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Abstract

Rigid local systems classically arise as the solution sheaves of regular singular com-
plex ordinary differential equations without accessory parameters. In the 1990’s
Katz proved that any system of this kind can be reduced to a system of rank one
using a convolution operation on local systems. In the 2000’s Arinkin extended this
algorithm to irregular singular differential equations using in addition the Fourier-
Laplace transform of D-modules. An analogue of this algorithm can be obtained for
`-adic sheaves on an open subset of the projective line over the algebraic closure of
a finite field. Using the extended Katz-Arinkin-Deligne algorithm we classify rigid
irregular (resp. wild) connections (resp. `-adic local systems) with differential Ga-
lois group (resp. monodromy group) of type G2 of slopes at most 1. Here G2 is the
simple exceptional algebraic group which can be defined as a subgroup of SO(7)

stabilizing the Dickson alternating trilinear form. In the course of the classifica-
tion we construct rigid systems on Gm which are neither of hypergeometric type
nor a pull-back by a Kummer covering of Gm of a hypergeometric system and com-
pute their differential Galois group, which turns out to be of type G2. In order to
use the Katz-Arinkin-Deligne algorithm we explicate its proof in positive charac-
teristic. Additionally we introduce invariants and methods inspired by differential
Galois theory in positive characteristic to classify `-adic local systems.



Zusammenfassung

In der klassischen Theorie erhält man starre lokale Systeme als Lösungsgarben re-
gulärer singulärer starrer gewöhnlicher komplexer Differentialgleichungen. In den
1990ern bewies Katz, dass jedes starre lokale System mit Hilfe einer Faltungsope-
ration zu einem System von Rang 1 reduziert werden kann. In den 2000ern erwei-
terte Arinkin diesen Algorithmus auf irregulär singuläre Differentialgleichungen,
indem er als weitere Operation die Fourier-Laplace-Transformation von D-Moduln
einführte. Im Falle `-adischer Garben auf einer offenen Teilmenge der projektiven
Gerade über dem algebraischen Abschluss eines endlichen Körpers erhält man ei-
ne analoge Aussage für die entsprechenden Operationen in diesem Kontext. Unter
Benutzung dieses erweiterten Algorithmus werden in dieser Arbeit starre irregulä-
re (bzw. wilde) Zusammenhänge (bzw. `-adische lokale Systeme) mit differentieller
Galoisgruppe (bzw. Monodromiegruppe) vom Typ G2 und mit Slopes höchstens 1

klassifiziert. Hierbei ist G2 die einfache algebraische Gruppe, die als Untergruppe
von SO(7) als Stabilisator der alternierenden Dickson Trilinearform definiert wer-
den kann. Im Laufe der Klassifikation werden starre Systeme auf Gm konstruiert,
die weder von hypergeometrischem Typ noch der Rückzug mittels einer Kummer-
überlagerung von Gm eines Systems von hypergeometrischem Typ sind. Ihre diffe-
rentielle Galoisgruppe wird bestimmt und es stellt sich heraus, dass diese tatsäch-
lich vom Typ G2 ist. Um den erweiterten Algorithmus nach Arinkin und Deligne
zu benutzen, wird dessen Beweis in positiver Charakteristik vorgestellt. Zusätzlich
führen wir Invarianten und Methoden in positiver Charakteristik ein, die von dif-
ferentieller Galoistheorie inspiriert wurden, um die Klassifikation durchzuführen.
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1 Introduction

Rigid local systems classically arise as the solution sheaves of complex differential
equations with regular singularities without accessory parameters. We say that an
equation

n∑
i=0

pi(z)y
(i) = 0

(where y(i) denotes the i-th derivative of y = y(z) with respect to z) with pi(z) ∈ C(z)

and pn(z) = 1 has a regular singularity at a point x ∈ C if the function pn−i(z) has
a pole of order at most i at x. We say that ∞ is a regular singular point of the
equation if the limit limz→∞ z

ipi(z) exists for all i = 0, ..., n. Assume that this is the
case and let F = (y1, ..., yn) be a fundamental solution of this equation, i.e. the yi are
linearly independent scalar solutions spanning the solution space. One can for any
singularity x analytically continue F along a simple loop γx around x and obtain
another fundamental solution F̃ which is linearly related to F by a matrix Mγx . Let
z0 be a point in P1(C) which is not a singularity of the above equation and denote
by S the set of singularities of the equation. Since π1(P1(C)− S, z0) is generated by
simple loops around the punctures we can define a representation

ρ : π1(P1(C)− S, z0)→ GLn(C)

by mapping the simple loop γx to Mγx .
We say that this equation is rigid (or without accessory parameters) if the Jor-

dan canonical forms of the matrices Mγx determine the equation up to gauge equi-
valence. Perhaps the most famous example of such an equation is the Gaussian
hypergeometric equation

z(1− z)y′′ + (γ − (α+ β + 1)zy′ − αβy = 0

where α, β, γ ∈ C are complex parameters. It has three singularities at 0, 1,∞ which
are regular singular. These kinds of equations were already studied by Riemann
and then later by Katz in the 1990’s who made use of the following crucial observa-
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tion. The additive convolution∫ 1

0
f(t)g(z − t)dt =

∫ 1

0
tα−γ(1− t)γ−β−1(z − t)−αdt

of the functions f(t) = tα−γ(1− t)γ−β−1 and g(t) = t−α is a solution of the hypergeo-
metric equation. The function g is a solution of the equation tg′+αg = 0 and can be
thought of as representing a Kummer local system given by the representation

π1(Gm(C), 1)→ C∗, γ0 7→ exp(−2πiα)

where γ0 is a simple loop around 0 generating π1(Gm(C), 1) ∼= Z. The function f

should be thought of as the solution of some rigid local system of rank one. This
should translate into a convolution operation for local systems meaning that the lo-
cal system of solutions of the hypergeometric equation should arise as a convolution
of some rigid local system with a Kummer local system.

There is an analogous setting when working with `-adic local systems on an open
subset U ⊂ P1

k where k is the algebraic closure of a finite field. We usually think of
these as continuous `-adic representations

πét
1 (U, u)→ GLn(Q`).

Denoting by L an `-adic local system on U we have a notion of tame and wild
ramification at the points S = P1

k − U . For any x ∈ S consider the inertia subgroup
Ix ⊂ πét

1 (U, u). If ρ denotes the representation associated to L we say that L is
tamely ramified at x if ρ(Px) = 1 where Px denotes the wild ramification subgroup
of Ix.

In his book [Ka6] Katz makes the notion of convolution for local systems precise
in both of these settings and proves that there is a way to produce irreducible rigid
local systems (with tame ramification) from a system of rank one by employing
convolution and twists with rank one local systems. Conversely, any irreducible
rigid local system with tame ramification can be obtained from a local system of
rank one by iterating the convolution operation and twists with other local systems
of rank one. This provides a tool for the construction of rigid local systems with
tame ramification.

Using this machinery Dettweiler and Reiter classified rigid local systems with ta-
me ramification and monodromy group of type G2 in [DR2] where G2 is the simple
exceptional algebraic group. It can be thought of as a subgroup of SO(7) stabilizing
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the Dickson alternating trilinear form. As a consequence they proved that there is
a family of motives for motivated cycles with G2 as motivic Galois group answe-
ring a question raised by Serre. Other applications of tamely ramified rigid local
systems include realizations of certain finite groups as Galois groups over Q in the
framework of the inverse Galois problem, see for example [DR1].

In [Ar] Arinkin provides a generalization of Katz’ existence algorithm to rigid
connections with irregular singularities and rigid `-adic local systems with wild
ramification. Let C[z]〈∂z〉 be the Weyl-algebra in one variable and denote by

F : C[τ ]〈∂τ 〉 → C[z]〈∂z〉

the map defined by F (τ) = −∂z and F (∂τ ) = z. The Fourier-Laplace transform
F (M) of a holonomic left C[z]〈∂z〉-module M is then defined to be its pullback along
the map F , i.e. it has the same underlying C-vector space but C[τ ]〈∂τ 〉 acts through
the map F .

There is a more geometric interpretation of the Fourier-Laplace transform. Con-
sider the diagram

A2
z,τ

m //

pr1~~

pr2

  

A1
t

A1
z A1

τ

wherem denotes the multiplication map (z, τ) 7→ zτ . The Fourier-Laplace transform
can in a geometric way be defined as

F (M) = R1pr2,∗(pr∗1(M)⊗m∗etC[t])

where R1pr2,∗ denotes the first derived direct image for D-modules.
The analogue of the Fourier-Laplace transform in positive characteristic is now

given as follows. For a perverse sheaf K on A1
k use the corresponding diagram to

define
F (K) = Rpr2,!(pr∗1(K)⊗m∗Lψ)

where Lψ is the Artin-Schreier sheaf on A1 given by a nontrivial character

ψ : Fp → Q`
∗
.

Using this additional operation, Arinkin proves that any irreducible rigid system
(including those with irregular singularities) arises from a system of rank one
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by iterating twists with connections of rank one, coordinate changes and Fourier-
Laplace transforms. For connections this is a consequence of a result of Bloch-
Esnault in [BE] which states that Fourier transform preserves rigidity of irredu-
cible connections. For `-adic sheaves the proof that the Fourier transform defined
above preserves rigidity is a combination of a result of Katz in [Ka6] and of Fu in
[Fu3]. Arinkin proves that given an irreducible rigid system of rank greater than
one, there is a sequence of twists, coordinate changes and Fourier transforms such
that the resulting system has lower rank. In positive characteristic this only holds
if the rank of the system is less than the characteristic. Combining this with the
statements of Bloch, Esnault, Fu and Katz yields the desired algorithm in both
settings.

For us the most important invariant of an irregular singularity will be its slopes.
These are rational numbers measuring the irregularity resp. the wildness. In parti-
cular, a singularity is regular singular if all the slopes at this singularity vanish. In
the differential setting they are obtained through the Newton polygon of a differen-
tial operator and in the arithmetic setting through the ramification filtration for the
inertia groups. In this setting they are sometimes called breaks in the literature. In
this thesis we use the extended algorithm to classify all rigid irregular connections
of slope at most 1 with differential Galois group of type G2 and all rigid `-adic local
systems with slope at most 1 with monodromy group of type G2 over the algebraic
closure of a finite field of characteristic p > 7, see Theorems 3.3.1 and 5.3.14. Note
that the construction of the systems also works in smaller characteristic, but the
classification might not.

There are two main reasons for assuming the bound on the slopes. Since twists
with a rank one connection preserve rigidity, the slopes of rigid systems are a prio-
ri unbounded. Still, most known examples of rigid connections of type G2 and of
connections of similar type have their slopes bounded by 1. This includes for exam-
ple the Frenkel-Gross connection from [FG, Section 5] and generalized hypergeo-
metric modules as studied in [Ka5, Chapter 3].

The second reason is of a technical nature. Without the bound on the slopes the
invariants governing an irregular singularity are much harder to control. We will
see in Section 3.2 what this means in a more precise sense. In the setting of positive
characteristic the Katz-Arinkin algorithm only works for local systems whose slopes
satisfy certain primality conditions with respect to the characteristic, cf. Theorem
5.2.3. In general these conditions are complicated and have to be checked in every
step of the process of reducing a local system to one of rank one. If all slopes of
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the local system that we want to reduce to rank one are at most 1 and if the rank
of the system we start with is less than the characteristic of the ground field the
conditions are satisfied automatically in every step.

One of the most extensively studied class of rigid irregular connections are the
generalized hypergeometric systems given by an operator

Hyp(P,Q) = P (z∂z) + zQ(z∂z) ∈ C[z]〈∂z〉

with P,Q ∈ C[z] polynomials with different degrees. Such a system has singulari-
ties at 0 and at ∞, one of which is regular singular and one of which is irregular,
depending on whether the degree of P is larger than that of Q or vice versa. In the
first case∞ is irregular and 0 is regular singular. The slope of this system at the ir-
regular singularity is 1

| deg(P )−deg(Q)| ≤ 1. Systems of this type and their differential
Galois groups have been studied in detail by Katz in [Ka5]. In particular he com-
puted under which assumptions a system of the above type has differential Galois
group G2. The hypergeometrics of type G2 are contained in the classification that
we obtain.

In Theorem 3.3.1 we construct families of connections on Gm which are neither
hypergeometric nor pull-backs by a cover z 7→ zn of a hypergeometric system whose
differential Galois group is of type G2. In Theorem 5.3.14, the second main result
of this thesis, we also construct analogues of these non-hypergeometric families in
positive characteristic.

These systems are not only interesting in themselves but can lead to wildly ra-
mified examples of the geometric Langlands correspondence. Thinking of an `-adic
local system on U ⊂ P1 as a Galois representation

ρ : GK → GLn(Q`)

of the function field K of P1 with ramification in S = P1 − U , Langlands philoso-
phy predicts the existence of an automorphic representation π corresponding to ρ.
In more geometric terms the rigid `-adic local systems constructed in this thesis
should be obtained as eigen-local systems of Hecke eigensheaves on a modified mo-
duli space of G2-bundles over Gm. Finding the automorphic counterparts of these
systems and interpreting their structure to obtain new rigid `-adic local systems not
only in type G2 but also for reductive groups of other type is the subject of future
research.

This thesis is organised as follows. In Chapter 2 we introduce the basic notions
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about irregular connections and how to view them as representations of the so-
called differential fundamental group πdiff

1 (X,x) of a complex curve X with base-
point x. This group is obtained through Tannakian formalism. We also introduce
the notion of rigidity and introduce the index of rigidity of a connection. This is a
cohomological invariant identifying rigid connections. It can be computed by means
of local data and we explore this relation.

Chapter 3 contains a short recollection of the operations involved in the Katz-
Arinkin algorithm and the algorithm itself. In this chapter we study the local and
global structure of connections with differential Galois groupG2 with slopes at most
1. We use this analysis to prove the following classification theorem for rigid connec-
tions.

Theorem 1.0.1. Let α1, α2, λ, x, y, z ∈ C∗ such that λ2 6= 1, α1 6= ±α2, z
4 6= 1 and

such that x, y, xy and their inverses are pairwise different and let ε be a primitive
third root of unity. Every formal type occuring in the following list is exhibited by
some irreducible rigid connection of rank 7 on Gm with differential Galois group G2.

0 ∞

(J(3),J(3), 1)
El(2, α1, (λ, λ

−1))

⊕El(2, 2α1, 1)⊕ (−1)

(−J(2),−J(2), E3)
El(2, α1, (λ, λ

−1))

⊕El(2, 2α1, 1)⊕ (−1)

(xE2, x
−1E2, E3)

El(2, α1, (λ, λ
−1))

⊕El(2, 2α1, 1)⊕ (−1)

(J(3),J(2),J(2))
El(2, α1, 1)⊕ El(2, α2, 1)

⊕El(2, α1 + α2, 1)⊕ (−1)

(iE2,−iE2,−E2, 1)
El(3, α1, 1)

⊕El(3,−α1, 1)⊕ (1)
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J(7) El(6, α1, 1)⊕ (−1)

(εJ(3), ε−1J(3), 1) El(6, α1, 1)⊕ (−1)

(zJ(2), z−1J(2), z2, z−2, 1) El(6, α1, 1)⊕ (−1)

(xJ(2), x−1J(2),J(3)) El(6, α1, 1)⊕ (−1)

(x, y, xy, (xy)−1, y−1, x−1, 1) El(6, α1, 1)⊕ (−1)

Conversely, the above list exhausts all possible formal types of irreducible rigid irre-
gular G2-connections on open subsets of P1 of slopes at most 1.

Note that the first four families of systems were previously unknown and the final
five families correspond to hypergeometric systems. The fifth family is a pullback
of one of these. Here λJ(n) denotes a Jordan block of length n with eigenvalue λ.
A matrix in GL7(C) in this case represents a regular singular connection which is
determined by its monodromy. The singularities at∞ are irregular and hence they
are described in a more complicated way. The differential module El(6, α1, 1) over
C((t)) for example is the direct image by a ramified covering t 7→ t6 of the formal
punctured disc of a formal rank one connection with an exponential solution e−

α1
u

where u6 = t. It has the single slope 1/6. For the exact notation see the beginning
of Section 2.2. The results of Chapters 2 and 3 are prepared for publication in [Ja].

In Chapter 4 we switch to the setting of positive characteristic and introduce the
objects that we work with. We briefly recall how to obtain the derived category of
`-adic sheaves on a scheme X of finite type over either a finite field or the algebraic
closure of a finite field. We go on to introduce perverse sheaves and their vanishing
cycles which in this setting are necessary to define the operations used in the Katz-
Arinkin-Deligne algorithm.

In Chapter 5 we first introduce convolution and Fourier-Laplace transform in po-
sitive characteristic. We then transfer Arinkins proof of the Katz-Arinkin-Deligne
algorithm to the setting of positive characteristic. We go on to introduce tools and
methods inspired by the classification in the complex setting. In particular we will
obtain invariants mirroring the formal monodromy and exponential torus of a for-
mal connection. Over the algebraic closure of a finite field of characteristic p > 7 we
obtain Theorem 5.3.14 as the analogue of the classification theorem in the differen-
tial setting. After introducing the necessary tools the proof is completely analogous
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to the proof of the classification theorem in the differential setting.
We conclude the thesis in Chapter 6 with an outlook on possible questions for

future reasearch building on the classification. We explicate the relation to the geo-
metric Langlands program and provide a possible automorphic counterpart for one
of the constructed families.
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2 Rigidity for (Irregular) Connections

In this chapter we introduce the basic setting and notions concerning rigid connec-
tions. We will see how to interpret connections using Tannakian formalism and
recall some classic results about formal connections as can be found in [vdPS] for
example.

2.1 Tannakian Formalism for Connections over C

Let X be a smooth connected complex curve and denote by D.E.(X) the category
of connections on X as in [Ka2, 1.1.]. By a connection we mean a locally free OX -
module E of finite rank equipped with a connection map

∇ : E → E ⊗ Ω1
X/C.

Let X be the smooth compactification of X and for any x ∈ X − X let t be a local
coordinate at x. The completion of the local ring of X at x can be identified non-
canonically with C((t)). We define Ψx(E ) = C((t))⊗ E to be the restriction of E to the
formal punctured disk around x.

Any Ψx(E ) obtained in this way is a C((t))-connection, by which we mean a finite
dimensional C((t))-vector space admitting an action of the differential operator ring
C((t))〈∂t〉. Its dimension will be called the rank of the connection. The category of
C((t))-connections is denoted by D.E.(C((t))).

Lemma 2.1.1 ([vdPS], Prop 2.9). Any C((t))-connection E has a cyclic vector, i.e. an
element e ∈ E such that E is generated over C((t)) by the elements e, ∂te, ∂2

t e, ....

This shows that any C((t))-connection E is isomorphic to a connection of the form

C((t))〈∂t〉/(L)

for some operator L ∈ C((t))〈∂t〉 where (L) denotes the left-ideal generated by L. To
L we can associate its Newton polygon N(L) and the slopes of E are given by the
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slopes of the boundary of N(L). These are independent of the choice of L. We call a
C((t))-connection regular singular if all its slopes are zero. Any C((t))-connection E

can be decomposed as
E =

⊕
y∈Q≥0

E(y)

where only finitely many E(y) are non-zero and where rk(E(y)) · y ∈ Z≥0. The non-
zero y are precisely the slopes of E. We define the irregularity of E to be

irr(E) :=
∑

y · rk(E(y)).

It is always a non-negative integer.
Let E be a connection on a smooth connected curve X with smooth compactifica-

tion X as before. We say that E is regular singular if the formal type Ψx(E ) at every
singularity x ∈ X − X is regular singular. The following theorem is the classical
version of the Riemann-Hilbert Correspondence.

Theorem 2.1.2 ([HTT], Corollary 5.2.21.). There is an equivalence of categories bet-
ween the category of regular singular connections on X and finite dimensional re-
presentations of the topological fundamental group of X(C) based at x ∈ X.

In particular, representations of the topological fundamental group do not cap-
ture irregular singular connections on X. In order to view these as representations
we make the following observation, cf. [Ka2, Section 1.1.]. The category D.E.(X) ad-
mits natural notions of tensor products and internal hom. Given a point x ∈ X(C)

the functor E 7→ Ex defines a fibre functor

ωx : D.E.(X)→ VectC

from the category of connections to the category of finite dimensional C-vector
spaces. Therefore D.E.(X) is a neutral Tannakian category. Denote by πdiff

1 (X,x)

the pro-algebraic group Aut⊗(ωx). The functor ωx induces an equivalence of catego-
ries

D.E.(X)→ RepC(πdiff
1 (X,x))

of the category of connections with the category of finite dimensional complex repre-
sentations of πdiff

1 (X,x). Given a connection E denote by ρE : πdiff
1 (X,x)→ GL(ωx(E ))

the associated representation. The image of ρ is isomorphic to the differential Ga-
lois group Gdiff(E ) of E . Let us interpret this in terms of the Riemann-Hilbert-
Correspondence. By Theorem 2.1.2 a regular singular connection L is the same
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as a representation of the topological fundamental group

πtop
1 (X(C), x)

ρ−→ GLn(C).

Its algebraic monodromy group Gmono(L ) is the Zariski closure of the image of ρ.
By [Ka1, Proposition 5.2], since L has regular singularities, its monodromy group
Gmono(L ) coincides with its differential Galois group Gdiff(L ). We can therefore
think of L as a representation of Gdiff(L ) and hence of πdiff

1 (X,x). In this sense, the
Tannakian approach generalizes the Riemann-Hilbert Correspondence.

Let G be a connected reductive group over C. We will call algebraic homomor-
phisms πdiff

1 (X,x) → G(C) G-connections on X. Given a connection E we can also
consider it as a Gdiff(E )-connection through the factorization

πdiff
1 (X,x) //

ρE

''

GLn(C)

Gdiff(E )(C)
+ �

88
.

In the local setting there are similar notions. Let K = C((t)) and consider the
category D.E.(K) of K-connections. We have natural notions of tensor products and
internal hom in D.E.(K) turning D.E.(K) into a rigid abelian tensor category. The-
re is a way to construct a fibre functor for D.E.(K) which is done as follows (cf.
[Ka2, II. ,2.4.]). For any K-connection E there is a connectionME on Gm such that
Ψ0(ME) = E and ME is regular singular at infinity. We will call this connection
the Katz extension of E. For any point x ∈ Gm(C) the functor

ωx : D.E.(K)→ VectC

given by ωx(E) = (ME)x is a C-valued fibre functor and induces an equivalence
of the category D.E.(K) with the category RepC(Idiff) for a pro-algebraic group Idiff

which we call the local differential Galois group. Again if ρE is the representation
associated to E its image im ρE = Gloc(E) can be identified with the differential
Galois group of E considered as a differential module over K.

We have the upper numbering filtration on Idiff which is a decreasing filtration
defined in the following way. For any y ∈ R>0 let D.E.(<y)(K) be the full subca-
tegory of D.E.(K) consisting of connections with slopes < y and denote by ωy the
restriction of ω to D.E.(<y)(K). Dual to these subcategories there are faithfully flat
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homomorphisms
Idiff → Aut⊗(ωy)

whose kernels are closed normal subgroups of Idiff. We denote them by I
(y)
diff. This

defines a decreasing filtration on Idiff with the property that for any connection E

with slopes < y the kernel of its associated representation ρE : Idiff → GL(ω(E))

contains I(y)
diff.

Let X be a smooth proper complex connected curve, Σ a finite set of closed points
of X and U = X − Σ. For any connection E on U and any x ∈ Σ consider its formal
type Ψx(E ) at x. The functor

ω̃ : D.E.(U)→ VectC

E 7→ ω(Ψx(E ))

defines a fibre functor and the formal type functor D.E.(U) → D.E.(K) induces a
closed immersion Gloc(Ψx(E ), ω) ↪→ Gdiff(E , ω̃). Over C any two fibre functors on
either category of connections are isomorphic and we will fix the above fibre functor
and drop ω in the notation of the local and the global differential Galois group.
Therefore we can consider Gloc(Ψx(E )) as a closed subgroup of Gdiff(E ). This will
allow us to deduce information about the differential Galois group of a connection
from its formal type at the singularities.

The local differential Galois group can also be recovered in the following way.
Let E be a C((t))-connection and 〈E〉 the full subcategory of objects which are finite
direct sums of sub-quotients of objects

E⊗n ⊗ (E∗)⊗m,m, n ∈ Z≥0.

The restriction of any fibre functor ω of D.E.(K) to 〈E〉 turns 〈E〉 into a neutral
Tannakian category. In particular we have Aut⊗(ω|〈E〉) = Gloc(E). This construction
can be made more concrete in the classical setting, cf. [vdPS, Theorem 2.33]. Let L
be a Picard-Vessiot field for E. The equivalence

S : 〈E〉 → Rep(Gloc(E))

is given by assigning to an object E′ of 〈E〉 its horizontal sections after base change
to L, i.e. S(E′) = ker(∂t, L⊗E′). The differential Galois group acts on the kernel and
v ∈ S(E) is invariant under the action of Idiff if and only if v is a horizontal section
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of E. Therefore insted of writing Soln(E) for the horizontal sections of E we will
sometimes abuse notation and will also write EIdiff .

2.2 Rigid Connections and Local Data

Let X = P1 and U a non-empty open subset of X. We call the collection of isomor-
phism classes

{[Ψx(E )]}x∈X

the formal type of E , cf. [Ar, 2.1.]. Note that Ψx(E ) is trivial whenever x ∈ X, so
the formal type of E is actually determined by the rank rk(E ) of E and the family
{[Ψx(E )]}x∈X−X . We call a connection E rigid if it is determined up to isomorphism
by its formal type.

Fortunately there is a way to describe the structure of C((t))-connections in a very
explicit way, allowing for a classification of formal types. We introduce the following
notation. For any formal Laurent series ϕ ∈ C((u)), non-zero ramification ρ ∈ uC[[u]]

and regular C((u))-connection R we define

El(ρ, ϕ,R) := ρ+(E ϕ ⊗R)

where ρ+ denotes the push-forward connection and E ϕ is the connection

(C((u)), d+ dϕ),

i.e. it has an exponential solution e−ϕ. Denote by p the order of the ramification of
ρ, by q the order of the pole of ϕ and by r the rank of R. The connection El(ρ, ϕ,R)

has a single slope q/p, its rank is pr and its irregularity is qr.

