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Abstract— We analyze the sensitivity of the extremal equa-
tions that arise when concluding first order optimality condi-
tions for time dependent optimization problems. More specif-
ically, we consider parabolic PDEs with a linear quadratic
performance criterion. We prove the solutions boundedness
with respect to the right-hand side of the first order optimality
condition which includes initial data. As a consequence, it can
be shown that the influence of a perturbation at at certain
time decays exponentially in the temporal distance to the time
of perturbation. Moreover, a quantitative turnpike theorem can
be derived.

Index Terms— Sensitivity Analysis, Turnpike Property,
Model Predictive Control
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I. INTRODUCTION
Model Predictive Control (MPC) is a control method in

which the solution of optimal control problems on infinite
or indefinitely long horizons is split up into the successive
solution of optimal control problems (OCPs) on finite time
horizons. Only a first part with given length of each finite
horizon solution is implemented as a control for the longer,
possibly infinite horizon. This means that in a numerical
solution of the optimal control problem only the first part
of the optimal control must be computed accurately.

Motivated by this observation, we will study the effect of
perturbations and discretization errors near the end of the
optimization horizon on the initial part of the control. It will
turn out that, considering linear quadratic optimal control
problems, their influence decays exponentially in time. Thus,
they are indeed negligible if the horizon is long enough.

An in depth introduction to Model Predictive Control can
be found in [1]. A central assumption for the approximation
of the infinite horizon solution by a solution controlled with
an MPC-feedback is that the dynamics of the optimal control
problem exhibits turnpike behavior, i.e. the time dependent
solution of the optimal control problem remains close to a
constant value for the majority of the time [2]. This value
is called the turnpike of the OCP. A quantitative turnpike
result was proven in [3] for nonlinear finite dimensional
problems. This was extended to a general Hilbert space
setting in [4], where the assumptions made to show turnpike
behavior are stabilizability and detectability of the dynamics.
The interested reader is also referred to [5], [6].
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As depicted in Fig. 1, one might conjecture that for
systems showing turnpike behaviour, perturbations at the end
of the trajectory do not affect the initial part if T is large.
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Fig. 1. Turnpike behavior of the OCP’s solution and possible perturbation
ε at the end of the optimization horizon.

In this paper, we will show that this property can be proven
rigorously for linear-quadratic optimal control problems with
stabilizable and detectable dynamics.

II. PRELIMINARIES AND SETTING

Let (V, ‖ · ‖V ) be a separable and reflexive Banach
space and [0, T ] a bounded proper interval on R. By
L2(0, T ;V ) we denote the space of Bochner integrable
functions f :]0, T [→ V , see [7] and [8, Section 23.2ff] for
basic results on these spaces. It holds that L2(0, T ;V )? ∼=
L2(0, T ;V ?).

Let H be a Hilbert space with scalar product 〈·, ·〉H and
V ↪→ H continuously and densely. The spaces form a so
called Gelfand triple (or evolution triple) V ↪→ H ↪→ V ?.
Moreover, by W [0, T ] we denote the space of L2(0, T ;V )
functions with weak derivative in L2(0, T ;V ?).

We will consider the parabolic PDE in weak form. For
this, we define the operator

D[0,T ] : W ([0, T ])→ L2(0, T ;V )? ×H?,

where

(D[0,T ]w)(v, v0) :=

T∫
0

w′(t)(v(t)) dt+ 〈w(0), v0〉H ,

which constitutes a time derivative operator with initial
value testing. Additionally, we introduce operators



Λ[0,T ] : L2(0, T ;V ) → L2(0, T ;V ?) and Λ : V → V ?

linear, bounded with

(Λ[0,T ]v)w =

T∫
0

(Λv)w dt,

where Λ could be e.g. the weak form of the Laplace
operator. For the influence of the control, we define B[0,T ] :
L2([0, T ] × Ω) → L2(0, T ;H?), B : L2(Ω) → H? linear,
bounded with

(B[0,T ]u)v =

T∫
0

(Bu)v dt.

