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Abstract: Remote sensing-based woody biomass quantification in sparsely-vegetated areas is often
limited when using only common broadband vegetation indices as input data for correlation with
ground-based measured biomass information. Red edge indices and texture attributes are often
suggested as a means to overcome this issue. However, clear recommendations on the suitability of
specific proxies to provide accurate biomass information in semi-arid to arid environments are still
lacking. This study contributes to the understanding of using multispectral high-resolution satellite
data (RapidEye), specifically red edge and texture attributes, to estimate wood volume in semi-arid
ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection
Operator) and random forest were used as predictive models relating in situ-measured aboveground
standing wood volume to satellite data. Model performance was evaluated based on cross-validation
bias, standard deviation and Root Mean Square Error (RMSE) at the logarithmic and non-logarithmic
scales. Both models achieved rather limited performances in wood volume prediction. Nonetheless,
model performance increased with red edge indices and texture attributes, which shows that they
play an important role in semi-arid regions with sparse vegetation.

Keywords: woody biomass; wood volume estimation; semi-arid; RapidEye; red edge; texture

1. Introduction

Standing biomass in semi-arid to arid regions plays a significant role in preventing soil erosion
and degradation and can be considered as an important carbon pool due to the vast extent of drylands
over the Earth’s land surface. It also provides a year-round source of firewood and construction
timber for the local population [1–3]. For gaining quantitative information on aboveground biomass,
the utilization of remote sensing-based applications has become increasingly feasible in recent years.
Earth Observation (EO) datasets are available for large areas, and rapid advances in remote sensing
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techniques allow fast, frequent and continuous biomass observations over various scales in time
and space [4,5]. As optical EO data alone cannot directly generate reliable quantitative biomass
information [6], a common approach correlates satellite-derived parameters—primarily vegetation
indices (VIs) measuring photosynthetic vigor—with ground-based measured biomass information,
e.g., [7–10]. This allows an indirect prediction of quantitative biomass information.

In regions with high biomass levels, such as tropical or boreal regions, remote sensing studies of
vegetation are more comprehensive than in semi-arid to arid savannahs or shrublands [6]. However,
in environments where sparse woody vegetation is predominant, remote sensing techniques face
specific challenges, and additional methodological research is needed [11–15]. Various studies have
shown that the performance is limited when using common broadband Vis, such as NDVI (Normalized
Differenced VI) to estimate biomass or wood volume in arid to semi-arid regions using optical data
with low resolution (>1 km), e.g., [15–21], and medium resolution (>5 m–<1 km), e.g., [9,13,22–25].
To overcome this methodological barrier and to find proxies that could improve the accuracy in
retrieving biomass information in sparsely-vegetated areas, different techniques and sensors have been
used and tested and include combining high-resolution satellite data with multi- or hyper-spectral
information [6,10,26,27]. Nonetheless, clear recommendations on the suitability of specific sensors for
semi-arid to arid environments are lacking, and the development of an operational technique that is
consistently accurate and reproducible still remains challenging [6,13].

Synthesizing suggestions, the red edge band (spectral range between 690 and 730 nm) is supposed
to be more effective in differentiating the reflectance of the soil background from woody reflectance
characteristics due to its wavelength position (690–730 nm) at the edge between red and near
infrared [28]. The position covers chlorophyll absorption, as well as leaf cell structure reflection,
adding information for vegetation characterization. Thus, red edge indices are expected to favor
biomass and wood volume estimation in semi-arid landscapes more than traditional VIs [6,26,29,30].
Besides the use of red edge indices, it has been suggested to additionally include texture attributes
of satellite images [1,5,10,30–34]. Image texture discriminates the spatial variability of neighboring
pixels independent from image tone [35]. The review of existing scientific literature has shown that
little research has been conducted and published on biomass or wood volume estimation in semi-arid
regions using high resolution imagery in combination with indices, including the red edge band or
texture attributes, e.g., [10,27,36,37].

The main objective of this study is therefore to improve the understanding of the interrelationship
between multispectral high-resolution satellite data and ground-based measured wood volume in
semi-arid ecosystems with scarce woody vegetation. Our hypothesis is that red edge indices in
combination with texture attributes are more effective for wood volume estimation than conventional
broadband spectral information. This hypothesis is tested by linking high-resolution RapidEye
satellite data with in situ field data of wood volume obtained in the semi-arid high mountainous
region of Tajikistan.

