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Chapter 1

Introduction

Entropy is a concept used in thermodynamics to describe the state of order of a

system. This term is also used as a measure of amount of information in a data

set. The Maximum Entropy Method (MEM) is a general method for data analysis,

which is employed to extract the maximum amount of information from the data,

without the introduction of artifacts or assumptions concerning a model.

In crystallography, MEM has been used to reconstruct the electron density dis-

tribution in a unit cell allowed by the X-ray diffraction data. For aperiodic crys-

tals, many more parameters are needed to describe a structure, take the incom-

mensurately modulated structure as an example, which this thesis is focuses on,

basic-structure, atomic displacement parameters (ADPs) and an infinite number (in

principle) of parameters defining the modulation functions are used to describe one

independent atom in the unit cell. The conventional structure refinement methods

can determine a finite number of parameters at best, modulation functions are usu-

ally described by truncated Fourier series. Large number of parameters cannot be

refined due to interdependencies among them. Even some special shaped functions

(crenel function and sawtooth function) are used as modulation functions, but the

result of structure refinements is still restricted by the choice of parameters for the

modulation functions. The result may differ from the true functions and it may

not reflect the information content of the diffraction data. The MEM has been pro-

posed as a model-independent tool to obtain the most probable generalized electron

density in the unit cell of superspace. Analysis of this superspace electron density

1



2 CHAPTER 1. INTRODUCTION

map then provides a model-independent estimate of the modulation functions. This

thesis concentrates on the Maximum Entropy Method study of the modulated prop-

erties of incommensurate modulated structures. The modulation of the anharmonic

ADPs is found to be important, it affects the shape of modulation functions and the

fitting of the model to the diffraction data.

The theory of aperiodic crystallography is described in Chapter 2. The basic

concept of incommensurate modulated structures, incommensurate composite struc-

tures and quasicrystals are given. The idea of superspace together with symmetry

options in superspace are introduced.

The concept of entropy is presented in Chapter 3. The principles of the Maximum

Entropy Method and its applications in crystallography are described. BayMEM

(van Smaalen et al., 2003) and the Cambridge algorithm (Skilling and Bryan, 1984)

are introduced.

Chapter 4 focuses on the problem of extracting integrated intensities of Bragg

reflections from area detector data for incommensurately modulated crystals. The X-

ray diffraction data integration software Eval15 is introduced. Integration of X-ray

diffraction data measured with CCD detector on beamline F1 (Hasylab, Hamburg)

is described step by step.

Chapter 5 reports on the application of MEM to the X-ray diffraction data of

incommensurately modulated rubidium tetrachlorozincate. The MEM study com-

bined with refinement method and difference-Fourier map study have uncovered the

modulated properties of both the harmonic and anharmonic atomic displacement

parameters of the atoms.

Chapter 6 reports the application of MEM to the X-ray diffraction data of incom-

mensurately modulated Chromium pyrophosphate. The modulation functions, ac-

cording to atoms-in-molecules theory was presented. A new model was constructed

based on the results of the analysis of the MEM density. The modulated structure

in the disordered region was studied.



Chapter 2

Aperiodic crystallography and

superspace

2.1 Aperiodic crystallography

Crystals are assemblies of atoms which possess long-range translational symmetry.

Atoms are arranged according to a lattice in the unit cell, and the structure of the

whole crystal can be constructed as a periodic repetition of the unit cell along three

linearly independent directions. The position of atom μ with respect to the origin

of the unit cell is

x0(μ) = x0
1(μ)a1 + x0

2(μ)a2 + x0
3(μ)a3, (2.1)

[x0
1(μ), x

0
2(μ), x

0
3(μ)] are relative coordinates with respect to the basis vectors {a1, a2, a3}.

Translational symmetry can be characterized by the lattice Λ = {a1, a2, a3} with

lattice vectors

L = l1a1 + l2a2 + l3a3, (2.2)

where li(i = 1, 2, 3) are integers.

Aperiodic crystals lack this three-dimensional lattice periodicity, while they are

still long-range ordered. The aperiodic crystals can be divided into three main

classes (van Smaalen, 2007): modulated structures (Section 2.1.1), incommensurate

composite crystals (Section 2.1.2) and quasicrystals (Section 2.1.3).

3



4 CHAPTER 2. APERIODIC CRYSTALLOGRAPHY AND SUPERSPACE

2.1.1 Incommensurate modulated structures

Incommensurate modulated structures have an average three-dimensionally periodic

structure, but the atoms are periodically modulated according to a modulation func-

tion with a period that is incommensurate to the periodicity of the basic structure.

The real structure is therefore not periodic.

There are mainly three kinds of modulations: a displacive modulation results

in the atoms deviated from their basic structure positions, an occupational modu-

lation affects the occupancy of atomic sites by atoms or vacancies, the modulation

of ADPs affects the displacement of the atoms about their time-averaged positions.

A modulation in the real structures can be a combination of these modulations.

Displacements of atoms from the positions in the basic structure towards the posi-

tions in the superstructure can have both longitudinal and transversal components

(Figure 2.1). Modulation functions are wave functions, they are characterized by a

wave vector q which gives the direction and wavelength of the wave. The compo-

nents of q are given with respect to the basis vectors of the reciprocal lattice of the

basic structure, Λ∗ = {a∗
1, a

∗
2, a

∗
3}, according to

q = σ1a
∗
1 + σ2a

∗
2 + σ3a

∗
3. (2.3)

Wave functions u(x̄4) are periodic functions with

x̄4 = t+ q · x̄. (2.4)

t is the phase of modulation function. x̄ stands for the basic positions of the atoms,

x̄ = x̄1a1 + x̄2a2 + x̄3a3, (2.5)

where x̄i is the basic-structure coordinate of atoms along the direction ai. The scalar

product of vectors q and x̄ is:

q · x̄ = σ1x̄1 + σ2x̄2 + σ3x̄3. (2.6)
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Figure 2.1: Schematic representation of a two-dimensional incommensurate transversal
(a) and longitudinal (b) modulated crystal structure, circles are atoms which shift out of
lattice periodic positions by varying amounts given by the heavy bars. Numbers count the
period of the modulation waves (Equation 2.7).
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The modulation functions of atom μ are periodic functions:

uμ(x̄4 + 1) = uμ(x̄4). (2.7)

The displacement of atom μ with the basic position of x̄ is

uμ(x̄4) = uμ
1(x̄4)a1 + uμ

2(x̄4)a2 + uμ
3(x̄4)a3. (2.8)

The position of atom μ with basic position of x̄ in the crystal is obtained as:

xμ = x̄1a1 + x̄2a2 + x̄3a3 + uμ
1 (x̄4)a1 + uμ

2(x̄4)a2 + uμ
3(x̄4)a3. (2.9)

Any periodic function can be written as a Fourier series:

uμ
i (x̄4) =

∞∑
n=1

An
i (μ) sin(2πnx̄4) +Bn

i (μ) cos(2πnx̄4). (2.10)

An(μ) = [An
x(μ), A

n
y (μ), A

n
z (μ)] (2.11)

Bn(μ) = [Bn
x (μ), B

n
y (μ), B

n
z (μ)] (2.12)

The Fourier amplitudes An(μ) and Bn(μ) define the modulation functions of atom

μ.

2.1.2 Incommensurate composite structures

In general, composite structures are basically combinations of two or more struc-

tures. The incommensurate composite crystals are based on two or more interpene-

trating periodic structures (named as subsystems), and the basic structures of these

subsystems are mutually incommensurate. The interactions between the subsystems

affect the periodicity of these subsystems, that make all subsystems modulated. So

the incommensurate composite structures can be considered as the intergrowth of

two or more incommensurately modulated structures. A parameter has been in-

troduced to describe the periodicity of substructures: ν = 1, 2, ... for first, second

and further subsystems. The approximate translational symmetry of subsystem ν
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is characterized by the lattice:

Λν = {aν1, aν2, aν3}. (2.13)

The modulation wave vector of subsystems ν is

qν = σν1a
∗
ν1 + σν2a

∗
ν2 + σν3a

∗
ν3, (2.14)

the argument of the modulation functions of subsystem ν is given by

x̄ν4 = tν + qν · x̄ (2.15)

(van Smaalen, 2007).

2.1.3 Quasicrystals

Quasicrystals always exhibit a non-crystallographic point-symmetry which is forbid-

den in periodic structures (Shechtman et al., 1984; Steurer, 2004). Quasicrystals do

not have a three-dimensional periodic basic structure, the basic structure is incom-

mensurate. The structures of quasicrystals are described using different approach

than is used for the description of the structures of modulated crystals and compos-

ite crystals. One dominated difference is that it is not simple to distinguish main

and satellites reflections for quasicrystals. Quasicrystals are not discussed in this

thesis and the considerations in following sections are related only to the modulated

structures and composite structures.

2.2 Superspace

2.2.1 Reciprocal and direct superspace

Because of the three-dimensional long-range order of the atomic arrangement in

crystals, the Bragg reflections diffracted by periodic crystals can be indexed by an
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integer combination of three independent basis vectors.

H =
3∑

k=1

hka
∗
k. (2.16)

a∗
1, a

∗
2, a

∗
3 are the reciprocal lattice vectors. The diffraction pattern of aperiodic crys-

tals is not indexable with three integer indices. For example, the diffraction pattern

of modulated crystals consists of reflections corresponding to the basic structure

(main reflections) and reflections corresponding to the modulation wave (satellites).

In the reciprocal space, the satellite reflections located between main reflections, as

they are still points in a general three-dimensional space (reciprocal space), they do

not need more than three basis vectors for indexing (not integers anymore). These

satellite reflections are away from the main reflections which belong to the integer

combination of the basis vectors indexing (Equation 2.16 ), so the satellite reflec-

tions can only be indexed with non-integer combination of the basis vectors. With

this method, all reflections can be indexed by (3 + d) (d ≥ 1 ) vectors with 3 basic

vectors for main reflections and d additional vectors for satellite reflections. The first

three vectors are linearly independent and the additional vectors can be expressed

as:

a∗
3+j =

3∑
i=1

σjia
∗
i , j = 1, ..., d. (2.17)

The diffraction vector H of each reflection can be indexed by (3 + d) integers:

H =

3+d∑
k=1

hka
∗
k. (2.18)

Take one-dimensional modulated structures as example, four (= 3+1) integers have

to be used to index the reflections:

H = h1a
∗
1 + h2a

∗
2 + h3a

∗
3 + h4a

∗
4. (2.19)
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The first three basis vectors define a reciprocal lattice,

Λ∗ = {a∗
1, a

∗
2, a

∗
3}, (2.20)

the fourth basis vector can be expressed as:

a∗
4 = σ1a

∗
1 + σ2a

∗
2 + σ3a

∗
3. (2.21)

This is actually the definition of q vector (Equation 2.3). Because at least one of

σi (i = 1, 2, 3) is irrational, so the set

Λ∗
4 = {a∗

1, a
∗
2, a

∗
3, a

∗
4} (2.22)

is rationally independent and the indices (h1, h2, h3, h4) are unique. Then Equation 2.19

can be transformed to

H = (h1 + σ1h4)a
∗
1 + (h2 + σ2h4)a

∗
2 + (h3 + σ3h4)a

∗
3. (2.23)

This confirms that satellite reflections are located between the main reflections in

reciprocal space. Customarily, the three-dimensional space is called external space

and the (+1)-dimension is named to internal space (van Smaalen, 2007).

The idea of superspace is describing aperiodic functions as periodic functions in

an abstract space with (3 + 1) dimensions. The four reciprocal vectors (a∗
1, a

∗
2, a

∗
3,

q ) in three dimensional space are considered to be the projection of four reciprocal

basis vectors in (3+1) dimensional space. So a reflection indexed with (h1, h2, h3, h4)

can be identified with the reciprocal lattice point in (3 + 1) dimensional space by

the same indices:

Hs = h1a
∗
s1 + h2a

∗
s2 + h3a

∗
s3 + h4a

∗
s4. (2.24)

The reciprocal lattice in superspace is defined by (van Smaalen, 2007):

Σ∗ :

{
a∗
si = (a∗

i , 0) i = 1, 2, 3

a∗
s4 = (a∗

4,b
∗).

(2.25)
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The vector b∗ is perpendicular to real space, it has no physical meaning, the length

is arbitrary and here is set to one. The direct superspace lattice corresponding to

the reciprocal lattice Σ∗ is (van Smaalen, 2007):

Σ :

{
asi = (ai,−σib) i = 1, 2, 3

as4 = (0,b).
(2.26)

Vectors in direct superspace with coordinates relative to Σ are defined by :

xs = xs1as1 + xs2as2 + xs3as3 + xs4as4. (2.27)

2.2.2 Symmetry in superspace

General position vector

In three-dimensional space, the position vector r of a point is defined as the sum of

the products of the fractional coordinates of this point with the respective lattice

vectors:

r = xa1 + ya2 + za3. (2.28)

In superspace the rule does not change, for simplification reason, in (3+1)-dimensional

superspace a general point can be written as:

rs = (r, rI) = xas1 + yas2 + zas3 + x4as4. (2.29)

With the definition of direct superspace lattice in Equation 2.26, we get:

rs = x(a1,−σ1b) + y(a2,−σ2b) + z(a3,−σ3b) + x4(0,b)

= (xa1 + ya2 + za3) + x4b− (xσ1 + yσ2 + zσ3)b,
(2.30)

it is easy to get:

(xσ1 + yσ2 + zσ3) = (σ1a
∗
1 + σ2a

∗
2 + σ3a

∗
3) · (xa1 + ya2 + za3) (2.31)
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according to Equation 2.28 and Equation 2.3, the general point position can be

derived as:

rs = r+ [x4 − q · r0]b, (2.32)

b is the unit vector along as4. Comparing to Equation 2.29, rI can be derived as:

rI = [x4 − q · r0]b
rI = x4 − q · r0

(2.33)

which indicates the internal part of the position vector r I is identical with the phase

of the modulation t :

rI = t = x4 − q · r0. (2.34)

General symmetry operation

In three-dimensional space groups, a general symmetry element is defined as

g = {R | v}, (2.35)

where R is the rotational part of the symmetry element while v is the translational

part of the symmetry element. Applying this symmetry to a general point described

by r gives:

r′ = gr = Rr+ v. (2.36)

General symmetry element in superspace groups can be defined in the same way, in

(3 + 1)-dimensional superspace it is:

gs = {Rs | vs}
= {R,RI | v,vI}.

(2.37)

In (3 + 1)-dimensional superspace, RI and vI are written as ε and Δ respectively:

gs = {R, ε | v,Δ}
= {R | v}{ε | Δ}.

(2.38)
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In this way, a general symmetry operation in (3 + 1)-dimensional superspace was

separated into two parts, a general symmetry operation in external space and a

symmetry operation in the internal space. Δ is the translation operation in the

internal space, for the (3+1)-dimensional superspace, it becomes the phase shift

operation. ε is the internal transformation which correspond to rotation operation

in three dimensional symmetry operation. It is assigned to the values ε = ±1, and if

ε = −1, a phase inversion of the modulation functions is performed. The ε element

is fixed by the relation

Rq = εq. (2.39)

Applying a superspace operation Equation 2.38 to a general vector rs gives:

r′s = gsrs

= {R | v}{ε | Δ}(r, t)
= {Rr+ v} {εt+Δ}.

(2.40)

v = Δ is a translational operation in the internal space, and of course it

is a vector of internal space. The general equation of vectors in internal space

(Equation 2.34) can be applied:

vI = x4 − q · v. (2.41)

2.3 Modulation functions

Various properties of atoms, like position, site, ADPs (both harmonic and anhar-

monic) can be modulated. Usually combinations of several properties can be mod-

ulated. Modulation functions can be either continuous or discontinuous functions,

like block waves and linear functions. Use of harmonic functions to describe discon-

tinuous modulation is possible but require a large number of harmonics to achieve

the proper shape of the modulation function. So several special functions have been

introduced to describe modulation functions in a simple way, for example: crenel

function and sawtooth function.
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Figure 2.2: An anharmonic function following the definition in Equation 2.42 with A1 =
0.25, B1 = 0.22, A2 = 0.12 and B2 = 0.14.

2.3.1 Different types of modulation functions

Harmonic and anharmonic functions

A Fourier series is defined as

f(x̄4) = x0
i + A1 · cos(2π · 1x̄4) +B1 · sin(2π · 1x̄4)

+ A2 · cos(2π · 2x̄4) +B2 · sin(2π · 2x̄4) + · · ·.
(2.42)

Normally, the modulation function formed by only one sine or cosine function is

called harmonic function, otherwise, it is named as anharmonic function. In Figure.

2.2, an example anharmonic function is drawn.

Crenel function

Very often modeling the proper shape of the occupational modulation function re-

quires a large number of harmonics. In these cases more efficient way is to use crenel

function defined as:

f(x̄4) = 1 x̄4 ∈ [x̄0
4− � /2, x̄0

4+ � /2]

f(x̄4) = 0 x̄4 /∈ [x̄0
4− � /2, x̄0

4+ � /2]
(2.43)

while x0
4 is the center and � is the width. In Figure. 2.3, an example crenel function

is drawn.
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Figure 2.3: An crenel function with width �= 0.43 and center x̄04 = 0.57.

Sawtooth function

The sawtooth function is defined by its width �, center x̄0
4 and the slope. In Figure.

2.4, an example sawtooth function is drawn.

2.3.2 Modulation functions used in the present thesis

In this thesis, the modulated properties of the harmonic ADPs and anharmonic

ADPs (Chapter 5), and also the modulated structure with combination of modu-

lated positions, modulated occupancies and modulated anharmonic ADPs in the

disorder region (Chapter 6) are studied for Rb2ZnCl4 and Cr2P2O7 respectively.

In Section 5.3.1, crenel function has been used to describe the occupation of all

atoms except atom O1. Furthermore, harmonic function has been used to describe

the occupational modulation of atoms P(a) and P(b). Anharmonic functions have

been used to describe displacement modulation functions of all atoms, the modu-

lation of atomic displacement parameters (ADPs) of all atoms and the third-order

anharmonic ADPs of atoms P (Section 5.3.2), Rb1, Rb2 and Cl3 (Section 6.4.1).
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Figure 2.4: A sawtooth function defined with width �= 0.43, center x̄04 = 0.57 and the
slope = 0.5.
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Chapter 3

The Maximum Entropy Method in

crystallography

3.1 Applications of the MEM

Entropy is a concept used in thermodynamics to describe the state of order of a

system, and entropy is used as a measure of the amount of information in a message:

higher entropy less information. The Maximum Entropy Method is a general method

for data analysis, which is employed to extract the maximum amount of information

from the data, without the introduction of artifacts or assumptions concerning a

model (Jaynes, 1957).

In X-ray diffraction studies, MEM helps to determine the most probable elec-

tron density distribution in the unit cell allowed by the data (Sakata and Sato, 1990;

Gilmore, 1996). The analysis of the reconstructed electron density in the unit cell

can provide information about disorder (Dinnebier et al., 1999; Wang et al., 2001),

anharmonic thermal motion (Kumazawa et al., 1995; Bagautdinov et al., 1998), and

chemical bonding (Sakata and Sato, 1990; Takata, 2008; van Smaalen and Netzel,

2009). In superspace, MEM has already been implemented to determine the most

probable electron density distribution in (3+d)-dimensional space (van Smaalen et al.,

2003; van Smaalen, 2007). The shapes of the modulation functions of modulated

crystals have been determined by the analysis of the reconstructed electron density

17
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in (3+d)-dimensional space (Palatinus and van Smaalen, 2004; van Smaalen and Li,

2009). In this thesis, MEM together with refinement methods have been used to

study the modulated properties of the harmonic ADPs and anharmonic ADPs in

Chapter 5, and also the modulated structure which combined of modulated po-

sitions, modulated occupancies and modulated anharmonic ADPs in the disorder

region in Chapter 6. In addition, the MEM can also be used for deconvolution of

powder diffraction data (Gilmore, 1996), and to extract phases from intensities of

Bragg reflections (Bricogne, 1988), which are not going to be discussed in this thesis.

