison of the performance of the three different sandwich structures 

 
a) 

 
b) 

Figure 87: Comparison of a) Normalised residual strength of the different sandwich 
structures after impact and b) Penetration depth of the impact weight into the different 
sandwich structures 

Besides the lower mechanical performance concerning most properties, the mechanical 

characterisation shows that the CF/PEEK-PEI foam sandwiches feature a strong skin-to-core 

bond, leading in most cases to failure within the core. In comparison, Nomex® based and PMI 
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foam based sandwich specimens fail mostly within the interface. Figure 88 shows the failure 

mechanisms for each material system which occur during climbing drum-peel testing. The 

comparison shows that in the case of the PH and RTM63 specimens the skin-to-core bond is 

the weakest link (Figure 88a and Figure 88b), while for the CF/PEEK-PEI foam sandwiches 

(300-125-2) the core represents the weakest link, see Figure 88c.  

 
a) 

 
b)  

 
c)  

Figure 88: Failure mechanism during drum-peel testing: a) Adhesive failure of the PH 
specimens, b) Adhesive failure of the RTM63 specimens and c) Boundary layer failure of the 
300-125-2 specimens 

Similar failure behaviour can be observed during testing according to other standards such as 

edgewise compression testing or bending testing. Figure 89 shows the different failure 

mechanisms which occur during the edgewise compression testing. Skin separation is the 

common failure mechanism for the PH and RTM63 sandwiches (Figure 89a and Figure 89b), 

while buckling of the whole sandwich is the dominant failure mechanism for the 300-125-2 

specimens, see Figure 89c. 

 
a) 

 
b)  

 
c)  

Figure 89:  Failure mechanisms during edgewise compression testing: a) Skin separation 
and core rupture for the PH specimens, b) Skin separation for the specimens RTM63 and c) 
Buckling of the whole sandwich for the specimens 300-125-2 

Summarising, the characterisation reveals that the PEI foam core weakens the TPC 

sandwiches as it features properties which are significantly below the properties of Nomex® 

and PMI cores such as shear modulus (~ - 40 %) or compression strength (~ - 40 %).   

7.3.2 Comparison of areal weight 

Remarkably, PMI foam based sandwiches (RTM63) have the lowest areal weight even though 

the foams have a higher density than the Nomex® core, see Figure 86. The weight decrease 
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of approximately 24 % related to the thermoplastic based sandwiches (300-125-2) can be 

explained by the lack of adhesive films for the RTM processed sandwiches. The joint between 

skins and core is created by the resin flow into the surface cells of the foam. Details on the 

areal weights are shown in Table 22. The table shows clearly that thermoplastic sandwiches 

feature the highest areal density of all structures. The high areal density is caused by 

compression of the core resulting in a higher core areal weight. Furthermore, the use of two 

UD layers in the skins, each having a fibre areal weight of 140 g/m², increases the weight 

compared to the use of one fabric ply with 220 g/m². In addition, the use of the PEI surface 

layer with ~160 g/m² leads to an increase of the areal weight, even though it is a slight weight 

advantage in comparison to the epoxy based adhesive films (~ 170 g/m²) for the prepreg-

Nomex® sandwiches. Nomex® based sandwiches show an approximately 15 % lower weight 

than the thermoplastic sandwiches. 

Areal weight 300-125-2 PH RTM63 

Skins [g/m²] 2280 2100 1916 

Adhesive layers [g/m²] 320 340 / 

Core (15mm height) [g/m²] 1140 720 945 

Total [g/m²] 3740 3170 2861 

Decrease to 300-125-2 [%] / -15 -24 

 

7.3.3 Comparison of manufacturing cycle times 

In Figure 90 the cycle times for the production of the sandwiches by means of the three 

different approaches are displayed. The comparison shows that by application of thermoplastic 

materials or by application of the RTM process the cycle time can be significantly decreased 

in contrast to the manufacturing of prepreg-Nomex® sandwiches. The infusion approach leads 

to a cycle time reduction of 24 %. By applying thermoplastic materials, a cycle time reduction 

of 46 % can be achieved. The results are based on laboratory trials, which means that most 

steps are performed manually and some deviations are expected when the approaches are 

adapted for a serial production. In addition, some manufacturing steps such as cutting fabric 

plies or shaping the core are assumed to be equivalent for all approaches. Furthermore, the 

flat 2D Nomex® sandwich panels do not require sealing and stabilisation. For more complex 

shapes, additional time for the Nomex® core treatment has to be considered, which leads to 

an even higher time reduction for foam based sandwiches. 

By taking a deeper look at the single manufacturing steps, it can be noticed that for the prepreg 

and the RTM approach the “manufacturing process” is the most time-consuming step. During 

this step, the resin must cure at a high temperature. For the TPC approach, the sandwich 

“manufacturing process” is done in a couple of minutes, since the skins only have to be heated, 

stacked with the core and joined under pressure. The fusion bonding process, performed non-

isothermally in this case, takes place in a matter of seconds. For the TPC approach the 

Table 22: Comparison of areal weights 
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consolidation of the skins is the most time-consuming step, since the material, placed in a 

heavy metal tool, has to be heated up to 375 °C, held for some minutes and then cooled down. 

 

Figure 90: Comparison of manufacturing cycle times 

 

7.4 PART COST AND LIFE CYCLE COST ANALYSIS  

In the previous chapter, it is shown that thermoplastic sandwich structures offer the 

opportunity to be manufactured in significantly shorter cycle times than state-of-the-art 

sandwiches and RTM/PMI foam based sandwiches. Short manufacturing cycle times 

contribute to the decrease of production cost and minimise the final part cost, which is the 

global motivation of this thesis. However, besides the manufacturing cycle time several other 

parameters such as material cost, machine investment, machine operating cost need to be 

considered for a complete cost analysis. At this stage of the development, it is difficult to 

work out a realistic business case and to calculate the part cost of a thermoplastic sandwich 

structures. Realistic production scenarios, material prices and machine operating cost for a 

serial production are not available. Therefore, Figure 91 gives only a rough estimation of 

sandwich part cost, which is based on a laboratory scenario including material cost 

(including auxiliary materials), labour cost (possibility of parallel labour steps is neglected) 

and cost for machinery investment. The cost estimation is calculated for one square metre 

sandwich structure (setup and dimensions according to the previous chapters) and based 

on the assumption that two parts per day (maximum capacity of an autoclave for prepreg-

Nomex® sandwich manufacturing) will be manufactured over the asset depreciation range 

of machines (seven years). Figure 91 shows that a decrease (~ -32 %) of the overall part 

cost is possible by the application of thermoplastic materials. Even though thermoplastic 
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materials are costlier than state-of-the-art thermoset materials (~ +50 %), the significantly 

shorter manufacturing cycle times lead to lower total part cost. Furthermore, less machine 

investment (no autoclave) is needed to manufacture thermoplastic sandwich structures.  

.  

Figure 91: Normalised production cost of one square meter sandwich 

In addition, it is assumed that the life cycle cost of thermoplastic sandwich structures will be 

significant lower than the life cycle cost for prepreg-Nomex® sandwiches, since less 

maintenance during service will be necessary and recycling after service will be possible. 

However, a realistic life cycle cost analysis exceeds the scope of this work. 

7.5 EVALUATION ACCORDING TO REQUIREMENTS 

In chapter 1.2 requirements concerning skin and core materials, processing conditions and 

HSE (Health, Safety and Environment) characteristics are presented to serve as a guideline 

for the materials selection and to evaluate the developed sandwich structures, which will be 

described in this section. 

7.5.1 Evaluation according to performance requirements 

Since sandwich structures are usually designed to carry shear loads caused by bending 

moments acting on the skins and to withstand compression loads when for example applied 

as floor panels, the compression and the shear strength are relevant properties for sandwich 

structures. Furthermore, the skin-to-core joint is of major importance to allow the force transfer 

from skins to core.  