Theorem 2.2.1 (Levelt-Turrittin decomposition, [DS], Section 1). Let E be a C((t))-
connection. There is a finite subset Φ ⊂ C((u)) such that

E ∼=
⊕
ϕ∈Φ

El(ρϕ, ϕ,Rϕ)

where ρϕ ∈ uC((u)) \ {0} and Rϕ is a regular C((u))-connection. Denote by p(ϕ) the
order of ρϕ. The decomposition is called minimal if no ρ1, ρ2 and ϕ1 exist such that
ρϕ = ρ1 ◦ ρ2 and ϕ = ϕ1 ◦ ρ2 and if for ϕ,ψ ∈ Φ with p(ϕ) = p(ψ) there is no p-th root
of unity ζ such that ϕ = ψ ◦ µζ where µζ denotes multiplication by ζ. In this case the
above decomposition is unique.
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Therefore, to specify a connection E over C((t)) it is enough to give the finite set
Φ, the ramification maps ρϕ for all ϕ ∈ Φ and the monodromy of the connection Rϕ.
The latter can be given as a matrix in Jordan canonical form and we will use the
notation λJ(n) for a Jordan block of length n with eigenvalue λ ∈ C. For a general
monodromy matrix we will write

(λ1J(n1), ..., λkJ(nk)).

For later use we will collect some facts about elementary modules in the following
proposition.

Proposition 2.2.2 ([Sa], Section 2). Let El(ρ, ϕ,R) and El(ν, ψ, S) be elementary
modules. The following holds.
(1) The dual of El(ρ, ϕ,R) is given as El(ρ,−ϕ,R∗) whereR∗ denotes the dual connec-

tion of R.
(2) Let p be the degree of ρ, r the rank of R and let (t(p−1)r/2) be the connection

(C((t)), d+ ((p− 1)r/2)dt/t). The determinant connection det El(ρ, ϕ,R) is isomor-
phic to E rTrϕ⊗det(R)⊗ (t(p−1)r/2) where Trϕ denotes the trace of ϕ considered as
linear operator on the C((t))-vector space C((u)).

(3) Suppose ρ(u) = ν(u) = up. Then El(ρ, ϕ,R) ∼= El(ν, ψ, S) if and only if there
exists ζ with ζp = 1 and ψ ◦ µζ ≡ ϕ mod C[[u]] and R ∼= S where µζ denotes
multiplication by ζ.

(4) More generally, suppose the degree of ρ and the degree of ν are both p. Then
El(ρ, ϕ,R) ∼= El(ν, ψ, S) if and only if R ∼= S and there exists ζ with ζp = 1 and
λ1, λ2 ∈ uC[[u]] satisfying λ′i(0) 6= 0 such that ρ = ν ◦ λ1 and

ϕ ≡ ψ ◦ λ1 ◦ (λ−1
2 ◦ µζ ◦ λ2) mod C[[u]].

(5) We have ρ+ρ+E ϕ ∼=
⊕

ζp=1 E ϕ◦µζ .

There is a criterion to identify rigid irreducible connections due to Katz in the
case of regular singularities with a generalization by Bloch and Esnault in the case
of irregular singularities.

Proposition 2.2.3 ([BE], Thm. 4.7. & 4.10.). Let E be an irreducible connection on
j : U ↪→ P1. Denote by j!∗ the middle extension functor, cf. [Ka5, Section 2.9]. The
connection E is rigid if and only if

χ(P1, j!∗(E nd(E ))) = 2
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where χ denotes the Euler-de Rham characteristic.

For this reason, we set rig (E ) = χ(P1, j!∗(E nd(E )) and call it the index of rigidity.
Whenever rig (E ) = 2 we say that E is cohomologically rigid. The index of rigidity
can be computed using local information only.

Proposition 2.2.4 ([Ka5], Thm 2.9.9.). Let E be an irreducible connection on the
open subset j : U ↪→ P1 and let P1 − U = {x1, ..., xr}. The index of rigidity of E is
given as

rig (E ) = (2− r)rk(E )2 −
r∑
i=1

irrxi(E nd(E )) +
r∑
i=1

dimC Solnxi(E nd(E ))

where Solnxi(E nd(E )) is the space of horizontal sections of Ψxi(E nd(E )) = C((t)) ⊗
E nd(E ).

Recall that Solnxi(E nd(E )) can be regarded as the space of invariants of the
Idiff-representation associated to Ψxi(E nd(E )). In the following we will see how to
compute all local invariants appearing in the above formula provided we know the
Levelt-Turrittin decomposition of the formal types at all points. Let E be a C((t))-
connection with minimal Levelt-Turrittin decomposition

E =
⊕
i

El(ρi, ϕi, Ri).

Its endomorphism connection is then given by

E ⊗ E∗ =
⊕
i,j

Hom(El(ρi, ϕi, Ri),El(ρj , ϕj , Rj)).

As the irregularity of E ⊗ E∗ = End(E) is given as sum over the slopes, it can be
computed by combining this decomposition with the following proposition of Sab-
bah.

Proposition 2.2.5 ([Sa], Prop. 3.8.). Let ρi(u) = upi , d = gcd(p1, p2), p′i = pi/d and
ρ̃i(w) = wp

′
i . Consider the elementary connections El(ρi, ϕi, Ri), i = 1, 2. We have

Hom(El(ρ1, ϕ1, R1),El(ρ2, ϕ2, R2)) ∼=
d−1⊕
k=0

El([w 7→ wp1p2/d], ϕ(k), R),

where
ϕ(k)(w) = ϕ2(wp

′
1)− ϕ1((e

2πikd
p1p2 w)p

′
2)
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and R = ρ̃+
2 R
∗
1 ⊗ ρ̃

+
1 R2.

Note that dim Soln(E) = dim Soln(Ereg) as any connection which is purely irre-
gular has no horizontal sections over C((t)) (otherwise it would contain the trivial
connection). If E has minimal Levelt-Turrittin decomposition E =

⊕
i El(ρi, ϕi, Ri),

Sabbah shows in [Sa, 3.13.] that

End(E)reg =
⊕
i

ρi,+End(Ri). (2.1)

A regular C((u))-connectionR is completely determined by its nearby cycles (ψuR, T )

with monodromy T . Its push-forward along any ρ ∈ uC[[u]] of degree p corresponds
to the pair (ψuR⊗Cp, ρ+T ) with ρ+T given by the Kronecker product T 1/p⊗Pp. Here
T 1/p is a p-th root of T and Pp is the cyclic permutation matrix on Cp. This is the for-
mal monodromy of the push-forward connection. Let Vρ+R be the Idiff-representation
associated to ρ+R. We have

dim Soln(ρ+R) = dimV Idiff
ρ+R

= dim ker(ρ+T − id) = dim ker(T − id).

In particular

dim Soln(ρ+End(R)) = dim ker(ρ+Ad(T )− id) (Z)

= dim ker(Ad(T )− id)

= dim Z(T )

where Z(T ) is the centraliser of T . Combining this with Formula 2.1 allows us to
compute dim Soln(E) for any connection E provided we know its Levelt-Turrittin
decomposition. In particular, the condition that a connection E is rigid provides us
with restrictions on the irregularity and the centraliser dimensions of the monodro-
mies of regular connections appearing in the Levelt-Turrittin decomposition.
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3 Classification of Rigid Irregular
G2-Connections

In this chapter we will prove the classification theorem for irreducible rigid irregu-
lar connections with differential Galois group G2 of slope at most 1. This employs
methods of differential Galois theory and of course the Katz-Arinkin algorithm.

3.1 The Katz-Arinkin Algorithm for Rigid Connections

We recall the various operations involved in the Arinkin algorithm as defined in
[Ar]. Let Dz = C[z]〈∂z〉 be the Weyl-algebra in one variable and M a finitely gene-
rated left Dz-module. We say that M is holonomic if either

(i) dimC(z)(M ⊗ C(z)) <∞,
(ii) there is an open subset U ⊂ A1 such that M |U is a connection or

(iii) M is a cyclic Dz-module.
These properties are all equivalent. The Fourier isomorphism is the map

F : Dτ → Dz

τ 7→ ∂z

∂τ 7→ −z.

From now on we will always denote the Fourier coordinate by τ in the global setting.
We will also use a subscript to indicate the coordinate on A1. Let M be a finitely
generated Dz-module on A1

z. The Fourier transform of M is

F (M) = F ∗(M).

Denote by F∨ : Dz → Dτ the same map as above with the roles of z and τ reversed
and let F∨ = (F∨)∗.

We see that M is holonomic if and only if F (M) is holonomic. The functor F
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therefore defines an equivalence

F : Hol(A1
z)→ Hol(A1

τ ).

We have F∨ ◦F = ε∗ where ε is the automorphism of Dz defined by ε(z) = −z and
ε(∂z) = −∂z.

Using the Fourier transform we define the middle convolution as follows. For any
χ ∈ C∗ let Kχ be the connection on Gm associated to the character π1(Gm, 1) → C×

defined by γ 7→ χ where γ is a generator of the fundamental group. We call Kχ a
Kummer sheaf. Explicitly, Kχ can be given as the trivial line bundle OGm equipped
with the connection d+ αd/dz for any α ∈ C such that exp(−2πiα) = χ.

Let i : Gm ↪→ A1 be the inclusion. The middle convolution of a holonomic module
M with the Kummer sheaf Kχ is defined as

MCχ(M) := F−1(i!∗(F (M)⊗Kχ−1))

where F−1 denotes the inverse Fourier transform and i!∗ is the minimal extension.
Note that F (Kχ) = Kχ−1 .

Given a connection E on an open subset j : U ↪→ A1 we can apply the Fourier
transform or the middle convolution to its minimal extension j!∗E . We end up with
a holonomic module on A1 which we can restrict in both cases to the complement
of its singularities. This restriction is again a connection on some open subset of
A1 and we denote it by F (E ) for the Fourier transform and MCχ(E ) for middle
convolution. Whenever E is defined on an open subset U ⊂ P1 we can shrink U such
that∞ /∈ U and apply the above construction.

The Katz-Arinkin algorithm is given in the following theorem. It was proven in
the case of regular singularities by Katz in [Ka6] and in the case of irregular singu-
larities by Arinkin in [Ar].

Theorem 3.1.1. Let E be an irreducible connection on an open subset U ⊂ P1 and
consider the following operations.

(i) Twisting with a connection of rank one,
(ii) change of coordinate by a Möbius transformation,

(iii) Fourier transform and
(iv) middle convolution.

The connection E is rigid if and only if it can be reduced to a regular singular connec-
tion of rank one using a finite sequence of the above operations.
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As middle convolution is itself a combination of Fourier transforms and twists
the above statement holds even when omitting convolution. A crucial point in the
proof of the above statement is the fact that all these operations preserve the index
of rigidity. This was proven by Bloch and Esnault in [BE, Theorem 4.3.] using the
local Fourier transform which they defined in characteristic zero as an analogue to
Laumon’s local Fourier transform from [La3].

Let E be a C((t))-connection, i.e. a finite dimensional C((t))-vector space admitting
an action of C((t))〈∂t〉. The local Fourier transform of E from zero to infinity is obtai-
ned in the following way. Due to [Ka2, Section 2.4.] there is an extension of E to a
connectionME on Gm which has a regular singularity at infinity and whose formal
type at zero is E. We define

F (0,∞)(E) := F (ME)⊗C[τ ] C((θ))

where τ is the Fourier transform coordinate and θ = τ−1. In a similar fashion define
for s ∈ C∗ transforms

F (s,∞)(E) = E s/θ ⊗F (0,∞)(E)

where E s/θ denotes as before the rank one connection with solution es/θ. Recall that
there also is a transform F (∞,∞) which is of no interest to us, as it only applies to
connections of slope larger than one. For details on this transform we refer to [BE,
Section 3.].

There are also transforms F (∞,s) which are inverse to F (s,∞), see [Sa, Section
1]. For the local Fourier transforms Sabbah computed explicitly how the elemen-
tary modules introduced in the first section behave. The most important tool for
controlling the formal type under Fourier transform is the formal stationary phase
formula of López.

Theorem 3.1.2 ([GL], Section 1). Let M be a holonomic D-module on A1 with finite
singularities Σ. There is an isomorphism

Ψ∞(F (M)) ∼=
⊕

s∈Σ∪{∞}

F (s,∞)(M).

Let M be a holonomic C[[t]]〈∂t〉-module and choose an extensionM as before. The
formal type at infinity of the Fourier transform of this module is the local Fourier
transform F (0,∞)(M). By [Sabbah, 5.7.], the local Fourier transform F (0,∞)(M) of
a regular holonomic C[[t]]〈∂t〉-module M is the connection associated to the space of
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vanishing cycles (φtM,T ) where T = id + can ◦ var.

Theorem 3.1.3 ([Sa], Section 5). Let El(ρ, ϕ,R) be any elementary C((t))-module
with irregular connection. Recall that

El(ρ, ϕ,R) = ρ+(E ϕ ⊗R)

and that q = q(ϕ) is the order of the pole of ϕ which is positive by assumption. Denote
by ′ the formal derivative and let ρ̂ = ρ′

ϕ′ , ϕ̂ = ϕ − ρ
ρ′ϕ
′, Lq the rank one system with

monodromy (−1)q and R̂ = R ⊗ Lq. The local Fourier transform of the elementary
module is then given by

F (0,∞)El(ρ, ϕ,R) = El(ρ̂, ϕ̂, R̂).

In particular, we also have explicit descriptions

F (s,∞)El(ρ, ϕ,R) ∼= El(ρ̂, ϕ̂+ s/(θ ◦ ρ̂), R̂)

F (s,∞)(M) ∼= El(id, s/θ,F (0,∞)M)

for M a regular C[[t]]〈∂t〉-module.
Under twists with regular connections of rank one, elementary modules behave

in the following way. Denote by (λ) the regular C((t))-connection with monodromy
λ ∈ C∗. The following Lemma follows directly from the projection formula.

Lemma 3.1.4. Let λ ∈ C∗, ρ(u) = ur and El(ρ, ϕ,R) be an elementary module. We
have

El(ρ, ϕ,R)⊗ (λ) ∼= El(ρ, ϕ,R⊗ (λr)).

This in turn allows us to compute the change of elementary modules under middle
convolution which we compute in terms of Fourier transforms and twist.

We would like to analyse the possible slopes of our system further.

Lemma 3.1.5. Let L be a rigid irreducible connection on U ⊂ P1 all of whose slopes
are at most 1. Then in order to reduce the rank of L it suffices to twist with rank one
connections whose slopes also do not exceed 1.

Proof. The choice of the connection ` with which we have to twist in order to lower
the rank is made explicit in the proof of [Ar, Theorem A]. Let S = P1 − U be the set
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of singularities of L . For each x ∈ S we choose an irreducible subrepresentation Vx
of Ψx(L ) such that

δ(End(Ψx(L ))) ≥ rk(L )

rk(Vx)
δ(Hom(Vx,Ψx(L ))

where δ(E) = irr(E)+rk(E)−dim Soln(E) for a formal connection E. Arinkin proves
that either all Vx are of rank one or if there is a Vx of higher rank, there is exactly
one such. In the first case ` is chosen so that Ψx(`) is Vx (up to a twist with a
regular singular formal connection) and since Vx is a subconnection of Ψx(L ) all
its slopes are at most 1. In the second case, let ∞ be the unique singularity for
which rk(V∞) > 1 (up to a change of coordinate). Then (up to a twist with a regular
singular formal connection) Arinkin chooses ` in such a way that the slope of

Hom(Ψ∞(`), V∞)

is fractional. This in done in the following way. By the Levelt-Turrittin Theorem
2.2.1,

V∞ ∼= ρ∗(E
ϕ ⊗ λ)

for ρ(u) = up, λ a regular singular connection of rank one and ϕ a polynomial of the
form

ϕ(u) =
ap
up

+ ...+
a1

u
+ a0.

Then we have

E
−ap
t ⊗ V∞ ∼= ρ∗(E

ϕ ⊗ λ⊗ ρ∗E
−ap
t ) ∼= ρ∗(E

ϕ<p ⊗ λ)

where ϕ<p(u) =
ap−1

up−1 + ...+ a1
u + a0. This connection has fractional slope p−1

p < 1 and

the connection E
−ap
t we twisted with has slope 1.

Lemma 3.1.6. Let M be any irreducible rigid holonomic module on A1 all of whose
slopes are at most one. Any non-zero slope of M has numerator 1.

Proof. The module M is constructed using Fourier transform, twists with rank one
connections and coordinate changes. Of these operations only Fourier transform
and twisting has any impact on the slopes. By the above Lemma the systems with
which we twist have slopes at most 1. Since they are of rank one, the only possibili-
ties for the slopes are either 0 or 1. Therefore twisting preserves the property of the
slope to have numerator 1.
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For the Fourier transform there are two possibilities. The first case is a transform
F (0,∞) which produces a regular connection from a regular connection and which
changes the ramification order from p to p+ q and does not change the pole order in
the case of an irregular module El(ρ, ϕ,R) with p = p(ρ) and q = q(ϕ). The second
case is the transform F (s,∞) for s 6= 0 which changes the ramification order from p to
p+q and the pole order from q to max(q, p+q) = p+q. So after applying F (s,∞) once,
F (0,∞) only produces slopes of the form p+q

k(p+q) where the k counts the number of
applications of F (0,∞). Hence they are always of the form n

kn = 1
k for k, n ∈ Z>0.

3.2 On connections of type G2

In this section we will restrict ourselves to irreducible rigid connections E on non-
empty open subsets of P1 of rank 7 with differential Galois group Gdiff(E ) = G2

(where we fix the embedding G2 ⊂ SO(7) ⊂ GL7) and all of whose slopes are at
most 1. Regarding the restriction on the slopes consider the following example.

Example 3.2.1. Let f ∈ C[z] be a polynomial of degree k which is prime to 6. Then
by [Ka5, Theorem 2.10.6] the module

M = C[z]〈∂z〉/(L), L = ∂7
z − f∂z −

1

2
f ′

on A1
z is irreducible and has differential Galois group G2. It has one singularity at

∞ of slope 1 + k
6 and its formal type M∞ at∞ decomposes into

R⊕M∞(
6 + k

6
)

where R is regular singular of rank 1 and V := M∞(6+k
6 ) is irreducible of rank 6. By

the Levelt-Turrittin Theorem 2.2.1

V ∼= El(u6, ϕ(u), R′)

for some regular singular rank one connection R′ and

ϕ(u) =

k+6∑
i=1

aiu
−i
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with ak+6 6= 0. According to Proposition 2.2.5 we have

End(M∞) ∼=
⊕

ζ∈µ6(C)

El(u6, ϕ(u)− ϕ(ζu), R̃)⊕
(
V ⊗R∨

)
⊕
(
V ∨ ⊗R

)
⊕ 1

where R̃ is regular of rank one and 1 is the trivial connection. Whenever the coeffi-
cient of the degree (k + 6)-term of ϕ(u)− ϕ(ζu) does not vanish, the module

El(u6, ϕ(u)− ϕ(ζu), R̃)

has irregularity k+ 6. Since k is prime to 6, ak+6− ζkak+6 = 0 if and only if ζ = 1. In
this case the above module is regular. In total we have

irr(End(M∞)) = 7(k + 6).

Since M only has one singularity at∞ its index of rigidity is

rig (M) = 49− irr∞(M) + dimM I∞ = 49− 7(k + 6) + 2

where we used that for the local differential Galois group I∞ we have dimM I∞ = 2

because M∞ is the direct sum of two irreducible modules. We find that rig (M) = 2 if
and only if k = 1. Therefore the above family of modules is rigid only if k = 1. In this
case it has slope 1 + 1

6 > 1. This suggests that rigidity combined with a differential
Galois group of type G2 should give bounds on the slopes, but it’s not clear how
these could be obtained. Recall that the index of rigidity remains unchanged by
twist with a rank one connection and hence after twisting M in the case k = 1

with the connection (C[z], d − dzq) for q > 2 would increase the slope to q. But the
so-obtained connection will not be self-dual anymore, so it cannot be of type G2.

As connections with regular singularities of this type have already been classified
by Dettweiler and Reiter, we will from now on assume that every irreducible rigid
G2-connection has at least one irregular singularity. We give a first approximation
to the complete classification theorem of Section 3.3.

We will use the following notations. By ρp we always denote the ramification
ρp(u) = up, Rk is a regular C((u))-connection of rank k and ϕq is a rational function
of pole order q at zero. A regular connection R on the formal disc SpecC((u)) is deter-
mined by its monodromy which can be given as a single matrix in Jordan canonical
form. Let M be a complex n × n-matrix and R the connection with monodromy M .
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We sometimes write
El(ρp, ϕq,M)

for the elementary module ρp,+(E ϕ ⊗ R). Recall that by λJ(n) we denote a Jordan
block of length n with eigenvalue λ ∈ C∗, in particular J(n) is a unipotent Jordan
block of length n. Additionally, En is the identity matrix of length n. We will write

(λ1J(n1), ..., λkJ(nk))

for a complex matrix in Jordan canonical form with eigenvalues λ1, ..., λk and we
will omit J(1).

3.2.1 Local Structure

Recall from Lemma 3.1.6 that any slope of an irreducible rigid G2-connection has
numerator 1. Additionally, a strong condition on the formal types is given by the
self-duality which they have to satisfy. As stated in Proposition 2.2.2, the dual of an
elementary connection El(ρp, ϕq, R) is

El(ρp,−ϕq, R∗).

Lemma 3.2.2. Let E be an irreducible rigid G2-connection. The regular part of the
formal type at any singularity x of E is of dimension 1, 3 or 7.

Proof. Let x be any singularity of E . Denote by E the formal type of E at x and
write E = Ereg ⊕ Eirr. This corresponds to a representation ρ = ρreg ⊕ ρirr of the
local differential Galois group I at x. First note that this representation has to be
self-dual. We will show that purely irregular C((t))-connections of odd dimension are
never self-dual. Let E be such a connection and write

E =
⊕

El(pi, ϕi, Ri)

for its minimal Levelt-Turrittin decomposition in which all the ϕi are not in C[[t]].
For the dimension of E to be odd, at least on of the elementary connections has to be
odd dimensional, write El(p, ϕ,R) for that one. It’s dual cannot appear in the above
decomposition, as the dimension would not be odd in that case. So it suffices to
prove that El(p, ϕ,R) itself is not self-dual. A necessary condition for its self-duality
is

ϕ ◦ µζp ≡ −ϕ mod C[[u]].
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Write ϕ(u) =
∑

i≥−k aiu
i for some k ∈ Z≥0. The above condition translates to∑

i≥−k
aiζ

i
p + ui

∑
i≥−k

+aiu
i ∈ C[[u]].

Since ϕ is supposed to be not contained in C[[u]] there is an index j < 0 such that
aj 6= 0. In this case we find that ajζjp + aj = 0, i.e. ζjp = −1. This can only hold if p is
even and in this case the dimension of El(p, ϕ,R) could not be odd.

Therefore the dimension of the regular part of E has to be odd. Denote as before
by I(x) the upper numbering filtration on I = Idiff and let n = dimEreg. The smallest
possible non-zero slope of E is 1/6, so we find

ρ|I(1/6) = 1
n ⊕ ρirr|I(1/6)

where 1 denotes the trivial representation of rank one. In the case n = 5, the image
of ρ contains elements of the form (E5,M) where M is non-trivial. By Table 4 in
[DR2] such elements do not occur in G2(C).

The following proposition is a special case of Katz’s Main D.E. Theorem [Ka5,
2.8.1].

Proposition 3.2.3. Let E be an irreducible rigid connection on U ⊂ P1 of rank 7

with differential Galois group G2. If at some point x ∈ P1 − U the highest slope of E

is a/b with a > 0 and if it occurs with multiplicity b, then b = 6.

We will later see that the rigid G2-connections we consider necessarily have ex-
actly two singularities which we can choose to be zero and infinity. By a criterion
of Katz, any system satisfying the conditions of the above proposition will then ne-
cessarily be hypergeometric.

One of the main ingredients in the proof of Katz’s Main D.E. Theorem is the use of
representation theory through Tannakian formalism as presented in the previous
section. Applying the above Proposition (and self-duality) yields the following pos-
sible list for the slopes and the respective dimensions in the slope decomposition.
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slopes dimensions

1 4

1 6

1
2 , 1 2, 2

1
2 , 1 2, 4

1
2 , 1 4, 2

1
2 4

1
2 6

1
3 6

1
4 , 1 4, 2

1
6 6

For an elementary module El(up, ϕ,R) with ϕ ∈ C((u)) we would like to describe
the possible ϕ more concretely. We have the following Lemma.

Lemma 3.2.4. The pole order of any ϕ ∈ C((u)) appearing in the Levelt-Turrittin de-
composition into elementary modules of the formal type of a rigid irreducible connec-
tion of type G2 with slopes at most 1 can only be 1 or 2.

Proof. Suppose El(up, ϕ,R) appears in the formal type of such a system. Because
the slopes are at most 1 and all have numerator 1, we have the following possibilities
for p and q apart from q = 1.

q p

2 2, 4, 6

3 3, 6

4 4

6 6

Note that in the cases (q, p) = (6, 6), (q, p) = (4, 4) and (q, p) = (2, 6), the module
El(up, ϕ,R) cannot be self-dual. Indeed that would mean that ϕ(ζu) = −ϕ(u). Write
v = u−1. If aq denotes the coefficient of vq then the above condition means that

aq(ζu)q = −aquq,
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i.e. ζq = −1. This is a contradiction in these cases. The formal type of a connection
of type G2 has to be self-dual and therefore in the case that q is even, the dual of
El(ρ, ϕ,R) also has to appear in the formal type. If p = 4 or p = 6 this contradicts
the fact that the rank of the connection is 7. We are therefore left with the following
cases.

q p

2 2, 4

3 3, 6

We analyze these cases separately. Suppose first we’re in the case that q = 3 and
p = 6. Then El(u6, ϕ,R) is at least six dimensional, so dimR = 1 and the module has
to be self-dual already. The isomorphism class of El(up, ϕ,R) depends only on the
class of ϕ mod C[[u]], hence we think of ϕ as a polynomial in v = 1/u. We can then
write

ϕ(v) = a3v
3 + a2v

2 + a1v

and self-duality implies that there is a 6-th root of unity ζ such that

a3ζ
3v3 = −a3v

3.

Because q = 3, a3 6= 0 and we get that ζ3 = −1. We have a2ζ
2v2 = −a2v

2 implying
that a2 = 0. Therefore ϕ is of the form

ϕ(v) = a3v
3 + a1v.

In order to rule out this case we will need the exponential torus of an elementary
module. Consider the module E = El(σp, ψ, L). Because of 2.2.2, 5 the exponential
torus of E is the subgroup T of (C∗)p = {(t1, ..., tp)} defined by

∏
tνii = 1, νi ∈ Z for

any relation of the form ∏
exp(ψ ◦ µζip)

νi = 1

satisfied by the ψ ◦ µζip , see for example [Zo, Section 11.22.]. The exponential torus
can be considered as a subgroup of the local differential Galois group of E, i.e. T ⊂
G2 is a necessary condition for Gloc(E) ⊂ G2.

