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Versionskontrolle und Produktlinien
in der Modellgetriebenen Softwareentwicklung

Kurzfassung

Diese Arbeit behandelt Anforderungen, die formale Ausgestaltung, die Implementierung
sowie Anwendungen eines konzeptionellen Rahmenwerks zur Integration der modell-
getriebenen Softwareentwicklung (MGSE), der Versionskontrolle (VK) und der Software-
produktlinienentwicklung (SPLE).

Die allermeisten Softwareprojekte sehen sich mit drei Phänomenen konfrontiert: Abstrak-
tion, Evolution und Variabilität. Abstraktion wird durch Modelle erzielt. Diese beschreiben
Softwaresysteme auf einer höheren konzeptionellen Ebene und erleichtern somit die Durch-
führung und Kommunikation von Entwurfsentscheidungen. MGSE hat ausführbare Modelle
und letztendlich eine Reduktion handgeschriebenen Quelltexts zum Ziel. Softwareevolution
wird von Versionskontrollsystemen unterstützt, die zum Zwecke der Organisation gemein-
schaftlich entwickelter Software unverzichtbar geworden sind. SPLE erfreut sich als Ansatz
zur organisierten Verwaltung von Variabilität zunehmender Beliebtheit. Dabei wird das
Softwaresystem in so genannte Features dekomponiert. Diese sind wiederum Merkmale,
anhand derer sich Mitglieder der Produktlinie unterscheiden.

Gewöhnlich werden Abstraktion, Evolution und Variabilität durch voneinander unab-
hängige Werkzeuge erzielt. Dies führt einerseits zu unerwünschten Kontextwechseln zwi-
schen Modellierungswerkzeugen, Versionskontrollsystemen und Produktlinienunterstützung.
Andererseits wird eine lose Werkzeugkombination nicht den offensichtlichen Überschnei-
dungen zwischen den Disziplinen gerecht. Beispielsweise beschäftigten sich MGSE und
SPLE gleichermaßen mit (Domänen- bzw. Feature-) Modellen. Auch verwalten VK und
SPLE verschiedene Arten von Versionen, nämlich Revisionen und Varianten.

Im Vorfeld der Ausgestaltung des Rahmenwerks werden seine Anforderungen mit dem
Stand der Forschung in den Schnittbereichen modellgetriebene Produktlinienentwicklung,
Modellversionierung und Produktlinienversionierung abgeglichen. Die Eigenschaften der
verglichenen Systeme werden bei der Identifikation und Auflösung von Entwurfsentschei-
dungen im Bezug auf das Rahmenwerk bewertet und berücksichtigt.

Den Kern des Rahmenwerks stellt eine Hybridarchitektur dar, die sich aus drei Dimen-
sionen zusammensetzt: Einem Revisionsgraphen, der die Evolution der beiden anderen
Dimensionen beschreibt, sowie einem Featuremodell, das die Variabilität des Domänen-
modells verwaltet. Letzteres unterliegt also der Evolution genauso wie der Variabilität. Das
Rahmenwerk setzt das so genannte gefilterte Edieren ein. Dabei werden die Inhalte des
Software-Repositorys vom Endbenutzer nicht direkt, sondern in mehreren Iterationen in
einem getrennt verwalteten Einzelvarianten-Arbeitsbereich (Workspace), bearbeitet. Eine
Iteration beginnt mit dem Kommando Check-Out. Dieses verlangt eine Benutzerauswahl
im Revisionsgraphen und darauf folgend die Konfiguration der gewünschten Workspace-
Variante durch eine vollständige Auswahl im Featuremodell. Die Inhalte des Workspace
können daraufhin beliebig bearbeitet werden, bevor die Iteration mit dem Kommando Com-
mit abgeschlossen wird. Hierbei gibt der Benutzer eine so genannte Feature-Ambition
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an. Diese entspricht einer Menge von Varianten, auf die sich die vollzogenen Änderungen
beziehen. Die Inhalte des Repositorys werden automatisch unter Berücksichtigung der
historischen und logischen Komponente der Änderung aktualisiert.

Die Ausgestaltung des Rahmenwerks erfolgt auf Basis eines der Literatur entnomme-
nen Formalismus, des Uniform Version Model. Die komplementäre strukturelle Per-
spektive wird mit modellgetriebenen Mitteln beschrieben. Die Inhalte des Repositorys
sind Instanzen mehrerer Metamodelle, die die spezifischen Anforderungen der jeweiligen
Dimension berücksichtigen. Beispielsweise darf das Domänenmodell wie in gängigen
Modellierungsprojekten aus mehreren miteinander verknüpften modell- oder textbasierten
Ressourcen bestehen.

Das in dieser Arbeit entwickelte Bedienmodell zum gefilterten Edieren unterscheidet sich
von herkömmlichen Ansätzen durch seine dynamische Natur. Beispielsweise ist es möglich,
Features innerhalb ein und derselben Iteration zu definieren und zu realisieren. Auch die
mit einer Änderung verknüpfte Feature-Ambition unterliegt der Evolution. Jedoch kann es
durch dynamisches gefiltertes Edieren zu neuen Arten von Problemen kommen. Um diesen
gerecht zu werden, werden mehrere Konsistenzbedingungen sowie konsistenzerhaltende
Algorithmen für Check-Out und Commit definiert. Außerdem wird eine neue Operation
namens Migration eingeführt, die wiederholte Check-Outs überflüssig macht und somit
einen unaufdringlichen Arbeitsfluss entstehen lässt.

Die gemeinschaftliche Bearbeitung modellgetriebener Produktlinien wird durch eine
verteilte Replikationsstrategie ermöglicht. Private Transaktionen, die von Check-Out und
Commit umschlossen sind, werden hierzu um öffentliche Transaktionen ergänzt. Letztere
werden mit den Operationen Pull und Push gestartet bzw. beendet. Aufgrund gleichzeitiger
Bearbeitung können Konflikte auftreten; diese werden zunächst durch nicht-interaktives
kontextfreies Drei-Wege-Modellverschmelzen aufgelöst.

Sowohl durch die Zusammenarbeit mehrerer Entwickler als auch durch die Kombination
von optionalen Features kann die syntaktische Wohlgeformtheit der gewählten Produktver-
sion beeinträchtigt werden. Im hier betrachteten Rahmenwerk werden solche Situationen
mittels einer produktbasierten A-Posteriori-Analyse behandelt. Vor dem Export konflikt-
behafteter Inhalte wird deren syntaktische Wohlgeformtheit zunächst durch vorgegebene
Auflösungsentscheidungen wiederhergestellt. Im Rahmen der darauf folgenden Iteration hat
der Benutzer die Möglichkeit, auch die semantische Korrektheit wiederherzustellen.

Mit dem Werkzeug SuperMod wird eine modellgetriebene Implementierung des Rahmen-
werks, basierend auf der Entwicklungsumgebung Eclipse und dessen Modellierungsrahmen-
werk EMF, beigetragen. Die Client-Server-Kommunikation, die gemeinschaftliche SPLE
ermöglicht, ist mit Hilfe eines REST-basierten Webservice realisiert worden.

Um letztendlich Rückschlüsse auf die Eigenschaften des Rahmenwerks zuzulassen, wurde
das Werkzeug in drei akademischen Fallstudien angewendet: zwei Lehrbuch-Produktlinien,
darunter eine Graph-Bibliothek und ein Haustechnik-Automatisierungs-System, sowie ein
Bootstrapping-Experiment, in dem SuperMod auf Basis einer domänenspezifischen Sprache
neuentworfen wird. Wie daraus gewonnene Ergebnisse zeigen, lässt sich eine SPL mit
deutlich weniger Aufwand als mit ungefiltertem Edieren erstellen; außerdem liegt der
Bedienaufwand des dynamischen Ediermodells unter dem des statischen Gegenstücks.

Insgesamt zeichnet sich das Rahmenwerk durch mehrere praktische Vorzüge aus: ein-
heitliche Versionierung, uneingeschränkte Variabilität, Werkzeugunabhängigkeit und eine
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Reduktion der kognitiven Komplexität. Der Ansatz bietet ein unaufdringliches und au-
tomatisiertes Versionsmanagement und eignet sich daher für reaktiv adaptierte Software-
produktlinien sowie für agile SPLE-Prozesse. Jedoch ergeben sich durch das gefilterte
Ediermodell auch neue konzeptionelle Einschränkungen. Zum einen zwingt das Konzept
der Feature-Ambitionen den Benutzer zu ungewohnt feingranularen Commits. Zum anderen
kann das gefilterte Edieren Multivarianten-Architekturentscheidungen erschweren.

Insgesamt trägt diese Arbeit die erste integrierte und automatisierte Lösung zur Kombina-
tion von MGSE, SPLE und VK bei. Das konzeptionelle Rahmenwerk wurde vollständig
implementiert. Die ersten Experimente vermögen einige wünschenswerte Eigenschaften zu
bestätigen, motivieren gleichzeitig aber weitere Forschung an diesem Thema.





Abstract

This thesis addresses the requirements, the formal elaboration, the implementation, and appli-
cations of a conceptual framework for the integration of model-driven software engineering
(MDSE), version control (VC), and software product line engineering (SPLE).

The majority of software engineering projects are faced with three phenomena: abstrac-
tion, evolution, and variability. Abstraction is achieved through models, which provide
a higher-level description of a software system that facilitates the enforcement and the
communication of design decisions. MDSE aims at making models executable, reducing the
amount of manually written source code. Software evolution is addressed by version control
systems, which have become indispensable for the organization of collaboratively developed
software. Last, an increasingly popular approach dedicated to the organized management
of variability is SPLE. Corresponding approaches assume a decomposition of the software
system into features, by which different members of the product line are distinguished.

Traditionally, abstraction, evolution, and variability are addressed by independent tools.
This, on the one hand, causes undesirable context switches between modeling tools, version
control systems, and product line technology. On the other hand, a combination of mutually
unaware tools ignores overlaps between the disciplines. For instance, both MDSE and SPLE
deal with models—domain models and variability models, respectively. Likewise, VC and
SPLE deal with the management of different kinds of versions—revisions and variants.

In advance to the elaboration of the integrating conceptual framework, its requirements
are aligned with the current state of research in model-driven product line engineering,
model version control, and product line version control. The properties of existing systems
are taken into consideration during the exploration of the design choices and decisions.

The core of the framework is a hybrid architecture consisting of three dimensions: a
revision graph that controls the evolution of the other two dimensions, and a feature model
that manages the variability of the domain model, which is subject to both evolution and
variability. The framework relies on filtered editing; repository contents are not modified
directly by the designated user, but in a single-version workspace in several iterations. An
iteration is begun by the operation check-out, which requests a selection in the revision graph,
before the desired variant to be presented in the workspace is defined as a configuration of
the feature model. Then, workspace contents may be modified arbitrarily. The operation
commit concludes an iteration, requesting a so called feature ambition from the user. This
corresponds to the definition of a set of variants to which the performed modifications are
relevant. Repository contents are updated automatically such that they consider both the
historical and the logical scope of the change.

For elaborating the conceptual framework, we instrumentalize an established theoretical
formalism, the Uniform Version Model. The structural perspective is designed by model-
driven utilities; repository contents conform to several metamodels that consider the specific
requirements of its three dimensions. E.g., the domain model may comprise heterogeneous
interconnected model or text-based resources as usual in realistic model-driven projects.

The filtered editing model contributed here distinguishes from related approaches by a
high amount of dynamism. For instance, features can be defined and realized within the
same iteration, and the logical scope of a change may evolve. Dynamic filtered editing
may, however, cause new kinds of problems. To this end, several consistency constraints
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and consistency-preserving definitions of the operations check-out and commit are formally
provided. Moreover, a new operation, migrate, is introduced, which obviates the need for
the majority of check-outs and therefore enables an unobtrusive workflow.

Collaborative editing of model-driven product lines is achieved by a distributed replication
strategy. Private transactions, embraced by check-out and commit, are complemented by
public transactions, started with the operation pull and finalized with push. Conflicts,
which may occur due to concurrent modifications, are preliminarily resolved by means of a
context-free non-interactive three-way model merging strategy.

Both collaboration and the combination of optional features may cause product well-
formedness violations. In the here considered conceptual framework, these are resolved by
an a-posteriori product-based analysis strategy. Before being exported to the workspace,
default resolution strategies are applied to conflicting contents. To restore semantical
correctness, the user may revise the effects in a subsequent iteration.

With SuperMod, a model-driven implementation of the conceptual approach is contributed.
The tool relies on the development environment Eclipse and its modeling framework EMF.
Client/server communication, which enables collaboration, has been realized as a REST-
based web service.

In order to allow for conclusions referring to the underlying framework, the tool has been
applied to three academic case studies: two textbook product lines, a Graph Library and
a Home Automation System, as well as a bootstrapping experiment, where SuperMod is
re-engineered based on a domain-specific language. Results indicate a lower development
effort when compared to unfiltered editing; moreover, the amount of user interactions is
lower than the one implied by the static counterpart.

Altogether, the framework offers benefits such as uniform versioning, unconstrained
variability, tool independence, and reduced cognitive complexity. By offering lightweight
and automated version management, the approach is suitable for reactive adoption paths
and for agile SPLE processes. On the downside, the filtered editing model creates new
conceptual limitations. First, the concept of feature ambition forces potential users into
unusually fine-grained commits. Second, filtered editing reduces awareness of other variants,
which potentially hampers multi-variant architectural decisions.

Overall, the thesis contributes the first integrated and automated solution to the combi-
nation of MDSE, SPLE, and VC. The conceptual framework has been fully implemented.
Initial experiments confirm many desirable properties, but also motivate future research.
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Part I

Introduction





The entire history of software
engineering is that of the rise
in levels of abstraction.

GRADY BOOCH (2003)

Chapter 1

Context and Contributions

Abstract

The initial chapter of this thesis outlines the scientific background – represented by tools that
manage the abstraction, the evolution, and the variability of software engineering artifacts
– and portrays three early visions – stepwise refinement, feature-driven development, and
filtered editing – that have influenced the research presented here. The central achievement
presented in this thesis constitutes the integration of model-driven software engineering,
version control, and software product line engineering, in a single support tool. Here, we
provide a summary of the conceptual and technical contributions as well as experimental
results, reflecting the added value of the approach. Last, the role of previously published
scientific papers and the structure of the whole thesis are explained.

Contents

1.1 Revolutions of Software Engineering — 4

1.1.1 Increasing the Abstraction of Software Development — 4

1.1.2 From the Waterfall Model to Agile Software Development — 5

1.2 Evolution vs. Variability — 6

1.3 Relevant Software Engineering Sub-Disciplines — 7

1.3.1 Model-Driven Software Engineering — 7

1.3.2 Version Control — 7

1.3.3 Software Product Line Engineering — 8

1.4 Early Visions — 9

1.4.1 Program Development by Stepwise Refinement — 9

1.4.2 Feature-Driven Software Development — 10

1.4.3 Filtered Editing of Multi-Variant Programs — 10

1.4.4 The Quintessence — 11

1.5 Key Contributions and Results — 11
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1.5.1 Conceptual Contributions — 12

1.5.2 Technical Contributions — 12

1.5.3 Experimental Validation and Results — 13

1.5.4 Benefits and Limitations — 13

1.5.5 Added Value Seen from Different Perspectives — 13

1.6 Thesis-Related Publications — 14

1.7 Outline — 15

1.1 Revolutions of Software Engineering

The way computers are used is evolving constantly, and so are the methodologies of computer
programming revolving. Until the 1960s, computers were space-consuming and expensive
machines capable of only a limited set of instructions. Executing a computer program
involved encoding both the program and the input using a punch card and bringing them
to a counter, where they were manually dispatched and queued. The program’s execution
took hours to days, which was a multiple of the time required for developing the executed
program; see [Wir08] in the bibliography.

Evidently, hardware capacity has grown significantly since then, and so has the effort
for computer programming. The software crisis [Dij72] revealed that, rather than instan-
taneously allowing for more efficient and more reliable software, the increasing hardware
capacity lead to a deterioration of the quality of software. “Our limitations in designing
complex systems [were] no longer determined by slow hardware, but by our own intellectual
capacity” [Wir08, p. 32].

In response to this observation, the term software engineering was coined during a NATO-
sponsored conference in 1968 [BBH69]. The attendees agreed that software should no
longer be created as by-product by the electrical engineers who design the hardware; instead,
programs should be carefully designed on the basis of well-established formalisms, i.e.,
abstractions that better match the problem domain. Furthermore, well-defined software
development processes should manage the increasing size of both software projects and
development teams.

1.1.1 Increasing the Abstraction of Software Development

The history of software engineering can be told as the story of creating and mastering
gradually increasing levels of abstraction. Conversely, the level of detail decreased, the
higher the level of abstraction was becoming. Figure 1.1 recapitulates four milestones.

Computer processors run programs encoded in a binary format, which is difficult to
comprehend and write for human beings. Assembly languages [PH08], which have been
developed at the end of the 1940s, provide a more readable syntax for instructions, which
are transformed into machine code by assemblers.

High-level programming languages soon appeared as abstractions for assembly languages,
providing features such as structured programming and removing the one-to-one correspon-
dence between instructions written by the programmer and instructions executed by the
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Code Generator
d1

d2

+

+
out

Add

0010 1101 0110
0010 1010 1110
0101 0110 1110
0010 0101 1000

Modeling
Languages

High-Level
Programming

Languages

Assembly
Languages

Machine
Code

Compiler

Assembler

mov 25 $f1
mov 10 $f2
add $f1 $f2
mov $r5 $rt

double add(double 
d1, double d2) {
  return d1 + d2; }

Level of Detail

Level of Abstraction

Figure 1.1: Levels of abstraction from machine code to modeling languages.

machine. High-level programs can be transformed into behaviorally equivalent assembly
programs running on different platforms by compilers [Aho+06]. The advent of object-
oriented programming (OOP) during the 1990s marks a prominent milestone of high-level
programming. An object encapsulates the state of a part of the executed program that may
be modified using operations. OOP languages such as Java [Gos+15] have become the
preferred choice for the development of desktop, remote, and mobile applications. Albeit, it
has soon turned out that OOP by itself was “not abstract enough”.

From the beginning of the era of programming, computer scientists invented formalisms
helping them reflect about the problem to be solved. Prominent examples include EBNF
(the Extended Backus-Naur Form) [Aho+06] for the description of the syntax of formal
languages as well as flow diagrams for the informal definition of algorithms. Nowadays,
there exist a multitude of modeling languages having a well-defined syntax and more or less
formally defined semantics. For instance, the model depicted in Figure 1.1 conforms to the
modeling language MATLAB Simulink [Beu06], which is frequently used in the domain of
numerical simulation.

1.1.2 From the Waterfall Model to Agile Software Development

As another result of the 1968 NATO software engineering conference [BBH69], it has
been realized that software development is more than just programming, but implies sys-
tematically collecting requirements from the later users, carefully designing the software,
and dedicated quality management. This lead to the definition of core processes [Som06],
namely requirements engineering, analysis, design, implementation, and validation. Orthog-
onal to core processes are support processes such as project management, deployment, and
particularly, software configuration management.

The waterfall model, initially described in [Roy70], is the simplest form of combining
all core processes in a strictly sequential, i.e., phase-structured way. Each phase produces
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an artifact that is used as input for the subsequent phase. While informal descriptions are
suitable for requirements specification, conceptual model, and architecture, the only artifact
actually required to run the final application is code.

The waterfall model was soon extended by iterations allowing to repeat a phase or to step
back into previous phases. Redesign and modification of the waterfall model gave birth to a
multitude of plan-driven development processes such as the Rational Unified Process (RUP)
[Kru03], which enabled the development of software in a large scale.

In the 1990s, a revolution in the field of software development processes was triggered
by the growing documentation overhead caused by plan-driven processes, which became
increasingly heavyweight. Agile development processes such as Extreme Programming (XP)
[BA04] and Scrum [BS02] aim at reducing the planning effort to a minimum by giving
individuals more responsibilities, while maintaining essential engineering practices. In
the Agile Manifesto, pioneers delimit themselves from defenders of plan-driven software
development by defining twelve agile principles including, among others, “continuous
delivery”, “preparation for changing requirements”, and “customer collaboration” [Bec+01].

On the one hand, agile processes are designed for small development teams, which closely
collaborate with each other. On the other hand, they enforce that software is created in an
incremental way by gradually adding customer-relevant units of functionality.

1.2 Evolution vs. Variability

Two everyday-life phenomena, evolution and variability affect almost every kind of software
that is being developed nowadays. Their difference is portrayed in an abstract way in
Figure 1.2. Together with the abstraction gained from software models, it is these two terms
that motivate the contributions to be presented in this thesis.

Software developers are humans and therefore make mistakes. Furthermore, it is almost
impossible to foresee changing internal or external requirements, or new functionalities
demanded by users, at the time of software deployment. These premises make software
evolution ineluctable. Most approaches covering this phenomenon assume that different
historical states of the evolving artifact are arranged in a time-line being made up of an
ordered sequence of revisions that mutually supersede each other [Cha09; Key07].

In contrast, variability denotes the intentional co-existence of different software variants
at the same point in time [AK09]. These variants typically differ from each other in terms

Evolution Variability

Revision 1 Revision 2 Revision 3

Variant 1

Variant 2

Variant 3

Core

Features
time

Figure 1.2: Evolution and variability of software.
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of the configuration of internal properties – for instance, the underlying operating system
– or of user-visible units of functionality [BSR04]. In [Kan+90, p. 3], the term feature is
introduced for “a prominent or distinctive user-visible aspect, quality, or characteristic of a
software system [. . . ]”. Different co-existing variants of a software application distinguish
with respect to their individual selection of features.

At first glance, evolution and variability management are orthogonal; in this thesis, we
are particularly interested in situations where they overlap. The term version, to this end, is
a generalization for revisions and variants.

1.3 Relevant Software Engineering Sub-Disciplines

The aforementioned phenomena, evolution, abstraction, and variability are relevant to many
software projects conducted nowadays. This thesis makes contributions to the three related
sub-disciplines of software engineering, namely model-driven software engineering, version
control, and software product line engineering. These are presented in detail and delineated
from each other later; this section gives an introductory top-down overview. 1

1.3.1 Model-Driven Software Engineering

Model-driven software engineering (MDSE) [Völ+06] is focused on the development of
models as first-class artifacts in order to describe software systems at a higher level of
abstraction (cf. Figure 1.1). In this way, MDSE promises to increase the productivity of
software engineers, who may focus on creative and intellectually challenging modeling tasks
rather than on repeated activities at source code level. Models are typically expressed in
well-defined languages such as the Unified Modeling Language (UML) or in domain-specific
languages (DSLs). These languages define the structure as well as the behavior of model
elements. Different forms of notation, ranging between textual and graphical, exist.

A key element of model-driven architecture (MDA) [Mel+04] is model transformations,
which transform, e.g., platform-independent models into platform-specific models, and the
latter into executable source code, respectively. Therefore, the level of abstraction expressed
by different models may differ significantly.

1.3.2 Version Control

Version control (VC) is a part of the support process software configuration manage-
ment (SCM); it has become indispensable for software engineers to control software evolu-
tion and to coordinate software changes inside a team. Version control systems (VCS) such
as Subversion [CFP04] follow an iterative three-stage editing model (cf. Figure 1.3):

1. A developer checks out a revision of a software project from a repository. A copy of
the selected revision of the project is loaded into the private workspace.

2. In the workspace, the developer modifies the project implementing new functionality.

1 The section is based on the introductions pre-published in [Schwä+15; SBW15].
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Figure 1.3: The iterative three-stage editing model offered by version control systems. Based
on [SBW15, Figure 1].

3. To make these modifications visible for others, the developer commits his/her changes
to the repository. A new revision is created transparently.

From a fine-grained view, version control enforces an iterative style of development. Within
each iteration, the developer may focus on a change referring to a specific increment of the
overall software without having to deal with earlier versions, details of which are transparent
in the workspace. Furthermore, collaboration is enabled, e.g., by locks on currently modified
resources, or by merging changes concurrently applied by several developers [CW98].

1.3.3 Software Product Line Engineering

Software Product Line Engineering (SPLE) aims at the systematic development of a family
of software products by exploiting the variability among members thereof [CN01]. Mass
customization is achieved by organized reuse, such that software development becomes
more economic for both developers and users. Core assets of different products are provided
as a platform. Commonalities and differences among products are captured in variability
models, e.g., feature models [Kan+90].

In [PBL05], a two-stage SPLE process has been proposed (cf. Figure 1.4):

1. During domain engineering (DE), platform and variability model are defined. The
platform contains variation points, representing architectural elements whose real-
ization may diversify, and variants, referring to concrete realizations belonging to
specific features. To connect the platform with the variability model, a mapping is
established, e.g., in the form of traceability links attached to platform artifacts.

2. In the repeated activity application engineering (AE), variability is resolved, e.g., by
specification of a feature configuration, and a product with the desired features is de-
rived in a preferably automated way. In each variation point, the variant corresponding
to the selected feature(s) is instantiated.

By moving repeated programming and design activities necessary for product develop-
ment to DE, the effort required for AE may be reduced significantly. Though, having to
anticipate variation points in the platform complicates SPLE. Furthermore, product deriva-
tion is usually a “one-way road”: After having derived a product, its connection to the
platform gets lost; product-specific modifications must be propagated back to the platform
manually in case they are relevant to the entire product line.
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Figure 1.4: The established two-stage SPLE process. Based on [SBW15, Figure 2].

1.4 Early Visions

In this section, let us consider three visions shaped relatively early in software engineering
history: stepwise refinement, feature-driven software development, and filtered editing. The
principles and requirements discussed there have influenced the approach contributed in
this thesis. The research prototype SuperMod presented in Chapter 2, provides tool support
materializing these three visions. As demonstrated in this thesis, the tool allows to develop
software in a stepwise and feature-driven way, relying on a filtered editing model.

1.4.1 Program Development by Stepwise Refinement

Way ahead of agile software development, Wirth [Wir71] gave rise to a programming
paradigm relying on stepwise refinement. He suggested a highly iterative style of software
development:

In each step, one or several instructions of the given program are decomposed
into more detailed instructions. This successive decomposition of refinement
of specifications terminates when all instructions are expressed in terms on an
underlying computer or programming language [.] [. . . ]

As tasks are refined, so the data may have to be refined, decomposed, or
structured, and it is natural to refine program and data specifications in parallel.
([Wir71, p. 221])

According to these explanations, an iteration of program development by stepwise
refinement consists of the following steps:

1. Select a program fragment (instructions and/or data specifications) to be decomposed.

2. Let the user realize the decomposition as an artifact in the target language.

3. During realization, define and use placeholders for fragments to be refined later.

The tools available at that time – essentially, the first generation of high-level programming
languages and compilers – were, however, not able to adequately support Wirth’s vision. On
the one hand, there was no suitable representation for “some placeholder fragment to be
refined later”, which is nowadays provided by suitable abstraction mechanisms. On the other
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hand, the management of software being developed in an iterative and would have required
sophisticated software configuration management, for which convenient tool support was
not provided back then.

Not at least due to the missing tool support, waterfall-like development processes had
suppressed the idea of stepwise refinement until agile software development became popular.
[Raj06] argues that the peculiarities of modern software projects, in particular volatility
of requirements, make a paradigm shift from waterfall-oriented to iterative development
processes indispensable. At the heart of the new paradigm should be anticipation of changing
requirements and prototyping, which allows for early customer feedback.

1.4.2 Feature-Driven Software Development

Feature-oriented software development (FOSD) “is a paradigm for the construction, cus-
tomization, and synthesis of large-scale software systems” [AK09, p. 49], aiming at struc-
turing a software system along its features, i.e., its “increment[s] in program functionality”
[Bat05, p. 7]. Thus, FOSD can be interpreted as a collection of tools and methods for SPLE.

Prior to FOSD, feature-driven development (FDD) [PF01] was introduced without explic-
itly referring to features as manifestation of variability, but rather, as mandatory increments
of functionality. FDD is also based on an iterative and incremental style of software devel-
opment; the whole repertoire of development activities (analysis, design, etc.) is repeated
feature by feature rather than with a global scope. A development iteration is structured as
follows:

1. Select a new feature to be realized.

2. Let the user realize the feature’s software increment using the target language.

3. For documentation purposes, associate the program fragments affected by the per-
formed change with the new feature.

As shown in subsequent chapters, this strictly iterative and incremental style of FDD has
hardly been realized — one reason is the lack of a suitable variability management approach
or tool that should provide adequate mechanisms to narrow down the context of an increment.

1.4.3 Filtered Editing of Multi-Variant Programs

The third vision to be presented here is filtered editing as provided by multi-version editors
such as the Multi-Version Personal Editor (MVPE) [SBK88] or P-Edit [Kru84]. Here, it is
assumed that specific parts of a source document to be edited is surrounded with annotations,
e.g., preprocessor directives in conditional compilation scenarios.

To ease multi-variant editing, a view is created from the source based on a read filter—a
complete selection of configuration options. Furthermore, a write filter – a partial selection
of configuration options – is specified. After performing a modification in the filtered
view, the multi-version source document is updated transparently, such that the changes are
connected to the options selected in the write filter. An iteration of filtered editing may be
summarized as follows:

1. Based upon the read filter, fade out parts of the software irrelevant for the change.
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Figure 1.5: Principle and terminology of filtered editing.

2. Let the user perform a modification in the filtered view.

3. Based upon the write filter, apply a corresponding derived modification in the source
transparently.

Figure 1.5 illustrates the relationship between source, view, read filter, and write filter.
Filtered editing is recently undergoing a revival in the context of variation control systems

[WC09; WO14; Stă+16; LBG17], a new SPLE research branch.

1.4.4 The Quintessence

Stepwise refinement and FDD are built around the concepts of iterations and increments,
respectively. Albeit, their notion is mutually different. In stepwise refinement, an increment
is a mandatory part of a software system, implementing a placeholder defined in a previous
iteration in the sense of continuous advancement of the software, i.e., evolution. Contrast-
ingly, the FOSD interpretation of FDD [AK09] considers increments (i.e., features) as
manifestation of variability. Furthermore, once the concept to be realized has been selected,
the complexity of the second realization step may be drastically reduced by applying filtered
editing. Abstracting from the peculiarities of the three visions, their iterations may be
reconciled as follows:

1. Select some concept to be realized. Based on a read filter, fade out parts of the
software that are irrelevant for the modification.

2. Let the user realize the concept as an increment to the existing software.

3. Manage the increment’s integration into the software repository based on a write filter.

This observation forms a central argument of this thesis and is reflected by the three-stage
check-out/modify/commit workflow, which is borrowed from version control systems and
transferred to SPLE on top of a filtered editing model. Moreover, both stepwise refinement
and feature-driven development rely on abstraction as an important principle for reducing
complexity and for enabling placeholder objects. Models constitute a universal source of
abstraction and are therefore assumed as primary artifacts in this thesis.

1.5 Key Contributions and Results

The approach elaborated in this thesis combines the three visions presented above by
integrating the management of historical and logical versions, i.e., evolution and variability,
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based on abstraction mechanisms provided by models. The key contributions and results
presented throughout this thesis are anticipated in this section.

1.5.1 Conceptual Contributions

A conceptual framework for the integration of SPLE and VC based on MDSE is formally
developed. The framework organizes the versioning of models and text files with respect to
both their historical evolution and their variability.

At the heart of the framework is a hybrid repository architecture, consisting of a a revision
graph, a feature model and a domain model. The revision graph manages the historical
evolution of both the feature model and the domain model; the domain model is in addition
versioned by the feature model. As theoretical foundation of the version space, the Uniform
Version Model (UVM) [WMC01] has been selected. UVM is based on set theory and
propositional logic. In this thesis, the mapping of high-level version models (revision graphs
and feature models) to an extended form of UVM is contributed.

The product space, which consists of the domain model and the feature model, is managed
in the repository transparently. We contribute metamodels and transformations for a multi-
version extrinsic representation; in the workspace, the standard (intrinsic) single-version
representation is still used for compatibility with external tools.

Rather than directly manipulating the repository, the user indirectly accesses it by filtered
editing. To this end, UVM’s static filtered editing model is advanced inasmuch as it supports
the dynamic co-evolution of feature model and platform. This additional flexibility, however,
is paid with a new class of consistency problems. These are addressed by evolution-aware
consistency constraints and by precise definitions of the workspace operations CHECK-
OUT and COMMIT, as well as of a new operation, MIGRATE, which prepares the current
workspace content for the subsequent iteration.

In addition, conceptual requirements and challenges connected to multi-user operation
are explored. To this end, the VC metaphors CHECKOUT and COMMIT are extended by
PULL and PUSH, which synchronize different copies of a repository and thus provide a
distributed architecture for collaborative versioning of model-driven software product lines.

Both variability and collaboration may cause violations of the syntactical well-formedness
of the product version to be checked-out. This is addressed by an a-posteriori product-based
well-formedness analysis strategy that relies on default resolution actions, which may be
revised in the single-version workspace. To this end, we define individual product conflict
conditions for the feature model and the domain model, respectively.

1.5.2 Technical Contributions

With SuperMod, a full implementation of the conceptual framework is provided. The tool
has been built upon the integrated development environment Eclipse. The aforementioned
“domain model” may comprise arbitrary non-model or model-based artifacts; in the latter
case, the Eclipse Modeling Framework (EMF) is universally supported. Multi-user operation
has been realized as a web service compliant with the architectural style Representational
State Transfer (REST) [Fie00].



1.5 Key Contributions and Results 13

1.5.3 Experimental Validation and Results

In order to evaluate the properties of the conceptual framework, SuperMod has been applied
to three case studies, whose set-up and outcome are described. The case studies include the
well-known Graph Library standard example, a product line for Home Automation Systems
(HAS), and a bootstrapping example where SuperMod’s core is redesigned as a software
product line based on a domain-specific modeling language. As far as quantitative results
are concerned, the user effort saved as well as the manual overhead in terms of required
editing steps in comparison with state-of-the-art tools are investigated.

Results suggest that the dynamic filtered editing model implies significant benefits
over both unfiltered and static filtered editing. Furthermore, the effects of product well-
formedness analysis go beyond the variant available in the workspace, which advances the
state of the art in product-based product line well-formedness analysis.

A second goal of the evaluation was to collect initial experiences with respect to secondary
properties of the approach. Regarding this, the case studies demonstrate that the approach
enables collaborative SPLE, that it is compatible with both general purpose and domain-
specific languages, and that it particularly supports a reactive style of SPLE. Moreover, both
models and source code are supported at an adequately fine product granularity.

1.5.4 Benefits and Limitations

Based on both theoretical and experimental considerations, we may assign four central
benefits to the approach:

First, historical and logical versioning are supported uniformly, while the user may tie on
familiar version control and SPLE metaphors. Second, since the workspace representation
relies on single-version views, tool independence is guaranteed. Third, variability manifested
in the multi-variant domain model is unconstrained in the sense that every detail of a model
may vary. Last, since the repository, containing multi-variant artifacts as well as version
membership information, is hidden from the user, cognitive complexity is reduced when
compared to state-of-the-art approaches.

Conversely, almost every scientific contribution implies conceptual limitations, and so
does the approach at hand:

By forcing the user(s) into operating in a single-version view, the awareness of other
versions is limited, which impedes explicit modeling decisions referring to the realization of
variation points and variants. Another potential drawback is related to the definition of the
concept ambition; during an iteration, all changes performed in the workspace are supposed
to be connected to an equal logical scope, which does not necessarily reflect the user’s intent.
Moreover, the comparison-based versioning strategy implies a limited precision of matching,
which may result in falsely detected differences at commit. Last, product well-formedness
control is applied in a filtered way, which complicates the identification and resolution of
collaboration-related conflicts not visible in the workspace.