The material selection (chapter 4.1) showed that PEI foams having a density of 110 kg/m³ can 

fulfil these requirements concerning compression and shear strength. However, for the 

mechanical characterisation and comparison with other structures, foams with a density of 
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60 kg/m³ are used. The mechanical characterisation reveals that CF/PEEK-PEI foam 

sandwich structures with a 60 kg/m³ core feature a compression strength which is 

approximately 45 % below the required compression strength, while the shear strength is 

approximately 20 % the required 1.1 MPa. By applying a PEI foam core with a density of 

110 kg/m³, it is assumed that the performance can be increased almost to the required values. 

However, by applying a core with a higher density, the weight will be further increased, which 

in the case of the 60 kg/m³ PEI foam core is already higher compared to state-of-the-art 

sandwiches. 

The mechanical characterisation also reveals that the fusion bonded thermoplastic 

sandwiches possess a high skin-to-core bond strength compared to the PMI foam based 

sandwiches, which lays above the required peel strength by a factor of 2.65. Surprisingly, the 

thermoplastic sandwiches cannot fulfil the required residual strength after impact energy of 

5 J. The achieved residual strength lays 15 % below the required value. 

The PMI foam based sandwiches fulfil the requirements better because of the good 

performance of the core. However, the sandwiches show an insufficient peel strength which 

lies approximately 30 % below the required 0.8 N/mm.    

7.5.2  Evaluation according to processing requirements 

The investigated process is challenged by a cycle time below four hours. The comparison of 

the cycle times shows that the process time could be decreased up to 46 % in comparison to 

the state-of-the-art autoclave manufacturing process by application of thermoplastic materials. 

Nevertheless, the fusion bonding process cannot totally fulfil the defined process time of four 

hours. However, the process cycle time assessment is based on laboratory results, which 

means that several manufacturing steps such as cutting of fabrics or skin heating are 

performed manually or without industrialised processing abilities. Therefore, it assumed that 

the cycle time can be at least 20 % further reduced when implemented as a serial production 

process, which would result in the desired cycle time. 

7.5.3  Evaluation summary 

Table 23 presents a summary of the evaluation of the developed TPC sandwiches on basis of 

the specimens 300-125-2. The comparison of the requirements shows the enormous potential 

of the sandwich structures but highlights again, that the PEI foam (60 kg/m³) is the weak point 

of the sandwiches. By taking a PEI foam core with a higher density of 110 kg/m³ (which was 

initially selected according to the requirements), the comparison shows that it will be possible 

to fulfil the envisaged requirements. However, in the case of 110 kg/m³ PEI foam core further 

weight disadvantages have to be accepted.  
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Table 23: Summarising evaluation according to performance requirements 

Criterion Aimed values 
TPC sandwiches 
with 60 kg/m³ PEI 
foam (300-125-2) 

TPC Sandwich with 
110 kg/m³ PEI foam 

(expected 
performance) 

Skin thickness 0.5 - 5 mm Yes Yes 

Fibre volume content > 55 vol % Yes Yes 

Skin glass transition 
temperature 

> 140 °C Yes Yes 

Core thickness  10 - 50 mm Yes Yes 

Core density ≤ 110 kg/m³ Yes Yes 

Moisture uptake < 2.1 % Yes Yes 

Core glass transition 
temperature 

> 140 °C Yes Yes 

Compressive strength > 1.4 MPa No Possible 

Core shear strength > 1.1 MPa No Possible 

Skin-core peel strength  > 0.8 Yes Possible 

Residual compressive 
strength after impact (5J) 

> 150 No Possible 

Processing temperature < 400 °C Yes Yes 

Target cycle time < 4 h No, yet possible as 
an industrialised 

process 

Possible as an 
industrialised process 

Media resistance against, 
Cleaning agents, etc. 

Required 

 

Yes, when covered 
with CF/PEEK skins 

Yes, when covered 
with CF/PEEK skins 

Painting  Yes Yes 

UV- resistance Required Yes Yes 

FST requirements  (UL-94 V-0) Yes Yes 

Components to be avoided 

that are toxic, mutagenic, 
carcinogenic 

Required 

 

Yes Yes 

Recyclability, re-use Aimed Possible Possible 
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8. FOAM REINFORCEMENT 

As previously stated, the carbon fibre reinforced Polyetheretherketone skin and Polyetherimide 

foam (CF/PEEK-PEI) based sandwich structures show significantly lower performances than 

the reference sandwiches and do not fulfil the envisaged requirements in the case of the usage 

of a PEI core with a density of 60 kg/m³. This is mostly caused by failure of the PEI core, which 

represents the weak point of the developed thermoplastic composite (TPC) sandwiches. 

Furthermore, the CF/PEEK-PEI sandwich panels feature already a higher areal density in the 

case of 60 kg/m³ PEI foams than the thermoset-based reference sandwiches. On the other 

hand, CF/PEEK-PEI foam sandwiches can be fusion bonded in short cycle times and feature 

high skin-to-core bond strengths, two characteristics that are attractive for their application in 

future helicopter structures.  

In order to improve the properties of the CF/PEEK-PEI foam sandwiches and to achieve the 

required characteristics without significantly increasing the areal weight by applying cores with 

a higher density (110 kg/m³), it seems useful to apply low density foam cores, which are 

reinforced to strengthen their performance. In doing so, the areal density will be also increased, 

but will be probably kept low in comparison to the application of higher density foam cores. 

Therefore, in this chapter a manufacturing approach is presented, in which thermoplastic foam 

core sandwiches are reinforced to improve their mechanical performance.  

Firstly, the idea behind reinforcing of foam cores is explained and state-of-the-art-concepts are 

presented, see chapter 8.1. Secondly, two concepts suitable for TPC sandwiches are 

elaborated (chapter 8.2). Following these concepts, thermoplastic foam cores are reinforced 

prior to skin-to-core joining, see chapter 8.3 and 8.4. To evaluate the influence of the foam 

reinforcement on the mechanical properties, the sandwiches are mechanically tested in 

chapter 8.5.  

8.1 BACKGROUND OF FOAM MODIFICATION 

The main idea of foam reinforcement is to strengthen the foam core to improve the 

compression and shear performance by means of inserting pins/rods or stitched rovings. While 

the inserted elements bear the majority of the loads, the surrounding foam prevents them from 

buckling and contributes to transferring shear loads. The pins can be introduced into the foam 

and joined to the skins in different ways. Besides the improved sandwich performance, it has 

to be considered that foam modification increases the manufacturing costs or the material 

costs and the total areal density of the sandwich structure. Thereby, an optimum between cost 

and areal density increase versus improved performance need to be found. 

Today, different foam reinforcing concepts for thermoset based sandwiches are available on 

the market. Aztex Inc. (Waltham, Mass., U.S.A.) developed the X-cor™ and K-cor™ sandwich 

structures where the foam is reinforced by pre-impregnated fibre reinforced pins, referred to 

as Z-pins [196]. The pins are introduced into the foam with ultrasonic support and bended 

afterwards or are directly connected to the skins. A bond between foam, pins and skins is 

achieved by curing all components together. Marascoro et al. [196] investigated the 

mechanical performance of PMI foams reinforced by Z-pins implemented in the foam core 

under different angles. Honeycomb core based sandwiches were taken as a reference. The 

investigation showed that the compression strength and modulus of the modified sandwiches 

could be significantly increased by the application of the Z-pins, though they were still below 
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the compression strength of honeycomb based sandwiches. Concerning the shearing 

properties, the shear modulus could only be slightly improved, while the shear strength of a 

honeycomb panel still exhibited almost double the value of modified foam sandwiches. In 

contrast to the honeycomb sandwiches, the X-cor™ and K-cor™ sandwich structures failed 

within the skin-to-core interface. 