For details on the solution theory of parabolic PDEs formu-
lated as operator equations, see [9]. In this paper, we will
study the sensitivity of the first order optimality condition of
the optimal control problem

min
y,u

1

2
‖C(y − yd)‖2L2(0,T ;H) +

α

2
‖R(u− ud)‖2L2([0,T ]×Ω)

(1)
subject to the parabolic PDE

D[0,T ]y − Λ[0,T ]y −B[0,T ]u = 〈y0, ·〉

for linear bounded operators C : L2(0, T ;H)→ L2(0, T ;H)
and R : L2([0, T ]×Ω)→ L2([0, T ]×Ω) additionally elliptic.
If we denote the Riesz isomorphisms of the state space by
My : L2(0, T ;H)→ L2(0, T ;H)

?, the first order optimality
condition is given by the following equation in dual spaces

M

(
y

(λ, λ0)

)
=

(
0
〈y0, ·〉

)
+

(
C?MyCyd
B[0,T ]ud

)
, (2)

where

M :=

(
C?MyC (D[0,T ] − Λ[0,T ])

?

(D[0,T ] − Λ[0,T ]) −B[0,T ]Q
−1B?[0,T ]

)
. (3)

Here we eliminated the control via u = Q−1B?[0,T ]λ + ud,
where Q := αR?MuR and Mu : L2([0, T ] × Ω) →
L2([0, T ] × Ω)? is the Riesz isomorphism of the control
space.

III. ANALYSIS OF THE EXTREMAL EQUATIONS’
SOLUTION OPERATOR

Our main analysis consists of proving the bounded invert-
ibility of the linear operator M defined in (3) with constants
independent of T . The approach taken is inspired by the
stability estimate performed in [4, Lemma 2] and [5, Lemma
3.5]. The main result in this section reads as follows.

Theorem 1: Let (Λ, C) satisfy an exponential detectability
and (Λ, B) satisfy an exponential stabilizability assumption.
Then there exists a constant c ≥ 0 independent of T , such
that

‖M−1‖(L2(0,T ;H?)×H?)2→L2(0,T ;H)2 ≤ c. (4)
The constant c is indirectly proportional to the grade of
exponential stabilizability and exponential detectability. The

assumptions of this theorem are similar to standard assump-
tions under which turnpike behavior can be shown in infinite
dimension, cf. [4].

One will observe that the range of the adjoint equation was
restricted. Originally, the equation for the adjoint variable
is posed in W [0, T ]?. However, this results in an adjoint
state tuple (λ, λ0) ∈ L2(0, T ;V ) × H . By restricting the
range of the adjoint operator D?

[0,T ] to L2(0, T ;H?) ×H?,
one can show that λ ∈ W ([0, T ]) and λ0 = λ(0) (see [9,
Proposition 3.8]). As a result, we can treat the variables y and
λ in the same way. In the remainder of this paper, the two
variables (λ, λ0) will therefore be denoted by one variable
λ, as λ0 = λ(0).

IV. SENSITIVITY WITH RESPECT TO L2 - PERTURBATIONS

A. Theoretical considerations

An application of the above analysis is the property that
the effect of perturbations decays exponentially in time.

In the following we consider sensitivity of solutions of
(2) with respect to perturbations of the right hand side. In
addition to the exact solution (y, λ) of (2) we consider a
perturbed solution (ỹ, λ̃) that solves

M

(
ỹ

λ̃

)
=

(
0
〈y0, ·〉

)
+

(
C?MyCyd
B[0,T ]ud

)
+

(
ε1

ε2

)
.

The perturbation variables ε1 and ε2 model the error per-
formed by e.g. a discretization in time or space. Hence,
defining the difference of exact and perturbed solution
(δy, δλ) := (ỹ − y, λ̃− λ) it follows using linearity that

M

(
δy
δλ

)
=

(
ε1

ε2

)
. (5)

Theorem 1 directly yields an estimate of (δy, δλ) in terms of
‖(ε1, ε2)‖L2(0,T ;H?)2 . In the following result, we will refine
this estimate by introducing an exponential scaling in time.