1.5.5 Added Value Seen from Different Perspectives

For the end user, the added value of the conceptual framework and its implementation
depends on his/her specific requirements. Therefore, the contributions must be regarded
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from at least three different perspectives.

(Model-Driven) Software Engineering. SuperMod and its underlying conceptual frame-
work contribute to the support discipline software configuration management by
offering integrated historical and logical version control support. Although specif-
ically designed for model-driven development, the approach is generic enough to
harmonize with source code as well as configuration files.

Version Control. Most state-of-the-art version control systems are limited to historical
versioning of text files, which are interpreted merely as sequences of lines. The
approach at hand raises the level of abstraction of the versioned product. In addition,
logical versioning allows for the combination of mutually independent changes in
order to compose new variants during check-out. From SPLE, feature models have
been imported as adequate abstraction for variability.

(Model-Driven) Software Product Line Engineering. By providing an iterative and incre-
mental editing model, the conceptual framework is designed for a dynamic develop-
ment style for (model-driven) SPL; feature model and platform may co-evolve. By
following filtered editing, the distinction between domain engineering and application
engineering is blurred intentionally, enabling product-based product line development
(which can be summarized under the slogan: “perform application engineering, and
get domain engineering for free”). Furthermore, collaborative (MD)SPLE is enabled.

Notice the optionality of the term “model-driven” above. Throughout the thesis, we
consider text files as a special case of models, such that the approach is transferable to
source code based scenarios natively.

Altogether, SuperMod can be considered both as a fully-fledged version control system
and as a software product line management tool, relying on model-driven abstractions both
for its implementation and for the artifacts it is applied to.

1.6 Thesis-Related Publications

The following scientific publications contain material partly reproduced in this thesis;
references are provided in the corresponding sections. Notice that all publications listed
here have been peer-reviewed and indexed by established computer science bibliographies
such as DBLP2. The list is ordered by publication date. Bibliographic details are provided
in the back matter (see page 403).

– The first version of the conceptual framework has been published in [Schwä+15], which
also includes a tentative literature review with respect to related approaches. Furthermore,
the flow chart example is introduced here; it is re-used in this thesis on several occasions.

– In [SBW15], the requirements and design decisions underlying the tool SuperMod are
presented. Furthermore, a comparative analysis of the domains SPLE and VC is provided.
Here, the running Graph Library example has been adapted first.

2 http://dblp.uni-trier.de/

http://dblp.uni-trier.de/
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– [Schwä+16] presents the model-driven realization of the conceptual framework and intro-
duces several pieces of optimization both to the framework and to the tool. Also here, the
core metamodel has been introduced.

– In [SBW16a], the filtered editing model underlying the conceptual framework is character-
ized and assessed with a focus on the process perspective. To this end, a larger case study,
the Home Automation System (HAS) product line, is conducted and analyzed.

– [SW16a] extends the conceptual framework towards multi-user operation by providing
collaborative revision graphs and the multi-user operations PULL and PUSH.

– SuperMod has been presented in a tool demonstration format in [SW16b]. The demonstration
is complemented by a video. See Section 14.9 on page 322.

– The tool-centric survey published in [SW17c] contains excerpts of Chapter 6, where pair-
wise mutual integration of MDSE, SPLE, and VC is conceptually investigated.

– Dynamic consistency constraints and consistency-preserving algorithms, which are also
a subject of Chapter 11, were originally published in [SW17b]. Also here, the operation
MIGRATE, an important part of the dynamic filtered editing model, has been introduced. An
extended version of the paper is being published in [SW17a].

– Among others, the topic of product well-formedness analysis and the evaluation of the
overall approach are covered by [SW18], whose publication is still pending. The article
reproduces selected excerpts of this thesis, including Chapters 13 and 15.

1.7 Outline

This section concludes the introduction by outlining the remainder of this thesis part by part.

Part I. The remainder of the first part consists of Chapter 2, where the central problem
statement of this thesis is phrased and requirements for an integrated solution are collected.
In advance, a top-down comparison with related approaches is given. Furthermore, we
provide a fast-paced and tool-centric description of the contributed framework.

Part II. The second part of this thesis has two purposes. On the one hand, it presents
the state of the art referring to the three software engineering sub-disciplines to which the
thesis makes contributions. Chapters 3, 4, and 5 are dedicated to model-driven software
engineering, software configuration management (with a focus on version control), and
software product line engineering, respectively. On the other hand, the ambiguities implied
by the sub-disciplines and the combinations thereof are eliminated by introducing a common
terminology.

This part is considered as an optional read, making the thesis self-contained. Readers
familiar with these topics may skip or cross-read the corresponding chapters, or use them
for looking up specific terminology when studying subsequent chapters.
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Part III. This part is dedicated to the trains of thought and formalisms underlying the
actual contributions. In Chapter 6, the mutual pair-wise combinations of SCM, SPLE,
and MDSPLE are portrayed, materializing in the integrating disciplines model-driven
product line engineering, model version control, and software product line version control.
Complementarily, integrated historical and logical versioning is considered from an SCM-
centric perspective. In Chapter 7, the design choices and decisions of the framework are
explored. To this end, several challenges connected to state-of-the-art integrating solutions
are discussed in advance. Chapter 8 introduces mathematical formalisms on which the
contributions are based, including multi-version data structures, three-valued propositional
logic, and finally, the Uniform Version Model (UVM).

Part IV. Here, the actual theoretical contributions of this thesis are explained. The part
begins with the introduction of the conceptual framework. Chapter 9 introduces a hybrid
version model, providing formal definitions for revision graphs and feature models covering
both revision and variant management.

In Chapter 10, a flexible extrinsic product model, integrating feature models as well as the
“domain model”, which in turn consists of model and non-model resources, is presented.

Chapter 11 deals with consistency constraints, whose introduction has become necessary
due to the dynamism of the editing model. Algorithms for the operations CHECKOUT,
COMMIT, and MIGRATE, preserving those constraints, are provided.

In Chapter 12, the conceptual framework is extended to multi-user operation by formaliz-
ing collaborative revision graphs as well as synchronizing operations PULL and PUSH.

The subsequent Chapter 13 deals with metadata management as well as with the question
of product well-formedness, which arises due to the support of optimistic collaborative
versioning as well as due to the possibility of combining optional features.

All chapters of Part IV are concluded by a discussion of related work with a focus on
conceptual commonalities and differences, and with a summary referring back to the design
decisions deduced in Section 7.

Part V. The implementation and evaluation of the whole conceptual framework are the
subject of Part V, beginning with Chapter 14, where the design and realization of the tool
SuperMod is explained. Related work is recapitulated, now with a focus on technical
implementation.

Subsequently, Chapter 15 provides an overview of case studies conducted with SuperMod
in order to assess the conceptual framework as well as its implementation. In addition to an
experimental evaluation of the contributed concepts based on thoroughly defined research
goals, questions, and metrics, subjective observations are assessed.

Part VI. In Chapter 16, the thesis is concluded by a top-down summary, a critical discussion
of the benefits and limitations, an outlook referring to future work, as well as a discussion of
the academic and industrial relevance of the approach.

In addition to lists of figures, tables, and code listings, as well as the mandatory bibliogra-
phy, the back matter includes a list of abbreviations and an alphabetical index.



Without requirements or design,
programming is the art
of adding bugs to an empty text file.

LOUIS SRYGLEY

Chapter 2

Requirements and Benefits
of an Integrated Approach

Abstract

This chapter begins with the central problem statement referring to the feasibility and the
added value of an integrated conceptual framework for the combination of MDSE, SPLE,
and version control. A brief literature review reveals that there exists currently no tool
addressing a list of identified requirements in a satisfactory way. The combination of existing
tools in turn implies significant drawbacks. Later on in this chapter, a top-down introduction
to the tool SuperMod, which implements an integrated conceptual framework, is given.
Then, an example of an iteration of SuperMod’s filtered editing workflow is provided.
Further aspects to be covered later in this thesis are listed, before we make explicit four
decisive benefits supposed to be offered by the integrated solution.
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2.1 Central Problem Statement

This thesis addresses requirements, the formal elaboration, the implementation, and applica-
tions of a conceptual framework for the integration of MDSE, VC, and SPLE.

The central problem statement underlying the contributions presented in the thesis thesis
is the following:

Is it possible to design and implement a development support tool that integrates
the disciplines model-driven software engineering, version control, and software
product line engineering?

If the answer to the first question is yes, which is the added value of such
an integration over a combination of state-of-the-art tools, and which are the
limitations caused by it?

Before attending to these questions, existing solutions for pair-wise integration of MDSE,
VC, and SPLE are briefly reviewed in Section 2.2. Then, we recapitulate the individual
requirements of the considered sub-disciplines and align them with the surveyed categories
of approaches (see Section 2.3). Section 2.4 sketches a consecutive tool integration scenario.
Beginning with Section 2.5, the framework and tool contributed in this thesis are charac-
terized in a top-down fashion and demonstrated by an introductory example. The benefits
expected from this synergy are made explicit in Section 2.8.

2.2 Integrated Tools: A Brief Literature Review

This section provides a brief overview of state-of-the-art approaches and tools towards the
pair-wise integration of MDSE, SPLE, and VC 1. More comprehensive literature reviews
follow in Chapter 6.

1 The section is based on the related work sections pre-published in [Schwä+15; SBW15; SW17b].
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2.2.1 Model-Driven Software Product Line Engineering

To begin with, model-driven software product line engineering (MDSPLE) denotes the
combination of MDSE and SPLE with the goal to boost productivity by abstracting from
both the variability and the platform. For the realization of (model-driven) software product
lines, three distinct approaches exist in the literature: compositional, transformational,
and annotative variability. For annotative variability, we may distinguish between filtered,
partially filtered, and unfiltered MDSPLE.

Approaches to MDSPLE based on compositional variability require specific tools in
order to compose variable realization fragments with the common core, typically using
feature-oriented [Ap+09a] or aspect-oriented modeling techniques [Wim+11]. This way,
the core is kept small and concise, but conflicts may arise as soon as transformations or
aspects are combined to realize several features.

In contrast to compositional approaches, where product creation is monotonic inasmuch
as it exclusively adds components to the product in a suitable order, transformational
variability assumes that the core model may be arbitrarily manipulated by adding, removing,
or modifying details of product elements. Representatives are language-based [ZJ07]
or delta-oriented [Zsc+10] tools. A special case of transformational variability is clone-
and-own approaches, where a collection of variants with a common origin is gradually
transformed into a software product line [LELH16].

Approaches based on annotative variability assume a multi-variant domain model that
realizes all features of the product domain in a place; it must be syntactically well-formed.
Existing approaches differ in how features are mapped to realization artifacts. On the one
hand, visibilities may be stored within the domain model, e.g., using annotations provided
by the modeling language [Gom05]. On the other hand, visibilities can be made explicit by
using a distinct mapping model [BS15a].

A common assumption of the mentioned approaches based on annotative variability is
that the user operates in a multi-variant view. When modifying the superimposition, all
variants are visible at a time, and mapping information is added manually. In this way,
unfiltered editing is realized. Variation control systems [Stă+16; LBG17] deviate from this
editing model. Like in VCS, the user operates in a view (filtered editing, [SBK88]) and need
not map model elements to features manually.

In [WO14], an approach to partially filtered editing of multi-variant programs is described.
Since a part of the variability remains unresolved, corresponding variability annotations
remain visible in the workspace. The approach is based on abstract syntax and may therefore
be transferred to models.

A couple of MDSPLE tools offer temporarily filtered editing. For instance, Feature
Mapper [HŞW08] offers the possibility of change recording during domain engineering. All
recorded element insertions are associated with a feature expression derived from a provided
feature selection.

The tool SuperMod presented in this thesis represents fully filtered editing [WC09];
changes are applied in a representative single version view, but may affect a larger set of
variants.
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2.2.2 Model Version Control

The term model version control (MVC) subsumes the combination of MDSE with version
control [ASW09], with the goal of lifting version control metaphors (check-out, commit)
up to the abstraction level of models. Rather than calculating differences on the low-level
physical representation (e.g., lines of the text serialization), existing approaches to model
versioning rely on operations such as object insertion or attribute value update. This
improves both accuracy and consistency to a significant extent.

For storing and merging model versions, change logs may be used to describe the per-
formed modifications. Log-based approaches such as [KH10] record the user’s changes, but
lack generality because they require a custom editor or at least extensions to existing editors.
In case no change log is available or when intentionally following a comparison-based
approach, changes need to be reconstructed by matching and differencing, as realized in
[BP08]. The quality of the matching can be significantly improved by the use of universally
unique identifiers (UUIDs) for model elements.

An important sub-problem of optimistic MVC is three-way model merging [Wes14].

2.2.3 Software Product Line Version Control

Software product line version control (SPLVC) deals with common problems that occur
during the management of the life-cycle of software product lines, for instance, propagating
changes from the variability model to the platform [SHA12]. Typically, platform and
variability model are represented as artifacts on the same conceptual level, i.e., there is no
“is versioned by” relationship in the sense of version control.

Many SPLVC systems have been built on top of existing VCS [ME08]; others rely on
an implicit clone-and-own strategy [Pfo+16]. The component-based approach presented
by [Tha12a] relies on change propagation at the level of derived products; the level of
automation is low as manual visibility updates are required.

2.2.4 Integrated Historical and Logical Versioning

With branches, traditional version control systems [Cha09; CFP04] offer the management
of logical variants to a limited extent; they do not support the creation of new variants based
on a free combination of configuration options.

Approaches to integrated historical and logical versioning (IHLV) have been developed
independently of SPL research and address software configuration management in a broader
sense, promising to uniformly support evolution and variability. We distinguish between
asymmetric, orthogonal and hybrid solutions.

Asymmetric approaches to IHLV do combine historical and logical versioning, but not
at the same conceptual level. For instance, Adele [EC94] has logical variants built into its
object-oriented data model using variability-aware program constructs; historical versioning
is realized by a layer on top, which relies on directed deltas.

Furthermore, in [Rei95], an approach for orthogonal IHLV is proposed. A version cube
is formed by product, revision, and variant space. In this way, evolution and variability
are treated “equally before the law”. Albeit, orthogonal solutions do not consider that the
variant space may be subject to historical evolution.
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Approaches towards hybrid IHLV promise to combine the advantages of the asymmetric
and the orthogonal approach. The approaches described in the literature, however, lack
implementation. In [ZS97], an approach to unified versioning based on feature logic [Smo92]
is presented. Versions of artifacts (i.e., text files) are stored with selective deltas; visibilities
are controlled by feature-logical expressions, which must be managed by the user. The
Uniform Version Model (UVM) presented in [WMC01] generalizes and extends (historical
and logical) versioning concepts initially introduced in the context of change-oriented
versioning (CoV) [Mun93]. The version space is, however, represented at an inconvenient
level of abstraction (propositional formula and set theory).

2.3 Requirements for a Fully Integrated Solution

The contributions made in this thesis are relevant for software projects that are subject to
both evolution and variability.

To this end, let us assume a software project that requires to organize both historical
– in a scale which makes collaborative version control facilities inevitable – and logi-
cal versioning—to an extent where fine-grained feature variability as provided by SPLE
approaches is necessary. Such projects exist in the real world both in academia (e.g., MOD2-
SCM, an SPL for VCS [BDW12]) and in industry (e.g., the Linux kernel [Ada+07]). Let
us furthermore assume that the artifacts to be versioned include (but are not restricted to)
source code and models, whose compliance to their respective programming languages and
metamodels must be ensured at any time while the user manipulates them using his/her
preferred modeling languages and tools.

Figure 2.1 illustrates that such a system needs to be organized along three dimensions:
the historical dimension, which arranges subsequent points in time (revisions), and the
variant dimension, which is organized along variants, which denote valid combinations
of configuration options (features), and the product dimension, which consists of several
(model or non-model) artifacts that can be uniquely identified.

Altogether, the assumed scenario deals with the management of requirements in five
classes. Three of them conform to the dimensions historical, variant, and product. In
addition, cross-cutting requirements emerge from the pair-wise integration approaches listed
above. Last, collaborative requirements, which are typically addressed by VCS, but may
also affect the variant and product dimension, must be handled distinctly.

The functional requirements listed below have been collected from an analysis of the
state-of-the-art tools presented above; see alignment in Section 2.3.6.

Product

Variants
Revisions

Artifacts

Figure 2.1: Different dimensions to be managed by an integrated approach. From [Rei95].
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2.3.1 Historical Dimension

Requirements in the historical dimension coincide with the usual version control needs.

R1. Revision Graphs. The history of the software project should be described by a
revision graph that, on the one hand, defines the set of revisions committed, and, on the other
hand, arranges them in a (partial) order by defining predecessor/successor relationships.

R2. Extensional Revision Selection. A historical version (i.e., revision) is uniquely
defined by selecting a single element in the revision set. According to [CW98], this principle
is called extensional versioning.

R3. Immutability of Revisions. Once committed, a revision must be permanently avail-
able in the sense that checking-out the same revision should always reproduce exactly the
committed state of the workspace. This disallows changes of version membership.

R4. Transparent Multi-Version Storage. The user should never get in touch with the
repository-internal representation of multi-version artifacts, such that parts of the product
not included in the selected revision are invisible to him/her.

2.3.2 Variant Dimension

Requirements in the variant dimension originate from SPLE tools. Furthermore, views shall
be supported in order to reduce the complexity of multi-variant editing.

R5. Feature Models. Feature models are accepted as the de-facto standard for defining and
representing variability in software product lines, so they should be supported as variability
mechanism.

R6. Intensional Variant Specification. Based on a feature model, a variant is defined as
a feature configuration, which binds each feature to a boolean selection state. Therefore,
variants are freely compiled on demand based on the specification of their properties
(features). In [CW98], this type of version definition is called intensional.

R7. Management of Variability Annotations. Variability annotations (also traceability
links or presence conditions) control in which variants a specific part of the software is
included. Some mechanism should be provided to directly or indirectly manipulate these
annotations.

R8. Views on Product Variants. A variability management tool should offer facilities to
temporarily hide parts of the product that are irrelevant for a specific change, and furthermore,
to preview single product variants.
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2.3.3 Product Dimension

The management of (model and non-model) artifacts being subject to evolution and/or
variability should be as convenient and as consistent as possible. Here, we list requirements
to complement the pure editing functionality that is provided by core development tools.

R9. Automated Product Derivation. Single-variant products are supposed to be derived
in a preferably automated way from a multi-version representation by a unique version
specification. In VCS, this is achieved by check-out; in SPLE, the derivation operation
coincides with the starting point of the application engineering phase.

R10. Reuse of Existing Editing Tools. Whether or not they apply model-driven tech-
niques, developers typically prefer to utilize existing editors rather than being forced to
employ a new tool potentially bringing new limitations with it. This requirement is also
valid for the development of evolving and variable software.

R11. Generality. Version control or SPLE approaches should make no or only few as-
sumptions about the structure of the underlying product, such that it is applicable to different
programming and modeling languages. In the ideal case, the product space can be spe-
cialized and extended towards different types of artifacts, such as text files, models, or
databases.

R12. Product Well-Formedness Analysis. Before being presented to the user, single-
version products should be checked for well-formedness. In the case of conflicts, the user
should be notified, such that he/she may repair the product.

2.3.4 Cross-Cutting Requirements

In addition, there are requirements that demand that the three dimensions be mutually aware
of each other.

R13. Evolving Feature Model. The feature model has to be aware of evolution in the
same way as the underlying product dimension is. To this end, it should be available as an
additional artifact in the workspace provided by the VCS.

R14. Overlap of Historical and Logical Versioning. Rather than being treated as two
independent dimensions, historical and logical versioning must be allowed to overlap. For
example, a change that is initially planned as a purely evolutionary increment might be
connected to a new optional feature later.

R15. Uniform Mechanism for Evolution and Variability. When following a separate-tools
approach, the management of revision membership – usually achieved by check-out/commit
– and variant membership – by manual editing of variability annotations – is performed using
different tools relying on distinct formalisms. An integrated solution should use a uniform
versioning mechanism for evolution and variability.
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R16. Fine-Grained Versioning. When considering the connection between the product
space and evolution/variability management, fine-grained versioning should be applied. For
instance, every detail of a model (such as the name of a model element) should be allowed
to have different historical or logical versions.

2.3.5 Collaborative Requirements

In addition to cross-cutting requirements, two requirements for multi-user operation can be
identified. Collaboration with respect to historical versioning is supported by most VCS.

R17. Multi-User Version Control. A minimal requirement for version control systems is
that it can be used simultaneously by several developers, who share the versioned data.

R18. Collaborative Software Product Line Engineering. An integrated approach should
also consider the specific needs of collaborative SPLE, including the orchestration of
concurrent changes to the feature model, to the platform, and to variability annotations.

2.3.6 Alignment with State-of-the-Art Approaches

In order to prepare for a discussion of integration gaps present in the state of the art, we align
the requirements listed above with categories of approaches listed in Sections 1.3 and 2.2.
The explanations are backed by Table 2.1.

Version Control Systems. By providing immutable revision graphs, version creation by
revision selection, and a transparent multi-version repository, VCS naturally address
the requirements of the historical dimension in isolation. With respect to the product
dimension, they automate the creation of workspace products conforming to selected
revisions and they foster the reuse of existing editing tools rather than forcing the
user into specific tools. Last, with respect to the collaborative requirements class,
multi-user version control is enabled by optimistic or pessimistic synchronization, but
collaborative SPLE is not explicitly addressed.

SPLE Support Tools. State-of-the-art SPLE support tools provide for intensional variant
specification based on feature models. Furthermore, they allow to (directly or in-
directly) manipulate variability annotations (i.e., the mapping). A smaller subset
of SPLE tools investigated provides dedicated support for views based on filtered
editing and/or for well-formedness analysis. Automated product derivation is typically
included in the repertoire of functionality offered.

Model-Driven SPLE Support. MDSPLE tools advance the functionalities of general prod-
uct line support tools by particular aspects belonging to the product dimension and to
the cross-cutting class. They typically enforce the usage of a combination of SPLE-
specific and independent editing tools. Furthermore, a subset of the surveyed tools
is general with respect to the modeling language employed. Many approaches also
address product well-formedness management. As far as cross-cutting requirements
are concerned, MDSPLE support tools adequately address the hierarchical structure
of models, such that fine-grained variability management is achieved.
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Table 2.1: Alignment of surveyed approaches with requirements identified. The symbolX denotes
that the corresponding category of approaches fully satisfies the requirement, ? is for
partial support, and an empty entry means that the requirement is not covered.

Historical Variant Product Cross-Cutting Collab.
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

VCS X X X X X X X
SPLE X X X ? X ?

MDSPLE X X X ? ? ? X ? X
MVC X X X X X X ? ? ? X X

SPLVC X X X X X X X ? X X X X X
IHLV X ? ? X X ? X X X X ?

Model Version Control Systems. MVC systems can be considered as a specialization of
VCS; therefore, they extend the list of requirements satisfied. In analogy to MD-
SPLE, some approaches are general with respect to the modeling language employed,
and dedicated well-formedness analysis is provided to a limited extent, e.g., by
consistency-preserving three-way model merging tools. As feature models can be
interpreted as regular model instances by a subset of MVC systems, the cross-cutting
requirement of feature model versioning is fulfilled partly. Last, fine-grained (histori-
cal) versioning is applied in the product space.

SPL Version Control Systems. Dedicated software product line version control systems
combine the functionalities of VCS and SPLE. In addition, feature model evolution
(as a cross-cutting requirement) and collaborative SPLE are enabled.

Integrated Historical/Logical Versioning. The diverse approaches to integrated historical
and logical versioning (regardless of their classification into asymmetric, orthogonal,
or hybrid), combine the definition of historical revisions and logical variants, but
they do not typically rely on higher-level version abstractions (revision graphs and
feature models). Some of the approaches discussed utilize a transparent multi-version
storage, which can be indirectly accessed by views. The degree of automation of
variability annotation management varies among the different approaches. In the
product dimension, the VCS properties of automated product derivation and tool reuse
are shared. As far as cross-cutting requirements are concerned, this category of tools
exclusively addresses the overlap of historical and logical versioning by providing a
uniform or unified versioning mechanism. Collaboration is supported partly.

Taken together, all requirements have been – at least partly – addressed by state-of-the-art
approaches in isolation. Albeit, there is no tool satisfying them all at once, such that a
combination of at least three tools must be employed (see discussion below).

The here presented conceptual framework and tool aim at satisfying all functional require-
ments mentioned here. We refer back to specific requirements in the conclusions of the
respective chapters of Part IV.



26 Chapter 2 Requirements and Benefits of an Integrated Approach

2.4 Towards the Full Integration of MDSE, VC, and SPLE

To motivate an integrated approach that fulfills the requirements of all five classes, we
explain the drawbacks of an “off-the-shelf” tool combination. Then, we gradually transition
from a loosely-coupled into a fully integrated approach.

2.4.1 Drawbacks of the Separate-Tools Approach

Typically, the three dimensions are managed by disjoint tools: An editing tool – e.g., a text
editor or a computer-aided software engineering (CASE) tool – is used for creating and
modifying elements of the product dimension (i.e., both models and source code). The
historical and variant dimensions is organized by VCS and SPLE tools, respectively. This
strategy, here denoted as separate-tools, has several drawbacks:

Context Switches. Developers have to deal with at least three different tools, or families
of tools, in order to create and maintain an evolving product line consisting of
models. Each and every tool comes with its individual modes of usage and metaphors;
e.g., VCS offer an update/modify/commit workflow whereas SPLE tools require to
maintain feature models and multi-version artifacts.

Limited Support for Cross-Cutting Requirements. Even when using tools for pair-wise
tool integration, listed in the brief literature review above, several cross-cutting require-
ments remain unsatisfied (see below). This may result in additional revision/variant
management overhead and, even worse, in consistency problems.

Late Relevance of the Variability Dimension. In many (model-driven) software projects,
support for variability is not planned from the beginning, but becomes relevant at a
later phase in the product life-cycle. Retrospectively, it pays off to have a tool that
allows to introduce variability on demand, without requiring heavyweight tooling
set-up effort in advance.

2.4.2 Consecutive Integration

By step-wisely adopting tools for pair-wise integration (see Section 2.2), the separate-tools
approach can be gradually transformed into a partially integrated, and finally, into a fully
integrated, approach. Here, the added value of different stages of expansion are discussed in
terms of requirements fulfilled. See Figure 2.2 for an overview of the consecutive integration
steps. 2

Separate Tools. When using appropriate software, the separate-tools approach may satisfy
most requirements without any additional effort. In particular, this holds for requirements
individual to the historical (R1 – R4) and to the variant (R5 – R7) dimension, respectively.
The automated derivation of products (R9) and the reuse of editing tools (R10) are supported,

2 Here, we follow a specific integration path, consisting of MDSPLE; MVC, and last, SPLVC/IHLV. Notice that
this order might be permuted arbitrarily, which produces different intermediate results in terms of dimensions
(not) satisfied. The overall conclusion, namely that an integrated tool outperforms loosely coupled tool
combinations, is independent of the order.
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Figure 2.2: Consecutive integration of MDSE, SPLE, and VC.

too. Furthermore, R17 (multi-user version control) is fulfilled by contemporary VCS. On
the downside, product requirement R12 (well-formedness analysis) is partly ceded to the
editing tool, which is not aware of the multi-version context. Generality (R11), further cross-
cutting requirements (R13 – R16) as well as R18 (collaborative SPLE) remain completely
unsatisfied.

Partial Integration. In a first attempt towards tighter integration, the source code centric
SPLE tool might be replaced by a model-driven substitute, which is aware of the syntactic
structure of the artifacts part of the platform. As mentioned before, the mapping between
the variability model and the platform is expressed by adequate model-driven abstractions
such as deltas in the case of compositional or presence conditions in the case of annotative
variability. This way, requirements R11 (generality) and R16 (fine-grained versioning) are
fulfilled when confining to the variability management perspective.

Secondly, the conventional version control system might be abandoned in favor of a
specific model VCS. Since the underlying MDSPLE tool represents both the product
dimension and the variant dimension as models, they may be handled adequately by the
MVC system, such that requirements R11 and R16 are now satisfied also from the evolution
perspective. Furthermore, R13 (evolving feature model) is partly fulfilled.

Full Integration. In order to meet the remaining cross-cutting requirements, namely R14
and R15, it is necessary that one and the same tool controls both evolution and variability.
This enables dedicated support for views (R8), product well-formedness analysis (R12), and
collaborative SPLE (see R18).

Candidate tools to provide this type of integration have been categorized into SPLVC
and IHLV. Albeit, the requirements that they satisfy are mutually disjoint. Furthermore, a
loosely coupled solution consisting of a combination of pair-wisely integrated tool is still
affected by the drawback of context switches. For this reason, we conclude that a single tool
that offers full integration is indispensable.

Notice that the integration strategy presented here does not aim at eliminating the editing
tool. In contrast, we strive for a co-existence of existing (model or source code) editing tools
with a support tool, which complements rather than replaces the former.
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2.5 SuperMod: Top-Down Tool Description

As core contribution of this thesis, we present a conceptual framework that realizes a
fully integrated MDSE/VC/SPLE solution, satisfying all requirements stated above. The
functional and architectural considerations underlying the conceptual framework are best
explained by means of an informal tool introduction. An example for the usage of the tool
is provided thereafter.

SuperMod [SBW15] is a model-driven tool that combines metaphors of VC and SPLE.
From VC, check-out – for importing a specific version from a software repository into a
workspace – and commit – for transferring changes performed in the workspace back to
the repository – have been borrowed; SPLE has influenced SuperMod in terms of feature
models – hierarchical decompositions of mandatory and optional features – and feature
configurations—unique selections in the feature model describing the characteristics of
specific product variants. Complementarily, feature ambitions are newly introduced as
partial selections in the feature model delineating the set of variants to which a change,
representatively performed in the workspace, applies.

2.5.1 Architectural Overview

Like ordinary VCS, SuperMod distinguishes between a workspace and a repository.
The workspace is a region in the file system where a working copy, consisting of both

model and non-model artifacts, is made available to the user, who uses his/her preferred
tool(s) to apply modifications. Specifically in SuperMod, the workspace contains an addi-
tional artifact: the feature model, which can be edited by the user contemporaneously.

The repository in turn is a persistent, multi-version storage whose contents are transparent
to the user. Its contents are schematically sketched in Figure 2.3. The version space contains
the elements from which version specifications are constructed—here, revisions from a
revision graph and features from a feature model. In contrast, the product space contains
elements that are combined to specific product versions made available in the workspace.
Here, the product space consists of the feature model and of the primary versioned artifacts,
the domain model. 3

Product Space

Version Space

Feature Model

Revision Graph

Domain Model

versioned by

versioned by

versioned by

Figure 2.3: Sketch of the contents of a SuperMod repository.

3 Although the term “model” is used here, this may comprise multi-version representations of several model
and non-model artifacts conforming to different metamodels and languages.
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Figure 2.4: A compact illustration of SuperMod’s dynamic filtered editing model.

2.5.2 Dynamic Filtered Editing Model

To combine these concepts, the tool provides a filtered editing model (cf. Figure 2.4), an
iteration of which consists of three essential steps, CHECKOUT, MODIFY, and COMMIT.

1. Select a revision in the revision graph. Define a feature configuration as a unique
selection in the (selected revision of the) feature model. The specified variant of the
domain model is made available in the workspace.

2. Let the user modify the model in the workspace. These changes should reflect an
increment being connected to a subset of the selected features.

3. Specify a feature ambition as a partial selection in the feature model. The increment
is transparently connected to the selected features, and the change is made persistent
in the repository. A new revision is introduced transparently.

The editing model is called dynamic for two reasons. First, the feature model may co-
evolve with the domain model during the modify step. Second, the ambition is defined at
commit and it may refer to newly introduced features.

2.6 Fast-Forward Example: Graph Library Product Line

This section gives a brief insight into the usage of the tool SuperMod.
As a running example, a product line for a Graph Library [LHB01] has been chosen.

Graphs are a meaningful abstraction in computer science helping to analyze and solve
complex problems by means of graph algorithms. In general, a graph consists of a set
of vertices and a set of edges, each connecting two vertices. Depending on the concrete
problem statement, graphs may be directed (i.e., an edge has a dedicated source and target
vertex), weighted (i.e., there is a numerical value assigned to each edge), or labeled (i.e.,
vertices and/or edges have a unique label assigned). In addition, specific graph algorithms
assume that each vertex has a specific color assigned. Here, the Graph Library is represented
as a UML-compliant class diagram, from which concrete graphs may be instantiated.
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2.6.1 Example Iteration Seen from the End User’s Perspective

The editing model in action is exemplified by an iteration that addresses the realization
of the optional feature weighted, distinguishing weighted from unweighted graphs. Four
preceding revisions have already been realized.

In the top left corner of Figure 2.5, the current revision 4 of the feature model before
executing the iteration is shown. By definition, the feature model is hierarchical, starting
with the root feature Graph. This contains two mandatory (circles) sub-features Vertices and
Edges, which in turn contain optional features (empty circles) colored and labeled.

During check-out, a feature configuration is requested from the user. In the example, all
features are selected, except for color, which is deselected. As a consequence, an uncolored,
labeled, and weighted graph is exported into the workspace. The realization of the selected
feature labeled (realized in a preceding iteration) is visible in form of the attribute label.

Now, the workspace may be modified arbitrarily. In our example, the fictional user adds
an attribute weight of type double to the class Edge. Correspondingly, it is this attribute that
constitutes the increment realized in the presented iteration.

The change shall be connected to a new feature weighted, which is added to the feature
model below Edges also during the modify step. The bottom left corner of Figure 2.5 depicts

Workspace Modified Workspace

Modified Feature Model Feature Ambition

1. check-out

2. modify

3. commit

Feature Model Feature Configuration

Vertices

Graph

EdgesEdges

Colored Labeled

Vertices

Graph

EdgesEdges

Colored Labeled

Vertices

Graph

EdgesEdges

Colored LabeledWeighted

Vertices

Graph

Edges

Colored LabeledWeighted

Figure 2.5: SuperMod example iteration: realization of the feature weighted.



2.7 Further Aspects 31

Graph Vertices Vertices

Edges

Edges
labeled

weighted

1

3

3

2 2

4

5

Figure 2.6: Example: internal representation of the superimposition. Visibilities, each including a
historical and a logical component, are illustrated as attached comments.

the modified state of the feature model.
The connection between the change to the model and the newly introduced feature is

established during commit where a feature ambition is requested from the user. In contrast
to feature configurations, feature ambitions are partial, i.e., they may leave features unbound
(gray background). In our case, exclusively weighted is selected positively since the change
is immaterial to all other features. The changes are, furthermore, associated with the new
revision 5, which is transparently introduced in the revision graph.

As a consequence of the performed iteration, attribute weight will be checked-out into
the workspace if a revision greater or equal than 5 is selected and the specified feature
configuration includes a positive selection for the feature weighted.

2.6.2 A Glance Behind the Curtains

A greater part of this thesis deals with what happens inside the repository transparently when
the designated end user issues a check-out or commit. An intuitive idea of the underlying
internal concepts and mechanisms is provided here.

Internally in the repository, the entirety of all versions of the domain model is represented
in the form of a superimposition, i.e., a multi-variant domain model; this can be understood
as a model instance having visibilities assigned to its objects. A visibility in turn refers to
features of the feature model and to revisions of the revision graph.