We claim that the torus attached to El(ρ, ϕ,R) for ϕ(v) = a3v
3 + a1v is three-

dimensional. As the rank of G2 is 2, this means that no elementary module of this
form can appear in any formal type.
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If a1 = 0, by [Sa, Rem. 2.8.] we have

El(u6, a3u
−3, R) ∼= El(u2, a3u

−1, (u3)∗R)

hence actually q = 1 in this case. We can therefore assume that a1 6= 0. Let ζ6 be a
primitive 6-th root of unity. We have to compute all relations of the form

5∑
i=0

ki(a3ζ
−3i
6 u−3 + a1ζ

−i
6 u−1) = 0, ki ∈ Z.

Equivalently, we find all relations

0 =

5∑
i=0

ki(a1ζ
−i
6 u2 + a3ζ

−3i
6 ) =

5∑
i=0

ki(a1ζ
−i
6 u2 + (−1)ia3).

First note that

(a1ζ
−i
6 u2 + a3ζ

−3i
6 ) + (a1ζ

−(i+3)
6 u2 + a3ζ

−3(i+3)
6 ) = 0

for i = 0, 1, 2. Therefore any element in the exponential torus is of the form

(x, y, z, x−1, y−1, z−1).

It therefore suffices to prove that there are no further relations between the first
three summands. Suppose there is a relation

0 = k(a1u
2 + a3) + l(−a1ζ

2
6u

2 − a3) +m(−a1ζ6u
2 + a3)

with k, l,m ∈ Z. We find that k = l −m and as a1 6= 0 we conclude

0 = l −m− ζ2
6 l − ζ6m = l −m+ ζ2

6m− ζ6m− ζ2
6 l − ζ2

6m

= (ζ2
6 − ζ6)m+ l −m− (l +m)ζ2

6

= l − 2m− (l +m)ζ2
6 ,

using that ζ2
6 − ζ6 = −1. Therefore l = −m and −3m = 0, i.e. m = 0. Finally, the

exponential torus is given as

T = {(x, y, z, x−1, y−1, z−1)} ∈ (C∗)6
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which is three-dimensional. Therefore a module of the above shape cannot appear
in the formal type.

The case q = 3 and p = 3 works similarly. We have

ϕ(v) = a3v
3 + a2v

2 + a1v

and if a2 = a1 = 0 as before we have

El(u3, a3u
−3, R) ∼= El(u, a3u

−1, (u3)∗R).

We can therefore assume that either a2 6= 0 or a1 6= 0. Let ζ3 be a primitive 3-rd root
of unity. We analyze the exponential torus attached to El(u3, ϕ,R), i.e. we find all
relations

3∑
i=1

ki(a3u
−3 + a2ζ

−2+
2 u−2 + a1ζ

−i
3 u−1) = 0.

This gives us the following system of equations

a1(k1ζ
2
3 + k2ζ3 + k3) = 0

a2(k1ζ3 + k2ζ
2
3 + k3)a2 = 0

a3(k1 + k2 + k3) = 0.

As a3 6= 0 we get k1 = −(k2 + k3). Now suppose that a1 6= 0. We find that

k1ζ
2
3 + k2ζ3 + k3 = 0

and we have

k1ζ
2
3 + k2ζ3 + k3 = −(k2 + k3)ζ2

3 + k2ζ3 + k3 = k2(ζ3 − ζ2
3 ) + k3(1− ζ2

3 ).

Since (ζ3 − ζ2
3 ) = i

√
3 and 1− ζ2

3 = 3
2 + i

√
3

2 we furthermore find that

k3
3

2
+ i
√

3(
1

2
k3 + k2) = 0.

Hence k3 = k2 = k1 = 0 and the exponential torus has to be three-dimensional. The
case a2 6= 0 is similar.

Finally we also exclude the case q = 2 and p = 4. We consider a module of the
form

El(u4, a2u
−2 + a1u

−1, R).
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Because of dimensional reasons, R has dimension 1 and the above module has to
be self-dual. Since q = 2 we have a2 6= 0. Therefore for self-duality we have the
condition −a2 = ζ−2a2 from which it follows that ζ = ±i. In addition we also have
−a1 = ζ−1a1 which since ζ = ±i can only be true if a1 = 0. Finally as before we find

El(u4, a2u
−2 + a1u

−1, R) = El(u4, a2u
−2, R) ∼= El(u2, a2u

−1, (u2)∗R).

This concludes the proof.

We see that only the case p = 2 and q = 2 needs to be considered. The possible
combinations of elementary modules in this case are either

El(ρ2, ϕ2, R1)⊕ El(ρ2,−ϕ2, R
∗
1)⊕R3 (S1)

where ϕ2 has a pole of order 2 or

El(ρ2, ϕ2, R1)⊕ El(ρ2,−ϕ2, R
∗
1)⊕ El(ρ2, ϕ1, R

′
1)⊕R′′1 (S2)

where ϕ1 has a pole of order 1.
We can compute the irregularity and the dimension of the solution space in the-

se cases through the use of Proposition 2.2.5 and Formula 2.1. Using the formula
dim Soln(ρ+End(R)) = dim Z(T ) from the end of Section 2.1 we find that in the first
case the dimension of the local solution space is one of {5, 7, 11} and using the for-
mulae of Section 2.2 we find that the irregularity is 20. In the second case we find
that the dimension of the solution space is 4 and the irregularity is 39. Apart from
these two special cases all elementary modules appearing are of the form

El(ρp,
α

u
,Rk)

with α ∈ C. In this setting we can compute the dimension of the local solution space
and its irregularity in the same way as we did for the two cases above. This yields
the following table of possible combinations for the local invariants at irregular
singularities.
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slopes dimensions dim Soln(E nd) irr(E nd)

1 4 5, 7, 9, 11, 13, 17 32, 36

1 6 7, 9, 11, 13, 15, 19 30, 38, 42

1
2 , 1 2, 2 7, 9, 11, 13, 15 29

1
2 , 1 2, 4 4, 6, 10 37, 39

1
2 , 1 4, 2 5, 7 30, 32

1
2 4 5, 7, 9, 11, 13 16, 18

1
2 6 4, 6, 10 15, 19, 21

1
3 6 3 12, 14

1
4 , 1 4, 2 4 27

1
6 6 2 7

3.2.2 Global Structure

Recall that the connection E is rigid if and only if rig (E ) = 2 where

rig (E ) = χ(P1, j!∗(E nd(E )))

is the index of rigidity. If we denote by x1, ..., xr the singularities of E , the index of
rigidity is given by

rig (E ) = (2− r)49−
r∑
i=1

irrxi(E nd(E )) +
r∑
i=1

dimC Solnxi(E nd(E )).

Lemma 3.2.5. Let E be an irreducible rigid G2-connection on U ⊂ P1 with singula-
rities x1, ..., xr of slopes at most 1. Then 2 ≤ r ≤ 4.

Proof. By Table 1 in [DR2] and by the table above we find that in any case

dimC Solnxi(E nd(E )) ≤ 29.

As E is rigid, we have

2 = (2− r)49−
r∑
i=1

irrxi(E nd(E )) +
r∑
i=1

dimC Solnxi(E nd(E )).
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Therefore we get

2 + (r − 2)49 +

r∑
i=1

irrxi(E nd(E )) ≤ 29r

and as irrxi(E nd(E )) ≥ 0 we conclude 20r − 96 ≤ 0. This cannot hold for r ≥ 5. If
r = 1, the first equality above shows irrx1 ≥ 47 which again cannot hold by the table
above.

Let E be an irreducible rigid G2-connection with singularities x1, ..., xr where due
to the above Lemma r ∈ {2, 3, 4}. We define R(E ) to be the tuple

(s1, ..., sr, z1, ..., zr) ∈ Z2r
≥0

with si = irrxi(E nd(E )) and zi = dimC Solnxi(E nd(E )). The necessary condition on
R(E ) for E to be rigid is

2 = (2− r)49−
r∑
i=1

si +

r∑
i=1

zi.

This condition provides the following list of possible invariants in the cases r = 2

and r = 3. Additionally, one finds that no cases with r = 4 appear.

r = 3

(0, 0, 16, 25, 29, 13)

(0, 0, 16, 29, 29, 9)

(0, 0, 18, 29, 29, 11)

r = 2

(0, 7, 7, 2) (0, 18, 13, 7) (0, 30, 25, 7)

(0, 14, 13, 3) (0, 19, 11, 10) (0, 32, 25, 9)

(0, 15, 7, 10) (0, 19, 17, 4) (0, 32, 29, 5)

(0, 15, 11, 6) (0, 21, 13, 10) (0, 36, 25, 13)

(0, 15, 13, 4) (0, 21, 17, 6) (0, 36, 29, 9)

(0, 16, 7, 11) (0, 21, 19, 4) (0, 37, 29, 10)

(0, 16, 9, 9) (0, 27, 25, 4) (0, 38, 25, 15)

(0, 16, 11, 7) (0, 30, 13, 19) (0, 38, 29, 11)

(0, 16, 13, 5) (0, 30, 17, 15) (0, 42, 29, 15)

(0, 18, 9, 11) (0, 30, 19, 13)
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Note that the two special cases (S1) and (S2) with q = 2 do not appear. We can
therefore classify the appearing elementary modules El(ρp, ϕ,R) by their ramifica-
tion degree p, the coefficient α of ϕ = α

u and the monodromy of R. Now we can
actually deal with the case r = 3 by a case-by-case analysis using the Katz-Arinkin
algorithm.

(0,0,16,25,29,13). According to Table 3.2.1, the formal type at the irregular sin-
gularity has a 4-dimensional part of slope 1/2 and a 3-dimensional regular part. In
this case, the only possibility for the formal type is

El(ρ2, α/u,±E2)⊕ (±E3).

Since G2 ⊂ SO(7) this formal type has to have a trivial determinant. By 2.2.2, the
regular part has to be (E3). Assume there exists a connection E on P1 − {0, 1,∞}
with the above formal type at∞ and local monodromy (−E4, E3) and (J(2),J(2), E3)

at 0 and 1 respectively. The formal type at infinity of the Fourier transform of this
connection will be of the form

(−E4)⊕ E
1
u ⊕ E

1
u ,

hence the Fourier transform has rank 6. The formal type at 0 will be of the form

El(ρ1, α̂/u,±E2)⊕ J(2)3

which has rank 8. This is a contradiction in both cases and we can exclude this case.
(0,0,16,29,29,9). The formal type has to be of the form

El(ρ2, α/u,±E2)⊕ (1,J(2))

or of the form
El(ρ2, α/u,±E2)⊕ (−E2, 1)

and the same argument as above rules out both of these cases.
(0,0,18,29,29,11). In this case the formal type at the irregular singularity is of

the form
El(ρ2, α/u,±1)⊕ El(ρ2, β/u,±1)⊕ (E3)

with α 6= β,−β and we can again apply the same reasoning as in the first case.
We can therefore focus on the case r = 2. A more thorough analysis of the shape

of the elementary modules in question (applying the various criteria used up until
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now) shows that actually there are cases in which the irregularity s2 does not oc-
cur with the local solution dimension z2. After ruling these out we’re left with the
following list of tuples R(E ).

r = 2

(0, 7, 7, 2) (0, 16, 13, 5) (0, 32, 25, 9)

(0, 14, 13, 3) (0, 18, 9, 11) (0, 32, 29, 5)

(0, 15, 7, 10) (0, 18, 13, 7) (0, 36, 25, 13)

(0, 15, 11, 6) (0, 19, 17, 4) (0, 36, 29, 9)

(0, 15, 13, 4) (0, 21, 19, 4) (0, 37, 29, 10)

(0, 16, 7, 11) (0, 27, 25, 4) (0, 38, 29, 11)

(0, 16, 9, 9) (0, 30, 13, 19)

(0, 16, 11, 7) (0, 30, 25, 7)

We would like to rule out further cases by computing the formal monodromy of
the irregular formal type. For its definition in the general setting we refer to [Mi,
Section 1]. We will describe how to compute the formal monodromy of an elementary
connection El(ρ, ϕ,R) where ρ has degree p and R is a regular connection. We can
choose a connection R1/p such that ρ+R1/p ∼= R (this boils down to choosing a p-th
root of the monodromy associated to R). Now

El(ρ, ϕ,R) = ρ+(E ϕ ⊗ ρ+R1/p) ∼= ρ+E ϕ ⊗R1/p

by the projection formula. Therefore by Proposition 2.2.2, 5, the differential equati-
on associated to this elementary module has a formal solution of the form

Y (t) = xLeQ(t)

where x = tp, Q(t) = diag(ϕ(t), ϕ(ζpt), ..., ϕ(ζp−1
p t)) for a primitive p-th root of unity

ζp and L ∈ Matn(C). The formal monodromy M is defined such that YM is the so-
lution obtained by formal counter-clockwise continuation of Y around 0, see [vdPS,
Chapter 3].

In the special case that ϕ(t) = α/t and R is of rank one and corresponds to the
monodromy λ, the formal monodromy is given as follows. Let λ1/p be a p-th root of λ
and choose µ such that exp(2πiµ) = λ1/p. The formal solution from above takes the
form

Y (t) = xµeQ(t)
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and the action of the formal monodromy sends Y (t) to λ1/pxµeQ̃(t) where

Q̃(t) = diag(ϕ(ζpt), ϕ(ζ2
p t), ..., ϕ(ζp−1

p t), ϕ(t)).

Therefore in addition to multiplication by λ1/p the formal monodromy permutes
the basis of the solution space, i.e. M = λ1/pPp where Pp denotes as before the
cyclic permutation matrix. We will compute one example to show how to apply this
discussion.

(0,16,9,9). The formal type at the irregular singularity has to be of the form

El(ρ2, α,R)⊕ (J(2), 1)

or of the form
El(ρ2, α,R)⊕ (−E2, 1)

where the connection R corresponds to either E2 or −E2. In the first case we find
that by the above discussion the formal monodromy is of the form (E2,−E2,J(2), 1)

or of the form (iE2,−iE2,J(2), 1) both of which do not lie inG2(C). In the second case
suppose that there exists a connection E on Gm with the above formal type at ∞.
The possibilities for the monodromy at 0 are (−J(3),J(3),−1), (iJ(2),−iJ(2),−E2, 1)

or (x,−1, ,−x, 1,−x−1,−1, x−1) where x4 6= 1. In all these cases we compute

rk(F (E ⊗L )) = 5

where L is the rank one system with monodromy −1 at 0 and ∞. But the formal
type at 0 of F (E ⊗L ) would be of rank 7. Therefore this case cannot occur.

All cases apart from the ones in the following list can be excluded by a combina-
tion of all the criteria we’ve used so far. We obtain constraints on the formal type at
∞ and can apply the Katz-Arinkin algorithm to obtain contradictions.

r = 2

(0, 7, 7, 2)

(0, 14, 13, 3)

(0, 19, 17, 4)

(0, 21, 19, 4)

Note that it might not suffice to simply apply one operation and compute the rank.
We give an example of a case in which the computations are more complicated.
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(0,38,29,11). The monodromy at 0 is (J(2),J(2), E3) and the formal type at ∞
has to be of the form

El(ρ1, α, λE2)⊕ El(ρ1,−α, λ−1E2)⊕ El(ρ1, 2α, µ)⊕ El(ρ1,−2α, µ−1)⊕ (1).

Suppose there exists an irreducible connection E on Gm with this formal type. We
will apply Fourier transforms, twists and middle convolution to the connection E to
arrive at a contradiction.

Recall that F denotes the Fourier transform of connections and that MCχ is the
middle convolution with respect to the Kummer sheaf Kχ. Let α1, ..., αr ∈ C∗ such
that α1 · ... · αr = 1. We denote by L(α1,...,αr+1) the rank one connection on P1 −
{x1, ..., xr}with monodromy αi at xi. For ease of notation we will write (α1, ..., αr)⊗−
for the twist L(α1,...,αr+1) ⊗−.

We compute the change of local data in the following scheme in which we write
the operation used in the first column and the formal type at the singularities in
the other columns.

The way the data changes is given by the explicit stationary phase formula 3.1.3
and Lemma 3.1.4. The i-th line is the result of applying the operation in the (i− 1)-
th line to the system in the (i − 1)-th line. Writing − in a column of a singularity
means that this point is not singular.

0 α −α 2α −2α ∞

F (J(2),J(2), E3) − − − −
El(u, α, λE2)⊕ El(u,−α, λ−1E2)

⊕El(u, 2α, µ)⊕ El(u,−2α, µ−1)⊕ (1)

(1, λ−1, λ, 1, µ, µ−1)⊗− J(2) λE2 λ−1E2 (µ, 1) (µ−1, 1) E2

MCµ−1 J(2) − − (µ, 1) (1, µ) µ−1E2

µ−1 − − J(2) J(2) µ

In the last row we obtain a contradiction as the rank of the system is 1, but its
monodromy at 2α resp. −2α is J(2).

In the next section we will construct irreducible rigid G2-connections in the four
cases that are left which leads to the proof of the complete classification theorem
for irreducible rigid irregular G2-connections of slope at most 1.
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3.3 Classification

To state our main result we will use the following notation. Similarly to the notation
used before we will write El(p, α,M) for the elementary module ρp,+(E

α
u ⊗R) where

R is the connection on SpecC((u)) with monodromy M .

Theorem 3.3.1. Let α1, α2, λ, x, y, z ∈ C∗ such that λ2 6= 1, α1 6= ±α2, z
4 6= 1 and

such that x, y, xy and their inverses are pairwise different and let ε be a primitive
third root of unity. Every formal type occuring in the following list is exhibited by
some irreducible rigid connection of rank 7 on Gm with differential Galois group G2.

0 ∞

(J(3),J(3), 1)
El(2, α1, (λ, λ

−1))

⊕El(2, 2α1, 1)⊕ (−1)

(−J(2),−J(2), E3)
El(2, α1, (λ, λ

−1))

⊕El(2, 2α1, 1)⊕ (−1)

(xE2, x
−1E2, E3)

El(2, α1, (λ, λ
−1))

⊕El(2, 2α1, 1)⊕ (−1)

(J(3),J(2),J(2))
El(2, α1, 1)⊕ El(2, α2, 1)

⊕El(2, α1 + α2, 1)⊕ (−1)

(iE2,−iE2,−E2, 1)
El(3, α1, 1)

⊕El(3,−α1, 1)⊕ (1)

J(7) El(6, α1, 1)⊕ (−1)

(εJ(3), ε−1J(3), 1) El(6, α1, 1)⊕ (−1)

(zJ(2), z−1J(2), z2, z−2, 1) El(6, α1, 1)⊕ (−1)

(xJ(2), x−1J(2),J(3)) El(6, α1, 1)⊕ (−1)

(x, y, xy, (xy)−1, y−1, x−1, 1) El(6, α1, 1)⊕ (−1)

Conversely, the above list exhausts all possible formal types of irreducible rigid irre-
gular G2-connections on open subsets of P1 of slopes at most 1.
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Proof. We give the construction for the different cases. When varying the mon-
odromy at zero in the same case, the construction is essentially the same up to
twists with rank one systems. We will use the following notations. Denote by E1,j

for j = 1, 2, 3 the first three families, by E2 the fourth family, by E3 the fifth fami-
ly and by E4,j for j = 1, ..., 5 the final five families. Let G denote any operation on
connections. We write G k, k ∈ Z>0, for its k-fold iteration.
Construction of E1,j . Consider the connection

L1,1 := L(λ−1,−λ,λ−1,−λ)

on P1 − {0, 1
4α

2
1, α

2
1,∞} and the Möbius transform φ : P1 → P1, z 7→ 1

z . Recall that F

denotes the Fourier transform of connections. Our claim is that

E1,1 := F (φ∗(F ((1,−λ−1, 1,−λ)⊗MC−λ(L1,1))))

has the formal type (J(3),J(3), 1) at 0 and

El(2, α1, (λ, λ
−1))⊕ El(2, 2α1, 1)⊕ (−1)

at ∞. Similar to before we compute the change of local data under the operations
above in the following scheme.

0 1
4α

2
1 α2

1 ∞

MC−λ λ−1 −λ λ−1 −λ

(1,−λ−1, 1,−λ)⊗− (−1, 1) (λ2, 1) (−1, 1) −λ−1E2

F (−1, 1) (−λ,−λ−1) (−1, 1) E2

φ∗ (J(2),J(2)) − −
El(u, α

2
1

4u , (−λ,−λ
−1))

⊕El(u, α
2
1
u ,−1)⊕ (−1)

F
El(u, α

2
1

4u , (−λ,−λ
−1))

⊕El(u, α
2
1
u ,−1)⊕ (−1)

− − (J(2),J(2))

(J(3),J(3), 1) − −
El( 4

α2
1
u2,

α2
1

2u , (λ, λ
−1))

⊕El( 1
α2
1
u2,

2α2
1
u , 1)⊕ (−1)

By Proposition 2.2.2, 4, the connection

El(
4

α2
1

u2,
α2

1

2u
, (λ, λ−1))⊕ El(

1

α2
1

u2,
2α2

1

u
, 1)⊕ (−1)

is isomorphic to
El(2, α1, (λ, λ

−1))⊕ El(2, 2α1, 1)⊕ (−1).
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This proves existence of the first type of connection. The same type of calculation
shows that the connection

E1,2 := F
(
(−1,−1)⊗ φ∗

(
F
(
(1, λ−1, 1, λ)⊗MCλ

(
L(λ−1,λ,λ−1,λ)

))))
exhibits the second formal type and the connection

E1,3 := F
(
(x, x−1)⊗ φ∗

(
F
(
(1,−λ−1x−1, 1,−λx)⊗MC−λx−1

(
L(λ−1,−λx,λ−1,−λx−1)

))))
exhibits the third formal type.
Construction of E2. For the second formal type at infinity, consider the connection
L2 := L(−1,−1,−1,−1,1) on P1 − {0, 1

4α
2
1,

1
4α

2
2,

1
4(α1 + α2)2,∞}. The connection

E2 := F (φ∗F (L2)))

has the desired formal type (J(3),J(2),J(2)) at 0 and

El(2, α1, 1)⊕ El(2, α2, 1)⊕ El(2, α1 + α2, 1)⊕ (−1)

at∞. The computation works the same way as before.
Construction of E3. For the third type consider the connection

L3 := L(−i,−λ,−λ−1,i)

on P1 − {0, 1
27α

3
1,− 1

27α
3
1,∞}. The system

E4 := F (φ∗((−1,−1)⊗F ((i,−i)⊗ φ∗(F ((i, 1, 1,−i)⊗MCi(L3))))))

has the required formal type.
Construction of E4,j . For the final type we consider P1 − {0, 1

66
α6

1,∞}. The formal
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types are then exhibited (in the order that they appear in the list) by the connections

E4,1 = F
(
(φ∗ ◦F )5

(
L(−1,−1,1)

))
E4,2 = F

(
(ε, ε−1)⊗ (φ∗ ◦F )3

(
(ε−2, ε)⊗ (φ∗ ◦F )2

(
L(−ε,−ε2,1)

)))
,

E4,3 = F
(
(φ∗ ◦F )2

(
(z, z−1)⊗ (φ∗ ◦F )2

(
(z−1, z2)⊗ (φ∗ ◦F )

(
L(−z,−z−1,1)

))))
,

E4,4 = F
(
(φ∗ ◦F )2

(
(x, x−1)⊗ (φ∗ ◦F )2

(
(x−2, x2)⊗ (φ∗ ◦F )

(
L(−x,−x−1,1)

))))
,

E4,5 = F ((x, x−1)⊗ (φ∗ ◦F )((x−2, x2)⊗ (φ∗ ◦F )

((xy−1, x−1y)⊗ (φ∗ ◦F )((y−2, y2)⊗ (φ∗ ◦F )

((x, x−1)⊗ (φ∗ ◦F )(L(−(xy)−1,−(xy)−1,x2y2)))))).

The differential Galois groups. We compute the differential Galois group G of
the above types using an argument of Katz from [Ka5, §4.1.]. Let E1 := E1,1 and
E4 := E4,1. The following proof works the same for all E1,j , j = 1, 2, 3. Note that all
formal types are self-dual. Thus for i = 1, ..., 4 we have that

Ψx(Ei) ∼= Ψx(E ∗i )

for x = 0,∞ and by rigidity we get Ei ∼= E ∗i , i.e. all the above systems are globally
self-dual. In addition the determinants are trivial meaning that actuallyG ⊂ SO(7).
We will focus first on the cases i = 1, 2, 3. Let G0 denote the identity component of
G. By the proof of [Ka7, 25.2] there are now only three possibilities for G0 which are
SO(7), G2 or SL(2)/± 1. Since all these groups are their own normalizers in SO(7)

in all cases we find that G = G0. We now only have to exclude the cases G = SO(7)

and G = SL(2)/± 1. First suppose that G = SL(2)/± 1.
The group SL(2)/± 1 ∼= SO(3) admits a faithful 3-dimensional representation

ρ : SO(3)→ GL(V ).

Let ρ(Ei) be the connection associated to the representation

πdiff
1 (Gm, 1)→ SO(3)→ GL(V ).

The connection ρ(Ei) is a 3-dimensional irreducible connection with slopes ≤ 1/2

at ∞ and which is regular singular at 0. We have irr(ρ(Ei)) ≤ 3/2 and so either
irr∞(ρ(Ei)) = 0 or irr∞(ρ(Ei))) = 1. In the first case we have

rig (ρ(Ei)) = dim(E nd(ρ(Ei))
I0) + dim(E nd(ρ(Ei))

I∞) ≥ 6
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which is a contradiction (recall that for any irreducible connection E on some open
subset U of P1 we always have rig (E ) ≤ 2).
In the second case, the formal type at∞ of ρ(Ei) has to be of the form

El(2, α, 1)⊕ (−1)

and we compute
rig (ρ(Ei)) = dim End(ρ(Ei))

I0 + 2− 1 ≥ 4

which again yields a contradiction.
Now we’re left with the cases G = SO(7) and G = G2. Recall that the third exterior
power of the standard representation of SO(7) is irreducible, so it suffices to prove
that G has a non-zero invariant in the third exterior power of its 7-dimensional
standard representation. This corresponds to the alternating Dickson trilinear form
which is stabilized by G2. In our case this amounts to finding horizontal sections of
Λ3Ei for i = 1, 2, 3, i.e. we have to show that H0(Gm,Λ

3Ei) 6= 0 or equivalently by
duality that H2

c (Gm,Λ
3Ei) 6= 0. For this it suffices to prove that

χ(P1, j!∗Λ
3Ei) > 0.