2. Study Area

Sampled forest plots for obtaining field measurements of woody biomass are located in a valley
in the southwestern part of Gorno Badakhshan Autonomous Oblast (also known as the Tajik Pamirs)
in the eastern high mountains of Tajikistan (Figure 1). In this region, the local energy demand for
cooking and heating is high [38,39]. Woody biomass, used as firewood, is of major importance to
cover the energy needs of the local population [39]. However, due to the mountainous topography
and a continental climate with long winters of up to six months and considerable dryness, habitats
for woody biomass are scarce [40,41]. Only fertile riparian zones and alluvial fans can provide larger
habitats for denser woody vegetation [42]. However, these fertile areas are also important for crop
cultivation and livestock farming, which implies that different ecosystem services compete on a local
scale [43]. Given the dependence of the local population on firewood and the lack of related research,
information on forest woody biomass is required to support the sustainable management of the stocks.
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Figure 1. Overview map of the research area (Ishkashim district, Gorno Badakhshan Autonomous 
Oblast, Tajik Pamirs) and sampled forest plots. DEM source [44]. 
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The methodological approach of the study includes three steps as shown in Figure 2: (1) obtaining 
ground-based measured woody biomass information and deriving wood volume; (2) processing of 
satellite images, including the development of indices; and (3) linking both ground- and  
satellite-based data sources to find a correlation and to spatially predict wood volume for sampled 
forest plots. 
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3. Material and Methods

The methodological approach of the study includes three steps as shown in Figure 2: (1) obtaining
ground-based measured woody biomass information and deriving wood volume; (2) processing of
satellite images, including the development of indices; and (3) linking both ground- and satellite-based
data sources to find a correlation and to spatially predict wood volume for sampled forest plots.
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3.1. Field Data

Field data were collected in August and beginning of September 2013 in seven forest stands
distributed along the valley (Figure 1). The total area of sampled forest stands aggregates to 255 ha.
These forest stands are found inside defined plots according to the cadaster and serve as a source of
firewood and timber for the adjacent villages. The demarcation and size of the plots are defined by
the cadaster. To homogeneously distribute sampling transects in relation to the size and vegetation
density of the stands, a pre-stratification of the stands was conducted. Four vegetation cover classes
were defined within the forest stands (Figure 3) based on very high resolution Google Earth Images
from 2008, a land cover map based on QuickBird imagery from 2008 [45] and a guided walk through
the whole forest stand with local foresters. The guided walk, considered as purposive sampling,
was conducted to update the pre-stratification of the stands, as timely corresponding satellite images
were not available prior to the time of field data collection.
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research area.

Based on the pre-stratification, 95 sampling transects were placed in the four different classes.
Data collection in each sampling transect followed the line intercept method [46]. This method is
especially straightforward when field measurements over a larger area are required [46] and when
boundaries of plant growth are relatively easy to determine, as is the case for semi-arid shrubby
vegetation types [47]. Each sampling transect represented a 20 ˆ 2 m transect, leading to a total area of
3800 m2 sampled. The sampling intensity amounts to 0.15% in relation to the total area of sampled
forest stands. Within each transect, the start and end with a GPS (Trimble Juno 3B with an accuracy of
3–5 m) and the quantitative data of each individual standing tree and shrub were recorded.

3.1.1. Sampled Woody Species

The small-leaved mountain forest, also known as riparian or floodplain forest [48,49],
is predominant in the region and consists of the following main species: willow species (Salix turanica,
Salix shugnanica, Salix wilhelmsiana, Salix alba), poplar species (Populus pyramidalis, Populus pamirica)
and sea buckthorn (Hippophae rhamnoides) [48–51]. All sampled transects were dominated by willow
(Salix spec.) (N = 472) and sea buckthorn (H. rhamnoides) (N = 560), whereas poplars (Populus spec.)
(N = 67) were only present in some plots in smaller abundance (Figure 4).
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3.1.2. Field Measurements and Wood Volume Calculation