The superimposition belonging to the Graph Library example in its state after the iteration
performed above is depicted in Figure 2.6. The attribute weight added during the modify
step has been associated with the feature weighted and with revision 5 as expected. Further
visibilities have emerged from previous commits in an analogous way.

2.7 Further Aspects

This informal top-down example has illustrated some core principles of the formal approach
developed in this thesis. More sophisticated use cases are considered in the subsequent
chapters. They deal, among others, with the following items.
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Revision Graph Management. In contrast to the feature model, the revision graph is not
available for modification in the workspace, but managed automatically. The underly-
ing mechanisms need to be further explained.

Dual Role of the Feature Model. Figure 2.3 illustrates the dual role of the feature model,
which is part of both the version space and the product space (as it is subject to
evolution). This design decision is of central importance and implies a multitude of
consequences, which are thoroughly discussed in the remainder.

Product Space. The Graph example’s product space consists of a single UML class di-
agram only. Yet, a multitude of modeling languages as well as text files must be
supported in order to make the tool and approach applicable to realistic model-driven
scenarios. Furthermore, fine-grained management of the product space is required.

Commit Semantics. In the example, the visibilities of inserted elements are associated
with a feature selected in the ambition as well as with a new revision created during
commit. Though, deletions and modifications of elements have not been considered.
Furthermore, how are visibilities shaped when multiple features are selected positively
and/or negatively in the ambition?

Feature Model Editing. In the example iteration, the feature model was only slightly modi-
fied. More advanced facilities for feature model editing are provided by the approach
and tool. To this end, the semantics of feature models with respect to valid feature
configurations must be clearly defined.

Dynamic Filtered Editing. In the informal tool introduction, a specific dynamic editing
model has been applied. In contrast to other approaches to filtered editing described in
the literature, SuperMod allows for parallel feature model and domain model editing,
and requests to fix the scope of a change – i.e., the ambition – not before commit.
This increases the flexibility of MDSPLE, but also raises new consistency problems,
which remain to be examined and solved.

User Assistance. It has been shown that the contributed editing model automates variability
management to a large extent. Though, specifying feature configurations and feature
ambitions is still tedious, requiring dedicated user assistance in order to avoid, e.g.,
repeated check-outs with equivalent feature configurations.

Multi-User Operation. SuperMod is a fully-fledged version control system enabling collab-
orative (SPL) development. Questions such as synchronization of concurrent changes
remain to be answered.

Product Well-Formedness Analysis. Likewise, single or multiple users may cause well-
formedness violations referring to both the domain model and the feature model. Such
situations must be adequately reported to the user, who resolves conflicts preferably
in a single-version view.

Processes and Adoption Paths. The thesis at hand also discusses how both the tool and
its underlying approach match different development processes such as plan-driven or
agile, as well as different SPL adoption paths such as proactive, reactive, or extractive.
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2.8 Benefits of the Integrated Approach

Taking into account the remarks given in the previous sections, the here presented fully
integrated solution for MDSE, VC, and SPLE may advance the state of the art of tool support
by the following items: 4

B1. Uniform Versioning. The integrated solution provides a uniform concept for the inter-
nal representation of logical and historical versions. Until writing back a change to
the repository, the user may decide if it incorporates a new revision of an existing
variant, or a new variant that co-exists in parallel.

B2. Reduction of Cognitive Complexity. By the adoption of the version control metaphors
check-out and commit in connection with filtered editing, the integrated solution re-
duces the cognitive complexity for the development of a model-driven software
product line. The user applies changes in a single-version view, and variability anno-
tations are updated automatically. The user is neither faced with difficult architectural
decisions related to a multi-variant domain model, nor with the necessity to describe
feature realizations by means of model transformations or composition rules.

B3. Unconstrained Variability. State-of-the-art SPLE support tools require that the multi-
variant domain model artifacts part of the platform be valid with respect to its meta-
model. The integrated approach allows models to vary arbitrarily within the multi-
version repository; this property is inherited from version control systems. Likewise,
single-version workspace artifacts should still be constrained by their respective
programming languages or metamodels.

B4. Tool Independence. The workspace, where the dedicated end users modify the con-
tents of the product line, contains artifacts that comply to standardized representations,
such that they may be edited with existing (single-version) model or non-model tools.
No technical adaptations are necessary to integrate exiting tools with SuperMod.

This list is revisited in the conclusion of this thesis in order to confirm that the benefits
are actually fulfilled by the contributed conceptual framework.

2.9 Summary and Outlook

In this chapter, the requirements for an integrated solution towards MDSE, SPLE, and VC
have been identified. A brief literature review has revealed that many requirements can be
fulfilled by combining tools that apply a pair-wise integration of the relevant disciplines, but
there exists currently no tool to match them all at a time. Cross-cutting requirements can be
satisfied optimally only by a tool that explicitly combines properties of SPLE and VC and,
furthermore, is aware of the model-driven structure of the versioned product.

The core contribution of this thesis is a conceptual framework to integrate MDSE, SPLE,
and VC in face of these requirements. Alongside of a first introduction, the key function-
alities of the tool SuperMod, which implements the framework, have been demonstrated.

4 An extended version of this list has originally been published in [Schwä+15].
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The framework and tool are tailored towards cross-cutting requirements such as dedicated
support for feature model evolution (cf. R13), awareness of the overlap of historical and
logical versioning (R14), a uniform mechanism for evolution and variability management
(R15), and fine-grained versioning (R16) of structured artifacts.

The integrated solution profits from four benefits: uniform versioning, reduction of
cognitive complexity, unconstrained variability, and tool independence.

In a fast-forward tool introduction, we have already demonstrated the unique characteris-
tics of SuperMod when compared to other tools described in the literature. First, the here
contributed conceptual framework assumes fully filtered editing. Multi-version artifacts, i.e.,
variation points, variants, and version membership information, are never exposed to end
users, who apply changes representatively in a product variant instead. The integration of
the performed changes into the SPL platform is automated to an extent that goes beyond
the state of the art in SPLE research. Second, the integrated hybrid repository architecture,
which is part of the conceptual framework, is unique in the literature. The feature model
plays a dual role, providing both a product versioned by the revision graph and a variability
model that versions the software project.

The requirements list collected here is recaptured in Chapter 7, where the central design
decisions for the conceptual framework are recorded. The decisions build upon a deeper
analysis of the disciplines MDSE, SPLE, and VC, and of pair-wisely integrated approaches.
The results of a more extensive literature review are presented in the subsequent four
chapters.



Part II

Three Software Engineering
Sub-Disciplines

Note to the Reader. The three chapters of this part provide general introductions into
the topics model-driven software engineering, software configuration management, and
software product lines. Readers familiar with these topics may skip the corresponding
chapters and resume on page 97.





The creative activity of programming
– to be distinguished from coding –
is [. . . ] considered as a sequence
of design decisions
concerning the decomposition
of tasks into subtasks
and of data into data structures.

NIKOLAUS WIRTH (1971)

Chapter 3

Model-Driven Software Engineering

Abstract

This chapter provides the first portion of the background of this thesis by surveying the
first of the three relevant sub-disciplines in which the contributions are made. Model-
driven software engineering aims at automatically deriving executable source code from
models, which serve as high-level specifications and are expressed by well-defined modeling
languages such as UML, or DSLs. The chapter does not only explore the theoretical
foundations of models and metamodels; it also includes a survey of technical solutions. The
technological ecosystem is provided by the Eclipse Modeling Framework, whose language
definition facilities are outlined before the chapter concludes with an overview of the key
element of model-driven software engineering: model transformations.
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3.1 Model-Driven Engineering and Model-Driven Architecture

As anticipated in the introduction, the term model is used in software engineering for more
abstract but less detailed descriptions of software systems. Stachowiak’s general model
theory [Sta73], which has its origins in philosophy, is often taken into account. According
to his definition, a model exposes three essential features to its stakeholder(s):

Mapping. A model must be based on a concrete artifact, the original it reflects.

Reduction. The model incorporates only a relevant subset of the original’s properties.

Pragmatism. The model must be capable of replacing the original for a specific purpose.

The purpose of models is manifold—they may be used to analyze existing software,
to communicate and understand customer requirements, or to design an implementation
template that will eventually be taken into consideration when coding, deploying, or main-
taining the actual software application. Model-driven software engineering (MDSE) [SV06]
makes systematical use of the idea of models being implementation templates and aims at
automating the majority of tasks necessary to obtain the executable source code.

Model-driven architecture (MDA) [KWB03; Mel+04] is a conceptual framework from
which a set of standards has been derived [MM03]. Essentially, it describes the disciplined
use of models, as classified in the next section, and model transformations, which are
outlined in Section 3.7, with the aim to significantly increase the productivity of software
engineering by replacing coding by modeling to the greatest possible extent. Another
important principle is the separation of functionality (as exposed to the end user) and
technical platform. Thus, MDA may be considered as a specialization of MDSE.

3.2 Classification Dimensions for Models

Apart from the commonalities reflected by the essential model features listed above, there
are several dimensions along which models may be distinguished when used in the context
of software engineering. Figure 3.1 summarizes the explanations given below.
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Figure 3.1: Classification dimensions of models used in software engineering.

Descriptive vs. Prescriptive Models. In experimental sciences, the term model is fre-
quently used for something that describes a cut-out of reality and allows to make predictions
for future. Such models are called descriptive—they describe an original that actually exists
in the real world before a model is derived from it. Descriptive models also exist in software
engineering, especially when applying reverse engineering [Mül+00]. In this case, a model
is derived from the legacy source code of an existing software system and thereafter used
for analyzing the underlying design principles.

Being an engineering discipline, software development makes extensive use of prescrip-
tive models, which are created in advance to an original—the executable software [Béz05].
The main reason for following this approach is the complexity of the system to be developed.
Well-defined modeling languages allow to document and to communicate design decisions
in a more comprehensible way by abstracting from implementation details irrelevant for the
architecture of the system. Prescriptive models are at the heart of MDSE and MDA.

Concrete Syntax. In software engineering, the term model is often implicitly connected
to a diagram representation. The notation of the most prominent modeling language, UML
(see Section 3.4), is almost entirely graphical. The reason why graphical notations are
considered as suitable abstractions is that they illustrate elements (e.g., classes or states) and
their relationships (e.g., associations or transitions) in an intuitive way.

Albeit, modeling languages are not confined to graphical notations. Using the role
model of programming languages, many modeling languages, especially domain-specific
languages, have a textual notation. For technically experienced users, text is easier to write
and modify. Furthermore, the development of textual modeling tools tends to be easier. Last,
texts scale larger than diagrams.

Conceivably, further forms of concrete syntax exist. For instance, tables may be consid-
ered as an additional form or model representation. Figure 3.2 illustrates the same model, a
state chart, with three kinds of concrete syntax: the well-known graphical syntax, a fictional
textual syntax as well as a transition table [HMU06].



40 Chapter 3 Model-Driven Software Engineering

Textual TabularGraphical

s1

s2

s3

a

b

b

state machine {
  initial state s1 {
    ‘a‘ -> s2
  }
  state s2 {
    ‘b‘ -> s3  
  }
  final state s3 {
    ‘a‘ -> s1  
    ‘b‘ -> s3  
  }
}

a a b

* s1

s2

s3 *

s2 -

- s3

s1 s2

Figure 3.2: Different semantically equivalent notations: graphical, textual, and tabular.

General Purpose vs. Domain-Specific Modeling Languages. Programming languages
can be distinguished into general purpose and domain-specific languages. While general
purpose programming languages such as C++ [Str13] or Java [Gos+15] can be employed
to develop any kind of application, domain specific languages have a restricted field of
application, but typically outperform general purpose languages in terms of declarativeness
and readability. For instance, the structured query language (SQL) [HM08] has been
designed specifically for database queries.

An analogous distinction exists for modeling languages: General purpose modeling
languages such as UML are suitable for the analysis and design of systems being developed
in general purpose programming languages. Domain-specific modeling languages (DSMLs)
may abstract from general purpose modeling languages; e.g., there exists a C code generator
for MATLAB Simulink [Beu06]. To DSMLs, a large body of research has been dedicated
[Fow10; Völ+13].

Structural vs. Behavioral Models. Regardless of whether being of general purpose or
domain-specific, there exist languages for structural and for behavioral models, respectively.

A structural model describes the entities a software system is composed of, as well as
possible connections between these entities. A well-known example is UML class diagrams,
where classes define types for objects to be instantiated from the application, as well as
attributes and associations to other types of objects.

Class diagrams, however, do not define how and when objects are created and modified.
For this purpose, structural models need to be augmented with behavioral models, e.g.,
UML sequence diagrams. A behavioral model describes possible interactions between the
entities of a software system, including creation, modification and deletion of them.

The interplay between structural and behavioral models is exemplified in Figure 3.3. A
structural model for a cut-out of the running Graph Library example is defined as a UML
class diagram on the left hand side. On the right hand side, the behavior encapsulated in the
operation addEdge is specified using a refining UML activity diagram.

Moreover, the separation between structural and behavioral models is not mandatory.
There exist hybrid forms, e.g., structural models augmented with behavioral specifications,
such as the Action Language for Foundational UML (Alf, see Section 3.4).
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Activity Diagram (addEdge)Class Diagram

Figure 3.3: Example of a structural UML class diagram being complemented by a behavioral UML
activity diagram. Based on [BS16b, Figures 3 and 4].

Semantics. In order to be purposeful to their stakeholder(s), models need not only conform
to well-defined syntactical guidelines, but also have a clear semantics. There are several
degrees of how precise the semantics can be defined.

First, semantics may be defined in an entirely informal way. For instance, the mind map
depicted in Fig. 3.1, although conforming to the concrete graphical syntax rules defined for
mind maps, cannot be interpreted by a machine unambiguously. Models based on informal
semantics require human efforts to be convertible into runnable source code.

Semi-formally defined semantics means that there is room for interpretation caused by,
e.g., limited expressiveness of the modeling language, or by ambiguity. For instance, UML
is defined in a semi-formal way by a standard [OMG15], in which prose is used to define the
semantics of specific modeling constructs. The accuracy of definitions varies. For instance,
the transformation of class diagrams into runnable source code is more obvious than, e.g.,
the execution of informal use case diagrams.

In case the specification of a modeling language contains no ambiguities, it provides
formal semantics to its models. This may be achieved either by using an unambiguous
formalism, or by providing a reference transformation that actually implements the semantics
by transforming model instances into lower-level entities, e.g., source code.

Execution. Models that have formal semantics may be executable, i.e., they may be run
on a computer using appropriate tools. Model execution may be realized either by using
model transformations (see Section 3.7) which convert model instances into executable
models or programs in a lower-level language, or by interpretation. A model interpreter
is a program that takes as input a model and directly executes the behavior specified there
[ML12; Car+13].
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3.3 Modeling Languages, Metamodels, and MOF

The syntax and semantics of models are defined by the respective modeling languages they
are supposed to conform to. In the field of MDSE, there are different formalisms for the
definition of a modeling language. Most of them assume a separation between concrete
syntax – the visual appearance of model elements – and abstract syntax – the internal
representation of model instances –, a distinction that has been borrowed from compiler
construction [Aho+06]. Technical approaches to the definition of concrete syntax is a subject
of Section 3.6.

3.3.1 The OMG Metamodeling Hierarchy

The conventional formalism for describing the abstract syntax is metamodels [Küh06]. A
metamodel is a model that defines which elements and which relationships are available
in a specific modeling language. More precisely, a metamodel defines, e.g., classes and
references, which are instantiated in models as objects and links.

Being a model itself, the question arises which is the modeling language for metamodels.
This, however, depends on the specific modeling paradigm used. The Object Management
Group (OMG) have standardized a three-level metamodeling hierarchy that is used in the
majority of MDSE applications nowadays: Meta Object Facility (MOF), see Figure 3.4. On
level M1, models are located; M2 represents metamodels; M3 defines a fixed metametamodel
(i.e., metamodel for metamodels). This level is where the concepts of classes and references
are defined for usage at M2. In addition, level M3 is self-defining: The metametamodel
MOF conforms to itself and therefore obviates the need for levels M4 or higher.

Below the three modeling levels, a pseudo level M0 is defined, which represents everything
that is reflected by M1 but that is not part of M1 itself. Depending on the specific context
where models are used, M0 may either reflect the real world (e.g., in the case of descriptive
analysis models) or run-time instances of the generated source code (e.g., in the case of
prescriptive implementation models).

Metametamodel (M3)

Metamodel (M2)

Model (M1)

Original (M0)

conforms to

conforms to

conforms to

reflects

MOF, EMOF, Ecore

UML, DSLs

Specific UML/DSL models

Reality, generated source code

Figure 3.4: Hierarchy of metamodeling levels as proposed by the OMG.
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Figure 3.5: Example for the use of the MOF levels: state chart.

3.3.2 Example

Figure 3.5 shows an example involving all meta levels M3 until M0. In the M3 box, a cut-out
of the OMG MOF metametamodel is depicted. It defines the modeling concepts Class
and Reference, both carrying a name. Each reference belongs to a specific class and has a
specific type. These concepts are instantiated at level M2, which defines a metamodel for
simple state diagrams that conforms to the M3 model. The classes State and Transition are
introduced, both carrying an attribute1 name. The concept Reference is instantiated twice,
defining the source (src) and target (trg) states of a transition. On level M1, an example of
a state diagram is shown in abstract (represented as object diagram conforming to the M2
class diagram) and in concrete graphical syntax. It instantiates the class State twice and
defines a transition a. Furthermore, the references src and trg are instantiated as links. On
level M0, the “real-world original” for the state diagram is shown: the context-free language
described by the state chart.

3.3.3 XML Metadata Interchange

With XML Metadata Interchange (XMI), the OMG have defined an XML-based serialization
standard for model instances located at M1, M2, or M3 [OMG15a]. XMI is intended as a
purely internal representation, i.e., modelers typically use specific modeling tools to edit
models based on their concrete syntax, whereas the model instances are persisted in their
abstract syntax in the XMI format.

For the remainder of the thesis, it is important to notice that indisciplined text-based

1 The M3 class Attribute instantiated here is not shown in the M3 compartment of the figure.
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modifications to XMI files can destroy their well-formedness, making them unreadable for
modeling tools.

3.4 UML, OCL, and Alf

The Unified Modeling Language (UML) represents the currently most widespread modeling
language. Since it has been used and is used in many examples in this thesis, some
background shall be provided here. Furthermore, the closely related standards OCL and Alf
are characterized.

3.4.1 Unified Modeling Language

In the 1990s, UML has been issued by the OMG with the aim to establish a standardized
notation for software models [OMG15]. UML is a general purpose language in the sense
that it may be used for modeling software systems of any domains. Furthermore, it covers
both structural and behavioral models and may be applied in all phases of software engi-
neering, i.e., its application ranges from requirements engineering over analysis, design, and
implementation, to deployment and maintenance. As a consequence, as well as due to the
fact that UML has historically grown from several ancestor languages, UML’s language
extent is enormous, consisting of 14 diagram types having more than 300 different element
types2 available; Figure 3.3 shows two example diagrams.

UML’s concrete graphical syntax has been defined informally by means of example
diagrams in the standard [OMG15]. Moreover, the abstract syntax is defined by a meta-
model defined at level M2. For each model element available in the UML, there exists a
corresponding class in the UML metamodel. Each model element, i.e., each object used
in a specific UML diagram, is a M1 instance of a class of the UML metamodel. Unlike
sketched in Figure 3.5, UML’s language architecture is slightly more complicated [Fow03;
HK05]: Rather than conforming to MOF, a small subset of the UML metamodel – the
so called infrastructure – has been chosen at M3 level. The UML infrastructure in turn
corresponds to a subset of MOF, defining core concepts such as classes and associations.
The majority of classes of the UML metamodel is contained in the superstructure, which
can be considered both as an extension to and as conforming to the infrastructure. Therein,
all diagram elements, such as use cases and activities, are defined.

3.4.2 Object Constraint Language

Structural UML models such as class diagrams define types of objects to be instantiated.
Furthermore, multiplicities may be specified for attributes and references. Typing and
multiplicity rules incorporate necessary preconditions for model instances to be syntactically
well-formed. However, specific application contexts may require additional conditions that
cannot be expressed by a purely static model. This is where the Object Constraint Language
(OCL) [WK98] steps in. The OCL standard defines a textual language that augments an
existing (UML or MOF compliant) class diagram by different kinds of constraints [OMG14].

2 The UML 2.4.1 superstructure metamodel contains 331 classes from which elements may be instantiated.
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In addition, the language allows to specify the behavior of structural models to a certain
extent, e.g., by expressions that describe the result of an operation call or a derived attribute.
Albeit, OCL has been designed as a functional language free of side effects, such that
the creation, modification, and deletion of objects cannot be directly expressed. As a
replacement, OCL allows to define pre and post conditions for state-changing operations.

3.4.3 Action Language for Foundational UML

Alf has been standardized as a “textual surface representation for UML modeling elements”
[OMG13, p. 1], which particularly focuses on the specification of behavior. In contrast to
OCL, Alf does support the specification of side effects, i.e., object creation, modification,
and deletion. Alf, however, does not require a specification of the underlying model as UML
class diagram. Rather, Alf expressions are embedded into different diagram types—e.g.,
the actions specified in the activity diagram in Figure 3.3 are Alf-compliant. Furthermore,
Alf code may be embedded in a textual syntax for a subset of UML which is known as
foundational UML (fUML). Being independent of specific implementation languages, Alf
contributes to the goal of separation of functionality and technical platform as demanded
by MDA. Despite being textual, Alf specifications are fully-valued abstractions of source
code, since the language provides higher-level language concepts, e.g., for the instantiation
of associations as links.

3.5 Eclipse Modeling Framework

While the OMG standards described above – MDA, MOF, XMI, UML and OCL – aim at
providing common conceptual methodologies and defining interchange formats for different
tool vendors, the Eclipse Modeling Framework (EMF) is a technical modeling solution
having widespread use both in industry and in academia [Ste+09]. As its name suggests,
EMF is based on the integrated development environment (IDE) Eclipse3. Eclipse is a highly
extensible IDE [CR06], whose development support functionalities and user interface may
be almost arbitrarily modified and extended by plug-ins. EMF is both a plug-in for Eclipse
providing basic modeling functionalities and a framework for building tools extending the
framework itself, e.g., by allowing to define new modeling languages or support tools.

At the heart of EMF lies the Ecore metamodel, which complies to Essential MOF
(EMOF); this in turn is a subset of the language MOF (see Section 3.3). Ecore provides
the metametamodel (M3, cf. Figure 3.4) for EMF-based applications. An editor for Ecore
models is provided—instances are represented externally as class diagrams. Depending on
the mode of usage, Ecore models may define either modeling languages situated at level M2
or domain models residing at level M1.

The framework provides a built-in source code generator for transforming Ecore models to
Java source code. Since EMF is a purely structural modeling language, manual adaptations
to the generated source code are necessary in order to add behavior, which is encapsulated in
Ecore operations that are eventually transformed into Java methods. In particular, the added

3 http://www.eclipse.org/

http://www.eclipse.org/
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behavior may describe the manipulation of M1-level model instances, which are internally
represented as Java run-time objects, such that the boundary between M1 and M0 is blurred.

3.5.1 Ecore Metamodel

Since it is extensively used in this thesis, the Ecore metamodel is further detailed. Figure 3.6
shows a cut-out reduced to the most relevant elements.

The root element of each Ecore model is an EPackage, which may contain nested packages
and instances of subclasses of EClassifier. There are three types of classifiers defined. Class
EDataType represents basic types such as EString, EInt, and EBoolean. A special case of
data types is enumerations (EEnum), which contain a fixed set of literals denoting the valid
values of the data type.

Being an object-oriented modeling language, Ecore class diagrams are built around
classes, which are represented as instances of EClass. The reference eSuperTypes defines
a multiple inheritance relationship between classes. If a class is abstract, it must not be
instantiated. The attribute interface affects EMF’s built-in Java code generator. Normally, a
pair of class and interface are generated, but if interface is set to true, no class is generated.
Since multiple inheritance is not allowed in Java, it is broken down to multiple interface
realization. One non-interface class may be chosen4 as implementation superclass.

Classes are compound data types; their objects may carry individual values for different
structural features, which are disjointly divided up into attributes – instances of EAttribute
– and references—instances of EReference. From their common superclasses, structural
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Figure 3.6: A cut-out of the Ecore metamodel represented as class diagram.

4 Actually, the first non-interface element in the collection realizing the reference eSuperTypes is selected.
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features inherit a name, a multiplicity (consisting of lowerBound and upperBound), and
a type, which is realized as a reference to EClassifier. As hinted by the corresponding
subclasses, the eType is restricted as follows: attributes have as type a basic data type or
an enumeration, whereas references end in a class. Last, both attributes and references can
optionally be derived, i.e., there is a computation rule for values of its instances. In concrete
syntax, this is expressed by a leading slash (/).

There are two additional features of references not discussed yet: containment and
bidirectionality. First, references can have the attribute containment set to true. Then, the
following properties apply to instances of this reference [Ste+09]:

1. Existential dependency: The contained object is part of its container. In case the latter
is removed from the model, the former must not exist any further.

2. Unique container: Each object may have at most one container.

3. Acyclic containment: An object must not (transitively) contain itself.

In concrete syntax, containment references are expressed by a black diamond at the container
end. Another optional feature of references is bidirectionality. Normally in Ecore, references
are assumed to be navigable along one direction only. Bidirectional references are realized
by a pair of references, mutually referring to each other as eOpposite. An additional
constraint requires that the container class and the eReferenceType of opposite references
be reciprocally identical.

3.5.2 Code Generation and Implementation of Behavior

The last element of the Ecore metamodel to be explained is operations, which are contained
by classes. From its superclasses, EOperation inherits its name, its return type, as well as the
multiplicity (of its returned value). Operations may also declare a sequence of parameters
having the same structural features. Ecore does not define classes for the description of
the dynamic behavior of operations. Instead, they are converted into method stubs during
code generation. Operation bodies must then be implemented manually in Java. In order
to control technical code generation properties such as the identifiers of generated Eclipse
projects, a generator model is provided by EMF as an intermediate artifact.

3.5.3 EMF’s Resource Framework

The default interchange format for EMF models and their metamodels is XMI (see Sec-
tion 3.4). To both end users and application programmers, serialization is made transparent
by the resource framework [Ste+09], which abstracts from the internal physical representa-
tion by offering the concept of resources, containers for EMF objects.

Figure 3.7 illustrates different kinds of relationships between objects contained in re-
sources. Each resource corresponds to a file whose location is described by a uniform
resource locator (URL). Resources may contain any kind of EMF models, i.e., metamodels
(instances of Ecore), or models (instances of metamodels). In the example, two metamodels
and three models are defined, each being contained by its own resource. Technically, a
resource contains one or several root objects, which in turn build up a spanning containment
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Figure 3.7: Possible relationships between objects located in different EMF resources.

tree of objects. Furthermore, cross-resource links are allowed only when having been
instantiated from non-containment references.

3.5.4 Dynamic EMF, Reflective API, and Generic Tools

In the remarks above, it was implicitly assumed that Ecore models will eventually be
transformed into Java source code. As a lightweight alternative, EMF offers a dynamic
approach that does not require to generate any code. Rather than this, model objects are
represented as instances of a dynamic class, DynamicEObject.

For both dynamic and generated classes, EMF provides a reflective API by which the state
of objects may be dynamically read and modified. Furthermore, operations (of generated
classes) may be dynamically invoked and metadata, such as the EClass of an object or the
resource of a model, may be queried.

For tool developers, the reflective API constitutes an important point of contact. Tools
can provide functionality for any kinds of EMF models without having to know the exact
classes used, which are defined in the metamodel. Based upon this, generic support tools
for general model management may be developed and used in a generic way. SuperMod is
an example of such a tool.

3.6 Graphical and Textual Syntax

After having discussed the internal representation of models in general and of those con-
forming to the Eclipse Modeling Framework in particular, let us consider several different
approaches to the external representation of models to the user, who wishes to create and
modify models based upon their concrete syntax. In the context of EMF, three state-of-the
art technologies are surveyed below. First, EMF contains a built-in tree editor. Second,
the Graphical Modeling Framework (GMF) extends EMF by tools for the development of
concrete graphical syntax for modeling languages. Last, using the framework Xtext, DSML
developers may define textual syntax based on parsers which are generated from a grammar.
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Figure 3.8: Syntax-directed vs. syntax-based editing.

Regardless of the framework used and the type of concrete representation (graphical or
textual), there exist two distinct approaches to modification of models presented in concrete
syntax (see Figure 3.8). On the one hand, in the case of syntax-directed editing, the model
is persisted based on its abstract syntax. A projection of the model is made visible to the
user, who may modify the model’s abstract syntax using specific commands such as “create
element”. After editing, the projection is updated such that the user immediately sees the
performed changes. On the other hand, syntax-based editing assumes that the model is
persisted in concrete syntax. The user may freely edit this model. After editing, it is parsed
in order to derive the abstract syntax in the background as a temporary data structure.

3.6.1 EMF Edit as Foundation

EMF supports both syntax-based and syntax-directed editing. In order to ease the imple-
mentation of different concrete syntax technologies, the EMF Edit framework is provided
as a model manipulation and representation API independent of concrete user interfaces.
The core concept of EMF Edit is item providers, which describe in an abstract way which
operations are available for the creation and modification of objects and their properties.
Furthermore, display properties such as icon or label can be defined in a reusable way.
Modifications to the default appearance and behavior may be made either in the generator
model or in the Edit plug-in source code generated for the respective metamodel. The
concrete syntax frameworks presented below reuse the EMF Edit framework.

3.6.2 EMF Tree Editor

EMF includes a built-in default editor for models, the tree editor. It directly builds upon
the EMF Edit framework. Objects part of a model are represented in a tree reflecting the
containment hierarchy. Operations for object creation and manipulation are available as
context menu entries. Details of objects may be modified in a properties view. When
following the generative approach, the EMF tree editor may be customized by extending or
restricting the set of available edit operations.

Although the EMF tree editor can be easily generated for existing Ecore models, it is
considered to have limited use for concrete syntax editing since the provided tree syntax
is still “too abstract”. This is especially true for graph-like models, which are better
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interpretable in a diagram syntax. On the contrary, for tree-like models, a customized tree
editor may be quite comfortable to use. Therefore, this approach is used for SuperMod’s
feature model editor, which is described in Section 14.2.2, as well as for an example DSML
in the evaluation (see Section 15.3.3).

3.6.3 Graphical Modeling Framework

The Graphical Modeling Framework5 (GMF) is an EMF extension allowing to generatively
develop a syntax-directed (cf. Figure 3.8) graphical editor for instances of a particular Ecore-
based metamodel. Technically, it combines EMF with the Graphical Editing Framework
(GEF), a toolkit for the development of diagram editors [Gro09].

By itself, GMF follows a model-driven approach, meaning that tool developers are
intended to create different kinds of models to define the graphical syntax, editing facilities,
as well as the connection between abstract and concrete syntax. These different tasks are
orchestrated by the following models:

– The domain model corresponds to the Ecore model that defines the abstract syntax of the
graphical modeling language to be developed (cf. Section 3.5). Using EMF’s built-in
generator model facilities, model and edit code can be derived.

– In a graphical definition model, the tool developer defines graphical modeling elements.
Their visual appearance is defined in a so called figure gallery. There exist two important
types of graphical elements: nodes (e.g., boxes or circles) and connections. For both nodes
and connections, styling properties such as icon, fonts, colors, or line widths can be adjusted.
Furthermore, nesting may be defined for specific node types.

– The tooling definition model defines the creation tools available in the tool palette. There is
a distinction between node and edge creation tools.

– In the mapping model, the editing behavior is defined by combining elements of the domain
model, the graphical definition model, and the tooling model, by means of different types of
mappings. Depending on whether an object or a reference defined in the domain model shall
be mapped to the canvas, to a node, or to a connection figure, different types of mappings
can be defined. Furthermore, each mapping may refer to a creation tool.

– The GMF generator model is an intermediate artifact where generation parameters can be
adjusted. The diagram code generated by this model depends on the model and edit code
generated by the domain generator model.

By intention, the GMF run-time separates concrete from abstract syntax. In particular, for
each domain model, represented as an instance of its Ecore-based metamodel, an arbitrary
number of diagrams may exist. These diagrams contain references to the domain model,
augmenting them with details referring to their graphical representation (e.g., position and
size on the diagram canvas). Diagram models are instances of the GMF runtime metamodel.
Therefore, from the perspective of tool support, GMF-based diagrams must be treated as a
set of interconnected model instances conforming to different metamodels.

The UML modeling tool Valkyrie, which is used for many examples here, has been
developed upon GMF [Buc12].

5 http://www.eclipse.org/modeling/gmp/

http://www.eclipse.org/modeling/gmp/
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3.6.4 Xtext

The Xtext framework6, which is available as a plug-in for EMF, provides support for defining
concrete textual syntax for EMF models relying on a syntax-based (cf. Figure 3.8) editor
that extends the built-in Eclipse text editor.

The language definition workflow realized by Xtext is centered around an augmented
form of context-free grammars (CFGs) [HMU06], a formalism borrowed from compiler
construction [Aho+06]. An Xtext grammar comprises a set of grammar rules, whose
left-hand side refers to a class from the Ecore model that defines the abstract syntax. The
corresponding right-hand side may contain non-terminals, e.g., keywords or placeholders of
a specific data types, or terminals, which correspond to nested rule calls.

In general, a parser analyzes an input text and converts it into an abstract syntax tree
(AST) [Aho+06]. In the case of Xtext, the AST is an instance of the underlying Ecore model.
Therefore, when compared to ordinary CFGs, an Xtext grammar contain references to the
metamodel that explain how the parsed contents are mapped to the model instance.

In contrast to GMF, where the concrete and the abstract syntax are persisted independently,
Xtext-based models are persisted in their concrete syntax, i.e., in textual form. The abstract
syntax is derived on demand by parsing the underlying text file. Nevertheless, Xtext-based
models integrate seamlessly with other EMF models since Xtext implements EMF’s resource
framework (cf. Section 3.5).

3.7 Model Transformations

As introduced so far, models are capable of capturing information, which is exposed to the
user based on different kinds of concrete syntax. Using specialized editors, stakeholders
may modify and share models. The real potential of MDSE, however, is obtained by model
transformations, which have been called “the heart and soul of model-driven engineering”
[SK03]. On the one hand, they may convert models into less abstract representations and,
eventually, into source code. On the other hand, model transformations are used in order to
describe the intrinsic behavior of structural models. Therefore, some model transformations
may be considered as behavioral models as well.

3.7.1 Classification

As shown in Figure 3.9, there exist several classification dimensions for model transforma-
tions, details of which are outlined below. In the sequel, references to concrete EMF-based
technologies are made.

Output. Model transformations take as input a model that conforms to a MOF-like model-
ing paradigm, e.g., an instance of an Ecore-based metamodel. We can distinguish between
model-to-model (M2M) and model-to-text (M2T) transformations according to the trans-
formation output. In the latter case, the produced text may represent, e.g., source code or
configuration files.

6 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/
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Endogenous vs. Exogenous. A model-to-model transformation is called endogenous
in case the output model conforms to the same metamodel as the input model. Exogenous
model transformations produce an artifact of a different type, i.e., either text or a model
conforming to a different metamodel.

In-Place vs. Out-Place. In an in-place model-to-model transformation, the input model
is equivalent to the output model. More precisely, the transformation describes a side effect
on the input model. In contrast, out-place transformations produce a new model (or text),
leaving the input model unmodified. In-place transformations are endogenous by definition.