3.2 Principle of the MEM - BayMEM

The case of the X-ray diffraction will be considered here, even though the principle of

the MEM can be applied in many fields of science. The generalized electron density

ρs(xs) in n-dimensional superspace is discretized on a grid of Np = N1×N2× ...×Nn

pixels over the whole unit cell. n = 3 or n > 3 are used for periodic structures or

superspace electron density distribution respectively. Ni is the number of pixels

along dimension i. The grid is required to obey the symmetry of the crystal. This

symmetry restriction has important consequence on the choice of the grid of the

discrete density. Each grid point must be transformed onto itself or onto another

grid point by all possible symmetry operators which implies that the space around

each grid point must have the shape of the Wigner-Seitz unit cell of the lattice

(Schneider and van Smaalen, 2000).

The entropy is defined as (van Smaalen et al., 2003):

S = −
Npix∑
k=1

(
ρk ln

[
ρk/ρ

prior
k

]− ρk + ρpriork

)
, (3.1)

where ρk = ρs(xsk) is the electron density at the kth grid point and ρpriork is the

corresponding value of the reference density or PRIOR. The MEM defines the op-

timal electron density as the electron density {ρk} which maximizes the entropy S

(Equation 3.1) subject to several constraints. (In the absence of constraints, the

solution is ρk = ρpriork , the reconstructed electron density is as same as the reference



3.2. PRINCIPLE OF THE MEM - BAYMEM 19

density.) The normalization of {ρk} is the first constraint which is named as CN

constraint (van Smaalen, 2007):

CN =
V

Npix

Npix∑
k=1

ρk −Ne (3.2)

where Ne is the number of electrons in the unit cell and V is its volume. Diffrac-

tion data are incorporated in the form of the so-called F -constraint, CF , with

(Sakata and Sato, 1990)

CF = −1 +
1

NF

NF∑
i=1

wi

( |Fobs(Hi)− FMEM(Hi)|
σi

)2

. (3.3)

The sum runs over all independent structure factors NF in the data set. Fobs(Hi) is

the phased observed structure factor of the reflection with scattering vector Hi, and

σi is the standard uncertainty of |Fobs(Hi)|. FMEM(Hi) is obtained by n-dimensional

Fourier transform of the trial density {ρk}. The standard version of the MEM

employs weights wi = 1. The F -constraint then represents χ2 of the data with an

expectation value of one. in the present thesis, different weighting method has been

used for all calculations, details are described in Section 6.3.

To determine the most probable density, the problem of the maximum of the

entropy has to be solved. The method of Lagrange multipliers (named after Joseph

Louis Lagrange) provides a strategy for finding the maximum of the entropy subject

to all these constraints. The maximum of the Lagrangian

Q(ρk) = S(ρk)− λNCN(ρk)− λFCF (ρk) (3.4)

has to be determined for variations of λN , λF and {ρk}. λN and λF are Lagrange mul-

tipliers, CN is the normalization constraint (Equation 3.2) and CF is the diffraction-

data constraint (Equation 3.3). The maximum of Q respect to λn (n = 0, 1, ...)

results in CN and CF equal to zero. The constraints (Equation 3.2 and Equation
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3.3) are take into account of the maximum procedure by :

⎧⎪⎪⎨
⎪⎪⎩

CN = V
Npix

Npix∑
k=1

ρk −Ne = 0

CF = −1 + 1
NF

NF∑
i=1

wi

(
|Fobs(Hi)−FMEM (Hi)|

σi

)2
= 0.

(3.5)

The maximum of Q respect to ρk is defined by ∂Q/∂ρk = 0. Differentiating equation

3.4 with respect to ρk gives:

∂Q

∂ρk
=

∂S

∂ρk
− λN

∂CN

∂ρk
− λF

∂CF

∂ρk
, (3.6)

using the definition of entropy (Equation 3.1) we get:

∂S(ρk)

∂ρk
= − ln

[
ρk/ρ

prior
k

]
, (3.7)

considering for constraints CN and CF (Equation 3.2 and Equation 3.3):

− ln
[
ρk/ρ

prior
k

]
= λN

∂CN

∂ρk
+ λF

∂CF

∂ρk
. (3.8)

Take the normalization constraint CN = 0 into account, after the elimination of the

Lagrange multiplier λN , the form of the normalized electron density is:

ρk = ρpriork exp

[
−λF

∂CF

∂ρk

]/Npix∑
j=1

ρpriorj exp

[
−λF

∂CF

∂ρj

]
, (3.9)

for simplicity,

Z(λF ) =

Npix∑
j=1

ρpriorj exp

[
−λF

∂CF

∂ρj

]
(3.10)

was introduced, the final electron density form is

ρk =
1

Z(λF )
ρpriork exp

[
−λF

∂CF

∂ρk

]
. (3.11)

Equation 3.13 together with Equation 3.3 give a set of Npix + 1 nonlinear equa-
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tions which cannot be solved analytically. Several algorithms (Skilling and Bryan,

1984; Sakata and Sato, 1990; Kumazawa et al., 1995) have been suggested to solve

the problem iteratively. In the computer program BayMEM (van Smaalen et al.,

2003), the Cambridge algorithm (Skilling and Bryan, 1984) [via the MemSys5 pack-

age (Gull and Skilling, 1999)] and the Sakato-Sato algorithm (Sakata and Sato, 1990;

Kumazawa et al., 1995) are included to determine the values {ρMEM
k } of the density

ρMEM(x) optimized by the MEM. The Cambridge algorithm optimizes the λF and

ρk simultaneously. It starts with a small λF (λ
(0)
F ) value, a density ρ

(0)
k equals to

ρpriork and an equation of the iterates of density defined as

ρ
(n+1)
k =

1

Z(λ
(0)
F )

ρpriork exp

[
−λF

∂CF

∂ρk

(n)
]
. (3.12)

When ρ
(n+1)
k is sufficiently close to ρ

(n)
k , the iteration converged and will repeated

with a higher value of λF (λ
(1)
F ). The iteration is considered to be converged if

the constraint equation CF = 0 is fulfilled. The Sakato-Sato algorithm uses a fixed,

sufficiently small value of λF and optimizes the ρMEM(x). Additionally, the iteration

derived values ρ
(n)
k are used as PRIOR density for the next iteration step:

ρ
(n+1)
k =

1

Z(λF )
ρ
(n)
k exp

[
−λF

∂CF

∂ρk

(n)
]
. (3.13)

A detailed comparison of both algorithms with the computer program BayMEM

(van Smaalen et al., 2003) shows that the Cambridge algorithm converges faster

and more reliably than the Sakato-Sato algorithm, and the differences between

the two algorithms derived ρMEM are less than the noise in the resulting density

(van Smaalen et al., 2003). Thus, the MEM calculations of the present work have

been performed with the computer program BayMEM (van Smaalen et al., 2003)

and the Cambridge algorithm (Section 5.3.3 and Section 6.4.2).
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Chapter 4

Integration of aperiodic crystals

diffraction data

4.1 The EVAL15 method

Eval15 is a diffraction data integration method based on ab initio calculation of the

three-dimensional reflection profiles from several parameters of the crystal and the

instruments. With the software package Eval15, complete three-dimensional re-

flection profiles are calculated from different impacts such as crystal size and shape,

beam focus dimension and divergence, wavelength dispersion, experimental geom-

etry, detector point spread and mosaicity of crystal. Description of the method in

detail can be found in Schreurs et al. (2010).

4.2 Integrating of diffraction data of aperiodic crys-

tals

The diffraction pattern of aperiodic crystals is not indexable with three integer

indices, as discussed in Section 2.2. For the incommensurately modulated struc-

tures, (3 + d) (d ≤ 3) vectors have been used for the indexing of all reflections

(Equation 2.18). The normal integration software uses three vectors for the re-

flection indexing, they are not suitable for the integration of satellite reflections.

23
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Figure 4.1: Schematic diffraction pattern of two-dimensional modulated orthorhombic
structure (a) and two-dimensional modulated hexagonal structure (b). Large, and small
discs represent main reflections, and first-order satellite reflections respectively.

CrysAlis (Oxford-Diffraction, 2006) is one option for integration of satellite reflec-

tions, but it cannot handle data from diffractometers other than Oxford-Diffraction

instruments. Furthermore, the order of satellite reflections is defined depend on

the crystal systems. For the triclinic, monoclinic and orthorhombic crystal systems,

the order of the satellite reflections is defined as the sum of the absolute values of

the satellite indices. For examples: The order of a satellite reflection (h, k, l,m)

from diffraction of an one-dimensional modulated monoclinic structure is defined

as |m|. The order of a satellite reflection (h, k, l,m1, m2) from diffraction of a two-

dimensional modulated orthorhombic structure is defined as |m1|+|m2|. If the angle
between these two modulation wave vectors change from 90◦ to 60◦, like the case of

diffraction of a two-dimensional modulated hexagonal structure, the combination of

−q1 + q2 generates the third but equivalent modulation wave vector q3 instead of

a wave vector of a second order satellite reflection (Figure 4.1). The order of these

satellite reflections is then defined as (van Smaalen, 2007):

1

2
(|m1|+ |m2|+ |m1 +m2|). (4.1)

Integration of satellite reflections was incorporated into Eval15 by Schreurs et al.

(2010) in collaboration with us (Laboratory of Crystallography, University Bayreuth,

Germany). A QVC (q-vector) is defined in the orientation matrix file. With dif-

ferent combinations of QVC, users can freely choose the integration of satellite
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reflections with certain orders.

4.3 Case study: data integration of Rb2ZnCl4 by

EVAL15

X-ray diffraction experiment of Rb2ZnCl4 was performed on beamline F1 Hasylab

(DESY, Germany) with CCD detector, details are described in Section 5.3. In this

chapter, the integration of one run of data by Eval15 is detailed. The bad pixel

problem during the integration and its solution are presented.

The measured frames are saved on the central data server of the laboratory,

btakr1.kri.uni-bayreuth.de . The IP-address is 132.180.126.46. Parameter of this data

is give in Table 4.1. The Eval15 software is installed on the Linux computer

Table 4.1: Experimental details of the X-ray diffraction data.

2θ(◦) ω(◦) χ(◦) φ(◦) Time (Sec.) Δφ (◦) Frames Name New name
-31 0 0 37.3 ∼ 142.3 64 0.3 350 rbzncl 4b s04

btakxc.kri.uni-bayreuth.de , the IP-address is 132.180.126.49 .

• Create softlinks to the images on btakr1.kri.uni-bayreuth.de:

∼/rbzbcl> ln -s /home/btak07/dsk2/ hasyF1 0710 rbzncl/rbzncl 4b/* .

• Rename the frames to systematic names:

∼/rbzncl> renameimages

The new file type is mccd, the scan name rbzncl 4b is renamed to s04. The log

file renameimages.log will be created.

• Copy the files goniostat.vic and view.init to the experiment directory:

∼/rbzbcl> cp /usr/local/utrecht mark/initdoc/initdoc F1/* .

In goniostat.vic, information about the goniostat is given, like goniostat type

and rotation direction of axis. view.init defines how the software read in the

frames. In case of missing header information, new header information can be

specified in this file also.
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Figure 4.2: The frame s02f0001 plotted with View.

• Check the data:

∼/rbzncl> scancheck

The averaged background, the duration of each frames are checked. Substract

AdcZero off is selected for frame measured at beamline F1. This will generate

the file scanchecks04f.log .

• Create the low image:

∼/rbzncl> low3

This will generate the files s04flow.mccd and s04fhome.mccd . The minimum

value of each pixel during the experiment and its location are restored in

s04flow.mccd and s04fhome.mccd respectively.

To find out the beamstop position and the primary beam position, one frame without

2θ offset is copied to the current directory and renamed to s02f0001.

• Launch the program:
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Table 4.2: The displayed parameters for frame s04f0001.

Dist Swing Omega Chi Phi Axis Start End
old 0.00 0.00 0.00 0.00 0.00 1
new 225.00 -31.00 0.00 0.00 0.00 3 1.00 1.30

Table 4.3: Dirax result, Acl is the number of the solution, and H is the number of vector
fitting to the solution. Parameters of the unit cell: a, b , c , alpha, beta, gamma and
volume are given.

Acl H a b c alpha beta gamma Volume
572 78 9.217 14.434 50.780 89.51 88.67 89.81 6754
541 81 7.249 9.235 12.520 89.78 89.75 89.76 838
488 74 7.223 9.189 12.489 90.59 90.09 90.38 829
443 69 7.173 9.225 12.502 90.37 90.20 90.50 827
399 98 9.179 7.199 12.500 89.98 90.50 90.05 826
308 133 7.222 9.177 12.507 90.46 90.16 90.17 829
305 123 7.222 9.173 12.508 90.47 90.16 90.18 829
302 114 7.213 9.250 12.498 90.47 89.98 90.20 834
283 61 3.611 9.239 12.515 90.19 90.19 89.95 417
272 88 7.196 9.209 12.479 90.77 90.16 90.30 827
249 78 7.208 9.164 12.434 91.36 90.32 90.44 821
216 43 7.209 9.162 12.384 91.89 90.42 90.34 817
211 115 9.149 7.212 12.479 89.99 90.86 90.09 823
199 58 7.196 9.213 12.402 91.70 90.61 91.12 822
151 42 7.242 9.241 12.380 91.71 90.26 90.36 828
145 109 7.227 9.264 12.511 90.11 89.97 90.36 838
130 123 7.221 9.227 12.511 90.22 90.11 90.03 834
115 126 9.194 7.217 12.498 90.04 90.48 90.04 829
111 88 7.228 9.195 12.529 90.17 90.32 90.27 833
92 113 9.152 7.213 12.478 90.03 90.85 89.96 824
84 78 7.234 9.143 12.536 90.35 90.42 90.54 829
51 5 1.099 1.557 9.043 88.50 87.90 77.61 15
30 3 2.174 2.732 4.924 73.96 79.25 88.92 28
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∼/rbzncl> view

• Read-in one frame without 2θ offset:

View> read s02f0001

• Plot this frame to screen:

View> plot

• Display the position of the primary beam:

View> markprimary

A blue cross will appear at the (theoretical) primary beam position.

• Correct the detector position:

View> detectorshift dist hor ver

A positive number for hor shifts the detector to the right, a negative one to

the left, a positive number for ver shifts it to the top, a negative one to the

bottom.

Save the final setting into the file detalign.vic :

View> save detalign

• Display the beamstop:

View> drawbeamstop

With the command beamstopangle one corrects the orientation, with beam-

stopwidth and beamstopdiameter the dimensions. Save the final setting into

the file beamstop.vic :

View> save beamstop

• Search for peaks in the present frame:

View> peak2

(Figure 4.2)

• Quit the program View :

View> exit
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• Launch the program View again:

∼/rbzncl> view

• Read-in one frame with 2θ offset:

View> read s04f0001

Check the displayed parameters (Table 4.2).

• Quit the program View:

View> exit

• Build a script for peak search:

∼/rbzncl> buildsearch

Prefix name: a , the parameters are saved in the file asearch.vic . Select

search type 3, which means, that a continuous set of frames will be analysed.

Search five peaks per frame.

• Start program View:

∼/rbzncl> view

• Read-in one frame:

View> read s04f0001

• Do the peak search:

View> @asearch

The software start to look for five peaks on each frames, and the found peaks

are used to calculate the unit cell parameters.

• Quit the program View:

View> exit

The results of the peak search are written into the files a1 .pk and a1 .drx .

4.3.1 Indexing of reflections

The indexing is done with the program Dirax .

• Launch the Dirax program:

∼/rbzncl> dirax
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• Read-in the .drx file:

Dirax> read a1 .drx

• Start the indexing:

Dirax> go

The index result is given in Table 4.3.

• Chose the solution:

Dirax> acl 308

The solution of number 308 with 133 fitted vectors is selected.

• Save the found orientation matrix:

Dirax> ccd a

The matrix is saved to the file a.rmat , this is the initial orientation matrix,

the accuracy will be improved with the following steps.

• Quit the indexing program Dirax :

Dirax> exit

4.3.2 Refinement

In the next step one has to refine the lattice, detector, and goniometer parameters

with the program Peakref .

• Launch the program:

∼/rbzncl> peakref

• First read-in the orientation matrix:

Peakref> rmat a

• Then read in the peak list:

Peakref> pk a1 .pk

• Check the current parameters:

Peakref> status

The status is shown in Table 4.4.
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Table 4.4: Status of parameters at the beginning of Peakref , 655 of 960 reflections are
used for the refinement.

ref current previous change initial change shift
a No 7.22198 7.22198 0.03611
b No 9.17671 9.17671 0.04588
c No 12.50730 12.50730 0.06254
alpha No 90.46388 90.46388 1.00000
beta No 90.16324 90.16324 1.00000
gamma No 90.17368 90.17368 1.00000
orx No 0.85030 0.85030 0.00203
ory No -0.48556 -0.48556 0.00203
ora No -145.42537 -145.42537 1.00000
zerodist No 0.00000 0.00000 0.10000
zerohor Yes 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000
zerover Yes 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000
xtalx No 0.00000 0.00000 0.10000
xtaly No 0.00000 0.00000 0.10000
xtalz Fix 0.00000 0.00000 0.10000
Vol 828.87 828.87 0.00 828.87 0.00 655
mm 0.38030 0.38030 0.00000 0.38030 0.00000 655
mmAng + 0.09684 0.09684 0.00000 0.09684 0.00000 655
rotpartial + 0.00000 0.00000 0.00000 0.00000 0.00000 0
rotoutside 0.04289 0.04289 0.00000 0.04289 0.00000 123
rotinside 0.00000 0.00000 0.00000 0.00000 0.00000 532
rotall 0.00805 0.00805 0.00000 0.00805 0.00000 655
res 0.09684 0.09684 0.00000 0.09684 0.00000

• Start refinement:

Peakref> go3

• Give the parameters of orientation matrix free and redo the refinement:

Peakref> free rmat

Peakref> go3

• Control the symmetry by modifying the point group tolerance:

Peakref> pgzero 0.1 1

0.1 is the tolerance (mm) for the axis lengths (compared to each other) and
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Table 4.5: Status after refining all the parameters. 679 of 960 reflections are used in the
refinement (Part 1).

ref current previous change initial change shift
a Yes 7.20677 7.20716 -0.00039 7.22198 -0.01521 0.03611
b Yes 9.15398 9.15460 -0.00062 9.17671 -0.02273 0.04588
c Yes 12.56825 12.56840 -0.00014 12.50730 0.06095 0.06254
alpha Fix 90.00000 90.46388 1.00000
beta Fix 90.00000 90.16324 1.00000
gamma Fix 90.00000 90.17368 1.00000
orx Yes 0.84865 0.84871 -0.00006 0.85030 -0.00165 0.00203
ory Yes -0.48862 -0.48847 -0.00015 -0.48556 -0.00306 0.00203
ora Yes -145.24277 -145.22879 -0.01397 -145.42537 0.18261 1.00000
zerodist Yes 0.62243 0.63462 -0.01219 0.00000 0.62243 0.10000
zerohor Yes -0.37664 -0.38867 0.01203 0.00000 -0.37664 0.10000
zerover Yes 0.45308 0.45925 -0.00617 0.00000 0.45308 0.10000
detrotx Yes 0.47287 0.46517 0.00771 0.00000 0.47287 0.20000
detroty Yes 0.08671 0.08803 -0.00133 0.00000 0.08671 0.20000
detrotz Yes -0.13997 -0.13243 -0.00754 0.00000 -0.13997 0.20000
swing Fix 0.00000 0.00000 0.10000
xtalx Yes -0.02402 -0.01411 -0.00991 0.00000 -0.02402 0.10000
xtaly Yes -0.04288 -0.04372 0.00085 0.00000 -0.04288 0.10000
xtalz Fix 0.00000 0.00000 0.10000
gonio1 Yes 0.00988 0.00000 0.00988 0.00000 0.00988 0.10000
gonio2 Yes -0.01245 0.00000 -0.01245 0.00000 -0.01245 0.10000
gonio3 Fix 0.00000 0.00000 0.10000
focusdist Fix 1000.00000 1000.00000 10.00000
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Table 4.6: Status after refining all the parameters. 679 of 960 reflections are used in the
refinement (Part 2).

focushor No 0.00000 0.00000 0.10000
focusver No 0.00000 0.00000 0.10000
rotax1 Fix 0.00000 0.00000 0.10000
rotax2 Fix 1.00000 1.00000 0.10000
rotax3 Fix 0.00000 0.00000 0.10000
kch1 Fix 1.00000 1.00000 0.10000
kch2 Fix 0.00000 0.00000 0.10000
kch3 Fix 0.00000 0.00000 0.10000
swing1 Fix 0.00000 0.00000 0.10000
swing2 Fix 1.00000 1.00000 0.10000
swing3 Fix 0.00000 0.00000 0.10000
lambda Fix 0.49999 0.49999 0.01000
Vol 829.14 829.25 -0.11 828.87 0.26 655
mm 0.01745 0.01777 -0.00032 0.38030 -0.36285 655
mmAng + 0.00444 0.00453 -0.00008 0.09684 -0.09240 655
rotpartial + 0.00000 0.00000 0.00000 0.00000 0.00000 0
rotoutside 0.14150 0.13766 0.00383 0.04289 0.09861 608
rotinside 0.00000 0.00000 0.00000 0.00000 0.00000 47
rotall 0.13134 0.12610 0.00524 0.00805 0.12329 655
res 0.00444 0.00453 -0.00008 0.09684 -0.09240
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1 refers to the angles (◦) (compared with 90 ◦ and 120 ◦).

