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ABSTRACT. Determining the power distribution of the members of a shareholder meet-
ing or a legislative committee is a well-known problem for many applications. In
some cases it turns out that power is nearly proportional to relative voting weights,
which is very beneficial for both theoretical considerations and practical computations
with many members. We present quantitative approximation results with precise error
bounds for several power indices as well as impossibility results for such approxima-
tions between power and weights.

1. INTRODUCTION

Consider a stock corporation whose shares are owned by three major stockholders
owning 35%, 34%, and 17%, respectively. The remaining 14% are widely spread. As-
suming that decisions a made by simple majority rule, all three major stockholders have
equal influence on the company’s decisions, while the private shareholders have no say.
To be more precise, any two major stockholders can adopt a proposal, while the pri-
vate shareholders together with an arbitrary major stockholder need further affirmation.
Such decision environments can be captured by means of weighted voting games. For-
mally, a weighted (voting) game consists of a set of players N = {1, . . . , n}, a vector of
non-negative weights w = (w1, . . . , wn), and a positive quota q. A proposal is accepted
if and only if the weight sum of its supporters meets or exceeds the quota. Committees
that decide between two alternatives have received wide attention. Von Neumann and
Morgenstern introduced the notion of simple games, which is a super class of weighted
games, in [39]. Examples of decision-making bodies that can be modeled as weighted
games are the US Electoral College, the Council of the European Union, the UN Secu-
rity Council, the International Monetary Fund or the Governing Council of the European
Central Bank. Many applications seek to evaluate players’ influence or power in simple
or weighted games, see, e.g., [28]. The initial example illustrates that shares or weights
can be a relative poor proxy for the distribution of power. Using the taxicab metric,
i.e., the ‖ · ‖1-distance, the corresponding distance between shares and relative power is∣∣0.35− 1

3

∣∣+
∣∣0.34− 1

3

∣∣+
∣∣0.17− 1

3

∣∣+ |0.14− 0| ≈32.67%.
If the weights add up to one, then we speak of relative weights. The insight that

the power distribution differs from relative weights, triggered the invention of so-called
power indices like the Shapley-Shubik index [38], the Penrose-Banzhaf index [3], or
the nucleolus [37]. Due to the combinatorial nature of most of those indices, qualita-
tive assessments are technically demanding and large numbers of involved parties cause
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computational challenges [4]. Moreover, there is a large variety of different power in-
dices proposed so far. On the positive side, there are a few limit results, which state
that, under certain technical conditions, the power distribution of an infinite sequence
of weighted voting systems tends to the relative weight distribution. This of course
simplifies the analysis. The aim of this paper is to provide quantitative results of the
form

‖p− w‖1 =
n∑
i=1

|pi − wi| ≤
c∆

min{q, 1− q}
, (1)

where w is the relative weight vector, q the quota, p the power distribution induced
by a certain power index, ∆ = maxiwi the maximum relative weight, and c ∈ R>0

a constant depending on the chosen power index. This inequality provides a concrete
error bound based on just a few invariants of the underlying weighted game. Although
limit results for sequences of weighted games can be derived in general, Inequality (1)
can also be applied to a single weighted game. Applications range from approximating
power distributions with many involved parties, where the exact evaluation is computa-
tionally infeasible, to statements about power distributions in situations with incomplete
or uncertain information. In our above example there may be many private shareholders
whose exact shares are either unknown (due to the lack of a reporting obligation) or
highly volatile. (Our precise statement about the exact power distribution, independent
of the distribution of the widely spread shareholdings and almost independent of the
chosen power index, is due to a rather special situation, see the end of Subsection 2.1.)
Results for different distance measures can be derived in a unified way, which makes
the choice of the ‖ · ‖1-distance less special. The precise involvement of the invariants
∆, q, and 1 − q in the right hand side of Inequality (1) is rather an explanation of a
universal behavior than a limitation. We will derive lower bounds for the constant c in-
dependent of the properties of the chosen power index, i.e., besides the constant, results
like Inequality (1) are the best we can hope for. This explains the necessity of several
conditions used in known limit results.

E.g., for the Shapley-Shubik index Neyman obtained in 1982:

Theorem 1.1. [34] Let n ∈ N, N = {1, . . . , n}, 0 < q < 1, w ∈ Rn
≥0 with ‖w‖1 = 1,

and P (i, q) be the probability that in a random order of N , i is the first element in
the order for which the w-accumulated sum exceeds q. For every ε > 0 there exist
constants δ > 0 and K > 0 such that if ρ = maxi∈N wi < δ, and Kρ < q < 1 −Kρ
then ‖P (·, q)− w‖1 < ε.

In other words, if the maximum relative weight ∆ approaches zero and the relative
quota q is not too near to the extreme points 0 or 1, then the power distribution tends to
the vector of relative weights if the distance is measured by the ‖ · ‖1-norm. The precise
dependence of δ and K on ε is hidden in the technical lemmas of [34]. This is due to
the fact that the original motivation behind this result was the study of the asymptotic
value of non-atomic games.
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Another well-known limit theorem is the Penrose limit theorem (PLT). It is an un-
proven statement implicitly contained in [36]. Loosely speaking it states that, for a quota
of one half, the ratio between the Penrose-Banzhaf indices of any two voters converges
to the ratio between their weights as the number of voters increases. In [32] the authors
used Theorem 1.1 in order to derive a version of the PLT for the Shapley-Shubik in-
dex for so-called replicative q-chains, where finitely many types of voters get replicated
with a strictly positive frequency. In Lemma 4.1 we deduce a general PLT-type result
from Inequality (1), cf. [25, Proposition 1]. Using a local central limit theorem (for
normalized sums of independent random variables) Lindner and Machover, see [32],
also obtained a PLT for the Penrose-Banzhaf index for q = 1

2

∑n
i=1wi and divisibility

conditions on the involved (non-normalized) integer weights.
Besides the Shapley-Shubik and the Penrose-Banzhaf index, further limit results have

only been obtained for the nucleolus. In [25, Lemma 1] the authors have proven Inequal-
ity (1) for c = 2, which implies a PLT-type result.

One important problem in the context of power indices and weighted games, is the
so-called “inverse power index problem”, see e.g. [7, 19, 23, 24] and the references
therein. It asks for weights and a quota such that the corresponding power distribution
meets a given ideal power distribution as closely as possible. Since there is only a finite
number of different weighted or simple games, it is obvious that some power vectors
can not be approximated too closely if the number of voters is small. In [1] Alon and
Edelman showed that there are also vectors that are hard to approximate by the Penrose-
Banzhaf index of a simple game if most of the mass of the vector is concentrated on a
small number of coordinates. This goes in line with a relatively large maximum weight
∆. Generalizations and impossibility results for other power indices have been obtained
in [22].

The case the power distribution coincidentally matching relative weights has received
special attention in the literature. For the Penrose-Banzhaf index, the subclass of spher-
ically separable simple games has this property, see [14]. In [35] Peleg shows that a
homogeneous constant-sum weighted game has a nucleolus which equals the relative
homogeneous weights. A similar result for the nucleolus of weighted games with many
replicated voters that have integral weights from a finite set has been obtained in [25,
Proposition 2].

For more practically orientated studies on the ownership and control structure of stock
companies we refer the interested reader, e.g., to [31]. Algorithms to approximate power
indices can, e.g., be found in [2, 9, 29]. The expected difference between power and
weights has been studied in [15] for the Shapley-Shubik and the Penrose-Banzhaf index.
Intervals for the power of voters in weighted games with uncertain weights can also
be computed with integer linear programming techniques, see [21]. However, these
techniques (currently) are computationally infeasible for more than, say, 20 voters.