Wood volume was derived from non-destructive measurements, including: most common
dimensions (stem diameter and height) to determine the stem volume of a standing tree or shrub
consisting of stem plus bark, which is widely considered as merchantable stem and bark volume [52–54].
Stem volume was estimated as a function of the stem basal area, derived from the diameter or
circumference and height [54]. Circumference was measured with a measuring tape at breast height
(d1.3m) for single stemmed trees, whereas for multiple stemmed shrubs, the diameter of each single
stem sprouting from the ground was determined with a caliper at knee height (d0.3m) and summed
up. A clinometer was used to measure total height (htot) for single-stemmed trees and average height
(havg) for multiple stemmed shrubs. As Hoyer [54] does not consider the shape of a stem or branch
in his formula, a form quotient approximately representing the shape of a stem was integrated to
increase accuracy [46,55]. This quotient was not derived from empirical destructive measurements
either, but from on-site measurements at the standing tree or shrub. As with form factors, several types
of form quotients were developed [53,55]. The quotient chosen follows an approach developed by
Jonson [53,55], who suggested integrating an absolute form quotient, consisting of the ratio between
measured diameters at two points (breast height and half the stem height above breast height) to
capture the tree shape. In this case, we used points at knee height (d0.3m) and breast height (d1.3m)
at the standing stem or branch, because most of the tree stems and branches were heavily branched
and not much higher than breast height. Subsequently, the ratio from these two values was derived
to gain an approximate quotient (ƒ) for the taper shape. The form quotient was calculated on the
basis of 100 willow and sea buckthorn individuals, respectively, as well as for 35 poplar individuals.
The derived form quotient (for poplar and sea buckthorn 0.73; for willow 0.69) was compared to the
literature. According to Cannell [52], empirical studies on 640 forest and woodland stands around the
world found that heavily-branched stands had form factors in the range of 0.6–0.8. This underlines the
fact that the derived form quotient represents a solid reference value for the stem shape and is not
too far from reality given the time constraints and conditions to do field work in the research area.
Integrating all parameters, equations for single-stemmed trees (Vtree) and for multiple stemmed shrubs
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(Vshrub) are as follows (Equations (1) and (2)). The calculated volume per individual was summed up
for the whole transect and, thus, served as input data for the statistical regression with satellite data.

Vtree “
π

4
ˆ pd1.3mq

2 ˆ htot ˆ f (1)

Vshrub “
π

4
ˆ p

ÿn

i“0
˚ d0.3mq

2 ˆ havg ˆ f (2)

3.2. Satellite Data

High-resolution RapidEye satellite images (8 tiles; 25 ˆ 25 km each), consisting of 5 bands,
including a red edge band covering the spectral range between 690 and 730 nm, were obtained from
the RapidEye Science Archive with a pixel spacing of 6.5 m, resampled to 5 m. The acquisition dates of
the images were chronologically very close (13 July 2013; 19 July 2013) and close to the dates of the
fieldwork, which facilitates a comparison with the field measurements.

Image data were atmospherically corrected using the FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) module in ENVI Version 4.7, cf. [10,56]. Required parameters to run
FLAASH were mainly set to standard conditions matching the research area. Mid-latitude winter was
set as the atmospheric model with a low value for water vapor and below zero surface air temperature.
Visibility was set to 80 km, because weather conditions in the research area are mainly clear, especially
in summer, cf. [57]. Other parameters (water retrieval and aerosol) were set to none. As further step,
images were mosaicked using a feathering algorithm.

To use spectral and spatial information for computing indices, mean reflectance values of each
band were extracted for the pixels covered by the sampling transects. Various indices were calculated
with the derived reflectance values (Table 1). The indices can be categorized into: (i) single bands,
representing reflectance values within the spectral range; (ii) band ratios, which detect differences in
surface properties; (iii) broadband greenness vegetation indices, measuring photosynthetic activity [58];
(iv) red edge indices, which use reflectance measurements in the narrow red edge reflectance
portion, showing maximum sensitivity for detecting the state of the vegetation [59]; (v) soil adjusted
vegetation indices, which attempt to minimize the effect of soil background [60]; and (vi) leaf
pigments vegetation indices, which do not measure chlorophyll, but stress-related pigments present
in vegetation [59]. Besides spectral information, spatial information was extracted from the satellite
data. A co-occurrence-based filter embedded in ENVI software (Version 4.7) was used to extract the
following image texture parameters: mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment and correlation [61]. The filter window size was kept low (3 ˆ 3 pixels), in order not
to lose spatial information due to over-smoothing of textural variations. In a relatively narrow forest
plot, a larger window size increasingly contains non-forest information. In addition, a 3 ˆ 3 window
size shows good performance in deriving biomass in forests [62].