Peakref> go3

• Give the crystal-detector distance free and redo the refinement:

Peakref> free zerodist

Peakref> go3

• Switch to expert mode, give the “detrot” free and redo the refinement:

Peakref> expert on

Peakref> free detrot

Peakref> go3

• Give the “crystal” free and redo the refinement:

Peakref> free xtal

Peakref> go3

• Give the “gonio” free and redo the refinement:

Peakref> free gonio*

Peakref> go3

• Reindex the peaks and redo the refinement:

Peakref> reind

Peakref> go3

• Save the results:

Peakref> save save detalign.vic for detector alignement

Peakref> savegonio save goniostat.vic for goniometer alignement

Peakref> savextal save xtalshift.pic for crystal shift

Peakref> savermat save ir .rmat for orientation matrix

• Quit the peak refinement program Peakref :

Peakref> exit

The status of the refinement are given in Table 4.5 and Table 4.6. The refined
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Table 4.7: Result of second run of Dirax , Acl is the number of the solution, and H is
the number of vector fitted to the solution. Parameters of the unit cell: a, b , c , alpha,
beta, gamma and volume are given. Solution number 452 with same unit cell parameter
as the first run of Dirax is selected.

Acl H a b c alpha beta gamma Volume
819 590 7.205 12.567 27.471 90.02 90.03 90.03 2487
817 590 7.205 12.566 27.471 90.02 90.03 90.03 2487
791 606 7.204 12.565 27.473 89.99 89.98 90.05 2487
766 592 7.205 12.567 27.471 90.02 90.03 90.03 2487
677 502 7.204 9.156 12.566 89.98 90.04 89.98 829
674 599 7.202 12.565 27.473 90.01 90.00 90.05 2486
638 502 7.202 9.157 12.565 90.02 90.06 90.01 829
626 502 7.203 9.157 12.565 89.98 90.05 89.99 829
553 504 7.207 9.156 12.567 90.03 89.99 89.97 829
542 498 7.199 9.153 12.569 90.03 89.99 90.07 828
452 512 7.204 9.156 12.566 90.03 89.97 89.99 829
265 241 7.208 12.568 9.464 90.03 104.72 90.00 829
253 241 7.210 12.568 9.464 90.03 104.66 90.01 830
246 490 7.204 9.155 12.567 90.03 90.02 90.01 829
135 165 3.603 12.566 15.209 114.38 96.76 90.01 622
126 500 7.201 9.157 12.564 89.98 90.07 90.00 828
104 75 4.779 4.914 5.614 93.94 111.33 102.40 118
94 17 4.400 5.189 5.404 88.82 72.32 83.98 117
65 3 2.228 2.613 2.857 114.82 92.95 97.35 15

lattice parameters together with the experimental parameters give a much

smaller residual value of 0.00444 as compared to the initial value of 0.09684

(Table 4.4).

4.3.3 Finding the q-vector

The experimental parameters have been refined against the main reflections in the

last run of Peakref, the Peaksearch will start again with the refined parameters,

so that the position of reflections are more accurate and the q-vector is expect to

be found.

• Build the script:

∼/rbzncl> buildsearch
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Table 4.8: q-vector found by Dirax, qv is the number of solution, nhit is the number
fitted to the solution, and the components of the q-vector are given, solution number 1 is
selected.

qv nhit qvector fom
1 123 0.0011 0.3170 -0.0007 0.2746
3 112 -0.0184 -0.0082 0.0085 0.2500
27 88 0.0054 -0.3128 -0.0037 0.1964
2 44 0.0146 0.0073 -0.0072 0.0982
14 14 0.0136 0.3257 -0.0096 0.0313
54 6 0.0214 0.0259 -0.0305 0.0134
12 4 0.0354 0.0102 -0.0086 0.0089
20 2 0.0165 0.3664 0.0022 0.0045
57 2 0.0173 -0.2975 -0.0231 0.0045

Prefix name: b , the parameters are saved in the file bsearch.vic . Select search

type 3, Search five peaks per frame.

• Do the peak search:

∼/rbzncl> view

• Read-in one frame:

View> read s04f0001

• Do the peak search:

View> @bsearch

• Quit the program View :

View> exit

The results of the peak search are written into the files b1 .pk and b1 .drx .

The indexing is done again to find the q-vector with the program Dirax .

• Launch the Dirax program:

∼/rbzncl> dirax

• Read-in the .drx file:

Dirax> read b1.drx
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Table 4.9: Starting status of Peakref, 909 of 960 reflections fitting with the orientation
matrix.

ref current previous change initial change shift
a No 7.20446 7.20446 0.03602
b No 9.15600 9.15600 0.04578
c No 12.56652 12.56652 0.06283
alpha Fix 90.00000 90.02519 1.00000
beta Fix 90.00000 89.97156 1.00000
gamma Fix 90.00000 89.99110 1.00000
orx No 0.85011 0.85011 0.00202
ory No -0.48650 -0.48650 0.00202
ora No -145.16870 -145.16870 1.00000
zerodist No 0.00000 0.00000 0.10000
zerohor Yes 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000
zerover Yes 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000
xtalx No 0.00000 0.00000 0.10000
xtaly No 0.00000 0.00000 0.10000
xtalz Fix 0.00000 0.00000 0.10000
qvx1 No 0.00000 0.00000 0.01000
qvy1 No 0.31600 0.31600 0.01000
qvz1 No 0.00000 0.00000 0.01000
Vol 828.94 828.94 0.00 828.94 0.00 909
mm 0.06237 0.02096 0.04141 0.02096 0.04141 909
mmAng + 0.01584 0.00532 0.01052 0.00532 0.01052 909
rotpartial + 0.00000 0.00000 0.00000 0.00000 0.00000 0
rotoutside 0.02526 0.02443 0.00083 0.02443 0.00083 95
rotinside 0.00000 0.00000 0.00000 0.00000 0.00000 814
rotall 0.00264 0.00207 0.00057 0.00207 0.00057 909
res 0.01584 0.00532 0.01052 0.00532 0.01052
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• Start the indexing:

Dirax> go

The index result is given in Table 4.7.

• Check for the q-vector:

Dirax> qvtest

The result is given in Table 4.8

In case, that the values are not satisfying and that the q-vector components

are already known, one might set them with the command qvector .

• Use q-vector solution number 1 to index the satellite reflections

Dirax> sethklm

• Save the found orientation matrix and q-vector:

Dirax> ccd b

The matrix is saved to the file b.rmat .

• Quit the indexing program Dirax :

Dirax> exit

Start Peakref again, use the b1 .pk to refine against orientation matrix and the

experimental parameters. Repeat all the procedures as last refinement, the start

and end status are given in Table 4.9, Table 4.10 and Table 4.11. 909 of 960 found

reflections are indexed by b.rmat with q-vector, comparing with the previous index

of 679 of 960 reflections without q-vector.

4.3.4 Integration

• Build a script for data integration:

∼/rbzncl> builddatcol

Select the synchrotron radiation type, 3mm for box size and 5 for maximum

duration. This generates the files datcolsetup.vic , datcol.vic , and datcols04f.vic ,

as well as the sub-directory br (file name of the br .rmat ) in which the .shoe

box files are saved.



4.3. CASE STUDY:DATA INTEGRATION OF Rb2ZnCl4 39

Table 4.10: Final status of Peakref, 909 of 960 reflections fitting with the orientation
matrix (Part 1).

ref current previous change initial change shift
a Yes 7.20736 7.20708 0.00028 7.20446 0.00290 0.03602
b Yes 9.15406 9.15409 -0.00002 9.15600 -0.00194 0.04578
c Yes 12.56934 12.56899 0.00034 12.56652 0.00282 0.06283
alpha Fix 90.00000 90.02519 1.00000
beta Fix 90.00000 89.97156 1.00000
gamma Fix 90.00000 89.99110 1.00000
orx Yes 0.84941 0.84948 -0.00007 0.85011 -0.00070 0.00202
ory Yes -0.48760 -0.48745 -0.00015 -0.48650 -0.00110 0.00202
ora Yes -145.23541 -145.22401 -0.01139 -145.16870 -0.06672 1.00000
zerodist Yes 0.00817 0.00603 0.00214 0.00000 0.00817 0.10000
zerohor Yes 0.01645 0.00183 0.01463 0.00000 0.01645 0.10000
zerover Yes -0.03737 -0.02178 -0.01559 0.00000 -0.03737 0.10000
detrotx Yes 0.00936 0.00238 0.00698 0.00000 0.00936 0.20000
detroty Yes -0.00843 -0.00311 -0.00532 0.00000 -0.00843 0.20000
detrotz Yes -0.00355 -0.00092 -0.00264 0.00000 -0.00355 0.20000
swing Fix 0.00000 0.00000 0.10000
xtalx Yes -0.05056 -0.03852 -0.01204 0.00000 -0.05056 0.10000
xtaly Yes -0.04440 -0.04284 -0.00156 0.00000 -0.04440 0.10000
xtalz Fix 0.00000 0.00000 0.10000
gonio1 Yes 0.05883 0.03109 0.02773 0.00988 0.04895 0.10000
gonio2 Yes -0.04655 -0.04008 -0.00646 -0.01245 -0.03410 0.10000
gonio3 Fix 0.00000 0.00000 0.10000
focusdist Fix 1000.00000 1000.00000 10.00000
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Table 4.11: Final status of Peakref, 909 of 960 reflections fitting with the orientation
matrix (Part 2).

ref current previous change initial change shift
focushor No 0.00000 0.00000 0.10000
focusver No 0.00000 0.00000 0.10000
rotax1 Fix 0.00000 0.00000 0.10000
rotax2 Fix 1.00000 1.00000 0.10000
rotax3 Fix 0.00000 0.00000 0.10000
kch1 Fix 1.00000 1.00000 0.10000
kch2 Fix 0.00000 0.00000 0.10000
kch3 Fix 0.00000 0.00000 0.10000
swing1 Fix 0.00000 0.00000 0.10000
swing2 Fix 1.00000 1.00000 0.10000
swing3 Fix 0.00000 0.00000 0.10000
lambda Fix 0.49999 0.49999 0.01000
qvx1 No 0.00000 0.00000 0.01000
qvy1 Yes 0.31640 0.31600 0.00040 0.31600 0.00040 0.01000
qvz1 No 0.00000 0.00000 0.01000
Vol 829.28 829.23 0.05 828.94 0.34 909
mm 0.01895 0.01904 -0.00009 0.02096 -0.00202 909
mmAng + 0.00481 0.00484 -0.00002 0.00532 -0.00051 909
rotpartial + 0.00000 0.00000 0.00000 0.00000 0.00000 0
rotoutside 0.04817 0.05061 -0.00243 0.02443 0.02374 253
rotinside 0.00000 0.00000 0.00000 0.00000 0.00000 656
rotall 0.01341 0.01614 -0.00274 0.00207 0.01134 909
res 0.00481 0.00484 -0.00002 0.00532 -0.00051
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Figure 4.3: The Eval15 program window of reflection (-1, -5, 9, 0) with the initial pa-
rameters (mosaicity = 0.3, pointspreadgamma = 0.8).
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• Start to create the boxes:

∼/rbzncl> view @datcol

• Create a sub-directory for Eval15:

∼/rbzncl> mkdir e15

• Create soft links to the .shoe files:

∼/e15> ln -s ../br/* .

• Build the initscript-files:

∼/e15> buildeval15

Choose synchrotron for the focustype. Accept all other proposed default values. The

following files are created:

– eval15.init initialization file

– spectrum.pic defines the wavelength parameters, i.e., the X-ray spectrum

– focus.pic defines the X-ray focus

– detector.pic defines the detector parameters, i.e., pointspread and noise

– crystal.pic defines the crystal model

– simulation.pic builds the reflection model

– refine.pic to save changed value after refinement

– mosaic.pic defines mosaicity and lattice distortion of the crystal

• Copy the file xtalshift.pic generated by Peakref to the present folder:

∼/rbzncl/e15> cp ../xtalshift.pic .

• These default parameters have to be adapted now to the actual measurement with

the program Eval15 . Eval15 is launched by the command:

∼/e15> eval15

• Read in reflection:

∼/e15> file 1 100

• Refine the profile of this reflection

∼/e15> refine

• Examine the mosaicity of the crystal:

One uses a peak which appear on several continuous frames, that indicates a large

duration value.
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• Skip reflections with small duration (i.e., duration < 1◦):

Refl nr [100] dur

• Refine this peak with larger duration:

Refl nr [100] refine

Refl nr [100] distribution type onescan

Refl nr [100] delay 0

Refl nr [100] fomtype peak

Refl nr [100] onescan mosaic 0.02 0.02 0.54

Write down reflex number, I
σ(I) , and the found mosaicity.

Figure 4.4: The Eval15 program window of reflection (-1, -5, 9, 0) with the refined
parameters (mosaicity = 0.1, pointspreadgamma = 1.2).

• Reset the fomtype :

Refl nr [100] fomtype box
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• Set the mosaicity:

Refl nr [100] mosaic 0.1

• Analysis the pointspread of the detector:

• Skip reflections with I
σ(I)

smaller than 75:

Refl nr [100] pq75

• Refine this strong peak:

Refl nr [108] refine

• Get the pointspread:

Refl nr [108] distribution type onescan

Refl nr [108] delay 0

Refl nr [108] fomtype peak

Refl nr [108] onescan pntspr 0.05 0.05 2.00

Write down reflex number, I
σ(I)

, and the found pointspread.

• Reset the fomtype :

Refl nr [108] fomtype box

• Set the pointspread:

Refl nr [108] pointspreadgamma 1.2

Comparing the Eval15 predicted profile of reflection (-1, -5, 9, 0) before refinement

(Figure 4.3) to the predicted profile after refinement (Figure 4.4), the refinement

improve the fit of predicted profile to the observed reflection profile. Now, start the

integration of all these box files with the tuned parameters by Eval15all .

• Launch the program:

∼/e15> eval15all

This will generate the output files s04fxxx .y , as well as s04fxxx .log , s04fxxx .evc ,

pixel15.summary , and the final.y .
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4.3.5 Data analysis and data reduction

With the program Any the final.y files can be analysed and a standard reflection

file in hkl -format can be generated for further work.

• Create a subdirectory any in the directory ∼/e15/ and launch the program:

∼/e15/> mkdir any

∼/e15/> cd any

∼/any> any

Read in the final.y file:

∼/any> read ../final.y

• Check the shift of the peak positions:

Any> plot shiftver (Figure 4.5)

Any> plot shifthor (Figure 4.6)

Any> plot shiftrot (Figure 4.7)

• Define limit for the shift of reflections:

Any> limit shiftrestfrac 0.1 = yes

Any> pkfile final1 .pk

Any> pk

The reflections within the shift range of 0.1mm are saved to final1 .pk

After this data integration, more reflections are found with accurate position, then

these reflections are used again to refine the .rmat file.

Repeat the Peakref again, use this final1 .pk file and the br .rmat file. After the

refinement save the orientation matrix to file c.rmat. In c.rmat, change the vector order

from 1 to 5. So the higher order satellite reflections can be integrated with c.rmat.

• Build a script for data integration:

∼/rbzncl> builddatcol

Select the synchrotron radiation type, 3mm for box size and 5 for maximum dura-

tion. This generates the files datcol2setup.vic , datcol2.vic , and datcol2s04f.vic ,

as well as the sub-directory c (filename of the c.rmat -file) in which the .shoe box

files are saved.
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• Start to create the boxes:

∼/rbzncl> view @datcol2

The .shoe boxes are saved in the directory c.

The Eval15 runs in the new directory e15a.

• Create soft links to the .shoe files:

∼/e15a> ln -s ../c/* .

• Copy these Eval15 files from directory e15 : eval15.init, spectrum.pic, focus.pic,

detector.pic, crystal.pic, simulation.pic, refine.pic, mosaic.pic and the xtalshift.pic file

which is generated by the last refinement.

• Launch the program:

∼/e15a> eval15all

• Create a sub-directory any in the directory ∼/e15a/ and launch the program:

∼/e15a/> mkdir any

∼/e15a/> cd any

∼/any> any

Read in the final.y file:

∼/any> read ../final.y

• Check the shift of the peak positions:

Any> plot shiftver (Figure 4.8)

Any> plot shifthor (Figure 4.9)

Any> plot shiftrot (Figure 4.10)

Any> pkfile final2 .pk

Any> pk

In the data integration with c.rmat, except the main reflections and the first order satellite

reflections, satellite reflections with order higher than one are integrated, and they have

smaller shift in vertical, horizontal and rotation directions (Figure 4.8, Figure 4.9 and

Figure 4.10), comparing with the shift plot of integration done with orientation matrix

file br .rmat (Figure 4.5, Figure 4.6 and Figure 4.7). The shift plots of integration done
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Table 4.12: Content of the badmask.vic. Poistion of points are given in unit of pixel number

badmaskarea 1708 1645 1718 1655
badmaskarea 679 757 689 767
badmaskarea 1156 841 1166 851
badmaskarea 1414 760 1424 770
badmaskarea 889 1813 899 1823
badmaskarea 1237 1882 1247 1892
badmaskarea 1042 1507 1052 1517
badmaskarea 961 1552 971 1562
badmaskarea 1516 1798 1526 1808
badmaskarea 1669 1435 1679 1445
badmaskarea 1069 127 1079 137
badmaskarea 832 112 842 122
badmaskarea 808 274 818 284
badmaskarea 688 238 698 248
badmaskarea 1012 118 1022 128
badmaskarea 1306 169 1316 179
badmaskarea 1384 970 1394 980
badmaskarea 1660 433 1670 443
badmaskarea 1561 196 1571 206
badmaskarea 1348 163 1358 173
badmaskarea 529 229 539 239

with orientation matrix file c.rmat, is more successfully done with accurate determined

orientation matrix and experimental parameters. The new created final2 .pk will be read

in Jana2006 and used for further studies.