Syntax. Two different approaches for the notation of model transformations exist. On the
one hand, a model transformation may be specified in textual form. Alternatively, there exist
a number of approaches relying on a graphical syntax, the greater part of which have their
origins in the theory of graph transformations [Roz97].

Paradigm. In analogy to programming languages, which are assigned to different para-
digms such as imperative, procedural, or functional, the style of transformation specification
dictated by a model transformation language may vary. Two different paradigms have
emerged: While imperative languages consider a model transformation as a sequence of
statements, each mutating the state of the output model, in declarative languages, the
expected result is formalized using suitable abstractions. Since both approaches imply
desirable properties, in practice, mixed forms are often employed.

Unidirectional vs. Bidirectional. Transformation languages can be distinguished into
unidirectional and bidirectional. A unidirectional language exclusively describes a transfor-
mation from a dedicated source to a target model. Bidirectional transformations, in contrast,
contain a single specification, from which both execution directions can be derived auto-
matically. Bidirectional transformations are of particular interest in round-trip engineering

Model
Transformations

batch
Paradigm

incremental

imperative declarative mixed

model text

unidirectional bidirectional Syntax

textual graphical

Output

exogenous

endogenous

in-place out-place

Figure 3.9: Classification dimensions of model transformations.
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scenarios, where source and target model co-evolve. Languages that enable bidirectional
transformations tend to follow the declarative paradigm.

Batch vs. Incremental. The last classification dimension refers to incremental transfor-
mations. They assume that the source model is not only transformed once but repeatedly.
Furthermore, the target model should not be entirely created anew, but only those parts
of the model that changed in the source model should be propagated to the target model.
Like bidirectionality, this is a frequent requirement in round-trip scenarios. For instance,
modifications to generated source code should be maintained when re-invoking a M2T-based
code generator. Incremental transformations usually rely on a trace that records which
elements have already been created in order to avoid their repeated creation.

Special Kinds of Model Transformation. For the sake of completeness, two special kinds
of model transformations are mentioned. First, a higher-order model transformation is
a model transformation that takes a M2M or M2T specification as input and/or produces
such a transformation as output [Tis+09]. Second, multi-variant model transformations
assume that the input model is enriched with variability information that is supposed to be
transferred to the output model in an adequate way [SBW16b].

3.7.2 Technical Solutions based on EMF

In the orbit of the Eclipse Modeling Framework, several distinct solutions to model transfor-
mations have been invented, each having individual properties and purposes. The following
list summarizes only a small subset.

– With MOFM2T (MOF Model to Text), the OMG have issued a standard [OMG08] for M2T
transformations of models based on MOF. The suggested template-based textual language
is imperative and unidirectional. The de-facto standard implementation of MOFM2T is
the EMF-based framework Acceleo7. Using the concept of protected regions, incremental
transformations can be realized as well.

– The Atlas Transformation Language8 (ATL) is considered as one of the most frequently
used M2M languages. It supports a variety of scenarios, including both endogenous and
exogenous, in-place and out-place transformations [Jou+08]. ATL also offers a refining
mode that supports incremental transformations but is limited to in-place transformations—
the output model is a refined copy of the input model. ATL provides a textual syntax; the
offered modeling constructs mix the imperative and declarative paradigms. Bidirectional
transformations are not supported by ATL.

– With QVT (Queries/Views/Transformations) [OMG16], a set of standards for M2M trans-
formations has been established by the OMG. QVT includes two languages which are
mapped to the same core language that actually executes the transformation(s). First, QVT
operational is a textual, imperative language supporting unidirectional transformations in

7 https://eclipse.org/acceleo/
8 http://www.eclipse.org/atl/

https://eclipse.org/acceleo/
http://www.eclipse.org/atl/
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batch mode. QVT relational follows a declarative paradigm, allowing for incremental trans-
formation execution. Furthermore, both a textual and a graphical syntax are defined. At the
heart of QVT relational are relations that describe correspondences between instances of the
models to be mutually converted into each other. From these specifications, both execution
directions are derived, thus realizing bidirectional transformations. Both the operational and
the relational language variant support in-place and out-place as well as endogenous and
exogenous transformations. At present, only partial EMF-based tool support is available:
The Eclipse QVTo project9 for QVT operational, and medini QVT10 for QVT relational.

– The theory underlying model transformations has its origins in the field of graph transfor-
mations and graph grammars [Roz97]. Many current research activities are dedicated to
the adaptation of graph theory to M2M, resulting in EMF-based tools offering graphical
syntax for the declarative specification of different kinds of M2M transformations. For
instance, the formalism of triple graph grammars [Schü94] has been realized by the tool
eMoflon11, which offers bidirectional and incremental execution modes for out-place model
transformations.

– Although dedicated M2M and M2T languages allow to specify transformations on an
adequate level of abstraction, probably the most widespread implementation language is
Java. This may be due to the immaturity of the M2M/M2T tools currently available, but also
due to performance reasons or specific requirements for transformations not being covered
by any available approach. Recently, the Xtext-based language Xtend12 became popular,
which offers abstraction mechanisms particularly useful in the M2M context [BG16].

3.8 Bottom Line

EMF, which has been the subject of the former sections of this chapter, realizes a minimalistic
and pragmatic approach, based on which many goals formulated under the set of standards
of model-driven architecture may be achieved.

With the UML, a widely accepted general purpose modeling language is available.
However, its complexity – which is expressed by 14 diagram types being available and
several languages added on top, e.g., OCL and Alf – also complicates modeling. MOF’s
three-layered language architecture, which has been realized by EMF, enables the definition
of domain-specific modeling languages. We have also learned that adequate technical
solutions exist for the definition of concrete graphical and textual syntax for EMF-based
modeling languages. Moreover, EMF’s reflective API allows to build generic tools applicable
to models conforming to arbitrary EMF-based metamodels.

The long-term success of model-driven software engineering depends on good tool
support not only for core processes but also for support disciplines such as deployment,
validation, and, in particular, configuration management. Adequate tools must be aware
of both evolution and variability. These topics are considered in the next two sections
independently, before their integration with MDSE is surveyed in Chapter 6.

9 https://wiki.eclipse.org/QVTo
10 http://projects.ikv.de/qvt
11 https://emoflon.github.io/
12 http://www.eclipse.org/xtend/

https://wiki.eclipse.org/QVTo
http://projects.ikv.de/qvt
https://emoflon.github.io/
http://www.eclipse.org/xtend/


In software development,
nothing is as persistent as change.

ANDREAS ZELLER (1997)

Chapter 4

Software Configuration Management
and Version Control

Abstract

Software configuration management (SCM) is an important support process in software
engineering spreading over all development activities. This chapter starts with an introduc-
tion of the big picture of SCM, before the sub-discipline version control (VC) is explored
with respect to the functionality exposed to the user as well as to the internals of version
control systems. Another important aspect of SCM in general and VC in particular is
collaboration, which can be orchestrated either in an optimistic or in a pessimistic fashion.
In recent years, distributed version control systems have gained popularity. The chapter
concludes with an outlook on how far variation control, i.e., the support for developing
different product variants based on a decomposition into configuration options, is feasible
using state-of-the-art version control approaches.
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4.1 Functionalities of Software Configuration Management

Model-driven software engineering – see previous chapter – and software product line engi-
neering – see next chapter – can be considered as special development approaches which a
specific project may or may not follow. On the contrary, software configuration management
(SCM) has become an indispensable discipline part of almost every development activity
from the beginning of software engineering.

In [IEEE05, p. iii], it is stated that “SCM is a formal engineering discipline that [. . . ]
provides the methods and tools to identify and control the software throughout its develop-
ment and use. [. . . ] SCM is the means through which the integrity and traceability of the
software system are recorded, communicated, and controlled during both development and
maintenance”.

With the constantly growing size of software projects and teams, collaboration has
become a more and more important aspect of SCM. The requirements towards SCM are
further detailed by defining the following functionality areas [Dar91] (cf. Figure 4.1):
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Figure 4.1: SCM functionalities according to [Dar91]. Green parts refer to SCM as development
support discipline, white parts to its management facet.
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Components. All components part of the software need to be identified unambiguously.
Furthermore, it must be possible to comprehend the differences between multiple
versions of the same component, as well as the reasons for the creation of those. This
area also covers the storage and the access of software components.

Structure. This functionality area considers the relationships between different components
of the system, whose consistency must be ensured.

Construction. Once a configuration has been consistently defined by its structure and
components, SCM must support a comprehensible, repeatable and mostly automated
compilation procedure.

Team. For collaborative software development, it is indispensable that developers may apply
changes to different components concurrently and in isolation. The combination of
individual changes must be coordinated.

Process. This functionality area ensures that development activities are aligned with the
specific development process used throughout the project. The relationship between
specific changes and specific tasks defined in the process must become clear.

Auditing and accounting. Both the development process and the developed software are
subject to continuous validation. For this purpose, logs must be written, from which
statistical reports may be derived.

Controlling. Access restrictions for individual components and versions thereof must be
controlled. Furthermore, SCM requires concrete responsibilities for the management
of change requests and bug reports.

Originally, the software engineering community had expected that there will eventually
emerge an SCM tool to cover all the functionality areas presented above in an integrated tool.
However, fully-featured SCM tools are rare; one representative is Rational ClearCase1. The
reason for this is probably the fact that SCM actually is a hybrid of a project management
and a development support discipline [CW98]. Therefore, different types of tools are needed
to fulfill the diverse stakeholders’ needs. In many publicly documented software engineering
projects, especially in the open source community, we can discover a triad of support tools
realizing SCM:

– Project management tools such as Redmine2 or Bugzilla3 help planning different tasks
of a software project and allow to quantify the progress made. Furthermore, they can be
used for managing change requests and for bug tracking, such that a subset of controlling
functionalities is covered. Communication and documentation features, as defined in the
process area, are supported. Many project management tools include dedicated auditing and
accounting functions.

– Build tools, e.g., Ant4 or Maven5, go considerably beyond the functionality of automatic
program compilation; they are used for deployment, regression tests, and other functionalities

1 http://www-03.ibm.com/software/products/en/clearcase
2 http://www.redmine.org/
3 https://www.bugzilla.org/
4 http://ant.apache.org/
5 https://maven.apache.org/

http://www-03.ibm.com/software/products/en/clearcase
http://www.redmine.org/
https://www.bugzilla.org/
http://ant.apache.org/
https://maven.apache.org/
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of the SCM area construction, and to a certain extent, structure. The results of regression
tests also contribute to the management areas auditing and accounting.

– Version control systems (VCS) including the aforementioned Git6 and Subversion7 cover
most functionalities of the areas structure, components, and team. Furthermore, the technical
parts of controlling, e.g., access control and change propagation, are offered by VCS.
Together with build tools, VCS serve SCM’s purpose as a development support discipline
[CW98]. VCS are a subject of the remainder of this chapter.

As already hinted in Figure 4.1, the functionalities of the area controlling are shared
between project management and version control tools. Typically, the integration of different
development tools is achieved in a loosely coupled way in an integrated development
environment.

4.2 Abstractions and Metaphors of Version Control Systems

Here, version control (VC) [CFP04] is considered as a development-centric sub-discipline
of SCM. Furthermore, the construction functionality is faded out in the description below.
Therefore, the most important responsibilities supported by a VCS are:

– To persistently store and identify different versions of components of the software project in
a repository.

– To provide developers with temporary working copies they can modify and write back to
the repository afterwards.

– To help developers comprehend the development history and to plan future development
tasks.

– To coordinate changes applied by different developers consecutively or concurrently.

– To ensure the consistency of the software subject to evolution by imposing constraints on
version selection.

4.2.1 Editing Models and their Metaphors

In order to achieve these tasks, three different editing models [Fei91] have been established;
they expose individual metaphors to the user.

Check-Out/Check-In Model. The metaphors used in this model have already been intro-
duced in Section 1.3.2 and in particular in Figure 1.3: Developers select a specific
version of the software from the repository (check-out). This version is made available
in a workspace, where the user may apply the intended modifications. Thereafter,
changes are written back (check-in), which produces a new version. The history of
consistent versions is immediately apparent to the developer (e.g., in the form of a
revision graph), thus, comprehension and consistency are unproblematic. For the
coordination of concurrent changes, optimistic and pessimistic strategies exist; see
Section 4.4. The check-in/check-out model is applied by most contemporary VCS.

6 https://git-scm.com/
7 https://subversion.apache.org/

https://git-scm.com/
https://subversion.apache.org/
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Change-Oriented Model. This model assumes that there is a baseline version of the ver-
sioned software, to which several change sets can be applied. Both baseline and
change sets are persisted in a repository. For producing a specific version, a consistent
collection of change sets are selected and applied to the baseline version. Evolutionary
increments are realized by developers as change sets, which are incorporated to the
repository upon finalization. Since change sets are developed in isolation, coordina-
tion is not explicitly supported by this approach. Moreover, comprehension of the
version history becomes difficult with the growing number of change sets available.

Composition Model. The software repository makes software components explicitly avail-
able to the developer in the form of a system model in the original sense [Dar91]. This
requires that the VCS implement dedicated knowledge about the used technologies,
e.g., the programming language employed. Developers may evolve the contents of the
repository by adding new components or by modifying the system model. Questions
of coordination, comprehension and planning, as well as consistency depend on the
concrete product model realization.

Notice that [Fei91] defines a fourth model, namely long transactions. It assumes that
different developers may evolve their own copies of the repository, which are synchronized
at dedicated points in time, in isolation. The support for long transactions is here considered
as an orthogonal property that may be implemented upon all of the three version models
described above. Nowadays, long transactions have been realized by distributed version
control systems (e.g., by Git’s operations pull and push; see Section 4.5).

Unless stated otherwise, we assume an editing model oriented towards check-out/check-
in subsequently. The approach presented in this thesis also builds upon this model and,
moreover, supports long transactions.

In Figure 4.2, a simple example for the usage of the check-out/check-in model is provided.
A hypothetical user checks out a particular version of a specified software project from the

Repository

Workspace

2. modify

3. commit1. check-out

class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

Modified Workspace

class Edge {
  String label;
  Weight weight;
  Vertex[] adjacents;
  public Edge() { }
  void remove() {..}
} 

Graph.java Graph.java

Edge.java Edge.java

Weight.java

Figure 4.2: Example for the usage of the check-in/check-out editing model based on a Java source
code file for the class Edge.
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repository, resulting in his/her workspace being populated by several files. The user then
performs modifications, including the addition of a new file Weight.java (whose contents
are omitted) and the modification of file Edge.java. The modified workspace contents are
then checked-in (also: committed) to the repository. This example is recaptured below for
explaining the internals of version control systems.

4.2.2 Revision Graphs

The term version, which was referred to above, remains to be clearly delineated. According
to [CW98, p. 238], a version is “a state of an evolving item”, where item covers “anything that
may be put under version control”. In the literature, version is understood as a generalization
of the terms revision and variant. The fact that software is subject to historical evolution
is addressed by revisions, which “are ordered, newer revisions supersede previous ones”
[Ap+13b, p. 100]. There exist different ways to organize revisions, which shall be discussed
below. In contrast, variants describe intentionally co-existing instances of the versioned
product. Variants are a subject of Section 4.6 and of Chapter 5.

It is natural to describe versions and their predecessor relationships using directed graphs,
where an edge connects a predecessor to a successor. Since no revision can precede or
supersede itself, revision graphs must be acyclic. Depending on the specific VCS, the
structure of the version history may be constrained by concrete types of revision graphs (cf.
Figure 4.3).

The most restrictive form of a revision graph is a totally ordered sequence of revisions (a).
A VCS realizing this approach must ensure that, in case versioned items are modified
concurrently, the most recent revision does not override revisions remotely created in the
meantime. Subversion follows this approach, applying optimistic synchronization (see
below). A tree of revisions (b) allows the creation of successors for non-leaf versions. Yet,
the number of branches will never be reduced. VCS that support merging different versions
imply an acyclic revision graph (c). This type of graph has been implemented in many
contemporary VCS including Git. Moreover, two-level revision graphs (d) provide for a
better overview by subsuming sequences – or trees, or acyclic graphs – of revisions in
explicit branches. Different naming schemes exist for revisions in two-level revision graphs.
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Figure 4.3: Different forms of revision graphs supported by VCS. Based on [CW98, Figures 3, 4].
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In the example in Figure 4.3, top-level revisions are enumerated after branch creation.
The purpose of revision graphs goes beyond capturing the relationships between different

versions. Typically, several additional properties are assigned to specific revisions. These
include a time stamp of the commit date, the committing user, as well as a manually created
commit message, which should describe the intention behind the change as well as internal
details. This way, one part of the controlling functionality (cf. Section 4.1) is covered.

4.2.3 Product Space Concepts

Above, we have repeatedly used notions like “software project”, “versioned software”, or
simply “product”, in order to denote the entirety of items being under version control. In
fact, the structure of the product space varies among different representatives of VCS.

Most of the practically established VCS assume the product space to be a hierarchy
of directories of folders and files, i.e., simply a subset of a file system. Furthermore, the
software objects are text files, such that each version of a text file has its individual contents.
Differences between different versions of the same file are captured and represented in a
line-oriented way, such that editing operations such as line insertion, line modification, or
line deletion are instantiated. This type of product space organization was tacitly assumed
in the example in Figure 4.2.

More generally, the organization of the product space, including properties of and possible
relationships between different software objects, is dictated by the product model employed
in the respective VCS. In [CW98], the following properties and relationships are defined:

Object Identifier. Each versioned software object must be uniquely identifiable in the
context of the whole product space. A sameness criterion can be provided, e.g.,
by an object identifier (OID) attached to each software object. The OID may be
system-generated (e.g., an automatically generated universally unique identifier), or
user-generated (e.g., derived from the file name).

Object Granularity. A software object may be composed of fine-grained units internally.
For instance, a text file consists of a sequence of text lines. These fine-grained
units are typically used in order to provide the user of VCS with the possibility of a
detailed comparison of the object contents. Furthermore, memory-optimized storage
of multiple object versions can be achieved.

Composition Relationships. Coarse-grained composition relationships between different
software objects form a hierarchy of objects. For instance, a versioned folder consists
of different files. This kind of relationship may be used to define, e.g., modules,
versions of which consists of different (versions of) source code files. Furthermore,
this enables for product selection. For instance, in Subversion, the user may decide to
check-out only a sub-tree of a versioned software project. In addition, “a composite
object may act as a unit with respect to structural operations (e.g., copy or delete),
[and] concurrency control” [CW98, p. 236].

Dependency Relationships. Orthogonal to composition relationships are dependencies
between different software objects. They are used in order to guarantee consistency,
in particular between derived and source objects. For example, a compiled program
depends on its originating source code files. Both Subversion and Git do not explicitly
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keep track of dependency relationships, yet it is possible to ignore derived resources
in order to build them consistently and automatically after each check-out.

4.3 Internal Concepts of Version Control Systems

After having seen VCS through the user’s perspective, let us now consider the concepts,
algorithms, and data structures realized internally. For the explanation of many details, the
systems Git [Cha09] and Subversion [CFP04] have been selected. This is due to the fact
that SuperMod borrows realization concepts from both of these systems.

4.3.1 Delta Storage

As seen from the user’s perspective, a version control system manages different versions
of software objects. These versions must be made permanently available, such that the
user may recover previous states at any time. When considering the version history of one
software object in isolation, a straightforward possibility would be to persist all committed
versions in isolation. Albeit, the description above has already pointed out that software
objects may be further decomposed into fine-grained units. The overall composition of
different versions of a software object may differ in only few units having been added or
removed in a single evolution step — this property can be exploited for memory-optimized
storage. Below, we assume text-oriented versioning, where a software object corresponds to
a text file, whose fine-grained units are text lines. Since the line order is crucial, this implies
an additional sequencing problem.

In practical applications, three different forms of delta storage have emerged: snapshots,
symmetric deltas, and directed deltas. Figure 4.4 contrasts these strategies using the text
file Edge.java of the example introduced in Figure 4.2, assuming that the original version
carries the version identifier v1, whereas the committed version is v2.

Snapshots. Technically, this is the simplest yet the most storage consuming strategy. On
commit, in case the state of a file differs with respect to its predecessor, its entire
contents are captured in a snapshot, which is transparently written into a new file in
the repository. This approach is realized in Git, rendering it a “mini file system with
some incredibly powerful tools on top of it” [Cha09, p. 5].

Symmetric Deltas. Using this storage strategy, all versions of the text file are stored in a
multi-version representation, where modifications to a baseline version are described
in a way similar to conditional compilation (cf. Section 5.4.2). Thus, in the text file,
content text lines are aggregated in blocks annotated with insert or delete conditions.
These conditions refer to versions and apply transitively to successors. For instance,
when referring to Figure 4.4b, the line public Edge(){} is deleted, and the line
Weight weight; is inserted, in case version v2 or one of its successors are selected.
The multi-variant representation determines a fixed order for text lines. Symmetric
deltas are seldom used in contemporary text-oriented VCS; an important representative
is the Source Code Control System (SCCS) [Roc75].

Directed Deltas. The observation that many superseding revisions of text files differ with
respect to only small changes leads to directed deltas. Rather than persisting two files
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(b) symmetric deltas

class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

class Edge {
  String label;
  Weight weight;
  Vertex[] 
adjacents;
  public Edge() { }
  void remove() {..}
} 

(c) directed deltas

class Edge {
<<< DELETE v2
  public Edge() { }
>>>
  String label;
<<< INSERT v2
  Weight weight;
>>> END
<<< DELETE v2  
  Vertex source;
  Vertex target;
>>> END
<<< INSERT v2
  Vertex[] adjacents;
  public Edge() {}
>>>
  void remove() {..}
} 

class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

DELETE 2
INSERT 3 Weight weight;
DELETE 4
DELETE 5
INSERT 4 Vertex[] adjacents;
INSERT 5 public Edge() {};

v1 (baseline)

Δ (v1, v2)

1
2
3
4
5
6
7

(a) snapshots

v1

v2

Figure 4.4: Snapshots, symmetric deltas, and directed deltas as storage strategies for versions.

independently, the same information is derived by storing only one baseline version
along with a change that describes a sequence of operations to convert the first file
into the second file. In the example in Figure 4.4c, we assumed two operations insert,
taking the line number and the inserted text, and delete, taking only the line number
as arguments, respectively. v2 can be produced by applying the changes defined in
∆(v1, v2) to v1.

This mechanism can be applied repeatedly to a sequence of n versions, resulting in
one single baseline version and n− 1 deltas. Obtaining versions located at the end of
the chain, though, becomes time consuming. This leads us to a discussion of different
subtypes of directed deltas, which are contrasted in Figure 4.5.

(a) Forward deltas implement the straightforward approach of treating the initial
vision of the history as baseline. When committing a new revision ri, the delta
∆(ri−1, ri) is calculated. Assuming a linear history of n revisions, read access
to the latest revision will cost n− 1 delta applications.

(b) Backward deltas rely on the assumption that more recent versions are accessed
more frequently than older revisions. Thus, the latest revision serves as baseline.
On commit of ri, the former baseline is replaced by the committed version, and
∆(ri, ri−1) is appended to the repository’s internal storage. In addition, each
branch obtains an own baseline for its latest revision. Subversion follows this
approach [Dot11].

(c) Intertwined deltas are a mixed form of forward and backward deltas. For
instance, in Figure 4.5c, the trunk is stored using backward deltas, offering quick
access to its latest revision, but branches, which are supposed to be shorter, are
persisted in a forward fashion. This omits the necessity for multiple baselines to
be fully persisted.
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(a) forward (b) backward (c) intertwined
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Δ (1, 2)
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Δ (2, 3)

Δ (3, 6)

Δ (6, 7)

Δ (4, 5)

Δ (2, 4)

Δ (4, 5)

Δ (2, 4)

Δ (2, 1)

Δ (3, 2)

Δ (6, 3)

Δ (7, 6)

Δ (5, 4)

Δ (2, 1)

Δ (3, 2)

Δ (6, 3)

Δ (7, 6)

baseline

baseline baseline

baseline

Figure 4.5: Composition of deltas in the revision graph: forward, backward, and intertwined.

4.3.2 Change Detection

All kinds of delta storage require the detection of modifications in the workspace in order to
propagate them to the repository as soon as a commit is issued. There exist two fundamental
approaches, log-based versus comparison-based versioning.

Log-Based Versioning. Using this approach, all editing commands carried out by the user
in his/her workspace are recorded, resulting in an edit log that precisely captures and
allows to reproduce the actual modifications performed in the workspace. From such
a log, directed deltas can be easily derived. Recording all modifications requires a
deep integration of the editing tool into the workspace. In the case of file-oriented
versioning, it is hard to guarantee that every change to the file, regardless of which
external editing program causes it, gets noticed. This is why, although promising the
highest possible accuracy, log-based versioning is not commonly used in state-of-the-
art (text based) VCS. A representative is Rational ClearCase8.

Comparison-Based Versioning. Most of the contemporary VCS, including Git and Sub-
version, follow this lightweight approach. In contrast to log-based versioning, the
edit log is not obtained by recording actually performed modifications, but from an
a-posteriori comparison between the original and the modified state of each soft-
ware object when the changes are committed. The applied comparison methods
are typically heuristic and produce an edit log that does not necessarily reflect the
actually carried out editing commands. In the context of text-oriented versioning,
sequence comparison algorithms, to be discussed subsequently, are employed. By
assuming line-wise comparison, their granularity with respect to the versioned object
is typically coarse. For example, in case a variable is renamed in a Java program,
comparison-based versioning will detect, e.g., the deletion and insertion of a line,
since the exact equality of text lines is used as matching criterion.

8 http://www-03.ibm.com/software/products/en/clearcase

http://www-03.ibm.com/software/products/en/clearcase
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4.3.3 Sequence-Oriented Differencing

Let us consider the special case of comparison-based versioning of sequence-oriented
software objects, i.e., text files as sequences of text lines, in greater detail. We can describe
the difference between two versions as a sequence of operations, e.g., insertions or deletions,
of elements at given positions. This also represents a derived edit log (cf. Section 4.3.2) and
corresponds to a directed delta (cf. Section 4.3.1). Obtaining the differences involves two
distinct steps:

Matching. First, the two versions of the sequence are compared in order to find their
commonalities, i.e., pairs of elements that match with respect to a given sameness criterion.
In the case of text files, most VCS assume two lines as matching only in case their contents
are identical. There exist a multitude of sequence comparison algorithms, each having its
individual properties that can be asserted to the produced result. Here, we consider two of
them representatively.

– A family of algorithms is based on the longest common subsequence (LCS) of the input
sequences. A common subsequence is an ordered list of elements that appear in the same
order in both sequences. Correspondingly, an LCS is a common subsequence with the
maximum number of elements possible. In general, the LCS may be ambiguous, e.g., in the
example shown in the top left part of Figure 4.6, we may in fact find two valid LCS.

An important property of LCS-based matching is that the results do not contain cross-over
matches, whose relative position would contradict between the two versions and therefore
destroy the common subsequence property. Many algorithms have been designed and
implemented, each of which suits with different special cases of matching problems. A
prominent example is Hunt’s fast LCS algorithm [HS77].

– Heckel’s Algorithm [Hec78] is based on the observation that many source code files contain

DELETE 2
INSERT 3 Weight weight;
DELETE 4
DELETE 5
INSERT 4 Vertex[] adjacents;
INSERT 5 public Edge() {};

Matching Differencing
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class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

class Edge {
  String label;
  Weight weight;
  Vertex[] adjacents;
  public Edge() { }
  void remove() {..}
} 

class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

class Edge {
  String label;
  Weight weight;
  Vertex[] adjacents;
  public Edge() { }
  void remove() {..}
} 

DELETE 2
MOVE   2 6
DELETE 4
DELETE 5
INSERT 4 Vertex[] adjacents;

Figure 4.6: Sequence matching and differencing based on the LCS property and Heckel’s Algorithm,
illustrated using the example of Edge.java.
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unique lines of text, e.g., method declarations whose signature must be unambiguous within
a class. The algorithm follows a two-stage procedure. First, all elements that are unique
in both input sequences are considered as matching. Second, for each matching element,
it is checked whether their direct predecessors and successors are mutually identical. If
this is true, the list of found matches is expanded accordingly. The second step is repeated
iteratively for each matching until no more new correspondence can be found. Heckel’s
Algorithm may identify cross-over matches. Furthermore, the heuristically produced result
may be suboptimal in that they disrespect formal criteria such as the LCS property.

Differencing. The identified matching is used as input for the subsequent difference
computation. Intuitively, all elements in the original version that have no corresponding
element in the modified version can be considered as deletions — in the opposite case an
insertion can be deduced. In addition, the order of elements may have changed in case
cross-over moves are allowed by the underlying matching algorithm. To be meaningful
to both the user and the VCS (e.g., for delta application), the detected operations must be
parameterized in a suitable way. For instance, the right-hand column of Figure 4.6 encodes
deletions using the index of the deleted text line as parameter; insertions require the inserted
text in addition. Moves, which are deduced from matchings created by Heckel’s Algorithm –
since cross-over correspondences are allowed there –, require the line indexes indicating the
original and the modified location.

The change encoding used in the examples is arbitrary and has been optimized for illustra-
tion purposes. In practice, more efficient and less space consuming internal representations
are used. In particular, adjacent move operations may be combined to block moves [Tic84].

As mentioned before, Git uses snapshots for storing different versions of a file. Therefore,
differencing is not required internally for delta storage, but merely externally in order to
present graphical difference reports to the user on demand. For this purpose, Git relies
on an implementation that produces an LCS [Cha09]. In contrast, Subversion uses an
optimized algorithm [Wu+90] for LCS comparison both for storage and for diff presentation.
A generalized version of Heckel’s Algorithm has been implemented in SuperMod—see
Section 10.3.4.

4.4 Collaboration

For the description of the conceptual and internal details of VCS provided above, we have
tacitly assumed a single-user set-up. According to the here considered SCM functionality
areas (cf. Section 4.1), the team aspect remains to be considered. We must assume that
several developers, each having his/her individual workspace, are involved in a software
project, concurrently delivering changes to the code basis organized in the repository. To
support multiple users, concurrent changes must be orchestrated and potential conflicts need
to be resolved in a meaningful and comprehensible way.

The most important requirement for collaborative version control is a physical separation
of repository and workspaces, such that the repository is running on a server, which is
connected via network to individual client machines where the workspaces are managed.
This immediately leads to a stack of coordination problems [Bab86]:
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Duplicate Maintenance. Several copies of each software object need to be maintained. In
order to avoid multiple divergent copies, it is required to propagate changes among
the copies.

Shared Data. The duplicate maintenance problem may be solved by introducing a master
copy, e.g., in the repository. Then, however, developers may happen to interfere with
each other when accessing and modifying the master copy of some software object.

Simultaneous Update. The solution of the shared data problem is the introduction of
individual workspaces. Changes are propagated back (i.e., committed) to the master
copy after completion. Then, multiple commits mutually invalidating each other may
occur in case transactions overlap.

There are two classes of solutions to the simultaneous update problem, pessimistic and
optimistic synchronization, which are considered in Sections 4.4.1 and 4.4.2, respectively.
Optimistic strategies may engage three-way-merging, which is a subject of Section 4.4.3.

4.4.1 Pessimistic Synchronization

Pessimistic synchronization is also referred to as the lock/modify/unlock approach, which
already points out to the main principle: before being capable of modifying a specific
software object, a developer must obtain a lock from the repository. As soon as an object is
locked, no write access on it is granted to other developers — attempts to obtain the same
lock will be denied, disallowing a modification. Locked resources may be unlocked either
by aborting the current modification or regularly in the course of a commit [Pop09].

Figure 4.7(a) demonstrates the pessimistic approach using the example of two hypothetical
users. Alice checks-out the software object she intends to modify, and then puts a lock on it.
The lock is granted as it does not interfere with existing locks. Then, she starts modifying
the object. Concurrently, Bob checks-out the same object and attempts to obtain a write lock.
This is denied until Alice releases the lock after committing a new version of the object.

(b) optimistic synchronization(a) pessimistic synchronization

Repository

Work
space

Work
space

2. lock - OK

1. check-out

3. modify

4. check-out

5. lock - DENIED

Alice Bob

6. commit

7. unlock

9. lock - OK

8. update

Repository

Work
space

Work
space

1. check-out

2. modify

3. check-out

5. modify

Alice Bob

4. commit - OK

7. update - CONFLICT

6. commit – OUT
OF DATE

10. modify

11. commit

8. merge

9. commit - OK

Figure 4.7: Pessimistic vs. optimistic synchronization.
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Bob must now update (i.e., check-out the latest version of) the software object. Since Alice
has unlocked in the meantime, Bob’s lock attempt is now granted and he may carry out his
changes before committing.

As with locks in general, the locking granularity implied by a pessimistic synchronization
strategy is crucial [RS77]. The most coarse-grained lock possible would be the entire
repository, which generally disallows concurrent modifications and enforces a linear version
history. This is obviously too restrictive. Fine-grained locking would refer to a subset of
units of a software object, e.g., a specific range of text lines. In spite of being least restrictive,
this would result in a considerable synchronization overhead. As a compromise, locks might
be put on specific software objects, or hierarchies thereof (following their composition
relationships transitively), for instance, specific text files or folders containing those.

Pessimistic synchronization theoretically avoids conflicts before they can occur. When
considering dependency relationships between software objects, though, isolated changes
may still destroy the structural consistency of the versioned program. Furthermore, the
lock/modify/unlock approach demands developers for maintaining the discipline of locking
no more objects than necessary and of unlocking modified objects as soon as possible.

A representative VCS relying on pessimistic synchronization is RCS [Tic85].

4.4.2 Optimistic Synchronization

The copy/modify/merge approach realized by VCS relying on optimistic synchronization
relinquishes locks in favor of merging conflicts, which can occur provided that concurrent
modifications of the same software object are allowed. This paradigm is typically realized
in two steps [CFP04]. First, during commit, it is checked whether another revision has
been added to the repository by a different developer in the meantime. If this is the case,
an update is enforced as a second step. The update may be either straightforward – in
case the set of locally and remotely modified software objects is disjoint – or conflicting.
Conflicts may in turn be resolved automatically (e.g., if the modifications to a source code
file happened in different isolated regions), semi-automatically (e.g., by three-way merging;
see below), or manually (in case the VCS does not support merging explicitly).

An example is provided in Figure 4.7(b). Alice checks-out a software object and immedi-
ately starts modifying it. Before she commits, Bob concurrently checks-out the same version,
also modifies it, and attempts to commit. This fails due to Alice’s write lock established on
commit, so an out of date situation is signaled to Bob, who enforces an update. Since the
concurrent modifications affected the same software object, a conflict is detected. Bob now
merges the local and remote changes using a semi-automatic three-way merge tool, before
he commits the combined changes back to the repository.

Obviously, copy/modify/merge is more liberal than lock/modify/unlock. Furthermore,
synchronization overhead is caused only in the case of conflicting modifications. As shown
below, however, three-way merging constitutes a complicated task.

Optimistic synchronization is realized by both Subversion and Git. In the case of three-
way merge conflicts, their resolution is ceded to third-party tools. Like many VCS, both
systems allow to put locks on specific objects, offering pessimistic versioning as an option.
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4.4.3 Three-Way Merging

The goal of three-way merging is to reconcile changes persisted in two versions, which have
a common origin version, in a single merged version, in a preferably consistency-preserving
way. Many decisions can be automated by taking into account the origin version.