Theorem 2: Assume (δy, δλ) ∈W ([0, T ])2 solves (5) and
let the assumptions of Theorem 1 hold.
Furthermore assume that for ρ ≥ 0 and 0 ≤ µ < 1

‖M−1‖

‖e−µtε1(t)‖L2(0,T ;H?) ≤ ρ
‖e−µtε2(t)‖L2(0,T ;H?) ≤ ρ.

(6)

Then there exists a constant c1 ≥ 0 independent of T , such
that

‖e−µtδy‖Y + ‖e−µtδu‖U + ‖e−µtδλ‖P ≤ c1ρ,

where Y = P = L2(0, T ;H) and U = L2([0, T ]× Ω).
For µ > 0, all inequalities involve weighted norms, where

the functions are scaled by e−µt. We interpret this result for
the error in the state δy = ỹ − y: Assume we solve for the
state and adjoint with perturbations that are bounded by (6).
Then, ‖e−µtδy‖ is bounded by a constant independent of T .
This implies that at the beginning of the time horizon, i.e.
for small t, ‖δy(t)‖ ' ρ, where ρ is the scaling factor of
the perturbations bound in (6). Therefore, only local (in a
temporal sense) perturbations play a role and perturbations
e.g. at the end of the horizon only slightly affect the initial
part, even if they grow exponentially in time.



The proof of Theorem 2 utilizes scaling of the variables
by e−µt and the identity

(D[0,T ]δy)e−µtv = ((µI +D[0,T ])e
−µtδy)v.

This implies that the scaled variables satisfy a modified
equation with M replaced by M + µP , where

P =

(
0 −I
I 0

)
.

Since M + µP = (I + µPM−1)M , a Neumann-series
argument implies invertibility of this operator for sufficiently
small µ, depending only on ‖M−1‖. The smaller ‖M−1‖,
the larger µ can be chosen, the faster the exponential decay.

B. Numerical Results

In this subsection, the statement of Theorem 2 will be
illustrated by a numerical example.
We take a look at solutions of the optimization problem

min
(y,u)

1

2
‖(y − yd)‖2L2([0,T ]×[0,1]2) +

1

4
‖u‖2L2([0,T ]×[0,1]2)

subject to the constraint

D[0,T ]y + 0.1

T∫
0

∫
[0,1]2

∇y∇ · dωdt−
T∫

0

∫
[0,1]2

u · dωdt = 0

for different temporal grids. We choose V = H1
0 (Ω) for

the adjoint and state space and H = L2(Ω) for the initial
value. The constraint constitutes a linear heat equation with
distributed control and zero initial condition and it obviously
satisfies the stabilizability and detectability assumption of
Theorem 1, as ∇ ·∇· is elliptic in H1

0 (Ω) and hence stable.
yd ∈ H1

0 (Ω) is a reference temperature which is depicted in
Fig. 2.

Fig. 2. Plot of the constant (w.r.t. time) reference temperature yd on [0, 1]2.

We compute two perturbed solutions, the first triple with a
uniform grid Guni consisting of 11 grid points and the second
with a grid Gexp with meshsize increasing exponentially in
time as depicted in Fig. 3.