Another concept for reinforcing foam cores was introduced by Airbus, known as the tied foam 

core technology [197]. A dry carbon fibre roving is introduced into the core by stitching. The 

roving protrudes on both sides of the foam core and is later connected to skin-preforms. It is 

also possible to stitch the skin-preforms directly onto the foam core. The foam/skin-preform 

setup is then infused with resin by means of typical resin infusion processes such as the 

vacuum assisted process (VAP®) or the resin transfer moulding (RTM) process. During the 

process the skin-preforms as well as the foam reinforcing rovings are impregnated with the 

resin and cured with the result that a connection between the foam, skins and reinforcing roving 

is realised. Endres [197] showed that the performance of PMI foams is significantly improved 

with regard to tensile, compression and peel strength. The best results were achieved when 

the skin-preforms were directly stitched onto the foam core. For shear strength investigation, 

the core was additionally reinforced with rovings implemented under different angles (45°, 60° 

and 75°), with best results being achieved by the introduction of 45° rovings.  

8.2 MODIFIED TPC SANDWICHES: CONCEPT DEVELOPMENT 

The idea of reinforcing the core is adapted to full TPC sandwich structures. The concept of 

stitching rovings, which are subsequently infused with resin, is not possible for thermoplastic 

materials due to the high viscosity of the thermoplastic polymer. Thermoset pre-impregnated 

and partially cured rods were dismissed since the aim is to develop a full thermoplastic 

sandwich structure. 

Therefore, various approaches were explored and evaluated with the goal of achieving the 

desired reinforcement of the core while maintaining the advantages of the TPC process. 

8.2.1 Initial Concept 

One of the most important advantages of thermoplastic materials is the possibility that the 

materials can be softened or melted by the input of heat (or solvents), allowing the material to 

be reversibly reshaped or fusion bonded. The latter mechanism is already used during the 

manufacturing process of the TPC sandwiches, consisting of CF/PEEK skins and the PEI foam 

core in this study. During skin-to-core joining, energy (heat) is transferred from the skins into 

the foam core surface by heat conduction which ensures softening of the foam core material. 

The principle of softening the polymer to be joined by heat conduction from the skins with a 

following fusion bond process shall be adapted to the reinforced foam cores. In a first step, 

PEI pins of a length greater than the core’s thickness are mechanically introduced into the 

foam core with the result that the pins protrude on both sides of the foam core, see Figure 92. 

The pins stick loosely in the foam core and are held in place within the foam core by friction. 

Placing the heated skins on the reinforced foam brings them in contact with the protruding 

ends of the rods first and thus leads to melting and compressing the rods until the skins 

additionally come in contact with the foam, leading to a softening of the core surface. By 

softening or melting the pins’ ends as well as the foam core surface, a fusion bond between 

skins, pins and core is created. However, pre-trials show that the amount of energy supplied 
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by the pre-heated skins is insufficient to melt the protruded pin ends with the result that they 

are compressed inside the foam core. Thus, during processing the pins buckle under load and 

therefore this initial approach is not pursued further. Based on the experience gained with the 

initial concept, two adapted concepts are developed and further investigated, where the 

introduction of pins at various angles is applicable. 

 

Figure 92: Schematic illustration of the initial concept of TPC foam reinforcement 

8.2.2 Concept 1 

In order to avoid pin buckling, pins of a length smaller than the foam thickness are used. 

However, the pins must feature a length greater than or at least equal to final core thickness, 

in order to come into contact with the skins during the fusion bonding process, to allow joining 

of the pins to the skins, see Figure 93. 

 

Figure 93: Schematic illustration of TPC foam reinforcement concept 1 
 

8.2.3 Concept 2 

Another concept is developed that takes the principle of riveting as an example. Similar to the 

initial concept, thermoplastic pins of a length higher than the core’s thickness are introduced 

into the core. Prior to fusion bonding the skins to the core, a hot stamp device melts the ends 

of the pins and forms a kind of rivet head, which is simultaneously fusion bonded to the foam 

core, see Figure 94. Finally, the thermoplastic composite skins are heated separately, placed 

onto the core and fusion bonded to the reinforced core. 

Thermoplastic pins

Thermoplastic foam  usion bond

Skin (pre-heated)

Pin buckling

Thermoplastic pins

Thermoplastic foam  usion bond

Skin (pre-heated)
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Figure 94: Schematic illustration of TPC foam reinforcement concept 2 

8.3  MATERIALS 

The skin material consists of two PEEK pre-impregnated carbon fibre reinforced fabric plies 

(±45°/0°,90°), combined with two UD plies (+45°,-45°) and a PEI film having a thickness of 

125 µm. The skins are consolidated at 375 °C under a pressure of 1 MPa. As core structure, 

the PEI Airex® R82.60 foam with a density of 60 kg/m³ and 19 mm thickness provided by 

Gaugler and Lutz oHG, Germany is used. 

Two different pin types are investigated in this study. Besides PEI pins, pins with continuous 

carbon fibres reinforced PEI (FVC: ~32 %) referred to as CF pins are used. The pins have a 

rectangular cross-sectional area of 1.6 mm x 1.6 mm, various lengths (17 mm, 26 mm and 

33 mm), and are introduced into the foam with 1 pin/100 mm² in a quadratic pattern. The 

carbon fibres in the    pins are orientated in the pins’ longitudinal direction. 

8.4 EXPERIMENTAL 

8.4.1 Specimen preparation 

In this study the two different foam modification concepts are investigated with different pin 

configurations, see Table 24. To improve the compression strength, the pins are introduced 

orthogonally (90°) to the skins. As proposed by other researchers [197] a pin angle of 45° 

seems advantageous for improving the shear strength, nevertheless sandwiches with pure 90° 

PEI pins are also investigated. Depending on the concept and the angle, the pin lengths vary, 

see Table 24. Specimen designation is explained as follows: 

Thermoplastic pins

Thermoplastic foam

Hot stamp/

Riveting deviceRivet head Skin (pre-heated)

Fusion bond
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Figure 95: Specimen designation 

Table 24: Test matrix for foam modification 

Concept Angle [°] Pin Pin length [mm] Compression Shear 

1 

90 
PEI 17 1-90-PEI-17-C 1-90-PEI-17-SH 

CF 17 1-90-PEI-17-C - 

45 
PEI 26 - 1-45-PEI-26-SH 

CF 26 - 1-45-CF-26-SH 

2 

90 
PEI 26 2-90-PEI-26-C 2-90-PEI-26-SH 

CF 26 2-90-CF-26-C - 

45 
PEI 33 - 2-45-PEI-33-SH 

CF 33 - 2-45-CF-33-SH 
 

Exemplarily, foams with pins introduced according to concept 2 are displayed in Figure 96.  

 
a) 

 
b) 

Figure 96: Foam with integrated pins according to TPC foam reinforcement concept 2: a) 
before riveting and b) after riveting 

According to the test matrix in Table 24, sandwich specimens are manufactured with 

dimensions of 150 by 200 mm, which supply five specimens for compression and three 

specimens for shear testing. To preclude periphery effects, the sandwiches are trimmed at 

each side. Sandwiches are manufactured with a skin temperature of 320 °C, a pressure of 0.2 

MPa and a compaction distance of 2 mm. An increase to 320 °C skin temperature in 

comparison to the recommended temperature of 300 °C (chapter 6.4) is selected since it is 

assumed that a larger amount of heat energy is advantageous to softening the pins. 

1-90-PEI-17-C

Test (Compression, Shear)

Pin length in mm (17,26, 33)

Pin material (PEI, CF)

Pin angle in  (90, 45)

Concept (1, 2)

Protruding 

PEI pin ends

Rivet heads



8 Foam reinforcement 124 

__________________________________________________________________________ 

 

8.4.2 Test setup 

For the characterisation of the modified sandwiches, compression testing in flatwise plane is 

conducted according to DIN 53291 and shear tests in accordance with DIN 53294 are 

performed. Specimen preparation for testing is conducted as described in chapter 6.2.2. 

Failure modes of the sandwich specimens are again evaluated based on the evaluation based 

on DIN EN ISO 10365. 

8.5 RESULTS 

Figure 97 displays the normalised compression strength (normalised to the unmodified 

sandwich compression strength) of the reinforced foam core sandwiches in comparison to the 

compression strength of an unmodified sandwich. The reinforcement of the foams according 

to both concepts leads to a significant increase in compression strength. In the case that the 

foam is strengthened with PEI pins an increase in the compression strength by factor 4 can be 

achieved. Due to the high stiffness of the carbon reinforced pins, the compression strength 

can be improved approximately by a factor of 6 with the application of CF pins according to 

concept 1 and by up to a factor of 10 according to concept 2.  