As contrasted by Figure 4.8, there exist two distinct approaches to three-way merging in
general [Wes14]. The categories are orthogonal to log-based versus comparison-based ver-
sioning introduced in Section 4.3.2. For instance, log-based versioning might be combined
with a state-based merging algorithm.

State-Based Merging. Provided that the elements of the three input versions – the com-
mon ancestor b and the alternative versions v1 and v2 – are known, the set of elements
to be contained by the merged version m can be directly calculated by a function merge.
This approach suits well with set-theoretic product space models, e.g., the three-way model
merging algorithm presented in [Wes14] (cf. Section 6.2.2). When applied to sequential
data structures such as text files, the merge function must be order-preserving and detect
conflicting insertions at the same location.

The command line tool diff3 is popular for three-way merging text files; deep integration
with Subversion and Git is provided. Diff3 is classified as a state-based merging tool
although its operations are derived from change-based intuitions. A formal investigation
of the tool has been provided in [KKP07]. Ensuing from two pair-wise matchings of b and
v1 as well as b and v2, resulting in two LCS, a sequence of stable and variable chunks, i.e.,
subsequences of text lines, is computed. A stable chunk is contained in all three versions,
whereas a variable chunk exists in at least two different versions. An insertion conflict is
present whenever a chunk has different content in the alternative versions v1 and v2. In this
case, both conflicting versions of the variable chunk are copied into the merged result, and
the user has to delete one of the alternatives in order to resolve the conflict.

Change-Based Merging. Approaches belonging to this category do not calculate the
merge result m directly, but use directed deltas as indirection. First, the differences between
the base version and the respective alternative versions are computed, resulting in the opera-
tion sequences ∆(b, v1) and ∆(b, v2). The change-based merge function then calculates the
merged delta ∆(b,m) as the combination of the two directed deltas. Change-based merging

(a) state based merging

b
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),,( 21 vvbmergem 

(b) change based merging

b

1v 2v
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Figure 4.8: State-based vs. change-based three-way merging.
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DELETE 4
DELETE 5
INSERT 4 Vertex[] adjacents;

class Edge {
  public Edge() { }
  String label;  
  Vertex source;
  Vertex target;
  void remove() {..}
} 

class Edge {
  String label;
  Weight weight;
  Vertex source;
  Vertex target;
  public Edge() { }
  void remove() {..}
} 

MOVE   2 6
INSERT 3 Weight weight;

class Edge {
  public Edge() { }
  String label;
  Vertex[] adjacents;
  void remove() {..}
} 

v1

b
v2

Δ(b, v1)Δ(b, v1)

MOVE   2 6
INSERT 3 Weight weight;
DELETE 4
DELETE 5
INSERT 4 Vertex[] adjacents;

Δ(b, m)

class Edge {
  String label; 
  Weight weight; 
  Vertex[] adjacents;
  public Edge() { } 
  void remove() {..}
} 

m

Figure 4.9: Example: change-based three-way merging.

is typically applied to sequential data such as text files. The deltas to be merged contain
operations such as insert and delete as deduced by sequence differentiation algorithms.

Change-based merging requires the combined delta to be order-preserving with respect
to the operations defined in the changes c1 := ∆(b, v1) and c2 := ∆(b, v2). Furthermore,
the function merge “has to eliminate duplicate operations and has to detect conflicts. Here,
a conflict between two operations op1 ∈ c1 and op2 ∈ c2 occurs [. . . ] if either one of the
operations invalidates the other one [. . . ] or both operations are applicable in sequence, but
they do not commute” [Wes14, p. 759]. Subversion’s predecessor CVS [Ves06] applies a
change-based three-way merging strategy to realize optimistic synchronization. The way
conflicts are reported to the user resembles the strategy employed by diff3 (see above).

An example of change-based merging of text files is depicted in Figure 4.9. Ensuing from
a common base version b of the example source file Edge.java, two alternative versions v1

and v2 have been concurrently developed. The differences between the base version and
the alternatives are deduced from matchings obtained from Heckel’s Algorithm. Therefore,
the deduced deltas contain move operations. In ∆(b,m), the operation sequences are then
combined in an order-preserving way without conflicts. The merged version m is created by
applying the merged delta to the base version.

4.5 Distributed Version Control

The explanations given above have indicated that version control systems contribute to the
team functionality area of SCM by providing synchronization operations that allow for
concurrent collaborative development. Yet, the centralized VCS architecture considered so
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Figure 4.10: Possible usage of distributed version control relying on Git.

far implies the bottleneck of a single repository having to synchronize immediately upon
every commit. The synchronization overhead proportionally increases with the number of
developers involved. A central VCS is also a bottleneck when seen from the perspective
of system reliability, since it provides the sole copy of the entire version history, whereas
developers maintain in their workspace only the selected revision of the project.

These shortcomings of centralized VCS have given raise to a new category of systems
supporting distributed version control [Cha09], which have become especially popular in
open source development. These systems rely on an intentional replication of the repository,
such that the aforementioned bottleneck is removed. Furthermore, the physical separation of
repository and workspace is suspended as “every checkout is really a full backup of the data”
[Cha09, p. 3]. As a consequence, multiple clones of the repository need to be maintained.
This is realized by peer-to-peer synchronization operations, e.g., pull and push in Git.

Figure 4.10 illustrates the main difference between centralized and distributed VCS
(DVCS). The operations CHECKOUT and COMMIT are now used to communicate with a
local copy of the repository. At dedicated synchronization points, the operations PULL (for
fetching incoming changes) and PUSH (for sharing outgoing changes) can be invoked. The
pull/push loop added around the check-out/commit loop allows a distinction between locally
scoped short transactions and globally scoped long transactions [Fei91], which have been
identified above as a desirable SCM feature (cf. Section 4.2.1).

By repeated cloning, a hierarchy of repositories may be created, where functionality
is implemented in leaf repositories, and inner nodes are responsible for merging changes
and propagating them up stepwisely to the root. Several ways of hierarchical organization,
such as the “integration-manager” or “dictator and lieutenants” workflows, have been
established [Cha09]. The concept of pull requests plays an important role especially in
open source development, where everybody may clone the repository and contribute to the
software project. Yet, the problem of diverging variants of a repository still calls for some
superordinate centralized repository management, which is realized, for instance, in hosting
platforms such as GitHub9.

9 https://github.com/

https://github.com/


72 Chapter 4 Software Configuration Management and Version Control

4.6 Intensional Versioning and Variation Control

To conclude this section, let us return to the definition of version as a generalization of
revisions – historically ordered versions that supersede each other – and variants – co-
existing instances of the versioned product differing in logical aspects such as functionality.
Correspondingly, we have to distinguish between different intents of evolution [CW98].

Most version control systems support variant management by branches in the revision
graph. Each branch is considered to differ from the trunk with respect to a fixed variation
property, e.g., an optional customer-visible feature, a performance improvement that is still
considered as experimental, or a feature that is only applicable to a certain operating system.
The obvious limitation of branches is that each of them may reflect only one variable. Due
to combinatorial complexity, in case n independent variables are desired, 2n branches would
be necessary to maintain the entirety of available product variants.

This shortcoming is due to the fact that all VCS approaches discussed so far in this chapter
rely on a specific form of version space organization which is called extensional versioning
[CW98]10. The set of available versions VER is defined by enumerating its members
(regardless of whether they correspond to versions lying on the trunk or on branches):

VERext = {ver1, . . . , vern} (4.1)

Contrastingly, intensional versioning assumes that versions are constructed by resolving
the available configuration decisions. “Instead of enumerating its members, the version set
is defined by a predicate” [CW98, p. 239]:

VERint = {ver|cons(ver)} (4.2)

where ver may be any configuration defined in terms of the available properties of the
system, and cons is a boolean function defining whether the configuration is consistent.

Intensional versioning has not (yet) gained widespread acceptance in industry although
there exist several academic prototypes and experiments of variation control systems that
demonstrate that the approach is feasible [WO14; Stă+16; LBG17].

4.7 Bottom Line

Software configuration management is indispensable; its engineering facet is mostly covered
by VCS, which orchestrate identification of components, change management, and team
functionalities. Concrete VCS largely differ with respect to their internals. Different
approaches exist, e.g., for delta storage, change detection, and synchronization. When
allowing for concurrent modifications, three-way merging comes into play.

Intensional versioning has not gained widespread acceptance. As a replacement, devel-
opers tend to rely on external tools for the management of configuration options. Several
approaches are described in the next chapter in the context of software product line en-
gineering. Throughout this thesis, intensional versioning is revisited in several contexts.
SuperMod supports a combination of extensional and intensional versioning.

10 For consistency with other definitions provided here, some symbols and identifiers were renamed.



Any customer can have a car
painted in any color that he wants
as long as it is black.
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Chapter 5

Software Product Line Engineering

Abstract

Software product line engineering is motivated by the economical advantage of being able
to quickly and responsively develop customer-specific applications through organized reuse.
Different formalisms exist to document the variability managed by a product line. Here, the
emphasis is put on feature models. In the literature, several development processes have
been established that intend to match the specific requirements of product line engineering.
A multitude of implementation approaches exist, each implying its individual requirements
and properties. Furthermore, current challenges in research on well-formedness analysis of
software product lines are explained in this chapter.
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5.1 Motivation and General Definitions

Cornerstones of industrial revolution are often described using the example of the automotive
domain. Until 1913, cars were manufactured in a batch production mode. Beginning with
Henry Ford’s T-Model, assembly-line production enabled mass production. Nowadays, we
live in the era of mass customization: customers may freely configure the features of their
cars, such as color, car body, and motorization, while the assembly of the car still relies on
mass production techniques [CE00].

The economical benefits of mass customization are obvious: time to market is reduced
while the customer receives an individual product. When compared to single-product
manufacturing, mass customization considerably reduces production costs. This is due to
the fact that individual components can be reused in an organized way. The initial effort for
installing a product line, however, is considerable, such that a certain number of products,
reflected by the break-even point, must be in scope in order to be profitable [CN01].

Software product line engineering (SPLE) [PBL05] denotes the adaptation of product line
principles to software development. Thus, the product to be individualized is an executable
program. When compared to industrial manufacturing, mass production is not a real concern
in software engineering, since creating exact copies of programs requires almost no expense.
In contrast, the principle of mass customization applies well, since the exact compilation of
desired features of the respective software program varies depending on the specific scenario
where the program is used. For instance, a text processing program may support multiple
input methods or languages, different export formats, and vary with respect to the interfaces
offered to external programs.

Time to market is reduced by organized reuse of (software) components, whereas customer
satisfaction is increased through individualization. Furthermore, software quality is intended
to grow, since repeated product tests can be reused in a the same organized way as the
tested components [CN01]. The creation and maintenance of SPL artifacts, however, is
complicated.

SPLE relies on two important concepts, which are defined in an abstract way here and
explained in the context of specific SPLE approaches below.

Platform. According to [PBL05, p. 6], “a platform is any base of technologies on which
other technologies [. . . ] are built”. In SPLE, the platform does neither correspond
to the tool that is used to produce reusable components, nor to the technology that is
used to assemble customized products. In contrast, the platform is the set of reusable
components, which is configured individually for each product.

Variability. In [Ap+13b, p. 48], variability is characterized as “the ability to derive different
products from a common set of artifacts”, i.e., from a platform. Conversely speaking,
without variability, there is neither a need nor a possibility to configure the platform.
Variability is enabled by the presence of different features [Bat05]. Accordingly,
individual members of a product line differ with respect to their individual selection
of features they realize.

When referring to the definition given in [CE00], all decisions made concerning variability
form the problem space, whereas the platform provides the solution space of an SPL. “The
problem space comprises concepts that describe the requirements on a software system



5.1 Motivation and General Definitions 75

and its intended behavior. The solution space comprises concepts that define how the
requirements are satisfied and how the intended behavior is implemented” [AK09, p. 51].

Variability can be found anywhere in everyday life. The color of a car is a vivid example.
[PBL05, p. 60] introduce two general concepts allowing to abstract from this:

Variability Subject “A variability subject is a variable item of the real world or a variable
property of such an item”, answering the question “what varies?”.

Variability Object “A variability object is a particular instance of a variability subject”,
answering “how does it vary?”.

For instance, in a product line of cars offering different colors, the color of a car would
incorporate a variability subject, for which the concrete colors (red, blue, white) would
correspond to mutually exclusive variability objects.

Variation Points and Variants. When referring to how variability is implemented in the
product line, the technical terms variation point (for the implementation of a variability
subject) and variant (for the implementation of a variability object) are commonly used.
The concrete realization depends on the programming language used. For example, in Java,
variation points may be realized by providing an interface that is implemented by different
classes representing variants, one of which can be selected as the preferred implementation
for specific product line members.

Variability in Time vs. in Space. We may also ask a third question in this context: “why
does it vary?”. Actually, there exist different kinds of variability, e.g., “different stakeholder
needs, different country laws, [or] technical reasons” [PBL05, p. 60], which need to be
further distinguished. Variability in time is introduced as “the existence of different versions
of an [artifact] that are valid at different times”. Accordingly, the evolution of the variability
subject is described by a sequence of superseding variability objects. In contrast, variability
in space is defined as “the existence of an [artifact] in different shapes at the same time”
[PBL05, p. 65f.]. The distinction is similar to revisions versus variants as introduced in
Section 4.2.2 in the context of version control.

External vs. Internal Variability. According to [PBL05, p. 69], external variability is
“visible to customers”, e.g., in the form of available program features, whereas internal
variability is “hidden from customers”, but affects architectural or implementation decisions,
e.g., in the form of algorithmic optimization. Similar to this distinction is requirements
variability versus design variability [Gom05]. Typically, external variability is explored
and captured during requirements engineering and analysis. The variability model is further
extended by internal variability during system design.

Options vs. Alternatives. The relationship between the subject and the object of variabi-
lity may be established in two different ways [PBL05; Ap+13b]. On the one hand, optional
variation denotes that there exists exactly one variability object, which may or may not
be assigned to the variability subject. Therefore, resolving variability implies a boolean
decision whether the corresponding feature shall or shall not be included in a specific product
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line member. On the other hand, alternative variation is resolved by selecting exactly one
element in a set of mutually exclusive variability objects. Generalized forms of alternative
variation exist, e.g., allowing the selection of a number of variability objects different from
one [CHE05].

Section 5.2 of this chapter explores feature models as a formalism for capturing variability.
After an overview of SPL development processes in Section 5.3, solution space techniques
will be considered in Section 5.4. Consistency-related challenges, referring to both the
problem and the solution space, are listed in Section 5.5, before the chapter is concluded.

SPL Adoption Paths. Every SPLE project has its individual conditions, which are due to
factors such as the number of product variants to maintain, the complexity and the criticality
of the software, the targeted time to market, et cetera. In addition, the question how an SPL
is adopted may also influence the choice of the process and implementation techniques to
employ. According to [Ap+13b], there exist three typical adoption paths.

– In a proactive approach, the SPL is initiated from scratch based on a thorough economical
and technical analysis, after which the requirements, the discriminating features, and the
target customers of the products of the SPL are fixed.

– The extractive SPL adoption path, in contrast, assumes a transition from single-product
development to organized SPLE. The product line may be initiated based on a set of existing
products whose individual properties are known.

– Last, reactive SPLE begins with a small (proactively or reactively obtained) product line,
which is extended incrementally feature by feature based on new requirements or economic
reconsiderations. We can observe several similarities to agile software development (cf. Sec-
tion 1.1.2) in general: early customer feedback, short development cycles, as well as minimal
and incremental planning. See also [Ap+13b, p. 41]

The connection between different adoption paths and SPLE processes is explained in
Section 5.3.

5.2 Feature Models

Several formalisms for the definition of variability have been established, for example the
orthogonal variability model (OVM) [PBL05]. In the context of this thesis, feature models
[Kan+90] have been selected as default formalism for documenting variability.

Feature models are hierarchical decompositions of mandatory or optional features. Fur-
thermore, cross-tree dependencies between features are allowed. In contrast to other for-
malisms including OVM, feature models are not only used to model differences, but also
commonalities [Cza+12]. Due to the hierarchical structure, the role of non-leaf features may
become dual, serving both as a variation point and as a variant.

Until now, there exists no OMG standard for feature models1 such that the elements
introduced in [Kan+90] still serve as the “common sense”. The external representation of a

1 In a request for proposal for the Common Variability Language (CVL), the syntactically and semantically
similar concept of variability specifications (VSpecs) is being introduced [OMG12].
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Figure 5.1: Diagram representation of a feature model for the Graph example.

feature model is called a feature diagram [Ap+13b]. Figure 5.1 depicts a feature diagram
for the running Graph product line.

The variability defined in a feature model needs to be resolved in order to describe the char-
acteristics of specific products of the product line. A feature configuration assigns a boolean
value (true for selection, false for deselection) to each individual feature. Relationships
defined in feature models further constrain the validity of feature configurations.

The example of Figure 5.1 is used to explain the semantics of feature models with respect
to their possible feature configurations:

Root Feature. The root feature of a product line – in this example Graph – must always be
selected in every configuration.

Parent-Child Relationship. This may be used in order to define variants (child features)
for a variation point (parent feature). The selection of a child feature is only allowed
in case its parent feature is selected. On feature model level, the parent of a feature
must be unique.

Mandatory Features. Features may be defined as mandatory with respect to their parent
feature. Then, the child feature’s selection must correspond to the parent feature’s
selection.

OR Groups. A set of features belonging to the same parent may be arranged in an OR
group. In a corresponding feature configuration, at least one of these features must be
selected in case the parent is selected. E.g., if Algorithm is selected, either ShortestPath
or Transpose or both can be selected. OR-grouped features cannot be mandatory.

XOR Groups. Out of a set of features arranged in an XOR group, exactly one must be
selected in a valid configuration in case the parent is selected. In the example, DFS
and BFS are mutually exclusive. XOR-grouped features cannot be mandatory either.
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Requires Relationships. This kind of relationship is not explicitly shown in the diagram,
but is listed as an external textual constraint. ShortestPath ⇒Weighted states that
ShortestPath may only be selected in case Weighted is selected.

Excludes Relationships. In analogy, an excludes relationship of the form a ⊗ b denotes
that a feature a must not be selected if b is selected, and vice versa.

An example of a valid feature configuration is given in Figure 5.2. More specifically, a
product variant that corresponds to a graph with labeled, but not colored vertices, as well as
weighted and directed edges is described. From the mutually exclusive search algorithms,
depth-first search is selected. In addition, the Transpose algorithm is supported.

Not at least due to its unstandardized state, many extensions and generalizations to feature
models exist, e.g., cardinality-based feature modeling [CA05], which generalizes from OR
and XOR groups by introducing group selection ranges. Features may also carry attributes
with a defined value range (e.g., string or integer). Furthermore, features can have multiple
instances which differ, e.g., in their attribute values or in selection states of its child features.
For the remainder of this thesis, unless stated otherwise, we assume that the modeling
constructs explained above are sufficient.

For the same reason, a variety of feature modeling tools exists, supporting different
descendants of the modeling language, e.g., pure::variants2 or FeatureIDE3. SuperMod
includes its own tree-based feature model editor for the creation and configuration of feature
models (cf. Section 14.2.2).

For analyses such as satisfiability checks, the set of constraints imposed by (non cardinali-
ty-based) feature models may be internally expressed by (and mapped to) propositional
logic [Bat05]; this is further elaborated in Section 9.4.
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Figure 5.2: An example feature configuration of the Graph feature model.

2 http://www.pure-systems.com/products/pure-variants-9.html
3 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

http://www.pure-systems.com/products/pure-variants-9.html
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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5.3 The Process Perspective

Before considering tools for the implementation of software product lines that systematically
exploit the captured variability, this section gives an overview of development processes
specific to SPLE. 4

Most SPLE processes explicitly distinguish between two phases of development activities,
domain engineering and application engineering [PBL05]; see Figure 5.3. Furthermore,
the processes found in the literature often assume a proactive adoption path, where the
SPL is planned in advance and the majority of features is known before they are analyzed,
designed, and implemented. Processes explicitly targeting reactive or extractive approaches
are underrepresented. In Section 16.3.2, we retrospectively discuss how the contributed
framework may be backed by a reactive SPLE process that is compliant to agile principles.

Domain Engineering. This includes the analysis of the domain, i.e., “an area of knowledge
that [. . . ] includes a set of concepts and terminology understood by practitioners
in that area” [Ap+13b, p. 19]. Domain engineering comprises the analysis of the
variability present in the domain, resulting in a variability model, e.g., feature model,
and the design as well as the implementation of the common software components to
solve the domain problem, forming the platform.

Application Engineering. Here, artifacts created during domain engineering are reused and
configured in order to create custom applications. To this end, the captured variability
is resolved, e.g., by a feature configuration, and the platform is customized in order to
match the application requirements. This should happen in a preferably automated
way, but manual product adaptations are necessary in general.

The SPLE Process by Pohl et al. The SPLE process described in [PBL05] provides for a
sequential order of DE and AE as well as their activities. Prior to DE stands an additional
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Figure 5.3: General distinction between domain and application engineering.

4 Excerpts of this section have been pre-published in [SBW16a].
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activity, product management, where the scope of the product line is planned, including
economical considerations. AE is applied repeatedly for each product; it strictly recapitulates
DE and re-uses artifacts developed there, i.e., the outcomes of domain analysis, design,
implementation, and testing. Just like the waterfall model was soon extended by feedback
loops, Pohl’s process allows for overall iterations of DE and AE [PBL05].

Three-Fold Process by Clements and Northrop. Clements and Northrop [CN01] define
an iterative SPLE process consisting of three main activities, namely core asset development,
product development, and management, which coarsely correspond to DE, AE, and product
management, respectively. It is assumed that all three activities are performed in parallel,
evolving both the platform and individual products continuously.

Gomaa’s Double Spiral Model. Gomaa’s double spiral development model [Gom05] is a
risk-driven process that allows for alternations between the activities of DE and AE, which
are executed in intertwined spirals, each structured along four management/development
activities: (1) “define objectives, alternatives, and constraints”, (2) “analyze risks”, (3) “de-
velop”, (4) “plan next cycle”. As a consequence, product management happens in each
iteration rather than being a prefix activity as suggested in the process by Pohl et al.

Two-Dimensional Process by Apel et al. In [Ap+13b], Apel et al. define a development
process for a plan-driven variant of feature-oriented product line development. The process
activities are organized along two dimensions. The first dimension corresponds to the
classical DE/AE partition, whereas the second dimension makes a distinction between the
problem space and the solution space. The resulting quadrants contain the activities domain
analysis (for DE in the problem space), domain implementation5 (DE in the solution space),
requirements analysis (AE in the problem space), and product derivation (AE in the solution
space). To anticipate new or changing requirements, the two problem space activities are
provided with a feedback loop. This allows for both proactive and reactive adoption paths.

5.4 Classification of SPL Implementation Approaches

After having seen the “big picture” of SPL concepts and development processes, let us
now have a closer look at implementation techniques used in the solution space, where the
captured variability is exploited in order to create a variability-aware platform from which
specific products may be constructed. Section 5.4.1 introduces means to classify different
approaches, which are then explained in Sections 5.4.2 until 5.4.5.

In this section, we assume source code as the type of artifact to provide the platform.
Solution spaces that combine models and SPLE are a subject of Section 6.1.

5.4.1 Classification Dimensions

Five dimensions along which SPL implementation approaches may be classified are summa-
rized in Figure 5.4 and further explained below:

5 Here, implementation denotes all activities subsequent to analysis.
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Figure 5.4: Classification dimensions for SPL implementation approaches.

Initiation. A first distinction is made with respect to the point in time when, e.g., economical
considerations decide about the introduction of a product line. In big bang scenarios
[KC14], domain engineering artifacts are all created from scratch, before combining
them to individual products as sketched in the idealized process in Figure 5.3. Planning
product line support from the beginning implies a significant initial set-up effort,
which is reflected in the break-even point. Big bang initiation mostly correlates with a
proactive SPL adoption path.

In contrast, many SPLs, especially in the open-source world, have been retrospectively
defined as such. In this case, domain engineering artifacts are derived in an extractive
way from a set of cloned variants, which have been developed independently, e.g.,
by repeatedly forking a publicly available software repository [Fis+15]. This clone-
and-own approach implies many new challenges such as identifying the differences at
product level that correspond to specific features. An exploratory study can be found
in [Dub+13].

SPLs following the reactive adoption path may be initiated in either of both ways.

Binding Time. In order to resolve the variability defined in the feature model, a set of
decisions must be made, each resolving a variation point by selecting an appropriate
variant for it. Assuming that the platform has been realized in a general purpose
programming language, there are at least three points in time when these decisions can
be made effective: (a) at compile-time, i.e., before or while the compiler transforms
source code into the runnable program, (b), at load-time, i.e., when the program is
started, or (c) at run-time, i.e., during program execution [Ap+13b].

While compile-time variability can ensure that only the exact functionality described
by the respective product variant is deployed to the customer(s), run-time variability
is more flexible and allows for dynamically reconfiguring product lines. Load-time
variability incorporates neither of both advantages but is usually easier to implement
and to debug [VG07].

Technology. Different SPLE approaches are furthermore distinguished along the categories
language-based and tool-driven [Ap+13b]. In the case of language-based variability,
variation points and variants are defined and resolved by means of mechanisms
borrowed from the language the platform is realized with. In contrast, tool-driven
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technology assumes that one or several external tools are used to manage variability,
while the implementation language remains variability-unaware.

Language-based mechanisms require minimal set-up effort, since no additional tooling
is required. Nevertheless, the danger of scattering source code with variability
management code rises. In contrast, tool-driven variability separates these concerns
and is therefore more generic, but requires a more heavyweight set-up.

Variability Implementation. A fourth distinction is made between compositional, trans-
formational, and annotative variability [Ap+13b]. In the case of compositional
variability, the platform consists of a minimal common core of source code, to which
variable components are added upon product configuration in order to realize specific
features. Transformational variability generalizes the compositional approach by
allowing arbitrary operations, such as modifications and deletions of source code
fragments, in addition to the monotonic composition function. Annotative variability,
in contrast, ensues from a multi-variant platform that initially realizes all possible fea-
tures at the same time. From this platform, specific products are derived by removing
those pieces of code that belong to features not selected for the product. 6

All three classes of approaches have their individual pros and cons when considering
the problem of product well-formedness. Both composition and transformation
may involve conflicting decisions for the resolution of variation points. Annotative
variability may lead to problems such as uses of types without declaration [Thü+14a]
or unintended feature interaction [Ap+13a]. Section 5.5 further discusses these issues.

Editing. A last, orthogonal distinction is made based on how the product line is actu-
ally edited; typically, SPL editing requires a combination of several tools, covering
the problem space, the solution space, and the mapping in between, respectively.
Unfiltered as well as different forms of filtered editing come into question.

The majority of SPL editing tools that have been described in the literature follow an
unfiltered approach. Here, the developer is faced with multi-variant artifacts and is
able to make architectural decisions with respect to the implementation of variability.
Typically, the connection between problem space and solution space is managed
manually, which gives responsibility to the SPL engineer(s).

The goal of filtered (also: projectional) editing is to relieve the developer of this
responsibility by reducing the complexity of multi-version editing. Here, the developer
may edit the product line in a view that filters outs parts of the product not relevant
for the intended change. There are different levels of filtered SPL editing such as
partial projections [Stă+16], temporary views [Käs10], or fully filtered editing, where
a representative product variant is edited. Typically, the mapping between problem
space and solution space is managed in a (semi-)automatic way. In this thesis, an
approach relying on fully filtered editing is presented.

Unless stated otherwise, the approaches discussed below follow the unfiltered ap-
proach.

6 In earlier publications, the terms “positive variability” as a generalization of compositional and transforma-
tional, as well as “negative variability” for annotative approaches, were used.
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From the five classification dimensions, the distinction between different variability
implementation paradigms organizes the representative approaches listed subsequently.

5.4.2 Annotative Variability

Annotative variability can be realized in an ad-hoc way (i.e., neither language-based nor
tool-driven) by copying a multi-variant source code and by removing (or commenting
out) those artifacts which are not needed for a specific product from the copy before it is
compiled. Similarly, conditional statements evaluated at run-time can control the execution
of the program in a way that specific parts are never executed. Obviously, the limits of these
naive strategies are stretched soon, such that more organized and powerful techniques are
employed for SPLE.

Preprocessor Languages. Many programming languages support a built-in conditional
compilation mechanism based on preprocessors, which are therefore classified as a compile-
time variability mechanism. Besides the well-known preprocessor for C [KR88], external
approaches such as Prebop7 offer cross-language support. Although preprocessors are
embedded into languages, they are classified as tool-driven [Ap+13b].

Preprocessor languages extend their host languages by conditional instructions. In C, code
wrapped by #ifdef X and #endif will only be passed to the compiler in case a compilation
option X is defined by #define X. Similarly, #ifndef X marks a region of code that is only
compiled in case X is not defined.

This mechanism can be exploited in order to define the platform of an SPL by means
of a multi-variant source code that surrounds variable parts by corresponding conditional
preprocessor directives, where configuration options, e.g., X, correspond to features. During
conditional compilation, variability is resolved by a corresponding list of #define directives

Multi-Variant Source Code

#ifdef EDGES
class Edge {
  public Edge() { }
#ifdef LABELED
  String label;
#endif
#ifdef WEIGHTED
  Weight weight;
#endif
#ifdef DIRECTED 
  Vertex source;
  Vertex target;
#endif
#ifndef DIRECTED 
  Vertex[] adjacents;
#endif
  void remove() {..}
}
#endif

#define EDGES
#define LABELED

conditional
translation class Edge {

  public Edge() { }
  String label;
  Vertex[] adjacents;
  void remove() {..}
}

Product Source Code

javac 
Edge.java

Custom Product

compilation

Figure 5.5: Conditional translation using a hypothetical Java preprocessor.

7 http://prebop.sourceforge.net/

http://prebop.sourceforge.net/
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for features to be included in the product. In the resulting product machine code, variable
parts referring to features not realized are not included.

In Figure 5.5, conditional compilation is illustrated using a hypothetical Java preprocessor
with a syntax resembling the C preprocessor. In the presented multi-variant source code,
variable parts are embraced by corresponding preprocessor directives referring to equally la-
beled features. The specified configuration represents a labeled, unweighted, and undirected
graph. For the reasons of clearness and comprehensibility, the representation distinguishes
between conditional translation and compilation, which are technically combined in a single
run by many language-internal preprocessors.

Using low-level preprocessor languages for implementing product line variability seems
inadequate. This approach is used, however, in the Linux kernel8, which can be considered
as a large-scale SPL having more than 9000 features [Lot+10]. Variability is therefore
managed by an external tool, the kernel configurator [SS08].

Furthermore, preprocessors do not typically take into account syntactical well-formedness
problems. For instance, in the example presented in Figure 5.5, the declaration of class
Edge is conditional (option EDGES). Therefore, all applied occurrences of this class must be
marked with the same preprocessor directive in a disciplined way. Otherwise, compilation
problems can occur for variants where EDGES is not defined.

Virtual Separation of Concerns. In [Käs10], the tool Colored IDE (CIDE) is introduced
under the slogan “preprocessors 2.0”. Belonging to the categories tool-driven and compile-
time, CIDE extends the preprocessor concept by several properties that make the preproces-
sor approach more suitable for SPLE. On the one hand, a colored representation of source
code belonging to different configuration options is used in favor of conditional preprocessor
directives, which tend to bloat the source code. Furthermore, developers may temporarily
restrict a file containing multi-variant code by views that virtually bind some configuration
options and enable temporarily filtered editing in the background.

Explicitly Mapping-Based Approaches. When compared to the approaches and tools for
annotative variability discussed above, mapping-based techniques [CA05] are considered
as more general and as more SPLE specific. Approaches belonging to this category are
tool-driven and are applied at compile-time.

A mapping is a set of tuples, each connecting an element of the platform to a presence
condition9 [CA05], a propositional logical expression on the variables defined in the feature
model. In case the expression does not evaluate to true given the bindings specified in a
configuration, the referenced platform element is removed from the corresponding product.

In Figure 5.6, an example relying on a hypothetical mapping tool for source code elements
is provided. The platform is defined by means of multi-variant source code that is clear of
variability information. The is added by the mapping, which is here represented externally
as a table, where the source element is referenced by its qualified name. Presence conditions,
which encode variability information, are represented in a hypothetical textual syntax.
Application engineering is realized by filtering the elements with respect to the binding

8 https://kernel.org/
9 Also: feature expression or feature annotation.

https://kernel.org/
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Multi-Variant
Source Code

class Edge {
  public Edge() { }
  String label;
  Weight weight;
  Vertex source;
  Vertex target;
  Vertex[] adjacents;
  void remove() {..}
}

Edges := true
Labeled := true
Weighted := false
Directed := false

filter

class Edge {
  public Edge() { }
  String label;
  Vertex[] adjacents;
  void remove() {..}
}

Product
Source Code

Mapping

Edge
Edge::Edge()
Edge::label
Edge::weight
Edge::source
Edge::target
Edge::adjacents
Edge::remove()

Edges
true
Labeled
Weighted
Directed
Directed
not Directed
true

Source element Presence 
condition

Figure 5.6: Principle of mapping-based SPLE by the graph example. Due to nesting, the presence
condition of a child element implicitly includes (by conjunction) the parent’s condition.

specified in the configuration. In this example, a graph with labeled, unweighted, undirected
edges is configured.

In contrast to preprocessors, variability is made explicit by the mapping, such that no
scattering of platform code and conditional statements occurs. On the downside, separation
of platform and variability information also reduces the comprehensibility of the mapping
when compared to preprocessors or CIDE. Furthermore, the question remains how to
identify elements of the platform referenced in the mapping, and at which object granularity
they can be identified. For this purpose, corresponding solutions must be well-integrated
with the language in which the multi-variant source code is written. In addition, similar
consistency problems as in preprocessor-based approaches may arise, e.g., when dealing
with declarations and applied occurrences.

5.4.3 Compositional Variability

Being based on the idea of adding specific program parts (statically or dynamically) to an
existing code base, compositional variability can be achieved with small-scale solutions
such as dynamic loading of class libraries in connection with the use of behavioral design
patterns [Gam+95]. Albeit, software product lines are not “just a reconfigurable architecture”
and more than “just [based on] a component-based development” [CN01, p. 12]. Therefore,
we here consider approaches that suit the SPLE principle of organized reuse.

Build Systems. Build systems such as Ant or Maven contribute to the construction func-
tionality area (cf. Section 4.1) of software configuration management. A build script
automatically manages the compilation of a runnable program based on a collection of
source code and configuration files. This mechanism can be exploited in order to manage
tool-driven compile-time variability. To this end, for each specific product variant, a custom
build script, which compiles a product from a subset of the source code files available in the
base collection, is defined.

With build systems, variability is managed in a rather coarse-grained way [Ap+13b].
Variation points may be realized by either including or not including a specific source file.
The contents of the file are typically not variability-aware, although a combination of build
systems and preprocessors is feasible and has been realized for the Linux kernel [Ada+07].
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Furthermore, variants of source code files are managed in an extensional way (cf. Sec-
tion 4.6), such that for each valid combination of feature selections, a specific variant of
affected source code files must be maintained.

Component Frameworks. Component frameworks can be employed as a language-driven
solution for SPL implementations that resolve variability either at load-time or at run-time.
A commonality of the multitude of frameworks available is that they allow to dynamically
load or re-load parts of programs modularized in the form of, e.g., libraries or plug-ins.