Table 1. Categorized indices used in this study (selected).

Indices Description/Equations References

Single Bands Represent reflectance values within respective
spectral range
B1–B5

Band Ratios Detect spectral differences and, thus, differences in
surface properties
B1/B2–B1/B5; B2/B3–B2/B5; B3/B4–B3/B5; B4/B5

Broadband Greenness VIs Try to measure and display the overall amount of
photosynthetic material in vegetation Tucker [58]

Chlorophyll Index Green/Chlorophyll
Green Model CGM “ NIR

G ´ 1 Gitelson et al. [63]

Green Normalized Difference
Vegetation Index GNDVI “ NIR´G

NIR`G
Gitelson and Merzylak [64],
Loris and Damiano [65]

Green Blue Normalized Difference
Vegetation Index GBNDVI “ NIR´pG`Bq

NIR`pG`Bq Wang et al. [66]

Normalized Difference Vegetation Index NDVI “ NIR´R
NIR`R Tucker [58]
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Table 1. Cont.

Indices Description/Equations References

Red edge indices Use reflectance measurements in red edge
reflectance portion Verrelst et al. [59]

Browning Reflectance Index BRI “
1
G´

1
RE

NIR
Merzylak et al. [67]

Canopy Chlorophyll Content Index
CCCI “

NIR´RE
NIR`RE
NIR´R
NIR`R

Barnes et al. [68]

Normalized DifferenceNear-Infrared
Red Edge NDRE “ NIR´RE

NIR`RE
Barnes et al. [68], Gitelson
and Merzylak [69]

Normalized DifferenceRed Edge Red NDRE “ RE´R
RE`R

Tasseled Cap: Soil Brightness Index TCSBI = 0.332 ˆ G + 0.603 ˆ R + 0.675 ˆ RE ´ 0.262 ˆ NIR Kauth and Thomas [70],
Bannari et al. [71]

Soil Adjusted VIs
Attempt to minimize the effect of soil background
as one source of variation by integrating soil
adjustment parameters

Gilabert et al. [60]

Enhanced Vegetation Index EVI “ 2.5˚NIR´R
NIR`6˚R´7.5˚B`1 Huete et al. [72]

Soil Adjusted Vegetation Index SAVI “ NIR´R
NIR`R`0.5 ˚ p1` 0.5q Huete [73]

Leaf Pigments Measures stress-related pigments present in vegetation Verrelst et al. [59]

Anthocyanin Reflectance Index ARI “ 1
G ´

1
RE Gitelson et al. [74]

Texture Information Detect structural details of surface Haralick et al. [61]
Single Bands TB1–TB5

Band Ratios TB1/TB2–TB1/TB5; TB2/TB3–TB2/TB5;
TB3/TB4–TB3/TB5; TB4/TB5

B1–B5: Band 1–Band 5; NIR: Near-Infrared; RE: Red Edge; R: Red; G: Green; B: Blue; TB1–TB5: Texture of Single
Bands 1–5.

3.3. Modeling Wood Volume

The large number of potential predictors (160) exceeds the number of ground observations (95),
which creates a high-dimensional problem leading to overfitting of models [75]. To prevent this
issue, two different models were selected, which are stated to be effective in this context [10,76,77].
Firstly, a linear model with variable selection based on the LASSO (Least Absolute Shrinkage and
Selection Operator) technique was chosen as a method that uses shrinkage heuristics and performs
variable subset selection prior to prediction [10]. This method is therefore able to deal with large
numbers of variables and it is also robust when using unequally-distributed variables [76]. An internal
cross-validation was used to optimize the shrinkage penalty. Secondly, the Random Forest (RF)
technique was used, which has become popular in remote sensing applications when dealing with
high-dimensional data [77]. This technique is based on a large number of decision trees (in this study,
500) fitted to random subsets of the training sample. Both LASSO and RF were fitted to logarithmic
wood volume data (to base 10) to better account for non-negativity and nonlinearity. One outlier value
in four predictors was trimmed to a value near the second most extreme observed value in the sample.