Recall that

χ(P1, j!∗Λ
3Ei) = dim(Λ3Ei)

I0 + dim(Λ3Ei)
I∞ − irr∞(Λ3Ei)

as 0 is a regular singularity. These invariants can be computed using Sabbah’s for-
mula for the determinant of elementary connections in Proposition 2.2.2, 2. For
i = 1, we have

Λ3(El(2, α1, λ)⊕ El(2, α1, λ
−1)⊕ (El(2, 2α1, 1)⊕ (−1))

= (El(2, α1, λ)⊗ det El(2, α1, λ
−1))⊕ (det El(2, α1, λ)⊗ El(2, α1, λ

−1))

⊕ (det El(2, α1, λ
−1)⊕ (El(2, α1, λ)⊗ El(2, α1, λ

−1))⊕ det El(2, α1, λ))

⊗ ((−1)⊕ El(2, 2α1, 1))

⊕ (El(2, α1, λ
−1)⊕ El(2, α1, λ))⊗ ((El(2, 2α1, 1)⊗ (−1))⊕ det(El(2, 2α1, 1))

⊕ (det El(2, 2α1, 1)⊗ (−1))

As the slopes in our case are of the form 1/p with p > 1 all occuring determinant
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connections are regular. Therefore the irregularity of this connection is 13. Since

det El(2, 2α1, 1)⊗ (−1) ∼= (−1)⊗ (−1) ∼= (1)

by Proposition 2.2.2, 2 we also have dim(Λ3E1)I∞ ≥ 1. Finally we find that

χ(P1, j!∗Λ
3E1) = 13 + dim(Λ3E1)I∞ − 13 ≥ 1.

The second and thirds cases are completely analogous and we have

χ(P1, j!∗Λ
3E2) = 13 + 4− 15 = 2

and
χ(P1, j!∗Λ

3E3) = 9 + dim(Λ3E3)I∞ − irr∞(Λ3E3) ≥ 9 + 2− 10 = 1.

Therefore for i = 1, 2 we have Gdiff(Ei) = G2.
For the systems with formal type El(6, α1, 1) ⊕ (−1) at ∞ note that the systems

in question have Euler characteristic −1 on Gm and therefore are hypergeometric
by [Ka5, Theorem 3.7.1]. By [Ka5, 4.1.] all these systems have differential Galois
group G2.
The above list exhausts all cases. Let E be an irreducible irregular rigid G2-
connection, i.e. at some singularity the irregularity of E is positive. By the rough
classification of Section 3.2, the only possibilities for R(E ) are

(0, 7, 7, 2),

(0, 14, 13, 3),

(0, 19, 17, 4) or

(0, 21, 19, 4).

Applying the same techniques as before, the only formal types left are those appea-
ring in the above list together with one additional formal type which is given by the
following table (here ε denotes a primitive third root of unity).

0 ∞

(εE3, ε
−1E3, 1)

El(2, α1, 1)⊕ El(2, α2, 1)

⊕El(2, α1 + α2, 1)⊕ (−1)
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The connection

E := F ((ε, ε−1)⊗ φ∗(F ((ε−1, 1, 1, 1, ε)⊗MCε−1(L5))))

constructed from the rank one sheaf L5 := L(−ε,−1,−1,−1,ε−1) on

P1 − {0, 1

4
α2

1,
1

4
α2

2,
1

4
(α1 + α2)2,∞}

has the above formal type. We will prove by contradiction that Gdiff(E ) is not con-
tained in G2. Therefore suppose the contrary, i.e. Gdiff(E ) ⊂ G2. As we have seen
before, the morphism

πdiff
1 (Gm, 1)→ GL7(C)

corresponding to E factors through G2(C). Denote by Ad the adjoint representation
Ad : G2 → g2. As E is rigid and irreducible by construction, we find that

H1(P1, j!∗Ad(E )) = 0

by [FG, Section 7]. We therefore have

0 = dimH1(P1, j!∗Ad(E )) = irr∞(Ad(E ))− dim Ad(E )I∞ − dim Ad(E )I0

and the same for the connection E2 we have constructed above. As the formal type
at∞ of E and E2 coincides, we find that

irr∞(Ad(E ))− dim Ad(E )I∞ = irr∞(Ad(E2))− dim Ad(E2)I∞

and in particular a necessary condition for both connections to have differential
Galois group G2 is

dim Ad(E )I0 = dim Ad(E2)I0 .

These invariants are precisely the centraliser dimension of the local monodromy
at 0 of the connections in question. By Table 4 in [DR2], dim Ad(E2)I0 = 6 and
dim Ad(E )I0 = 8 which yields a contradiction. Hence Gdiff(E ) is not contained in
G2, concluding the proof.

Let E4,5 be the final system in the theorem with x = ζ8 a primitive 8-th root of
unity and y = ζ2

8 and denote by [q] : Gm → Gm the morphism given by z 7→ zq. In
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this setting we find that
E3
∼= [2]∗E4,5.

To see this we compute the pullback of the formal types. At the regular singularity,
the pullback of the connection with monodromy (ζ8, ζ

2
8 , ζ

3
8 , ζ

5
8 , ζ

6
8 , ζ

7
8 , 1) has monodro-

my (iE2,−iE2,−E2, 1). The pullback of El(6, α1, 1) ⊕ (−1) is given due to [Sa, 2.5 &
2.6] as

El(3, α, 1)⊕ El(3, ζ5
6α, 1)⊕ (1) ∼= El(3, α, 1)⊕ El(3,−α, 1)⊕ (1),

since ζ5
6α = −ζ2

3α and we can multiply by ζ3 to get −α. By rigidity we get the desired
isomorphism E3

∼= [2]∗E4,5.
A similar analysis shows that systems in the second family E2 with formal type

El(2,−α1, 1)⊕ El(2, ζ5
6α1, 1)⊕ El(2, ζ4

6 , 1)⊕ (−1)

at∞ are pullbacks of the system E4,4, the second to last system of the theorem, with
x = ζ3 under the map [3] : Gm → Gm. Of course not every system in the family E2 is
of this form and if they are not, they cannot be pullbacks of hypergeometrics (these
would have to appear in the above list).
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4 Rigidity for (Wildly Ramified) `-adic
Local Systems

In this chapter we provide the necessary background for the study of rigid `-adic
local systems in positive characteristic. This includes the category of `-adic sheaves,
its derived category, perverse sheaves and vanishing and nearby cycles. We mostly
follow [KW] and [Fu2] for this exposition.

4.1 `-adic Local Systems

In this section we recall basic definitions and the setting we will define middle
convolution and Fourier transform in. From now on let k be either a finite field or
an algebraic closure of a finite field of characteristic p. We might further specify one
of the two when needed. All sheaves will be sheaves for the étale topology if not
further specified. Fix a prime ` 6= p and an algebraic closure Q` of Q`. Let X be a
scheme of finite type over k. Let R be either the valuation ring of a finite extension
of Q`, a finite extension of Q` or Q`. We denote by Sh(X,R) the abelian category of
constructible R-sheaves on X.

In the case that R is the valuation ring of a finite extension of Q`, an object of
Sh(X,R) is an inverse system (Fn) of étale sheaves on X such that Fn is a finite
constructible R/mn-module on X and

Fn = Fn+1 ⊗R/mn+1 R/mn

for all n ≥ 1. A constructible R-sheaf (Fn) is called lisse if in addition each Fn is
actually a locally constant sheaf of R/mn-modules.

If E is a finite extension of Q` with valuation ring R, Sh(X,E) is the Serre quo-
tient of Sh(X,R) by the thick subcategory Tors(X,R) of torsion sheaves. Here a
constructible R-sheaf is called torsion if multiplication by r is the zero map for so-
me r ∈ R. A constructible E-sheaf is lisse if there is an étale cover {Ui → X} such
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that
F |Ui ⊗R E ∼= Fi ⊗R E

for lisse R-sheaves Fi on Ui.
If R = Q` the category Sh(X,Q`) of Q`-sheaves (often also called `-adic sheaves)

on X is the inductive 2-limit taken over the categories Sh(X,E) for finite field ex-
tensions Q` ⊂ E ⊂ Q`. This means that objects in Sh(X,Q`) are direct systems
F = (FE). A Q`-sheaf is called lisse if it is of the form F ⊗E Q` where F is a lisse
E-sheaf.

Theorem 4.1.1 ([FK], Proposition A I.8). Let X be a connected scheme of finite
type over k, x̄ a geometric point of X. Let R be either the valuation ring of a finite
extension of Q`, a finite extension of Q` or Q`. The category of lisse R-sheaves on X

is isomorphic to the category of finitely generated continuous R-representations of
πét

1 (X, x̄), i.e. continuous homomorphisms

πét
1 (X, x̄)→ AutR(V )

for a finitely generated R-module V . The equivalence is exhibited by the functor F 7→
Fx̄.

It is for this reason that we will refer to lisse Q`-sheaves as `-adic local systems.
Let L be an `-adic local system on a connected scheme of finite type over an alge-
braically closed field k corresponding to the continuous representation

ρ : πét
1 (X, x̄)→ GLn(Q`).

Its monodromy group is the Zariski closure of the image of ρ inside GLn(Q`). As an
example we recall the construction of Kummer and Artin-Schreier sheaves.

Example 4.1.2. Let G be a connected commutative algebraic group scheme over k
and denote by F the p-th power Frobenius morphism F : G→ G. Then

F − idG : G→ G

is a finite étale Galois covering with Galois group G(Fp). Therefore there is a sur-
jection πét

1 (G, η̄) → G(Fp) where η̄ is the geometric generic point. We can define a
character of πét

1 (G, η̄) through the composition

πét
1 (G, η̄) � G(Fp)

χ−→ Q`
∗
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which by Theorem 4.1.1 corresponds to a lisse Q`-sheaf on G. More concretely, given
a character ψ : Fp → Q`, the Artin-Schreier sheaf Lψ is the sheaf corresponding to
the character

πét
1 (Ga, η̄) � Fp

ψ−→ Q`.

Let X be a scheme of finite type over k and f ∈ Γ(X,OX). This element f defines a
homomorphism

k[t]→ Γ(X,OX), t 7→ f

which in turn induces a morphism f : X → A1
k which we also denote by f . We will

write Lψ(f) = f∗Lψ and in this notation we have

Lψ(f1)⊗Lψ(f2)−1 ∼= Lψ(f1 − f2)

for f1 and f2 obtained in the same way as f . We will often work with the restriction
of an Artin-Schreier sheaf to Spec k((t)) and will abuse notation in writing Lψ for
the restriction as well. It will be clear from the context, whether we speak about
the restriction or not.

In addition we will also make use of the following construction. Denote by Q(k)

the set of positive integers N which are prime to p and such that k contains a
primitive N -th root of unity. The map [N ] : Gm → Gm defined by [N ](t) = tN is a
finite étale Galois cover with Galois group µN (k). The finite groups µN (k) form an
inverse system with respect to the maps

µN (k)→ µN ′(k), ζ 7→ ζN/N
′

for N ′|N , N ′, N ∈ Q(k). Hence we have an inverse system of extensions

1→ µN (k)→ Gm
[N ]−−→ Gm → 1

giving rise to an extension of Gm by lim←−N∈Q(k)
µN (k), cf. [Fu3, pp. 2]. For a con-

tinuous representation ρ : lim←−N∈Q(k)
µN (k) → GLn(Q`) we can push forward the

above extension by ρ−1 to obtain an `-adic local system Kρ on Gm of rank n, also
called Kummer sheaf associated to ρ.

Proposition 4.1.3 ([Fu2], Prop. 10.1.17.). Let f : X → Y be a compactifiable mor-
phism of finite type k-schemes and R the valuation ring of a finite extension of
Q` with maximal ideal m. Let F = (Fn) and G = (Gn) be R-sheaves on X and
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H = (Hn) be an R-sheaf on Y . We have the following functors of `-adic sheaves.

Rif∗ : Sh(X,R)→ Sh(Y,R), f∗(Fn) = (f∗Fn)

Rif! : Sh(X,R)→ Sh(Y,R), f!(Fn) = (f!Fn)

f∗ : Sh(Y,R)→ Sh(X,R), f∗(Gn) = (f∗Gn)

TorRi (−,−) : Sh(X,R)× Sh(X,R)→ Sh(X,R),

TorRi (F ,G ) = (TorR/m
n+1

i (Fn,Gn))

E xtiR(−,−) : Sh(X,R)× Sh(X,R)→ Sh(X,R),

E xtiR(F ,G ) = (E xtiR/mn+1(Fn,Gn)).

In particular these functors define the cohomology theory we will use. In the
special case of S = Spec (k) we actually get finitely generated R-modules

Hv(X,F ) = lim←−
n

Hv(X,Fn)

and similarly
Hv
c (X,F ) = lim←−

n

Hv
c (X,Fn),

the cohomology with compact supports.
In the case that k ist not algebraically closed let Gk := Gal(k̄|k) be the absolute

Galois group of k and χ : Gk → Q` be the cyclotomic character. Recall that for a
scheme X of finite type over k with geometric point x̄ we have the exact sequence

1→ πét
1 (X, x̄)→ πét

1 (X, x̄)→ Gal(k̄|k)→ 1

where k̄ is a separable closure of k and X is the base-change of X to k̄. The compo-
sition

πét
1 (X, x̄)→ Gal(k̄|k)

χ−→ Q`
∗

defines a Q`-representation of πét
1 (X, x̄). We denote the `-adic sheaf corresponding

to this representation by Q`(1). For any `-adic sheaf L on X and n ∈ Z we write
L (n) = L ⊗Q`(1)⊗n where Q`(1)⊗−1 denotes the dual of Q`(1). This is the n-th Tate
twist of L .

Suppose that k is finite with q elements and let σ be the Frobenius automorphism
of k̄, i.e. Gk is topologically generated by σ. In this case χ(σ) = q, so if V is a Gk-
representation, the Frobenius acts on its Tate twist V (d) by qdσ.
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4.2 The Derived Category and Perverse Sheaves

In the complex setting we work with holonomic D-modules on A1. The analogue in
this setting is the category of perverse sheaves. In order to speak about these we
introduce the derived category of `-adic sheaves.

Let Q` ⊂ E be a finite extension with valuation ring R and maximal ideal m.
Write Ri = R/mi and let Db

c(X,Ri) be the bounded derived category of étale sheaves
of Ri-modules with constructible cohomology sheaves. Additionally let Db

ctf (X,Ri)

be the full subcategory of Db
c(X,Ri) whose objects are complexes that are quasi-

isomorphic to bounded complexes all of whose components are flat Ri-sheaves. The
subscript ctf is an abbreviation for constructible and Tor-finite. The reason is the
following proposition.

Proposition 4.2.1 ([Fu2], Prop. 6.4.6.). Let X be a scheme of finite type over k and
F • a bounded complex of Ri-sheaves. The complex has finite Tor-dimension and
constructible cohomology sheaves if and only if there is a bounded complex of con-
structible flat Ri-sheaves G • which is quasi-isomorphic to F •.

We will define the category Db
c(X,R) as a limit of the categories Db

ctf (X,Ri). The
reason for this approach is that the category Sh(X,R) does not have enough in-
jectives. In order to have a sensible theory of derived functors we have to use this
different approach. Constructing this limit can be done in a more general setting
for a family of triangulated categories.

Let (Di, Ti+1)i≥0 be a family of triangulated categories equipped with exact func-
tors

Ti+1 : Di+1 → Di.

The inverse limit D of this family is defined in the following way. Objects are fami-
lies (Ki, ti) where Ki is an object of Di and ti is an isomorphism

Ti(Ki)
∼=−→ Ki−1.

Morphisms between (Ki, ti) and (Li, si) are families (fi : Ki → Li) such that

Ki−1
fi−1 // Li−1

Ti(Ki)

ti

OO

Ti(fi) // Ti(Li)

si

OO
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is commutative. Finally a distinguished triangle in D is a family

(Ki → Li →Mi → Ki[1])

of distinguished triangles where (Ki, ti), (Li, si) and (Mi, ri) are objects in Di and
the maps are morphisms in Di.

Proposition 4.2.2. In the above setting assume that for all i ≥ 0 and all K,L ∈ Di
we have that Hom(K,L) is finite. In this case D is a triangulated category.

Proof. We will prove only the following. Suppose we are given a diagram

(Ki) //

(fi)
��

(Li) //

(gi)
��

(Mi) //

(K ′i)
// (L′i)

// (M ′i)
//

of distinguished triangles. Then there exists a morphism (Mi)
hi−→ (M ′i) such that

the diagram commutes. The octahedral axiom is proven in a similar way and the
other axioms follow directly from the construction even without the finiteness ass-
umption. Define Si to be the set of morphisms hi : Mi →M ′i such that

Ki
//

fi
��

Li //

gi
��

Mi
//

hi
��

K ′i
// L′i

//M ′i
//

is a morphism of triangles in Di. This set is nonempty since the Di are triangulated.
We define a map πi : Si → Si−1 by defining πi(hi) to be the uniqe morphism in Si−1

which makes

Ti(Mi)
Ti(hi) //

∼=
��

Ti(M
′
i)

∼=
��

Mi−1
πi(hi) //M ′i−1

commutative. Now (Si, πi) is an inverse system of finite sets by our assumption and
therefore its limit is nonempty. Note that our assumption is crucial here as inverse
limits of infinite sets might be empty. Any element (hi) in the limit gives the desired
morphism (hi) : (Mi)→ (M ′i).

For a noetherian scheme X over k define Db
c(X,R) to be the limit of the categories
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Db
ctf (X,Ri) in the sense defined above.

Theorem 4.2.3 ([KW], Theorem 5.4). Let X be a scheme which is of finite type over
a field k of characteristic not equal to `. Let k′ be a finite separable extension of k,
K ′ be a separable closure of k′ and G = Gal(K ′|k′). If for every v the Galois coho-
mology group Hv(G,Z/`Z) (where G acts trivially on Z/`Z) is finite, then Db

c(X,R) is
triangulated.

In particular, if X is a scheme of finite type over a separably closed field or a finite
field both of characteristic not equal to ` then Db

c(X,R) is a triangulated category.
For a compactifiable morphism f : X → Y of finite type k-schemes derived functors
on the derived categories are defined in the natural way as limits, cf. also Theorem
4.1.3. The following theorem provides us with a full formalism of six operations.

Theorem 4.2.4 ([KW], Theorem 7.1). Let f : X → Y be a compactifiable morphism
of finite type k-schemes. The functor

Rf! : Db
c(X,R)→ Db

c(Y,R)

has a triangulated right adjoint functor

f ! : Db
c(Y,R)→ Db

c(X,R),

i.e. for all K ∈ Db
c(X,R) and L ∈ Db

c(Y,R) we have

Hom(K, f !(L)) = Hom(Rf!(K), L).

Therefore if f : X → Y is a compactifiable morphism of finite type k-schemes we
have the six exact functors

Rf∗,Rf! : Db
c(X,R)→ Db

c(Y,R)

f∗, f ! : Db
c(Y,R)→ Db

c(X,R)

−⊗L −,RH om(−,−) : Db
c(X,R)×Db

c(X,R)→ Db
c(X,R).

In addition we have the shift operator [−] given by K[d]i = Ki+d. Recall that by
definition we have RH om(K[n], L[m]) = RH om(K,L)[m−n]. All the constructions
we made so far for Db

c(X,R) carry over to the category Db
c(X,Q`) which is obtained
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in a similar way as Sh(X,Q`) by localizing Db
c(X,R) at torsion sheaves and then

taking the limit over finite extensions of Q`.
To speak about duality we introduce the following notion. Let X be a k-scheme of

finite type with structural morphism f : X → Spec (k). The dualizing complex of X
is

ωX = f !(Q`) ∈ Db
c(X,Q`).

For K• ∈ Db
c(X,Q`) its dual is defined to be

D(K) = RH om(K,ωX).

Example 4.2.5. Let f : X → S be a smooth compactifiable morphism of finite type
between schemes over k of constant fiber dimension d. Then f !(−) = f∗(−)[2d](d),
cf. [KW, II.8]. Specializing further to the case of S = Spec k we find that

ωX = f !Q` = Q`[2d](d).

Theorem 4.2.6 ([KW] Corollary 7.3). Let X → S be a morphism of finite type k-
schemes and K ∈ Db

c(X,Q`). There is a canonical isomorphism

Rf∗(D(K)) = D(Rf!(K))

in Db
c(Spec k,Q`).

Theorem 4.2.7 ([KW] Thm 7.4). In the above setting the natural map

K → D(DK)

is a canonical isomorphism, i.e.
D ◦D = id

and the functor D defines an anti-equivalence

D : Db
c(X,Q`)→ Db

c(X,Q`).

Our aim is to obtain the category of perverse sheaves as heart of a t-structure in
Db
c(X,Q`). First note that Db

c(X,Q`) behaves like the derived category of an abelian

58



category. The standard t-structure on Db
c(X,Q`) is defined by

K ∈ D≤0
c ⇔ H i(K) = 0∀i > 0,

K ∈ D≥0
c ⇔ H i(K) = 0∀i < 0.

Its heart Db
c(X,Q`)

≤0 ∩Db
c(X,Q`)

≥0 is equivalent to Sh(X,Q`) via the functor

K 7→H 0(K).

Considering Sh(X,Q`) as the subcategory of `-adic sheaves concentrated in degree
0 inside Db

c(X,Q`) we find that it is not stable by duality.
The abelian category Perv(X) of perverse sheaves inside Db

c(X,Q`) is defined as
the heart of the perverse t-structure. It is defined by

K ∈ pD≤0
c ⇔ dim suppH −i(K) ≤ i ∀i ∈ Z,

K ∈ pD≥0
c ⇔ dim suppH −i(DK) ≤ i ∀i ∈ Z.

The category Perv(X) is stable under duality by definition and therefore the duality
functor

D : Perv(X)→ Perv(X)

defines an auto-equivalence. We sometimes say that an object K in Db
c(X,Q`) is

semi-perverse if dim suppH −i(K) ≤ i ∀i ∈ Z, i.e. K is perverse if and only if K and
DK are semi-perverse.

To prove that this is actually a t-structure one proceeds by induction on the di-
mension of X and by gluing t-structures on an open subscheme and its complement,
cf. [KW, III.3]. The following proposition shows that this reduces the proof to the
case of a smooth irreducible scheme X.

Proposition 4.2.8 ([KW], Prop. 2.1). Let X be a smooth irreducible scheme of di-
mension d and let K ∈ Db

c(X,Q`) be a complex with all cohomology sheaves lisse. In
this case we have

H i(DK) ∼= H −i−2d(K)∨(d).

If K is any complex in Db
c(X,Q`), there exists an open dense essentially smooth sub-

scheme U ⊂ X such that K|U is a complex with lisse cohomology sheaves on U .
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Recall that in the complex setting when working with D-modules there is a simi-
lar property. For any D-module M on an irreducible variety X over C there is an
open subset U ⊂ X such that M |U is actually a connection over U .

Example 4.2.9. Suppose F is a lisse sheaf on X which is smooth over k and equi-
dimensional of dimension d. Then the complex K = F [d] concentrated in degree −d
is perverse. Indeed H −d(K) = F and H −i(K) = 0 for i 6= d, so K is semi-perverse.
Since the dualizing complex is Q`[2d](d) we have

DK = RH om(F [d],Q`[2d](d)) = RH om(F ,Q`)[d](d) = F∨[d](d).

This is again a lisse sheaf placed in degree −d so the perversity condition for K is
satisfied.

More generally, note that the support of a non-zero lisse sheaf on X as above
has dimension d. Hence for a complex K with lisse cohomology sheaves the semi-
perversity condition says that H i(K) = 0 for all i > −d. Using the above proposition
we find that semi-perversity for DK means H −i−2d(K)∨(d) = 0 for i > −d and
hence H i(K) = 0 for i < −d. Therefore the complex K is perverse if and only if
K is quasi-isomorphic to a complex concentrated in degree −d. In the case of lisse
complexes we can therefore think of perverse sheaves as a shift of lisse sheaves.

Theorem 4.2.10 ([BBD], Thm 4.3.1). In this setting, the category Perv(X) is artini-
an and noetherian, i.e. every object is of finite length.

Proposition 4.2.11 ([Ka5], 2.3.1). Let X and Y be separated schemes of finite type
over k and f : X → Y a morphism.

(i) If f is affine, Rf∗ preserves semi-perversity.
(ii) If f is quasi-finite, Rf! preserves semi-perversity.

(iii) If f is affine and quasi-finite, both Rf∗ and Rf! preserve perversity.
(iv) If the geometric fibers of f have dimension d the functor f∗(−)[d] preserves per-

versity.

Let X be as before and j : Y ↪→ X an affine locally closed subscheme. The inclusi-
on j is affine and quasi-finite, hence for any perverse sheaf K on Y both Rf∗ and f!

are exact functors preserving perversity. We define the middle extension of K from
Y to X as

j!∗(K) := im (j!(K)→ Rj∗(K)).
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Example 4.2.12. Let X be a smooth curve over k, j : U ↪→ X an open dense subset
and F an `-adic local ystem on U . We saw before that F [1] is a perverse sheaf on
U . Its middle extension is

j!∗(F [1]) = j∗F [1].

For this reason we will sometimes refer to sheaves of the form j∗F as middle ex-
tension sheaves, cf. [KW, III. 5].

We will see shortly that the middle extension provides a way of extending a lisse
sheaf in such a way that it does not have subsheaves or quotients supported outside
its lisse locus.

Proposition 4.2.13 ([Ka5], 2.3.4). Let S be a simple perverse sheaf onX. Then there
is an affine locally closed subscheme Y of X and an irreducible lisse sheaf F on Y

such that S = j!∗(F [dimY ]).

In the case that X is of dimension one this means the following.

Corollary 4.2.14. Let X be a geometrically connected smooth curve over k. Any
simple perverse sheaf S on X is of one of the following two types:

(i) The sheaf S is punctual, i.e. there is a closed point x → X and an irreducible
representation F of Gal(k̄|k(x)) such that S = x∗F .

(ii) There is an open subset j : U ↪→ X and an irreducible lisse sheaf F on U , i.e.
an irreducible representation of πét

1 (U, ū) such that S = (j∗F )[1].

If k is separably closed the only possibility in the first case is the delta sheaf
δx = x∗Q`.

Corollary 4.2.15 ([Ka6], (2.3.6)). Let X be a geometrically connected smooth cur-
ve over k. An object K in Db

c(X,Q`) is perverse if and only if H 0(K) is punctual,
H −1(K) has no nonzero punctual sections and H i(K) = 0 for i 6= 0,−1.

We will mostly be concerned with simple perverse sheaves on a curve of the form
j∗L [1] for an irreducible `-adic local system L on an open subset. To study singu-
larities of perverse sheaves we introduce the notion of nearby and vanishing cycles.

A (strictly local) trait S is a scheme which is isomorphic to the spectrum of a
(strictly) henselian discrete valuation ring. The strict henselization of S = SpecR
with respect to a geometric point s̄ lying over s is S̃ = Spec (Rhs) where Rhs is the
strict henselization of R with respect to the choice of separable closure given by s̄.
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Example 4.2.16. Let K be the function field of P1
k where k is the algebraic closure

of a finite field and x ∈ P1
k a closed point. The completion Kx of K with respect to

the valuation defined by x is a complete local ring with separably closed residue
field and hence is strictly henselian. Its spectrum is a strictly local trait admitting
a natural map

SpecKx → P1
k.