Figure 98 shows the normalised shear strength results (normalised to the shear strength of 

unreinforced sandwiches), which vary considerably. In the case of the foam core being 

modified with 90° PEI pins, the shear strength cannot be improved or is even reduced. Under 

shear loads, the pins introduced according to concept 1 fail at the joint between pins and skins, 

which hinders an improvement of the shear performance. 

 

Figure 97: Foam modification - compression strength results 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

N
o

rm
a

li
s

e
d

 c
o

m
p

re
s
s

io
n

 s
tr

e
n

g
th

 



8 Foam reinforcement 125 

__________________________________________________________________________ 

 

In addition, the presence of the pins reduces the bonding area between skins and core, and 

thereby the bonding quality with the result that the sandwich specimens fail adhesively within 

the interface. In comparison, unmodified specimens (Designation: Ref._PEI foam) fail 

cohesively within the core structure, see Figure 99.  

 

Figure 99: Cohesive failure of unmodified specimen (Ref._PEI foam) 

In the case of the foam being modified with 90° PEI pins according to concept 2, the shear 

strength in combination with cohesive failure is comparable to the unmodified specimens. The 

pins do not seem to have much influence on the performance, however the bond strength by 

riveting is improved compared to concept 1. 

Strengthening of the core with 45° pins leads to a significant improvement of the shear strength 

in most cases. The best result is achieved by strengthening the foam core according to concept 

1 with PEI pins with an improvement in shear strength by a factor of 1.72. However, the 

modification with CF rods according to concept 1 does not improve the shear performance. 

FoamSteel loading plate Skins Cohesive failure

 

Figure 98: Foam modification - shear strength results 
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Due to the carbon fibre reinforcement of the pins (FVC = ~32 %), a lower amount of PEI is 

available to create a fusion bond to the skins, which is confirmed by the failure mode where all 

specimens failed adhesively within the interface, see Figure 100. Therefore, the shear strength 

of the specimens is lowered. 

 

Figure 100: Specimen 1-45-CF-26-SH: Adhesive failure within the interface 

In the case of the specimens being modified according to concept 2, the shear performance is 

slightly improved (~ factor 1.3). Due to the riveting process, the bonding quality is improved 

with both pin types. However, only by the application of pure PEI pins the bond can withstand 

the shear loads. The application of CF pins still weakens the fusion bond due to the low quantity 

of PEI material in the pins. A mix of adhesive and boundary layer cohesive failure occurs. As 

the pins strengthen the foam and avoid failure of the core, the shear loads are transferred into 

the interface, causing it to fail and leaving the reinforced core intact, see Figure 101. 

 

Figure 101: 2-45-CF-33-SH: Adhesive and boundary layer cohesive failure 

FoamSteel loading plate CF pins (45 C)

Skin Steel loading plate

Steel loading plate

Rivet heads of CF pins 

Skin

Steel loading plateFoam
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8.6 DISCUSSION 

The previously presented results have to be evaluated carefully. By introducing either PEI or 

CF pins into the core, its weight and its density is increased. The increase of weight is strongly 

dependent on the pin length, which varies with pin introduction angle and utilised pin type. In 

Figure 102 the density and the factor of the density increase compared to unmodified foams 

is given. Depending on the pin length, the density is increased by a factor of 1.5 - 1.9. A 

modification with 90° pins leads to a density increase by a factor of ~1.5 – 1.75, 45° pins 

increase the density in most cases by a factor of > 1.7. Where pins are applied at 45° according 

to concept 2, the density of the foam is almost doubled. At this point it should be mentioned 

that no pinning weight optimisation effort was undertaken within the framework of this project. 

As a result, there is significant room for improvement.  

Figure 103 and Figure 104 show the compression strength and the shear strength related to 

the core density. In order to evaluate the efficiency of the foam modification, the specific 

strengths are compared to a PEI foam with a density of 110 kg/m³ (Ref._PEI foam 110 kg/m³), 

which approximately corresponds with the densities of the modified foam cores. Moreover, the 

results are compared to the performance-to-density ratio of a honeycomb based sandwich 

(Ref._Honeycomb). 

 

 

Figure 102: Density of foams (unmodified and reinforced) 

By modifying the foam cores, the specific compression strength can be significantly improved 

even with an increased foam density. A PEI foam with a density of 110 kg/m³ features an equal 

specific compression strength to a foam of 60 kg/m³. This shows that the modification of the 
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foam is more efficient than the application of foam of higher density. Additionally, the specific 

compression strength of the modified foam core sandwiches is even equal or higher than that 

of honeycomb sandwiches. The specific shear performance results show that an improvement 

could not be achieved. The shear strength in total can be improved, though the increased 

density caused by the pins leads to a decline in the specific shear strength in most cases. Only 

the specific shear strength of the specimen modified with 45° PEI pins according to concept 1 

shows the same specific shear strength as unmodified 60 kg/m³ and 110 kg/m³ foam cores. 

Nonetheless, the investigations show that for CF pins the weakest link is no longer the core, 

but the interface. Therefore, in order to take full advantage of the core reinforcement with CF 

pins further research is needed to improve the bond between skins, core and pins, as well as 

to reduce the weight increase e.g. by applying different pinning patterns, rod cross section, 

etc. 

Furthermore, a promising solution could be local reinforcement of the foam in heavily loaded 

areas where higher compression and shear properties are required. This enables a widening 

of foam sandwich applications. Therefore, this work shows high potential for the application of 

TPC sandwiches with customised, modified foam cores. 

 

Figure 103: Compression strength related to the core density 
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Figure 104: Shear strength related to the core density 
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9. SHAPED SANDWICHES  

In the previous chapters, investigations into the manufacturing of flat, two-dimensional (2D) 

panels are presented. In order for the technology to be further pursued in the future, it is 

required to show the possibility of manufacturing shaped sandwich panels. Therefore, this 

chapter aims to show the feasibility of producing shaped carbon fibre reinforced 

Polyetheretherketone skin and Polyetherimide foam core (CF/PEEK-PEI) based sandwiches.  

The feasibility shall be proven by realisation of the shaped shear panel, which has been 

derived from helicopter applications and has been defined as the target structure for this study, 

see Figure 105. 

 

Figure 105: Shaped shear panel 

Firstly, possible manufacturing approaches are presented, followed by investigations into the 

process window for the realisation of shaped sandwiches. Here, the process window includes 

the investigations on the skin-to-core bond as derived in chapter 5 and 6. Thirdly, according to 

the process window, the feasibility of the approaches is evaluated. Finally, the most suitable 

approach is selected for the realisation of the shear panel. 

9.1  MANUFACTURING APPROACHES 

In public literature two different approaches based on compression moulding have been 

proposed to realise shaped thermoplastic sandwiches, see chapter 2.5. 

1. Direct forming and joining of skins and core 

2. Thermoforming of 2D sandwiches into shaped structures 

A third trivial approach is supplemented by the author: 

3. Forming of skins and core prior to joining 
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These approaches will be explained in more detail below. 

The most cost-effective way to realise a shaped sandwich panel is manufacturing in one step 

[69]. Foam and skins are simultaneously formed and fusion bonded. In doing so, the change 

of the core density needs to be considered, since the core is differently locally compacted. The 

approach is illustrated in Figure 106. 

 

Figure 106: Approach 1 - Direct forming and joining of skins and core 

Different technologies exist in order to form a flat sandwich panel into a shaped structure, see 

chapter 2.5.2. This means that first a flat sandwich panel is produced by fusion bonding, which 

is formed in a following step. For this approach, the local core compaction needs to be 

examined as well. This approach is illustrated in Figure 107. 

 

Figure 107: Approach 2 - Thermoforming of flat sandwich structures into shaped structures 

A third, more trivial, method to realise the shaped sandwich panel is to form skins and core 

separately before joining. It is assumed that this approach is relatively simple compared to the 

other approaches since the process window for forming and bonding are decoupled. 