As a representative, the technology Open Services Gateway initiative (OSGi) [MVA10]
has been selected for the subsequent explanations. OSGi, on top of which, among others,
the Eclipse platform has been built [CR06], relies on the metaphors extension point and
extension. A core module, which represents the executed program, may define a couple of
extension points technically represented as a Java interface and an XML schema defining the
required metadata. Plug-ins, being deployed separately, are containers for extensions, which
fulfill the contract defined by a particular extension point. During load-time or run-time, the
core module may query the available extensions for a particular extension point in order to
dynamically load variable portions of source code.

Coming back to the concept of compositional variability, plug-ins offering extensions
belonging to the same extension point can realize a variation point having different variants.
This is illustrated in Figure 5.7, where extension points (i.e., variation points), are defined
for three optional features of the Graph example. Different plug-ins define two extensions
(i.e., variants) for each variation point, where one extension realizes the presence, the other
one the absence of the respective feature. The run-time configuration is finally created by
selecting one extension for each extension point (e.g., based on a configuration file).

A similar mechanism is provided by dependency injection frameworks, which realize
the design pattern inversion of control [Gam+95]. For instance, Google Guice10 allows the
definition of a set of Java interfaces to abstractly define the contract for services. Within
service implementations, other service interfaces can be injected without declaring their
implementation class. In modules, concrete implementation classes are ultimately bound to
their service interfaces. This way, load-time variability can be achieved [Van08]. SuperMod,
which contains run-time variability to a limited extent, has been developed using dependency
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Figure 5.7: Compositional run-time variability using OSGi-like configuration.

10 https://github.com/google/guice

https://github.com/google/guice
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injection; see Section 14.4.2.
The component framework approach naturally enforces highly modular software archi-

tectures, which are considered as more reliable and stable [MVA10]. A downside of using
frameworks for compositional variability is the lack of static analysis. For instance, binding
errors caused by several implementations competing for one interface or by unimplemented
interfaces cannot be detected at compile-time.

Aspect-Oriented Programming. The paradigm aspect-oriented programming (AOP) has
been invented as an extension to procedural or object-oriented languages having the aim
to reduce the undesirable phenomena of code scattering – code belonging to the same
functionality being distributed over multiple fragments of the program – and code tangling –
fragments of a program containing code belonging to different functionalities [Kic96]. The
main principle of AOP is separation of cross-cutting concerns, which do not refer to the
main functionality of the program, but to (optional and mostly orthogonal) aspects such as
logging, tracing, or transaction management.

In the context of AOP, a couple of new language concepts have been introduced. Those
are realized by several programming languages such as AspectJ11 for Java. “Dynamic
crosscutting in AspectJ is based on a small but powerful set of constructs. Join points are
well-defined points in the execution of the program; pointcuts are a means of referring to
collections of join points and certain values at those join points; advice are method-like
constructs used to define additional behavior at join points; and aspects are units of modular
crosscutting implementation, composed of pointcuts, advice, and ordinary Java member
declarations” [Kic96]. From these specifications, the actual program is composed by a so
called aspect weaver, whose output is passed to the compiler.

AOP can realize compile-time, language driven compositional variability. As [VG07,
Section 1] explains, “aspect-oriented techniques enable the explicit expression and mod-
ularization of crosscutting variability [. . . ]”. Following this, the behavior belonging to a
mandatory or optional feature can be encapsulated in an aspect. The decision which aspect
to include is determined by a higher-level product configuration specification.

AOP methods allow for fine-grained extensions to an existing code base while reducing
the problems of scattering and tangling of code, which are also relevant to SPLE. Though,
AOP was not originally designed for SPLE, such that the solved problem is related but
different. Not every feature can be considered as a cross-cutting concern—hence, AOP is
not the adequate solution for every feature in an SPL [Ap07].

Feature-Oriented Programming. Like AOP, feature-oriented programming (FOP) is a
compile-time and language-based solution for compositional variability [Ap+09b]. In
contrast to AOP, FOP specifically targets software product line engineering. The paradigm is
compositional inasmuch as a baseline of software, corresponding to the platform, is refined,
i.e., extended by feature-specific parts. Two similar approaches to FOP are outlined below.

With AHEAD, [BSR04] have proposed a compositional approach internally representing
programs as algebraic hierarchical equations for application design. Assuming that each
program p is defined as a constant value, the program can be extended by mathematical

11 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/


88 Chapter 5 Software Product Line Engineering

weighted

C
ol

la
bo

ra
tio

ns
 / 

La
ye

rs base

Classes

labeled

colored

Graph Vertex Edge

Color

WeightedEdge

LabeledEdgeLabeledVertex

ColoredVertex

Legend Class Role / Mixin refines

Figure 5.8: Composition of classes and refinements in feature-oriented programming.

function composition, e.g., f1 • p, f2 • p, or f2 • f1 • p in order to realize features f1, f2, or
both of them. Thus, composable features are defined as mathematical functions using the
polymorphic operator •. The approach has been implemented in a tool suite12 supporting,
among others, language extensions to Java. To this end, so called refinement classes or
interfaces are made available to the developer. These are organized within different layers,
each referring to a feature. A refinement may extend a base class using, for instance, a
separate mix-in mechanism that is orthogonal to Java’s built-in inheritance concept.

A similar approach is offered by FeatureHouse [Ap+09a]. Here, the terms collaboration
and role are used for units of decomposition, and refinements each assign one collaboration
to one source code artifact. There are also several syntactical differences to AHEAD which
shall not be discussed here.

Figure 5.8 shows a conceptual generalization of FOP approaches. A product line is
considered as a two-dimensional grid of source code artifacts and features. Based upon
this orthogonal distinction, products can be derived by selecting those collaborations/layers
which are to be included in the respective product configuration.

FOP offers several benefits when compared to other compositional approaches. On the
one hand, traceability of features is easy since their source code artifacts are organized in
layers, or feature modules, respectively. On the other hand, the composition mechanism
is simple to understand and to invoke, provided that suitable extensions to the employed
programming language exist. Nevertheless, feature interaction, which is considered in
Section 5.5.1, is hard to resolve. This would require roles/mix-ins to spread over multiple
collaborations/layers, which, however, is explicitly disallowed in strictly compositional
approaches.

5.4.4 Transformational Variability

In contrast to approaches following the compositional paradigm, transformational variability
assumes that a feature is generally defined by means of a program transformation that

12 https://www.cs.utexas.edu/users/schwartz/ATS.html

https://www.cs.utexas.edu/users/schwartz/ATS.html
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modifies a core program by inserting, altering, and removing fragments of code. These trans-
formations are defined externally, such that approaches listed here belong to the categories
tool-driven and compile-time.

Delta-Oriented Approaches. Several approaches aim at realizing transformational vari-
ability based on explicit and user-visible directed deltas [Ach+11; Schae+10]. Deltas as
used in this context are more general, but also more fine-grained than aspects or refinements
used in the compositional paradigms AOP or FOP, respectively. For instance, a delta may
change the type of a variable used in a program or delete specific program statements.

The connection between deltas and features is summarized in delta modules. A delta
module consists of a collection of deltas and a presence condition (see Section 5.4.2) that
controls for which product variants the deltas are applied. Correspondingly, the product
line consists of a baseline, a feature model, and several delta modules [Pie+15]. Automatic
product derivation is then realized as follows: First, the presence condition for each delta
is evaluated in order to detect whether it is relevant for the specified feature configuration.
Then, an execution order is determined. Last, the deltas are applied to the baseline.

Determining the correct execution order is a key challenge in delta-oriented approaches,
since conflicts may involve user interaction. This is in contrast to compositional or annotative
approaches, in which product derivation is monotonic – fragments are only added or only
removed, respectively –, and therefore not sensitive to the execution order. Taken together,
the additional flexibility and power is paid by potential consistency problems and by non-
determinism.

Version Control Systems. As mentioned before, variants are a special case of versions,
such that version control systems can be used for variability management. When speaking in
SPLE terms, VCS are primarily designed for managing variability in time, e.g., superseding
revisions, as opposed to variability in space, e.g., co-existing variants of software objects.
Albeit, branches in the revision graph explicitly allow for co-existence. This immediately
raises the idea of organizing features in specific branches. Correspondingly, VCS may
provide a tool-driven compile-time approach for SPL implementation. Since the merge oper-
ation by which products are derived can be considered as a special kind of transformation,
the solution is here categorized under transformational variability.

Notice that we here consider VCS as an implementation technique, without aiming at
reasoning about the integration of historical and logical versioning; this is considered in
Section 6.4.

A specific VCS-based reuse and variation approach is presented in [SH04]. In [Ap+13b],
an instantiation of this approach is described, making a distinction between four types of
branches in a multi-level revision graph:

– In the development branch, the platform of the product line is evolved.

– Feature branches are provided to develop specific features of the product line independently,
each ensuing from the development branch.

– Release branches correspond to customer specific product variants. They are created by
merging the desired features’ branches into offsprings of the development branch. The
configured product may be further customized here in the course of application engineering.
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Figure 5.9: Using version control systems as an SPL management mechanism.

– Temporary bugfix branches are provided to separate maintenance changes from evolutionary
changes. They may either emerge from the development branch, in order to realize a bugfix
relevant to all product variants, or from feature branches, when the respective bug is related
to a specific feature.

The same distinction is applied in the example presented in Figure 5.9, which shows a
revision graph for a hypothetical excerpt of the VCS adaptation of the Graph product line.
In the trunk, an initial version of the platform is created, before corresponding branches for
features labeled and weighted are forked. Both feature branches are evolved concurrently.
After that, the first release is derived for customer A by merging the development branch
with labeled. In the meantime, a bugfix is applied to the main development branch, such that
the latest revision of the development branch must be merged into the release for costumer A.
Last, another product variant is derived, resulting in the release for customer B, a weighted
and labeled graph.

This minimal example already demonstrates the downsides of using state-of-the-art VCS
for SPLE. On the one hand, it is required to repeatedly merge different variants of the
product line, be it for integration of features or for maintenance purposes. On the other hand,
release branches contain redundant information that can be derived from the trunk and from
respective feature branches. Another disadvantage is shared with build systems: by release
branches, the VCS approach ultimately implements extensional versioning (although the
initial construction of variants is performed by combination of independent branches).

Clone-and-Own Approaches. The variant management platform ECCO (Extraction and
Composition for Clone-and-Own) presented in [LELH16] follows an extractive approach
to gradually transform a set of related product variants with a common origin into an SPL.
Once migrated to the platform, new products can be composed based on a specification of
their properties. Internally, these specifications are mapped to a feature algebra. Rather than
actually applying fine-grained variant management in the sense of intensional versioning,
the approach relies on reference variants, which constitute the variant that “best matches” a
selected configuration. On the one hand, this noticeably reduces precision when compared
to truly transformational approaches; maintenance problems resembling those VCS-based
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approaches (see above) may also occur. On the other hand, the clone-and-own approach has
gained widespread acceptance as it is easy to install in a retroactive way [RCC13].

5.4.5 Multi-Paradigmatic Approaches

In the literature, multi-paradigmatic software solutions for SPLE support have been pre-
sented. For instance, FeatureIDE [Thü+14b] is an extensible FOSD framework that supports
different annotative approaches by offering integration with several preprocessor tools. Fur-
thermore, compositional (AHEAD, FeatureHouse, and AspectJ), as well as transformational
paradigms (delta-oriented programming) are supported.

Similarly, pure::variants offers – besides annotative source code support – several exten-
sions for different kinds of programming and modeling languages forming the platform.

With PEoPL (Projectional Editing of Product Lines), a multi-paradigmatic editor for
source code centric SPLs is presented in [BPB17]. The tool is capable of representing the
same product line in different forms (projections), which allows the developer to switch
in between different implementation paradigms for the development of the same product
line. Altogether, five projections are supported: textual annotation (using preprocessor-
like directives), visual annotation (providing color-coding for different features), module
projection (using refinements as in FOP), blending projections (corresponding to partially
filtered editing), and variant projections (fully filtered editing).

5.5 Feature Interaction and Product Well-Formedness Analysis

After having explained several concrete SPLE implementation approaches, let us now revisit
two important challenges relevant in the context of this thesis, namely feature interaction
and product well-formedness analysis. Intentionally, solutions to the challenges remain
underrepresented in this section; these are addressed in the related work sections in the
chapters of Part IV.

The here examined challenges may arise for almost all approaches discussed in Section 5.4.
For the sake of simplicity, we assume a product line approach based on annotative variability
using preprocessors for the explanations below.

5.5.1 Feature Interaction

Interaction between two features occurs whenever the combination of two features leads to
unexpected behavior, whereas the activation of both features in isolation exposes the correct
functionality. A prominent example is located in the telecommunications domain, where
two features – CallWaiting and CallForwarding – may interact [CM00]. In case both features
are active, it is not clear whether a waiting queue shall be installed or whether the call shall
be forwarded in case the called person is busy.

In [Ap+13a], two types of feature interaction are distinguished:

External Interaction. In analogy to external variability, this kind of interaction is apparent
to the user of an affected product in terms of conflicting features, such that he/she is
able to phrase the unexpected behavior in domain terms.
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1 public class Edge {
2 #ifdef WEIGHTED
3 private double weight;
4 public Edge() {
5 weight = 0.5;
6 }
7 #endif
8 #ifdef LABELED
9 private static int id = 0;

10 private String label;
11 public Edge() {
12 label = "Edge_" + id++;
13 }
14 #endif
15 }

Listing 5.1: An example of static feature interaction.

Internal Interaction. This kind of feature interaction is detected, e.g., in the course of static
analysis of a derived product during application engineering. An example is depicted
in Listing 5.1: The constructor of class Edge is redefined for both weighted and
labeled graphs in isolation, but in case both features are selected, the compiler will
detect an invalid redefinition, since a constructor with the same signature already
exists.

Current research focuses on both the detection and the resolution of occurrences of
external feature interaction, where precise automated detection is considered as the more
challenging task. “There is no single strategy that can be claimed as general, scalable, and
production-ready, yet” [Ap+13b, p. 217]. Feature interaction detection is complicated by
two factors. First, the number of possible occurrences of pair-wise feature interaction grows
quadratically with the number of optional features introduced. Second, each possible case
of interaction must be tested in a suitable product variant, but it is hard to guarantee that the
analysis performed in these candidates is representative.

Concerning the resolution of identified feature interaction, there are two possible realms
to consider: the problem space and/or the solution space. On the one hand, an identified
feature interaction may stem from a missing constraint in the variability model. Returning
the telecommunications example, features CallWaiting and CallForwarding might be declared
as mutually exclusive. On the other hand, particularly structural interaction often reveals
inconsistencies in the multi-variant code. When referring to the example of Listing 5.1, the
two constructors should be made mutually exclusive by corresponding #ifndef directives.
In addition, a new constructor for the combination of both features should be introduced.
In approaches based on compositional variability, unintended feature interaction is often a
symptom of poor modularization.
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5.5.2 Product Well-Formedness Analysis

None of the compile-time approaches discussed in Section 5.4, regardless of whether being
based on compositional, transformational, or annotative variability, can guarantee that the
compiler will accept derived product variants as syntactically correct. This contradicts with
the goal of automating application engineering to the greatest possible extent. The problem
of product well-formedness is addressed by many current research activities, resulting in a
plethora of problem statements and even more solutions based on different analysis strategies.
An exploratory survey is provided in [Thü+14a], where four categories of approaches are
provided:

Product-Based Analysis. This corresponds to the brute-force approach of checking the
consistency of each valid product separately for concluding the well-formedness of
the overall product line. Since the number of valid products grows exponentially with
the number of features, scalability problems soon arise.

Sample-Based Analysis. Rather than considering all valid variants for the checking of
product well-formedness, only a small subset is selected. The selection should
conform to a criterion such as pair-wise coverage [Jay+07].

Feature-Based Analysis. Essentially a special case of sample-based analysis. Feature-
based approaches aim at analyzing the well-formedness of artifacts belonging to each
feature in isolation. This incorporates a convenient compromise between scalability
and coverage. Albeit, by being scoped by one feature only, a-priori detection of
possible occurrences of feature interaction is not guaranteed.

Family-Based Analysis. According to [Thü+14a, p. 6:15], family-based analysis “(a) oper-
ates only on domain artifacts and (b) incorporates the knowledge about valid feature
combinations”. Thus, the product line is checked as a whole by variability-aware
analysis methods before any application engineering takes place. This requires to
adopt the respective validation techniques, but is both scalable (in contrast to product-
based) and guarantees the correctness of all variants (as opposed to sample-based or
feature-based analyses) beforehand. To be able to apply a family-based approach,
the corresponding validation technique needs to be lifted to multi-variant checking,
which imposes a considerable conceptual and technical obstacle.

Orthogonal to the question above – which artifacts are passed to an analysis – different
techniques can be employed for actually performing the analyses. Besides classical verifica-
tion and validation methods such as symbolic execution or testing [Som06], model checking
[GLS08], or automatic theorem proving [Thü+12] are frequently employed in the SPLE
context.

5.5.3 Feature Model Consistency

A related consistency problem addresses the question if the feature model is satisfiable, i.e.,
whether or not there exists at least one feature configuration that accords to the constraints
defined in the feature model [Hei09; MWC09].

The problem of feature model consistency is addressed in Sections 9.4 and 13.3.3.
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5.6 Bottom Line

SPLE is an increasingly popular software development approach relying on organized reuse
of a platform of artifacts in order to quickly and efficiently derive customer-specific software
products on demand. For documenting the variability, i.e., the commonalities and differences
of product line members, feature models have been established as a precise yet simple to
understand formalism. SPL development processes are predominantly oriented toward the
proactive rather than to the extractive or reactive adoption paths, and consequently, have
been influenced by plan-driven rather than by agile software development processes.

SPL implementation techniques can be distinguished into compositional, transformational,
and annotative variability. For the developer, all approaches imply a significant increase
in complexity when compared to single-system development. Therefore, we argue that an
important aspect of research in SPLE tooling should be a reduction of this complexity.

Last, we have learned that the problem of product well-formedness analysis – which is
motivated, among others, by unforeseen feature interaction – cannot be solved in both a
precise and a computationally affordable way, such that compromises like sample-based
analysis appear to be most feasible.
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Chapter 6

Integrating Disciplines

Abstract

The background provided in the previous chapters is supplemented by a review of pair-wise
combinations of MDSE, SPLE, and SCM (see intersection sets in Figure 6.1). Model-
driven product line engineering is motivated by the common goal of increased productivity;
different approaches relying on compositional, transformational, or annotative variability
are compared. Model version control subsumes approaches and techniques to version
control that operate on the level of abstraction of models, promising more precise and
more consistent collaborative model development. The combination of SPLE and SCM is
considered in a twofold way. First, product line version control deals with the co-evolution
of variability model and versioned product. Second, state-of-the-art approaches to the
integration of historical and logical versioning, having their origins in SCM, are classified.
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Figure 6.1: Illustration of the integrating disciplines considered in this thesis.
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The contents of this chapter are reproduced in a condensed form in [SW17c].

6.1 Model-Driven Software Product Line Engineering

Combining MDSE and SPLE promises to increase the productivity of software engineers in
a twofold way. On the one hand, just like feature models abstract from the problem space,
domain models are a suitable abstraction for the solution space, such that the platform and
the variability model are situated at the same conceptual level. On the other hand, MDSE
and SPLE share the goal of highest possible automation. When considering the classical
distinction of SPLE into domain engineering and application engineering, considerable
economical savings can be achieved by moving as many repeated manual development
activities as possible from AE to DE [CN01], reducing AE to an automated configuration
routine.

Model-driven (software) product line engineering (MD(S)PLE) [Gom05] is becoming a
more and more populated research field. This section aims at identifying the major research
challenges as well as at outlining the state of the art of currently available technical solutions.
Corresponding approaches based on annotative variability are a subject of Section 6.1.1,
before compositional and transformational variability are considered in Sections 6.1.2
and 6.1.3, respectively.
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6.1.1 Annotative Variability

As explained in Section 5.4.2, annotative variability assumes that the platform is provided in
form of a multi-variant artifact from which fragments corresponding to deselected features
are conditionally removed. When transferring this to MDSPLE, the platform corresponds to
a multi-variant domain model (MVDM) that is an ordinary instance of a specific metamodel
(cf. Section 3.3). In order to perform a fully automated product derivation, it is necessary to
establish traceability links between elements of the MVDM and the variability model.

Language-Internal Variability. In [Gom05], Gomaa et al. introduce the method product
line UML based software engineering (PLUS). In [GS04], the corresponding tools for
variability management and automatic product derivation are presented.

PLUS is based on an extension of the modeling language UML. To this end, several
stereotypes1 have been introduced which can be attached to model elements. These include:

«kernel» The element is mandatorily included in every product.

«optional» The element may be either selected or deselected for specific products.

«default» Indicates that an element is the default variant for a specific variation point,
which is selected automatically unless specified otherwise.

«variant» Such elements can be selected to replace the default element for a specific
variation point.

Products are derived by defining views on the multi-variant domain model, which resolve
all configuration decisions by a boolean decision for optional elements and by selecting a
representative for each variation point.

Intertwined Domain and Variability Model. A family of approaches to MDSPLE based
on annotative variability conceptually separate the feature model from the domain model,
however, the connection between problem and solution space is realized within the domain
model in an intertwined way. This requires corresponding extensions to the modeling
language in order to provide for the definition of variation points and variants.

For example, Clafer is a “(class-based) meta-modeling language with first-class support
for feature modeling” [BCW11, p. 102], e.g., the language mixes feature model with
UML class diagram concepts. A feature is not only represented by a class, but also shares
its structural features, such that the feature model hierarchy corresponds to the object
composition hierarchy defined in the intertwined domain model. Similarly, feature group
constraints are equivalent to multiplicities of composition references. For consistency
checks, Clafer models are internally mapped to the formal specification language Alloy
[Jac06].

Explicit Mapping-Based Approaches. MDSPLE has been addressed by several tools and
approaches following an explicit mapping-based (cf. Section 5.4.2) paradigm. Here, the

1 Stereotypes are language inherent extension mechanisms that dynamically add domain-specific functionality
to specific UML elements; see [OMG15].
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Figure 6.2: Mapping-based annotative variability with FAMILE.

feature model and the MVDM are kept orthogonal by introducing a distinct mapping model,
which interconnects problem and solution space. In its most general form, the mapping
model assigns presence conditions – boolean expressions on the variables defined in the
feature model, implementing traceability links – to elements of the domain model.

This approach has been realized, among others, by the tools FeatureMapper [HKW08],
by the Enterprise Architect edition of pure::variants2, as well as by FAMILE [BS12b] and
its UML-based predecessor MODPL [BW12].

The workflow implied by mapping-based MDSPLE tools is exemplified by the screenshot
shown in Figure 6.2, which was taken from the FAMILE tool while being applied to the
running Graph example. On the left hand side, the feature model is depicted. In the main
window, the MVDM may be edited in concrete syntax. The right hand side contains the
mapping: Here, the user may arbitrarily edit the presence condition associated with the
selected element of the domain model, which is redundantly represented in tree syntax. In
this screenshot, a feature configuration was loaded for previewing the product to be derived.

Product derivation during application engineering is performed straightforwardly in
mapping-based MDSPLE approaches. Given a specific feature configuration, a conditional
copy of the MVDM is created. Elements are copied if they do not have any presence
condition assigned (implicitly assuming the expression true) or if their presence condition
evaluates to true given the bindings defined in the feature configuration.

Template-based Approaches. In [CA05], Czarnecki et al. propose a template-based
approach to realize annotative variability based on the connection of feature models and
UML activity or class models. Variability is resolved at compile-time and in a tool-driven
way. Being based on cardinality-based feature modeling [CHE05], the feature model may
also contain attributes that serve as input for templates defined in the domain model.

2 http://www.pure-systems.com/products/pure-variants-for-enterprise-architect-286.html

http://www.pure-systems.com/products/pure-variants-for-enterprise-architect-286.html
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Like in explicit mapping-based approaches, the platform of the product line is based on
a multi-variant domain model (MVDM), specific elements of which may be augmented
with boolean presence conditions. In addition to those, string-valued meta-expressions are
allowed for individual values of specific model elements, e.g., the return type of a method.
Meta-expressions may contain, among others, boolean case differentiations and references to
feature attributes. The expressions are evaluated after applying a feature configuration. This
potentially raises consistency issues, which are here detected and resolved in a dedicated
post-processing step; see [CA05].

6.1.2 Compositional Variability

When transferred from SPLE to MDSPLE, compositional variability can be realized by
a core model that constitutes the architectural scaffold of applications being part of the
product line. This core model is extended by conditional model fragments/components3

in order to derive specific applications. Several approaches have been established for the
definition of these extensions. Unless stated otherwise, all approaches listed below belong
to the categories tool-driven and compile-time.

Aspect-Oriented Modeling. Aspect oriented modeling (AOM) [Wim+11] denotes the
transfer of concepts of aspect-oriented programming – aspects, join-points, pointcuts, advice
– to the abstraction level of models. Specific model elements can be declared as join-points,
which serve as extension points for fragments; these in turn are realized by means of aspects
that encapsulate several units of advice.

Different approaches exist for specifying transformations that eventually weave the
defined aspects into models. In the tool MATA [Whi+09], attributed graph grammars
[Tae04], a graph-based formalism for model transformations, are provided for this purpose.
Furthermore, there exist specific model aspect weaving languages such as XWeave [GV07].

Superimposition-Based Composition. In [Ap+09b], an approach for product derivation
based on compositional variability is described. The concept of transformation is hidden
from the user. As a replacement, fragments are merged into the core model, such that during
product composition, sets of fragments rather than transformations have to be selected. To
this end, superimposition4 is introduced as a model composition technique. “Entities are
matched by their name and type. [. . . ] When composing two entities, the union is taken
from their members” [Ap+09b, p. 7f.]. This way, the connection between fragments and the
core model is established by cloning the parent elements where a fragment is to be inserted.

Layered Models. The tool EASEL [HJH06] introduces the concept of layered class
diagrams, allowing to intensionally create different versions of UML classes. The approach
can be transferred to MDSPLE inasmuch as different versions of a model can be created by
merging a selection of layers, each realizing another individual optional design decision.

3 By convention, fragments are referred to as fine-grained units of models, e.g., UML classes, associations or
attributes, whereas components denote coarse-grained architectural units that encapsulate a piece of functionality.
4 In approaches based on annotative variability, superimposition denotes the multi-variant artifacts. Here in
contrast, superimposition denotes the operation that composes several models and/or fragments.
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Figure 6.3: Achieving variability in MDSPLE by model transformations.

6.1.3 Transformational Variability

Figure 6.3 sketches how transformational variability can be carried out on top of model
transformations (see Section 3.7). In this case, the platform comprises the core model,
fragments, and model transformations. Fragments are defined in terms of model objects, or
a small subset thereof, instantiated from the domain metamodel. Moreover, model trans-
formations define how these fragments are attached to the core model. Product derivation
consists in the selection of appropriate model transformations, which are then applied to the
core model in a chained way.

General Purpose Model Transformations. A comparably coarse-grained approach to
transformational variability based on model transformations is presented in [Hau+04]. In
particular, this approach builds on the principles of model-driven architecture (cf. Sec-
tion 3.1). Variability is resolved already at the level of the component independent model
(CIM). Model transformations are used not only to compose specific instances of the product
line at CIM level, but also to further refine those at PIM (platform independent model) and
PSM (platform specific model) levels.

In the literature, several approaches can be found that combine model transformations
with other product composition techniques, as well as techniques primarily relying on
annotative variability. Product Line Behavioral Synthesis (PLiBS) [ZHJ04] extends the
PLUS approach (see above) in a twofold way. First, behavioral modeling is supported.
Second, an additional variability stereotype «virtual» is introduced for placeholder elements,
which are bound to specific model fragments in a pre-processing step. The integration is
controlled by model transformations. Moreover, in [TP11], a UML profile approach is
presented. To this end, PLUS is extended by model transformations based on ATL.

Common Variability Language. A similar approach has been realized by Haugen et
al. [Hau+08], who propose two distinct approaches for mixing the domain language
with a variability language. First, in an amalgamated approach, languages are combined
at metamodel level by creating a new, variability-aware metamodel that imports both



6.2 Model Version Control 103

languages. Second, when using the separated-languages approach, the domain language
remains unmodified. Rather, its instances are fragmented and embedded within a generic
variability-aware Common Variability Language (CVL) [OMG12]. In spite of requiring less
overhead for tool set-up, the separated-languages approach offers a coarser object granularity
than the amalgamated approach.

Explicit Delta Languages. In [Zsc+10], a bootstrapping approach to transformational
variability based on a family of composition languages is described. According to the
authors, general purpose model transformations are too unspecific for the needs of MDSPLE.
They address this issue by “a family of languages for variability management”, VML*
[Zsc+10]. From this language, specific dialects – language instance descriptions – can
be derived that allow to add variability to specific types of models. When referring to
Figure 6.3, transformation specifications are written according to the respective language
instance descriptions. Fragments can either be imported from existing models or defined in
the transformation in an in-place fashion. Each transformation is associated with a specific
variant, which can by any combination of features defined in an external feature model.

A similar approach has been realized by [SSA14b] in the tool DeltaEcore. Here, the units
of composition are referred to as deltas, which can be used to express both variability in
time and variability in space. A delta is specified in a delta dialect that is derived from
a common base delta language and adds metamodel-specific operations in a similar way
as a language instance description in VML*. An example for the usage of DeltaEcore is
provided in Section 7.1.4.

Implicit Delta-Based Approaches. An implicit delta-based approach, relieving product
line developers from having to explicitly specify transformations, has been realized by the
tool SiPL presented in [Pie+15]. As already explained in Section 5.4.3, a delta module
connects a presence condition, which refers to the variables defined in the feature model, to
a delta, which corresponds to a sequence of operations applied to a core domain model. In
contrast to explicit delta language based approaches, however, SiPL derives the delta from
an a-posteriori analysis involving two versions of a model representing the states before and
after applying the corresponding delta. The analyzed deltas are managed by the tool in a
delta module set, from which in turn customized products may be automatically derived by
applying the selected deltas to a core variant of the product.

6.2 Model Version Control

At first glance, the combination of model-driven software engineering and version control
seems unproblematic. After all, models have a persistent textual representation relying on
XMI (cf. Section 3.3) or on concrete textual syntax (e.g., using Xtext; see Section 3.6), and
may therefore be considered as ordinary text files from the perspective of a VCS.

Applying line-oriented versioning to structured data, however, has proved inadequate
when it comes to differencing and merging multiple versions of a model. Rather than being
presented insertions and deletions of XMI-based text lines, users would prefer understanding
the differences between two model versions in terms of the used modeling language, e.g.,
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operations such as “rename UML class”. Even worse, three-way merging XMI files in a
line-oriented way may produce well-formedness violations that destroy the compatibility of
models with their editing tools, while modelers are forced to resolve merge conflicts in a
text-oriented tool such as diff3.

These inadequacies gave rise to the discipline model version control (MVC), which
is an active research area involving a multitude of conceptual and technical challenges
[ASW09]. Generally speaking, MVC lifts the object granularity of versioning from text
files being comprised of text lines up to models being composed of model objects. When
using the conceptual notions introduced in Section 4.2.3, the product space corresponds to
the versioned model(s), software objects are equivalent to model objects, and composition
relationships are broken down to the containment structure defined by the model.

This section first introduces two sub-problems implied by model versioning. The subject
of Section 6.2.1 is model differencing, which includes the detection of commonalities be-
tween two versions of a model as well as the internal persistence and external representation
of the derived differences. In Section 6.2.2, problems and solutions of three-way model
merging are presented. The section is concluded with a presentation of fully-fledged model
version control systems in Section 6.2.3.

6.2.1 Model Matching and Differencing

In analogy to text-oriented approaches, a comparison of two versions of a model includes
two steps: matching and differencing. These are visualized in Figure 6.4 using the running
Graph example. The commonalities identified by the matches may be understood as a
list of correspondence links (visualized as blue dashed lines), each connecting an object
of the first version with a matching object of the second version of the model. From
such a list of commonalities, differences are deduced by identifying those elements that
have no correspondence in the opposite version. There exist multiple forms of difference
representation—in Figure 6.4, a textual difference report is presented that describes the

INSERT  
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  INTO #Graph/operations

INSERT
  NEW UML::Property( source , #Vertex) 
  INTO #Graph/properties

INSERT
  NEW UML::Property( target , #Vertex) 
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Figure 6.4: General problem statement of model matching and differencing.
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changes in terms of insertions, deletions, and modifications of values of structural features
of model objects.

Edit Logs. Not at least due to the easier implementation of this approach, many model-
based version control systems rely on a log-based paradigm. In these cases, the edit
operations carried out by the user are recorded, such that a precise edit log is available for
pairs of versions immediately following each other in the revision graph. In case other pairs
of versions are to be compared, the path of edit scripts connecting them must be combined
in an adequate way. Log-based versioning has been implemented, among others, in the
MVC systems EMF Store [KH10] and CoObRA [SZN04] (see Section 6.2.3).

Universally Unique Object Identifiers. Many modeling tools automatically assign uni-
versally unique identifiers (UUIDs) to all model objects upon their creation. UUIDs are
transparent to users and remain unmodified during the lifetime of an object. Assuming that
the model versions to compare have emerged from a common ancestor version, UUIDs
may serve as a correct and reliable criterion for the identification of model objects. On
the contrary, they cannot detect corresponding objects inserted after the model versions
diverged. Furthermore, not all modeling tools rely on UUIDs. For example, EMF model
instances based on Xtext (cf. Section 3.6) cannot support this approach as the concrete
syntax is persisted, which impedes managing UUIDs transparently to the user. In practice,
many model comparison tools, including EMF Compare [BP08], use UUIDs if available –
rather than exclusively relying on them – in order to improve the matching.

Heuristic Matching. If neither edit scripts nor UUIDs are available, the edit operations
carried out by the user must be deduced from the available versions in a comparison-based
fashion. Since a result calculated this way does not necessarily reproduce the actual editing
history, the corresponding methods and algorithms are heuristic. Given that models are
structured graph-like entities, the sequence comparison algorithms presented in Section 4.3.3
are not applicable. Rather, a few families of model comparison algorithms have been
established, each relying on different heuristic criteria.

– Tree-based matching has been investigated way before the advent of MDSE on the basis
of “hierarchically structured information” [Cha+96]. In general, trees are much easier to
compare – e.g., using top-down or bottom-up or a mixture of both strategies – than arbitrary
graphs. Albeit, when reducing MOF model instances to their containment links and pruning
all links instantiated from non-containment references, they can be considered as trees, too.
Tree-based comparison of models has been considered, among others, in [BPV10a].

– Similarity-based matching aims at identifying pairs of model elements in order to obtain
a set of correspondences whose elements expose the highest possible degree of similarity.
Since the potential number of pairs to be considered grows quadratically with model size,
methods following this approach differ with respect to optimization. The MOF-compliant
tool SiDiff [KWN05] first applies a tree-based bottom-up approach, where comparison is
restricted to types and attribute values of objects. Thereafter, in a top-down phase, links are
taken into account for global optimization. Similarly, UMLDiff [XS05], which is restricted
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to the comparison of UML class diagrams, relies on the matching of identifiers (e.g., class
names) in a first phase and takes structural information into account secondly.

– Edit-distance based methods as supported by ModDiff [Uhr11] take as optimization criterion
for heuristic matching the size of the edit log derived from the matching. This in turn results
in a higher sensitivity for renaming operations, which tend to be overseen by similarity-based
approaches.