4.4 Special problem in CCD detector data inte-

gration.

Area detector has many advantages in the data collection procedure, but the dis-

advantages always come together with it. During our data collection performed at

beamline F1 Hasylab at Hamburg, the cooling system can not cool all pixels down to

the same range, even worse, some pixels are too hot to record the reflection density.

These over heated pixels have high intensities on the frames, but they are not real
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Figure 4.11: The Eval15 program window of reflection (4, 9, 3, 1). The intensity from
bad pixels are integrated as reflection intensity.

reflections and are called bad pixels.

These bad pixels will be interpreted as reflection intensity which leads to wrong

structure factors. One example reflection which is incorrectly integrated is given in

Figure 4.11. To eliminate this effect, one can exclude these bad region by create

a file badmask.vic (Table 4.12), in which bad region is defined by two points: the

left down and upper right points of a rectangular which can cover the bad pixels

region. The coordinates of wanted pixels can be found in View. The bad pixels

region defined in badmask.vic will not be integrated by Eval15all (Figure 4.12).
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Figure 4.12: The Eval15 program window of reflection (4, 9, 3, 1). The region contain
bad pixels is excluded from integration.
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Chapter 5

Incommensurately modulated

Rb2ZnCl4

5.1 Abstract

A combination of structure refinements, interpretation of difference-Fourier maps

and the analysis of the superspace MEM-density has been used to characterize the

incommensurate modulation of rubidium tetrachlorozincate, Rb2ZnCl4, at a tem-

perature of T = 196 K, close to the lock-in transition at Tlock−in = 192 K. The

modulation is found to consist of a combination of displacement modulation func-

tions, modulated atomic displacement parameters (ADPs) and modulated third-

order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined

against diffraction data containing up to fifth-order satellite reflections. The center-

of-charge of the atomic basins of the MEM-density and the displacive modulation

functions of the structure model provide equivalent descriptions of the displacive

modulation. Modulations of the ADPs and anharmonic ADPs are visible in the

MEM density, but extracting quantitative information about these modulations

appears to be difficult. In the structure refinements, the modulation parameters

of the ADPs form a dependent set, and ad hoc restrictions had to be introduced

in the structure refinements. It is suggested that modulated harmonic ADPs and

modulated third-order anharmonic ADPs form an intrinsic part—however small—of

57
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incommensurately modulated structures in general. Refinements of alternate mod-

els with and without parameters for modulated ADPs lead to significant differences

between the parameters of the displacement modulation in these two models, thus

showing the modulation of ADPs to be important for a correct description of the

displacive modulation. The resulting functions are not in agreement with an in-

terpretation as a soliton wave, contrary to a previous proposal by Aramburu et al.

(2006) [Phys. Rev. B 73, 014112.]

5.2 Introduction

The construction of a model-independent electron density map from phased struc-

ture factors is an important application of the Maximum Entropy Method (MEM)

in crystallography (Takata, 2008; van Smaalen and Netzel, 2009). The analysis of

the electron density after such a reconstruction provides the locations of the atoms

in the unit cell. As such, the MEM has been used to determine the locations of

the metal atoms in endohedral fullerenes (Nishibori et al., 2006), to obtain informa-

tion about disorder (multiple positions) in crystal structures (Dinnebier et al., 1999;

Wang et al., 2001; Samy et al., 2010) and about anharmonic atomic displacements

(Kumazawa et al., 1995; Bagautdinov et al., 1998).

The MEM has been generalized towards the determination of the generalized

electron density in (3 + d)-dimensional superspace (d = 1, 2, 3, · · · ) of aperiodic

crystals (van Smaalen et al., 2003). Again, the MEM provides information about

the locations of the atoms. The latter then result in a description of the modulation

functions of incommensurately modulated crystals or incommensurate composite

crystals (Palatinus and van Smaalen, 2004; van Smaalen and Li, 2009). Alterna-

tively, the MEM in superspace has been used to determine the occupation domains

of the atoms in quasicrystals (Yamamoto et al., 1996). Here we will use the MEM

to obtain information about the modulation functions of incommensurately mod-

ulated Rb2ZnCl4. Many isostructural compounds of the β-K2SO4 structure type

undergo phase transitions on cooling. Several compounds exhibit at least two phase

transitions, first forming an incommensurately modulated structure which then be-

comes commensurate at lower temperatures (lock-in transition) (Cummins, 1990).
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Table 5.1: Experimental and crystallographic data

Chemical formula Rb2ZnCl4
Crystal system Orthorhombic
Superspace group Pmcn(0 0 σ3)ss1̄
a (Å) 7.2272 (3)
b (Å) 12.6134 (8)
c (Å) 9.1858 (8)
Unit cell volume (Å3) 837.378 (78)
Z 4
Modulation wavevector [0, 0, 0.316(2)]
Crystal dimensions (mm3) 0.1× 0.1× 0.12
Temperature (K) 196
Radiation type Synchrotron (Hasylab, Hamburg, Germany)
Wavelength (Å) 0.5000
Diffractometer Huber four-circle diffractometer (Kappa geometry)
Detector marCCD 165
(sin(θ)/λ)max (Å−1) 0.86
Δφ (◦) 0.3
Δω (◦) 0.3
Exposure time (s) 2, 8, 64
Absorption Correction SADABS
Linear Absorption coefficient (mm−1) 6.08
Transmission (min/max) 0.5143 / 0.7506
Criterion of observability I > 3σ(I)
Rint(obs/all) 0.029/0.032
No. of measured reflections 75610
No. of unique reflections (obs/all) 6245/19956
No. of main reflections (obs/all) 1825/1956
No. of first-order satellites (obs/all) 2617/3517
No. of second-order satellites (obs/all) 1088/3803
No. of third-order satellites (obs/all) 392/3261
No. of fourth-order satellites (obs/all) 86/3870
No. of fifth-order satellites (obs/all) 237/3549
Average redundancy 3.789
Refinement (model Dr)
RF 0.0563
wRF 2 0.0705
GoF 3.28
MEM
Number of pixels 72× 128× 96× 48
Pixel size (Å3) 0.100× 0.099× 0.096
RF 0.0112
wRF 2 0.0225
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Rb2

Rb1

Cl2

Zn

Cl3

Figure 5.1: Basic structure of Rb2ZnCl4. Atoms Rb1, Zn and Cl1 are nearly superimposed
in this projection.

Table 5.2: Number of parameters for the different models. Cijk and Dijkl stand for the
third- and fourth-order anharmonic ADPs. The models are defined in the text.

Model A Model B Model Cr Model C Model Dr

x0, y0, z0 13 13 13 13 13
ADP Uij 26 26 26 26 26
Cijk – – 0 0 0
Dijkl – – – – 33
Modulation of x, y, z 100 100 100 100 100
Modulation of ADP – 84 84 84 84
Modulation of Cijk – – 132 244 132
Scale 1 1 1 1 1
Total 140 224 356 468 389
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Rubidium tetrachlorozincate, Rb2ZnCl4, is one of these compounds (Figure 5.1).

Rb2ZnCl4 undergoes a phase transition from a periodic to an incommensurately

modulated phase at Tinc = 303 K. The incommensurate modulation wavevector is q

= (0, 0, 1/3−δ) (δ ≈ 0.02). The lock-in transition towards a threefold superstructure

(δ = 0) takes place at Tlock−in = 192 K (Sawada et al., 1977). The modulation of

Rb2ZnCl4 increasingly deviates from a sinusoidal shape on approaching the lock-in

transition, as it has been evidenced by the growth of the intensities of higher-order

satellite reflections in the X-ray diffraction of this compound on cooling toward

Tlock−in (Aramburu et al., 1997). The results of structure refinements of a model of

displacive modulation functions with up to fifth-order Fourier coefficients have been

reported by Aramburu et al. (2006). The latter authors interpreted this structure

model as providing evidence for a soliton shape of the incommensurate modulation

wave.

Here we present a re-analysis of the incommensurate structure of Rb2ZnCl4 close

to the lock-in transition, employing a more extensive data set of Bragg reflections

than has been used by Aramburu et al. (2006). The purpose of this work is twofold.

The first aim is to investigate the nature of modulations by means of the maximum

entropy method (MEM). As we will show, modulations of atomic displacement pa-

rameters (ADPs) and modulations of anharmonic ADPs form an intrinsic and im-

portant part of the modulation. Secondly—based on a more accurate description of

the displacive modulation of Rb2ZnCl4—we show that a simple soliton wave does

not form an appropriate characterization of the modulation in this compound.

5.3 Experimental

5.3.1 Crystal growth and the diffraction experiment

Single crystals of Rb2ZnCl4 have been grown from aqueous solution (Sawada et al.,

1977). 2.73 g RbCl (Aldrich, 99.99%) and 1.54 g of ZnCl2 (Aldrich, 99.999%) have

been dissolved in 4.5 g ultra pure water (from a Simplicity UV system by Millipore)

at T = 323 K. Crystals were grown by slow evaporation at T = 313 K.

A suitable single crystal was glued to a thin glass fibre mounted on a copper pin.
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Table 5.3: Amplitudes of the displacement modulation functions of model A (relative
coordinates multiplied by 105).

Atom n An
x An

y An
z Bn

x Bn
y Bn

z

Rb1 1 1224(1) 0 0 -1215(1) 0 0
2 0 -43(9) 82(10) 0 -242(8) 39(10)
3 -291(14) 0 0 35(15) 0 0
4 0 -380(30) 140(40) 0 200(30) -90(40)
5 68(18) 0 0 -38(18) 0 0

Rb2 1 1713(9) 0 0 -140(7) 0 0
2 0 27(6) -55(8) 0 33(6) -15(8)
3 -103(13) 0 0 -97(13) 0 0
4 0 70(20) -160(40) 0 -40(20) 230(40)
5 161(14) 0 0 70(19) 0 0

Zn 1 998(8) 0 0 329(7) 0 0
2 0 -30(7) -9(9) 0 -22(7) 85(9)
3 -25(13) 0 0 -99(13) 0 0
4 0 -50(30) -20(40) 0 -20(30) 110(50)
5 -108(16) 0 0 11(17) 0 0

Cl1 1 4250(40) 0 0 660(30) 0 0
2 0 -43(18) -80(20) 0 -209(19) -10(20)
3 400(50) 0 0 240(50) 0 0
4 0 300(60) -260(80) 0 -210(60) -110(70)
5 110(70) 0 0 -140(70) 0 0

Cl2 1 760(30) 0 0 5480(40) 0 0
2 0 27(17) -90(20) 0 -98(16) 60(30)
3 -380(50) 0 0 -1240(50) 0 0
4 0 -10(50) 150(60) 0 110(50) -150(70)
5 100(70) 0 0 330(80) 0 0

Cl3 1 554(16) 2(13) -1094(15) -1939(17) 2635(15) 1334(15)
2 65(18) -26(15) 125(17) 126(18) -57(16) 35(17)
3 -230(20) 80(20) 30(30) 330(20) -535(19) -320(30)
4 10(40) 20(40) -140(50) -300(40) 60(30) 250(50)
5 -140(30) 0(30) 90(40) -100(30) 250(30) 10(40)
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X-ray diffraction experiments were performed at beamline F1 of Hasylab, DESY,

Hamburg, employing radiation of a wavelength of 0.5000 Å and a MAR-CCD area

detector. The temperature of the sample was maintained at T = 196 K, employing

a nitrogen-flow cryostat. A large crystal-to-detector distance of 225 mm was chosen,

in order to be able to resolve closely-spaced reflections. With aid of the four-circle

kappa diffractometer at beamline F1, diffraction data were collected by φ and ω scans

with a scan step of 0.3 degree per image. Several values were chosen for the off-set

of the detector and for the orientation of the crystal, thus allowing the measurement

of a nearly complete data set up to a high resolution of [sin(θ)/λ]max = 0.86 Å−1.

With the purpose of increasing the effective dynamic range of the experiment, runs

with zero detector off-set were repeated with exposure times of 2 and 8 seconds, and

runs at higher scattering angles were repeated with 8 and 64 seconds exposure. The

long exposure times resulted in overexposed strong (main) reflections, while they

allowed weak reflections (mostly higher-order satellite reflections) to be measured.

Integrated intensities of Bragg reflections were extracted from the measured im-

ages by the software Eval15 (Schreurs et al., 2010). Absorption correction was

performed with Sadabs (Sheldrick, 1996). A fraction of the area of the CCD de-

tector was not properly cooled during parts of the experiment. This is a technical

problem that occurred for experiments of long durations (Paulmann, 2009). As

a result, several pixels of the detector always gave a large intensity, which could

negatively affect data quality. Therefore, the coordinates of these pixels have been

determined by inspection of the images, and they were excluded from the integra-

tion. Experimental data and crystallographic information are summarized in Table

5.1.

The resulting data set of intensities of Bragg reflections, including satellite re-

flections up to fifth order, was used for structure determination, structure refine-

ments and maximum entropy calculations. Aramburu et al. (2006) have kindly sup-

plied the diffraction data from their publication. These data will be denoted as the

Aramburu-data. Various models have also been tested by calculation of the values

of R indices on these data.

Peculiar property of Aramburu-data is that a selection of the satellite reflections

has been measured, which included main reflections and only the strongest satellite
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Table 5.5: RF values on the Aramburu data of models of increasing complexity, after
refinement of the scale parameter, the extinction coefficient, the ADP parameters and the
atomic coordinates. Modulation parameters were kept fixed at their values obtained by
refinements against the present data.

Pulished data Model A Model B Model Cr Model C Model Dr N(obs)
All 0.0834 0.0917 0.0912 0.0912 0.0912 1695
m = 0 0.0784 0.0837 0.0828 0.0827 0.0826 778
|m| = 1 0.0733 0.0855 0.0892 0.0900 0.0896 473
|m| = 2 0.2281 0.3820 0.3564 0.3605 0.3569 251
|m| = 3 0.4636 0.3049 0.2989 0.2859 0.2976 53
|m| = 4 – – – – – –
|m| = 5 0.3647 0.2623 0.2807 0.2667 0.2867 140

reflections as expected on the basis of a soliton model. Satellite reflections up to

order five, except fourth order have been measured in this way by Aramburu et al.

(2006). The result is a data set that consists of much fewer reflections than avail-

able in the present data. On the other hand, CCD detectors have a limited dynamic

range, so that the lower bound on measurable intensities is relatively high, resulting

in a number of high-order satellite reflections of the type ’observed’ that is compa-

rable in both data sets.

5.3.2 Structure refinements

Structure models of different complexity have been refined against the diffraction

data. They involve the basic-structure coordinates (x0, y0, z0) and the harmonic

atomic displacement parameters (ADPs) Uij for each of the six crystallographically

independent atoms (Figure 5.1). Depending on the complexity of the model, they

may include Fourier coefficients for displacement modulation (An
i and Bn

i for the sine

and cosine Fourier coefficients of order n along the direction i = x, y, z); anharmonic

ADPs of third (Cijk) and fourth (Dijkl) order; Fourier coefficients for the modulation

of the ADPs (Usn
ij , U

cn
ij for the sine and cosine Fourier coefficients of order n) as well

as Csn
ijk and Ccn

ijk (Table 5.2).

Structure refinements were performed with the computer program Jana2006

(Petricek et al., 2006). The model published by Aramburu et al. (2006) involves
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displacement modulation parameters of orders 1, 2, 3 and 5. Refinement of these

parameters against the Aramburu-data reproduced the published model within one

standard uncertainty (σ) of all parameters.

Model A was created to resemble the published structure model as much as

possible. It includes all Fourier coefficients up to fifth order for the displacement

modulation, because the availability of fourth-order satellite reflections in the present

data allows the refinement of the fourth-order Fourier coefficients of the displacement

modulations. Refinements were initiated with the values of the published structure

model as starting parameters. Values of the refined parameters are similar to those

of the published structure model, with 12 out of 140 parameters having differences

larger than 3 σ and with a maximum difference of 5.2 σ for A3
x of atom Rb1 (Table

5.3).

Model B is an extension of model A, where the first- and second-order Fourier

coefficients of the modulation of the harmonic ADPs have been incorporated. Refine-

ments with model A as starting values for the parameters gave a smooth convergence

and lead to a considerable improvement of the fit to all orders of reflections (Table

5.4).

Refinement of model B was used to create the phased observed diffraction data

for the MEM calculations (see Section 5.3.3). Analysis of the MEM-derived elec-

tron density map suggested that the next important feature is the modulation of

the third-order anharmonic ADPs, while their average-structure values remain zero.

Model C includes—in addition to the parameters of model B—the Fourier coeffi-

cients up to n = 5 for the modulation of the third-order anharmonic ADPs, Cn
ijk.

This refinement suffered from large correlations between parameters. Therefore, a

reduced model, model Cr, was defined, in which those Fourier coefficients Cn
ijk were

set to zero that had values less than σ in the refinement of model C. This reduced

the number of coefficients Cn
ijk from 244 to 132 (Table 5.2), while models C and Cr

fit the data almost equally well (Table 5.4).

Difference-Fourier maps based on the observed structure factors and those cal-

culated for a model indicate the improvement of the fit to the data for increasing

complexity of the model (Figure 5.2 and Table 5.4). The difference Fourier map of

model B compared to that of model Cr confirms the importance of modulated third-
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order anharmonic ADPs, as it was derived on the basis of MEM-density maps. The

difference-Fourier map of model Cr displays a structure around atom Rb2, which

is independent of the phase of the modulation in first approximation. It has the

signature of unmodulated fourth-order anharmonic ADPs, as they are missing in

model Cr. The inclusion of fourth-order anharmonic ADPs for all atoms lead to

highly nonphysical values of these parameters, that is, large negative values of the

joint probability distribution function for the resulting model. Model Dr was then

constructed to include fourth-order anharmonic ADPs for the atoms Rb1, Rb2 and

Cl3 only. The improvement, as compared to model Cr, of the fit to the data, in

particular to the main reflections, is apparent (Table 5.4). Refinements of the ex-

tinction coefficient lead to a negative value for this parameter, so it was fixed to

zero.

The remaining discrepancies between calculated and observed structure factors

can be attributed in part to the incompleteness of the model. As indicated above,

introduction of more parameters leads to nonphysical values and high correlations

between them, while these additional parameters would have been required for a full

characterization of the modulation. A second reason for rather high final R values

of the higher-order satellite reflections lies in the less than optimal accuracy of the

present data due to a limited counting statistics. This interpretation becomes ap-

parent, when the R values are considered for model Dr on the stronger reflections of

the present data (reflections with I > 5 σ(I); column N∗ in Table 5.4). In particular

the partial R values of the higher-order satellite reflections are considerably lower

than on the full data set (compare columns Dr
∗ and Dr in Table 5.4).

The fit of the models A, B, C, Cr and Dr to the Aramburu-data has been tested

by refinement of the basic-structure parameters of each model against these data,

while the modulation parameters and anharmonic ADPs were kept fixed to the

values determined from the present data. The fit to the main reflections and first-

order satellite reflections is reasonable, but it becomes worse on introduction of

modulation parameters for the (an)harmonic ADPs (models B–Dr; Table 5.5). On

the other hand, the latter models lead to an improvement of the fit to the third- and

fifth-order satellites of the Aramburu-data, but with R values that are considerably

higher than those on the present data. These discrepancies can be attributed to



68 CHAPTER 5. INCOMMENSURATELY MODULATED Rb2ZnCl4

different qualities of the sample and—especially—different temperatures, which both

will affect the shapes of the modulation functions and the contributions of modulated

and anharmonic ADPs to it.