Furthermore, by prior shaping the core, local core densification can be avoided. Nevertheless, 

this approach will have a negative impact on the cycle time due to the need of three separate 

manufacturing steps. The approach is visualised in Figure 108. 
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Fusion bonding & FormingHeating of skins 3D Sandwich

vvvvvvvvvvvvvv

1st step: Simultanuous fusion bonding and forming of skins and core
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Figure 108: Approach 3 - Forming of skins and core prior to joining 

A possibility to shorten the manufacturing effort of approach 3 “ orming of skins and core prior 

to joining” could be to leave out the tailoring step of the core. The core is then compacted 

during the process of joining with the formed skins, which will lead again to high foam core 

densification in the ramp zones.  

9.2 PROCESS WINDOW 

The investigations in the previous chapters show that the process window to enable a strong 

bond between CF/PEEK skins and a PEI core is narrow due to the different process conditions 

required for the two dissimilar materials. Skin- to-core joining can only be realised by enriching 

the CF/PEEK skins with a PEI film. According to Aström et al. [22] the realisation of a shaped 

panel increases the demand concerning the process window since more process requirements 

for forming the skins and the core will be added. Phenomena such as skin de-consolidation, 

foam collapse or foam tearing as well as a weak bond have to be avoided in order to achieve 

a sandwich of sufficient quality [22,71,73]. To control these phenomena, temperature and 

pressure limits must be determined for each sandwich constituent in order to find out if they 

can be fitted in one global process window that additionally meets the requirements of fusion 

bonding. 

9.2.1 Process window: core 

Forming of the core is limited on the one hand by core compression due to high pressure and 

temperature, or core collapse due to extensive heating, and on the other hand by foam tearing 

vvvvvvvvvvvvvv
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due to limited formability of the foam in the case that the foam is insufficiently heated [71]. 

Figure 109 presents the compression strength of the Airex® PEI foams with different densities 

dependent on temperature, where it becomes clear that the compression strength is highly 

dependent on the temperature and it decreases around 50 % when the foams are heated to 

160 °C. Further experimental trials show that the core collapses without loading at a 

temperature around the Tg of PEI. 

 

Figure 109: Compression strength of PEI foams depending on the temperature 

Rozant et al. [71] showed by tensile testing of PEI foams with a density of 80 kg/m³ under 

elevated temperatures, that a temperature range of 165 °C – 185 °C is required to avoid foam 

tearing under strain. Furthermore, it was shown that the forming strain has to be below 20 % 

to avoid cell damage. 

Combining the compression strength results and the proposed forming temperatures, a 

forming process window is determined which is limited by 165 °C as the minimum temperature 

and 185 °C as the maximum temperature, while the pressure should not exceed 0.39 MPa - 

0.74 MPa depending on the foam density to avoid extensive core compaction. The lower limit 

of the pressure is not investigated. 

9.2.2 Process window : skins 

Forming of the skins requires heat to soften the polymer and pressure to form the laminate into 

the aimed shape. The limiting phenomena are on the one hand skin de-consolidation and 

polymer degradation while on the other a high rigidity of the material restricts the forming 

process [71]. Forming of continuous fibre reinforced polymer materials is primarily controlled 

by forming the fibre reinforcement structure [198]. This is opposed to forming of pure 
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thermoplastic materials which can be sheared and stretched during the forming process [198]. 

The fibre reinforcement restricts any major elongation or compression since the fibres can 

neither lengthen nor shorten [199]. Due to the stiffness of fibres, breaking occurs when 

lengthening the fibres, while kinking and breaking occurs when shortening the fibres [199]. The 

deformation of continuous fibre reinforced laminates is described in theory by interply and 

intraply slipping or by a combination of both [198]. Interply slipping is referred to as the relative 

movement of adjacent fibre plies. Intraply slipping refers to phenomena such as intraply shear, 

straightening of the fibres, elongation of the fibres and transverse flow of the fibres [198]. 

Intraply slipping is highly dependent on the architecture of the fibre reinforcement. 

Forming of flat laminates into 3D formations is governed by a complex combination of interply 

and intraply slipping, which requires a detailed investigation of different processing parameters 

as well as a detailed study about the drapeabilty of the fibre reinforcement structure. However, 

by simplifying the 3D deformation into a 2D deformation such as forming a right angle bend or 

similar, the forming behaviour can be reduced to the interply slipping phenomenon [199]. Due 

to the restricted lengthening of fibres plies, forming causes interply shearing as a consequence 

of pressure and velocity gradient through the thickness of plies and acts on the polymer matrix 

which is located between the single fibre plies. It is now assumed that the polymer matrix is 

softened or molten during forming. Due to the nature of softened polymers, the material offers 

an internal resistance against shearing, which means that a specific amount of shear force is 

necessary for the deformation of the polymer material [183]. In the case that the shear stress 

acting on the plies does not exceed the yield shear stress of the matrix material, interply 

slipping cannot take place and the shear forces act on the fibre reinforcement structure itself. 

This may finally result in buckling of the fibres at the inside of the bend (inner radius), or in fibre 

breakage events at the outside of the bend region (outer radius) [199]. In order to avoid fibre 

damage, the shear force has to exceed the yield shear stress of the matrix. The yield shear 

stress can be brought in relationship with the shear viscosity 𝜂 of polymers and the shear 

velocity �̇� [183]  in form of 

𝜂 =
𝜏

�̇�
  

Equation 25 

In general, the viscosity highly depends on the shear velocity, the temperature and on several 

polymer characteristics such as molecular weight [183]. However, for low shear velocities of 

polymers the shear velocity can be neglected. In this case polymer melting can be treated as 

a Newtonian fluid [183]. As a result, the yield stress of the matrix polymer is dependent on the 

viscosity which is a function of the temperature for low shear viscosities. These assumptions 

are considered for the case of CF/PEEK skin forming. 

In order to determine the limit conditions, in particular the minimal required temperature for 

forming the CF/PEEK laminates, experimental forming trials are conducted. Under isothermal 

conditions, consolidated CF/PEEK laminates consisting of three plies (4HS, 220 g/m², (±45°; 

0°,90°;±45°) are formed at different temperatures around the melting temperature of PEEK 

into a steel mould having an omega profile shape, see Figure 110. Two different kinds of 

pressure levels were used, in particular 0.2 MPa (the lowest possible pressure of facilities) and 

1 MPa, the pressure used for consolidation of CF/PEEK skins. The process is conducted 

isothermally, meaning that mould and laminates are both heated to 335 °C, 340 °C, 345 °C 

and 350 °C. 
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Figure 110: Shape of the mould for skin forming trials 

The investigations reveal that the skins cannot be formed properly at temperatures below the 

melting point of PEEK under isothermal conditions. Although all temperatures in combination 

with both pressure levels enable forming into the defined shape, microscopic pictures show 

that temperatures below Tm of PEEK do not enable enough interply slipping, resulting in fibre 

buckling at the inside of the bend, see Figure 111a. Temperatures (~350 °C) above Tm seem 

to enable interply slipping and the laminate can be formed without fibre buckling, see Figure 

111b. Furthermore, the experimental trials reveal that a higher pressure of 1 MPa does not 

improve the forming quality at these temperatures. 

Following the isothermal trials, non-isothermal forming trials are conducted. The laminates are 

pre-heated in an oven and placed into a cold mould and formed. Since heat loss during transfer 

needs to be considered, the laminates must be heated far above 350 °C, which is determined 

to be the minimum forming temperature under isothermal conditions. However, during heating 

the de-consolidation phenomenon is faced again, see chapter 5.1. 
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a) 

 
b)  

Figure 111: Fibre buckling at a forming temperature of 335 °C and a pressure of 0.2 MPa, b) 
Proper forming at a forming temperature of 350 °C and a pressure of 0.2 MPa 

Furthermore, the trials show that the laminate is cooled so rapidly when touching the cold 

mould, that re-consolidation at exemplarily a skin pre-heat temperature of 390 °C is restricted, 

see Figure 112a. Pre-heat temperatures above 405 °C and pressure of 1 MPa are required to 

re-consolidate the laminates successfully, see Figure 112b. 

 
  a) 

 
  b) 

Figure 112: Re-consolidation at a) 390 °C and b) 405 °C 

In conclusion, the CF/PEEK can be thermoformed under isothermal conditions at temperatures 

of around 350 °C and a low pressure of 0.2 MPa. Non-isothermal processing requires 

significantly higher temperatures of more than 405 °C and a pressure of 1 MPa. 