Predictive model performances of LASSO and RF were estimated using spatial cross-validation [78].
Considering the spatial clustering of field sites and the expected autocorrelation of observations
within forest stands, the dataset was subdivided into 5 spatial subsets containing between 9 and
29 observations. Five-fold cross-validation was performed using this partitioning. Within this process,
one subset at a time was used as a test set, while the other four were used as training sets for a predictive
model [75]. Predictions from all five test sets were combined in order to calculate cross-validation
bias, standard deviation and Root Mean Square Error (RMSE) at the logarithmic and non-logarithmic
scale of wood volume. In addition, three different predictor sets of indices (1: predictor set with
only broadband Vis, including single bands and band ratios; 2: Predictor Set 1 + red edge indices;
3: Predictor Sets 1 + 2 + texture attributes) were fed into the model to assess the importance of red
edge indices and texture attributes. Topographic information (e.g., digital elevation model) was not
integrated, as sampled forest stands were located only in flat riparian zones.

One model was selected based on model performance and computational complexity in order to
map the wood volume for all sampled forest stands in the study region. To consider the bias introduced
in back transformation calculation by logarithmic transformation, predicted values were multiplied
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with an empirical correction factor based on Baskerville [79]. In order to assess each predictor’s relative
predictive importance, the permutation-based approach was used [80,81]. Specifically, each predictor
was randomly permutated in order to obtain degraded predictions on spatial cross-validation test sets,
and the increase in cross-validation RMSE was used as a measure of variable importance. In the case
of the LASSO model, linear model coefficients were furthermore extracted as indicators of variable
selection and importance. Nevertheless, variable importance measures in this high-dimensional setting
should be taken with a grain of salt due to the high degree of redundancy in the data. For example,
correlation among predictors (collinearity) was not considered in the model. However, 25% of all
pairwise Pearson’s correlations among predictors were >0.80 in absolute value, indicating potential
collinearity among multiple predictors.

Statistical calculations were implemented with R, using Packages “glmnet” for LASSO [82],
“randomForest” for random forest [83], “sperrorest” for spatial cross-validation and variable
importance [81] and “RSAGA” for spatial prediction on raster stacks [84].

4. Results

4.1. Ground-Based Measured and Calculated Parameters

Focusing on height and diameter as the main input variables for estimating wood volume,
poplars were the highest individuals measured (max. 11.7 m), whereas sea buckthorn individuals
were relatively small. Willow individuals had a high abundance of stems sprouting from the
ground (on average 11.6 stems over all individuals measured) leading to high values for diameter.
Poplars had primarily single solid stems. Diameter values for sea buckthorn individuals were rather
low (on average 5.6 cm over all individuals measured). In comparison to willow, the stems were
relatively small. Table 2 shows most relevant statistical parameters for each forest stand over all
individuals measured divided by species.

Table 2. Statistical parameters of all forest stands and of all individuals measured per species per forest
stand (based on median values).

Sumjin Darshay Narkhun Tugoz Nishgar Drij Hisor

Size of forest stand (ha) 24 14 44.7 12.5 74.9 12.6 71.1
Total wood volume (m3¨ha´1) observed in the field 31.8 56.2 250.5 230.2 264.0 343.5 651.3
Total wood volume (m3¨ha´1) estimated by remote
sensing

174.2 253.2 249.5 343.2 177.4 148.2 186.9

Poplar (N = 67)
No. of trees (per ha) - 39 28 - 336 179 110
Height (m) - 6.6 6.5 - 6.8 7.0 10.5
Diameter at breast height (1.3 m) (cm) - 9.5 14.2 - 15.9 35.0 28.7
Wood volume (m3¨ha´1) - 2.3 3.7 - 68.1 101.6 84.5

Sea buckthorn (N = 560)
No. of trees (per ha) 2352 1442 625 1923 276 - 480
Height (m) 1.9 2.4 1.8 1.9 1.5 - 1.9
Diameter at knee height (0.3 m) (cm) 5.0 4.8 5.0 6.5 2.5 - 5.3
Wood volume (m3¨ha´1) 31.1 10.6 6.0 43.5 21.3 - 18.6

Willow (N = 472)
No. of trees (per ha) 636 404 1250 1077 827 714 1260
Height (m) 2.1 2.4 2.8 5.2 2.1 2.7 3.0
Diameter at knee height (0.3 m) (cm) 10.0 13.7 32.8 23.7 25.5 42.9 40.5
Wood volume (m3¨ha´1) 6.2 11.7 180.3 172.4 58.3 182.8 282.8
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Wood volume was calculated for each recorded individual. In Table 2, median wood volume
per ha is indicated for each species per forest stand. Here, the values vary depending on the median
number of trees per ha found in each forest stand. For poplars, the height of the single stems was
the decisive factor for volume values. Willow individuals do not grow very high, but due to a high
abundance of stems the wood volume was similar to that of poplars. Sea buckthorn individuals
showed the lowest values for wood volume. Even though the individuals often appear rather bulky,
the actual wood volume was comparatively low.