Therefore, independent refinements were performed against the Aramburu data,

now varying all parameters, and resulting in models A′, B′, C′, C′
r and D′

r, which dif-

fer from the corresponding models A, B, C, Cr and Dr in the values of the parameters.

The fit to the Aramburu data is dramatically improved in this way (see Supplemen-

tary Material), resulting in R values comparable to R values on the present data.

Exception are the main reflections, which are much better fitted for the present

data, indicating the higher accuracy of these data than the Aramburu data. De-

spite convergence of the refinements against the Aramburu data and the resulting

low R values, the primed models suffer from high correlations between parameters

and large standard uncertainties of them. For example, none of the modulation

parameters for ADPs in model B′ exceeds 6 σ, which prevents a meaningful anal-

ysis of the modulation on the basis of model B′, as it has already been noticed

by Aramburu et al. (2006). Standard uncertainties of modulation parameters and

anharmonic ADPs are a multiple of the standard uncertainties of these parame-

ters in the corresponding unprimed models (refinements against the present data).

Therefore, we refrain from a further consideration of the primed models.

5.3.3 MEM calculations

Phased observed structure factors corrected for anomalous scattering and scaled

to the scattering power of one unit cell were obtained according published proce-

dures from the observed data and model B (Bagautdinov et al., 1998). These data

were used for the calculation of a maximum-entropy-optimized generalized elec-

tron density in (3 + 1)-dimensional superspace [MEM-density or ρMEM
s (xs)] with

the computer program BayMEM (van Smaalen et al., 2003). A uniform prior, the

Cambridge algorithm and the weights of type F2 have been used (Li et al., 2010).

The MEM calculation converged in 69 iterations (Table 5.1).

The (3 + 1)-dimensional electron-density map has been analyzed with the com-

puter program EDMA (van Smaalen et al., 2003). Physical-space sections of ρMEM
s (xs)
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Table 5.6: Amplitudes of the displacement modulation functions of model Dr(relative
coordinates multiplied by 105).

Atom n An
x An

y An
z Bn

x Bn
y Bn

z

Rb1 1 1111(8) 0 0 -1100(9) 0 0
2 0 -21(9) 94(6) 0 -171(8) 10(10)
3 -175(16) 0 0 191(16) 0 0
4 0 -81(16) 0(20) 0 103(15) -120(20)
5 101(9) 0 0 -94(9) 0 0

Rb2 1 1574(8) 0 0 -149(6) 0 0
2 0 23(3) -58(4) 0 10(3) 16(5)
3 -148(15) 0 0 -49(8) 0 0
4 0 -8(12) 40(18) 0 27(11) -59(18)
5 85(15) 0 0 29(10) 0 0

Zn 1 958(7) 0 0 308(6) 0 0
2 0 -29(3) -11(5) 0 -26(6) 82(5)
3 -21(16) 0 0 -130(8) 0 0
4 0 -42(13) 30(20) 0 21(16) -40(20)
5 -89(8) 0 0 12(8) 0 0

Cl1 1 3770(30) 0 0 580(30) 0 0
2 0 -15(10) -60(15) 0 -143(19) 10(20)
3 -80(50) 0 0 -160(50) 0 0
4 0 80(40) -70(40) 0 -20(30) 20(40)
5 170(70) 0 0 -60(70) 0 0

Cl2 1 770(30) 0 0 5100(40) 0 0
2 0 -4(11) -77(12) 0 -68(9) 40(19)
3 -110(40) 0 0 -560(50) 0 0
4 0 0(30) 20(30) 0 70(30) 10(40)
5 90(80) 0 0 -70(80) 0 0

Cl3 1 501(15) 67(12) -1022(10) -1811(15) 2427(14) 1227(12)
2 5(18) -31(14) 100(15) 81(17) -28(13) 12(17)
3 -40(30) -40(30) -180(30) 184(14) -335(18) -10(30)
4 20(20) -60(20) -50(30) -120(20) 79(19) 100(30)
5 -100(30) 40(40) 100(40) -80(30) 190(30) 10(30)
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Model DrModel Cr
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Figure 5.2: (xs1, xs4)-sections of difference-Fourier maps centered on atom Rb2 (x1 = 0.25,
x2 = 0.819 and x3 = 0.487) from different models. Solid lines stand for positive values,
dashed lines for negative values, and long-dashed lines for the zero contour. The contour
interval is 0.2 electrons Å−3. Maximum and minimum values over the map are 3.63/−0.57
electrons Å−3 for model A, 2.12/− 0.41 electrons Å−3 for model B, 1.35/− 0.52 electrons
Å−3 for model Cr, 0.93/ − 0.51 electrons Å−3 for model Dr. The Thick red lines denote
the modulated position of atom Rb2.
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Figure 5.3: Modulation functions of the crystallographically independent atoms of
Rb2ZnCl4. Displacements along x, y and z are given in Å. Open circles are the center of
charge and filled circles are the maxima of the MEM-electron density. Lines represent the
modulation functions of model A.
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Figure 5.4: (xs1, xs4)-Section of the generalized electron density ρMEM
s (xs) at the position

of Rb2 (x1 = 0.25, x2 = 0.819 and x3 = 0.487). The contour interval is 10% of the
maximum of electron density of 175.1 electrons Å−3. The thick (red) line is the modulated
position of atom Rb2 from model Dr

have been obtained for one hundred equally-spaced t values within one period along

the fourth axis, i.e. for 0 ≤ t < 1. Atoms in the crystal correspond to local maxima

in the physical-space sections of the generalized electron density. The positions of

the local maxima in each t-section can be identified with atomic positions. The

position of each local maximum as a function of t then provides the modulated po-

sition of an atom. Alternatively, the center-of-charge has been determined for the

atomic basins surrounding each local maximum. The dependence on t of the posi-

tions of the center-of-charge provide an alternative measure for the atomic positions.

Modulation functions have been extracted from ρMEM
s (xs) by taking the difference

between the modulated atomic position and the basic-structure position as obtained

from model B (Figure 5.3).

Two-dimensional sections of ρMEM
s (xs) have been visualized by the plotting op-

tion of the computer program Jana2006 (Petricek et al., 2006). The (xs1, xs4)-

section centered on atom Rb2 clearly shows the modulated position of this atom

(Figure 5.4).



5.3. EXPERIMENTAL 73

tt t

Cl2

Cl3

Rb1

Rb2

Zn

Cl1Cl1

Cl2 Cl2

Cl3Cl3

Rb1Rb1

Rb2Rb2

ZnZn

Cl1
-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

uy

uz

ux

ux

ux

ux

ux

uy

uy

uy

uy

uz

uz

uz

uz

uz

uy

ux

u
(Å

)
u

(Å
)

u
(Å

)
u

(Å
)

u
(Å

)
u

(Å
)

Figure 5.5: Modulation functions of the crystallographically independent atoms of
Rb2ZnCl4. Displacements along x, y and z are given in Å. Open circles are the cen-
ter of charge and filled circles are the maxima of the MEM-electron density. Dashed lines
represent the modulation functions of model Dr.
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5.4 Discussion

5.4.1 Nature of the modulation

The incommensurate modulation of Rb2ZnCl4 at a temperature of T = 196 K,

close to the lock-in transition at Tlock−in = 192 K, has been determined to comprise

of atomic displacement modulation functions that contain contributions of Fourier

coefficients up to fifth order. This finding is in agreement with previous studies on

this compound (Aramburu et al., 2006). Modulations of the ADPs are found to be

an intrinsic part of the incommensurate crystal structure. That is, the harmonic

ADPs are modulated with up to second-order Fourier coefficients and the third-order

anharmonic ADPs are modulated with Fourier coefficients up to fifth order, while

the basic-structure components of the third-order anharmonic ADPs are zero.

The finding of modulated atomic displacement parameters agrees well with previ-

ous studies, like on incommensurately modulated Na2CO3 (Dusek et al., 2003), and

the composite crystals [LaS]1.14[NbS2] and [SrO]2[CrO2]1.85 (Jobst and van Smaalen,

2002; Castillo-Mart́ınez et al., 2008). Modulated ADPs have also been found neces-

sary in cases where only first-order satellite reflections were available, like La2C1.7,

Na2Si3O7 and Pb2NiVO6 (Dusek et al., 2000; Kruger et al., 2006; Roussel et al.,

2009).

The necessity of modulation functions for third-order anharmonic ADPs has been

revealed by our previous studies by the MEM on NH4BeF4 (Palatinus et al., 2004)

and Cr2P2O7 (Li et al., 2010). Many incommensurate crystal structures have been

published, where R values are higher than they should have been for the perfect

structure model. It can thus be speculated that the fit to diffraction data might be

improved for many compounds by the inclusion of modulated ADPs and modulated

third-order anharmonic ADPs. On the other hand, correlations between modula-

tion parameters—as shown here for Rb2ZnCl4—might prevent their determination

by structure refinements. This problem especially exists for high-order Fourier co-

efficients of modulation functions. Meaningful values are almost always limited to

coefficients of orders equal and less than the maximum order of observed satellite

reflections.
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Figure 5.6: Value in model Dr of the component C111 of third-order anharmonic ADPs of
atom Rb2 as a function of t. Minimum and maximum values are located at t = ∼ 0.1 and
∼ 0.6, respectively.

It is suggested that modulations of ADPs are an intrinsic part of modulations

in incommensurate crystals in general. Their presence can be rationalized by the

fact that any displacive modulation defines a modulation of the environments of the

atoms. Different environments require different ADPs, which can be achieved by

a modulation of the ADPs. It is important to include at least up to second order

Fourier coefficients (Perez-Mato et al., 1991).

A displacement modulation of an atom creates a tightening of its environment

in the direction in which this atom is displaced. Because the modulation always in-

volves displacements out of the average position into both the positive and negative

directions, this general feature of modulations explains the presence of modulated

third-order anharmonic ADPs, while their average values are zero. The correlation

between displacement modulation and modulated Cijk is apparent from the values

found for model Dr of Rb2ZnCl4. Both the displacement modulation and the mod-

ulated Cijk have their most important nonzero components along the a axis for all

five independent atoms on the mirror plane (Table 5.6 and supplementary mate-

rial). Atom Cl3—not on the mirror plane—has contributions to its modulation for

the other directions too, which again affects both the displacement modulation and

modulated third-order anharmonic ADPs. Although not perfectly matched, posi-

tive displacements along a (Figure 5.5) of atom Rb2 match negative values of C111



76 CHAPTER 5. INCOMMENSURATELY MODULATED Rb2ZnCl4

0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.1
0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.2

0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.4
0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.6

0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.8
0.6

0.2

-0.2

-0.6
-0.6 -0.2 0.2 0.6

x

y

t = 0.9

Figure 5.7: The joint probability distribution function at the site of Rb2 for selected t
values for model Dr, but obtained with Uij and Cijk only. Contour interval is 1 electron
Å−3 with a maximum density of 17.7 electron Å−3.
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Figure 5.8: The joint probability distribution function at the site of Rb2 for selected t
values for model Dr. Contour interval is 1 electron Å−3. Over the selected map region
the minimum density is -0.66 electron Å−3 and the maximum density is 9.8 electron Å−3.
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(Figure 5.6), which implies a decreased probability (Figures. 5.7 and 5.8) for the

presence of an atom in the direction of the tighter environment.

The trace of the center-of-charge for each atom in the MEM density indicates

smooth modulations, whereas the trace of the local maximum of the density varies

around the position defined by the center-of-charge for each atom (Figure 5.3). We

take this variation as evidence for the presence of modulated third-order anharmonic

ADPs. Similarly, several of the components of the modulation functions in model

A exhibit variations (ripples) according to higher-order Fourier coefficients, while

the same functions appear smooth in model Dr (Figure 5.5). (The largest effect is

visible for the components uy[Cl1], uz[Cl3] and uy[Rb1].) These smoother functions

seem more plausible and they match the trace of the center-of-charge very well.

Both refinements (model Dr vs model A) and the MEM thus provide evidence for

modulated third-order anharmonic ADPs. Least of all, the reduction of R values on

increasing complexity of the structure model provides strong evidence for modulated

harmonic ADPs and modulated third-order anharmonic ADPs (Table 5.4).

As mentioned above, structure refinements without (model A) and with modula-

tion functions for ADPs (models B–Dr) result in significantly different functions for

the displacive modulation. The inclusion of modulated functions for ADPs thus ap-

pears necessary for achieving an accurate description of the displacive modulation,

with concomitant implications for the interpretation of the modulation (Section

5.4.2). Alternatively, the center-of-charge of each atom in the MEM density also

provides a good description of the displacement modulation functions.

Comparison of the two approaches—MEM analysis and structure refinements—

shows the different limitations of either method. The MEM-density gives evidence

for the modulations of the ADPs as well as the presence of anharmonic ADPs. How-

ever, the finite size of the pixels in the MEM density (here: 0.1 Å) limits the accuracy

of the atomic positions to about 0.01 Å (van Smaalen et al., 2003), while atoms on

special positions might sometimes lead to more accurate values of the positions. An

error of up to 0.01 Å is not small, if modulations are considered with amplitudes

significantly below 0.1 Å. On the other hand, structure refinements readily lead

to large dependencies between parameters, such that Fourier components of orders

n > 5 cannot be determined. Furthermore, a full ab-initio determination appeared
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impossible for the third-order and fourth-order anharmonic ADPs, and we had to

resort to a method of selecting relevant parameters (compare models C, Cr and Dr

and the discussion in Section 5.3.2).

5.4.2 Relation to the soliton model

Aramburu et al. (2006) have shown that a soliton model for the modulation leads

to displacement modulation functions with Fourier components of first and fifth

(and higher) order. They introduced a measure, ns, for the soliton density, which

actually describes the shape of the modulation functions with ns = 1 for a sinusoidal

shape and ns = 0 for a block wave. The phase of the fifth-order Fourier coefficient

depends on the phase of the first-order Fourier coefficient by a simple relation and it

is independent from the soliton density. The ratio between amplitudes of fifth- and

first-order Fourier coefficients should be the same for all atoms, while its value is a

measure for the soliton density. Aramburu et al. (2006) have found these relations to

be approximately valid for their structure model for Rb2ZnCl4, and they proposed

that the modulation of Rb2ZnCl4 at the temperature of their experiment has a

soliton density of ns = 0.4.

Here we have shown that significant differences exist for the displacement mod-

ulation functions in cases of a pure displacive modulation model (model A) and a

model including modulated (an)harmonic ADPs (model Dr). Both models appear

to be at variance with the soliton model, as follows from the ratio of amplitudes

of fifth- and first-order Fourier coefficients and from the phases of the fifth-order

Fourier coefficients (Figures. 5.9 and 5.10). A critical analysis of the present struc-

ture models and the structure model by Aramburu et al. (2006) shows that standard

uncertainties on the fifth-order Fourier coefficients are so large, that the agreement

with the soliton model as observed by Aramburu et al. (2006) should be considered

fortuitous. In view of the values of the standard uncertainties, consideration of the

first- and fifth-order Fourier coefficients of the displacement modulation functions

by themselves does not make a clear case against or in favor of the soliton model.

Another feature of the modulation pleading against the soliton model is the

presence of third-order Fourier coefficients of larger magnitude than the fifth-order
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coefficients, and the presence of second- and fourth-order Fourier coefficients of

similar magnitudes as the fifth-order coefficient (Table 5.6). Aramburu et al. (2006)

interpreted the third-order Fourier coefficient as a secondary mode. However, the

distortion towards the supposed soliton-shaped wave would be smaller than these

secondary modes, a situation which seems unlikely.

An important part of the modulation is modulated harmonic ADPs and modu-

lated third-order anharmonic ADPs. These modulations have not been incorporated

into the soliton model considered by Aramburu et al. (2006). The relation of these

modulation functions to a possible soliton property of the modulation wave will

require further theoretical analysis that is beyond the scope of the present work.

5.4.3 Origin of the modulation

The origin of the modulations in Rb2ZnCl4 and in A2BX4-type compounds in general

lies in the incompatibility between the observed orthorhombic packing of ZnCl4 and

Rb ions and the nearly tetrahedral symmetry of the ZnCl4 complex ions. This

incompatibility results in one short distance between the 11-coordinated A atom

(Rb1 in the present models) and an X atom (Cl1 in the present models) in the

same mirror plane. The bond strength of this short bond in the unmodulated high-

temperature structure has been taken as measure for the propensity of the compound

to form modulated structures at low temperatures (Fabry and Perez-Mato, 1994).

Analysis of the interatomic distances of model Dr shows that they are in agree-

ment with previous studies on similar compounds (Friese et al., 2000), and that

they support the interpretation given by Fabry and Perez-Mato (1994) (See t-plots

of distances and bond angles in the Supplementary Material). The present model

gives displacement modulations of Rb1 and Cl1 that are in-phase with each other

(Figure 5.5). Consequently, the very short Rb1–Cl1 distance hardly varies with the

phase t of the modulation. Instead, the strain of this contact is resolved by the

modulated third-order anharmonic ADPs.
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5.5 Conclusions

A combination of structure refinements, interpretation of difference-Fourier maps

and the analysis of the superspace MEM-density has been used to characterize the

incommensurate modulation of Rb2ZnCl4 at a temperature of T = 196 K, close to

the lock-in transition at Tlock−in = 192 K. Basic characteristics of the modulation

are a displacement modulation that contains contributions of Fourier coefficients

up to fifth order. A modulation of the ADPs is found to be an intrinsic part of

the modulation. That is, the harmonic ADPs are modulated with up to second-

order Fourier coefficients and the third-order anharmonic ADPs are modulated with

Fourier coefficients up to fifth order, while the basic-structure or average components

of the third-order anharmonic ADPs are zero.

Model Dr, which includes modulated ADPs and modulated third-order anhar-

monic ADPs, provides different values for the parameters of the displacement mod-

ulation than model A, which lacks any modulation of ADPs. Modulations of ADPs

thus is essential for the correct description of the displacement modulation functions.

The MEM density gives an excellent description of the displacement modulations

of the atoms by means of the t-dependencies of the traces of the centers-of-charge

of the atoms. These traces coincide with the displacement modulation functions of

the atoms in model Dr, providing further support for the necessity of modulated

ADPs. Modulations of the ADPs and anharmonic ADPs are visible in the MEM

density as variations of the distributions of the density about their average value, as

it is exemplified by the traces of the local maxima of the MEM density around the

positions of the atoms. A quantitative interpretation of the MEM density is made

difficult by the finite resolution of this map, which limits the accuracy of positions

to about 0.01 Å.

Structure refinements may lead to a quantitative description of the modulation,

but the introduction of the required model parameters readily leads to correlated

parameters. Nevertheless, with the extensive data set available in the present study,

we have been able to obtain significant values for higher-order Fourier coefficients of

the displacive modulation functions and for modulated parameters of the harmonic

ADPs and the third-order anharmonic ADPs.
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The results suggest that modulated harmonic ADPs and modulated third-order

anharmonic ADPs form an intrinsic part—however small—of incommensurately

modulated structures.