The rest of the paper is organized as follows. In Section 2 we introduce weighted
games, power indices, norms and limits. Our main results are concluded in Section 3,
which is subdivided into three subsections. First we discuss invariants of weighted
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games that are suitable for upper bounds on the deviation of power and relative weights.
In Lemma 3.14 we show that bounds of the form of Inequality (1) are the best that we
can hope for. One such upper bound, which is applicable for the nucleolus, is obtained
in Lemma 3.8. In combination with Lemma 3.12 all power indices based on weighted
representations can be captured. We close this section by numerical investigations for
other power indices. In Section 4 we briefly show how quotient-like statements as PLT-
type results can be obtained in general from those ‖ · ‖1 upper bounds. We close with a
conclusion and future research directions in Section 5. The more technical proofs from
results of Section 3 are evacuated to Section A in the appendix.

2. PRELIMINARIES

This section collects some notation and basic facts. Simple games, weighted games
and power indices as a tool for the measurement of voting power are treated in Sub-
section 2.1. Readers being familiar with the basics of cooperative game theory can
safely skip this part. Subsection 2.2 treats the mathematical basics of distance func-
tions, norms, and limits. Since some papers on limit results for power indices are rather
imprecise in their statements, it is useful to briefly summarize the precise formalization
and notation.

2.1. Weighted games, simple games and measurement of power. For a positive
integer n let N = {1, . . . , n} be the set of voters. A simple game is a mapping
v : 2N → {0, 1} from the subsets of N to binary outcomes satisfying v(∅) = 0,
v(N) = 1, and v(S) ≤ v(T ) for all ∅ ⊆ S ⊆ T ⊆ N . The interpretation in the
context of binary voting systems is as follows. A subset S ⊆ N is considered as the set
of voters that are in favor of a proposal, i.e., which vote “yes”. v(S) encodes the group
decision, i.e., v(S) = 1 if the proposal is accepted and v(S) = 0 otherwise. So, these
assumptions are quite natural for a voting system with binary options in the input and
output domain. A simple game v is called weighted if there exist weights w ∈ Rn

≥0 and
a quota q ∈ R>0 such that v(S) = 1 if and only if w(S) :=

∑
i∈S wi ≥ q.1 From the

conditions of a simple game we conclude 0 < q ≤ w(N). If w(N) = 1 we speak of
normalized or relative weights, where 0 < q ≤ 1. We denote the respective game by
v = [q;w] and refer to the pair (q;w) as a weighted representation, i.e., we can have
[q;w] = [q′;w′] but (q;w) 6= (q′;w′). The example from the introduction can, e.g., be
represented by (51%; 35%, 34%, 17%, 14%),

(
1
2
; 1

3
, 1

3
, 1

3
, 0
)
, or (6; 4, 3, 3, 1), where the

fourth voter mimics the private shareholders. Two voters i, j ∈ N are called equivalent
if v(S ∪{i}) = v(S ∪{j}) for all S ⊆ N\{i, j}. If v({i}) = 1, we call voter i a passer
and a null voter if v(S ∪ {i}) = v(S) for all S ⊆ N\{i}.

A power index ϕ is a family of mappings from the set of simple or weighted games
on n voters into Rn, where ϕi(v) denotes the ith component of ϕ(v) ∈ Rn. We call ϕ
positive if ϕ(v) ∈ Rn

≥0\{0} for all possible games v. We say that ϕ satisfies the null
voter property if ϕi(v) = 0 for each null voter i ∈ N . We call ϕ symmetric if ϕi(v) =

1Some authors require w(S) > q, which may be written as w(S) ≥ q′ for q′ slightly larger than q.
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ϕj(v) for all equivalent voters i, j and efficient if ‖ϕ(v)‖1 = 1 for all possible games
v. However, if ϕ is not efficient but positive, then ϕ′i(v) := ϕi(v)/

∑n
j=1 ϕj(v) is both.

The absolute Penrose-Banzhaf index is defined by 1
2n−1

∑
S⊆N\{i} (v(S ∪ {i})− v(S))

for voter i ∈ N . With this, the (relative) Penrose-Banzhaf index is the corresponding
efficient version as constructed before. The Shapley-Shubik index for voter i is given
by
∑

S⊆N\{i}
|S|!·(n−|S|−1)!

n!
· (v(S ∪ {i})− v(S)). In order to define the nucleolus of a

simple game we need some preparations. In our context, an imputation x is an element
of Rn

≥0 with ‖x‖1 ≤ 1. For an imputation x and S ⊆ N we call e(S, x) = v(S) −
x(S) the excess, where x(S) =

∑
i∈S xi. With this, the excess vector is the weakly

monotonically decreasing list of the excesses of the 2n subsets of N . E.g., for v =
[4; 3, 2, 1, 1] and x =

(
1
3
, 1

3
, 1

6
, 1

3

)
the excess vector is given by(

1
2
, 1

2
, 1

3
, 1

3
, 1

3
, 1

6
, 1

6
, 0, 0,−1

6
,−1

6
,−1

3
,−1

3
,−1

3
,−1

2
,−1

2

)
.

The (unique) imputation x? that yields the lexicographical minimal excess vector is
called the nucleolus of v. See [37] for the original definition which does not apply to
simple games with more than one passer. ‖x?‖1 = 1 is automatically satisfied in the
minimum. Note that some authors require ‖x‖1 = 1 for any imputation. We remark that
all three mentioned power indices are positive, symmetric, efficient and satisfy the null
voter property.

In order to capture the special structure underlying the example from the introduction,
we have to introduce a unanimity game uS as follows: uS(T ) = 1 if and only if S ⊆ T ,
where ∅ 6= S ⊆ N . For each symmetric and efficient power index ϕ satisfying the null
voter property we have ϕi(uS) = 1/|S| for all i ∈ S and ϕi(uS) = 0 otherwise.

2.2. Mathematical basics of limits, norms and distance functions. A distance func-
tion or metric is used to measure the distance between two elements x, y of some (arbi-
trary) set U :

Definition 2.1. A metric on a set U is a function (called the distance function) d : U ×
U → R, where for all x, y, z ∈ U the following conditions are satisfied:

(1) d(x, y) ≥ 0 (non-negativity or separation axiom);
(2) d(x, y) = 0⇔ x = y (identity of indiscernibles);
(3) d(x, y) = d(y, x) (symmetry);
(4) d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality).

Given a connected graph G = (V,E) a metric on the set V of its vertices is e.g. given
by the length, i.e., the number of edges, of a shortest path connecting both vertices. We
remark that property (or axiom) (1) can be concluded from the other ones. For a metric
we assume no structure of the set U , which in turn allows a vast diversity of different
metrics in general. Given a metric d on a set U we can compare any two elements of
U according to their distance. For a sequence (xn)n∈N, i.e., an infinite ordered list of
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elements xn ∈ U ,2 in U , we can formalize the idea of the xn tending to some ultimate
x ∈ U as follows:

Definition 2.2. Given a metric space (U, d), i.e., a set U and a metric d on U , we say
that x ∈ U is the limit of a sequence (xn)n∈N (in U ) if for all ε ∈ R>0 there exists an
N(ε) ≥ 0 such that for all integers n ≥ N(ε), we have d(xn, x) < ε. If a sequence
admits a limit, we say that the sequence is convergent.

We remark that each convergent sequence uniquely determines a limit. However,
whether a sequence converges can depend on the used metric. For our example of the
graph metric the only convergent sequences are (almost) constant sequences, where for
some arbitrary but finite integer N0, xn = x for all n ≥ N0. The previous definition
has the disadvantage that in order to decide whether the limit of a given sequence exists
one needs to know or check all possible limits. Given a metric space (U, d) a sequence
(xn)n∈N (in U ) is a Cauchy sequence if for all ε ∈ R>0 there exists an N(ε) ≥ 0 such
that for all integers n,m ≥ N(ε), we have d(xn, xm) < ε. A metric space (U, d) in
which every Cauchy sequence converges to an element of U is called complete. In a
complete metric space a sequence is convergent if and only if it is a Cauchy sequence.