We think of this trait as a formal punctured disc around x.

Lemma 4.2.17. Let T be a strictly henselian trait with closed point i : t → T and
generic point j : η → T . Let F be a Q`-sheaf on η. Then j!F has no non-trivial
quotients supported at t and j∗F has no non-trivial subobjects supported at t.

Proof. Suppose H is a non-trivial quotient of j!L supported at t. Then H = i∗G is
a skyscraper sheaf with stalk a Q`-vector space. Now

Hom(j!F , i∗G ) = Hom(F , j!i∗G ) = Hom(F , j∗i∗G ) = 0

since j! = j∗ for open embeddings and restricting a sheaf supported at t to η is zero.
In particular H = 0. Now suppose H ′ is a non-zero subobject of j∗L supported at
t. We have j∗L = Dj!DL and applying duality DH ′ is a quotient supported at 0 of
j!DL . Therefore H ′ = 0 and we have proven the second statement.

Let S be a trait with closed point s, generic point η, strict henselization S̃ and η̃

the generic point of S̃. This provides the following diagram

η̄

��

// S̃

��

s̄oo

��
η // S s.oo

Let X be an S-scheme and consider the base-change of the above diagram over S
with X. This gives rise to the following commutative diagram.

Xη̄

p

��

j// X̃ = X ×S S̃

��

Xs̄
ioo

��
Xη

// X Xs.oo

Let Fη be an étale sheaf onXη and define Ψη(Fη) := i∗j∗Fη̄ where Fη̄ is the pull-back
of Fη to Xη̄. The nearby cycle functor is the derived functor RΨη = i∗Rj∗p

∗ from the
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derived category of étale sheaves on Xη to the derived category of étale sheaves on
Xs̄ with an action of Gal(η̄|η).

In the above situation let K be any bounded below complex of étale sheaves on X
and I an injective resolution of K, also bounded below. We then have

RΨη(Kη) = i∗j∗j
∗Ĩ

where Kη is the inverse image of K on Xη and Ĩ is the inverse image of I on X̃. We
have a natural adjunction map

Is̄ = i∗Ĩ → i∗j∗jĨ

and composing with Ks̄ → Is̄ we obtain a map

Ks̄ → i∗j∗j
∗Ĩ = RΨη(Kη).

We define RΦ(K) to be the mapping cone of this map, i.e. it fits into a distinguished
triangle

Ks̄ → RΨη(Kη)→ RΦ(K)→ .

This defines a functor RΦ from the bounded below derived category of sheaves on X
to the derived category of sheaves on Xs̄ with Gal(η̄|η)-action called the vanishing
cycle functor.

To illustrate these notions consider the following geometric situation. Suppose S
is a strictly henselian trait, f : X → S is proper and F is a torsion sheaf on X, cf.
[Ka4, pp. 127]. With the notation as before we have the following diagram

Xs
//

��

X

��

Xη̄
oo

��
s // S η̄oo

and we want to see that we can actually compute the cohomology of Fη̄ on Xη̄ using
nearby cycles. Since RΓ(Xη̄,−) ∼= RΓ(X,−) ◦ Rj∗ and RΓ(X,−) ∼= RΓ(S,−) ◦ Rf∗
by the Grothendieck spectral sequence, we find that

H i(Xη̄, Fη̄) ∼= H i(S,Rf∗Rj∗(Fη̄))
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by taking cohomology. Since S is strictly henselian, we have

H i(S,Rf∗Rj∗(Fη̄)) ∼= H i(s, i∗Rf∗Rj∗(Fη̄))

and proper base change yields the desired isomorphism

H i(Xη̄, Fη̄) ∼= H i(Xs,RΨη̄(Fη̄)).

Recall that we defined the vanishing cycles as the mapping cone of Fs → RΨη̄(Fη̄)

so there is an exact sequence in cohomology

...→ H i(Xs,Fs)→ H i(Xs,RΨη̄(Fη̄))→ H i(Xs,RΦ(F ))→ ...

which through the above identification yields specialization morphisms

H i(Xs,Fs)→ H i(Xη̄,Fη̄).

The vanishing cycles therefore measure the obstruction to the specialization mor-
phisms being isomorphisms.

Proposition 4.2.18 ([Fu2], Section 10.1). Let S be a trait, X a finite type S-scheme,
s the closed point of S and η the generic point. Furthermore let R be the valuation
ring of a finite extension of Q`. Let K = (Ki) be an object of Db

c(Xη, R) and L = (Li)

be an object of Db
c(X,R). Then

RΨη(K) := (RΨη(Ki))

is an object in Db
c(Xs̄, R) and

RΦ(L) = (RΦ(Li))

is also an object inDb
c(Xs̄, R). For a constructibleR-sheaf F = (Fi) onXη,RnΨη(F ) =

(RnΨη(Fi)) is a constructible R-sheaf on Xs̄ and for a constructible R-sheaf G on X,
RnΦ(G ) = (RnΨη(Fi)) is also a constructible R-sheaf on Xs̄. These notions extend to
the category Db

c(X,Q`).
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4.3 Rigid Local Systems and Ramification

From now on for the rest of this thesis let k be the algebraic closure of a finite field
of characteristic p if not specified otherwise. Let j : U ↪→ P1 be a non-empty open
subset of P1

k and L an `-adic local system on U . Write S = P1−U . We want to define
what it means for L to be rigid. Recall that a connection on an open subset of the
projective line over C is rigid if it is globally determined by the formal type at the
singularities. The analogue in this setting is the local monodromy of L . Viewing
the inertia Ix at x as the decomposition subgroup of the valuation of the function
field F of U corresponding to x we can think of Ix as a subgroup of GF , the absolute
Galois group of F . Under this identification Ix fixes the subfield of the separable
closure of F which is the composite of all extensions that are unramified outside x.

Lemma 4.3.1. In this setting we have

πét
1 (U, u) ∼= GF /N

where N is the normal subgroup generated by all inertia groups Iy with y ∈ U .

SinceN is the Galois group of the composite of all fields ramified only in S, for any
x ∈ S we have Ix∩N = {1} and hence Ix injects into πét

1 (U, u). The local monodromy
of ρ at x is ρx := ρ|Ix and we say that ρ is rigid if it is determined up to isomorphism
by the collection

{[ρx]}x∈S

of isomorphism classes of continuous local Galois representations.
As in the complex setting there is a way to identify rigid lisse `-adic local systems

through an invariant, the index of rigidity.

Definition 4.3.2. Let L be an irreducible `-adic local system on an open subset
j : U ↪→ P1. The index of rigidity of L is

rig (L ) := χ(P1, j∗E nd(L ))

where χ denotes the Euler-Poincaré characteristic. The sheaf L is cohomologically
rigid if rig (L ) = 2.

In order to be able to compute the index of rigidity using the Euler-Poincaré for-
mula as in the differential setting we need to introduce the notion of ramification of
the local monodromy and an invariant of it to study the wildness of the ramification.
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This will be the Swan conductor, an analogue of the irregularity in the differential
setting.

The inertia group at x is the absolute Galois group of the completion of F at the
valuation corresponding to x. This completion is (non-canonically) isomorphic to
K = k((t)). In the following we will study representations of I = Gal(Ksep|K) and
their ramification.

Let L|K be a finite extension of ramification index e, residue degree f and degree
n = ef . The extension is unramified if e = 1. Otherwise it is either tamely ramified
if (e, p) = 1 or wildly ramified if p divides e. We denote by Ktame the maximal ta-
mely ramified extension of K and by P its absolute Galois group. We have an exact
sequence

1→ P → I → Itame → 1

where Itame ∼= lim←−(n,p)=1
µn(k) is an inverse limit over n-th roots of unity in k for n

prime to p. This can be seen by noting that

Ktame =
⋃

(n,p)=1

k((t1/n)).

Lemma 4.3.3. The sequence

1→ P → I → I tame → 1

splits. In particular there is a subgroup H ⊂ I isomorphic to I tame.

Proof. The group Itame is the maximal pro-p′ quotient of I and P is the pro-p-Sylow
subgroup of I. Therefore the assertion follows from the profinite version of the
Schur-Zassenhaus Theorem [Wi, Prop. 2.3.3.].

Theorem 4.3.4 (Upper Numbering Filtration). There is a descending filtration I(x)

on I indexed by x ∈ R≥0 which has the following properties.
(i) Every subgroup I(x) is a normal subgroup of I,

(ii) the group I(0) is I itself,
(iii) the group P is the closure of

⋃
x>0 I

(x),
(iv)

⋂
x>0 I

(x) = {1} and
(v)

⋂
x>y>0 I

(x) = I(y).

The upper numbering filtration provides a way to obtain finer information about
the wild ramification than just the subgroup P . We have I ⊃ P ⊃ I(x) ⊃ I(y) for
y > x. We sketch how to obtain this filtration. For details see [Se, Ch. IV].

66



Let L|K be a finite Galois extension with Galois group G and ring of integers OL.
We have the lower numbering filtration

G = G−1 ⊃ G0 ⊃ G1 ⊃ ...

given by
Gi = {σ ∈ G | ∀b ∈ OL : νL(σ(b)− b) ≥ i+ 1}

for i ∈ Z≥−1 where νL denotes the extension of the valuation on K to L. For any real
number u ∈ [−1,∞) denote by due the smallest integer ≥ u and define Gu = Gdue.
For u ∈ [−1, 0) let [Gu : G0] = [G0 : Gu]−1 and define the function

ϕL|K(u) =

∫ u

0

1

[G0 : Gu]
dt.

This function is a homeomorphism of [−1,∞) onto itself and we define the upper
numbering filtration by GϕL|K(u) = Gu. The upper numbering filtration is compati-
ble with quotients in the sense that if N ⊂ G is a normal subgroup we have

(G/N)u ∼= GuN/N.

This allows us to define an upper numbering filtration on infinite extensions as an
inverse limit over finite extensions.

Theorem 4.3.5 (Slope Decomposition). Let ρ : I → GL(V ) be a continuous repre-
sentation of I with coefficients in Q`. There is a unique decomposition

V =
⊕
y∈Q≥0

V (y)

where only finitely many V (y) do not vanish. These y are called the slopes of V .
The number Sw(V ) =

∑
y∈Q≥0

y dimV (y) is called the Swan conductor of V and is a
non-negative integer.

Proof. The group P is a pro-p-group and since ` 6= p the restriction ρ|P factors
through a finite discrete quotient G of P . For x > 0 define subgroups G(x) ⊂ G by

G(x) = ρ(I(x))
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and subgroups G(x+) ⊂ G by

G(x+) =
⋃
y>x

ρ(I(y)).

Furthermore define
π(x) =

1

|G(x)|
∑

g∈G(x)

g

and analogously define π(x+) for the subgroup G(x+). The subgroups G(x) and
G(x+) are normal, hence π(x) and π(x+) are central idempotents in Q`[G]. One
checks that the central idempotents

{π(0+)} ∪ {π(x+)(1− π(x)) |x > 0}

are orthogonal, only finitely many of them are non-zero and that they sum to one.
Therefore they provide a decomposition of the Q`[G]-module V which is the requi-
red slope decomposition. The integrality of the Swan conductor is proven in [Ka3,
Proposition 1.9.] and I-stability of the V (y) in [Ka3, Lemma 1.8.].

Lemma 4.3.6 ([Ka3], 8.5.7.1.). Let V be an irreducible Q`-representation of I of slope
n prime to p. Then there is a unique a ∈ k∗ such that

V ⊗Lψ|Spec (k((t)))(at
−n)

has slope < n.

We will sometimes refer to this Lemma as the Slope Depression Lemma (Katz
calls it the Break Depression Lemma).

Recall that for any d such that gcd(d, p) = 1 there exists a unique normal subgroup
I(d) of I of finite index d which is the absolute Galois group of k((u)) where ud = t,
i.e. we adjoin a d-th root of t.

The Slope Depression Lemma will often be combined with the following Proposi-
tion.

Proposition 4.3.7 ([Ka3], 1.14.). Let V be an irreducible Q`-representation of I with
unique slope k/d. Assume that p does not divide d. Then

V ∼= IndII(d)χ

for a character χ of slope k of I(d).
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To see how restriction and induction of representations relate to pullbacks and
direct images of sheaves we have the following example.

Example 4.3.8. Let ρ(u) = ud for some d prime to p. Consider ρ as a map

ρ : k((t))→ k((u)), ρ(t) = ud.

Then this map defines a morphism Spec k((u))→ Spec k((t)) which in turn induces a
homomorphism of fundamental groups

ρ̃ : I(d)→ I

This homomorphism is described in the following way. Let

ρ : k((t))sep → k((u))sep

be a lift of ρ. Then ρ̃(σ) = ρ−1 ◦ σ ◦ ρ. Note that ρ(t) = ud = t = id(t), so actually
the identity map is a lift of ρ, and hence ρ induces the embedding I(d) ↪→ I. The-
refore given a representation ρ′ : I(d)→ GLn(Q`) corresponding to the sheaf L ′ on
Spec k((u)) the representation corresponding to ρ′∗Ld is IndII(d)ρ

′. For a representati-
on ρ : I → GLn(Q`) corresponding to L on Spec k((t)) we have that ρ∗L corresponds
to ResII(d)ρ.

Given an `-adic local system on U ⊂ P1
k, its Swan conductor at x is defined to be

Sw(ρx) and the set of slopes is the set of all slopes of local monodromies of L . We
will illustrate this concept in the following example.

Example 4.3.9. Let us compute the Swan conductor at ∞ of the Artin-Schreier
sheaf Lψ on A1. Recall that it is defined as the sheaf corresponding to the represen-
tation

πét
1 (A1, 0)

����

χ // Q`
∗

Fp

ψ
::

where Fp is the Galois group of the covering x 7→ xp − x. This cover is ramified
at ∞ and the restriction of the Artin-Schreier sheaf to a punctured disc around ∞
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corresponds to the representation

I

����

// Q`
∗

Fp

ψ
>>

with Fp the Galois group of the extension K ⊂ L,

L = K[U ]/(Up − U − t−1) ∼= K[X]/(Xp + tXp−1 − t).

Write A = k[[t]] which is the valuation ring of K. By [Se, Ch. I, Prop 17] the valua-
tion ring of L is given by A[X]/(Xp + tXp−1 − t) and its uniformizer is the image x
of X for which we have

xp = t(1− xp−1).

Since 1− xp−1 is a unit, the extension has ramification index p and hence is totally
wildly ramified. We want to compute the lower numbering filtration for the Galois
group G = Gal(L|K) = Fp of this extension. Denoting by u the image of U in the
quotient, the action of n ∈ Fp is given by u 7→ u+ n and this translates into σn(x) =
x

1+nx . We find that for all n ∈ F∗p we have

σn(x)− x = (− n

1 + nx
)x2

the first factor of which is a unit. Hence νL(σn(x)− x) = 2 and we obtain that

Fp = G−1 = G0 = G1 ⊃ G2 = 0.

Using ϕL|K(1 + εp) = 1 + ε we find that 1 is the unique value for which G1+ε = 0

is properly contained in G1 = Fp. Therefore by the proof of Theorem 4.3.5 the slope
decomposition of χ|I : I → Q`

∗ is χ = χ(1) and the Swan conductor of Lψ at∞ is 1.

Using this notion we have the Euler-Poincaré formula.

Proposition 4.3.10 ([Fu2], Corollary 10.2.7). Let L be an `-adic local system on
an open subset j : U ↪→ P1

k corresponding to the representation ρ of πét
1 (U, u), let

S = P1
k − U and s = #S. We have

χ(P1, j∗L ) = (2− s)rk(L )−
∑
x∈S

(
Sw(ρx)− dim(ρx)Ix

)
.
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Theorem 4.3.11. Any irreducible `-adic local system L on j : U ↪→ P1 which is
cohomologically rigid is physically rigid.

Proof. Suppose K is another `-adic local system whose local monodromy is isomor-
phic to that of L . The local monodromy of the sheaves E nd(L ) and H om(L ,K )

is then also isomorphic. By the Euler-Poincaré formula which depends only on the
local monodromy and the ranks of the systems in question we find that

2 = rig (L ) = χ(P1, j∗H om(L ,K )).

Now we know that

χ(P1, j∗H om(L ,K ) ≤ dimH0(P1, j∗H om(L ,K )) + dimH2(P1, j∗H om(L ,K ))

= dimH0(U,H om(L ,K )) + dimH2
c (U,H om(L ,K )).

By duality
H2
c (U,H om(L ,K )) = H0(U,H om(K ,L )),

so either H0(U,H om(K ,L )) or H0(U,H om(L ,K )) is non-zero. By irreducibility
and because the ranks of both local systems agree, any such morphism must be an
isomorphism.

This proof is the easy direction of the characterization of rigid `-adic local sys-
tems through a cohomological invariant. The other direction was not known until
recently proven in 2016 in [Fu3].

Theorem 4.3.12 ([Fu3] Thm 0.9). Let L be a rigid `-adic local system on j : U ↪→ P1

such that End(L ) = Q`. Then

H1(P1, j∗(E nd(F ))) = 0.

Corollary 4.3.13. Let L be an irreducible `-adic local system on j : U ↪→ P1. Then
L is rigid if and only if it is cohomologically rigid.

Proof. By the above theorem H1(P1, j∗E nd(F )) = 0. Since F is irreducible

dimH0(P1, j∗E nd(F )) = dimH2(P1, j∗E nd(F )) = 1

and therefore rig (F ) = χ(P1, j∗E nd(F)) = 2. The other direction is Theorem 4.3.11.
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This tells us that classifying irreducible rigid `-adic local systems is the same as
classifying those systems which have their index of rigidity equal to 2. Therefore we
can proceed in the same way as in the case of complex base field.
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5 Classification of Wildly Ramified
G2-Local Systems

This chapter contains the proof of the Katz-Arinkin algorithm for wildly ramified
rigid `-adic local systems. In this setting the Katz-Arinkin algorithm is applicable
only if the rank of the system does not exceed the characteristic of the ground field
k. We introduce the necessary methods to prove the classification theorem for rigid
`-adic local systems with monodromy G2 and of slopes at most 1 in characteristic
p > 7. The construction of rigid local systems is carried out in the same way using
the Katz-Arinkin algorithm as in the setting with complex basefield. For the classi-
fication we introduce methods inspired by concepts of differential Galois theory.

5.1 Convolution and Fourier-Laplace transform

We recall the operations involved in the algorithm as presented in [Ka6]. Let G
be a smooth separated group scheme of finite type over k. We define two kinds of
convolution. Denote by

m : G×k G→ G

the multiplication map and by e : Spec k → G the identity section. For objects K,L
in Db

c(G,Q`) we define their convolution by

K ∗∗ L := Rm∗(K � L) ∈ Db
c(G,Q`)

and their convolution with compact supports by

K ∗! L := Rm!(K � L) ∈ Dc
b(G,Q`).

Let F and G be `-adic sheaves on G and consider them as objects in Db
c(G,Q`)

by placing them in degree 0. Their convolution is not necessarily concentrated in
degree 0, hence is an honest object in Db

c(G,Q`). Therefore in order to study convo-
lution operations the preferred setting to work in is that of Db

c(G,Q`).
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By Poincaré duality we have

D(K ∗! L) = DRm!(K � L) = Rm∗(DK �DL) = DK ∗∗ DL

and vice versa. Both convolution operations are associative and the sheaf δe = e∗Q`

is an identity object for the convolution. Indeed

Rm∗(K � δe) = Rm∗(K|G×e ⊗Q`G×e) = K

since m|G×e : G× e→ G is an isomorphism.

Lemma 5.1.1. Let k be algebraically closed and G a smooth connected affine k-
groupscheme of finite type. For two perverse sheaves K and L their !-convolution
K ∗! L is perverse if and only if it is semiperverse.

Proof. Suppose K ∗! L is semiperverse. We need to prove that its dual is semiper-
verse. We have

D(K ∗! L) = DK ∗∗ DL

which is the ∗-convolution of two perverse sheaves. Now

DK ∗∗ DL = Rm∗(DK �DL)

is semiperverse by Proposition 4.2.11 since G is affine and DK�DL is perverse.

Lemma 5.1.2. In the situation of the above lemma let K be a perverse sheaf on G.
If for any simple perverse sheaf L′ on G the !-convolution K ∗! L′ is perverse, then for
any perverse sheaf L the convolution K ∗! L is perverse.

Proof. Recall that Perv(G) is abelian and every object has finite length, so we can
use an induction on the length of L. If L is irreducible the claim is true. For a general
L find a simple perverse sheaf M in L and consider the exact sequence

0→M → L→ Q→ 0

where Q is the quotient. Both K ∗! M and K ∗! Q are perverse by induction. This
exact sequence yields a distinguished triangle

0→M → L→ Q→

74



in Db
c(G,Q`) and applying the functor K∗! yields the triangle

0→ K ∗! M → K ∗! L→ K ∗! Q→ .

From this we obtain the long exact sequence

...→H i(K ∗! M)→H i(K ∗! L)→H i(K ∗! Q)→ ...

which shows that

suppH i(K ∗! L) ⊂ suppH i(K ∗! M) ∪ suppH i(K ∗! Q).

This shows that K ∗! L is semiperverse and hence perverse.

Proposition 5.1.3. Let G be a smooth connected affine one dimensional groupsche-
me over the algebraically closed field k. Let K be a simple perverse sheaf on G who-
se isomorphism class is not translation invariant. For any perverse sheaf L the !-
convolution K ∗! L is perverse.

Proof. It suffices to show that for any simple perverse sheaf L the convolution K ∗!L
is semiperverse. This is the case if and only if H 0(K ∗! L) is punctual and

H i(K ∗! L) = 0

for i > 0. We distinguish two cases. In the first case, assume thatK or L is punctual.
Then K ∗! L is a translate of L or K and hence perverse. In the second case we
assume that neither K nor L are punctual, so there is an open dense subset j : U ↪→
G such that K = j∗F [1] and L = j∗G [1] for irreducible lisse sheaves F and G on U .
Denote by tg : G→ G the translation by g and by ι : G→ G the inversion morphim.
By base change for direct image with compact support and because of the shift we
have for any geometric point g ∈ G

H i(K ∗! L)g = Rim!(K � L)g = H i+2
c (G, t∗g(j∗F )⊗ ι∗(j∗G )).

Since G is of dimension one,

H i+2
c (G, t∗g(j∗F )⊗ ι∗(j∗G )) = 0

for i > 0. It remains to prove that H2
c (G, t∗g(j∗F ) ⊗ ι∗(j∗G )) is non-zero for only

finitely many g ∈ G. This will show that H i(K ∗!L) is punctual. Fix a point g ∈ G(k)
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and let Ug := t∗g(U) ∩ ι∗(U) which is a dense open set on which both t∗g(j∗F ) and
ι∗(j∗G ) are lisse. Now we have

H2
c (G, t∗g(j∗F )⊗ ι∗(j∗G ))

= H2
c (Ug, t

∗
gF ⊗ ι∗G )

= H0(Ug, t
∗
g(F

∨)⊗ ι∗(G ∨))∨

= HomUg(t
∗
gF , ι∗(G ∨))∨.

Since both F and G are irreducible, for this group to not vanish we need to have

t∗gF
∼= ι∗(G ∨)

on Ug. This means that t∗gK ∼= ι∗(DL) as perverse sheaves on G and in this case the
dimension of H2

c (G, t∗g(j∗F )⊗ ι∗(j∗G )) is one. The sheaf H 0(K ∗! L) is constructible,
hence we are in one of the following cases. Either H 0(K ∗! L) is punctual and we
are done or there is a dense open subset V ⊂ G such that for all g ∈ V we have

t∗gK
∼= ι∗(DL).

We will show that in this case the isomorphism class of K is translation invariant.
Fix any h ∈ V . Let H be the set of all g ∈ G(k) fixing the isomorphism class of
t∗hK. This is a subgroup of G(k). The isomorphism class of t∗hK is invariant under
all translations tg with g ∈ V ′ = h−1V , so V ′ is contained in H. In particular, since
H is a subgroup it contains V ′V ′ = G. Therefore t∗hK is invariant by all translations
and hence so is K, contradicting our assumption on K.

Corollary 5.1.4. Let G be a smooth connected affine one dimensional groupscheme
over the algebraically closed field k. Let K be a simple perverse sheaf on G who-
se isomorphism class is not translation invariant. For any perverse sheaf L the ∗-
convolution K ∗∗ L and the !-convolution K ∗! L are perverse.

Proof. By the above Proposition we know that in this situation the !-convolution is
perverse. Note that also DK is not translation invariant. We have

K ∗∗ L = D(D(K ∗∗ L)) = D(DK ∗! DL)

and since DK ∗! DL is perverse, so is K ∗∗ L.

Example 5.1.5. Let Kχ be a non-trivial Kummer sheaf on j : Gm ↪→ Ga. The
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sheaf j∗Kχ[1] is perverse irreducible and since it has a unique ramified point its
isomorphism class is not translation invariant. Therefore both kinds of convolution
with K = j∗Kχ[1] preserve perversity.

Let G be a smooth connected affine k-groupscheme of finite type of dimension d.
Let K be a perverse sheaf on G such that for any perverse sheaf K ′ on G we have
that K ∗∗ K ′ and K ∗! K ′ are perverse. Let L be a perverse sheaf on G. The middle
convolution K ∗mid L of K and L is defined as the image of the natural map

Rm!(K × L)→ Rm∗(K × L).

We have seen above that in the special case of dimension one simple perverse shea-
ves who are not translation invariant have the required property for a sensible
theory of middle convolution. In case K is such a sheaf middle convolution is a
functor

K ∗mid − : Perv(G)→ Perv(G).

If K,L,M are perverse sheaves all with the required property then middle convo-
lution is associative.

Example 5.1.6. Let ψ : k → Q`
∗ be a non-trivial character and denote by ψ its

inverse. In the case that for example K does not satisfy this property, assiociativity
is not granted. Indeed, let K = Q`[1] on A1, L = Lψ[1] and M = Lψ[1] for j : Gm ↪→
A1 the embedding. In this case we have K ∗! L = 0 since

Rim!(Q`[1] � Lψ[1])g = H i+2
c (A1,Lψ),

the latter of which vanishes for i > 0. Vanishing of H1
c (A1,Lψ) is proven in [KW,

Lemma I.5.2] and since A1 is affine, H0
c (A1,Lψ) = 0. For i = 0 we have

H2
c (A1,Lψ) = H0(A1,Lψ)∨

which also vanishes because Lψ is irreducible. On the other hand, L ∗mid M = δe.
So we end up with

(K ∗mid L) ∗mid M = 0 6= K = K ∗mid(L ∗mid M).