For Rb2ZnCl4 we could show that the modulation cannot be interpreted as a

soliton wave, thus contradicting previous proposals (Aramburu et al., 2006).
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Chapter 6

Incommensurately modulated

Cr2P2O7

6.1 Abstract

The Maximum Entropy Method (MEM) has been used to determine the electron

density in superspace of incommensurately modulated chromium pyrophosphate

from X-ray diffraction data measured by Palatinus et al. (2006). Chromium py-

rophosphate, Cr2P2O7 contains ordered regions (83% of the volume) and regions

with disorder. Analysis of the MEM density has allowed to determine the displacive

modulation functions within the ordered regions. The disordered regions can be de-

scribed as the alternate occupation of two conformations of the pyrophosphate group

and two positions of the chromium atom, with occupational probabilities that de-

pend continuously on the phase of the modulation t. A structure model based on

the interpretation of the MEM density provides a fit to the diffraction data of the

same quality as the model given by Palatinus et al. (2006). The failure of finding

a model that better fits the data is attributed to the intrinsic inaccuracy of ∼ 0.01

Å for positions derived from the MEM and to the difficulties in constructing an

appropriate model for the anharmonic ADPs and their modulation functions from

electron densities.

85
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6.2 Introduction

One of the applications of the Maximum Entropy Method (MEM) in crystallog-

raphy is the reconstruction of the electron density from phased structure factors

(Gilmore, 1996). Analysis of the MEM electron density can provide a lot of in-

formation about disorder (Dinnebier et al., 1999; Wang et al., 2001), anharmonic

thermal motion (Kumazawa et al., 1995; Bagautdinov et al., 1998), and chemical

bonding (Sakata and Sato, 1990; Takata, 2008; van Smaalen and Netzel, 2009). For

aperiodic crystals the MEM has been used for the determination of the shapes of

modulation functions of modulated crystals or for the determination of the occupa-

tional domains of quasicrystals (Yamamoto et al., 1996; Palatinus and van Smaalen,

2004; van Smaalen and Li, 2009).

The structures of incommensurately modulated crystals and composite crystals

can be described by a periodic basic structure1 combined with modulation func-

tions for each of the independent atoms in the unit cell of the basic structure

(van Smaalen, 2007; Janssen et al., 2007). Structure models then incorporate for

each independent atom three basic-structure coordinates, atomic displacement pa-

rameters (ADP) and—in principle—an infinite number of parameters defining the

modulation functions. Since structure refinements can determine a finite number of

parameters at best, modulation functions are usually described by truncated Fourier

series. Often only the first harmonic or up to second harmonics can be determined,

while a larger number of parameters cannot be refined due to interdependencies

among them. Sometimes it appears appropriate to employ block waves or saw-

tooth-shaped functions as modulation functions. However, in all cases the outcome

of structure refinements is restricted by the choice of parameters for the modulation

functions. The result may differ from the true functions and it may not reflect the

information content of the diffraction data.

The MEM has been proposed as a model-independent tool to obtain the most

probable generalized electron density in the unit cell of superspace of aperiodic crys-

tals. Analysis of the superspace density then provides a model-independent estimate

of the modulation functions (van Smaalen et al., 2003; van Smaalen, 2007). Several

1Composite crystals require two or more basic periods
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Table 6.1: Basic structural information as obtained The criterion for observed reflections
is I > 3σ(I).

Chemical formula Cr2P2O7

Superspace group C2/m(σ1 0 σ3)1̄s
Lattice parameters, a (Å) 7.0192 (5)
b (Å) 8.4063 (6)
c (Å) 4.6264 (3)
β (deg) 108.6111 (64)
Modulation wavevector (−0.361(1), 0, 0.471(1))
(sin(θ)/λ)max (Å−1) 0.62
No of reflections (obs/all) 1433/2409
No of main reflections (obs/all) 278/283
No of first-order satellites (obs/all) 455/495
No of second-order satellites (obs/all) 421/569
No of third-order satellites (obs/all) 183/495
No of fourth-order satellites (obs/all) 96/567

successful applications of this principle have been published (Palatinus and van Smaalen,

2004; McMahon et al., 2007).

Chromium pyrophosphate Cr2P2O7 is a member of the thortveitite family of

compounds (Glaum et al., 1991). The thortveitite structure type is stable at high

temperatures, while it defines the basic structure of the incommensurately modu-

lated phase at room temperature (Table 6.1). The modulation becomes commen-

surate below Tc = 285 K. Structure refinements of Cr2P2O7 have been performed

by Palatinus et al. (2006), employing combination of harmonic, block-wave and saw-

tooth functions for the modulation functions. The analysis by Palatinus et al. (2006)

showed small regions of large variations of the modulation functions that could not

properly be described by a model. Here, we present the results of an analysis by the

MEM of the modulations in Cr2P2O7 based on the X-ray diffraction data published

by Palatinus et al. (2006). Although the structure model based on the MEM gives

only a slightly better fit to the diffraction data, a direct analysis of the MEM-density

clearly reveals the way the structure resolves internal strain in the transition regions.

The basic structure of Cr2P2O7 is formed by layers of edge-sharing, distorted

CrO6 octahedra. Gaps in these layers are bridged by P2O7 pyrophosphate groups

that share three of their oxygen atoms with a layer below and three other oxygen
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Figure 6.1: Basic structure of Cr2P2O7. Cr(i) and O2(i) are related by lattice translations
to Cr and O2, respectively.

atoms with a layer above; the bridging oxygen atom is confined to the P2O7 group

(Figure 6.1). The most probable origin for the incommensurability is that a fully

relaxed (stretched) pyrophosphate group is larger than the gaps in the Chromium

oxide layers. The room-temperature crystal structure with the periodicity of the

CrO3 layers must thus contain the pyrophosphate group in some unfavorable con-

formation, which is relieved at low temperatures by forming an incommensurately

modulated structure. Other contributions to the incommensurability could come

from Jahn−Teller distortions of the CrO6 octahedral groups (Palatinus et al., 2006).

6.3 The maximum entropy method

The generalized electron density ρs(xs) in (3 + 1)-dimensional superspace is dis-

cretized on a grid of Npix = N1 ×N2 ×N3 ×N4 pixels over the superspace unit cell.
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Then the entropy is defined as (van Smaalen et al., 2003)

S = −
Npix∑
k=1

(
ρk log

[
ρk/ρ

prior
k

]− ρk + ρpriork

)
(6.1)

where ρk = ρs(xsk) is the electron density at the kth grid point and ρpriork is the

corresponding value of the reference density or PRIOR. The MEM defines the op-

timal electron density as the electron density {ρk} which maximizes the entropy S

(Equation 6.1) subject to several constraints. The first constraint is the normaliza-

tion of {ρk} and {ρpriork },
V

Npix

Npix∑
k=1

ρk = Ne (6.2)

where Ne is the number of electrons in the unit cell and V is its volume. Diffraction

data are incorporated in the form of the so-called F constraint, CF 2 = 0, with

Sakata and Sato (1990)

CF 2 = −1 +
1

NF

NF∑
i=1

wi

( |Fobs(Hi)− FMEM(Hi)|
σi

)2

. (6.3)

The sum runs over all independent structure factors NF in the data set. Fobs(Hi)

is the phased observed structure factor of the reflection with scattering vector Hi,

and σi is the standard uncertainty of |Fobs(Hi)|. FMEM(Hi) is obtained by (3+1)-

dimensional Fourier transform of the trial density {ρk}. The standard version of the

MEM employs weights wi = 1. The F -constraint then represents χ2 of the data with

an expectation value of one. This value is achieved at convergence where CF 2 = 0.

For uncorrelated standard uncertainties σi one expects at convergence a normal-

ized Gaussian distribution of the residuals,

ΔF (Hi)

σi
=

Fobs(Hi)− FMEM(Hi)

σi
. (6.4)

It has been shown that the MEM with wi = 1 leads to distributions far from Gaus-

sian in most cases. This feature is responsible for a converged density {ρk} that is far

from the optimum density {ρMEM
k } (de Vries et al., 1994; Palatinus and van Smaalen,
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Figure 6.2: Distribution of residuals (Equation 6.4) at convergence of the MEM for weights
H0, H2, H4, F2 and F4. The inset shows an expanded view.

2002).

Several weighting schemes have been proposed, which should guide the itera-

tive MEM procedure towards the optimum density with a Gaussian distribution of

residuals (Equation 6.4). A good choice for periodic crystals is weights that vary

according to an inverse power of the length of the scattering vector,

wi =
1

|Hi|n
(

1

NF

NF∑
i=1

1

|Hi|n
)−1

(6.5)

with n a positive integer. These static weights are denoted by Hn. Optimal results

have been obtained for weights H4 (de Vries et al., 1994; Hofmann et al., 2007).

An empirical justification for weights Hn is provided by the observation that

a few low-order strong reflections attain large residuals. In this case CF 2 = 0

then implies that the other reflections will have too small values for their residuals

(de Vries et al., 1994). Strong reflections of periodic crystals have short scattering

vectors and weights Hn define larger weights for exactly these reflections. In case of

incommensurately modulated crystals problematic reflections are again the strong

reflections with short scattering vectors. However, reflections with short scattering

vectors include both main reflections and satellite reflections.

The latter are generally weak and they inadvertently obtain large weights, if
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Table 6.2: Comparison of MEM calculations with different weights. Given are the R values
(%) at convergence as well as the number of reflections with ΔF/σ ≥ 6 and the value of
(ΔF/σ)max.

H0 H2 H4 F2 F4
RF (all) 3.92 4.69 4.50 2.74 2.45
wRF 2(all) 3.71 3.72 3.71 3.73 3.73
ΔF/σ ≥ 6 17 9 6 0 2
(ΔF/σ)max 14.48 10.48 7.36 5.80 6.37

weights of the type Hn are employed. Presently, we have found that weights H2 and

H4 do not lead to optimal MEM densities, as it is indicated by the distributions

of residuals (Table 6.2 and Figure 6.2) and by the mismatch between modulation

functions derived from the MEM densities and those of the model (Figure 6.3).

Weights that emphasize the strong reflections can alternatively be chosen as

weights proportional to some power of the structure factor amplitude (de Vries et al.,

1994)

wi = |Fobs(Hi)|n
(

1

NF

NF∑
i=1

|Fobs(Hi)|n
)−1

(6.6)

These weights are denoted by Fn. Here we have found that an optimal result is

obtained for weights F2. Although the distribution of residuals is not Gaussian for

F2, this choice of weights gave the best performance for removal of the problem

of very large residuals for a few reflections (Table 6.2). Another indication for the

better performance of weights F2 is that they lead to a lower RF value than weights

Hn (Table 6.2).

Weights F2 are not necessarily the optimal choice for incommensurate crystals.

One can envisage that other weighting schemes might work better or that differ-

ent weighting schemes will appear optimal for different compounds. Nevertheless,

weights F2 appear to give excellent results for Cr2P2O7 (Figure 6.3). Therefore they

have been used for the present analysis.
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Figure 6.3: Modulation function ux of Cr as obtained from MEM densities computed
against observed data (×) and against Fcal as ”data” (+). Values obtained with weights
H2, F2 and H4 are plotted with offsets of −0.4, 0 and 0.4 Å, respectively. The modulation
function of refined model B is given as a solid line and reproduced at each offset value.
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Figure 6.4: Schematic representation of the modulation functions in model A. The com-
ponent uy is shown as a function of t. Discontinuities are present at t = 0.13 and
at t = 0.63. Primed atoms are related to unprimed atoms by the symmetry operator
(x1,−x2, x3,

1
2 + x4).

6.4 Experimental

6.4.1 Structure refinements

The present work is based on the X-ray diffraction data by Palatinus et al. (2006).

Properties of the data of particular relevance for the MEM are summarized in

Table 6.1. Palatinus et al. (2006) present several models for the structure of incom-

mensurately modulated Cr2P2O7. Their model A is based on displacive modulation

functions that are combinations of saw-tooth, block-wave and harmonic functions.

The atomic displacement parameters (ADPs) are modulated by harmonic functions

in this model. Model A is characterized by discontinuities in the modulation func-

tions at two values of t (Figure 6.4). Model B is proposed as their best model by

Palatinus et al. (2006). It differs from model A as it contains regions of disordered

structure around the t values which indicated discontinuities in model A. As a con-

sequence, the modulation functions of the ADP could be removed from model B,

resulting in fewer parameters and lower R values than in model A.

We have reproduced the refinement of model B employing the software Jana2006

(Petricek et al., 2006). The disorder in model B is described by a split atom model
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Figure 6.5: Schematic representation of the modulation functions in model M. The com-
ponent uy is shown as a function of t. Regions of disorder occur around t = 0.12 and
t = 0.62.

of width of 0.084 in t. The technical realization involves the introduction of atoms

Cr(a), P(a), P(b), O2(a), O3(a) and O3(b), each with an occupancy of one half and

a width of 0.084 in t, while reducing the widths of the parent atoms by the same

amount. The half-occupied atomic sites are not modulated in model B, because it

is impossible to refine any occupational and displacive modulation parameters of

these atoms due to high correlations caused by their small occupational domains in

t. On the other hand, large structural variations exactly in the regions of disorder

strongly suggest that these half-occupied sites will be modulated. Uncovering the

crystal structure in the regions of disorder was one of the main motivations for the

use of the MEM for this system.

Based on the analysis of the MEM density a new model has been developed,

which provides an improved description of the structure although it gives only a

marginally better fit to the data. This model, called model M, has been obtained

by a real-space fit of the parameters of the modulation functions to the t-dependent

positions of the atoms as they have been determined by interpretation of the MEM

electron density (Figure 6.5). Because these modulation functions are determined

at one hundred t-values, many more parameters can be fitted than is possible in

structure refinements against diffraction data, thus obtaining a nearly perfect de-

scription of the t-dependent atomic positions as derived from the MEM density. As
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Table 6.3: Number of parameters used for each atom in models B and M. The number in
brackets is the number of refined parameters.

Model B Model M
Occupancy Position 2nd ADP Occupancy Position 2nd ADP 3rd ADP

P 2(0) 15(15) 18(18) 2(0) 24(3) 11(11) 16(16)
P(a) 2(0) 3(3) 6(6) 6(0) 24(0) 6(6) 0
P(b) 2(0) 3(3) 6(6) 6(0) 24(0) 6(6) 0
O2 2(0) 4(4) 4(4) 2(0) 4(4) 4(4) 0
O2(a) 2(1) 3(3) 6(6) 2(1) 3(3) 6(6) 0
O1 0 8(8) 4(4) 0 8(8) 4(4) 0
O3 2(0) 24(21) 18(18) 2(0) 24(21) 18(18) 0
O3(a) 2(0) 3(3) 6(6) 2(0) 3(3) 6(6) 0
O3(b) 2(0) 3(3) 6(6) 2(0) 3(3) 6(6) 0
Cr 2(0) 16(13) 16(16) 2(0) 16(13) 16(16) 0
Cr(a) 2(1) 3(3) 6(6) 2(1) 3(3) 6(6) 0

Table 6.4: R values and partial R values (%) for model B and model M.

Model B Model M Number of reflections
Reflection group RF (obs) wRF 2(all) RF (obs) wRF 2(all) observed all
All 2.27 5.77 2.17 5.68 1433 2409
Main 1.65 4.08 1.57 3.97 278 283
Satellites |m| = 1 1.77 3.08 1.70 2.94 455 495
Satellites |m| = 2 3.30 4.98 3.17 4.91 421 569
Satellites |m| = 3 9.06 18.22 8.77 17.79 183 495
Satellites |m| = 4 19.62 36.88 18.46 37.04 96 567
Number of parameters 179 170

a consequence, only a selection of the structural parameters of model M could be

refined against the diffraction data, while others have been kept fixed to their values

determined from the MEM density. As discussed below, an improvement of the fit

to the diffraction data was only obtained by replacing the displacive modulation of

the phosphorus atom by MEM-derived functions. The modulation functions of the

other atoms were kept as in model B. A summary of features of models M and B is

given in Table 6.3 and Table 6.4. Full details of models M and B are given as CIF

files in the supplementary material.
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6.4.2 MEM calculations

The electron density has been defined on a grid of 72× 96 × 48 × 48 pixels, which

corresponds to a voxel size of 0.097 × 0.088 × 0.096 Å3 in real space. Calculations

according to the MEM have been performed with the software BayMEM on a

Compaq−DEC ES40 Workstation (van Smaalen et al., 2003). A uniform prior and

the Cambridge algorithm have been used in all the calculations.

Observed, phased structure factors corrected for anomalous scattering have been

generated from the diffraction data, employing model B according to the procedure

described in Bagautdinov et al. (1998). They were used in one MEM calculation

with weights F2 (Equation 6.6), resulting in an optimized electron density ρMEM(xs)

= {ρMEM
k }. Additional MEM calculations have been performed with weights H0,

H2, H4 and F4 (section 6.3). Experimental values of phases are not available. In-

stead the MEM employs values for phases that are those of the best structure model.

Therefore, they might differ from the true phases. For a centrosymmetric structure,

like Cr2P2O7, with two values, 0 or π, for the phase of each reflection, each phase

can be correct or wrong. It is at a the basis of the use of Fourier and difference

Fourier maps as aid in structure solution, that a reasonable structure model already

produces accurate phases for the reflections. For glycine we have counted 20 wrong

phases out of 3822 reflections, of which only two possessed intensities slightly larger

than 3σ (Netzel et al., 2008). True phases were assumed to be the values obtained

from the multipole model. For Cr2P2O7 we do not have and independent source of

true phases, so that we cannot make such an analysis in the present case.

Other MEM calculations have been performed with the combination of calculated

structure factors of model B and experimental standard uncertainties as ”data.”

Employing weight F2, the resulting density is denoted by ρMEM
cal (xs) = {ρMEM

cal, k }.
Obviously, the latter calculation aims at reproducing the model, but differences with

the model can occur due to intrinsic behavior of the MEM, the choice of standard

uncertainties and the limited number of reflections, which are restricted to those

reflections for which experimental data are available.

The computer program Jana2006 (Petricek et al., 2006) has been used for the

visualization of 2-dimensional sections of the electron densities. As an example,
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Figure 6.6: (xs1, xs4)-Section of the generalized electron density ρMEM
s (xs) at the position

of Cr (x1 = 0.5, x2 = 0.8121 and x3 = 0.0). The contour interval is 10 % of the maximum
of electron density of 267.9 electron/Å3.

Figure 6.6 gives the (xs1, xs4) section of ρMEM(xs) centered at the position of the

Cr atom. It clearly shows the modulated position of this atom.

Electron density maps have been quantitatively analyzed by the computer pro-

gram Edma (van Smaalen et al., 2003). Three-dimensional sections representing

physical space have been calculated from (3+1)-dimensional superspace densities

for one hundred, equally-spaced values of t with 0 ≤ t < 1. In each t-section, po-

sitions of the atoms are identified as local maxima of the density. Combining the

information from all sections provides the positions of the atoms as functions of the

phase of the modulation t. The three components (ux, uy, uz) of the modulation

function of an atom then follow as the difference between its t-dependent position

in the MEM density and its basic-structure position obtained from model B. This

procedure has been used, for example, to extract the modulation function of Cr from

the MEM densities calculated with different weights (Figure 6.3). The consideration

of especially the modulations derived from ρMEM
cal (xs) obtained with various weights,

shows that weights F2 provide the best convergence of the MEM (section 6.3).

Figure 6.7 gives the modulation functions of all atoms: modulation functions
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Figure 6.7: Modulation functions of the crystallographically independent atoms of
Cr2P2O7. Displacements along x, y and z are given in Å. Points are obtained from
the MEM density; solid lines are the modulation functions of model B. Atoms are not
necessarily bonded to each other as they are indicated in Figure 6.1.
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Figure 6.8: The coordination polyhedron of phosphorus in dependence on t. The disor-
dered region is omitted. (a) P–O distances for model B. (b) P–O distances for model
M.

from model B are compared to modulation functions as they have been determined

from ρMEM(xs). It is noticed that the true position of an atom may deviate from

the MEM-derived position by an amount of up to 0.01 Å, for the grid-size used in

the present work (van Smaalen et al., 2003). However, in case of atoms on special

positions this discrepancy may be zero.