A drawback of the above definition is that the convergence may depend on the precise
definition of the used metric. We thus restrict attention to metrics induced by a norm of
a finite dimensional vector space.

Definition 2.3. Given an R-vector space V , a norm on V is a function ‖ · ‖ : V → R
with the following properties3

(1) ‖λu‖ = |λ| · ‖u‖ (absolute homogeneity or absolute scalability);
(2) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (subadditivity or triangle inequality);
(3) if ‖u‖ = 0 then u is the zero vector (separates points)

for all u, v ∈ V and λ ∈ R.

Each norm ‖ · ‖ induces a distance function via d(x, y) := ‖x − y‖. For V = Rn

examples of norms are given by ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max1≤i≤n |xi|. Given a
vector space V two metrics ‖·‖ and ‖·‖′ are called equivalent if there exist l1, l2, u1, u2 ∈
R>0 such that l1‖v‖ ≤ ‖v‖′ ≤ u1‖v‖ and l2‖v‖′ ≤ ‖v‖ ≤ u2‖v‖′ for all v ∈ V . In a
finite-dimensional vector space all norms are equivalent. As an example consider

1 · ‖x‖∞ ≤ ‖x‖1 ≤ n · ‖x‖∞ and
1

n
· ‖x‖1 ≤ ‖x‖∞ ≤ 1 · ‖x‖1

for all n ∈ N>0 and all x ∈ Rn =: V . (Indeed the stated constants are tight as they are
attained at x = (1, 0, . . . , 0) and x = (1, . . . , 1).) So, in Rn a sequence is convergent
with respect to a metric induced by norm ‖ · ‖ if and only if it is convergent with respect

2Readers interested in generalizations of sequences in general topological spaces may look at nets or
Moore–Smith sequences.

3We remark that there is a more general definition of a norm for F-vector spaces, where F is an arbitrary
field and where the absolute value | · | can be replaced by some arbitrary norm for F.
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to a metric induced by another norm ‖ · ‖′, i.e., there is no need to explicitly state the
used norm. (As long as the application does not call for a specific metric that is not
induced by a norm.)

The bound ‖x‖∞ ≤ ‖x‖1 can be slightly improved in our context.

Lemma 2.4. Forw,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1, we have ‖w−w‖∞ ≤ 1

2
‖w−w‖1.

PROOF. With S := {1 ≤ i ≤ n | wi ≤ wi} and A :=
∑

i∈S (wi − wi), B :=∑
i∈N\S (wi − wi), where N = {1, . . . , n}, we have A − B = 0 since ‖w‖1 = ‖w‖1

and w,w ∈ Rn
≥0. Thus, ‖w − w‖1 = 2A and ‖w − w‖∞ ≤ max{A,B} = A. �

3. INEQUALITIES BETWEEN WEIGHTS AND POWER INDICES

We are interested in upper bounds for the distance between the relative weights w
of a weighted game [q;w] (with n voters) and the corresponding power distribution
ϕ([q;w]). As argued in the previous subsection, we should limit our considerations on
distance functions induced by a norm ‖ · ‖. While any two norms are equivalent for
a fixed dimension n, the corresponding constants can of course depend on n. So, we
have to explicitly state which norms we want to use. Here, we restrict ourselves onto the
norms ‖·‖1 and ‖·‖∞, which represent two kinds of extreme positions (in a certain sense)
and have nice mathematical and algorithmic properties. Knowingw, [q;w], ϕ(·) and ‖·‖
of course uniquely determines ‖w − ϕ ([q;w]) ‖. We thus aim at deriving upper bounds
only invoking few invariants of a given representation (q;w) and the corresponding
weighted game [q;w]. In Subsection 3.1 we briefly describe the invariants considered in
this paper and discuss possible alternatives. The aim of Subsection 3.2 is to derive lower
bounds for the distance between relative weights and power in the worst case. Upper
bounds are treated in Subsection 3.3.

3.1. Invariants of weighted games and their representations. We consider a weight-
ed game with normalized representation (q;w), i.e., w ∈ Rn

≥0 with ‖w‖1 = 1. Useful
and easy invariants are the number of voters n, the quota q ∈ (0, 1], and the maximum
weight maxiwi = ‖w‖∞.4 However, also more sophisticated invariants of weight vec-
tors have been studied in applications. The so-called Laakso-Taagepera index a.k.a.
Herfindahl-Hirschman index, c.f. [27], is used in Industrial Organization to measure the
concentration of firms in a market, see, e.g., [6].

Definition 3.1. For w ∈ Rn
≥0 with w 6= 0 the Laakso-Taagepera index is given by

L(w) =

(
n∑
i=1

wi

)2

/

n∑
i=1

w2
i .

4 For an arbitrary representation (q;w) we consider the normalized quota q/
∑n

i=1 wi and the normal-
ized relative weight max{wi/

∑n
j=1 wj | 1 ≤ i ≤ n}.
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In general we have 1 ≤ L(w) ≤ n. If the weight vector w is normalized, then
the formula simplifies to L(w) = 1/

∑n
i=1w

2
i . Under the name “effective number of

parties” the index is widely used in political science to measure party fragmentation,
see, e.g., [26]. We observe the following relations between the maximum relative weight
∆ = ∆(w) and the Laakso-Taagepera index L(w):

Lemma 3.2. For w ∈ Rn
≥0 with ‖w‖1 = 1, we have

1

∆
≤ 1

∆ (1− α(1− α)∆)
≤ L(w) ≤ 1

∆2 + (1−∆)2

n−1

≤ 1

∆2

for n ≥ 2, where α := 1
∆
−
⌊

1
∆

⌋
∈ [0, 1). If n = 1, then ∆ = L(w) = 1.

PROOF. Optimize
n∑
i=1

w2
i with respect to the constraintsw ∈ Rn, ‖w‖1 = 1, and ∆(w) =

∆, see Section A for the technical details. �

So, any lower or upper bound involving L(w) can be replaced by a bound involving
∆ instead. Since ∆ has nicer analytical properties and requires less information on w,
we stick to ∆ in the following. We remark that there are similar inequalities for other
indices measuring market concentration.

In the context of the study of limit theorems for power distributions of weighted
games the Laakso-Taagepera index was suggested in [30]. However, the limit behavior
of L(w) is in one-to-one correspondence to the limit behavior of 1/∆(w):

Corollary 3.3. Let (wm)m∈N be a sequence of vectors with non-negative entries and
‖wm‖1 = 1. (To be more precise, wm ∈ Rnm

≥0 for some nm ∈ N>0.) Then, we have

lim
m→∞

∆(wm) = 0 ⇐⇒ lim
m→∞

L(wm) =∞.

We leave the study of other possible invariants of weighted games and their represen-
tations for future research.

3.2. Lower bounds for the worst case approximation. In order to study the question
which set of invariants permits a meaningful upper bound on the distance between rela-
tive weights and power, we consider constructions meeting the prescribed invariants to
obtain lower bounds on the worst case approximation.

Since a large number of power indices is introduced in the literature and this stream
does not seem to dry out, it would be very desirable to have approximation statements
which hold for large classes of power indices. With almost no assumption on the power
index we observe:

Lemma 3.4. Let n ∈ N>0, q, q ∈ (0, 1], w,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1, ‖ · ‖ be

an arbitrary norm on Rn and ϕ be a power index, then we have

max {‖w − ϕ ([q;w])‖ , ‖w − ϕ ([q;w])‖} ≥ ‖w − w‖
2

.
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PROOF. Using the triangle inequality yields ‖w − ϕ ([q;w])‖ + ‖w − ϕ ([q;w])‖ ≥
‖w − w‖ from which we can conclude the stated inequality. �

So, instead of lower bounds for the distance between relative weights and power,
we will consider lower bounds for the maximum distance between two relative weight
vectors of the same weighted game being compatible with the considered invariants.
The general lower bound of Lemma 3.4 will now be used to show that controlling the
quota and the number of voters cannot yield reasonable limit results:

Lemma 3.5. For each q ∈ (0, 1] there exists a weighted game v = [q;w] = [q;w] with
n ≥ 2, where w,w ∈ Rn

≥0, ‖w‖1 = ‖w‖1 = 1, ‖w − w‖∞ ≥ 1
3
, and ‖w − w‖1 ≥ 2

3
.