The most important case of convolution for us is the middle convolution with a
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Kummer sheaf. The functor we will most prominently use is

MCχ : Perv(A1)→ Perv(A1)

K 7→ K ∗mid j∗Lχ[1]

where j : Gm ↪→ A1 is the inclusion and χ is a tame character of πét
1 (Gm, 1).

In the following we will introduce the Fourier transform for perverse sheaves
and explore its relation to middle convolution. Recall that k is either finite or the
algebraic closure of a finite field. Denote by A and A′ two copies of Ark and by

m : A×k A′ → Ga

the canonical pairing. Let pr : A×kA′ → A and pr′ : A×kA′ → A′ be the projections.
The Fourier transform with respect to a non-trivial character ψ : k → Q` is the
functor

Fψ : Db
c(A,Q`)→ Db

c(A
′,Q`)

given by
Fψ(K) = Rpr′!(pr∗K ⊗Lψ(m))[r]

forK an object inDb
c(A,Q`). Note that there is a second version of Fourier transform

given by
Fψ,∗(K) = Rpr′∗(pr∗K ⊗Lψ(m))[r].

Proposition 5.1.7 ([La3], Théorème 1.2.2.1). Denote by a : A→ A the map v 7→ −v.
In the above situation denote by F ′ψ the Fourier transform

Db
c(A
′,Q`)→ Db

c(A,Q`).

We then have
Fψ ◦F ′ψ

∼= a∗(−r).

Therefore Fourier transform Fψ defines an equivalence of categories

Db
c(A,Q`)→ Db

c(A
′,Q`).

It is a remarkable property of this functor that the following theorem holds true.

Theorem 5.1.8 ([La3], Théorème 1.3.1.1). Let K be an object of Db
c(A,Q`). The na-

tural map
Rpr′!(pr∗K ⊗Lψ(m))→ Rpr′∗(pr∗K ⊗Lψ(m))
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is an isomorphism.

This shows that actually there is only one Fourier transform. This property is the
main reason why Fourier transform preserves perversity. Note that we have

D(Fψ(K)) = DRpr′!(pr∗K ⊗m∗Lψ[r])

= Rpr′∗(DK � Lψ(r)[r])

= Fψ,∗(DK).

Corollary 5.1.9. Fourier transform defines an equivalence of categories between
Perv(A) and Perv(A′).

Proof. Let K be a perverse sheaf on A. By Proposition 4.2.11 the Fourier transform
Fψ(K) = Fψ,∗(K) is semiperverse, so it remains to show that DFψ(K) is semiper-
verse. By the above considerations

DFψ(K) = Fψ,∗(DK)

and since DK is semiperverse, so is DFψ(K). Therefore Fψ preserves perversity
and hence defines an equivalence Perv(A)→ Perv(A′).

Example 5.1.10. Let K = Q`[1] on A1 over the algebraically closed field k. We
compute Fψ(K). By definition we have

Fψ(Q`[1]) = Rpr′!(m
∗Lψ)[2]

and by the base change theorem for direct image with proper support we get

Ripr′!(m
∗Lψ)[2]x = H i+2

c (A1,Lψx)

where ψx is the character y 7→ ψ(xy). This character is trivial only for x = 0. As
in Example 5.1.6 H i+2

c (A1,Lψx) vanishes unless i = 0. For x 6= 0 the sheaf Lψx is
irreducible, hence we only have to consider the case x = 0. In this case

H i+2
c (A1,Lψx) = H0(A1,Q`)

∨

and we find that
Fψ(Q`[1]) = δ0

is the punctual delta sheaf supported at 0.
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We will now express middle convolution with a Kummer sheaf in terms of Fourier
transform on the affine line.

Proposition 5.1.11 ([La3], Prop. 1.2.2.7). Let K and L be objects of Db
c(A1,Q`). We

then have
Fψ(K ∗! L) = Fψ(K)⊗Fψ(L)[−1].

We will use this general fact to study the middle convolution.

Theorem 5.1.12. Let K be a perverse sheaf on A1 and suppose that for all perverse
sheaves L the ∗- and !-convolution of K and L is again perverse. Let Lχ be a non-
trivial Kummer sheaf on Gm and denote by j : Gm ↪→ A1 the inclusion. We then
have

Fψ(MCχ(K)) = j∗(j
∗Fψ(K)⊗Lχ).

Proof. By [Ka5, Lemma 2.9.4] there is an exact sequence

0→M [1]→ K ∗! j∗Lχ[1]→ K ∗mid j∗Lχ[1]→ 0

where M is a constant sheaf. Applying Fourier transform yields the short exact
sequence

0→ P → Fψ(K ∗! j∗Lχ[1])→ Fψ(K ∗mid j∗Lχ[1])→ 0

where P is a punctual sheaf supported at 0. Using

Fψ(K ∗! j∗Lχ[1]) = Fψ(K)⊗Fψ(j∗Lχ[1])[−1]

and Fψ(j∗Lχ[1]) = j∗Lχ[1] we have the following sequence

0→ P → Fψ(K)⊗ j∗Lχ → Fψ(K ∗mid j∗Lχ[1])→ 0.

On Gm the sheaf P vanishes so we find that

j∗Fψ(K)⊗Lχ
∼= j∗Fψ(K ∗mid j∗Lχ[1]).

Finally we know that Fψ(K ∗mid j∗Lχ[1]) is a middle extension of a lisse sheaf on
some open subset, so we have

Fψ(K ∗mid j∗Lχ[1]) ∼= j∗j
∗Fψ(K ∗mid j∗Lχ[1]) ∼= j∗(j

∗Fψ(K)⊗Lχ).

This proves our claim.
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The theorem mirrors our definition of MCχ in the complex setting. Even more is
true.

Theorem 5.1.13 ([Ka5], Thm 2.10.8). Let K and L be perverse sheaves on A1 such
that for any other perverse sheaf the ∗- and !-convolutions are both perverse. Let
j : U ↪→ A1 be an open subset on which N = Fψ(K) and M = Fψ(L) are both lisse
and write N = j∗L , M = j∗G with L and G lisse sheaves on U . We then have

Fψ(K ∗mid L) = j∗(L ⊗ G )[1].

Since Fourier transform is essentially involutive to control the local monodromy
under this operation it is enough to know how it changes under Fourier transform.
This is done by introducing the local Fourier transforms and relate them to the
global Fourier transform through the principle of stationary phase. This will also
play a part in proving the Katz-Arinkin-Deligne algorithm.

Let T and T ′ be henselian traits of equi-characteristic p with residue field k, uni-
formizers π resp. π′, closed points i : t → T resp. i′ : t′ → T ′ and generic points η
resp. η′. Denote by G the category of continuous Gal(η̄|η)-representations with Q`-
coefficients, i.e the category of lisse Q`-sheaves on η. For any q ∈ Q let G<q be the
full subcategory of representations all of whose slopes are less than q. Analogously
define G≤q,G>q, G≥q and the category G ′. For now we will write I = Gal(η̄|η) and
I ′ = Gal(η̄′|η′). Consider the projection maps

T
pr←− T ×k T ′

pr′−−→ T ′.

We are in the setting to form the vanishing cycles of a Q`-sheaf on T×kT ′ considered
as a scheme over the henselian trait T ′ via the second projection pr′.

Proposition 5.1.14 ([La3], Proposition 2.4.2.2). Let V be an object of G and denote
by V! its extension by zero to T . Choose a character ψ : k → Q`

∗ and denote by
Lψ(π/π′) the pull-back of Lψ along the morphism

π/π′ : T ×k η′ → Ga

and by Lψ(π/π′) its extension by zero to T ×k T ′. The complex

RΦ(pr∗(V!)⊗Lψ(π/π′))

in Db
c(T,Q`) has non-vanishing cohomology only in degree 1 and is supported only
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at t ↪→ T .

The analogous results hold for RΦ(pr∗(V!)⊗Lψ(π′/π)) and RΦ(pr∗(V!)⊗Lψ(1/π′π)).
Since R1Φ(pr∗(V!)⊗Lψ(π/π′)) is concentrated at twe identify it with its stalk which
is then an I ′-representation with Q`-coefficients, i.e. an object of G ′.

Definition 5.1.15. The local Fourier transforms are the functors

F
(0,∞′)
ψ ,F

(∞,0′)
ψ ,F

(∞,∞′)
ψ : G → G ′

defined by

F
(0,∞′)
ψ (V ) = R1Φ(pr∗(V!)⊗L ψ(π/π′)),

F
(∞,0′)
ψ (V ) = R1Φ(pr∗(V!)⊗L ψ(π′/π)),

F
(∞,∞′)
ψ (V ) = R1Φ(pr∗(V!)⊗L ψ(1/ππ′)).

We will usually suppress the subscript ψ.

Theorem 5.1.16. The local Fourier transforms have the following properties.
(i) The functors F (0,∞′),F (∞,0′) and F (∞,∞′) are exact.

(ii) For any I-representation V we have

rk(F (0,∞′)(V )) = rk(V ) + Sw(V ), Sw(F (0,∞′)(V )) = Sw(V )

and F (0,∞′)(V ) ∈ G ′<1. The functor F (0,∞′) defines an equivalence of categories

F (0,∞′) : G → G ′<1

with quasi-inverse a∗F (∞′,0)(−)(1). If V ∈ G>0 we have a functorial isomor-
phism

F
(0,∞′)
ψ (V )∨ ∼= F

(0,∞′)
ψ

(V ∨).

(iii) Let V be an I-representation. If V ∈ G≥1, then F (∞,0′)(V ) = 0. If V ∈ G<1 we
have

rk(F (∞,0′)(V ) = rk(V )− Sw(V ), Sw(F (∞,0′)(V ) = Sw(V ).

The functor F (∞,0′) defines an equivalence of categories

F (∞,0′) : G<1 → G ′
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with quasi-inverse a∗F (0′,∞)(−)(1). If V ∈ G>0 and V ∈ G<1 we have a functo-
rial isomorphism

F
(∞,0′)
ψ (V )∨ ∼= F

(∞,0′)
ψ

(V ∨)(1).

(iv) Let V be an I-representation. If V ∈ G≤1, then F (∞,∞′)(V ) = 0. If V ∈ G>1 we
have

rk(F (∞,∞′)(V )) = Sw(V )− rk(V ), Sw(F (∞,∞′)(V )) = Sw(V )

and all F (∞,∞′)(V ) ∈ G ′>1 are greater than one. The functor F (∞,∞′) defines an
equivalence of categories

F (∞,∞′) : G>1 → G ′>1

with quasi-inverse a∗F (∞′,∞)(−)(1). If V ∈ G>1 there is a functorial isomor-
phism

F
(∞,∞′)
ψ (V )∨ ∼= F

(∞,∞′)
ψ

(V ∨)(1).

For s ∈ A1 we will in the following form the local Fourier transforms with respect
to the henselian traits Spec (ÔA1,s) which can be non-canonically identified with the
spectrum of a ring of power series k[[t]] in a local coordinate t at s. Denote by Is the
étale fundamental group of this trait and by I ′s the corresponding group in the new
coordinate after Fourier transform. For ease of notation we will from now on write
Lψ also for the restriction of the Artin-Schreier sheaf to a punctured formal disc
resp. for the representation corresponding to it. The meaning will be clear from the
context.

Theorem 5.1.17 (Stationary Phase, [La3], Proposition 2.3.3.1). Assume that k is a
finite field or the algebraic closure of a finite field. Suppose L is a lisse Q`-sheaf
on U = A1 − S

j
↪−→ A1 and let K = j!L [1] and K ′ = F (K). Furthermore let

L ′ = H −1(K ′|U ′) where U ′ is the maximal open subset of A1 where K ′ has lisse
cohomology sheaves. Then the I ′∞-representation L ′

η∞′
decomposes as

L ′|η∞′ ∼=
⊕
s∈S

IndI
′
∞
I′s×k∞

(F
(0,∞′)
ψ (L |ηs)⊗Lψ(sx′))⊕F

(∞,∞′)
ψ (L |η∞)

In our computations this formula will simplify significantly. Since we work over
an algebraically closed field, Is×k∞′ = I∞′ . Furthermore we will have all slopes of
L at most 1, which means that F

(∞,∞′)
ψ (Lη∞) = 0.

Corollary 5.1.18 ([Ka5], Corollary 7.4.2). Assume that k is algebraically closed. Let
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j : U ↪→ A1 be an open subset, S its complement, L a lisse irreducible sheaf on U

and K = j∗L [1] its middle extension. With notation as before we then have

L ′|η∞′ =
⊕
s∈S

(
F

(0,∞′)
ψ (L |ηs/L |

Is
ηs

)⊗Lψ(sx′)
)
⊕F

(∞,∞′)
ψ (Lη∞).

Recall that in the complex setting, whenever we had a connection with unipotent
monodromy at a finite singularity e.g. given by a Jordan block J(n) of length n, by
the stationary phase formula the Jordan block would decrease in size when app-
lying Fourier transform. This corollary shows that the analogue holds true in this
setting. Taking the quotient by the inertia invariants has precisely the same effect.

Corollary 5.1.19. Suppose that k is algebraically closed. Let j : U ↪→ A1 be an open
subset, L a lisse irreducible sheaf on U and K = j∗L [1] its middle extension. With
notations as before the rank of L ′ is then

rk(L ′) =
∑
s∈S

(
Sw(L |ηs) + rk(L )− rk(L Is)

)
+ Sw(L |η∞)− rk(L )I∞ .

Proof. To compute the generic rank of L ′ it is enough to compute the rank of L ′|η∞′ .
By the principle of stationary phase,

L ′|η∞′ =
⊕
s∈S

(F
(0,∞′)
ψ (L |ηs/L |

Is
ηs

)⊗Lψ(sx′))⊕F
(∞,∞′)
ψ (Lη∞).

The claim follows by applying the properties of the local Fourier transform from
Theorem 5.1.16 and noting that

Sw(L |ηs/L |
Is
ηs

) = Sw(L |ηs)

because of the additivity of the Swan conductor.

5.2 The `-adic Katz-Arinkin-Deligne algorithm

In order to prove the Katz-Arinkin-Deligne algorithm in this setting we need two
main ingredients. The first one is to know that the operations involved preserve
rigidity of the system. This is guaranteed by the following theorem. From now on
let k be algebraically closed.

Theorem 5.2.1 ([Ka6], Theorem 3.0.2). Let K in Db
c(A1,Q`) be a perverse sheaf such

that both K and F (K) are middle extensions of lisse sheaves on open subsets of A1.
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In this case Fourier transform preserves the index of rigidity, i.e.

rig (K) = rig (F (K)).

Corollary 5.2.2. Let K = j∗L [1] be the middle extension of an irreducible smooth
sheaf L on an open subset j : U ↪→ A1 such that F (K) is non-punctual. Then
rig (K) = rig (F (K)).

The second main ingredient is to prove that given any rigid local system of rank
greater than one there is a sequence of Fourier transform, twist with a tame lo-
cal system of rank one and coordinate changes such that the resulting rigid local
system has lower rank than before. Actually this only holds true if the rank of the
system does not exceed the characteristic of the ground field. This will prove the
statement of the Katz-Arinkin-Deligne algorithm inductively. From now on write
F = Fψ for a fixed character ψ : Fp → Q` and for any Q`-valued character χ of a
group write χ for its inverse.

Theorem 5.2.3. Let L be an irreducible rigid `-adic local system on j : U ↪→ P1

of rk(L ) > 1 with slopes k1
d1
, ..., kvdv all written in lowest terms. Assume that we have

rk(L ) < char(k) = p and max{k1, ..., kr} < p. Then one of the following holds:
(i) There exists a tame character λ : πét

1 (Gm, 1) → Q`
∗ and an `-adic system χ of

rank one on U − {∞} such that if we let K = MCλ((j∗H om(χ,L )[1]), V the
open subset of P1 where H −1(K) is lisse and MCλ(H om(χ,L )) := H −1(K)|V
we have

rk(MCλ(H om(χ,L ))) < rk(L ).

(ii) There is a φ ∈ Aut(P1) and an `-adic local system χ of rank one on U such that
if we let k : φ−1(U) ↪→ P1 the embedding, K = F (k∗φ

∗(H om(χ,L )[1])), V the
open subset of P1 on which H −1(K) is lisse and let

F (φ∗H om(χ,L )) := H −1(K)|V

we have
rk(F (φ∗H om(χ,L ))) < rk(L ).

For the proof we follow [Ar] where the analogous statement is proven for rigid
connections. We collect several local statements about slopes of local representati-
ons before proving the theorem. For a continuous representation ρ : I → GL(V )

define
δ(V ) = Sw(V ) + rk(V )− rk(V I).
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Note that δ is semiadditive in the sense that for a short exact sequence

0→ V ′
f−→ V

g−→ V ′′ → 0

we have δ(V ) ≥ δ(V ′) + δ(V ′′). That is because Sw(V ) and rk(V ) are additive and in
addition we have

dimV I ≤ dim(V ′)I + dim(V ′′)I .

Lemma 5.2.4 ([Ar], Lemma 6.1.). Let V and W be Q`-representations of I. Let x ∈
Q≥0 of denominator d which is not divisible by p = char(k). We have

dim(Hom(V,W )(x)) ≥ dimV (x) dimW (x)(1− 1/d).

Note that this lemma introduces one of the assumptions on the characteristic.

Corollary 5.2.5. Let V,W be irreducible Q`-representations of I.
(i) Suppose V and W have different slopes. Then we have

Sw(Hom(V,W ))

dim Hom(V,W )
= max(slope(V ), slope(W ))

and following from that

δ(Hom(V,W )

rk(V )rk(W )
= 1 + max(slope(V ), slope(W )).

(ii) Suppose V and W have the same slope x which has denominator d not divisible
by p. Then we have

Sw(Hom(V,W ))

dim Hom(V,W )
≥
(

1− 1

d

)
x

and additionally we have

δ(Hom(V,W )

rk(V )rk(W )
≥ 1− 1

d2
+

(
1− 1

d

)
slope(W ).

Proof. The first part of statement (i) is proven in [Ka3, Lemma 1.3] and the second
part is a direct consequence of it using the fact Hom(V,W )I = 0 since both are ir-
reducible and non-isomorphic. The second statement is a corollary of Lemma 5.2.4.
We have V = V (x) and W = W (x) and by the Lemma we get

x =
Sw(Hom(V,W )(x))

dim Hom(V,W )(x))
≤ Sw(Hom(V,W )(x))

dimV dimW

(
1− 1

d

)−1
.
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Note that Sw(Hom(V,W )(x)) ≤ Sw(Hom(V,W )). This proves the claim. The second
part of (ii) is again a direct consequence of the first part using the fact that

dim Hom(V,W )I ≤ 1,

rk(V ) ≥ d and rk(W ) ≥ d.

Corollary 5.2.6. Let V and W be Q`-representations of I and assume that V is
irreducible with slope x = k/d where neither d nor k are divisible by p.

(i) If rk(V ) > 1 we have δ(Hom(V,W )) ≥ rk(V )rk(W ).
(ii) If slope(V ) > 2 is not an integer we have

δ(Hom(V,W )) ≥ 2rk(V )rk(W ).

Proof. We first argue that it is enough to prove the statement for irreducible W

by the semiadditivity of δ. For that assume we have proven the claim in the case
that W is irreducible. We argue by induction on the rank of W . There is an exact
sequence

0→W ′ →W →W ′′ → 0

with W ′ irreducible and W ′′ of lower rank than W . Applying Hom(V,−) and δ yields

δ(Hom(V,W )) ≥ δ(Hom(V,W ′)) + δ(Hom(V,W ′′))

≥ rk(V )(rk(W ′) + rk(W ′′))

= rk(V )rk(W ).

Therefore in the following we assume that W is irreducible. For the proof of (i)

there are two cases to consider. Either V and W have different slopes or they have
the same slope. In the first case this follows directly from Lemma 5.2.5, (i). For the
second case note that we can replace V and W by V ⊗χ and W ⊗χ for any rank one
local system χ. Therefore by the Slope Depression Lemma 4.3.6 and Lemma 4.3.7
we can choose χ such that the slope of V is not an integer. For this it is crucial to
assume that rk(V ) > 1. In particular this means that k 6= 0 and d ≥ 2. We can then
apply part (ii) of Lemma 5.2.5 to obtain

δ(Hom(V,W )) ≥
(

1− 1

d2
+

(
1− 1

d

)
slope(W )

)
rk(V )rk(W )
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and by the assumption on the slope we find that(
1− 1

d2
+

(
1− 1

d

)
slope(W )

)
≥ 1.

In the proof of (ii) we also distinguish the same cases. In the first case the statement
follows directly from Lemma 5.2.5, (i). If the slopes are the same, then

slope(W ) ≥ 2 +
1

d

where d as before denotes the denominator of the slope. By Lemma 5.2.5, (ii) we get

δ(Hom(V,W )

rk(V )rk(W )
≥ 1− 1

d2
+

(
1− 1

d

)(
2 +

1

d

)
= 2 +

d2 − d− 2

d2
≥ 2,

proving the claim.

Corollary 5.2.7. Let V be an irreducible Q`-representation of I of slope x = k/d < 2

with d and k not divisible by p and such that x /∈ Z. For any representation W of I
we have

δ(Hom(V,W )) ≥ (Sw(W>1)− rk(W>1)rk(V ) + rk(V )rk(W )

where W>1 is the maximal subrepresentation of W all of whose slopes are greater
than one.

Proof. Since the right-hand side is additive in W and δ is semiadditive we can as
before assume that W is irreducible. If slope(W ) ≤ 1 we have W>1 = 0 and the
claim follows from Corollary 5.2.6, (i). Therefore we assume that W = W>1. In this
case, if V and W have different slopes, this follows from Corollary 5.2.5, (i). So we
assume that V and W have the same slope and apply Corollary 5.2.5, (ii) to obtain

δ(Hom(V,W ))

rk(V )rk(W )
− slope(W ) ≥ 1− 1

d2
+ (1− 1

d
)slope(W )− slope(W )

= 1− 1

d2
− slope(W )

d
.

Note that because of the assumption slope(V ) < 2 we have slope(W ) ≤ 2 − 1
d and

we get

1− 1

d2
− slope(W )

d
≥ 1− 1

d2
− 1

d

(
2− 1

d

)
= 1− 2

d
.

88



Since x = k/d is not an integer we have d ≥ 2, so 1− 2
d ≥ 0 and the claim follows.

Lemma 5.2.8. Let V be any I-representation over Q`. There is an irreducible I-
representation V ′ such that

δ(End(V )) ≥ dim(V )

dim(V ′)
δ(Hom(V ′, V )).

Proof. Note that any finite dimensional I-representation V is a successive exten-
sion of irreducible representations. Denote these irreducible representations by
V1, ..., Vr. Note that they might coincide and that we have

rk(V ) =

r∑
i=1

rk(Vi).

Choose an index j such that

δ(Hom(Vj , V ))

rk(Vj)
= min

i=1,..,r

(
δ(Hom(Vi, V ))

rk(Vi)

)
.

By semiadditivity of δ we have

δ(End(V )) ≥
r∑
i=1

δ(Hom(Vi, V ))

=
r∑
i=1

δ(Hom(Vi, V ))

rk(Vi)
rk(Vi)

≥ δ(Hom(Vj , V ))

rk(Vj)

r∑
i=1

rk(Vi).

Choosing V ′ = Vj proves the claim.

Lemma 5.2.9. Let Kχ be the Kummer local system on i : Gm ↪→ A1 corresponding
to the character χ and let Kχ

∞ be the restriction of Kχ to I∞. Let L be an irreducible
`-adic local system on an open subset j : U ↪→ A1. We then have

rk(MCχ(L )) =
∑

x∈A1−U

δ(L |Ix) + δ(L |I∞ ⊗Kχ
∞)− rk(L ).

Proof. By [Ka6, Corollary 2.8.5] there is a dense open set V ⊂ A1 so that for all
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t ∈ V we can compute the fiber

(j∗L [1] ∗mid i∗Kχ[1])t = RΓ(P1, j∗(L ⊗ s∗tKχ))

where st(y) = t− y. Since L is irreducible, H i(P1, j∗(L ⊗ s∗tKχ)) = 0 for i = 0, 2 and
we find that

rk(L ∗mid Kχ) = dim(L ∗mid Kχ)t = −χ(P1, j∗(L ⊗ s∗tKχ)).

An application of the Euler-Poincaré formula then yields the claim.

We can now give a proof of Theorem 5.2.3.

Proof of Theorem 5.2.3. For any x ∈ S = P1−U choose an irreducible representation
Vx as in Lemma 5.2.8. We distinguish two cases. First suppose that dimVx = 1 for
all x. By the Slope Depression Lemma 4.3.6 and our assumption on the slopes for
every x ∈ S we have

Vx ∼= Lψ(ϕx)⊗ χx

for a polynomial ϕx in 1/t where t is a local coordinate at x and χx a tamely ramified
character of Ix. Denote by ζx the topological generator of Ix. If

∏
x χx(ζx) = 1 there is

an `-adic local system χ of rank one such that χ|Ix = χx. This can be seen as follows.
Consider the maps fj : U → Gm defined by fx(z) = z − x for x 6=∞ and the maps

kj : U → A1 defined by kx(z) = 1
z−x for x 6=∞. Then the `-adic local system

Lψ(ϕ∞)|U ⊗
⊗
x 6=∞

k∗xLψ(ϕx(1/t))⊗
⊗
x 6=∞

f∗xKχx

is a local system on U exhibiting the Vx as its local monodromy.
We want to apply the Euler-Poincaré formula to prove that either Hom(L , χ) or

Hom(χ,L ) is non-zero. For this it suffices to show that

χ(j!∗(H om(χ,L )) > 0.

We compute

χ(j!∗(H om(χ,L )) = 2rk(L )−
∑
x∈S

δ(H om(χx,Lx))

≥ 2rk(L )− 1

rk(L )

∑
x∈S

δ(E nd(Lx))
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by the choice of the χx. Furthermore

2rk(L )− 1

rk(L )

∑
x∈S

δ(E nd(Lx)) = 2
rig (L )

rk(L )
=

2

rk(L )
> 0.

Irreducibility implies that L ∼= χ has rank one, contradicting the assumption.
If
∏
x χx(ζx) 6= 1 assume that∞ /∈ U . We can always achieve that by shrinking U .

Define a tame character
λ : Itame

∞ → Q`
∗

by λ(ζ∞) := (
∏
x χx(ζx))−1. As before there is an `-adic local system χ of rank one

such that for x ∈ A1 − U we have χ|Ix = Vx and in addition χ|I∞ = V∞ ⊗Kλ
∞ as in

Lemma 5.2.9. Viewing λ as a tame character of πét
1 (Gm, 1) we will show that

rk(MCλ(H om(χ,L ))) < rk(L ).