4.2. Empirical Wood Volume Models and Variable Importance

LASSO and RF both achieved rather limited performances in wood volume prediction. This is
true for all predictor sets of VIs (Table 3). The model performances for both LASSO and RF increase
with feeding red edge indices (Predictor Set 2) into the model, but show the best performances with
adding both red edge indices and texture attributes (Predictor Set 3).

Table 3. Statistics of the cross-validated LASSO and RF model results for different predictor sets.

Predictor Set 1 1 Predictor Set 2 2 Predictor Set 3 3 Predictor Set 3

Broadband VIs Broadband VIs +
Red Edge

Broadband VIs +
Red Edge + Texture

Broadband VIs +
Red Edge + Texture
(log10 wood volume)

LASSO
Bias (m3¨ha´1) 265 267.5 222.5 222.5
Standard Deviation (m3¨ha´1) 697.5 687.5 655 348.3
RMSE (m3¨ha´1) 745 735 687.5 687.5
RMSErel (%) 130 128 118 120

Correlation between observed
and predicted

0.01 (R2) 0.01 (R2) 0.10 (R2) 0.27 (R2)
0.12 (PC 4) 0.13 (PC) 0.31 (PC) 0.52 (PC)
0.33 (SC 5) 0.26 (SC) 0.51 (SC) 0.51 (SC)

Random Forest
Bias (m3¨ha´1) 220 207.5 265 265
Standard Deviation (m3¨ha´1) 687.5 672.5 617.5 241.8
RMSE (m3¨ha´1) 717.5 700 667.5 667.5
RMSErel (%) 125 122 117 117

Correlation between observed
and predicted

0.04 (R2) 0.06 (R2) 0.16 (R2) 0.26 (R2)
0.20 (PC) 0.25 (PC) 0.40 (PC) 0.51 (PC)
0.33 (SC) 0.37 (SC) 0.50 (SC) 0.50 (SC)

1 Predictor Set 1 = single band + band ratio + soil adjusted VIs + leaf pigment VIs + broadband VIs; 2 Predictor
Set 2 = Predictor Set 1 + red edge VIs; 3 Predictor Set 3 = Predictor Set 1 + Predictor Set 2 + texture attributes;
4 PC: Pearson correlation; 5 SC: Spearman correlation.

The best models, using Predictor Set 3 as input data, show Spearman correlations of 0.51 for
LASSO and 0.50 for RF between measured values and predictions on cross-validated test sets.
High values of RMSE at the non-logarithmic scale (LASSO: 687.5 m3¨ ha´1; RF: 667.5 m3¨ ha´1)
may seem disappointing compared to the wood volume standard deviation of observed values
of 672.5 m3¨ ha´1. However, these values are inflated by extreme values, especially in the case of the
less robust LASSO method as a linear model. The Spearman correlations mentioned above and the
somewhat lower Pearson correlations of 0.31 (LASSO) and 0.40 (RF) confirm the influence of outliers
and the (limited) predictive capability (p-values <0.01 for both correlation tests). On a logarithmic
scale, the cross-validated RMSEs are 0.71 for LASSO (687.5 m3¨ ha´1 back-transformed to absolute real
values) and 0.70 for RF (667.5 m3¨ ha´1 back-transformed to absolute real values) for Predictor Set 3.
The increase of the Pearson correlation to 0.52 (LASSO) and 0.51 (RF) shows some predictive capability.
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Among the top 20 predictors in the permutation-based assessment for RF were nine texture
attributes, eight red edge indices and three band ratios, also including the red edge band. The most
important variables for the sparser LASSO models include four texture attributes, four red edge indices
and one band ratio of red edge and green bands.