PROOF. We give general constructions for different ranges of q:
• 2

3
< q ≤ 1: w =

(
2
3
, 1

3
, 0, . . . , 0

)
, w =

(
1
3
, 2

3
, 0, . . . , 0

)
;

• 1
3
< q ≤ 2

3
: w =

(
2
3
, 1

3
, 0, . . . , 0

)
, w = (1, 0, . . . , 0);

• 0 < q ≤ 1
3
: w =

(
2
3
, 1

3
, 0, . . . , 0

)
, w =

(
1
3
, 2

3
, 0, . . . , 0

)
.

�

So, if we just know that the number of voters tends to infinity and the quotas are fixed
to some arbitrary number in (0, 1] or some arbitrary subinterval of (0, 1], then no limit
result is possible. For a single weighted game we can state a constant number as a lower
bound for the distance between relative weights and power independent of the invariants
q and n, both in the distances induced by the ‖ · ‖1- and the ‖ · ‖∞-norm, respectively.

Similarly, it is not sufficient to require that the maximum relative weight ∆ tends to
zero, i.e., L(w) → ∞, which would imply that the number of voters grows without
bounds. In terms of a single weighted game, we construct a weighted representation
consisting of any number of voters that is sufficiently large and exactly meets the chosen
value of ∆. Then we construct another weighted representation of the same weighted
game whose distance to the first weight vector is lower bounded by a constant in the
distance induced by the ‖ · ‖1-norm.

Lemma 3.6. For each ∆ ∈ (0, 1) there exists a weighted game v = [q;w] = [q;w]
with n ≥ 4

3∆
+ 6 voters, where q ∈ (0, 1), w,w ∈ Rn

≥0, ∆(w) = ∆(w) = ∆, ‖w‖1 =

‖w‖1 = 1, ‖w − w‖1 ≥ 2
3
, and ‖w − w‖∞ ≥ ∆/2.

PROOF. If ∆ ≥ 2
3
, we can choose q = 1 − ∆, w = (∆, 1 − ∆, 0, . . . , 0), w = (1 −

∆,∆, 0, . . . , 0), so that ‖w−w‖1 = 2 · (2∆−1) ≥ 2
3

and ‖w−w‖∞ = 2∆−1 ≥ ∆/2.
If 0 < ∆ < 2

3
, we set q = ∆/2, w2i−1 = w2i = ∆, w2i = w2i−1 = ∆/2 for 1 ≤ i ≤ a,

w2a+1 = w2a+2 = w2a+3 = w2a+4 = w2a+5 = w2a+6 = 1
3
− a∆

2
≥ 0, w2a+4 = w2a+5 =

w2a+6 = w2a+1 = w2a+2 = w2a+3 = 0, and wi = wi for all 2a + 7 ≤ i ≤ n, where
a :=

⌊
2

3∆

⌋
≥ 1. With this, we have ‖w − w‖1 = a∆ + 1 − 3a∆

2
= 1 − a∆

2
≥ 2

3
and

‖w − w‖∞ = ∆/2. �

We remark that the excluded case ∆ = 1 can be treated separately: For ∆ = 1 = q
we have [1; 1, 0, . . . , 0] = [1; 0, 1, 0, . . . , 0], where the two weight vectors have a ‖ · ‖1-
distance of 2. For each w,w ∈ Rn with ∆(w) = ∆(w), we obviously have ‖w−w‖∞ ≤
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∆(w). So, a constant lower bound for the |·‖∞-norm can only exist if we slightly weaken
the assumptions.

Lemma 3.7. For ∆ ∈ (0, 1] there exists a weighted game v = [q;w] = [q;w] with n ≥
1
∆

+ 1 ≥ 2, q, q ∈ (0, 1), w,w ∈ Rn
≥0, ∆(w) = ∆, ‖w‖1 = ‖w‖1 = 1, ‖w − w‖∞ ≥ 1

3
.

PROOF. If 1 > ∆ ≥ 2
3

we can apply Lemma 3.6, so that we assume ∆ < 2
3

in the
following. For a := b1/∆c ≥ 2 we setwi = ∆ for 1 ≤ i ≤ a, ∆ > wa+1 = 1−a∆ ≥ 0,
and wi = 0 for a+ 2 ≤ i ≤ n. If wa+1 > 0, we set q = wa+1, w1 = 1− ε, wi = ε/a for
2 ≤ i ≤ a + 1, wi = 0 for a + 2 ≤ i ≤ n, and q = ε, where ε = min{2/3−∆,∆/2}.
If wa+1 = 0, we set q = ∆, w1 = 1 − ε, wi = ε/(a − 1) for 2 ≤ i ≤ a, and wi = 0
for a + 1 ≤ i ≤ n, and q = ε, where ε = min{2/3 − ∆,∆/2}. With this, we have
‖w − w‖∞ = 1−∆− ε ≥ 1

3
in both cases. �

So, we have shown that controlling either the relative quota or the maximum relative
weight is not sufficient to obtain reasonable upper bounds for the distance between
relative weights and power if the number of voters gets large. However, it is sufficient
to control the quota q and the maximum relative weight ∆ for some power indices. (If
∆ tends to zero, then the number of voters automatically tends to∞ since ∆ ≥ 1

n
. Due

to Lemma 3.2 it would also be sufficient to control the quota and the Laakso-Taagepera
index.)

3.3. Upper bounds for the distance between weights and power. We start with a
rather general upper bound for all positive and efficient power indices ϕ satisfying∑

i∈S ϕi([q;w)] ≥ q for every winning coalition S. This directly implies an upper
bound for the nucleolus.

Lemma 3.8. Let w ∈ Rn
≥0 with ‖w‖1 = 1 for an integer n ∈ N>0 and 0 < q < 1. For

each x ∈ Rn
≥0 with ‖x‖1 = 1 and x(S) =

∑
s∈S xs ≥ q for every winning coalition S

of [q;w], we have ‖w − x‖1 ≤ 2∆
min{q+∆,1−q} ≤

2∆
min{q,1−q} , where ∆ = ∆(w).

PROOF. Consider a winning coalition T such that x(T ) is minimal and invoke x(T ) ≥ q,
see Section A for the technical details. �

Corollary 3.9. Let w ∈ Rn
≥0 with ‖w‖1 = 1 for an integer n ∈ N>0 and 0 < q < 1.

For each element x of the nucleus5, which contains the nucleolus, of [q;w], we have
‖w − x‖1 ≤ 2∆

min{q+∆,1−q} ≤
2∆

min{q,1−q} , where ∆ = ∆(w).

PROOF. We have 1 − x(S) ≤ E1(x) for every winning coalition S of [q;w], where
E1(x) is the maximum excess. Since 1−w(S) ≤ 1−q for every winning coalition S of
[q;w], we have 1− x(S) ≤ 1− q as the maximum excess is minimized for all elements
of the nucleus. �

5The nucleus of a weighted game [q;w] is the set of all x ∈ Rn
≥0 with ‖x‖1 = 1 that minimize the

maximum excess E1(x) = maxS⊆N v(S) − x(S). If [q;w] contains passers, then those x may not be
individually rational, i.e., xi ≥ v({i}) is violated. This case is excluded by some authors.
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Lemma 3.8 and Corollary 3.9 slightly tighten and generalize [25, Lemma 1]. From
Lemma 2.4 we can directly conclude similar bounds for the ‖ · ‖∞-distance.