9.2.3 Process window: sandwich 

Figure 113 illustrates the different processing windows for the forming of skins under 

isothermal and non-isothermal conditions, foam forming and fusion bonding. For skin and foam 

processing the limiting phenomena are also presented. For fusion bonding the limiting 

phenomena such as skin de-consolidation, core collapse and weak bonding are not illustrated 

in the figure, since they are described in detail in the previous chapters of this study. Figure 

113 visualises clearly the temperature and pressure gap for non-isothermal conditions for 

forming skins and foam core. Furthermore, the narrow process window for fusion bonding is 

emphasised.  
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Figure 113: Overview of processing windows for forming skins and core as well as fusion 
bonding skins and core 

In the following sections, it is evaluated if the proposed manufacturing approaches enable the 

strict observance of the different processing windows in order to realise a shaped sandwich 

panel. 

9.3 EVALUATION OF MANUFACTRUING APPROACHES 

In consideration of the process windows illustrated in Figure 113, it becomes clear that skins 

and core cannot be formed and fusion bonded in one step. Under non-isothermal conditions 

the skin temperature to enable a strong skin-to-core fusion bond core is determined to be 

300 °C – 320 °C with 320 °C – 340 °C as the equivalent pre-heat temperatures, where by the 

upper temperatures already led to slight core collapse. At higher temperatures, required for 

forming the skins in order to allow interply slipping, the CF/PEEK skins de-consolidate due to 

the release of internal stress. To re-consolidate the laminates, temperatures above 405 °C are 

needed and a pressure of at least 1 MPa is required. Regardless, re-consolidation on the foam 

is not feasible since the core cannot withstand these conditions. At the elevated temperatures, 

additionally needed for forming of the core, the compression strength significantly decreases 

below 0.5 MPa resulting in extensive core compaction under higher loads.  

Approach 2 “Thermoforming of 2D sandwiches into shaped structures” requires for the first 

step fusion bonding of flat skins and a flat core, which is readily possible as proved in the 

preceding chapters. In the following step, the flat sandwich panel has to be pre-heated to allow 

forming. According to the determined process window (Figure 113), different pre-heat 

conditions for skin and core have to be realised to allow forming while avoiding core collapse 
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or core compaction and fibre buckling. Figure 114 illustrates schematically the temperature 

gap between skin forming temperature and core forming temperature. Furthermore, pressure 

during heating should be applied on the skins in order to avoid skin de-consolidation.  

 

Figure 114: Temperature gap for forming skins and core according to the manufacturing 
approach 2 

Rozant et al. [71,73] developed a two-stage heating method in order to realise a temperature 

gradient through the whole sandwich, which allows the forming of fibre reinforced PEI skins 

and a PEI foam core. The whole sandwich is first pre-heated to a basic temperature level, 

followed by a preferentially fast heating of the skins. Fast heating reduces the amount of heat 

transfer into the core centre. However, in the case of the application of CF/PEEK skins and a 

PEI foam, the temperature gap for skins and core is much wider than for all-PEI sandwiches. 

Therefore, it seems that a high amount of heat being transferred into the core cannot be 

avoided and it seems impossible to prevent core collapse or compression during the forming 

step. 

A possible solution to realise a shaped sandwich consisting of CF/PEEK skins and PEI foam 

lies in the separation of forming each sandwich constituent individually as well as the 

decoupling of forming and fusion bonding. The constituents can be formed according to the 

determined process windows (Figure 113) and fusion bonded in a following step according to 

the manufacturing process described in the preceding chapters of this study. 

In the following section, investigations on the realisation of the shaped sandwich panel 

according to the manufacturing approach 3 ”Forming of skins and core prior to joining” are 

presented. Firstly, investigations on a simplified shaped sandwich are conducted before the 

shear panel is realised. 
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9.4 MATERIALS 

The skin material consists of two pre-impregnated carbon fibre reinforced PEEK fabric plies 

(±45°/0°,90°) combined with two PEEK pre-impregnated carbon fibre reinforced unidirectional 

(UD) layers (+45°/-45°). The fibre volume fraction of the consolidated laminate is approximately 

60 %. The skins are superficially enriched on one side with Ultem®1000 (Solvay, USA) PEI 

films with a thickness of 125 µm while simultaneously forming and consolidating in a shaped 

tool at 375 °C and 1 MPa, see Figure 115. The hybrid skin setup consisting of fabrics and 

unidirectional layers is selected due to the fact that the UD layers avoid extensive diffusion of 

the PEI polymer into the laminate during consolidation, see chapter 5.3. Consolidation and 

forming of the skins for the shear panel are performed in the same way. 

 

Figure 115: Consolidated and formed skin 

As core structure, PEI Airex® R82.60 foam with a density of 60 kg/m³ and a thickness of 19 mm 

provided by Gaugler and Lutz oHG, Germany is used. 

In order to investigate if the core has to be formed separately or if the core can be formed, in 

particular compacted at the side ramps by the heated skins, two different core shapes, namely 

an ‘as-is’ foam core and a customised foam core, are prepared for the joining trials, see Figure 

116. The customised (by machining) core has an excess of 2 mm in each direction to enable 

a compaction distance of 2 mm, which allows even core compaction in the boundary layer. 

9.5.1 Specimens preparation 

 
a) 

 
b) 

Figure 116: a  ‘A -  ’  oam and b   ustomised foam 
 

9.5 EXPERIMENTAL 
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According to the developed non-isothermal compression moulding process (chapter 5), the 

shaped sandwich panels are manufactured. The skins as well as the shaped transfer plate are 

heated to 320 °C (TSkin = 300 °C in press) and joined with the core under a pressure of 0.2 MPa. 

For the customised foam a core compaction distance of 2 mm is applied.  

Both methods seem to be feasible as the core is strongly joined to the skins, see Figure 117. 

 
        a) 

 
  b) 

Figure 117: S  n and  ore bond    h  he a  ‘A -  ’  oam and b   ustomised foam 

Figure 118 shows the whole shaped sandwich panel, where both skins are joined to the core. 

 

Figure 118: Simplified shaped sandwich panel 

9.6 DISCUSSION 

Taking a detailed look into the boundary layers of the cores (Figure 117), differences in the 

cell structures can be observed. Joining the core with an ‘as-is’ foam causes compaction of 

the cells in the ramp zone to a high extent. Figure 119 shows a microscopic picture of the ramp 

zone of the core, which highlights the high extent of cell compaction. In contrast, customising 

the core reduces the extent of core compaction, as shown in Figure 120. 
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Figure 119: Cell deformation caused by joining with initial foam 

 

Figure 120: Cell deformation caused by joining with customised foam 

In chapter 6.3.2 it is shown that core compaction is detrimental to the quality of the core, and 

as a result to the quality of the entire sandwich. It is shown that a higher compaction of the 

cells leads to a sharper gradient between compacted cells in the boundary layer and original 

cells in the core centre. Failure in the transition zone between affected and unaffected cells of 

the core occurs at lower loads in comparison to cores with unaffected cells. Therefore, it has 

to be decided from case to case if a decrease in performance or the manufacturing cycle time 

has priority for the application. 

9.7 REALISATION OF DEMONSTRATOR  

Based on the results for fusion bonding CF/PEEK skins and PEI foam core, as well as results 

and experience gained during the realisation of the simplified shaped sandwich panel, the 

shear panel is successfully manufactured at a skin temperature of 300 °C, a core compaction 

distance of 2 mm, and a pressure of 0.2 MPa, see Figure 121. Here, a customised foam is 

used, which has an excess of 2 mm in each direction to enable a compaction distance of 2 

mm. 