Difference Computation and Visualization. Once the matching between two versions
of a model has been calculated, differencing is, at first glance, the less sophisticated part:
Model objects part of the modified version that have no matching partner in the original
version are classified as insertions; deletions are detected vice versa.

As already pointed out in Section 4.3, the purpose of differences is twofold in version
control. On the one hand, they may serve for the internal persistence of model artifacts
in the sense of directed deltas. This is relevant for a subset of model VCS presented
in Section 6.2.3. On the other hand, differences support the user in understanding and
comprehending changes performed, e.g., by others. To this end, adequate visualization
for model differences is required. Among other tools, EMF Compare [BP08] provides for
a generic tree-based model representation that augments the actual difference report; an
example is shown in Figure 6.5.

As sketched in Figure 6.4, however, differences deduced this way may reside at a too low
level of abstraction in order to be meaningful to modelers. Several approaches described in
the literature, including [RV08; BPV10b; KKT13], deal with lifting the semantical level
of differences in order to describe the change as a sequence of refactorings – e.g., moving
copies of a UML attribute from two classes into a common base class – rather than in
terms of fundamental edit operations such as insertion or deletion. Such high-level model
differences, however, are not a core topic of this thesis.

Figure 6.5: A difference report generated by EMF Compare.
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Figure 6.6: An example of three-way model merging.

6.2.2 Three-Way Model Merging

More than comparison and differencing, transferring the three-way merge problem from
text-oriented to model versioning demands for new approaches and methodologies. As
mentioned before, not only is the merge result required to include both changes made in
the alternative versions, but emphasis is put on the merge result being consistent, which
includes both its syntactical well-formedness and its semantical correctness.

The three-way model merging scenario is exemplified in Figure 6.6. From a base version
of a graph metamodel, two alternatives v1 and v2 are derived. In v1, an operation closure is
introduced to class Graph. Furthermore, Edge is renamed to LabeledEdge and an attribute
label is added. In the meantime, v2 is created by adding a new operation transpose to
Graph. The attribute id of class Vertex is removed. Also, class Edge is renamed, now to
DirectedEdge. In addition, two references source and target, both connecting instances of
Edge to Vertex, are added. The expected merge result m incorporates all element additions
and removals. In particular, Graph contains both new operations in a user-defined order.
Furthermore, the contradicting renamings of class Edge were combined in the course of a
user-directed conflict resolution: DirectedLabeledEdge.

Below, different categories of three-way merging approaches for models are categorized,
with a focus on their applicability to MOF-based model instances. With respect to conflicts
detected by specific tools, we distinguish between context-free conflicts – several values
competing for the same structural feature – and context-sensitive conflicts, which arise from
applying different yet contradicting operations in different versions, e.g., a new reference to
versus the deletion of an object. More precise categorizations of model merge conflicts are
provided in [AP11; Wes14].

Fallback to Text-Oriented Merging. A first category of solutions to three-way model
merging relies on text-based merging as performed by ordinary VCS such as Subversion or
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Git. To this end, the model instances to be merged are mapped to text artifacts in a suitable
way—XMI serialization does not come into question. In [BLF14], an approach that relies
on representing atomic pieces of information by one text line each is shown. This way,
model-level changes are mapped to text-level changes such as insertions and deletions of
text lines. Merge conflicts are reported to the user either in terms of conflicting insertions
or deletions of text lines, or by the (textual) model editor that represents the merge result.
Altogether, models and code are merged uniformly, but such approaches do not consider
more specific requirements such as context-sensitive correctness.

Structure-Oriented and XML-Based Merging. One step closer to the abstraction level of
models are structure-oriented and XML-based three-way merging methods.

A generic tool for structure-oriented merging of documents based on syntax graphs has
been presented in [Wes91]. The tool relies on UUIDs being attached to all syntax nodes
of the input versions. During three-way merging, context-free and partly context-sensitive
merge conflicts are detected and resolved. Although targeting structured text documents in
general, the underlying approach is transferable to MOF-compliant models.

There exist a multitude of tools in the literature that address three-way merging of different
versions of an XML-document. One representative is 3dm [Lin04], which internally maps
the hierarchical and ordered XML structures of each version to a set of facts, triples of the
form (parent, child, successor). Three-way merging is effectively applied to the set of facts;
conflicts are reported in case the parent or the successor of an element are contradicting.
Since XMI is XML-based, 3dm can be applied for three-way merging MOF instances,
however, context-sensitive conflicts remain undetected.

Change-Based Merging for Comparison-Based Versioning. A state-based three-way
merging approach specifically targeting MOF instances has been developed by Alanen
and Porres [AP03]. The algorithm assumes UUIDs and considers only a small subset of
MOF, namely instances of classes, attributes, and unidirectional references. From a pair-
wise comparison of the alternative versions v1 and v2 with their common ancestor b, two
change sequences c1 and c2 are derived. These are combined into a single merged change
cm, which is applied to b in order to create the merged version m (cf. Figure 4.9). This
algorithm, however, does not correctly handle containment links and conflicts in the order
of multi-valued structural features.

The aforementioned tool EMF Compare [BP08] has three-way merge functionality inte-
grated into the comparison view. Differences are detected based on a preceding matching
of the base version with both alternative versions. The tool allows to propagate changes
between the two model versions in order to manually create a merged model version.
Conflicting changes are signaled to the user, who may decide either to override the local
change or to ignore the incoming change. Many context-sensitive conflicts, however, remain
undetected by this tool.

In the context of the AMOR project (Adaptable MOdel veRsioning) [Alt+08], several
components for model version control were developed, including a three-way merge tool
based on the algorithm presented in [Tae+14]. From a matching obtained by EMF Compare,
change sets c1 and c2 are deduced in the form of graph modifications. For the detection of
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context-free and context-sensitive conflicts, specific patterns of inconsistent graph modifica-
tions have been defined in [Tae+10]; this set may be extended in a language-specific way by
graph patterns or by OCL constraints. In the case of conflicts, a preliminary merge result is
presented to the user. Conflicts are made visible in the form of model annotations, which
help the user resolving them non-interactively in an a-posteriori step.

State-Based Model Merging. A purely state-based three-way merging algorithm specific
to EMF model instances is presented in [Wes14]. The algorithm is generic with respect
to the question how correspondences between objects of different versions are calculated,
and therefore supports UUIDs as well as different matching strategies. The presented
merge algorithm, which is applicable also to two-way merging, applies context-free and
context-sensitive merge rules. Rather than relying on the indirection of change sequences,
set-theoretic considerations are made when determining the objects to be included in a
merged version. For instance, the context-free merge rule for the calculation of the set
of objects Om to be included in the merged version is implemented by the following set
formula:

Om = (O1 ∪O2) \ ((Ob \O1) ∪ (Ob \O2)) (6.1)

Here, Ob, O1, and O2 correspond to the object sets of the base version b and the alternative
versions v1 and v2, respectively. Analogous rules are applied, e.g., for the values of structural
features and for determining the container of an object. Context-sensitive rules are defined by
patterns in the preliminary version of the merged model that detect, e.g., dangling references
or objects having multiple containers.

The algorithm of [Wes14] has been implemented in the tool BTMerge [SUW13b], which
performs a consistency-preserving three-way merge for arbitrary EMF-based model in-
stances. The preliminary merge result is presented to the user in a dedicated conflict
resolution tool, where conflicts are reported and may be resolved interactively. The data
structures underlying BTMerge rely on a multi-version model representing the superim-
position of the input models. The multi-version representation of ordered collections is

Figure 6.7: Applying BTMerge’s conflict resolution tool to the merge scenario.
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discussed in Section 8.2.
In Figure 6.7, the application of BTMerge to the three-way merge scenario introduced in

Figure 6.6 is illustrated. The tool presents the three versions v1, b, and v2 of the model in a
three-column tree editor, thus the superimposed intermediate model is directly presented
to the user. In the bottom left window, the detected conflicts are shown: the contradictory
renaming of class Edge and the undefined mutual order of, among others, the new operations
closure and transpose.

Operation-Based Merging. Unlike text-oriented VCS, many model VCS follow a log-
based paradigm, such that performed editing operations are recorded in the IDE. Corre-
spondingly, three-way merging is applied in an operation-based way.

The model repository EMF Store [KH10] includes a three-way merging component that
integrates two sequences of operations recorded in parallel development branches. Conflicts
are detected upon the actually performed modifications, e.g., if the value of a single-valued
structural feature has been changed contradictorily, the user may select one modification to
be ignored. In addition, a small subset of context-sensitive conflicts are recognized; these
include dangling references, but lack, e.g., cyclic containment conflicts.

In [Rut+09], an approach to operation-based three-way merging of models is defined on
top of category theory. Similarly to BTMerge, a merge model serves as an intermediate
structure on whose basis conflicts are detected and resolved. The initially defined conflict
set considers elementary operations such as insertions, deletions, renamings, or moves. In
addition to these, metamodel-specific conflicts may be defined based on category theoretical
formalisms.

Semantical Merging. The three-way model merging approaches presented above differ
with respect to their support for the detection of context-free and context-sensitive conflicts.
Albeit, none of the tools and algorithms may guarantee that the merge result is correct with
respect to the semantics expressed by the specific modeling language.

In [Fah+14], a three-way merging approach specific to class diagrams (represented in
a small subset of the MOF language) is shown; it preserves semantical soundness in the
sense that “all instances of the merge of a model and its differences with another model are
automatically instances of the second model” [Fah+14, p. 1]. Rather than considering class
diagrams as structured syntactical units, the effects of edit operations on their instances are
taken into consideration. To this end, a compositional algebra that describes semantical
features such as subtyping, cardinalities, or referential integrity, is defined. To date, no tool
implementing this algorithm is known.

Furthermore, the model VCS SMoVer [Alt07] is able to detect semantic in addition to
syntactic conflicts. To this end, so called semantic views are derived from the modifications
detected between the base and the alternative versions. Each semantic view covers an
individual aspect of the modeling language, e.g., type correctness in class diagrams.

6.2.3 Model Version Control Systems

To conclude the description of this integrating discipline, a subset of the currently available
MVC systems are outlined with a focus on the supported model types, their architectural
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design, and the functionality made available to users of the respective system.

Connected Data Objects. Connected Data Objects5 (CDO) is an optional EMF compo-
nent that serves as both a simplistic version control system for all types of EMF-based
models and a persistence framework for models on top of which model management appli-
cations can be built. Developers or end users may access specific revisions of a model using
a read-only view, or start write transactions explicitly by cloning the repository and writing
the changes back in a commit-like operation later.

Access to the repository is organized by means of database-like transactions, thus pes-
simistic synchronization is applied for write transactions. CDO follows a client/server
architecture; communication has been implemented based on the Net4j library6, which relies
on the hypertext transfer protocol (HTTP). For server-side persistence, different database
technologies, including SQL as well as NoSQL-compliant systems, are available.

EMF Store. The aforementioned EMFStore [KH10] is a fully-fledged operation-based
version control system for arbitrary EMF-based model instances. The integrated change
recording mechanism requires a tight integration of model editors with the VCS. As another
option, a default editor based on the EMF Client Platform7 is provided.

Internally, the repository is organized by directed forward deltas. The revision graphs
allows for branches and merges in order to support collaborative development. Client/server
communication has been implemented with XML-based remote procedure calls (RPC); for
server-side persistence, the NoSQL database MongoDB8 is used.

Odyssey VCS. Odyssey-VCS [OMW08] is a version control system specific to the model-
ing language UML. In contrast to other VCS, this system is flexible with respect to the object
granularity, e.g., UML class diagrams may be versioned with respect to their packages,
classes, or details of classes. The version history allows for explicit branching and merging.

The system follows a classical client/server architecture. Rather than relying on directed
deltas, different snapshots of the modified artifacts are transferred in XMI format using a
dedicated web service.

CoObRA. CoObRA [SZN04] is a persistence framework upon which collaborative mod-
eling environments can be built. It is integrated into the CASE tool Fujaba [NNZ00] and
follows an operation-based paradigm. Changes performed in Fujaba are recorded and ap-
pended to a change log, which also serves as persistence format for models in the workspace.
Thus, CoObRA relies on directed forward deltas.

Changes carried out in workspaces of different developers are orchestrated by means of a
central server repository, which manages the version histories in a proprietary XML-based
format. Concurrent modifications are synchronized in an optimistic way.

5 http://www.eclipse.org/cdo/
6 https://wiki.eclipse.org/Net4j
7 https://eclipse.org/ecp/
8 https://www.mongodb.com

http://www.eclipse.org/cdo/
https://wiki.eclipse.org/Net4j
https://eclipse.org/ecp/
https://www.mongodb.com
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Git Integration for MetaEdit+. In [Kel17], an integration of the modeling environment
MetaEdit+ with the distributed VCS Git has been presented. Concurrent modifications are
avoided by instantaneously locking the affected model artifacts upon their first modification.
This promises to significantly reduce the complexity to which the modeler is exposed, but
the approach becomes problematic when used with large and frequently accessed model
resources. To better comprehend changes, a graphical difference view is provided.

From Peer-to-Peer to Distributed Model Versioning. Apart from centralized model ver-
sioning, there exist several approaches to transfer model changes in a peer-to-peer fashion
between different workspaces.

In DPraxis [MBG09], changes performed to a local copy of a distributed model are
captured in the form of fundamental edit operations. Peer-to-peer communication is realized
by a publisher/subscriber mechanism, which allows to selectively filter both the senders
and the receivers of a propagated change. The framework also supports rudimentary conflict
detection and resolution.

DiCoMEF [KE14] is a collaborative editing framework for models being instances of
arbitrary domain-specific modeling languages based on Ecore. In contrast to DPraxis,
DiCoMEF assumes one dedicated master model to orchestrate synchronizing operations.
Rather than relying on a central remote repository, change requests and change propagations
are sent and received by the e-mail protocol.

Comprehensibly, peer-to-peer versioning involves the danger of diverging copies. As
shown in Section 4.5, distributed version control provides for a meaningful compromise
between centralized and peer-to-peer versioning. Albeit, literature lacks real support for
distributed model versioning as motivated, e.g., by [HP04].

6.3 Software Product Line Version Control

From a conceptual view, each software product line may be decomposed into three different
types of artifacts: First, the problem space, represented by a variability model such as a
feature model. Second, the solution space, i.e., the platform that is available as a superim-
position (annotative variability) or as a core product augmented with a set of composition
rules (compositional variability) or transformations (transformational variability). Third, the
mapping between problem and solution space, implemented by presence conditions assigned
to solution space elements or as application conditions for transformations, respectively.
In order to support collaborative SPLE as well as the possibility of a systematic change
comprehension, all these artifacts need to be put under version control as illustrated in

Problem 
Space

   Mapping Solution Space

Version Control

Figure 6.8: General problem statement for software product line version control.
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Figure 6.8. For each historical version of the product line, it must be ensured that problem
space, solution space, and the mapping in between are consistent with each other.

At first glance, nothing is wrong with applying a state-of-the-art version control system
such as Subversion or Git to a software product line (or a model VCS, assuming that
the SPL in question is developed in a model-driven way). As shown below, there are,
however, good reasons to specifically address the question of software product line evolution
[LC13], which is here considered as a generalized problem of software product line version
control (SPLVC). When compared to the previously considered problem of model version
control, SPLVC is a broader – due to the heterogeneity of SPL approaches – yet much less
densely populated research field. Section 6.3.1 categorizes possible evolution problems to
consider, before Section 6.3.2 presents building blocks upon which SPLVC may be realized.
Section 6.3.3 gives a short overview of fully-fledged SPLVC systems.

6.3.1 Categorization of Evolution Problems

In [SHA12], different kinds of evolution in SPLE are categorized. When referring to
Figure 6.8, the origin of an evolutionary change is either the problem space or the solution
space. For instance, in case the problem space is represented by a feature model, viable
operations are duplicate feature, insert feature, or split feature. Evolution steps performed
in the solution space largely depend on the used implementation language and approach;
e.g., in Java, refactorings such as extract method or rename element come into play.

The evolution steps performed in the problem or solution space are seldom confined to
the respective space, but more often, a propagation to the mapping or even into the opposite
space is desired. Correspondingly, in [SHA12], the semantical extent of evolutionary
changes is classified as follows:

Intraspatial Changes. These correspond to internal refactoring operations that do neither
influence the mapping between problem or solution space, nor propagate to the
opposite space. Examples are the introduction of a new feature without any mapping,
or corrective changes in the implementation of an existing feature.

First-Degree Interspatial Changes. This category ensues either from the problem space
or from the solution space and needs to be propagated to the mapping in order to keep
the product line consistent. For instance, in case a feature is deleted, all presence
conditions referring to it must be revised.

Second-Degree Interspatial Changes. In this case, an evolutionary change is propagated
from the problem space over the mapping to the solution space, or vice versa. For
instance, the operation split feature requires to replace all instances of the original
feature in the presence conditions, and furthermore involves splitting the referencing
artifacts in the solution space accordingly.

Taking this distinction into consideration, co-evolution scenarios in SPL may be, on the one
hand, better understood; on the other hand, automated propagation can be provided by tools.
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Figure 6.9: An example of a hyper feature model.

6.3.2 Partial Solutions Towards Product Line Version Control

Coming back to the more general topic of SPLVC, several solutions on top of which SPL-
specific VCS may be built exist in the literature. A first group of approaches is limited to
controlling the evolution of the problem space. Secondly, several compositional approaches
that consider both the problem and the solution space have been described.

History-Aware Feature Models. The fact that a feature model’s evolution needs to be
described by a consistent version history has been addressed by different formalisms.
For example, hyper feature models [SSA14a] organize an individual revision graph for
each feature. In order to allow for the definition of valid combinations of versions of
features, a version-aware constraint language is provided. During feature configuration, the
twofold semantics of variability in time and in space is taken into account. Furthermore, an
algorithm for automatic version selection is provided in [SSA14a]. This way, the categories
maintenance/evolution and software configuration management of variability in time (see
above) can be adequately addressed.

An example of a hyper feature model with reference to the running Graph example
is depicted in Figure 6.9. Version-aware constraints ensure that algorithms operate on
compatible versions of their data structures.

Fragmenting and Merging Feature Models. In [Dhu+08], a collaborative evolution ap-
proach to MDSPLE based on fragments is presented. Motivated by the large scale and
life-span of product lines, it is proposed to divide up the feature model into several sub-trees.
In analogy, the corresponding solution space fragments, here represented as domain model
fragments, are divided up; references to elements contained in external fragments are es-
tablished by means of a placeholder mechanism. As different fragments are versioned in
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isolation, many collaboration problems are avoided.
Using this approach, product derivation first involves a composition of a stable and up-

to-date version of the feature model. For this purpose, a semi-automatic merging strategy
is employed, where several types of merge conflicts, e.g., name mismatches or multiple
definitions of features, must be resolved. Next, after feature selection, the corresponding
parts of the solution space are composed, while references to placeholder elements are
re-targeted to their corresponding domain model elements located in other fragments.

Similar techniques for fragmenting and merging feature models are presented in [Ach+11],
where multiple SPLs share (different sub-trees of) the same feature model.

Delta-Oriented Evolution Approaches. Particularly when applying transformational vari-
ability, dedicated evolution support is required in order to ensure consistent version selection
as well as a correct and meaningful product composition strategy.

In [SSA14b], an integrated approach towards variability in space and in time, based on
hyper feature models and delta-oriented composition languages is described. The connection
between the multi-version problem space and the solution space is established by means
of explicit deltas. The approach distinguishes between two types thereof. Configuration
deltas are conditional to the existence of specific features, i.e., they describe their imple-
mentation in the solution space. On the contrary, evolution deltas describe the product-level
change recorded between two subsequent revisions of a feature. In order to define the
operations applicable in these deltas, the delta language family DeltaEcore9 is provided (cf.
Section 6.1.2).

Another delta-oriented approach to SPLVC is presented in [Hab+12]. It is focused on
architectural models of SPLs as created during the domain design phase of the traditional
SPLE process. Baselines of architectural descriptions may be modeled using a dedicated ar-
chitectural description language (ADL). For explicit deltas modifying ADL model instances,
another delta language, which can be used to define evolutionary as well as variation-related
changes, is introduced. Both the evolution and the variability of the product line are captured
in a uniform representation combining revision graphs and feature model concepts. Special
emphasis is put on refactoring operations that aim at maintaining the consistent configura-
bility of the SPL. To this end, application conditions are attached to deltas rather than to the
variability model, which allows a more fine-grained control over product composition, but
also increases the complexity of the overall approach.

6.3.3 Software Product Line Version Control Systems

To conclude this section, several tools that offer holistic SPLVC support, yet rely on
completely different implementation techniques, are contrasted. Existing SPLVC systems
are based on contemporary version control solutions or have been developed from scratch.

Feature-Driven Versioning. In [ME08], a feature-driven versioning framework building
upon Subversion is described. It transparently maps elements of feature models, domain
models, and traceability links between those, to versioned objects. New variants are created

9 http://deltaecore.org/

http://deltaecore.org/
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locally by merging branches, assuming that each branch is responsible for a specific feature.
Here, in so called feature/product containers, features may be implemented in isolation;
however, this also coarsens the granularity of feature implementation to source code files.
Although product derivation is transparently delegated to merging of branches organized by
Subversion, it remains unclear how product-specific changes, performed in a merged branch,
are propagated back to the repository in order to affect a larger set of variants.

DE/AE Propagation. In [MD15], an extension to the VCS Git enabling SPLE management
is presented. It allows to propagate product-specific changes, performed in a merged branch,
back to the trunk, such that domain and application engineering are bidirectionally integrated.
Rather than being integrated into the underlying version control system Git, the extension
is built upon the hosting platform GitHub, resulting in a comparably loosely-coupled tool
integration.

VCS-Supported Clone-and-Own. [Pfo+16] present a clone-and-own support tool partic-
ularly designed for transitioning from loose variant management to SPLE. At the heart of
the tool is a feature-to-code tagging editor that allows to define specific source code regions
as varying. Tags comprise arbitrary boolean expressions on features. Once migrated to a
product line, it is possible to merge specific source code fragments into the local workspace
under the same context, such that the feature tags are extended and managed automatically.
This heuristic strategy, however, does not obviate further manual reviews of feature tags.

Selecta. The SPLVC system Selecta [EDL10] is built around a database-centric computer
aided domain-specific environment, which covers not only version control but also more
general aspects of software configuration management. This way, in addition to the evolution
of the variability model and the product space, evolving engineering environments and the
economical scope of the product line are controlled. Products themselves are derived in a
compositional way based on configuration specifications, which may also be partial, such
that the resolution of specific variation points can be delayed. Moreover, version constraints
can be phrased in a dedicated constraint language. Rather than relying on feature models,
variability is expressed in terms of family groups, which constitute a nested representation
of variation points and variants.

Component-Based SPL Versioning. Thao [Tha12b] presents a configuration manage-
ment solution for SPLs, which intends to address evolution problems in an explicit tool-
supported way rather than relying on low-level techniques such as preprocessors. A product
line versioning layer is built on top of a generic low-level versioning layer and on a compo-
nent/project versioning layer (the Molhado system [Ngu+05]). The framework applies a
component-based style of versioning, where versioned XML documents are used for the
description of components. This way, components may be shared between domain and
application engineering, which enables the propagation from platform artifacts to products
and vice versa. Albeit, this propagation happens in a semi-automatic way. Particularly
when integrating product-specific changes into the platform, manual variability management
becomes necessary.
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6.4 Integrated Historical and Logical Versioning

The combination of historical version management as provided by VC and variant manage-
ment as provided by SPLE may be seen from a second perspective. Rather than considering
the product line as an entity to be versioned with respect to historical evolution, the platform
may be regarded as a piece of software to be versioned along the historical and the logical
dimension equally, thus applying integrated historical and logical versioning (IHLV) to a
software basis. This addresses SCM in the broader sense; initial ideas were developed far in
advance of the advent of SPLE.

To begin with, a discussion about the commonalities and differences of VCS and SPLE
is provided in Section 6.4.1. In the remainder, approaches that explicitly support both
version dimensions are portrayed. Rather than taking the specific requirements for software
product lines into consideration, the scope is widened to the general SCM problem of
configuration options. The solutions listed differ with respect to how the relationship
between historical and logical versioning is seen, giving rise to a distinction between
asymmetric (see Section 6.4.2), orthogonal (see Section 6.4.3), and hybrid (see Section 6.4.4)
approaches.

6.4.1 VC and SPLE: Are they so Different?

From a comparison of the disciplines version control and SPLE, a list of commonalities,
similarities, and differences are deduced in the following10. Together with the theoretical
foundations to be discussed in Chapter 8, this list has been taken into account for the design
of the conceptual framework presented in Part IV. Throughout the discussion, we assume
“traditional” representatives, e.g., a contemporary text-oriented VCS such as Subversion and
one of the SPL implementation tools presented in Section 5.4. Table 6.1 summarizes the
explanations given in the following.

Commonalities. Both VC and SPLE provide a notion of the entirety of products. In VC,
this is a repository, whereas in SPLE, this corresponds to the platform. For single product
versions, the terms workspace and product (configuration) are used.

Moreover, in both disciplines, there exist two distinct representations for the connection
between version and product space. On the one hand, it is possible to store all variants
as a superimposition, which corresponds to symmetric deltas in VCS and to annotative
variability in SPLE. On the other hand, only a minimal core may be defined, which is
then manipulated by specific operations. This is realized by directed deltas in VC and
by transformational variability in SPLE. For compositional variability, no VCS-related
counterpart exists.

In either case, it is necessary to assign visibilities to program fragments or to transforma-
tions. These correspond to version identifiers – sets or ranges of revisions – and to presence
conditions – propositional logical expressions on the available features.

10 Parts of this section have been pre-published in [SBW15, Section 3].
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Table 6.1: Differences, similarities, and commonalities among VC and SPLE. Based on [SBW15,
Table 2].

Generalization Version Control SPLE

Common- all product versions repository platform
alities single product version workspace product configuration

superimposition symmetric deltas annotative variability
transformations directed deltas transformational var.

visibilities version identifiers presence conditions

Similarities version model revision graph feature model
version revision feature configuration

filter check-out product derivation

Differences variability kind variability in time variability in space
variation points spontaneous, hidden planned, explicit

product variability unconstrained constrained
version specification extensional intensional
version membership immutable mutable

editing model filtered unfiltered
visibility management automatic (commit) manual (edit)

Similarities. In both disciplines, there is an abstraction for the entirety of available versions.
In VC, revision graphs describe the commit history. In SPLE, feature models organize
mandatory and/or optional features of a product line within a tree. The specification of a
single version is done by selection of a revision, or by a feature configuration, which in turn
describes a product variant.

Both VC and SPLE provide a filter operation. In VC, it populates the workspace after a
revision has been selected for check-out. In SPLE, filtering is applied as product derivation
during application engineering.

Differences. Both disciplines deal with different kinds of variability. Version control
manages variability in time, i.e., the fact that a software project is subject to evolution.
SPLE, in contrast, deals with variability in space, using variability models to describe
commonalities and differences among related variants explicitly. In SPLE, it is intended
that several configurations of a software project co-exist. This kind of variability is typically
planned in advance by suitable variation points in the platform; in contrast, VC assume
that variation points are hidden and that they are created spontaneously. Most SPLE
tools require the platform to be free of context-free or context-sensitive conflicts, e.g., a
syntactically correct program that is accepted by the respective compiler, or a valid instance
of the metamodel in the case of MDSPLE (constrained variability). In VC, there are no
restrictions concerning product variability—neither a superimposition nor directed deltas
need to be syntactically well-formed; constraints are merely imposed to single-version
products (unconstrained variability).

VC and SPLE also differ in terms of version specification. Typically, VCS make a fixed
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set of versions available for selection (extensional versioning). In SPLE, versions may
be described by a combination of features, allowing to create variants that have not been
committed earlier (intensional versioning). VCS guarantee the immutability of version
membership of an element. Once committed, it is not possible to remove a product element
from a revision. In contrast, it is allowed to modify the visibility of an element in SPLE.

In VC, filtered editing is applied. After check-out, the developer sees and may modify
elements belonging to the selected revision only. As soon as a commit is issued, changes
are detected in the local workspace and written back to the repository, while visibilities are
updated automatically. In contrast, SPLE typically requires the user to edit a multi-version
view (unfiltered editing) and to manage visibilities (i.e., presence conditions) manually.

VCS and SPLE tools both offer operations that are not realized by the opposite. The
VCS operation commit detects differences in the workspace in order to write changes back
to the repository automatically. No equivalent operation, which would allow to propagate
product-specific modifications back to the platform, exists in SPLE tools. Conversely, it is
possible to directly modify the mapping between the variability model and the platform,
i.e., the visibilities. There exists no VCS that intentionally allows to manually edit version
membership (which would, indeed, destroy the property of immutable revisions).

Conclusions. VC and SPLE share a – maybe unexpectedly – large amount of similarities,
particularly with respect to underlying data structures. Most differences are behavioral and
due to the underlying editing models. It is worth investigating the benefit of transferring
some differences to the respective opposite domain. This requires a stable foundation for
integrated historical and logical versioning. Subsequently, we investigate and assess three
candidate architectures that potentially provide this foundation.

6.4.2 Asymmetric Integrated Versioning

Under asymmetric, we here subsume approaches that explicitly combine historical and
logical versioning, yet at different conceptual levels, i.e., the relationship between the
variability model and the product space has another quality as the relationship between
the evolution model (e.g., revision graph) and the product space. From the perspective of
the evolution model, the platform and the variability model, in turn, are homologous. A
generalized architecture for asymmetric approaches is sketched in Figure 6.10. Asymmetric
IHLV can be achieved by putting an SPL managed with a state-of-the-art SPLE tool under
VC.

An example of a system intentionally following this approach is Adele [EC94]. A
multi-variant platform is managed by a variability-aware object-oriented schema definition

Product Space Platform

Version Space

Variability Model

Evolution Model

Figure 6.10: Asymmetric architecture for integrated versioning.
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Product Space Platform

Version Space Variability ModelEvolution Model

Figure 6.11: Orthogonal architecture for integrated versioning.

language. Here, variants can be explicitly defined, following the paradigm of annotative
variability when speaking in SPLE terms, or symmetric deltas in the version control nomen-
clature. A historical versioning layer has been added on top, which in turn relies on directed
deltas. Specific parts of schema definitions may be defined as modifiable, such that multi-
ple historical versions of it are allowed to exist. In contrast to logical variants, historical
revisions are managed transparently in a repository.

When compared to naive approaches to SPL/VC integration, the added value seen from the
user’s perspective is low. An additional problem is the conceptual handling of the variability
model, which primarily serves for version selection, but is also subject to evolution itself.

6.4.3 Orthogonal Integrated Versioning

When compared to asymmetric approaches, orthogonal integrated versioning lifts the
variability model up to the version space, making it homologous with the evolution model
(e.g., revision graph). As a consequence, elements of the product space are versioned with
respect to both the historical and logical version dimension (cf. Figure 6.11).

The orthogonal architecture has been realized, among others, in the tool VOODOO
[Rei95]. A so called version cube is provided as a conceptual abstraction for version
identification in the historical dimension (a sequential revision graph), the logical dimension
(variation points – here referred to as version group nodes – and variants), and the product
dimension (components that may be selected individually). Physically, the objects part of
the version cube are stored in an object pool. The selection of a specific object involves a
choice in the revision graph and a subsequent selection in the intertwined variant/product
space. For managing the variant space, specific pre-defined operations are offered.

Although providing homologous IHLV, orthogonal approaches suffer from a conceptual
disadvantage when compared to asymmetric (see above) and hybrid approaches (see below):
the evolution of the variability model is not adequately addressed. A concrete example is
provided in Section 7.1.7.

6.4.4 Hybrid Integrated Versioning

Both approaches to IHLV discussed above imply problems which are due to the respective
role of the variability model. On the one hand, asymmetric approaches do not consider that
it resides at the same conceptual level as the evolution model, such that revision selection
and variant configuration are covered by mutually independent mechanisms. Consequently,
the added value when compared to naive VC/SPLE integration is low. On the other hand, by
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Figure 6.12: Hybrid architecture for integrated versioning.

considering it as part of the the version space, orthogonal approaches neglect to control the
historical evolution of the variability model.

Attempting to “get the best of both worlds” motivates hybrid approaches to integrated
versioning (cf. Figure 6.12), where the variability model plays a dual role, being part of
both the version space and the product space. Thus, the evolution model applies historical
versioning to both the variability model and the platform, whereas the platform is versioned
by both the evolution model and the variability model uniformly.

To date, there exists no tool that strictly and fully implements the architecture proposed
in Figure 6.12. Supplementarily, two formal approaches based on which a hybrid solution
can be built are presented subsequently. Both of them provide a generic base mechanism
that does not assume specific forms of representation for the evolution model, the variability
model, and the product space, respectively.

Unified Versioning Based on Feature Logic. In [ZS97], Zeller et al. introduce the ICE
system, which is based on a version set model that relies internally on feature logic. Feature
terms essentially correspond to nested [key : value] assignments, where a value can be either
atomic or another feature term. When transferring this concept to software configuration
management, different properties of software systems – belonging to the historical or variant
dimensions, as well as other SCM aspects such as building or testing – can be expressed by
feature logical terms [ZS97]. Versions are unambiguously defined by unification of different
feature terms, which resolves the variability present in the versioned software. By unification,
on the one hand, partial configurations, each expressed by a feature logical expression, can
be combined. On the other hand, illegal combinations of version configurations can be
detected.

Feature logic naturally supports intensional versioning (cf. Section 4.6). In addition,
extensional versioning is needed in order to map selections in revision graphs to feature
logical expressions. To this end, [ZS97] propose a change-oriented mapping; a change
feature ∆i corresponds to an edge in the revision graph and is labeled according to its target
revision i.

Uniform Version Model. When compared to the aforementioned ICE approach, the Uni-
form Version Model (UVM) [WMC01] resides at an even higher level of abstraction by
relying on set theory and propositional logic. UVM defines a couple of basic concepts based
upon which an integration of historical and logical versioning – realized by a combination
of intensional and extensional version control – can be achieved. The connection between
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the product space and the version space is established by visibilities—propositional logical
expressions on options that control in which versions a product space element is present,
generalizing the concepts of presence conditions and version identifiers.

UVM includes a filtered editing model that is based on the notions of choice and ambi-
tion that have their origins in multi-version editors [Kru84; SBK88] and change-oriented
versioning (CoV) [Mun+93]. As sketched in Section 1.4.3, the developer edits the product
space transparently in a view, where visibilities are hidden. The changes are connected to
a subset of the version space, defined by the ambition, and applied representatively in a
version described by the choice.

6.5 Summary and Outlook

In this chapter, we have summed up the state of the art concerning the mutual combinations
of MDSE, SPLE, and version control.

Just like conventional SPLE, model-driven software product line engineering may be ap-
plied based upon three distinct paradigms. In the case of annotative variability, the platform
consists of a multi-variant domain model; product derivation is realized by removing those
model elements referring to features not included in the selected variant. Compositional
variability, in contrast, is based on the idea of adding specific fragments to a minimal
core model. Several techniques exist for expressing composition semantics. For realizing
transformational variability, specific variability-aware approaches are preferred over general
purpose model transformation languages.

Model version control and software product line version control aim at improving the
support for evolution and collaboration of MDSE and SPLE, respectively. Both integrating
disciplines are motivated by the inadequately coarse object granularity of state-of-the-art
VCS, which typically interpret versioned items as plain text files, whose contents are
defined in terms of text lines. MVC and SPLVC systems promise to ease comparison and
merging, but also to improve the consistency of the product space. Albeit, such systems
are underrepresented in literature, especially with regard to fully automated and distributed
solutions.