Some power indices ϕ have the property that ϕ([q;w]) is a feasible weight vector
for a suitable quota q′, i.e., [q;w] = [q′;ϕ([q;w])]. Examples are the minimum sum
representation index, see [10], or power indices based on averaged representations from
[16, 17]. For the Penrose-Banzhaf index, the subclass of spherically separable simple
games has this property, see [14]. Thus, it is appealing to study upper bounds for the
‖ · ‖1-distance between two relative weight vectors of the same weighted game. From
Lemma 3.8 we can directly conclude the following two implications:

Corollary 3.10. Let w,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1 for an integer n ∈ N>0 and

0 < q ≤ q < 1. If [q;w] = [q;w] and ∆ = ∆(w), then we have ‖w−w‖1 ≤ 2∆
min{q,1−q} .

Corollary 3.11. Let w,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1 for an integer n ∈ N>0 and

0 < q, q < 1. If [q;w] = [q;w], then we have

‖w−w‖1 ≤ max

{
2∆(w)

min{q, 1− q}
,

2∆(w)

min{q, 1− q}

}
≤ 2∆(w)

min{q, 1− q}
+

2∆(w)

min{q, 1− q}
.

Unfortunately, those corollaries do not allow us to derive a bound on ‖w − w‖1

which only depends on q and ∆(w). However, we can obtain the following analog
of Lemma 3.8 for losing instead of winning coalitions.

Lemma 3.12. Let w ∈ Rn
≥0 with ‖w‖1 = 1, ∆ = ∆(w), and 0 < q < 1. For each

x ∈ Rn
≥0 with ‖x‖1 = 1 and x(S) =

∑
s∈S xs ≤ q for every losing coalition S of

[q;w], we have ‖w − x‖1 ≤ 4∆
min{q,1−q} . Moreover, if q > ∆(w), then ‖w − x‖1 ≤

2∆
min{q−∆,1−q+∆} ≤

2∆
min{q−∆,1−q} .

PROOF. Consider a losing coalition T such that x(T ) is maximal and invoke x(T ) ≤ q.
Section A provides technical details. �

Intuitively, the inconspicuous condition ∆(w) < q is equivalent to the property that
[q;w] does not contain passers.

Corollary 3.13. Let w,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1, ∆ = ∆(w), and 0 < q, q < 1.

If [q;w] = [q;w], then we have ‖w − w‖1 ≤ 4∆
min{q,1−q} . Moreover, if additionally [q;w]

does not contain any passer, then we have ‖w − w‖1 ≤

min

{
2∆

min{q −∆, 1− q}
,

2∆(w)

min{q −∆(w), 1− q}

}
≤ 2∆

min{q −∆, 1− q}
.

PROOF. If q ≥ q, then w(S) ≥ q ≥ q for every winning coalition S of [q;w]. Here, we
can apply Lemma 3.8. Otherwise we have w(T ) < q < q for every losing coalition T
of [q;w] and Lemma 3.12 applies. �

We remark that Lemma 3.8 and Lemma 3.12 are also valid for roughly weighted
games, where coalitions with a weight sum being equal to q may also be losing. So,
one might ask the same question for α-roughly weighted games, see [11, 13], where
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coalitions with weight sum below q are losing and coalitions with weight sum above αq
are winning.

From Corollary 3.13 we can deduce the following: If w ∈ Rn
≥0 with ‖w‖1 = 1

and 0 < q < 1 so that [q;w] does not contain any passer, then ‖w − ϕ([q;w])‖1 ≤
2∆(w)

min{q−∆(w),1−q} for ϕ being the minimum sum representation index or one of the power
indices based on averaged representations.

In the previous subsection we have argued that reasonable upper bounds on the dis-
tance between weights and power are impossible if only the relative quota or the max-
imum relative weight is taken into account. If both invariants are known, we have pre-
sented corresponding upper bounds for some power indices. So far we know that both
invariants have to be involved in every upper bound somehow, but the tightest possible
functional correlation is unknown. To that end, we provide:

Lemma 3.14. For each w ∈ Rn
≥0, 0 < q̂ < 1 there exist w ∈ Rn

≥0, 0 < q < 1 with

[q̂;w] = [q;w] and ‖w − w‖1 ≥ c ·min
{

2, ∆
min{q̂,1−q̂}

}
, where ∆ = ∆(w) and c = 1

5
.

PROOF. A construction of a matching representation (q, w) is provided in Section A. �
So, using Lemma 3.4 and Lemma 3.14, we see that Lemma 3.8 and Corollary 3.13

are tight up to the involved constant c.

Shapley- Penrose- Public Deegan Shift
n Shubik Banzhaf Johnston Good Packel Shift DP
3 0.33333 0.20000 0.50000 0.33333 0.00000 0.33333 0.00000
4 0.50000 0.40000 0.75000 0.51429 0.30000 0.51429 0.50000
5 0.60000 0.57895 0.87500 0.70330 0.50000 0.80769 0.75000
6 0.66667 0.72222 1.00000 1.00000 0.71795 1.25763 1.24444
7 0.71429 0.82609 1.13710 1.43590 1.16923 1.60131 1.55556
8 0.75000 0.89552 1.29167 1.78649 1.49020 2.13108 2.08929
9 0.77778 0.98154 1.49796 2.01504 1.71429 2.53762 2.43750

TABLE 1. Necessary constant c for the approximation of the normalized
minimum sum integer representation.

In order to prove similar results for other power indices it suffices to consider an arbi-
trary weighted representation for each weighted game, since we can use Corollary 3.13
and the triangle inequality to transfer the result to any other weighted representation
(while, of course, the involved constant of the upper bound has to be increased). We
can use that insight also in the other direction, i.e., to numerically check whether such
an upper bound for a given power index might exist at all. Table 1 lists the maximum
necessary constant c so that ‖ϕ([q;w])−w‖1 ≤ c·maxi wi

min{q,1−q} for each weighted game with
n voters. As representation (q;w) we have chosen the normalization of a minimum sum
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integer representation, see e.g. [20]. There are 993 061 482 weighted games with n = 9
voters, see [18]. The exact numbers are unknown for n > 9. For the definitions of the
considered power indices we refer, e.g., to [22].

For the Shapley-Shubik index the “worst case” examples can be easily guessed.

Lemma 3.15. For n ≥ 3, v = [n− 1;n− 1,

n−1︷ ︸︸ ︷
1, . . . , 1], q = 1

2
, w =

(
1
2
, 1

2n−2
, . . . , 1

2n−2

)
where v = [q;w] and ‖w‖1 = 1, we have ϕ(v) = 1

n(n−1)
· ((n− 1)2, 1, . . . , 1) and

‖ϕ(v)− w‖1 = n−2
n

for the Shapley-Shubik index ϕ.

PROOF. For a voter 2 ≤ i ≤ n we only need to consider the winning coalition S =

{2, . . . , n}, so that ϕi(v) = (n−2)!·1!
n!