To compute the absolute error ‖δy(t)‖L2(Ω), ‖δu(t)‖L2(Ω)

and ‖δλ(t)‖L2(Ω) as functions of the time t, we will consider
a solution triple (y, u, λ) on a fine grid with 101 grid points in
[0, 30] as a reference. Fig. 4 shows the norm of the perturbed
and exact solution triple’s state, control and adjoint. Note
that, as stated in the introduction, Model Predictive Control
only implements an initial part of the trajectory and the
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Fig. 3. Grids used for the computations.
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Fig. 4. From top to bottom: Norm of the state ‖y(t)‖L2(Ω), norm of the
control ‖u(t)‖L2(Ω) and norm of the adjoint ‖λ(t)‖L2(Ω) for every grid
point.

remaining part is discarded. Therefore, we are especially
interested in this initial part. Additionally, we observe, that
the exact solution stays close to a certain quantity. This
feature is called turnpike property and will be discussed in
Sec. V. Moreover, we note the accuracy of the solution on
Gexp in the first part of the horizon, even though it does not
follow the so called leaving arc close to the end time.

The absolute error is illustrated in Fig 5. We observe that
due to the fine meshsize of the exponential grid Gexp at the
beginning of the time interval (9 of 11 grid points are used
in [0, 5]), the error is lower by several orders of magnitude
in comparison to the uniform grid Guni. For both solutions,
we observe an increase of the error when approaching time
zero and time T = 30. This stems from the faster dynamics
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Fig. 5. Absolute error of the perturbed solutions. From top to bottom:
‖δy(t)‖L2(Ω), ‖δu(t)‖L2(Ω) and ‖δλ(t)‖L2(Ω).

of the system in this part.
These results motivate the construction of algorithms for

adaptive grid generation which is subject to future research.
In this example, only the time grid was altered. The spatial
grid was kept constant over all timesteps. However, to fully
exploit the results of Theorem 2, the spatial grids can follow
the same refinement pattern, leading to fine spatial grids on
the initial part with meshsize increasing in time. This will
lead to a fast solution of the problems arising in applications
of Model Predictive Control for PDEs.

V. A QUANTITATIVE TURNPIKE THEOREM

A second application of the results presented in the first
part of this paper is a turnpike result for infinite dimensional
linear quadratic optimization problems. The proof in the ref-
erences put forward in the Introduction includes the solution
of the Algebraic Riccati Equation. We present a different
approach, using only the assumptions of Theorem 1.

We introduce the solution of a steady state optimization
problem, namely (ȳ, ū, λ̄) that solves the operator equation(

C?C −Λ?

−Λ −BQ−1B?

)(
ȳ
λ̄

)
=

(
C?Cyd
Bud

)
,

where Q = αR?R and ū = Q−1B?λ̄ + ud. This resem-
bles the first order optimality condition of the optimization

problem

min
ȳ,ū

1

2
‖C(ȳ − yd)‖2H +

α

2
‖R(ū− ud)‖2L2(Ω)

s.t. Λȳ −Bū = 0.

Similar to the perturbation result presented in the previous
section, we consider the distance of the solution of (2) to
this variable: (δy, δλ) := (y − ȳ, λ − λ̄). A straightforward
computation shows that this variable solves

M

(
δy
δλ

)
=

(
−〈λ̄, ·〉
〈y0 − ȳ, ·〉

)
. (7)

We conclude a result similar to Theorem 2.
Theorem 3: Assume (δy, δλ) solves (7) and let the as-

sumptions of Theorem 1 hold. Then, there exists µ > 0 and
c2 ≥ 0 independent of T , such that

‖ 1

e−µt + e−µ(T−t) δy‖Y + ‖ 1

e−µt + e−µ(T−t) δu‖U

+‖ 1

e−µt + e−µ(T−t) δλ‖P ≤ c2(‖y0 − ȳ‖H + ‖λ̄‖H),
(8)

where Y = P = L2(0, T ;H) and U = L2([0, T ]× Ω).
The scaling factor’s denominator is near zero for times t in
the middle of the optimization horizon. Therefore, to fulfill
inequality (8), the solution triple (y, u, λ) has to be close
to the solution (ȳ, ū, λ̄) of the static problem in the middle
part of the optimization horizon. As the constants involved
are independent of T , this resembles a turnpike property.
Fig. 4 shows this effect for the three variables. Although
the variables are scaled by a factor different from that in
Theorem 2, the proof is very similar.
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