By the same Lemma 5.2.9 we compute

rk(MCλ(H om(χ,L ))) =
∑
x∈S

δ(H om(Vx,L |Ix))− rk(L )

and by the choice of Vx we have

∑
x∈S

δ(Hom(Vx,L |Ix))− rk(L ) ≤ 1

rk(L )

∑
x∈S

δ(End(L |Ix))− rk(L ).

By rigidity of L this is equal to

rk(L )− rig (L )

rk(L )
= rk(L )− 2

rk(L )
< rk(L ).

Therefore after twist with χ and after middle convolution with the Kummer sheaf
K λ we have reduced the rank of L . This concludes the first case.

Now suppose that there is x ∈ S such that dim(Vx) > 1. First we will prove that
this x is unique. By the choice of Vx we know that

δ(End(L |Ix)) ≥ rk(L )

rk(Vx)
δ(Hom(Vx,L |Ix))
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and by Lemma 5.2.6, (i) we further find

rk(L )

rk(Vx)
δ(Hom(Vx,L |Ix)) ≥ rk(L )

rk(Vx)
rk(L )rk(Vx) = rk(L )2.

But by rigidity ∑
x∈S

δ(End(L |Ix)) = 2rk(L )2 − rig (L ) < 2rk(L )2.

Therefore only one point can have rk(Vx) > 1. Let φ ∈ Aut(P1) so that φ(∞) = x. We
will now work in the new coordinate system given by change of coordinate by φ, so
that x corresponds to ∞ in the new coordinate. Choose an `-adic local system χ of
rank one such that χ|Is = Vs for s ∈ S and such that the slope k/d of Hom(χ|I∞ , V∞)

is not an integer. This choice is done in the following way.
By our assumption p does not divide the denominator d of the slope of V∞. Since

it is irreducible we can apply Lemma 4.3.7 and the Slope Depression Lemma 4.3.6
to see that

V∞ ∼= IndII(d)Lψ(a/tk)⊗ χ̃

where a ∈ k∗ and χ̃ has slope < k. If the slope of V∞ is an integer, k = rd for some
r ∈ Z≥0. In this case the twist V∞ ⊗Lψ(−a/tr) has non-integral slope.

Note that this argument is unaffected by additional twisting with a tamely rami-
fied character. Therefore we can choose the twist in such a way that χ exists globally
as before. We want to prove that for this choice of χ we have

rk(F (Hom(χ,L ))) < rk(L ).

We apply Corollary 5.1.19 and compute

rk(F (Hom(χ,L ))) =∑
s∈A1−U

δ(Hom(Vs,L |Is)) + Sw(Hom(χ|I∞ ,L |I∞)>1)− rk(Hom(χ,L )>1).

It is enough to prove that

Sw(Hom(χ|I∞ ,L |I∞)>1)− rk(Hom(χ,L )>1) ≤ δ(Hom(V∞,L |I∞))− rk(L ). (•)
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If this is the case we can again use the rigidity argument

1

rk(L )

∑
s∈S

δ(End(L |Is))− rk(L ) = rk(L )− 2

rk(L )
< rk(L )

to obtain the upper bound for rk(F (Hom(χ,L ))). In order to prove (•) we would
like to apply Corollory 5.2.7. Let V = Hom(χ|I∞ , V∞) and W = Hom(χ|I∞ ,L |I∞)

and note that
Hom(V,W ) = Hom(V∞,L |I∞)

and rk(V ) = rk(V∞), rk(W ) = rk(L ). Now by the choice of V∞ we have

δ(End(L |I∞)) ≥ rk(L )

rk(V∞)
δ(Hom(V∞,L |I∞)).

From this it follows that

δ(Hom(V,W )) ≤ rk(V∞)

rk(L )

∑
s∈P1−U

δ(End(L |Is))

=
rk(V∞)

rk(L )
(2rk(L )2 − rig (L ))

< 2rk(V )rk(W )

using as before the rigidity of L . Since the slope of V is not an integer, by Corollary
5.2.6, (ii), we find that slope(V ) < 2. Therefore we can apply Corollary 5.2.7 to
conclude that

Sw(W>1 − rk(W>1)) ≤ δ(Hom(V,W ))

rk(V )
− rk(W )

≤ δ(Hom(V∞,L |I∞))− rk(L ).

Therfore in this case, after change of coordinate via φ, twist with χ and Fourier
transform we reduce the rank. This concludes the proof.

Let us discuss the choice of χ in the above proof in the case that all slopes of L

are at most 1. Since rk(L ) < p, the assumption that p is larger than the maximum
of all numerators of slopes of the local system L is vacuous in this case. Since the
Vx in the above proof are irreducible subrepresentations of the local monodromy of
L their slopes are also bounded by 1. In the first case of the proof χ was chosen in
such a way that its local monodromy is given by the Vx (up to a twist by a tamely
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ramified local system of rank one). Therefore the slopes of χ are at most one.
In the second case the choice is similar. The only difference is at the point ∞ at

which rk(V∞) > 1. Denote the slope of V∞ by k/d written in lowest terms. By the
Slope Depression Lemma 4.3.6 we have

V∞ ∼= IndII(d)Lψ(ϕk)⊗ ξ

where ξ is a character of slope at most k − 1 and ϕn ∈ k[u] is a polynomial of degree
k. If k < d the slope is already fractional and we can choose χ to be tamely ramified
at ∞. If k = d let an be the coefficient of the highest degree term uk in ϕ. Twisting
with Lψ(−ant) will make the slope of V∞ fractional. Therefore χ can be chosen to
have either slope 0 or slope 1. Again by Lemma 4.3.6 we know that

χx ∼= Lψ(ϕx)⊗ λx

for all x where ϕx is a polynomial of degree at most 1 and λx is a tamely ramified
character.

Corollary 5.2.10. Let L be a rigid irreducible `-adic local system on U
j
↪−→ P1 such

that rk(L ) < p and all of its slopes are at most 1. After a finite sequence of Fourier
transforms, coordinate changes by automorphisms of P1 and twists with rank one
local systems the sheaf L is reduced to a tamely ramified Q`-sheaf of rank one.

We have seen that we can compute the local monodromy of the Fourier trans-
form by means of local Fourier transforms and the principle of stationary phase. In
the following we will see how to compute local Fourier transforms explicitly in an
analogous way to the explicit stationary phase formula 3.1.3 by Sabbah.

Theorem 5.2.11 ([Fu1], Thm 0.1). Let A1 = Spec k[t] with k not necessarily alge-
braically closed, K a tamely ramified `-adic local system of rank 1 on Gm and denote
by t′ the Fourier transform variable. Let ρ(t) = tr and

ϕ(t) =
a−s
ts

+ ...+
a−1

t
∈ t−1k[t−1]

and let

ρ̂(t) = −
d
dtϕ(t)
d
dtρ(t)

, ϕ̂(t) = ϕ(t) + ρ(t)ρ̂(t).

Suppose that 2, r, s and r + s are all prime to p and denote by χ2 : µ2(k) → Q`
∗ the

unique quadratic character.
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The local Fourier transform F (0,∞′)((ρ∗(Lψ(ϕ(t))⊗K )|η0) is isomorphic to

ρ̂∗(Lψ(ϕ̂(t))⊗K ⊗Kχ2(
1

2
s(r + s)a−s(t

′)s)⊗G(χ2, ψ))|η∞′ .

Lemma 5.2.12 ([Fu1], Lemma 2.8). Let K be a tamely ramified `-adic local system
on Spec k((t)) and θ(t) ∈ k[[t]] be of the form

a1t+ a2t
2 + ...

where a1 is non-zero. Denote by

θ : Spec k((t))→ Spec k((t))

the morphism corresponding to the map

k((t))→ k((t)), t 7→ θ(t).

We then have θ∗K ∼= K .

Corollary 5.2.13. In the setting of the theorem assume in addition that k is al-
gebraically closed and let K be any indecomposable tamely ramified `-adic local
system on Gm. Denote by [s] the map u 7→ us. We then have

F (0,∞′)((ρ∗(Lψ(ϕ(t))⊗K )|η0) ∼= ρ̂∗(Lψ(ϕ̂(t))⊗K ⊗ [s]∗Kχ2)|η∞′

Proof. For ease of notation we will drop the restrictions. It will be clear from the
context on which punctured formal disc we work. Since k is algebraically closed,
G(χ2, ψ) is the constant sheaf Q`. After choosing an s-th root ζ of 1

2s(r + s)a−s we
have

Kχ2(
1

2
s(r + s)a−s(t

′)s) = ([s] ◦ (ζt′))∗Kχ2 = (ζt′)∗([s]∗Kχ2).

The isomorphism (ζt′)∗([s]∗Kχ2) ∼= [s]∗Kχ2 then follows from the above Lemma. For
K = Kχ the assertion follows immediately from Theorem 5.2.11. Therefore assume
that K is a general indecomposable tame sheaf now. By [Fu1, Corollary 2.3.] it
follows that there is a character χ : Itame → Q`

∗ such that K ∼= Kχ ⊗U(n) where
U(n) denotes the representation of Itame which maps the topological generator to a
Jordan block of length n.
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We introduce some notation. Let

G(ϕ, r) = {ζ ∈ µr(k) | ∃γ ∈ k((t)) : ϕ(ζt)− ϕ(t) = γp − γ}.

This is a subgroup of µr(d). We will show that we can always reduce to the case that
G(ϕ, r) = 1. Assume that this is not the case. Then G(ϕ, 1) = µd(k) for some d|r,
d > 1 and by [Fu1, Lemma 2.10.] d|s and if ϕ(t) =

∑−1
i=−s ait

i we have ai = 0 for all i
not divisible by d. We let

ϕ0(t) =
∑
d|i

ait
i/d

and ρ0(t) = tr/d. Define ρ̂0(t) =
d
dt
ϕ0(t)

d
dt
ρ0(t)

and ϕ̂0(t) = ϕ0(t) + ρ0(t)ρ̂0(t). One can check
that with this notation

ρ̂0(td) = ρ̂(t), ϕ̂0(td) = ϕ̂(t).

Now we have G(ϕ0, r/d) = 1 and assuming the result in this case we compute

F (0,∞′)(ρ∗(Lψ(ϕ(t))⊗K )) ∼= F (0,∞′)(ρ0,∗([d]∗([d]∗Lψ(ϕ0(t))⊗K ⊗ [s]∗Kχ2))

∼= F (0,∞′)(ρ0,∗(Lψ(ϕ0(t))⊗ [d]∗(K ⊗ [s]∗Kχ2)))

∼= ρ̂0,∗(Lψ(ϕ̂0(t)⊗ [d]∗(K ⊗ [s]∗Kχ2)))

∼= ρ̂0,∗[d]∗([d]∗Lψ(ϕ̂0(t)⊗K ⊗ [s]∗Kχ2)))

∼= ρ̂∗(Lψ(ϕ̂(t))⊗K ⊗ [s]∗Kχ2).

We can therefore assume that G(ϕ, r) = 1. By [Fu1, Lemma 2.6.] the sheaf

ρ∗(Lψ(ϕ(t))⊗K ))

is indecomposable and contains ρ∗(Lψ(ϕ(t)) ⊗Kχ)) as an irreducible subsheaf. By
Theorem 5.1.16 the local Fourier transform

F (0,∞′)(ρ∗(Lψ(ϕ(t))⊗K ))

is indecomposable and it contains

F (0,∞′)(ρ∗(Lψ(ϕ(t))⊗Kχ)) ∼= ρ̂∗(Lψ(ϕ̂(t))⊗Kχ ⊗ [s]∗Kχ2)

as an irreducible subsheaf. Again by [Fu1, Corollary 2.3.] we find that there is an
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integer n′ such that

F (0,∞′)(ρ∗(Lψ(ϕ(t))⊗K )) ∼= ρ̂∗(Lψ(ϕ̂(t))⊗Kχ ⊗ [s]∗Kχ2)⊗U(n′).

Recall that K ∼= Kχ ⊗U(n), so comparing the ranks we find that

(r + s)n = (r + s)n′

and hence n = n′. Finally we have

F (0,∞′)(ρ∗(Lψ(ϕ(t))⊗K )) ∼= ρ̂∗(Lψ(ϕ̂(t))⊗Kχ ⊗ [s]∗Kχ2)⊗U(n)

∼= ρ̂∗(Lψ(ϕ̂(t))⊗Kχ ⊗ ρ̂∗U(n)⊗ [s]∗Kχ2)

∼= ρ̂∗(Lψ(ϕ̂(t))⊗Kχ ⊗U(n)⊗ [s]∗Kχ2).

This proves the claim.

This Corollary provides us with a completely analogous way to compute local
monodromy of sheaves which are locally of the form

[r]∗(Lψ(ϕ(t))⊗K )

as before. Therefore under the assumption that char(k) > 7, the constructions from
the complex setting carry over giving rise to irreducible rigid `-adic local systems
with local monodromy of the same shape as the formal type of the rigid connections
constructed in Chapter 3.

5.3 Methods for Classifying G2-Local Systems

As in the classification in the complex setting we assume that the slopes of all
systems in question are at most 1. In addition we will from now an assume that
p = char(k) > 7. In contrast to the notation in Chapter 3 we will for a representation
of the form

IndII(r)Lψ(ϕ)⊗ χ

always denote the index of the subgroup from which we induce by r (the analogue
was called p in the differential setting) and the pole order of ϕ by s (the analogue
was called q in the differential setting).

A powerful tool for the classification in the complex setting is the Levelt-Turittin

97



theorem 2.2.1. It describes the structure of C((t))-connections in a very detailed way
which allowed us to exlicitly compute the formal types of Fourier transforms. One
could hope for the following analogue statement to hold.

Let
ρ : I → GL(V )

be a continuous representation with Q`-coefficients. Then there is an integer r not
divisible by p and a polynomial ϕ ∈ k[1/u] such that

V ∼= IndII(r)Lψ(ϕ)⊗ λ

where I(r) is the unique normal subgroup of I of index r, Lψ(ϕ) is the resctriction of
the Artin-Schreier sheaf to Spec (k((u))) and λ : Itame → Q`

∗ is some tame character.
This statement is not true in this generality as not every irreducible Galois repre-
sentation is induced from a finite index subgroup. Under the right conditions howe-
ver we do have the following weaker version of an analogue of the Levelt-Turrittin
Theorem.

Theorem 5.3.1 ([Fu1] Prop. 0.5.). Let ρ : I → GL(V ) be an irreducible Q`-representation
satisfying the following conditions.

(i) Let P be the wild inertia subgroup of I. Denote by P p p-th powers in p. Then
ρ(P p[P, P ]) = 1.

(ii) The image ρ(I) is finite.
(iii) We have s := Sw(ρ) < p where Sw(ρ) is the Swan conductor of ρ.
Then there is an integer r not divisible by p, a tame character λ of I and a polynomial
ϕ ∈ k[1/u] of degree s such that

V ∼= IndII(r) (Lψ(ϕ)⊗ λ) .

Recall that the Katz-Arinkin algorithm in positive characteristic only applies to
`-adic local systems L whose rank does not exceed the characteristic of the ground
field. By our assumption that all slopes of L are at most 1 we find that for the Swan
conductor we have Sw(ρ) ≤ rk(L ) in the case that ρ is the local monodromy of a
rigid system L satisfying the above conditions. Therefore the third condition is no
additional obstruction in the situation that we work in.

The first condition is a necessary condition for a representation to be of the above
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form. Indeed, we will shortly see in Proposition 5.3.8 that

ResIP IndII(r) (Lψ(ϕ(t))⊗ λ) ∼=
⊕

ζ∈µr(k)

Lψ(ϕ(ζt)),

and this is a direct sum of characters factoring through µp(Q`). Hence it is trivial
on P p[P, P ].

We will shortly see that for the local monodromy of rigid local systems with rank
less than the characteristic of the ground field and of slope at most 1 this condition
is vacuous.

We will now discuss the second condition and prove that actually the result is
true even without assuming that the representation has finite image. Introduce the
following notation. Let ζ be a topological generator of I tame and denote by J the pre-
image of ζZ in I under the canonical map I → I tame. Then J is a dense subgroup of
I and we have J/P ∼= Z whose generator we also denote by ζ.

Lemma 5.3.2 ([Fu1], Lemma 2.2.). Let ρ : J → GL(V ) be an irreducible representa-
tion over Q`. Then there is a character χ : J → Q`

∗ trivial on P such that ρ ⊗ χ has
finite image.

The following stronger statement holds.

Corollary 5.3.3. Let ρ : I → GL(V ) be an irreducible Q`-representation of dimen-
sion n. Then there is a character χ : I → Q`

∗ trivial on P such that ρ ⊗ χ has finite
image.

Proof. Let ρ̃ = ρ|J be the restriction of ρ to J . This is again irreducible which can be
seen as follows. Suppose it is not irreducible, then ρ̃(J) stabilizes a subspace W ⊂ V
hence is contained in a proper parabolic subgroup P of GL(V ). Since ρ is continuous
and P is closed we have

ρ(I) = ρ(J) ⊂ ρ̃(J) ⊂ P = P.

Therefore ρ couldn’t have been irreducible. We conclude that ρ̃ must be irreducible.
By the above lemma there exists a character χ̃ : J → Q`

∗ such that ρ̃⊗ χ̃ has finite
image in GL(V ). Let g ∈ J be an inverse image of ζ ∈ J/P and let x = ρ̃⊗ χ̃(g). The
cyclic group generated by x inside the image of ρ̃ ⊗ χ̃ must be finite, so there is a
positive integer r such that gr lies in the kernel of ρ̃⊗ χ̃. We find that

1 = det(ρ̃⊗ χ̃(gr)) = χ̃(g)rn det(ρ̃(gr)).
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Since ρ(I) is compact, we can assume that it is a subgroup of GLn(OE) for a finite
extension E of Q`. Now ρ̃(gr) = ρ(gr) ∈ GLn(OE) and χ̃(g)rn ∈ O∗E . After a further
finite extension E ⊂ E′ we get that χ̃ factors through O∗E′ . The latter is compact,
hence complete and we can extend

χ̃ : J → O∗E′

by [Hu, Page 96] to a character

χ : I → O∗E′ ↪→ Q`.

Finally we have
ρ⊗ χ(I) = ρ⊗ χ(J) ⊂ ρ̃⊗ χ̃(J) = ρ̃⊗ χ̃(J)

proving the claim.

Note that this property does not hold in the differential setting. Consider the
C((t))-connection E −1/t = (C((t)), d+ 1/t2dt). The analogue of a tamely ramified cha-
racter is a regular C((t))-connection of the form Kλ = (C((t)), d− λdt/t) and all these
connections are of this form for some λ ∈ C. Let ρ : I diff → C∗ denote the correspon-
ding representation. The image of ρ is the differential Galois group of E −1/t⊗Kλ. It
is finite if and only if all solutions to the equation y′ = 1−λt

t2
y are algebraic. The so-

lution space of E −1/t⊗Kλ is spanned by zλ ·e1/t which is not algebraic for any value
of λ. Therefore even in rank one the above property cannot hold in this context.

Corollary 5.3.4. Let ρ : I → GL(V ) be an indecomposable Q`-representation. Sup-
pose ρ(P p[P, P ]) = 1 and Sw(ρ) < p. Then the lisse Q`-sheaf on η = Spec k((t)) corre-
sponding to ρ is isomorphic to

[r]∗(Lψ(ϕ)⊗K )

where r is an integer prime to p, [r](u) = ur, K is a tamely ramified Q`-sheaf on η,
Lψ is the Artin-Schreier sheaf and ϕ is a polynomial in u−1 where ur = t.

Proof. By Lemma 5.3.3 there is a tame character χ : I → Q`
∗ such that ρ ⊗ χ has

finite image. By Theorem 5.3.1 we have

ρ⊗ χ ∼= [r]∗(Lψ(ϕ)⊗K )

for ϕ and K as above. Hence ρ ∼= [r]∗(Lψ(ϕ)⊗K ⊗ χ−r).
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This leads to the following analogue of the Levelt-Turittin theorem.

Theorem 5.3.5. Let ρ : I → GL(V ) be a Q`-representation such that ρ(P p[P, P ]) = 1

and such that Sw(V ) < p. Then the sheaf L corresponding to ρ decomposes as

L =
k⊕
i=1

[ri]∗(Lψ(ϕi)⊗Ki)⊕K0

with notations as before.

In particular we have a Levelt-Turittin type property for rigid `-adic local systems
on a non-empty open subset j : U ↪→ P1.

Theorem 5.3.6. Let j : U ↪→ P1 be an open subset of P1 with complement S and
let L be a rigid `-adic local system on U of rank n < p and all of whose slopes are
at most 1. For all x ∈ S the local monodromy satisfies ρx([Px, Px]P px ) = 1 where Px
denotes the wild inertia subgroup at x.

Proof. Let M := maxx∈S{Sw(ρx)}. By our assumption on the slopes we have that
M ≤ rk(L ). Since L is rigid, it is obtained from a tamely ramified local system
of rank one by twists with `-adic local systems of rank one, coordinate changes and
Fourier transform. We have seen in the proof of the Katz-Arinkin-Deligne algorithm
that the systems used for the twisting have slopes at most one. Therefore by the
Slope Depression Lemma 4.3.6 these rank one system are of the form

Lψ(ϕ(t))⊗ λ

where λ is a tame character of I and ϕ(t) ∈ k[1/t] is a polynomial of degree at
most one. Twisting with a local system of that form clearly preserves the property
that ρx([Px, Px]P px ) = 1 for all x ∈ S. Note that by the stationary phase princi-
ple, the Fourier transform is computed through local Fourier transforms F (0,∞′).
It therefore suffices to prove that the local Fourier transform of an indecomposable
representation ρ : I → GL(V ) satisfying both of the properties ρ([P, P ]P p) = 1 and
Sw(ρ) < p is again of this form. Denote by r the rank of ρ. Because of the assump-
tions ρ([P, P ]P p) = 1 and Sw(ρ) < p we know by Corollary 5.3.4 that there is a
polynomial ϕ ∈ k[u−1] of the form

ϕ(u) =
a−s
us

+ ...+
a−1

u
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and a tamely ramified sheaf K such that ρ corresponds to the sheaf

[r]∗(Lψ(ϕ)⊗K ).

By Corollary 5.2.13 the local Fourier transform F (0,∞′)([r]∗(Lψ(ϕ) ⊗K ) is isomor-
phic to

ρ̂∗(Lψ(β)⊗K ⊗ [s]∗Kχ2)

for some β ∈ k[u] and ρ̂ as in Corollary 5.2.13. This is again trivial on the derived
subgroup of P and on p-th powers of P .

This allows us to proceed as in the differential setting. We can apply the explicit
formulas for the local Fourier transform to compute local monodromy of rigid shea-
ves and use this to classify local systems with monodromy G2. In order to obtain
constraints on the local monodromy of a rigid `-adic local system, we would like to
proceed in an analogous way as in the differential setting. In order to do so we intro-
duce notions which are similar to the exponential torus and the formal monodromy
of differential Galois theory. This is done by means of Mackey Theory for induced
representations. A property of induced representations which we will often use is
the projection formula, cf. [CR, Corollary 10.20].

Proposition 5.3.7. Let r ∈ Z>0 be prime to p and I(r) the unique normal subgroup
of I of index r. Let K be a tame representation of I and ϕ ∈ k[u−1]. We have

IndII(r)(Lψ(ϕ)(u))⊗ResII(r)K ) ∼= IndII(r)(Lψ(ϕ)(u))⊗K .

5.3.1 An Analogue of the Exponential Torus

The exponential torus is a diagonal subgroup of the differential Galois group co-
ming from the relations satisfied by the exponential factors of formal solutions to a
C((t))-connection. The following proposition shows that we have a similar diagonal
subgroup of the monodromy group of an `-adic local system.

Proposition 5.3.8. Let ϕ(u) ∈ 1
uk[ 1

u ] and r ∈ Z≥1 where gcd(p, r) = 1. Consider the
formal punctured disc ηr = Spec (k((t1/r))) and let [r](u) = ur. Then we have

[r]∗[r]∗(Lψ(ϕ(t))|ηr) ∼=
⊕

ζ∈µr(k)

(Lψ(ϕ(ζt))|ηr).

Proof. Denote by I(r) the unique normal subgroup of I of index r. Consider the
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restriction of the Artin-Schreier sheaf Lψ(ϕ(t))|ηr . Since I(r) is a normal subgroup
and I/I(r) ∼= µr(k) by the Mackey Subgroup Theorem [CR, Theorem 10.13] we have

ResII(r)IndII(r)Lψ(ϕ(t)) ∼=
⊕

ζ∈µr(k)

gζLψ(ϕ(t))

where gζLψ(ϕ(t))(σ) = Lψ(ϕ(t))(gζσg
−1
ζ ) and gζ ∈ I is a representative of ζ. The

map σ 7→ gζσg
−1
ζ on Galois groups is induced by the map

mζ : k((u))→ k((u)),mζ(u) = ζu

and therefore gζLψ(ϕ(t)) = Lψ(ϕ(ζt)).

Denote by ρ the representation IndII(r)(Lψ(ϕ(u))⊗λ) where λ is a tamely ramified
character of I. By the projection formula we have

IndII(r)(Lψ(ϕ(u))⊗ λ) ∼= IndII(r)(Lψ(ϕ(u)))⊗ λ1/r

for any choice of r-th root of λ. Restricting the representation ρ to the wild ramifi-
cation subgroup P ⊂ I(r) yields the diagonal shape

ρ|P ∼=
⊕

ζ∈µr(k)

Lψ(ϕ(ζt)).

In particular the image T := ρ(P ) is a diagonal subgroup of the monodromy group.
Noting that

Lψ(ϕ(t))⊗Lψ(β(t)) = Lψ(ϕ(t) + β(t))

we obtain the same relations for the ϕ(ζt) as in the differential setting.
The exponential torus provided a method to analyze of what form the exponential

factors in the differential setting could be. This will almost carry over to this setting.
The only instance where it does not is Lemma 3.2.4 whose proof we have to modify.

Lemma 5.3.9. Let L be an irreducible rigid `-adic local system with monodro-
my group G2 on some open subset of P1 and let Vx be its local monodromy at some
singularity x of L . The pole order of any ϕ appearing in the analogue of the Levelt-
Turrittin decomposition of Vx can only be 1 or 2.