= 1
n(n−1)

and ϕ1(v) = 1−
∑n

i=2 ϕi(v) = n−1
n

. �

We conjecture that Lemma 3.15 gives indeed the worst case scenario for the Shapley-
Shubik index. For the Penrose-Banzhaf index the very same example leads to the power
distribution 1

2n−1+n−2
· (2n−1 − 1, 1, . . . , 1), so that the corresponding constant c quickly

tends to 1. While this indeed gives the worst case example for n ≤ 8, things get worse
for larger n. To that end, let wi = 2 for 1 ≤ i ≤ m, wi = 1 for m + 1 ≤ i ≤ 2m, and
q = α ·3m, wherem ≥ 1 and α ∈ (0, 1). If q(m) and w(n) denote the normalized quota
and weights, then the limit limm→∞ ‖ϕ([q(m);w(m)]−w(m)‖1 exists for the Penrose-
Banzhaf index ϕ. We have depicted the corresponding limits for different values of α
in Figure 1 as dist, where q = 1000α. We remark that the function is symmetric
to α = 1

2
and takes values between zero and 1

3
. As a close approximation we have

plotted the function f(x) =
∣∣x− 1

2

∣∣3 · 8
3

labeled as cmp. So, the ‖ · ‖1-distance between
relative weights and the corresponding power distribution according to the Penrose-
Banzhaf index converges to a constant while the maximum relative weight ∆ tends to
zero for a fixed relative quota. There are only two types of voters with shares of 2

3

and 1
3
, respectively. This example shows that it is not possible to derive a general PLT-

type result for the Penrose-Banzhaf index if the relative quota does not equal 1
2
. In

that direction numerical simulations and analytical results can be found in [5] and [33],
respectively. For the other power indices from Table 1, besides the Shapley-Shubik
index, similar deviations occur.

4. IMPLICATIONS OF UPPER BOUNDS ON THE ‖ · ‖1-DISTANCE

If the ‖ · ‖1-distance between power and weights is small and the relative weight
sum of all voters sharing the same weight as voter i does not vanish, then the quotient
between power and relative weight for voter i has to be close to 1.

Lemma 4.1. Let w ∈ Rn
≥0 with ‖w‖1 = 1, 0 < q < 1 and ϕ be a symmetric, efficient,

and positive power index. If ‖ϕ([q;w])− w‖1 ≤ ε, then

1− ε

2α
≤ ϕi([q;w])

wi
≤ 1 +

ε

2α

for all 1 ≤ i ≤ n withwi > 0, where α = w(S) > 0 and S := {1 ≤ j ≤ n : wi = wj}.
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FIGURE 1. Deviation between weights and the Penrose-Banzhaf index.

PROOF. Assuming ϕ([q;w])i
wi

> 1 + ε
2α

yields ϕ(S) − w(S) > ε/2 by summing over all
j ∈ S. Since ‖ϕ‖1 = ‖w‖1 = 1 and ϕ,w ∈ Rn

≥0 we would have ‖w − ϕ‖1 > ε – a
contradiction. Assuming ϕ([q;w])i

wi
< 1 − ε

2α
yields w(S) − ϕ(S) > ε/2, which leads to

the same contradiction. �
Using the mass measure α is necessary since for each integer n ≥ 2 we may consider

the weighted game v consisting of n − 1 voters of weight 2 and one voter of weight 1.
Let ϕ be a symmetric and efficient power index that satisfies the null voter property and
w denote the corresponding relative weights. If the quota q is an odd integer, we have
ϕi(v) = 1

n
for all 1 ≤ i ≤ n, so that ‖ϕ(v)− w‖1 = n−1

n
· 2

2n−1
. If q is an even integer,

then the voter with weight 1 is a null voter and all other voters get ϕi(v) = 1
n−1

due to
symmetry and efficiency. Here we have ‖ϕ(v)−w‖1 = 2

2n−1
. So ‖ϕ(v)−w‖1 tends to

zero as the number n of voters approaches infinity. However, the fraction ϕn(v)
wi

is either
0 or 2− 1

n
, i.e., rather far away from 1 for larger n.

Bounds for quotients between power and weights for two involved players can be
deduced from Lemma 4.1 via:

Lemma 4.2. If wi, wj, ϕi, ϕj ∈ R>0, εi, εj ∈ [0, 1) with 1 − εi ≤ ϕi

wi
≤ 1 + εi and

1− εj ≤ ϕj

wj
≤ 1 + εj , then

1− εi
1 + εj

≤ wi
wj
· ϕj
ϕi
≤ 1 + εi

1− εj
and

∣∣∣∣ϕiwi − ϕj
wj

∣∣∣∣ ≤ εi + εj.

5. CONCLUSION

If one is interested in upper bounds on the distance between relative weights and
a corresponding power distribution or limits results for sequences of weighted games,
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given the relative quota and the maximum relative weight, Inequality (1) is the essential
answer. In Section 4 we have shown that related results can be generally concluded.

We have derived upper bounds in the form of Inequality (1) for the nucleolus and
all power indices based on weighted representations. Additionally, we have shown that
for an arbitrary power index it is not possible to obtain bounds of smaller magnitude.
So, future technical contributions might try to decrease the corresponding constants c as
far as possible (for the most important power indices). This contribution traded smaller
constants for easier proofs. An important open problem is whether the Shapley-Shubik
index permits an upper bound of the form of Inequality (1) or if the actual “convergence
rate” is more slowly. While we showed that the monotonicity behavior of the Laakso-
Taagepera index is the same as for the inverse maximum relative weight, it might still
be possible that the Laakso-Taagepera index permits tighter bounds than the maximum
relative weight. Moreover, it seems worthwhile to study other invariants than those used
here.

Regarding limit results we showed that the power distribution tends to the relative
weights under the ‖ · ‖1-distance for the nucleolus and power indices based on weighted
representations as long as the maximum relative weight tends to zero and the quotas
are not too skewed (i.e., bounded away from 0 and 1.) An analytical example with two
types of voters having non-vanishing weight shares illustrates that the ‖ · ‖1-distance
between the Penrose-Banzhaf power distribution and the relative weights tends to a
strictly positive number provided that the quota is a fixed number different from 1

2
. So,

for the Penrose-Banzhaf index power can not converge to weights provided the relative
quota is not pegged at one half. Besides the Shapley-Shubik index, for which the general
convergence is proven, there seems to be no suitable candidate for another such limit
result among the classical power indices.

The case of the maximum relative weight going to zero is also sometimes called the
non-atomic world. In contrast, in an atomic world some voters have a relatively large
weight and all others have an individual weight that is comparatively negligible. How-
ever, this is not the case for the weight sum of all “small” voters. Limit results are
available for the Shapley-Shubik and the Penrose-Banzhaf index in the atomic world,
see [8]. Our example on the ownership structure of a stock corporation from the intro-
duction very like belong to the atomic world. [30] claimed to unify limit results for the
atomic and the non-atomic world. Lemma 3.2 and Corollary 3.3 show very transpar-
ently that this is not the case. Lemma 3.14 rather shows that it is impossible to derive
meaningful bounds for those cases. However, it seems reasonable to assume that the
weights of the large voters are known with high accuracy and that their number is rel-
atively small. This would allow to make use of combinatorial algorithms. The idea is
to solve an auxiliary problem to compute an approximation for the power distribution
of the large voters. Suppose that for a set N of voters we classify the voters into many
small ones, collected in O, and a few large ones, collected in N\O. Let w be the vector
of relative weights, q be the relative quota, α = w(O) the weight mass of the small
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voters, and x be an optimal solution of

min y subject to

y +
∑
i∈S

xi ≥ 1 ∀S ⊆ N\O : w(S) ≥ q

y +
q − w(S)

α
· β +

∑
i∈S

xi ≥ 1 ∀S ⊆ N\O : q − α ≤ w(S) < q

β +
∑
i∈N\O

xi = 1

xi ∈ R≥0 ∀i ∈ N\O
β ∈ R≥0

We claim that x?i = xi for i ∈ N\O and x?i = wi · βα is a good approximation for the
nucleolus x of [q;w]. More precisely, we conjecture that there exists a constant c ∈ R>0

such that

‖x− x?‖1 ≤
c∆O

min {|q − w(S)| : S ⊆ N\O}
,

where ∆O = min{wi : i ∈ O} is the maximum relative weight of a small voter. The
idea is to treat the small voters as a continuum and to determine a vector that minimizes
the maximum excess. This is the first step of the optimization problem for the nucleolus.
Preliminary results in the direction of this conjecture were obtained in [12] quite some
years ago. For suitable auxiliary problems for the Shapley-Shubik and the Penrose-
Banzhaf index we refer to [8]. For the latter the problem of corresponding limit results
is widely open.
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APPENDIX A. DELAYED PROOFS