Scatterplots of predicted versus observed wood volume for both better performing models,
LASSO and RF volume predictions tend to be biased towards lower values (Figure 5).
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Figure 5. Scatterplots of predicted wood volume derived from the relationship between spectral
data and in situ measurements versus observed wood volume (N = 95) in a m3/transect the best
performing model: (a) LASSO (0.27 R2; 0.52 Pearson correlation (PC); 0.51 Spearman correlation (SC));
and (b) random forest (0.26 R2; 0.51 PC; 0.50 SC); predicted values correspond to cross-validation test sets.

The volume map, obtained with the best performing model (LASSO: Predictor Set 3; log-scale;
R2 = 0.27; PC = 0.52; RMSE = 687.5 m3¨ ha´1; 120%), generally predicted values between 10 and
400 m3 of wood volume per ha (Figure 6). Wood volume is mainly scattered over the plots, tending to
decrease towards the edges of the plots and to increase along small canals (e.g., Hisor, where small
canals meander through the forest plot) and other water sources, such as gorges (e.g., Narkhun).
Predicted volume can only be found homogeneously for Tugoz over the whole plot. This distribution
corresponds to the observations in the field. The highest predicted average stock of wood volume per
hectare can be found in the forest plot in Tugoz (343.2 m3¨ ha´1 of wood volume in comparison to
230.2 m3¨ ha´1 observed in the field). For the other plots, predicted wood volume ranges between 150
and 250 m3¨ ha´1, whereas the range for observed values is much bigger. However, absolute values
need to be interpreted with caution.
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Figure 6. Predicted wood volume map in m3¨ha´1 for each forest stand investigated with LASSO
(Predictor Set 3; log-scale; R2 = 0.27; PC = 0.52; RMSE = 687.5 m3¨ha´1; 120%).
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5. Discussion

5.1. Model Performance

This study uses high-resolution red edge and texture attributes retrieved from RapidEye satellite
images to tackle the challenge of remote sensing-based wood volume estimation in semi-arid regions.
We demonstrate that red edge indices and texture attributes improve the predictive performance
in comparison to conventional methods limited to broadband VIs. In this respect, our findings are
consistent with several other studies [26,85–87]. However, many studies, testing red edge indices,
focus either on regions with high biomass levels or on crops. For example, in Eitel et al. [26], red edge
information improved the detection of stress-related shifts in foliar chlorophyll in conifer woodland.
Ali et al. [85] tested the red edge band for estimating winter wheat and found a better correlation of
red edge indices with the leaf area index of winter wheat than with conventional VIs. Kross et al. [86]
found similar results estimating biomass in corn and soybean crops.

Findings for woody biomass estimation testing red edge indices particularly in semi-arid to arid
regions are diverse. In Li et al. [87], the red edge VI outperformed the commonly-used NDVI in
estimating vegetation fraction in arid regions. For savanna [88], desert steppe [89] and grass/herb
vegetation [90], the analyses showed similar results. In other studies, however, the additional red
edge band was not superior to other model inputs [10,30]. Here, SAV (Spectral Angle Values)-based
variables, soil adjusted vegetation indices or topographic variables were more important.

The findings are similar for texture measures. The general picture of the studies is in line with our
findings. Texture measures play an important role in predicting biomass. In, e.g., [5,33,91], texture
variables distinctively improved forest biomass estimates and carbon prediction. Again, these studies
were carried out in biomass-rich areas. Eckert [32] found in her study that biomass correlates more
with texture measures than with conventional spectral parameters, especially in degraded forest areas.
In strongly arid regions, texture measures were also found to be important variables [10,30], but not
as decisive as in former studies. In these two studies, it is also suggested to further exploit texture
variables not only from single bands, but also from indices, such as soil adjusted indices. In doing so,
model performance was shown to improve in Vanselow and Samimi [30].

5.2. Model Uncertainties

Even though the predictive capacity of the model increased with red edge indices and texture
attributes, the overall model accuracy is rather moderate. Therefore, uncertainties need to be taken into
consideration when looking at the predicted wood volume distribution map. High predictive errors
can also be found in other studies that relate biomass in semi-arid regions to optical remote sensing
data [10,18,22,92], whereas a direct comparison of statistical results must also be treated with caution.