Proof. Recall the switch of notation to r for the ramification order and s for the pole
order. We have the following table of possible cases.
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s r

2 2, 4, 6

3 3, 6

4 4

6 6

All cases apart from s = 3 and r = 6 or r = 3 are excluded in the same way as in
the proof of Lemma 3.2.4. We will deal with these two remaining cases separately.
Let us consider the case s = 3 and r = 3. The local monodromy of Vx then contains
a module of the form

IndII(3)(Lψ(ϕ(u))⊗ λ)

where λ is a tame character and

ϕ(u) = a3u
−3 + a2u

−2 + a1u
−1

with a3 6= 0. This representation is not self-dual and therefore its dual also has to
appear. This means that

Vx ∼= IndII(3)(Lψ(ϕ(u))⊗ λ)⊕ IndII(3)(Lψ(−ϕ(u))⊗ λ∨)⊕ λ′

for some tame character λ′. Denote by ρx the homomorphism corresponding to Vx.
A general element in ρx(Px(3)) is of the form

(x, y, z, x−1, y−1, z−1, 1).

To prove that there are elements not contained in G2(Q`) it is therefore enough to
show that there is no relation xy = z, xz = y or yz = x. This can be reformulated
as follows. Let ζ3 be a primitive 3-rd root of unity. We have to show that there is no
relation

ϕ(u) + ϕ(ζ3u) = ϕ(ζ2
3u)

and the other combinations respectively. Note that the coefficient of u−3 in ϕ(ζi3u)

is the same for all i. Therefore any of these relations translates into a3 + a3 = a3.
Since s = 3 we have a3 6= 0 and hence there cannot be a relation of the above form.
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The case s = 3 and r = 6 is similar. We consider a representation of the form

IndII(6)Lψ(ϕ(u))⊗ λ

with ϕ(u) = a3u
−3 + a2u

−2 + a1u
−1. This representation has to be self-dual which in

turn forces a2 = 0. In this case

Vx ∼= IndII(6)(Lψ(ϕ(u))⊗ λ)⊕ λ′

for a tame character λ′. Let ζ6 be a primitive 6-th root of unity. We have the following
relations

ϕ(u) + ϕ(ζ3
6u) = 0,

ϕ(ζ6u) + ϕ(ζ4
6u) = 0,

ϕ(ζ2
6u) + ϕ(ζ5

6u) = 0.

Therefore elements in ρx(Px(6)) are of the form

(x, y, z, x−1, y−1, z−1, 1).

As before we have to show that there are no relations xy = z, xz = y or yz = x. In
terms of the leading coefficient of ϕ(ζi6u) for i = 1, 2, 3 this translates into a3 − a3 =

a3, a3 + a3 = −a3 and −a3 + a3 = a3 respectively. Because the characteristic p > 7

in all cases from these relations it would follow that a3 = 0. But we have a3 6= 0

because s = 3. Therefore none of these relations are satisfied and we find elements
in ρx(Px) which do not lie in G2(Q`).

From this we see that all the ϕ which can appear in the decomposition of the local
monodromy have to be of the form λ/u for some λ ∈ k (apart from the two special
cases S1 and S2 in Subsection 3.2.1 which are ruled out the same way as in the
differential setting).

5.3.2 An Analogue of Formal Monodromy

Consider the sheaf [r]∗(Lψ(ϕ(t)) ⊗K ) where r is a positive integer prime to p, K

is an indecomposable tamely ramified sheaf and denote by ρ its associated repre-
sentation. Recall that by Lemma 4.3.3 for the wild inertia group P of I we have the
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exact sequence
1→ P → I → Itame → 1

where P is the pro-p-Sylow subgroup and Itame is the maximal prime-to-p-quotient
of I. In particular there is a subgroup H ⊂ I such that H ∼= Itame and I ∼= P o Itame.
Recall that after a choice K 1/r of an r-th root of K we have

[r]∗(Lψ(ϕ(t))⊗K ) ∼= [r]∗(Lψ(ϕ(t)))⊗K 1/r.

We want to compute
ResIHIndII(r)Lψ(ϕ(t))

to obtain the tame monodromy of the induced Artin-Schreier sheaf. By the Mackey
Subgroup Theorem [CR, Thm. 10.13] we have

ResIHIndII(r)Lψ(ϕ(t)) ∼=
⊕

x∈I/I(r)H

IndHI(r)∩HResI(r)I(r)∩H
xLψ(ϕ(t)).

One can check that I(r) ∩ H = H(r) where H(r) is the corresponding subgroup
obtained through the Schur-Zassenhaus theorem for I(r). Since Lψ(ϕ(t)) is trivial
on p-th powers in I(r) and every element of H(r) is a p-th power,

ResI(r)H(r)
xLψ(ϕ(t)) = 1

is the trivial representation. Therefore

ResIHIndII(r)Lψ(ϕ(t)) = ResIHIndII(r)1.

As a representation of H ∼= Itame the representation IndII(r)1 maps the topologi-
cal generator to the cyclic permutation matrix Pr of dimension r. Restricting the
representation ρ corresponding to

[r]∗(Lψ(ϕ(t)))⊗K 1/r

to H therefore yields the tame sheaf K 1/r⊗Pr. By imposing conditions on the mon-
odromy group we get conditions on K 1/r. This is the analogue of formal monodromy
in differential Galois theory.
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5.3.3 The Determinant Formula

Recall that Proposition 2.2.2, 2 provides a way to compute the determinant of an
elementary connection El(ρ, ϕ,R). The following proposition shows that an analo-
gous formula holds in this setting.

Proposition 5.3.10. The determinant of the representation ρ associated to

[r]∗(Lψ(ϕ(u))⊗K )

with (r, p) = 1 is given by

det(ρ) = (χ2)(r−1)n · χnTrϕ(t)

where n is the rank of K , χnTrϕ(t) is the character associated to Lψ(nTrϕ(t)) and
Trϕ(t) is the trace of ϕ(u) with respect to the Galois extension k((t)) ⊂ k((u)).

Proof. The representation ρ is induced from the unique normal subgroup I(r) of I.
Using the projection formula we reduce to the case [r]∗Lψ(ϕ(u)). Denote by χ the
character corresponding to Lψ(ϕ(u)). By [CR, Prop. 13.15.] we have

det IndII(r)(χ) = εI→I(r) · (χ ◦ V I
I(r))

where εI→I(r)(σ) is the sign of the permutation induced by σ on I/I(r) and V I
I(r) is

the transfer map. We refer to [CR, 13.10] for the definition of the transfer map. To
compute the character

εI→I(r) : I → Q`
∗

first note that the permutation representation π : I → Sr, σ 7→ πσ on I/I(r) fac-
tors through I/I(r) since the quotient is abelian and hence contains the derived
subgroup of I. We therefore have the following commutative diagram

I
εI→I(r) //

  

Q`
∗

µr(k)

<<

and we denote the map µr(k) → Q`
∗ also by εI→I(r). Choose representatives gi of

I/I(r) for i = 0, ..., r − 1 in such a way that the image of gi in µr(k) is ζir where
ζr is a primitve r-th root of unity. In this case the permutation associated to gi is
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πi(j) = j + i mod r. Now εI→I(r)(g1) is the sign of the permutation π1 which is
computed as the determinant of the permutation matrix M1 associated to π1. This
is

det(M1) =
r−1∏
i=0

ξir = (−1)r−1

where ξr is now a primitive r-th root of unity in Q`. We can view εI→I(r) as a map
Itame → Q`

∗ and we see that εI→I(r)(ζ) = (−1)r−1 where ζ denotes the topological
generator of Itame. Hence εI→I(r) = χr−1

2 where χ2 is the unique quadratic character.
It remains to compute φ := χ ◦ V I

I(r) : I → Q`
∗. Recall from the proof of Prop. 5.3.8

that for σ ∈ I(r) we have χϕ(u)(g
−1
i σgi) = χϕ(ζiru)(σ). By the definition of transfer

V I
I(r)(σ) =

r−1∏
i=0

g−1
πσ(i)σgi.

Recall that the sequence
1→ P → I → Itame → 1

splits by the profinite Schur-Zassenhaus theorem and that we have a subgroup
H ⊂ I which is isomorphic to Itame such that I = PH and H ∩P = 1. Let σ ∈ H. We
have σ = τp for some τ as every element in H is a p-th power. Therefore we find

φ(σ) = χ(V I
I(r)(σ)) = χ((V I

I(r)(τ))p) = 1.

For a general element σ ∈ I we have σ = σPσH with σP ∈ P and σH ∈ H. Since we
have P ⊂ I(r) and the Artin-Schreier character Lψ(Trϕ(u)) is also trivial on H we
compute

φ(σ) = φ(σP )φ(σH) = χ

(
r−1∏
i=0

g−1
i σP gi

)
= Lψ(Trϕ(u))(σP ) = Lψ(Trϕ(u))(σ).

Here we used the additivity

r−1⊗
i=0

Lψ(ϕ(ζiru)) ∼= Lψ(Trϕ(u))

of the Artin-Schreier sheaf. We have therefore computed both factors of the deter-
minant, proving the claim.

Corollary 5.3.11. Suppose that in the situation of the above proposition s < r. The
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sheaf
det([r]∗(Lψ(ϕ(u))⊗K ))

is tamely ramified.

Proof. It is enough to prove the claim for ϕ(u) = a−s/u
s. We have

Tr(ϕ(u)) = a−s
∑

ζ∈µr(k)

(ζs)−1 1

us
.

The map
µr(k)→ µr(k), ζ 7→ ζs

has the kernel µd(k) where d = gcd(r, s). If we let ζr be a primitive r-th root of unity
we get ∑

ζ∈µr(k)

(ζs)−1 =

∑
ζ∈µr(k) ζ

s

ζr−1
r

=
d
∑

ζ∈µr/d(k) ζ

ζr−1
r

= 0.

Therefore Tr(ϕ(u)) = 0 and the sheaf is tamely ramified.

5.3.4 The Tensor Product Formula

Proposition [Sa, Prop. 3.8.] provides a detailed formula to compute tensor products
of elementary connections El(ρ, ϕ,R). In order for the classification in the differenti-
al setting to translate to the positive characteristic case we will need an analogous
formula for the tensor product of representations induced from finite index sub-
groups. The following proposition provides this formula.

Proposition 5.3.12. Let ρi(u) = uri , d = gcd(r1, r2), r′i = ri/d, ρ′i(u) = ur
′
i and ρ(u) =

u
r1r2
d . Suppose that p does not divide either r1 or r2. For two polynomials ϕ1, ϕ2 ∈

1
t k[1

t ] we set ϕ(k)(u) = ϕ1(ur
′
2) + ϕ2((ζkr1r2/du)r

′
1) where ζr1r2/d is a primitive r1r2

d -th
root of unity. In addition let K1 and K2 be tamely ramified `-adic local systems on η
and let K = (ρ′2)∗K1 ⊗ (ρ′1)∗K2. We then have

ρ1,∗(Lψ(ϕ1(u))⊗K1)⊗ ρ2,∗(Lψ(ϕ2(u))⊗K2) ∼=
d−1⊕
k=0

ρ∗(Lψ(ϕ(k)(u))⊗K ).

Using this we compute endomorphism sheaves in the same way as we did in the
differential setting. This formula enables us to compute the Swan conductor and
it reduces the computation of dimensions of invariants to computing the centrali-
ser dimension of the monodromy of the tamely ramified sheaves. In this way the
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classification of possible formal types provides a classification of possible local mon-
odromies for rigid `-adic local systems.

Lemma 5.3.13. Let r1, r2 ∈ Z≥0 with gcd(r1, r2) = d, let ui ∈ k((t)) such that urii = t,
let v ∈ k((t)) such that vd = t and let w ∈ k((t)) such that w

r1r2
d = t. We have

k((u1)) ∩ k((u2)) = k((v)) and k((u1)) · k((u2)) = k((w)).

Proof. Let r′i = ri/d for i = 1, 2. Clearly k((v)) ⊂ k((u1)) ∩ k((u2)) and k((u1)) ·
k((u2)) ⊂ k((w)). Consider the following diagram of extensions and degrees.

k((w))

y

r′2 r′1
k((u1)) · k((u2))

s2s1

k((u1))
l1

r′1

k((u2))
l2

r′2
k((u1)) ∩ k((u2))

x

k((v))

We see that x and y are common denominators of r′1 and r′2. Since these are coprime
we find x = y = 1.

We can now prove Proposition 5.3.12.

Proof of Proposition 5.3.12. The proof is an application of Mackey theory. First noti-
ce that because of the projection formula we can reduce to the case of K1 = K2 = Q`.
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We regard all the sheaves as representations of respective Galois groups

I

I(d)

I(r1) I(r2)

I( r1r2d ).

In this language we have to compute the tensor product of induced representations

V := IndII(r1)Lψ(ϕ1)⊗ IndII(r2)Lψ(ϕ2).

By Lemma 5.3.13 we have I(r1) · I(r2) = I(d) and I(r1)∩ I(r2) = I( r1r2d ). In addition
all these subgroups are normal, hence stable under conjugation and furthermore
we have

I(r1)\I/I(r2) ∼= I(r1)I(r2)\I ∼= µd(k).

We apply the Tensor Product Theorem [CR, Thm. 10.18] to obtain

V ∼=
d−1⊕
i=0

IndII( r1r2
d

)

(
ResI(r1)

I(
r1r2
d

)
Lψ(ϕ1)⊗ ResI(r2)

I(
r1r2
d

)
Lψ(ϕ2 ◦mζk)

)
where mζ(u) = ζu for a primitive r1r2

d -th root of unity ζ. The representation

ResI(r1)

I(
r1r2
d

)
Lψ(ϕ1)⊗ ResI(r2)

I(
r1r2
d

)
Lψ(ϕ2 ◦mζk)

is isomorphic to
Lψ(ϕ1 ◦ ρ′2)⊗Lψ(ϕ2 ◦ µζk ◦ ρ′1) ∼= Lψ(ϕ(k)),

hence translating back to sheaves yields the claim.
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5.3.5 Classification

As in the proof of Theorem 3.3.1 we combine all these criteria and obtain the fol-
lowing theorem. Its proof is completely analogous to the one of Theorem 3.3.1 in
Sections 3.2 and 3.3. Recall that we use the following notation. At 0 the `-adic local
systems are tamely ramified, hence they are representations of the tame inertia
group Itame

0 . Here U(n) denotes the representation of Itame
0 defined by mapping the

topological generator to a Jordan block of length n.
At∞ we consider direct sums of sheaves of the form

[r]∗(Lψ(ϕ(u−1)⊗K ))

where [r](z) = zr is the r-th power map, ϕ(u−1) is a polynomial in u−1 for a local
coordinate u−1 at ∞ and K is a tamely ramified `-adic local system on the formal
punctured disc around∞, hence a representation of the tame inertia at∞.

Theorem 5.3.14. Let k be the algebraic closure of a finite field of characteristic
p > 7. Let λ1, λ2 ∈ k such that λ1 6= ±λ2 and let

χ, x, y, z, ε, ι : lim←−
(N,p)=1

µN (k)→ Q`

be non-trivial characters such that χ is not quadratic, z4 is non-trivial, x, y, xy and
their inverses are pairwise different and such that ε is of order 3 and ι is of order 4.
Recall that χ is the inverse of χ. Every pair of local monodromies in the following
list is exhibited by some irreducible rigid `-adic local system of rank 7 on Gm with
monodromy group G2(Q`).

0 ∞

U(3)⊕U(3)⊕ 1
[2]∗(Lψ(λ1u

−1)⊗ (χ⊕ χ))

⊕ [2]∗(Lψ(2λ1u
−1))⊕ (−1)

−U(2)⊕−U(2)⊕ 13 [2]∗(Lψ(λ1u
−1)⊗ (χ⊕ χ))

⊕ [2]∗(Lψ(2λ1u
−1))⊕ (−1)

x⊕ x⊕ x⊕ x⊕ 13 [2]∗(Lψ(λ1u
−1)⊗ (χ⊕ χ))

⊕ [2]∗(Lψ(2λ1u
−1))⊕ (−1)
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U(3)⊕U(2)⊕U(2)
[2]∗(Lψ(λ1u

−1))⊕ [2]∗(Lψ(λ2u
−1))

⊕ [2]∗(Lψ((λ1 + λ2)u−1)⊕ (−1)

ι⊕ ι⊕−ι⊕−ι⊕−12 ⊕ 1
[3]∗(Lψ(λ1u

−1))

⊕ [3]∗(Lψ(−λ1u
−1))⊕ 1

U(7) [6]∗(Lψ(λ1u
−1))⊕−1

εU(3)⊕ ε−1U(3)⊕ 1 [6]∗(Lψ(λ1u
−1))⊕−1

zU(2)⊕ z−1U(2)⊕ z2 ⊕ z−2 ⊕ 1 [6]∗(Lψ(λ1u
−1))⊕−1

xU(2)⊕ x−1U(2)⊕U(3) [6]∗(Lψ(λ1u
−1))⊕−1

x⊕ y ⊕ xy ⊕ (xy)−1 ⊕ y−1 ⊕ x−1 ⊕ 1 [6]∗(Lψ(λ1u
−1))⊕−1

Conversely, the above list exhausts all possible local monodromies of wildly ramified
irreducible rigid `-adic local systems on open subsets of P1 with monodromy group
G2 of slopes at most 1.

Note that the assumption p > 7 is only needed for the classification. The construc-
tion of the local systems works as long as p > 3 and the first four families can even
be constructed in characteristic p = 3.
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6 Outlook / Geometric Langlands
Correspondence

In this chapter we explore the relationship of the previous results to the geometric
Langlands correspondence. We outline the framework of possible future research
in this direction. Let F be the function field of P1

k, k a finite field of characteristic
p. It is a global field of equi-characteristic p. For any closed point x ∈ P1

k denote
by Kx the completion of K at x and by Ox its valuation ring. We can identify Ox
non-canonically with a ring of power series kx[[tx]] where kx is the residue field of x
and tx is a local coordinate at x. The ring of adèles of F is the restricted product

A =
∏
x∈P1

k

′
Fx,

i.e. if (fx) ∈ A then fx ∈ Ox for all but finitely many x. The ring of adèles carries
a topology coming from the topological fields Fx for which it is locally compact. The
field F embeds diagonally into A. The group GLn(A) is endowed with a natural
adèlic topology for which it is locally compact and has a maximal compact subgroup

K =
∏
x∈P1

k

GLn(Ox).

This allows us to fix a Haar measure on GLn(A) normalized in such a way that the
volume of K is 1. Let χ : Z(A) → Q`

∗ be a character of the center of GLn(A) which
is trivial on F ∗ and factors through a finite quotient of Z(A) = A∗. Define

Cχ(GLn(F )\GLn(A))

to be the space of locally constant functions f : GLn(F )\GLn(A)→ Q` satisfying the
following properties:
• The space spanned by right translates of f under the action of elements k ∈ K

given by k.f(g) = f(gk) is a finite-dimensional Q`-vector space,
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• we have f(gz) = χ(z)f(g) for all g ∈ GLn(A) and z ∈ Z(A) and
• for any parabolic subgroup P of GLn with unipotent radical P+ we have∫

P+(F )\P+(A)
f(ug)du = 0

for all g ∈ GLn(A).
Under the right action of GLn(A) on Cχ(GLn(F )\GLn(A)) defined by g.f(h) = f(hg)

the space Cχ(GLn(F )\GLn(A)) decomposes into a direct sum of irreducible repre-
sentations. These are the irreducible cuspidal automorphic representations of GLn(A).

Every irreducible cuspidal automorphic representation π can be written as a re-
stricted tensor product

π =
⊗
x∈P1

′
πx

where πx is an irreducible GLn(Fx)-representation. There is a finite set of closed
points S such that for all x outside S the representation πx contains a vector vx
which is stable under the action of GLn(Ox). In this case we call πx unramified. We
have the following Langlands correspondence for the function field F proven by L.
Lafforgue in [La1] (in a more general setting).

Theorem 6.0.1. There is a bijection between the set of isomorphism classes of irre-
ducible cuspidal automorphic representations of GLn(A) (as defined above) and the
set of isomorphism classes of irreducible n-dimensional continuous `-adic represen-
tations of the absolute Galois group GF of F with determinant of finite order which
are unramified outside a finite set of places such that the Hecke eigenvalues and the
Frobenius eigenvalues are the same at the unramified points.

For the definition of Frobenius and Hecke eigenvalues we refer to [Fr, Section 2].
Langlands philosophy predicts a correspondence like the above in a more general
setting for a reductive group G. The automorphic representations are defined in an
analogous way as before. We replace `-adic Galois representations by continuous
homomorphisms

GF → G(Q`).

In [La2] V. Lafforgue attaches to an irreducible cuspidal automorphic representa-
tion for G a continuous map GF → G (Q`), going from the automorphic side to the
Galois side.

The local systems constructed in Theorem 5.3.14 are expected to have automor-
phic counterparts in this sense. Since they are unramified outside Gm, the automor-
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phic representation corresponding to them should be of the form

π = π0 ⊗ π∞ ⊗
⊗
x 6=0,∞

′
πx

with πx unramified for x 6= 0,∞ and where the structure of π0 and π∞ is governed
by the shape of the local monodromy at 0 and∞.

Let us first consider an example where from the local structure one can prove
the existence of a global automorphic form with prescribed local behaviour. The
following construction is due to Gross and Reeder, cf. [GR2, Sections 8.2 & 8.3]. For
that letG be simply connected and quasi-simple, choose a maximal torus T ⊂ B ⊂ G
inside a Borel subgroup of G, let l be the rank of G and Φ the root system of G. The
choice of B determines a set

∆ = {α1, ..., αl}

of positive simple roots of G. We consider the F∞-points of G. Fixing a Chevalley
basis for the Lie algebra g of G determines for every α ∈ Φ an embedding

uα : F∞ ↪→ G(F∞)

satisfying tuα(c)t−1 = uα(α(t)c) for all t ∈ T and c ∈ F∞. The choice of T determines
an apartment A in the Bruhat-Tits building of G(F∞) which we can identify with
R⊗X∗(T ) where X∗(T ) denotes the cocharacters of T . The affine roots of G(F∞) are
affine functions on R⊗X∗(T ) given in this identification by

Ψ = {α+ n |α ∈ Φ, n ∈ Z}.

The root system Φ has a unique highest root η and setting α0 = 1− η we get the set
of positive affine simple roots

∆aff = {α0, α1, ..., αl}.

Every affine root ψ ∈ Ψ which can be written as a non-negative Z-linear combinati-
on of these simple affine roots is called a positive affine root and we denote the set
of those roots by Ψ+. Every affine root ψ = α + n determines a root subgroup Uψ of
G(F∞) by defining

Uψ := uα(mn)
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for the maximal ideal m of the valuation ring O∞ of F∞. We call the subgroup

I = 〈T (O∞), Uψ |ψ ∈ Ψ+〉

a standard Iwahori subgroup of G(F∞). It can also be obtained as the pre-image of
the reduction map

G(O∞)→ G(k).

Furthermore we consider the pro-unipotent radical

I+ = 〈T1, Uψ|ψ ∈ Ψ+〉

where
T1 = 〈t ∈ T (O∞) |λ(t) ∈ 1 + m∀λ ∈ X∗(T )〉

and the subgroup
I++ = 〈T1, Uψ |ψ ∈ Ψ+ −∆aff〉.

Lemma 6.0.2 ([GR2], Lemma 8.2). The subgroup I++ is normal in I+ and we have

I+/I++ ∼=
⊕
ψ∈∆aff

Uψ/Uψ+1

as T (O∞)-modules where for ψ = α+n the action on Uψ/Uψ+1
∼= k is given by scalar

multiplication with the image of α(t) in k∗.

Denote by Z the center of G. A character Z(F∞)I+ → Q`
∗ is called affine generic

if χ is trivial on I++ and if χ is non-trivial on every root subgroup Uψ for ψ ∈ ∆aff.
We call the compactly induced representation

πχ := c− indG(F∞)
Z(F∞)I+

χ

a simple supercuspidal representation. The reason is the following proposition.

Proposition 6.0.3 ([GR2], Prop. 8.3). In the above setting for any affine generic
character χ of Z(F∞)I+ the representation πχ is irreducible and supercuspidal for
G(F∞).

In the article [Gr1] Gross proves that there is a unique automorphic representati-
on π for G(AF ) such that πx is unramified for x 6= 0,∞, π0 is the Steinberg represen-
tation and π∞ is a simple supercuspidal representation. He emplays trace formulas
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to compute multiplicities of automorphic representations with prescribed local be-
haviour. A different method of constructing such an automorphic representation is
presented in [HNY, 2.1]. Heinloth, Ngô and Yun analyze functions on G(F )\G(AF )

which are invariant under the maximal compact subgroupG(Ox) for every x 6= 0,∞,
invariant by the Iwahori subgroup I0 at 0 and which transform through an affine
generic character χ under the pro-unipotent radical I+

∞ of the Iwahori subgroup I∞
at∞. They achieve the same result but with an independent method.

Let us go back to the rigid local systems constructed in 5.3.14. The following is
joint work with Zhiwei Yun. Consider the family with local monodromy

U(3)⊕U(3)⊕ 1

at 0 and local monodromy

[2]∗(Lψ(λ1u
−1)⊗ (χ⊕ χ))⊕ [2]∗(Lψ(2λ1u

−1))⊕ (−1)

at ∞. At 0 the local monodromy belongs to the subregular unipotent orbit of G2.
This suggests that instead of the Iwahori I0 we should consider a larger parahoric
subgroup P0 ofG2(O0) which can be thought of as the pre-image under the reduction
map G2(O0)→ G2(k) of a parabolic subgroup of G2.

At ∞ we have additive parameters corresponding to the Artin-Schreier sheaves
Lψ(λ1u

−1) and Lψ(2λ1u
−1) and a multiplicative parameter corresponding to the

tame character χ. This suggests that at ∞ we should not try to imitate the con-
struction from before by using the pro-unipotent radical of the Iwahori, but we
should allow for a mixture of additive characters coming from root subgroups and
a multiplicative character coming from a subtorus of the maximal torus.

Let α1 be the long simple root of G2, α2 be the short simple root of G2 and let P0 be
the parahoric subgroup of G2(O0) corresponding to the parabolic of G2 whose Levi
factor has the single positive root α2. Additionally define

K+
∞ = 〈Uψ |ψ ∈ Ψ+ − {α0, α2}〉

and K∞ := K+
∞ · G⊥α1

m . where G⊥α1
m is the subtorus of the maximal torus T in G2

which satisfies α1(t) = 1 for all t ∈ G⊥α1
m . Analyzing functions on

G2(F )\G2(AF )/P0 ×
∏
x6=0

G2(Ox)
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which transform under a character K∞ → k2 × k∗ → Q`
∗ which is non-trivial on

the root subgroups Uα1 and U1−α1 and on G⊥α1
m , a modification of the method of

[HNY] yields the existence of a unique automorphic representation π for G2(AF )

which is the potential automorphic counterpart for the rigid local system described
above. Further exploring similar constructions to obtain new types of rigid local
systems and wildly ramified examples of the geometric Langlands correspondence
for reductive groups is the topic of future research.
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