PROOF. (Lemma 3.2)
For n = 1, we have w1 = 1, ∆(w) = 1, α = 0, and L(w) = 1, so that we assume
n ≥ 2 in the remaining part of the proof. For wi ≥ wj consider a :=

wi+wj

2
and

x := wi − a, so that wi = a + x and wj − x. With this we have w2
i + w2

j = 2a2 + 2x2

and (wi + y)2 + (wj − y)2 = 2a2 + 2(x + y)2. Let us assume that w? minimizes∑n
i=1 w

2
i under the conditions w ∈ R≥0, ‖w‖1 = 1, and ∆(w) = ∆. (Since the

target function is continuous and the feasible set is compact and non-empty, a global
minimum indeed exists.) W.l.o.g. we assume w?1 = ∆. If there are indices 2 ≤ i, j ≤ n
with w?i > w?j , i.e., x > 0 in the above parameterization, then we may choose y = −x.

Setting w′i := w?i + y = a =
w?

i +w?
j

2
, w′j := w?j − y = a =

w?
i +w?

j

2
, and w′h := w?h



APPROXIMATING POWER BY WEIGHTS 17

for all 1 ≤ h ≤ n with h /∈ {i, j}, we have w′ ∈ Rn
≥0, ‖w′‖1 = 1, ∆(w′) = ∆, and∑n

h=1 (w′h)
2 =

∑n
h=1 (w?h)

2 − x2. Since this contradicts the minimality of w?, we have
w?i = w?j for all 2 ≤ i, j ≤ n, so that we conclude w?i = 1−∆

n−1
for all 2 ≤ i ≤ n from

1 = ‖w?‖1 =
n∑
h=1

w?h. Thus, L(w) ≤ 1/
(

∆2 + (1−∆)2

n−1

)
, which is tight. Since ∆ ≤ 1

and n ≥ 2, we have 1/
(

∆2 + (1−∆)2

n−1

)
≤ 1

∆2 , which is tight if and only if ∆ = 1, i.e.,
n− 1 of the weights have to be equal to zero.

Now, let us assume that w maximizes
∑n

i=1w
2
i under the conditions w ∈ R≥0,

‖w‖1 = 1, and ∆(w) = ∆. (Due to the same reason a global maximum indeed ex-
ists.) Due to 1 = ‖w‖1 ≤ n∆ we have 0 < ∆ ≤ 1/n, where ∆ = 1/n implies wi = ∆
for all 1 ≤ i ≤ n. In that case we have L(w) = n and α = 0, so that the stated lower
bounds for L(w) are valid. In the remaining cases we assume ∆ > 1/n. If there would
exist two indices 1 ≤ i, j ≤ n with wi ≥ wj , wi < ∆, and wj > 0, we may strictly in-
crease the target function by moving weight from wj to wi (this corresponds to choosing
y > 0), by an amount small enough to still satisfy the constraints wi ≤ ∆ and wj ≥ 0.
Since ∆ > 0, we can set a := b1/∆c ≥ 0 with a ≤ n − 1 due to ∆ > 1/n. Thus, for
a maximum solution, we have exactly a weights that are equal to ∆, one weight that is
equal to 1 − a∆ ≥ 0 (which may indeed be equal to zero), and n − a − 1 weights that
are equal to zero. With this and a∆ = 1 − α∆ we have

∑n
i=1w

2
i = a∆2(1 − a∆)2 =

∆ − α∆2 + α2∆2 = ∆(1 − α∆ + α2∆) = ∆ (1− α(1− α)∆) ≤ ∆. Here, the latter
inequality is tight if and only if α = 0, i.e., 1/∆ ∈ N. �

PROOF. (Lemma 3.8)
We set N = {1, . . . , n}, w(U) =

∑
u∈U wu and x(U) =

∑
u∈U xu for each U ⊆ N .

Let S+ = {i ∈ N | xi > wi} and S− = {i ∈ N | xi ≤ wi}, i.e., S+ and S− partition
the set N of players. We have w(S+) < 1 since w(S+) < x(S+) ≤ x(N) = 1, so that
w(S−) > 0. Define 0 ≤ δ ≤ 1 by x(S−) = (1− δ)w(S−). We have

x(S+) = 1− x(S−) = w(S+) + w(S−)− (1− δ)w(S−) = w(S+) + δw(S−) (2)

and

‖w − x‖1 =
(
x(S+)− w(S+)

)
+
(
w(S−)− x(S−)

)
= 2δw(S−). (3)

Generate a set T by starting at T = ∅ and successively add a remaining player i in
N\T with minimal xi/wi, where all players j with wj = 0 are the worst ones. Stop if
w(T ) ≥ q. By construction T is a winning coalition of [q;w] with w(T ) < q+ ∆, since
the generating process did not stop earlier and wj ≤ ∆(w) for all j ∈ N .

If w(S−) ≥ q, we have T ⊆ S− and x(T )/w(T ) ≤ x(S−)/w(S−) = 1 − δ. Multi-
plying by w(T ) and using w(T ) < q + ∆ yields

x(T ) ≤ (1− δ)w(T ) < (1− δ)(q + ∆) = (1− δ)q + (1− δ)∆. (4)
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Since x(T ) ≥ q, as T is a winning coalition, we conclude δ < ∆/(q + ∆). Using this
and w(S−) < 1 in Equation (3) yields

‖w − x‖1 <
2∆

q + ∆
<

2∆

q
. (5)

If w(S−) < q, we have S− ⊆ T , x(T ) = x(S−) + x(T\S−), w(T\S−) > 0, and
w(S+) > 0. Since T\S− ⊆ S+, x(T\S−)/w(T\S−) ≤ x(S+)/w(S+), so that

x(T ) = x(S−) + x(T\S−) ≤ (1− δ)w(S−) +
x(S+)

w(S+)
·
(
w(T )− w(S−)

)
≤ (1− δ)w(S−) +

x(S+)

w(S+)
·
(
q + ∆− w(S−)

)
= q +

x(S+)∆− (1− q)δw(S−)

w(S+)

≤ q +
∆− (1− q)δw(S−)

w(S+)
.

Since x(T ) ≥ q, we conclude (1− q)δw(S−) ≤ ∆, so that ‖w − x‖1 ≤ 2∆
1−q . �

PROOF. (Lemma 3.12)
If q ≤ 2∆, then 4∆

min{q,1−q} ≥
4∆
q
≥ 2 ≥ ‖x− w‖1, so that we can assume q > ∆.

Using the notation from the proof of Lemma 3.8, we have x(S+) = w(S+)+δw(S−)
and ‖w − x‖1 = 2δw(S−).

Generate T by starting at T = ∅ and successively add a remaining player i in N\T
with maximal xi/wi, where all players j with wj = 0 are taken in the first rounds,
as long as w(T ) + wi < q. By construction T is a losing coalition of [q;w] with
q −∆ ≤ w(T ) < q, since the generating process did not stop earlier.

If w(S+) ≥ q, we have T ⊆ S+ and x(T )/w(T ) ≥ x(S+)/w(S+) = 1 + δw(S−)
w(S+)

≥
1 + δw(S−). Multiplying by w(T ) and using w(T ) ≥ q −∆ yields

x(T ) ≥
(
1 + δw(S−)

)
w(T ) ≥

(
1 + δw(S−)

)
(q −∆) = (q −∆) + δw(S−)(q −∆).