Predictive uncertainty can partly be attributed to the fact that the photosynthetic signal captured
by most spectral bands and indices is biased. This is especially true in semi-arid landscapes where
sparse woody vegetation is predominant. Pixels are mixed partially with a strong soil background
or herbaceous vegetation and plants consisting of photosynthetic and non-photosynthetic woody
material. A multi-temporal approach to map soil, herb, shrub and tree cover according to seasonal
phenological differences may be an appropriate way of overcoming this issue, as suggested and
successfully implemented in Shoshany and Svoray [93]. This study took only a snapshot within one
year, which can be definitely considered as a limitation. However, in the cold semi-arid environment
of the research area, the vegetation period is rather short. A reliable stable year-round phenology
pattern is not given and, therefore, not as decisive as in other regions. The growth of vegetation does
not depend so much on the rainfall distribution, but on water availability from the rivers, irrigation
and groundwater fed by snow melt and glacial runoff. With the launch of Sentinel 2, red edge images
with a high spatial resolution are freely available at a high temporal frequency. The 10-day revisiting
period allows future studies to take the phenological differences of plants into account, leading
to a potential improvement in predictions of wood volume. Moreover, as compared to RapidEye,
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Sentinel 2 provides three red edge bands, and recent research confirms their high value for vegetation
monitoring [94,95]. Even though Sentinel 2 has a coarser spatial resolution than RapidEye (10–20 m),
a study by Radoux et al. (2016) demonstrates its potential for detecting sub-pixel landscape features.
This makes Sentinel 2 an interesting alternative to commercial satellites like RapidEye in the context
of woody biomass estimations in semi-arid areas [95]. In addition, hyperspectral satellite data may
reduce model uncertainties for satellite-based vegetation analysis in drylands, as the higher spectral
resolution is more capable in capturing the non-photosynthetic part of wood plants [27].

Furthermore, limitations regarding field observations and related wood volume calculation need
to be noted. Due to the limited time and difficulty in obtaining official permission for collecting
field data, destructive harvesting techniques or allometric equations could not be applied. Besides,
allometric equations, which could be helpful in such a case, do not exist for the research area.
The transferability of allometric equations from other regions is challenging due to the site and
species specificity and was therefore not applicable in this context. This indicates the tradeoff between
gaining accurate measurements and having a less time- and labor-intensive method.

5.3. Statistical Performance and Importance of Predictors

The challenge of having a large number of predictors was tackled with choosing LASSO
using an integrated shrinkage technique and the tree-based RF model. For both models the
suitability in such a high-dimensional setting was proven in different studies. In the case of LASSO,
Zandler et al. [10] and Lazaridis et al. [96] tested shrinkage regression techniques in comparison to
other standard methods and concluded that LASSO performs particularly well. According to the
cross-validated model performances, the RF model produced similar results to LASSO. This is contrary
to Zandler et al. [10], where the RF model showed a poorer performance than most other models.
However, in Powell et al. [92], the lowest RMSE was produced with RF for forest biomass estimation.

In the context of variable importance, red edge indices and texture attributes are highly dominant
among the top predictors. However, the significance of the variable importance has to be considered
carefully in such a high dimensional setting. Additionally, collinearity was not considered when
feeding in additional predictors.

6. Conclusions

In summary, it can be stated that our study further improved the understanding of estimating
wood volume in a semi-arid ecosystem with scarce vegetation using high-resolution multispectral
satellite data. Many studies using optical satellite data tested the suitability of red edge and texture
measures for crop and grass vegetation or in areas with high biomass levels. Knowledge of its potential
for woody and shrubby vegetation in a semi-arid to arid context is still limited. Our study showed
that red edge indices and texture measures play an important role in wood volume estimation, as the
model performance significantly improved in direct comparison to conventional vegetation indices.
Still, as our achieved model performance highlights, biomass mapping in these environments is subject
to further improvements.

As a research outlook, we suggest to focus on high-resolution hyperspectral data to achieve
better model performance for wood volume estimation in semi-arid areas. In this regard, the high
temporal frequency of Sentinel 2, which has a similar pixel resolution to RapidEye, as well as a red
edge band, provides further opportunities. A number of studies have already shown its suitability
in arid environments. Furthermore, airborne (including unmanned) laser scanning could be utilized
depending on the scale of assessment. It is very accurate in assessing forest characteristics, such as
stand height or the distribution of biomass or volume and can generate better training data for the
correlation with satellite data. From a field methodological point of view, it may be useful to increase
the number of sampling points or to develop allometric functions for local woody species to increase
the accuracy of ground data.
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