6.5 Discussion

An excellent agreement is obtained between the modulated position of chromium

in model B and the position determined from ρMEM(xs) in the ordered region

(−0.027 < t < 0.888) (Figure 6.7). Small discrepancies are visible for uy[Cr], but

their magnitudes of up to Δuy[Cr] = 0.0012 Å are well below the accuracy with

which positions of local maxima can be determined for discrete density maps with

a mesh of ∼ 0.1 Å (van Smaalen et al., 2003). This excellent agreement suggests

that the MEM can reliably construct the modulation functions of Cr2P2O7. Good

agreements between model B and the MEM-based modulation functions are also

obtained for the atoms O1, O2 and, to a slightly smaller extent, for atom O3.

The modulated position of the phosphorus atom does not agree well between

ρMEM(xs) and model B (Figure 6.7). In particular, the diverging nature of the
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Figure 6.9: (xs2, xs4)-Section of the difference Fourier map centered at atom P, and ob-
tained after refinement of (a) model B, and (b) model M. Solid lines indicate positive,
dashed lines negative values. The contour interval is 0.02 electron/Å3. Minimum and
maximum values over the unit cell are -0.49/0.54 electron/Å3 for model B, and -0.47/0.48
electron/Å3 for model M.

modulation functions in model B on approaching the disordered regions is unlikely

to be a realistic feature of modulations. This interpretation is compounded by

the analysis of interatomic distances between phosphorous and its four neighboring

oxygen atoms, which exhibit very short P–O distances close to the disordered region

[Figure 6.8(a)]. Model M is defined such that the modulated atomic positions of

phosphorus closely follow the trace of maximum density in ρMEM(xs). The better

description of the P atom in model M is reflected by the difference Fourier maps,

which exhibit much less structure around the position of P for model M than for

model B, although model M retains the larger values of its difference Fourier map

at positions farther away from the atoms (Figure 6.9). Furthermore, model M leads

to a shortest P–O distance of 1.46 Å that is longer than the shortest P–O distance

of 1.44 Å in model B, and compares better to P–O distances of other compounds

(Fuess, 2006).

Disorder over two sites has already been proposed for the atoms Cr, P, O2 and

O3 by (Palatinus et al., 2006), who gave for each of these atoms two positions of half

occupancy (Model B). ρMEM(xs) exhibits features that support a split-atom model

and allow a refined picture to be developed for the structure within the disordered

regions. The MEM densities around the atoms Cr, P and O3 appear to be smeared
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into the directions of the expected split at those t-values for which disorder of two

sites has been proposed (Figure 6.12 and Figure 6.13). We take this smearing as

evidence for the disorder over two sites. It is not a ”smoothing” effect of the MEM,

because at most t values the maxima of these atoms appear as normal (Figure 6.12

and Figure 6.13). The absence of a double maximum in ρMEM(xs) at the disordered

positions is explained by the relatively small distance between the two positions,

thus leading to a single broad maximum instead of two peaks, as observed.

The clearest description of the structure in the disordered regions has been ob-

tained for atom O2 (0.223 < t < 0.306 for atom O2(i) in Figure 6.7). The MEM-

density exhibits two closely-spaced local maxima near the position of O2 in the

t-sections of the disordered region (Figure 6.10). Since both positions are too close

to each other for simultaneous occupation, this indicates disorder of the O2 atom

over two sites, as they are displayed in Figure 6.7, in agreement with model B

(Palatinus et al., 2006). Unlike model B, the positions of O2 within the disordered

region depend on t.

Analysis of the MEM density allows the unit cell to be dissected in atomic basins

(Bader, 1994). The volume of an atomic basin provides a measure for the volume of

this atom, while the integrated number of electrons should be equal to the number of

electrons carried by this atom in the crystal structure under investigation. For ionic

crystals, the integrated number of electrons will deviate from the atomic number, but

ionic charges (differences between the atomic numbers and the integrated numbers

of electrons) usually cannot be identified with formal valencies. This is especially

true, if bonding involves a considerable amount of covalency, like it is the case for

Cr2P2O7. For crystals with disorder the integrated atomic charge can thus be taken

as a measure for the relative occupancy of each site.

Figure 6.11 shows the normalized integrated charge of O2 as a function of the

internal coordinate t. The number of electrons of O2 is 9.51 within the ordered

regions. This number thus corresponds to full occupancy of the O2 site. For the

disordered regions it is found that the occupancy of one position gradually increases

at the expense of the occupancy of the other position at the same t value. The two

modulated positions are found to be continuations of the positions in the ordered

regions (Figure 6.7), whereby—going from the ordered to the disordered regions—
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Figure 6.10: Physical-space sections of the MEM electron density centered at atom O2.
The value of t is indicated for each section. Axes are labeled in Ångstrom. The contour
interval is 1 electron/Å3; Maximum density is 29.7 electron/Å3. The two, partially visible
local maxima at the borders of each pane are due to phosphorus atoms.
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Figure 6.11: Occupancy of the split-site of atom O2 as a function of t. The occupancy
is given for O2(i) (open circles; see Figure 6.1) and O2(i)∗ [full circles; symmetry code
(x1,−x2, x3,

1
2 + x4)]. The integrated charge has been normalized against the average

integrated charge of 9.51 electrons in the ordered region (0.32 < t < 0.71).

the occupancy gradually diminishes (compare Figure 6.7 and Figure 6.11).

These observations lead to the following description of the structure of Cr2P2O7.

Positions of all atoms are modulated, such that the CrO6 and P2O7 units attain

different positions and orientations, while deformations of these units lead to in-

ternal strain. Strain is released by the existence of disordered positions, which are

characterized by the alternate occupancy of one of two conformations/orientations

of the CrO6 and P2O7 units. The occupational probability of each site depends on

amount of strain generated by the conformations of these units.

The structure model M was developed, which should capture the various features

of the modulation as derived from ρMEM(xs). The observed traces of maximum

density provide modulated atomic positions (Figure 6.7), while the other density

features described above provide information about the structure in the disordered

regions. The modulation functions of P were replaced by modulation functions fitted

to the traces of maximum density in ρMEM(xs). Furthermore, the distribution of

electron density at the site of P suggests anharmonic displacements of this atom

(Figure 6.14). Accordingly, third-order anharmonic ADPs were introduced for the

P atom, and their refinement improved the fit to the diffraction data. For atoms Cr,

O1, O2 and O3 the modulation functions of model B were kept, because all attempts



104 CHAPTER 6. INCOMMENSURATELY MODULATED Cr2P2O7

Figure 6.12: Physical-space sections of the MEM electron density centered at atom Cr
for two values of t. The contour interval is 10 electron/Å3; maximum density is 264.82
electron/Å3.

Figure 6.13: Physical-space sections of the MEM electron density centered at atom O3 for
two values of t. Contour interval is 1 electron/Å3; Maximum density is 38.2 electron/Å3.

Figure 6.14: Sections of the MEM electron density parallel to physical space at t = 0.24
centered at the atom P. Contours of constant electron density are drawn at intervals of 1
electron/Å3 up to 20 electron/Å3.
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Figure 6.15: (xs2, xs4)-Section of the observed Fourier map of (a) model B, and (b) model
M. Contours at the intervals of 10 percent of the maximum density. The modulated
position is shown for atoms P (red line), P(a) (green line) and P(b) (yellow line).

to introduce MEM-based modulation functions for these atoms lead to a fit to the

diffraction data that is comparable to model B, but worse than model M. One

explanation for this feature is that ρMEM(xs) and model B match very well in the

ordered regions, so that model B already gives a good description the ordered regions

of atoms Cr, O1, O2 and O3. However, the positions derived from the discrete

MEM density have an intrinsic uncertainty of ∼ 0.01 Å, which difference might be

sufficiently large to provide a less than optimal fit to the diffraction data, while

refinement of the many parameters of the MEM-based modulation functions is not

possible due to inter-dependencies between them. Modeling the disordered regions

is difficult, because we do not have a method to derive split-atom positions from

the smeared maxima in ρMEM(xs) in the disordered regions. For the phosphorus

atom with MEM-based modulation functions, only basic structure parameters and

modulated ADPs have been refined.

Model M gives a slightly better fit (RF = 2.17 %) to the diffraction data than

model B does (RF = 2.27 %). Other indicators—e.g. the difference Fourier and

Fourier maps around phosphorus (Figure 6.9 and Figure 6.15)—also suggest model

M to be the better model. Despite the construction of a complete picture of the

modulations in Cr2P2O7, it is rather disappointing that this picture could not be

translated into a model. This indicates that it is extremely difficult to derive a model
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for all features of the crystal structure of this compound, which include modulated

split-atom disorder but probably also modulated anharmonic ADPs in the disor-

dered regions. Furthermore, the MEM-derived positions cannot be refined due to

correlations between parameters, while the accuracy of the MEM-derived positions

(∼ 0.01 Å) is insufficient to give the best possible fit to the diffraction data without

further refinement.

6.6 Conclusions

The Maximum Entropy Method (MEM) in superspace has been applied to X-ray

diffraction data of incommensurately modulated Cr2P2O7. The interpretation of

ρMEM(xs) according to Bader’s atoms-in-molecules theory has provided the modu-

lated atomic positions, and thus the modulation functions. The modulation func-

tions in the ordered regions of Cr, O1, O2 and O3 have been found to agree well

between ρMEM(xs) and model B from Palatinus et al. (2006).

The MEM has lead to a modulation function of phosphorus that is different from

model B within the ordered regions (Figure 6.7). Both the difference Fourier maps

(Figure 6.9) and an analysis of P–O interatomic distances (Figure 6.8) indicate that

the MEM-derived modulation function is closer to the true modulation of phosphorus

than the modulation function from model B.

The MEM-density has provided direct evidence for a split-atommodel (Figure 6.10),

which is interpreted as positions in the structure where the P2O7 and CrO6 groups

occur in one of two orientations/conformations with complementary probabilities.

Other features derived from ρMEM(xs) are that these probabilities are not equal, but

depend on t, as well as that the conformations depend on t. Furthermore, ρMEM(xs)

gives smeared densities of complex shapes around the atoms in the disordered re-

gions, which indicate a structure in the disordered regions that is a combination

of modulated positions, modulated occupancies and modulated anharmonic ADPs.

We did not succeed constructing a fully satisfactory structure model that captures

all these features.

Reasons for the failure to find a model that would give a much better fit to the

diffraction data—especially to the higher-order satellite reflections— than model B
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(Table 6.4) include the complex nature of the structure, but also the limited accuracy

of ∼ 0.01 Å of MEM-derived positions together with the impossibility to refine all

the parameters that were necessary to construct a model based on ρMEM(xs), due

to interdependencies between these parameters. Nevertheless, we believe that the

MEM has established the true nature of the modulations in Cr2P2O7.
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Chapter 7

Summary

In this thesis, modulated properties of incommensurately modulated crystals are

studied by the Maximum Entropy Method (MEM). This was done exemplarily on the

compounds Rb2ZnCl4 and Cr2P2O7. To do so, the MEM derived (3+1)-dimensional

superspace electron density was analysed to receive information on atomic posi-

tions and their modulation, and structure refinement by the method of least-squares

and interpretation of the difference-Fourier maps were performed to better describe

the atomic displacement parameters (ADPs) and to improve the applied structural

models. All the MEM calculations are done by the computer program BayMEM

(van Smaalen et al., 2003). The analysis of this MEM reconstructed density map is

done by the computer program Edma (van Smaalen et al., 2003).

The atom position in the electron density map can be defined in two different

ways, as position of the local maximum of electron density or as the center-of-charge

of the electron density belonging to the particular atom. The first definition, position

of the maximum, has been used in previous studies (Palatinus and van Smaalen,

2002). It is appropriate for structures which do not contain atoms with anharmonic

ADPs. For atoms defined by anharmonic ADPs the second definition is suitable, as

for those atoms the maximum of the electron density and the center-of-charge of the

electron density do not superpose anymore. For atoms described by (only) harmonic

ADPs both definitions will give almost the same results. The data set of intensities of

Bragg reflections of Rb2ZnCl4, including main reflections and satellite reflections up

to fifth-order, was used for structure refinement and maximum entropy calculations.
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The MEM derived traces of center-of-charge of individual atoms coincide with the

displacement modulation functions of atoms in the final model. Modulations of

ADPs and anharmonic ADPs are visible in the MEM derived electron density as

variations of the distributions of the density around the average position. The

large number of reflections in the data set makes the structure refinement of this

complex model with modulated terms of ADPs and anharmonic ADPs possible. The

analysis of the accurately determined high-order Fourier coefficients shows that the

modulation cannot be interpreted as a soliton wave proposed by Aramburu et al.

(2006).

All the structure refinements are performed with the computer program Jana2006

(Petricek et al., 2006). A first model (model A) was established in analogy with the

published structure (Aramburu et al., 2006), which includes all Fourier coefficients

up to fifth-order for the positional modulation. By incorporation of the first- and

second-order Fourier coefficients to the harmonic ADPs, it was extended to model

B. With this model B the phased observed diffraction data for the MEM calcula-

tions was created. The analysis of the MEM derived electron density showed that

modulated anharmonic ADPs of third order are necessary. Therefore third order

anharmonic ADPs with up to fifth-order Fourier coefficients were added the model

B, by which the model C was created. Due to large correlations, the refinement of

this model can not converge. To overcome this problem, the third order ahnarmonic

ADPs with values less than σ have been set to zero (model Cr). Both models, C and

Cr, fit the diffraction data equally well. The improvement of the fit to the data for

increasing complexity of the models from A to Cr is verified by the difference-Fourier

maps. Those maps also reveal that unmodulated fourth-order anharmonic ADPs are

necessary to properly describe the structure. In the final model Dr, fourth-order an-

harmonic ADPs are added to atoms Rb1, Rb2 and Cl3. Calculation of the R values

against only the strong reflections with I > 5σ(I) showed that these R values of

the higher-order satellite reflections are lower than the ones for the full data set.

This indicates that the limited accuracy of the present data due to limited counting

statistics of the detector is a reason for the high R values of the higher-order satellite

reflections.

The MEM in (3+1)-dimensional superspace has been applied to X-ray diffraction
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data of incommensurately modulated Cr2P2O7. The interpretation of the MEM de-

rived electron density according to Bader’s atoms-in-molecules theory has provided

the modulated atomic positions as function of the phase of the modulation t, and

thus the modulation functions. The modulation functions which have been derived

from the MEM reconstructed electron density map in the ordered regions of Cr, O1,

O2 and O3 have been found to agree well with the structure model proposed by

Palatinus et al. (2006).

The MEM derived electron density has provided direct evidence for a splitting of

atomic positions, which is interpreted in such way that the P2O7 and CrO6 groups

occur in one of two orientations/conformations with complementary occupational

probabilities. Other features obtained from MEM derived electron density are that

these probabilities are not constant, but depend on the phase of the modulation

t, and also, that the conformations are a function of t. Furthermore, the MEM

derived electron density gives smeared densities of complex shapes around the atoms

in the disordered regions. This indicates that the structure in the disordered regions

has to be described as a combination of modulated atomic positions, modulated

occupancies and modulated anharmonic ADPs.

The structure model from Palatinus et al. (2006) was reproduced (model B).

Fourier coefficients of up to fourth- and second-order are used to describe the po-

sitional modulation and harmonic ADPs modulation respectively. The phased ob-

served diffraction data for the MEM calculations was created with model B. The

parameters of the displacive modulation function of atom P were obtained by a

real-space fit to the MEM derived modulation functions. Then the structure model

M was created from model B by replacing the displacive modulation function of the

atom P by the MEM-based fitted parameters. All atoms are positional modulated

and all except O1 are occupational modulated. Up to second-order Fourier coeffi-

cients are used to define the modulation of the harmonic ADPs of all atoms. The

third order anharmonic ADPs are included only for atom P in the disordered region.

Both the difference Fourier maps and the analysis of P–O interatomic distances in-

dicate that the MEM derived modulation function is closer to the true modulation

of phosphorus than the published modulation function from Palatinus et al. (2006).

For the standard description of modulated structures, basic positions of atoms,
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harmonic ADPs and modulation functions are included in the structure model. The

modulation functions can be a combination of positional modulation, occupational

modulation and/or modulation of harmonic ADPs.

In the present thesis, structure refinements, interpretation of difference-Fourier

maps and the analysis of the MEM derived electron density have been combined to

better characterize the incommensurately modulated structures. Our results sug-

gest that the modulation of harmonic ADPs, anharmonic ADPs and its modulation

form an intrinsic part of incommensurately modulated structures. We have shown

that with a data set of certain resolution and satellite reflections of higher order, the

inclusion of modulation of harmonic ADPs, the anharmonic ADPs and the modu-

lation of anharmonic ADPs can significantly improve the fit of the structure model

to the diffraction data. Such model then better represents the true nature of the

structure under investigation.



Chapter 8

Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden unter Anwendung der Maximum-Entropie-

Methode (MEM) modulierte Eigenschaften inkommensurabel modulierter Kristalle

untersucht. Dies wurde exemplarisch an den beiden Verbindungen Rb2ZnCl4 und

Cr2P2O7 durchgeführt. Unter Anwendung der MEM wurden die Elektronendichten

im (3+1)-dimensionalen Superraum hergeleitet und analysiert, um Informationen

über Atompositionen und deren Modulation zu bekommen, sowie Strukturverfeinerun-

gen mittels der Methode der kleinsten Quadrate und Interpretationen von Differenz-

Fourier-Karten durchgeführt, um die atomaren Verschiebungsparameter (ADPs)

besser beschreiben zu können und um die angewandten Strukturmodelle zu opti-

mieren. Die Berechnungen zur MEMwurden mit dem Computer-ProgrammBayMEM

(van Smaalen et al., 2003) gerechnet, die Analyse der so gewonnenen Elektronen-

dichten mit dem Computer-Programm Edma (van Smaalen et al., 2003).

Die Lage der Atome in der Elektronendichte kann auf zwei unterschiedliche

Weisen definiert werden, zum einen als Lage des Maximums der Elektronendichte,

zum anderen als Ladungszentrum der Elektronendichte des entsprechenden Atoms.

In vorangehenden Studien (Palatinus and van Smaalen, 2002) wurde die Lage des

Maximums der Elektronendichte als Lage des Atoms definiert. Diese Definition

eignet sich gut für Strukturen, die keine Atome mit anharmonischen ADPs beinhal-

ten. Für Atome, die mit anharmonischen ADPs beschrieben werden, ist die zweite

Definition passender, da für solche Atome die Lage des Maximums der Elektronen-

dichte und das Ladungszentrum der Elektronendichte nicht mehr deckungsgleich
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sind. Für Atome, die (nur) mit harmonischen ADPs beschrieben werden, liefern

beide Definitionen annähernd gleiche Ergebnisse.

Strukturverfeinerungen und die Berechnungen mittels MEM für Rb2ZnCl4 wur-

den an einem Datensatz mit Hauptreflexen und Satellitenreflexen bis einschließlich

fünfter Ordnung gerechnet. Ein Vergleich der displaziven Modulationsfunktionen

der einzelnen Atome im Endmodell als Funktion der Phase der Modulation t mit

den Lagen der Ladungszentren der Atome, die aus den MEM berechneten (3+1)-

dimensionalen Elektronendichten abgeleitet wurden, zeigt, dass beide übereinstimmen.

Auch die Modulationen der harmonischen und anharmonischen ADPs sind in den

MEM berechneten Elektronendichten sichtbar, und zwar als Schwankungen in der

Verteilung der Elektronendichte um die Ausgleichslagen der einzelnen Atome. Die

große Anzahl an gemessenen Reflexen (Hauptreflexe und Satellitenreflexe bis ein-

schließlich fünfter Ordnung) ermöglicht die Verfeinerung des relativ komplexen End-

models mit Modulationsfunktionen für die harmonischen und anharmonischen ADPs.