Since x(T ) ≤ q, as T is a losing coalition, we conclude δw(S−) ≤ ∆/(q −∆), so that
‖w − x‖1 <

2∆
q−∆

.
If w(S+) < q, we have S+ ⊆ T , x(T ) = x(S+) + x(T\S+), w(T\S+) > 0, and

w(S−) > 0. Since T\S+ ⊆ S−, x(T\S+)/w(T\S+) ≥ x(S−)/w(S−), so that

x(T ) = x(S+) + x(T\S+) ≥ w(S+) + δw(S−) +
x(S−)

w(S−)
·
(
w(T )− w(S+)

)
≥ w(S+) + δw(S−) + (1− δ) ·

(
q −∆− w(S+)

)
= δw(S−) + q −∆− δq + δ∆ + δw(S+) = q −∆ + δ(1− q + ∆).

Since x(T ) ≤ q, δ ≤ ∆
1−q+∆

, so that ‖w − x‖1 ≤ 2∆
1−q+∆

due to w(S−) ≤ 1.
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So, for q > ∆ we have ‖w−x‖1 ≤ 2∆
min{q−∆,1−q+∆} ≤

2∆
min{q−∆,1−q} . In order to show

‖w − x‖1 ≤ 4∆
min{q,1−q} it remains to consider the case q ≤ 1 − q. For q > 2∆, see the

start of the proof, we have ‖w − x‖1 ≤ 2∆
min{q−∆,1−q} ≤

2∆
q−∆
≤ 4∆

q
≤ 4∆

min{q,1−q} . �

In order to prove Lemma 3.14, we need two preparing lemmas.

Lemma A.1. For each 0 < q ≤ ∆ ≤ 1, each n ∈ N, and each 0 < ε < min{∆, 1/2}
with n ≥ max{3, 1/∆} there exist w,w ∈ Rn

≥0 with ‖w‖1 = ‖w‖1 = 1, ∆(w) = ∆,
and 0 < q < 1 with [q;w] = [q;w], ‖w − w‖1 ≥ 1− 2ε, and ‖w − w‖∞ ≥ 1

2
− ε.

PROOF. We set a :=
⌊

1
∆

⌋
∈ N≥1, so that 1

2∆
< a ≤ 1

∆
.

If 1−a∆ ≥ q, we setwi = ∆ for 1 ≤ i ≤ a,wa+1 = 1−a∆,wi = 0 for a+2 ≤ i ≤ n,
wa+1 = 1− ε, wi = ε/a for 1 ≤ i ≤ a, wi = 0 for a + 2 ≤ i ≤ n, and q = ε/a. Here,
we have ‖w − w‖1 = 2 · (a∆− ε) > 1− 2ε and ‖w − w‖∞ = a∆− ε ≥ 1

2
− ε.

If 1− a∆ < q and a ≥ 2, then we set wi = ∆ for 1 ≤ i ≤ a, wa+1 = 1− a∆, wi = 0
for a+ 2 ≤ i ≤ n, w1 = 1− ε, wi = ε

a−1
for 2 ≤ i ≤ a, wi = 0 for a+ 1 ≤ i ≤ n, and

q = ε
a−1

. With this, we have ‖w−w‖1 = 1− ε−∆ + (a− 1) ·
(
∆− ε

a−1

)
+ 1− a∆ =

1 + (a− 2)∆− 2ε + (1− a∆) ≥ 1− 2ε and ‖w − w‖∞ ≥ 1−∆− ε ≥ 1
2
− ε since

a ≥ 2, so that ∆ ≤ 1
2
.

If a = 1 and 1 − a∆ = 1 − ∆ < q, then we have 1
2
< ∆ ≤ 1 and we set w1 = ∆,

w2 = 1 − ∆, wi = 0 for 3 ≤ i ≤ n, w1 = 1
2

+ ε, w2 = 0, w3 = 1
2
− ε, wi = 0 for

4 ≤ i ≤ n, and q = 1
2
. With this, we have ‖w−w‖1 ≥ 1− 2ε and ‖w−w‖∞ ≥ 1

2
− ε.

�

Lemma A.2. Let 0 < ε < 1
2
, 0 < q < 1, b ∈ N≥1, q

b+1
≤ ∆ < q

b
, and n ∈ N with

n ≥ 1
∆

+ 1. Then, there exist w,w ∈ Rn
≥0 with ‖w‖1 = ‖w‖1 = 1, ∆(w) = ∆, and

0 < q < 1 with [q;w] = [q;w], ‖w−w‖1 >
2
9
·∆
q
−ε, and ‖w−w‖∞ > ∆

3(∆+1)
·∆
q
−2∆ε.

PROOF. We set a :=
⌊

1
∆

⌋
∈ N≥1, so that 1

2∆
< a ≤ 1

∆
. Consider wi = ∆ for 1 ≤ i ≤ a,

0 ≤ wa+1 = 1− a∆ < ∆, and wi = 0 for a+ 2 ≤ i ≤ n. Observe 1
b
> ∆

q
.

If b∆ + 1 − a∆ < q we set κ := a and κ := a + 1 otherwise. So, the voters
κ + 1 ≤ i ≤ n are null voters and the other voters are pairwise equivalent. We have
κ ≥ 2 since κ = 1 implies a = 1 and ∆ > 1

2
, so that b = 1 and b∆ + 1− a∆ = 1 ≥ q.

Additionally, we have ∆
∆+1
≤ 1

κ
< 2∆. (The right hand side may be decreased to 3

2
∆.)

If κ ≡ 0 (mod 2), then we set wi = 2
κ
· b+1

2b+1
− ε

κ
for 1 ≤ i ≤ κ/2, wi = 2

κ
· b

2b+1
+ ε

κ

for κ/2 + 1 ≤ i ≤ κ, wi = 0 for κ + 1 ≤ i ≤ n, and q = 2
κ
· b2+b

2b+1
. With this, we

have [q;w] = [q;w], ‖w‖1 = 1, ‖w − w‖1 ≥ 1
2b+1
− ε > 1

3
· ∆
q
− ε, and ‖w − w‖∞ ≥

1
κ(2b+1)

− ε
κ
> ∆

3(∆+1)
· ∆
q
− 2∆ε. If instead κ ≡ 1 (mod 2), then we have κ ≥ 3. In

this case we set wi = 2
κ
· b+1

2b+1
− ε

κ
for 1 ≤ i ≤ (κ − 1)/2, wi = 2

κ
· b

2b+1
+ ε

κ
for

(κ+ 1)/2 ≤ i ≤ κ− 1, wκ = 1
κ

, wi = 0 for κ+ 1 ≤ i ≤ n, and q = 2
κ
· b2+b

2b+1
. With this,

we have [q;w] = [q;w], ‖w‖1 = 1, ‖w − w‖1 ≥ 1
2b+1
·
(
1− 1

κ

)
− ε > 2

9
· ∆
q
− ε, and

‖w − w‖∞ ≥ 1
κ(2b+1)

− ε
κ
> ∆

3(∆+1)
· ∆
q
− 2∆ε. �
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PROOF.(Lemma 3.14)
If q̂ ≤ 1 − q̂, we can apply Lemma A.1 and Lemma A.2 with 0 < ε < min

{
1
10
, ∆

45q̂

}
.

For the other case we remark that the dual of each weighted game [q;w] is given by
[1− q+ ε̃;w] for each 0 < ε̃ < min{wi | i ∈ N,wi > 0}. So, we can apply Lemma A.1
and Lemma A.2 with q = 1− q̂ + ε̃ and 0 < ε < 1

2
·min

{
1
10
, ∆

45q

}
=: κ. Certainly, we

can choose ε̃ > 0 small enough to get∥∥∥∥min

{
2,

∆

min{q̂, 1− q̂}

}
−min

{
2,

∆

min{q, 1− q}

}∥∥∥∥
1

< κ

and q ≤ 1− q. The stated result then follows from the triangle inequality. �
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