Figure 122 shows the cross section of the manufactured shear panel, which reveals that an 

even and strong bond between the skins and core has been achieved. However, by taking a 

detailed look into the peripheral areas of the panel, where upper and lower skin touch, an 

insufficient bond can be detected at some spots, see highlighted in Figure 122. 
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Figure 121: Shaped shear panel 

The insufficient bond might be explained by periphery effects such as higher heat loss at the 

outer area or insufficient contact due to tool deviations. Furthermore, it has to be stated that 

the process window which was derived and defined in the previous chapters is valid for a skin- 

to-core-bond. The process window might likely not be valid for skin-to-skin bonding, since the 

material properties and surrounding conditions are different. However, it is assumed that a 

solution can be found by further investigations and adaptation of the manufacturing process 

such as an industrialised heating and transport system. 

 

Figure 122: Cross section of shear panel 

Insufficient bond between 

upper and lower skin
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10. CONCLUSION AND OUTLOOK 

The aim of this study is the development of a manufacturing process for full thermoplastic 

sandwich structures, suitable for structural helicopter applications. The aim in doing so is to 

reduce manufacturing cycle times in comparison to state-of-the-art sandwich structures and to 

fulfil the requirements related to mechanical performance, design freedom as well as 

manufacturing and in-service conditions. Furthermore, the possibility of applying foam core 

structures instead of honeycomb materials is pursued, since foam cores require less post 

processing after production and less maintenance in service compared to honeycomb 

sandwiches. Nevertheless, it is accepted and considered in the requirements that the 

application of foam structures will lead to performance disadvantages in comparison to the use 

of honeycomb cores. 

To guarantee the principle of function of sandwich structures, a good bond between skins and 

core is required. This means aiming to realise a skin-to-core bond that is stronger than the 

core strength itself. Published investigations show that fusion bonding of skins and core is a 

promising technology for thermoplastic sandwich materials, since a bond strength equalling 

the bulk material strength can be achieved, while the process requires minimal preparation 

steps such as surface treatment and can be conducted in short cycle times. However, 

investigations into the development of sandwich structures by means of fusion bonding have 

not yet been conducted with materials, which fulfil the defined requirements and which are 

suitable for structural helicopter applications. The structures developed up to today either 

consist of commodity polymers which feature a low performance or in the case of high 

performance polymer based sandwiches, the sandwich structures present limitations 

concerning design freedom, or core thickness.  

Therefore, to reach the goal of this study carbon fibre reinforced Polyetheretherketone 

(CF/PEEK) skins and a Polyetherimide (PEI) foam core are selected according to the materials 

state-of-the-art. Based on a manufacturing process evaluation, non-isothermal compression 

moulding is seen to be an adequate process in this study for joining skins and core in short 

cycle times while reducing the risk of collapse due to the separate heating stage of the skins 

before joining. 

However, first experimental trials revealed that fusion bonding, which requires both 

constituents to be in the molten state during joining, is not readily possible due the wide 

temperature gap in softening PEEK and PEI. This causes challenges such as skin de-

consolidation and core collapse. 

To prevent these issues and to allow for the successful production of CF/PEEK – PEI foam 

sandwiches, the manufacturing process is adapted by means of superficial PEI enrichment of 

the CF/PEEK skins according to the ‘Thermabond’ process. In doing so, the skins can be 

fusion bonded to the core at temperatures below the melting temperature of the PEEK matrix, 

but above the glass transition temperature of PEI, in order to soften the PEI enriched surface 

as well as the core surface. As a result, core collapse and skin de-consolidation can be 

avoided. 

In order to understand the governing mechanisms of a fusion bond, the manufacturing process 

is investigated theoretically. A model based on ‘intimate contact’ and ‘healing’ is deduced for 

the non-isothermal compression moulding process, which allows the prediction of the bond 
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strengths depending on different skin and core temperatures. The model predicts that 

sandwiches manufactured with skin temperatures above ~290 °C and cores kept at room 

temperature will feature a sufficient bond strength, which is higher than the tensile strength of 

the core. In addition, the model predicts that heating the core will probably have a positive 

effect on the bond strength. 

Verification of the model with experimental trials proves the feasibility of a successful sandwich 

production, and shows that the modelling approach successfully predicts the failure modes of 

the sandwiches that occur under load. In the cases where the interface tensile bond strength 

is below the tensile core strength the model allows an accurate prediction of the bond strength 

and the failure mode, while in some cases, where the bond strength is above the core strength, 

the model is only able to predict the failure mode based on the weakest link, which in these 

cases is the core and not the interface. Furthermore, the experimental trials show that 

extensive heating of the core (200 °C) leads to core collapse, which is not considered in the 

model. In order to avoid incorrect model predictions due to the core collapsing effect, it seems 

useful to take a detailed look at the heat flow from the skins into the core during processing 

followed by an analysis of the thermal stability of the foam. In doing so, it is recommended to 

keep the centre of the core below its softening temperature. 

Based on the proposed process window, a complementary characterisation of the skin-to-core 

bond, core structure and the entire sandwich is presented. The influences of several process 

parameters, in particular varying skin temperatures (TSkin = 300 °C – 320 °C), different core 

compaction distances (dcompaction = 1 mm - 3 mm) as well as varying PEI film thicknesses (hPEI = 

125 µm and 175 µm) on the tensile, compression, shear, flexural and impact properties are 

determined. The core temperature (TCore) is not further investigated. 

The sandwich characterisation shows that the proposed process window mostly enables a 

fusion bond strength between skins and core which exceeds the core strength and in most 

cases and leads to cohesive failure of the core. However, in the case of a minimal core 

compaction distance of 1 mm, contact between skins and core cannot be ensured, leading to 

an insufficient bond. Moreover, analysis of the core structure revealed that the processing 

parameters significantly influence the thermoplastic core cell structure close to the core 

surface, which is defined as the boundary layer. A change of the core cell structure in the 

boundary layer leads to a weakening of the core and failure predominantly occurs in the 

interface between affected and original cells. Here, the experimental trials show the higher the 

cell compaction, the lower the core performance. In addition, a higher core compaction leads 

to a higher density of the core. As a result, a core compaction distance of 2 mm seems to be 

suitable for the manufacturing process. Furthermore, analysis of the core structure shows that 

at higher skin temperatures such as 320 °C the core centre collapses and stretches the cell in 

the boundary layer of the core, which softens the gradient between compacted and original 

cells resulting in a slight improvement of the performance. However, due to uncontrolled core 

collapse at skin temperatures of 310 °C and 320 °C, the process is considered not 

reproducible. Therefore, a skin temperature of 300 °C is evaluated to be the best fit for the 

manufacturing process. Increasing the film thickness of the skins does not lead to a significant 

improvement of the performance, though it increases the weight of the sandwiches. Therefore, 

a PEI film thickness of 125 µm is preferred. 
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In order to evaluate the CF/PEEK–PEI foam sandwiches, a skin temperature of 300 °C, a core 

kept at room temperature, 2 mm core compaction distance and skins enriched with a 125 µm 

PEI film are selected. The sandwich structures are compared in a first step to state-of-the-art 

sandwiches and comparable foam based sandwiches. As references, prepreg-Nomex® 

honeycomb sandwiches (core density of 48 kg/m³), manufactured with an autoclave process 

and Polymethacrylimide (PMI) foam based sandwiches with foam densities of 63 kg/m³ 

manufactured by resin transfer moulding are taken. The comparison shows the significant 

superior performance of the Nomex® based sandwiches concerning all properties. 

Furthermore, the comparison reveals that the PMI sandwich structures also show better 

properties related to weight than the CF/PEEK-PEI foam sandwiches.  