Die Analyse der genau bestimmten Fourier-Koeffizienten der höheren Ordnung zeigt,

dass die Modulation der atomaren Struktur nicht als Soliton-Welle gedeutet werden

kann, wie von Aramburu et al. (2006) vorgeschlagen.

Die Strukturverfeinerungen wurden alle mit dem Computer-Programm Jana2006

(Petricek et al., 2006) durchgeführt. Ein erstes Strukturmodell wurde aufgestellt,

um die bereits veröffentlichte Struktur (Aramburu et al., 2006) zu reproduzieren.

Dieses Modell (Modell A) beinhaltet alle Fourier-Koeffizienten bis fünfter Ordnung

für die displazive Modulation der einzelnen Atome. Darauf aufbauend wurde das

Modell B aufgestellt, indem Fourier-Koeffizienten der ersten und zweiten Ordnung

für die harmonischen ADPs hinzugefügt wurden. Mit diesem Modell B wurden die

Phasen für die gemessenen Beugungsdaten erzeugt, die für die MEM-Berechnungen

notwendig sind. Die Analyse der MEM berechneten (3+1)-dimensionalen Elektro-

nendichte ergab, dass zusätzliche modulierte, anharmonischen ADPs der dritten

Ordnung für die einzelnen Atome notwendig sind. Diese wurden dem Modell B

hinzugefügt, was dann Modell C ergab. Aufgrund großer Korrelationen kann die

Verfeinerung dieses Modells C aber nicht konvergieren. Zur Lösung dieses Problems

wurden alle Fourier-Koeffizienten der anharmonischen ADPs der dritten Ordnung

mit Werten kleiner als σ gleich Null gesetzt (Modell Cr). Beide Modelle, C und Cr,
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entsprechen den Beugungsdaten gleich gut. Die immer bessere Übereinstimmung

von Strukturmodell und Beugungsdaten mit steigender Komplexität von Modell

A bis Modell Cr kann mittels Differenz-Fourier-Karten überprüft und nachvoll-

zogen werden. Die Differenz-Fourier-Karten zeigen auch deutlich auf, dass nicht-

modulierte anharmonische ADPs der vierten Ordnung notwendig sind, um die Struk-

tur richtig zu beschreiben. Im Endmodell (Modell Dr) wurden zusätzlich nicht-

modulierte anharmonische ADPs der vierten Ordnung verwendet, um die Atome

Rb1, Rb2 und Cl3 zu beschreiben. Die Berechnung von R-Werten mit diesem End-

modell Dr nur gegen starke Reflexe mit I > 5σ(I) zeigt, dass diese R-Werte für die

Satellitenreflexe höherer Ordnung kleiner sind, als die R-Werte gegen den komplet-

ten Datensatz. Dies ist ein Hinweis auf die begrenzte Genauigkeit des verwendeten

Datensatzes aufgrund der begrenzten Zählstatistik des Detektors und erklärt auch

die höheren R-Werte der Satellitenreflexe höherer Ordnung.

Die MEM im (3+1)-dimensionalen Superraum wurde auf Röntgenstrahl-Beugungsdaten

des inkokmmensurabel modulierten Cr2P2O7 angewandt. Die Interpretation der

mittels MEM berechneten (3+1)-dimensionalen Elektronendichte gemäß Baders “atoms-

in-molecules”-Theorie lieferte modulierte Atompositionen als Funktion der Phase

der Modulation t, und somit die atomaren Modulationsfunktionen. Die atomaren

Modulationsfunktionen in den geordneten Regionen, die aus der MEM berechneten

(3+1)-dimensionalen Elektronendichte für die Atome Cr, O1, O2 und O3 abgeleitet

wurden, stimmen gut mit dem von Palatinus et al. (2006) vorgeschlagenem Struk-

turmodell überein.

Die mittels MEM berechnete (3+1)-dimensionale Elektronendichte zeigt deutlich

eine Aufspaltung von Atompositionen, die derart interpretiert wurde, dass die P2O7-

und die CrO6-Gruppen in jeweils einer von zwei Orientierungen/Konformationen

vorliegen, die gegenseitig komplementäre Besetzungswahrscheinlichkeit aufweisen.

Weiter konnte aus der MEM berechneten (3+1)-dimensionalen Elektronendichte her-

ausgelesen werden, dass diese Besetzungswahrscheinlichkeiten nicht konstant sind,

sondern sich als Funktion der Phase der Modulation t ändern. Auch die Konfor-

mationen stellen Funktionen von t dar. Für die Atome in den ungeordneten Re-

gionen ergab die MEM verschmierte Dichten mit komplexer Form. Dies weisst auf

eine atomare Struktur in den ungeordneten Regionen hin, die als Kombination von
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modulierten Atompositionen mit modulierten Besetzungswahrscheinlichkeiten und

modulierten anharmonischen ADPs beschrieben werden muss.

In einem ersten Schritt wurde das Strukturmodell von Palatinus et al. (2006) re-

produziert (Modell B). Für alle Atome wurden Fourier-Koeffizienten bis zur vierten

Ordnung für die displazive Modulation und bis zur zweiten Ordnung für die atom-

aren Modulationsfunktionen der harmonischen ADPs verwendet. Modell B diente

zur Generierung der Phasen für die gemessenen Beugungsdaten, die für die MEM-

Berechnungen notwendig sind. Aus der MEM berechneten (3+1)-dimensionalen

Elektronendichte wurden dann mittels eines “real space fits” die Parameter der

atomaren Modulationsfunktionen des Atoms P bestimmt. Dann wurde das Struk-

turmodell M erstellt, indem die Parameter der displaziven atomaren Modulations-

funktion für das Atom P aus dem Modell B entfernt und durch die MEM-basierten

gefitteten Parameter ersetzt wurden. Alle Atome sind displaziv moduliert und alle

ausser O1 besetzungsmoduliert. Fourier-Koeffizienten bis zur zweiten Ordnung wur-

den für die atomaren Modulationsfunktionen der harmonischen ADPs für alle Atome

verwendet. Zusätzlich wurden für das Atom P in der ungeordneten Region auch

anharmonische ADPs der dritten Ordnung hinzugefügt. Sowohl Differenz-Fourier-

Karten, als auch die Analyse der P–O interatomaren Abstände weissen darauf hin,

dass die MEM-basierte atomare Modulatiuonsfunktion näher an der wahren Modu-

lation von Phosphor liegt, als die veröffentlichte atomare Modulationsfunktion von

Modell B (Palatinus et al., 2006).

Zur Beschreibung modulierter Strukturen werden im Allgemeinen als Struktur-

modell die Basispositionen der Atome, harmonische ADPs und atomare Modula-

tionsfunktionen verwendet. Die atomaren Modulatuionsfunktionen könne eine Kom-

bination aus displaziver Modulation, Besetzungsmodulation und/oder Modulatuon

der harmonischen ADPs sein.

In der vorliegenden Arbeit wurden Strukturverfeinerungen, Interpretation der

Differenz-Fourier-Karten und die Analyse der MEM berechneten (3+1)-dimensionalen

Elektronendichte kombiniert, um die inkommensurabel modulierten Strukturen besser

beschreiben zu können. Unsere Forschungsergebnisse lassen den Schluss zu, dass die

Modulation der harmonischen ADPs, anharmonische ADPs und die Modulation

der anharmonischen ADPs ein intrinsischer Bestandteil der inkommensurabel mod-
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ulierten Strukturen ist. Wir haben gezeigt, dass mit Datensätzen einer bestimmten

Auflösung und Satellitenreflexen bis höherer Ordnung die Einbeziehung von Mod-

ulationen der harmonischen ADPs, anharmonischer ADPs und der Modulationen

der anharmonischen ADPs die Übereinstimmung von Strukturmodell und Daten-

satz verbessern kann. Ein solches Strukturmodell bildet die wahre Natur der zu

untersuchenden Strtukturen besser ab.
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Appendix A

Supplementary materials:

Rb2ZnCl4
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Table A.1: Basic positions (relative coordinates) of the crystallographically independent
atoms in model A and model Dr.

Model A Model Dr

Atom x0 y0 z0 x0 y0 z0

Rb1 0.25 0.40659(8) 0.62976(8) 0.25 0.40660(4) 0.62969(4)
Rb2 0.25 0.81909(4) 0.48680(6) 0.25 0.81921(2) 0.48673(3)
Zn 0.25 0.42189(5) 0.22339(7) 0.25 0.42179(3) 0.22344(3)
Cl1 0.25 0.42044(14) -0.01861(17) 0.25 0.41962(8) -0.01837(9)
Cl2 0.25 0.58417(12) 0.32210(17) 0.25 0.58430(6) 0.32169(9)
Cl3 0.00210(13) 0.33922(10) 0.31206(13) 0.00171(7) 0.33945(6) 0.31245(8)
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Table A.2: Basic-structure parameters (Å2) and modulation amplitudes (Å2) of the har-
monic ADPs for model Dr. Values have been multiplied by 105; standard uncertainties
are given in parenthesis.

Atom Function U11 U22 U33 U12 U13 U23

Rb1 Basic 4160(40) 6340(70) 1760(50) 0 0 -170(30)
sin1 0 0 0 444(16) -101(12) 0
cos1 0 0 0 648(15) -389(12) 0
sin2 120(20) 470(40) 50(30) 0 0 -112(18)
cos2 -110(20) 20(30) 10(20) 0 0 30(20)

Rb2 Basic 3410(40) 2020(40) 1540(40) 0 0 -80(19)
sin1 0 0 0 -382(10) 294(10) 0
cos1 0 0 0 113(9) -45(9) 0
sin2 3(17) 0(20) -16(19) 0 0 -20(13)
cos2 312(16) 50(20) 50(19) 0 0 -9(13)

Zn Basic 2085(15) 1969(19) 1426(18) 0 0 -21(8)
sin1 0 0 0 76(10) -79(9) 0
cos1 0 0 0 -16(10) -15(9) 0
sin2 -1(16) -20(20) -10(20) 0 0 5(17)
cos2 48(16) 40(20) -10(20) 0 0 -30(15)

Cl1 Basic 7660(60) 3730(50) 1390(40) 0 0 -430(20)
sin1 0 0 0 1750(50) 160(40) 0
cos1 0 0 0 -180(50) -280(40) 0
sin2 -470(80) -70(70) 0(60) 0 0 -50(40)
cos2 1520(90) -70(70) 20(60) 0 0 -80(40)

Cl2 Basic 7500(70) 2320(40) 2170(40) 0 0 -680(20)
sin1 0 0 0 100(50) 260(50) 0
cos1 0 0 0 -760(40) 190(40) 0
sin2 -50(80) 0(60) 20(60) 0 0 10(40)
cos2 -2180(100) 60(60) 50(70) 0 0 -80(40)

Cl3 Basic 2730(50) 6800(100) 3250(80) -2240(50) -530(50) 1810(60)
sin1 -80(30) -490(60) 850(40) 310(30) -60(20) 270(40)
cos1 -490(20) -450(50) -720(40) 580(30) 240(20) -480(30)
sin2 130(30) 350(80) 290(60) -310(40) -190(30) 330(50)
cos2 -330(30) -1620(70) -120(50) 770(40) 230(30) -690(60)
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Table A.3: Values of fourth-order anharmonic ADPs (Dijkl multiplied by 105) of model
Dr.

Dijkl Rb1 Rb2 Cl3
D1111 -150(30) -90(20) -70(30)
D1112 0 0 -16(12)
D1113 0 0 -32(13)
D1122 -53(5) -34(3) -28(8)
D1123 -2(3) -0.3(18) -12(6)
D1133 -47(6) -64(4) -73(9)
D1222 0 0 6(8)
D1223 0 0 4(5)
D1233 0 0 -1(5)
D1333 0 0 -13(12)
D2222 -62(6) -27(3) -25(12)
D2223 2(3) -0.7(11) 4(7)
D2233 21(3) 12.1(14) 44(6)
D2333 8(4) 3(2) 20(9)
D3333 -98(14) -121(10) -210(20)
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Table A.8: Amplitudes (relative coordinates) of the displacement modulation function
(multiplied by 105) after refinement of the model of Aramburu against Aramburu data.

Atom n An
x An

y An
z Bn

x Bn
y Bn

z

Rb1 1 1250(40) 0 0 -1180(40) 0 0
2 0 -33(18) 110(20) 0 -227(18) 20(20)
3 -80(40) 0 0 10(40) 0 0
5 129(18) 0 0 -140(20) 0 0

Rb2 1 1710(30) 0 0 -140(30) 0 0
2 0 12(10) -65(19) 0 12(10) 0(20)
3 -100(30) 0 0 -120(30) 0 0
5 132(15) 0 0 30(20) 0 0

Zn 1 1030(30) 0 0 330(30) 0 0
2 0 -38(11) 2(9) 0 -6(10) 33(17)
3 20(20) 0 0 -170(30) 0 0
5 -108(15) 0 0 15(15) 0 0

Cl1 1 3980(90) 0 0 700(80) 0 0
2 0 -110(40) -10(40) 0 -130(30) 0(50)
3 20(90) 0 0 120(70) 0 0
5 390(50) 0 0 -20(60) 0 0

Cl2 1 820(80) 0 0 5420(90) 0 0
2 0 -30(50) 40(50) 0 -80(30) 130(50)
3 -710(100) 0 0 -1260(90) 0 0
5 250(60) 0 0 250(70) 0 0

Cl3 1 580(50) -60(30) -1120(40) -1860(50) 2690(30) 1440(50)
2 50(50) -10(30) 30(40) 40(30) -40(30) 70(30)
3 -160(40) 150(30) 170(60) 280(40) -690(30) -350(70)
5 -260(30) 160(30) 210(20) 0(30) 170(30) 30(30)



128 APPENDIX A. SUPPLEMENTARY MATERIALS: RB2ZNCL4

Table A.9: Quality of the fit to the Aramburu data after refinements of models of increasing
complexity. Given areR values of each order (|m|) of reflections, the number of parameters,
(Δρ)max, (Δρ)min and the number of observed reflections N(obs).

Pulished data Model A′ Model B′ Model Cr
′ Model C′ Model Dr

′ N(obs)
All 0.0827 0.0739 0.0726 0.0719 0.0717 1695
m = 0 0.0794 0.0763 0.0765 0.0770 0.0755 778
|m| = 1 0.0751 0.0479 0.0458 0.0444 0.0453 473
|m| = 2 0.2044 0.1452 0.1205 0.0968 0.1199 251
|m| = 3 0.3470 0.2957 0.1716 0.1103 0.1759 53
|m| = 4 – – – – – –
|m| = 5 0.2100 0.1909 0.1658 0.1339 0.1651 140
No. of parameters 115 199 331 443 364
(Δρ)max (e Å−3) 2.74 2.49 2.27 2.28 2.35
(Δρ)min (e Å−3) -2.05 -1.91 -1.86 -1.76 -1.79
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Figure A.1: Modulation functions of the crystallographically independent atoms of
Rb2ZnCl4 of model A (real line) and model Dr (dashed line), Open circles are the center
of charge. Displacement along x, y and z are given in Å.



130 APPENDIX A. SUPPLEMENTARY MATERIALS: RB2ZNCL4

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
ttt

Cl2

Cl3

Rb1

Rb2

Zn

Cl1Cl1

Cl2 Cl2

Cl3Cl3

Rb1Rb1

Rb2Rb2

ZnZn

Cl1

uy

uz

ux

ux

ux

ux

ux

uy

uy

uy

uy

uz

uz

uz

uz

uz

uy

ux

u
(Å

)
u

(Å
)

u
(Å

)
u

(Å
)

u
(Å

)
u

(Å
)

Figure A.2: Modulation functions only corresponding to the first and fifth-order harmonics
of the crystallographically independent atoms of Rb2ZnCl4 of model A (full line) and model
Dr (dashed line). Displacement along x, y and z are given in Å.
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Figure A.3: Modulation functions of the crystallographically independent atoms of
Rb2ZnCl4. Displacement along x, y and z are given in Å. Open circles are the center
of charge, filled circles are the maxima of electron density, real lines are the modulation
function from model B.
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Figure A.4: Modulation functions of the crystallographically independent atoms of
Rb2ZnCl4. Displacement along x, y and z are given in Å. Open circles are the center
of charge, filled circles are the maxima of electron density, real lines are the modulation
function from model Cr.
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Figure A.5: Distance of atom Rb1 to its eleven caged Cl atoms, dashed line is made for
clarity reason.
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Figure A.6: Distance of atom Rb2 to its nine caged Cl atoms.
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Figure A.11: Modulation of Cl-Zn-Cl angles, dashed line is made for clarity reason.
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Figure A.14: Modulation of selected Gram-Charlier coefficients Cijk of atoms.
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thermischen verhalten wasserfreier phosphate. IV. Zum chemischen transport von

pyrophosphaten M2P2O7 (m = Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd) — die erst-

malige darstellung von Chrom(II)-pyrophosphat, Z. Anorg. Allg. Chem. 601: 145–

162.

Gull, S. F. and Skilling, J. (1999). MEMSYS5 v1.2 program package, Maximum

Entropy Data Consultants Ltd., OSuffolk, U.K.



BIBLIOGRAPHY 141

Hofmann, A., Netzel, J. and van Smaalen, S. (2007). Accurate charge density of

Tri-alanine: A comparison of the multipole formalism and the maximum entropy

method (MEM), Acta Cryst. B 63: 285–295.

Janssen, T., Chapuis, G. and de Boissieu, M. (2007). Aperiodic Crystals. From

Modulated Phases to Quasicrystals, Oxford University Press (United Kingdom).

Jaynes, E. T. (1957). Information theory and statistical mechanics, Phys. Rev.

106(4): 620–630.

Jobst, A. and van Smaalen, S. (2002). Intersubsystem chemical bonds in the misfit

layer compounds (LaS)1.13TaS2 and (LaS)1.14NbS2, Acta Crystallogr. B 58: 179–

190.

Kruger, H., Kahlenberg, V. and Friese, K. (2006). Na2Si3O7: an incommensurate

structure with crenel-type modulation functions, refined from a twinned crystal,

Acta Crystallogr. B 6: 440–446.

Kumazawa, S., Takata, M. and Sakata, M. (1995). An accurate determination of the

thermal vibration of rutile from the nuclear density distribution of the maximum-

entropy analysis, Acta Cryst. A 51: 651–658.

Li, L., Schönleber, A. and van Smaalen, S. (2010). Modulation functions of in-

commensurately modulated Cr2P2O7 studied by the maximum entropy method

(MEM), Acta Crystallogr. B 66: 130–140.

McMahon, M. I., Degtyareva, O., Nelmes, R. J., van Smaalen, S. and Palatinus, L.

(2007). Incommensurate modulations of Bi-III and Sb-II, Phys. Rev. B: Condens.

Matter 75: 184114.

Netzel, J., Hofmann, A. and van Smaalen, S. (2008). Accurate charge density of

α-glycine by the maximum entropy method, Cryst. Eng. Comm 10: 335–343.

Nishibori, E., Terauchi, I., Sakata, M., Takata, M., Ito, Y., Sugai, T. and Shino-

hara, H. (2006). High-resolution analysis of (Sc3C2)@C80 metallofullerene by

third generation synchrotron radiation x-ray powder diffraction, J. Phys. Chem.

B 110: 19215–19219.



142 BIBLIOGRAPHY

Oxford-Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.

Palatinus, L., Amami, M. and van Smaalen, S. (2004). The crystal tructure of

incommensurate ammonium tetrafluoroberyllate studied by structure refinements

and the maximum entropy method, Acta Crystallogr. B 60: 127–137.
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