In a second step, the evaluation of mechanical performance according to the requirements 

reveals that CF/PEEK-PEI foam sandwich structures with a 60 kg/m³ core feature a 

compression strength which lays approximately 45 % below the required compression 

strength, while the shear strength is approximately 20 % below the required 1.1 MPa. By 

applying a PEI foam core with a density of 110 kg/m³, it is assumed that the performance can 

be increased almost to the required values. However, by applying a core with a higher density 

the weight will be further increased. CF/PEEK-PEI sandwich already show the highest areal 

weight in the assessment. Nevertheless, the evaluation reveals that the CF/PEEK-PEI foam 

sandwiches feature a strong skin-to-core bond which is above the required strength by a factor 

of 2.65 and therefore in most cases leads to failure within the core. In comparison, the Nomex® 

based and PMI foam based sandwich specimens often fail within the interface. The 

comparison shows that in the case of the Nomex® and PMI sandwich specimens the skin-to-

core bond is the weakest link, while for the CF/PEEK-PEI foam sandwiches the core 

represents the weakest link. 

Based on these results, a follow-up study is performed to find a solution to strengthen the core. 

Two concepts, based on the integration of pins, which are fusion bonded to the skins and the 

core surface, are developed. The introduction of pins either orthogonally or diagonally to the 

skin plane, leads to an improvement of the compression and shear properties by a factor of 10 

and 1.72 respectively. Normalised to the weight, significantly improved specific compression 

strengths can be still achieved. Therefore, the pinning concept looks especially promising 

when applied locally, for example in highly loaded areas. Nevertheless, additional cost for the 

modification process need to be considered. 

In regard to the cycle times of thermoplastic materials in combination with foam cores, the 

manufacturing times can be significantly decreased in contrast to the manufacturing of 

prepreg-Nomex® sandwiches. By applying thermoplastic skins and a thermoplastic core, a 

cycle time reduction of 46 % can be achieved, while the infusion of the PMI foam leads to a 

reduction of the cycle times of up to 24 %. However, the fusion bond process cannot totally 

fulfil the envisaged process time of 4 hours. Indeed, the process cycle time assessment is 

based on laboratory results, which means that several manufacturing steps are performed 

manually or without industrialised processing abilities. As a result, it assumed that the cycle 

time can be further reduced by more than 20 %, when implemented as a serial production 

process. 

Finally, this thesis shows the feasibility of the realisation of full thermoplastic shaped sandwich 

panel. Therefore, in a first step the process window for forming the skins and core individually 
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is defined. By merging the individual forming process windows and the fusion bonding process 

window, it becomes obvious that fusion bonding and simultaneously forming of the CF/PEEK-

PEI sandwiches structures is not feasible. The processing window gap between the individual 

sandwich constituents is too wide to realise a formed panel in one processing step. 

Furthermore, based on the individual forming process windows the approach to thermoform a 

2D sandwich into a formed sandwich panel does not seem feasible either. Therefore, skins 

and core are formed separately before being fusion bonded. The realisation of a shaped shear 

panel, which is defined as the target structure, by a two-step approach is finally proven. 

10.1 OUTLOOK 

For the implementation of novel materials and structures in the aviation industry, a quality and 

reproducibility assurance is of immense importance. As shown in this study, the quality of TPC 

sandwiches is highly dependent on the processing parameters. Therefore, a technique has to 

be developed which allows inline monitoring of the process parameters such as skin 

temperature. A promising technology could be the integration of micro sensors on the PEI film 

of the skins, which allows for monitoring of heat and pressure during processing and which 

can remain in the sandwich construction after processing. Micro sensors printed on PEI films 

have already been developed by Airbus Group Innovations. 

Furthermore, the mechanical characterisation with a subsequent evaluation reveals that the 

performance of the developed CF/PEEK-PEI foam sandwiches is low compared to the state- 

of-the-art sandwiches and cannot totally fulfil all envisaged requirements. However, the 

process offers the advantage of reducing the manufacturing cycle time and costs significantly 

and therefore looks promising in replacing prepreg-Nomex® sandwiches in applications where 

manufacturing costs are of higher significance than the mechanical performance of the 

structure. In order to also find application in heavier loaded elements, two concepts, based on 

the integration of pins into the core to strengthen the structures are developed and their 

potential is shown in first trials. To take further advantage of these concepts, more detailed 

investigations concerning pin amount, pin diameter, etc. should be performed in the future. 

Finally, the realisation of the shaped panel proved the feasibility of the production of shaped 

sandwich parts. A good bond between skins and core was achieved, though skin-to-skin 

joining at some locations could not be performed sufficiently well. This lack of bonding is related 

to periphery effects and due to the fast heat transfer from the skin into the cold mould. 

However, it is assumed that a modification of the mould and adaptation of heating elements to 

limit skin cooling during transfer can be solved by an industrialised process and can lead to 

the successful production of shaped sandwich panels. 
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12. APPENDIX 

12.1 APPENDIX A 

Table 25: Material data for heat transfer model 

Press 

Parameter Symbol Value Unit Source 

Total height ℎ𝑝 0.08 m  

Node distance 𝑑ℎ𝑝 0.02 m  

Density 𝜌𝑃 7850 𝐾𝑔/𝑚3 
[200] 

Specific heat 
capacity 

𝑐𝑃 490 𝐽/(𝐾𝑔 𝐾) 
[201] 

Heat conductivity 𝜆𝑃 40 𝑊/(𝑚 𝐾) [202] 

 

Transfer plate 

 

Parameter Symbol Value Unit Source 

Total height ℎ𝑇 0.015 𝑚  

Node distance 𝑑ℎ𝑇 0.015 𝑚  

Density 𝜌𝑇 2700 𝐾𝑔/𝑚3 [200] 

Specific heat 
capacity 

𝑐𝑇 450 𝐽/(𝐾𝑔 𝐾) 
[201] 

Heat conductivity 𝜆𝑇 200 𝑊/(𝑚 𝐾) [202] 

 

Skin/Laminate 

 

Parameter Symbol Value Unit Source 

Total height ℎ𝐿 0.002 𝑚  

Node distance 𝑑ℎ𝐿 0.00066667 𝑚  

Density 𝜌𝐿 1540 𝐾𝑔/𝑚3 [154] 

Specific heat 
capacity 

𝑐𝐿 1300 𝐽/(𝐾𝑔 𝐾) 
[203] 

Heat conductivity 𝜆𝐿 0.71 𝑊/(𝑚 𝐾) [203] 
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Core 

Parameter Symbol Value Unit Source 

Total height ℎ𝐶 0.020 𝑚  

Node distance 𝑑ℎ𝐶 0.001 𝑚  

Reduced node 

distance 
𝑑ℎ𝐶,𝑠𝑚𝑎𝑙𝑙 0.0001 𝑚 

 

Density 𝜌𝐶 110 𝐾𝑔/𝑚3  

Density PEI-Melting 𝜌𝐶,𝑠𝑚𝑎𝑙𝑙 1300 𝐾𝑔/𝑚3 [203] 

Specific heat 

capacity 
𝑐𝐶 450 𝐽/(𝐾𝑔 𝐾) 

measured 

Specific heat 

capacity PEI-Melting 
𝑐𝐶,𝑠𝑚𝑎𝑙𝑙 1250 𝐽/(𝐾𝑔 𝐾) 

measured 

Heat conductivity  𝜆𝐶 0.04 𝑊/(𝑚 𝐾) [204] 

Heat conductivity 

PEI-Melting 
𝜆𝐶,𝑠𝑚𝑎𝑙𝑙 0.22 𝑊/(𝑚 𝐾) 

[203] 

12.2 APPENDIX B 

 

 

Figure 123: Normalised tensile strength results (normalised to 300-125-2) 
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Figure 124: Normalised peel strength results (normalised to 300-125-2) 

 

Figure 125: Normalised edgewise compression strength results (normalised to 300-125-2) 
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Figure 126: Normalised shear strength results (normalised to 300-125-2) 

 

Figure 127: Normalised compression strength (normalised to 300-125-2) 
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Figure 128: Normalised 4pt-bending results (normalised to 300-125-2) 

 

Figure 129: Normalized residual strength after impact (normalized to 300-125-2, 0J) 
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Figure 130: Penetration depth of impact weight 
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