Many VCS support a restricted form of variant management by offering the concept of
branches, where different offsprings of the main development line may be organized in
an extensional way. Integrated historical and logical versioning may be performed on the
basis of different architectures; we have come to the conclusion that the hybrid architecture
combines the benefits of asymmetric and orthogonal integration.

The concepts and mechanisms underlying UVM are revisited in a more formal way in
Section 8.4. Furthermore, in [WC09], preliminary considerations on transferring UVM to
SPLE have been made; the contributions presented in Part IV build upon this. In particular,
Chapters 9 and 10 explain how hybrid IHLV has been realized by representing the feature
model as a part of both the version space and the product space. This way, a well-established
abstraction is provided for (intensional) logical versioning, while the management of the
(extensional) historical dimension is fully automated.
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Chapter 7

Design Choices and Decisions

Abstract

This chapter ties on the previous chapter’s literature review and transitions to the conceptual
contributions of this thesis. Using concrete examples where adequate, eight obstacles
that hamper the application of a combination of MDSE, SPLE, and VC are identified
and explained. Moreover, based upon the internal properties of the surveyed tools, we
identify twelve design choices for a tool to integrate MDSE, SPLE, and version control. The
choices are resolved by corresponding design decisions, which have been considered both
in the conceptual framework and in the tool SuperMod. The choices are justified with the
requirements identified in advance and concretized with the conceptual obstacles in mind.
Seven additional design principles complete the description.
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7.1 Obstacles to the Application of MDSE+SPLE+VC

The literature review provided in the previous chapter has considered different approaches
to MDSPLE, MVC, and SPLVC. In this chapter, the information is further processed and
constructively assessed. The current Section 7.1 lists and exemplifies eight typical obstacles
state-of-the-art tools or combinations thereof are faced with. The challenges connected to
these obstacles have been neglected or only partly addressed by approaches described in the
literature.

On top of the identified obstacles, Section 7.2 elaborates design choices towards an
integrated conceptual framework, before concrete design decisions are made in Section 7.3.

7.1.1 Plan-Driven SPL Approaches Hamper Agility

As hinted in the introduction, agile software development has become more and more
important over the recent years. It still depends on the specific requirements of projects
whether agile or plan-driven development processes are to prefer. Without contributing to
this discussion, one can argue that development support tools should at least be compatible
with agile software development in a sense that they do not interfere with agile principles.

In Section 5.3, it was stated that the majority of established SPLE processes assume a
plan-driven and proactive paradigm, which is also reflected by the landscape of available
SPLE tools. Several properties of proactive SPLE on the one hand and agile development
on the other hand are mutually exclusive.

To get more precise, let us recite an excerpt of the twelve principles of the agile manifesto:

[. . . ] Our highest priority is to satisfy the customer
through early and continuous delivery of valuable software.

[. . . ] Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive advantage.

[. . . ] Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter timescale. [. . . ]
([Bec+01])

These agile principles clash with the properties of proactive SPLE for the following
reasons:

– Plan-driven processes impede the early delivery of software through the strict separation of
domain engineering (DE) and application engineering (AE). Before the first product can be
deployed to its customer(s), one complete DE and one AE run are necessary. The DE run
includes the design and implementation of all features identified during domain analysis.

– The high amount of planning involved by proactive SPLE complicates the handling of
new or changing requirements, particularly when connected to the maintenance phase after
several products have been derived. In general, (proactive) SPLE assumes that the individual
requirements for all products are defined in advance and that they remain stable [PBL05].

– Application engineering is a “one-way road”: Once a product has been derived, the con-
nection to the platform gets lost. Therefore, maintenance activities must be synchronized
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between DE and AE. The additional maintenance time hampers the quick and frequent
re-generation of products.

Taken together, agile SPLE is impeded by the absence of a suitable process but also by
a lack of tools following the reactive SPL adoption path, which “aligns well with agile
methods of software construction” [Ap+13b, p. 42]. Such tools should give up the strict
separation between DE and AE in favor of early adoption, quick reactions to customer
feedback, and frequent delivery.

7.1.2 Variability in Time and in Space may Overlap

Traditionally, version control and SPLE have been considered as two independent disci-
plines. The explanations given in Sections 6.3 and 6.4 have shown that the combination of
both disciplines, resulting in an integration of historical and logical versioning, has been
researched to a sparse extent. Here, we motivate by an example that demonstrates that
variability in time and in space may overlap, leading to context switches and to repeated
version/variant management overhead when following the separate-tools approach.

This obstacle is exemplified by conducting a cut-out of the Graph example using an
off-the-shelf tool chain: A state-of-the-art VCS supports the development of the platform
in multiple iterations. First, a feature model is defined; next, an MDSPLE tool relying
on annotative variability based on explicit mapping (cf. Section 6.1.1) is used to annotate
domain model elements with variability information. 1

The platform is defined in the form of a multi-variant domain model (MVDM), whose
elements are committed to the VCS “feature by feature”. In Table 7.1, the version history is
listed. Figure 7.1 shows the final version of the MVDM in class diagram notation. 2

After having defined the variability model and the platform, they need to be connected.
A mapping model for the example product line, realized with the help of the tool FAMILE

Table 7.1: History of the multi-variant domain model for the Graph product line. Based on [SBW15,
Table 1].

Rev. Inserted Elements Commit Message

1 (Feature model) “Initial commit.”
2 Class Graph “Realization of root feature Graph.”
3 Class Vertex, association has vertices “Realization of feature Vertices.”
4 Class Edge, association has edges “Realization of feature Edges.”
5 Property Edge::label “Realization of feature labeled.”
6 Property Edge::weight “Realization of feature weighted.”
7 Association connects “Realization of feature undirected.”
8 Association starts at and ends at “Realization of feature directed.”
9 Class Color, ass. has color “Realization of feature colored.”

10 (Mapping model) “Established mapping.”

1 This subsection is based on a motivating example pre-published in [SBW15, Section 2].
2 Keep in mind that this is a synthetic example; the granularity of commits is artificially fine. Furthermore,
the development of the mapping model might also happen in parallel with the domain model.
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Figure 7.1: Multi-variant domain model, which realizes all features of the Graph product line, as a
superimposed UML class diagram. From [SBW15, Figure 4].

Figure 7.2: Mapping between the multi-variant domain model and the feature model. Based
on [SBW15, Figure 5].

[BS12b], is shown in Figure 7.2. A total of 22 feature annotations are necessary. Last, the
mapping is committed to the repository as revision 10.

Although having successfully applied an off-the-shelf combination of VC and MDSPLE,
several obstacles can be identified. On the one hand, variability in time and variability in
space are managed by means of two different mechanisms, which leads to undesired context
switches between tools belonging to MDSPLE and to VC, respectively. On the other hand,
the user has to repeatedly specify identical version information (i.e., feature expressions) for
the same change. All manually provided mapping information (see Figure 7.2) could have
been inferred, however, based on an analysis of the commit messages. Differently speaking,
the overlap between variability in time and in space could have been exploited.

7.1.3 Annotative MDSPLE Means Constrained Variability

In a code-oriented SPL, annotative variability can be achieved using preprocessor approaches,
where code fragments belonging to the multi-variant source code are mixed with conditional
compilation instructions that control how the variability is resolved (cf. Sections 5.4.2).
When removing the conditional instructions, such multi-variant source code is not necessarily
a syntactically correct program ready to be processed by the compiler. Hence, preprocessors
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1 public class
2 #ifdef LABELED
3 LabeledEdge
4 #else
5 Edge
6 #endif
7 { ... }

Listing 7.1: Unconstrained variability enabled by a hypothetical Java preprocesor.

allow for unconstrained variability. For example, in the class declaration in Listing 7.1, two
mutually exclusive alternative names for the same class are defined in a superimposed way.

In model-driven SPLE, the limitations implied by annotative variability are comparably
severe (see Section 6.1.2). In order to be editable, models need to be syntactically correct,
i.e., conform to their metamodel. The UML metamodel, for instance, mandatorily defines
an upper bound of 1 for the attribute Class::name; therefore, the example introduced in
Listing 7.1 cannot be transferred to a multi-variant UML class model.

Taken together, when transitioning from code-oriented to model-driven SPLE, we are
faced with the obstacle of constrained variability.

7.1.4 Compositional/Transformational MDSPLE Requires a Tool Mix

Tying on the preceding subsection, other potential solutions to remove the obstacle of con-
strained variability in MDSPLE are compositional (cf. Sections 5.4.3) and transformational
variability (5.4.4), where variation points are described by means of, e.g., composition
languages or (model) transformation specifications. These in turn complicate MDSPLE
by introducing new concepts and tools which, on the one hand, have to be apprehended
and understood by SPL engineers, and on the other hand, require to manage artifacts of
different heterogeneous types (e.g., diagram-like models and text-like transformations/deltas,
respectively).

To illustrate this obstacle, the language DeltaEcore [SSA14b] (cf. Section 6.1.2) is used
here. Returning to the above example, one might model the base variant (unlabeled graph)
as an ordinary UML class with name Edge. In order to describe a conditional renaming to
DirectedEdge in case feature Directed is selected, three steps are required:

1. Define a domain-specific delta dialect including the operation renameClass.

2. Use the delta dialect for the definition of the delta that applies the defined operation
to the class Edge to the base version of the model. This is shown in Listing 7.2.

3. Connect the delta to the feature Directed by a corresponding delta module mapping in
the hyper feature model.

The example demonstrates that the definition of the delta does not only require additional
model management effort (step 3) but also to deviate from the preferred modeling language
(UML class diagrams) in order to make models variability-aware (step 2). Furthermore,
conceptual additions to the modeling language may be required (step 1, which can be reused
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1 delta "DirectedEdge"
2 dialect <http://example/UML/rename>
3 requires <../model/base/Graph.ecore>
4 {
5 renameClass(<Edge>, "DirectedEdge");
6 }

Listing 7.2: Definition of a delta for renaming a UML class using DeltaEcore.

for multiple deltas instantiating similar operations). Assuming that developers want to
stick to their familiar formalisms, approaches based on compositional or transformational
variability may put a considerable obstacle in their way by new languages and tools that
must be learned and applied.

Notice that similar obstacles are also implied by approaches relying on annotative vari-
ability. For instance, the formalisms of mapping models or templates (cf. Section 6.1.1)
require context switches, yet to a smaller extent.

7.1.5 Multi-Variant Editing Increases Cognitive Complexity

The presence of variability demands additional cognitive capacities from the user having
to make multi-variant design decisions. Provided that even in single-system development,
architectural modeling is difficult due to the sheer size of diagrams, variability annotations
scattered composition rules potentially increase confusion.

An example of a quite complex multi-variant design is given in Figure 7.3. The UML
package diagram describes the architecture of MOD2-SCM, a model-driven software product
line of software configuration management systems which in total consists of 147 features.
The underlying architecture was created with the results of a preceding feature-oriented
domain analysis in mind.

Let us assume that after a certain period of time, the scope of the product line shall
be extended by a new feature whose realization is supposed to interact with few existing
features. First, the feature is added to the feature model. Second, in order to incorporate this
change into the package diagram, it is first necessary to understand the existing design as
well as those parts of the architecture that refer to features that interact with the new feature.
Third, having realized the change by corresponding modifications of the package diagram, it
needs to be connected to the newly introduced feature by assigning corresponding presence
conditions and by modifying the presence conditions of interacting domain model elements.

While performing such a change, a large part of the existing architecture is irrelevant,
since it refers to features that shall not be addressed by the considered change request.
Nevertheless, these elements and their assigned presence conditions may considerably
distract the user. A potential solution to this obstacle would be temporarily fading out
the irrelevant model elements. This, however, implies new challenges, e.g., the irrelevant
elements must be identified based upon a description of the scope of the change.
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6. Die MOD2-SKM Produktlinie

Abbildung 6.14.: Pakete des MOD2-SKM Domänenmodells

158

Figure 7.3: Multi-variant architecture of MOD2-SCM as UML package diagram. Presence condi-
tions are represented as UML comments with a white background color. From [BDW12,
Figure 10].
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Figure 7.4: Corrective change retrospectively applied to a derived product. Affected elements are
marked with a green box. Based on [SBW15, Figure 7].

7.1.6 Corrective Changes Cause Duplicate Maintenance

Let us come back to the adaptation of the Graph product line presented in Section 7.1.2,
assuming that several products conforming to different feature configurations have already
been derived. It turns out that the user of a derived product, a weighted, directed, and
uncolored graph, suffers from a problem related to dangling edges that have no source or
target vertex. Obviously, this problem is due to the too liberally chosen multiplicities [0..1]
of the references source and target.

Apparently, the bug is not confined to the specific product variant where it has been
reported in, but it affects related variants that include the feature Directed. Therefore, a
corrective change must be applied to the total product line. A local bugfix performed in the
affected variant is shown in Figure 7.4. When following a traditional distinction between
domain and application engineering, there are two possible modes of procedure for making
the bugfix effective both locally and globally:

– Apply the bugfix in the multi-variant domain model, i.e., as a part of the activity domain
engineering. Then, the product must be derived anew, and all custom modifications made
during previous application engineering activities get lost.

– Apply the bugfix twice: First in the affected product variant and then in the multi-variant
domain. Then, check whether other product variants are affected and propagate the bugfix
accordingly.

Both modes of procedure require duplicate maintenance, such that either the same bugfix
must be applied at least twice, or product-specific adaptations must be repeated. This
problem is due to the fact that after a product has been derived, its connection to the platform
of the product line gets lost.

When referring to this concrete example, a desirable solution to remove this obstacle
would be a possibility to fix the bug directly in the product, before propagating it back to the
platform in a tool-supported and preferably automated way.

7.1.7 Orthogonal Versioning Fosters Destructive Updates

In Section 6.4.3, the concept of orthogonal versioning has been introduced as a potential
solution to integrated historical and logical versioning. As hinted in Figure 2.1, specific



7.1 Obstacles to the Application of MDSE+SPLE+VC 131

versions of objects may be considered as one point in a three-dimensional cube spanned
by the object identifiers, revisions, and variants defined. Therefore, we may consider the
identification of an object version as a mathematical function with three parameters:

obj : OID × REV ×VAR 7→ OBJ (7.1)

where OID refers to the set of object identifiers, REV to the set of available revisions,
and VAR to the (intensionally or extensionally defined) set of product variants. Since an
object version does not exist for every possible combination of object identifier, revision,
and variant, the function is partial.

As a main problem of orthogonal versioning, it was stated that the historical evolution of
the variability model is ignored. When versioning an SPL, however, the evolution of the
variability model should be allowed. By introducing or deleting, e.g., features in a feature
model, the elements of the variant space become time-dependent. To this end, the variant
space VAR must be defined as a partial function with at least two parameters, the set of
variant identifiers VARID and the revision set REV , the latter of which also controls the
evolution of the product space.

var : VARID × REV 7→ VAR (7.2)

Not representing the variant space as a time-dependent artifact can foster destructive
updates, which may refer to the variant space or to the mapping between product and
variant space. When considering the mapping in terms of presence conditions attached
to fine-grained items of objects, orthogonal versioning allows for only one revision of a
presence condition per item.

Such destructive updates may also lead to an inconsistent mapping between problem and
solution space. For example, a fine-grained element e carries a presence condition f1 in
revision r1. In revision r2, a new feature f2 is introduced to the variability model, and the
visibility of e is updated to f1 ∧ f2. When restoring the old state r1, the visibility refers to a
non-existing feature.

Notice that such problems do not only appear when using an explicitly orthogonal
integrated historical/logical versioning solution, but also when decoupling revision and
variant control in off-the-shelf approaches, e.g., when putting only the platform but not the
variability model (and/or the mapping in between) under revision control.

A remedy to destructive updates was presented in Section 6.4.4. In hybrid IHLV, the
variability model is treated as a first-class artifact with respect to the historical dimension,
i.e., its evolution is controlled in the same way as the platform’s.

7.1.8 Collaborative MDSPLE is Limited by a Lack of Tool Support

The list of obstacles and challenges is concluded with a rather technical shortcoming that
can be identified based on the literature reviews given in Chapter 6. For short, there exists no
tool that satisfies the specific requirements of collaborative (model-driven) software product
line engineering. These include:

– Distributed development of the product line – including the platform and the variability
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model – by orchestrating different developers that should be allowed to perform modifica-
tions in isolation, before they are combined and integrated into the platform.

– Three-way merging specific to product lines is mandatory when expecting that optimistic
versioning should be supported. To date, no three-way merging algorithm or tool exists that
explicitly considers multi-variant models.

– Different collaboration partitioning strategies should be feasible for coordinating developers.
The area of responsibility of different developers might be defined by product components,
by features, by combinations thereof, or in another arbitrarily shaped form.

– Low data traffic should be caused by synchronizing changes in order to reduce both run-time
and memory consumption.

Such a collaborative (MD)SPL version control system has not been developed to date.
This obstacle is mostly considered as a technical one, but it also adds several new conceptual
challenges connected to requirement R18 (collaborative SPLE) to the list.

7.2 Design Choices

After having surveyed the obstacles that existing approaches towards combined MDSE/SP-
LE/VC are faced with, we now transition to the exploration of the design choices of the
conceptual framework to be developed in Part IV. Some of the design choices listed below
may also be considered as refinements of requirements towards an integrated conceptual
framework and tool established in Section 2.3.

C1. Repository Architecture. Section 6.4 of the previous chapter has been dedicated to
different candidate architectures upon which integrated historical and logical versioning
might be realized. The asymmetric architecture suffers from the drawback that variability in
time and in space are managed in a non-uniform way, leading to an undesired heterogeneity
(see Section 7.1.2). Conversely, orthogonal versioning does not consider the fact that the
variability model itself is subject to evolution; this fosters destructive updates (Section 7.1.7).
A third alternative is represented by the hybrid architecture, which seemingly complicates the
management of particularly the middle layer—here, the feature model. Though, the hybrid
approach combines the advantages of the asymmetric and of the orthogonal architecture
by handling the historical and logical dimension, as well as the logical and the product
dimension uniformly.

C2. Symmetric vs. Directed Deltas. Every version control system – regardless of whether
being line-oriented or model-based, and of whether addressing historical or logical version-
ing – needs multi-version storage. In Section 4.3.1, different forms of delta storage have
been investigated. Snapshots, as an unoptimized technique, rely on full storage of every
version of an artifact. Since this is not feasible for intensional versioning, where the number
of versions may rapidly explode, this option is not considered as a design choice here.

The two remaining options, symmetric and directed deltas, correspond to the principles
of annotative and transformational variability in SPLE, respectively, as we have learned in
Section 6.4.1. Both come into question for the design of the conceptual framework.
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C3. Log-Based vs. Comparison-Based Differentiation. According to Section 4.3.2,
comparison-based approaches are preferred over log-based approaches for the calculation
of differences between versions in line-oriented VCS. This is due to the high precision and
low internal complexity of sequence comparison algorithms.

Many model-driven product line management tools or version control systems, in contrast,
rely on an operation-based (a specialization of log-based) paradigm, where changes carried
out by developers are recorded, resulting in a precise edit log. This requires tight tool
integration, which noticeably limits the choice of usable editing tools.

Generally, the choice between log-based and comparison-based versioning is also a choice
between difficult technical integration and reduced precision of difference calculation.

C4. Degree of Filtering. Filtered editing has already been motivated in the introduction
of this thesis, but it has turned out that few SPLE approaches follow this principle. We
distinguish between fully filtered (one product variant is modified), partly filtered (a partial
feature configuration leaves some variation points unbound), and unfiltered editing (the
whole product line is edited). Which amount of filtered editing is supposed to be provided
by the developed conceptual framework and tool?

In Section 2.3.2, specific requirements for the variant dimension of the to be developed
conceptual framework have been listed. Obviously, R7 (management of variability annota-
tions) and R8 (views on product variants) cannot be completely satisfied at a time. On the
one hand, fully filtered editing would hide variability annotations, disallowing their direct
manipulation. On the other hand, unfiltered editing permits arbitrary editing of annotations,
but does not offer the complexity reduction gained by filtering.

C5. Hidden vs. Explicit Variation Points. The different members of a software product
line are distinguished by valuation of their features, whose presence or absence is typically
modeled in the form of variation points. These can be expressed in different ways depending
on the employed programming/modeling language—for instance, through inheritance.

Giving the user the possibility to define and maintain variation points explicitly on the
one hand facilitates conscious architectural decisions, but on the other hand also increases
the cognitive complexity; see Sections 7.1.4 and 7.1.5. An alternative would consist in
hiding variation points and having the user edit particular variants, where variation points
are created spontaneously on demand.

C6. Internal Product Representation: Intrinsic or Extrinsic? The comparison provided
in Section 6.4.1 revealed that the concepts repository and platform are mutually corre-
sponding in VC and SPLE. We use the term repository also when referring to an integrated
solution for historical and logical versioning. Particularly considering the requirements for
model version and variation control, it remains to be decided how its contents are internally
represented.

Unfiltered approaches to annotative MDSPLE rely on an intrinsic representation: A
multi-variant domain model (MVDM) is managed as an ordinary instance of the domain
metamodel. As argued in Section 7.1.3, this involves the drawback of constrained variability.
Technically, this obstacle is due to the assumption that multi-variant domain models have
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an intrinsic representation, i.e., they are persisted as an ordinary instance of the domain
metamodel [WC09].

Extrinsic product representation relies on “a meta-level mechanism universally applied
to any kind of model” [WC09]; this allows to circumvent variability constraints, but also
destroys the compatibility of the MVDM with standard model editing tools.

C7. Transactional vs. View-Based Filtered Editing. Requirement R8 states that views
on single-version products shall be supported by the framework, which naturally involves
filtered editing. Concerning the nature of the filter, in the literature, two different forms have
been described, which we here refer to as transactional or view-based filtered editing.

In the transactional approach, there are well-defined iterations during which the filter and
therefore the modifiable product version remain equal. Transactions may be opened and
closed, e.g., using the VCS metaphors check-out and commit. In contrast, the view-based
approach considers the filter as temporary, which is, on the one hand, more flexible, but, on
the other hand, reduces the awareness of subsequent evolution steps and is therefore hard to
reconcile with historical versioning.

C8. Pessimistic vs. Optimistic Synchronization. Every version control system must
choose between a pessimistic or optimistic synchronization strategy (cf. Section 4.4), pro-
vided that collaborative editing is supported. Pessimistic strategies rely on temporary locks
of resources, whereas optimistic versioning denotes the application of three-way merging.

C9. Centralized vs. Distributed Version Control. The pros and cons of distributed over
centralized versioning strategies have been discussed in Section 4.5. As stated in Chapter 6,
the distributed approach has been thoroughly researched neither for product line version
control nor for MVC.

C10. Intensional on Top of Extensional Versioning, or Vice Versa? According to R2
and R6, the conceptual framework is supposed to support both extensional and intensional
version specification, using revision graphs and feature models as user-visible abstractions.

In [WMC01], two fundamental approaches towards the combination of both types of
version specification have been discussed. On the one hand, intensional versioning may be
implemented on top of extensional versioning, such that a selection in the feature model
would be broken down to the selection of one element in an enumerated set of variants. This
is easy to realize but artificially restricts the number of available product configurations.
Conversely, realizing extensional on top of intensional versioning potentially complicates
historical version control in favor of an on-demand construction of versions described by a
predicate (such as a feature configuration).

C11. Texts as Models, or Models as Text? Realistic model-driven projects, regardless of
whether or not being pursued in a multi-variant context, do not consist exclusively of model
resources (which can be instances of different metamodels) but also of a multitude of text
files—generated source code, configuration files, or documentation.
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As explained in Section 6.2, some approaches to model versioning rely on a textual
mapping of the information encoded in model instances, thus, they follow a models as text
approach. Albeit, the inverse principle, text as models is also conceivable: a text may be
represented as model instance either by taking its internal structure into consideration (e.g.,
representing the abstract syntax tree as model) or by a language-agnostic, line-oriented
representation.

C12. Product Well-Formedness Analysis Approach. In Section 5.5.2, different ap-
proaches to the analysis of the well-formedness of all products derivable from the product
line have been explained. Requirement R12 motivates that one of the available methods
should be applied also in the developed conceptual framework.

Product-based consistency checking may guarantee the well-formedness of only one
particular product, but is easy to realize and computationally feasible. In contrast, the
family-based approach checks for global consistency, but is inherently complex both from
a computational point of view and for the end user, who must understand the results of
consistency analysis conducted in a multi-variant context. With sample-based and feature-
based analysis, two viable compromises have been presented.

7.3 Design Decisions

By selecting one alternative for each design choice, a list of justified design decisions is now
derived. This list is taken into consideration while developing both the conceptual framework
(see Part IV) and the tool SuperMod (see Chapter 14) in the face of the requirements listed
in Section 2.3.

Some of the decisions made here cause more or less severe limitations with respect to the
usability of the here contributed approach and tool. A retrospective discussion is, to this
end, provided in Section 16.2.

D1. Hybrid Repository Architecture. From the three conceivable repository architectures,
the hybrid model has been chosen. It combines the advantages of the asymmetric approach –
the evolution of the variability model is supported – and of the orthogonal approach—logical
and historical versioning is supplied uniformly. The increased architectural complexity is
not passed to the user since a fixed version selection order is defined: first in the revision
graph and then in the (selected version of the) feature model.

D2. Symmetric Deltas. This internal design decision has been resolved by selecting
symmetric deltas. They may handle cross-references between versioned elements, which
frequently occur in model-based products, in a more convenient way. This decision also
determines that, behind the curtains, annotative variability is applied to the SPL.

D3. Comparison-Based Differentiation. Relying on logs would restrict the set of tools
available for modification of the product line contents considerably; therefore, despite
being technically more challenging, a comparison-based model differentiation approach
is employed. For models, the comparison strategy relies on universally unique identifiers
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(UUIDs) wherever applicable. Sequence-oriented contents such as text files are differentiated
with the support of sequence comparison algorithms.

D4. Fully Filtered Editing. Due to the complexity passed to the user, unfiltered editing
is not feasible, particularly with historical versioning in mind. Partially filtered editing
would leave the choice of product complexity up to the user, who must still deal with a
subset of conditionally visible content in the workspace. When considering the specific
requirements of multi-variant modeling, however, a standardized generic representation of
presence conditions, which would be kept in the workspace, does not exist [SBW16b]. To
keep the approach working with existing single-version editing tools, the only feasible choice
is fully filtered editing. Conversely, it is this decision that effectively enables product-based
product line development.

D5. Hidden Variation Points. As a consequence of D4, the workspace does, on the one
hand, not contain any version metadata (i.e., presence conditions). On the other hand, all
variation points must be resolved while defining the filter. Altogether, this completely hides
variation points in favor of spontaneous single-version architectural decisions.

D6.1. Extrinsic Product Representation in the Repository. Constrained variability,
caused by metamodel restrictions, limits the means of expression for the definition of
variation points and forces developers to coarsen the object granularity in the product space.
In the conceptual framework, metamodel restrictions should be enforced for single-version
models available in the workspace. To this end, unconstrained variability is enabled by an
extrinsic representation, which is managed transparently in the repository.

As a consequence of this decision, multi-version metamodels for all versioned artifacts,
including the feature model, EMF models, and text files, remain to be developed.

D6.2. Intrinsic Product Representation in the Workspace. To keep the selected prod-
uct version compatible with arbitrary single-version editing tools, the ordinary intrinsic
representation is used for models presented in the workspace.

To convert between the intrinsic and extrinsic representation, suitable transformations
remain to be defined individually for each specific product dimension and content type.
These transformation also raise the problem of well-formedness violations (D12).

D7. Transactional Filtered Editing. With check-out and commit, version control provides
two meaningful metaphors for the enclosing of a transaction, which, when transferred to
filtered editing of product lines, may be understood as a session in which several modi-
fications are applied to a single-version product under the same scope. The decision for
a transactional approach offers side benefits such as the possibility to cancel transactions
(REVERT) or to retrospectively revise the scope of a change (AMEND).

D8. Optimistic Synchronization. The framework and tool support optimistic synchro-
nization in the case of concurrent modifications. For this purpose, three-way merge support
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for model-driven software product lines must be provided. This strategy should, however,
not destroy existing design decisions such as fully filtered editing (cf. D4).

Therefore, the here contributed three-way merge approach relies on a twofold three-way
merging strategy: First, context-free merging is applied as soon as concurrent modifications
have been detected upon commit. Later on, context-sensitive merging is applied only
partially in the variant selected at check-out. This way, the developer can stay in the single-
variant tool without having to switch to a three-way multi-version context, which would
introduce additional cognitive complexity to the three-way merge problem, which is difficult
enough in single-variant contexts.

D9. Distributed Version Control. SuperMod shall fill the gap caused by a lack of dis-
tributed version control systems for models and for software product lines, respectively.
Correspondingly, the underlying conceptual framework should be aware of the fact that
multiple clones of the same repository have to be coordinated (cf. Section 4.5).

To this end, redefined synchronization operations PULL and PUSH, known from the VCS
Git [Cha09], are added to the existing generalized operations CHECKOUT and COMMIT.
This distinction also introduces a two-level organization within the revision graph.

D10. Extensional on Top of Intensional Versioning. Being the more flexible version def-
inition principle, intensional versioning is chosen as base mechanism for version definition.
Extensional versioning can be realized on top by mapping every enumerated version (i.e.,
each historical revision) to a configuration option and by ensuring through dedicated version
constraints that exactly one configuration option is selected [WMC01].

D11. Texts as Models. With a similar reasoning, representing the lines of a text file as an
ordered collection of objects contained in a model offers a greater amount of flexibility and
extensibility than attempting to break down the information encoded by models into lines of
a text file. Therefore, in the extrinsic product representation used in the repository internally,
texts are represented as models. By default, a language-agnostic line-oriented representation
is assumed.

D12. Product-Based Well-Formedness Analysis. The conceptual framework essentially
offers product-based product line development, having the user exclusively edit single-
version products. Therefore, it would be inadequate to switch to a multi-version context
for syntactical well-formedness analysis. The here employed analysis strategy ties on the
filtered editing model’s property that products are edited representatively for a broader set
of variants. The same property holds for analysis—product repair actions are not confined
to the variant available in the workspace, but affects related variants indirectly. In this way,
the effects of sample-based validation are achieved by filtered product-based analysis.

7.4 Further Design Principles

The following items of discussion have their origins not in the weighing of possible design
alternatives provided in Section 7.2, but they are derived from observations of non-functional
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properties or process-related issues. Nonetheless, they constitute conscious design decisions
and therefore they are explicitly listed and justified in the following.

D13. Iterative Editing Model. Agile development assumes that software is developed
using multiple types of iterations lying on different levels of granularity.

The iterations defined in agile processes are – seen from the perspective of developers
– rather coarse-grained. For example, the daily increments and monthly sprints of Scrum
[BS02] are organized by product backlog and sprint backlog, respectively.

Version control systems also foster an iterative style of development. Albeit, the iterations
are comparably smaller and frequently associated with only a few lines of code or few model
elements. The advantages of short-running and fine-grained commits include better change
comprehension and easier orchestration of multiple developers.

The framework and tool should support both coarse-grained and fine-grained iterations.

D14. Incremental Editing Model. The provided editing model should be capable of
describing the history of a versioned (MD)SPL as a sequence of increments, which can be
mandatory or optional. The relationship between iterations and increments is flexible, i.e.,
an increment may be created by multiple fine-grained iterations; likewise, many increments
may also form a coarse-grained iteration.

We here take a rather general notion of increments, which may refer to single features,
feature combinations, or to all variants. Moreover, they may be corrective – bug-fixes
or design refactorings affecting a limited scope of the SPL –, evolutionary – providing
new functionality related to new or existing features –, or variational—introducing a new
variation point and possibly subordinate variants.

D15. The Uniform Version Model as Theoretical Foundation. Taking into consideration
the argument that variability in time and in space may overlap, which is also reflected
by requirement R14, the framework should provide a uniform mechanism to support both
evolution and logical variability.

In Section 6.4, several candidate formalisms were discussed, of which UVM is here
chosen as an underlying formalism for the contributed conceptual framework and tool.
Through the concepts of choice and ambition, as well as through a generalized COMMIT

operation, UVM provides a universal and instrumentable theoretical foundation, relying on
building blocks as simple as set theory and propositional logic. Filtered editing is natively
supported by UVM.

D16. Propagation of Application-Level Changes. In Section 7.1.6, we have been faced
with an example where duplicate maintenance was required due to a bug identified in
a derived product. A propagation mechanism has been motivated to transfer changes
performed in the context of application engineering back to domain engineering artifacts.

Not only does the here contributed conceptual framework support this type of propagation,
but it even advances it to the central development principle. Changes are generally performed
in a single-variant view and transparently propagated back into the repository.
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D17. Implicitly Versioned Presence Conditions. Considering the relationships between
the evolution, the variability, and the product dimension as reflected by the hybrid architec-
ture, elements may carry different logical visibilities in different historical versions.

Here, presence conditions referring to the variability model are implicitly versioned by
propositional logical conjunction with a historical component. Since visibilities are only
extended, but never reduced, the immutability of presence conditions is achieved in order to
allow for long-term availability of previous states of them.

D18. Hierarchical Product Space Organization. By using a fine-grained, hierarchically
organized product space model, the presented framework intentionally merges the notions
of fragment, element, and element version, which is in contrast to many related approaches,
for instance, UVM [WMC01].

In UVM, it is assumed that the product space is made up of elements (also: items),
which carry an identifier and for which an arbitrary number of versions can be defined. The
correspondence between element identifiers, element versions, and corresponding visibilities
is organized by the concept of fragments (see Section 8.4.1). The visibilities of different
element versions are disjoint, such that it is ensured that the workspace always contains at
most one version of an element.

When using the concept of fragments, the question of their object granularity inadvertently
arises. Coarse-grained elements raise the need of explicitly versioning product versions for
each possible combination of options involving a product-level difference; an example for
this is shown in Figure 7.5, where 22 = 4 versions must be maintained for two options. This
way, pseudo conflicts at product level may arise when mutually exclusive product fragments
represent independent changes. Conversely, fine-grained elements demand for top-level
organization, i.e., hierarchical arrangement.

Although fragments may prevent many product-level conflicts a-priori by disallowing
the combination of mutually exclusive element versions, they are omitted in the conceptual
framework in favor of an infinitely fine-grained hierarchical product space model. Thus, the

(b) fragment-based organization(a) hierarchical organization

123 123

123 123

ba  ba 

ba ba 

contents

id
visibility

fragment

a a b b

element

parent/
child
relation

visibility

Figure 7.5: Hierarchical vs. fragment-level product space organization.
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product space essentially consists of a tree of versioned items, each carrying an individual
visibility. Mutually exclusive elements are detected in the form of product well-formedness
constraint violations (see design decision D12).

D19. Support for Heterogeneous Interconnected Artifacts. In previous work, namely
the MDSPLE tool FAMILE [BS12b] and the three-way merge tool BTMerge [SUW13b],
many technical problems have emerged due to a too idealistic assumption about model-driven
projects. These tools essentially treated models as self-contained EMF-compliant artifacts.
Though, experiences have shown the importance of considering, on the one hand, models
as interconnected entities (i.e., resource sets) that must be managed by a superordinate
mechanism, and on the other hand, model-driven projects as a set of heterogeneous artifacts
including non-model resources such as generated source code, configuration files, et cetera.
In FAMILE, heterogeneous support was added by a retroactive extension [BS15a]. To date,
BTMerge still suffers the mentioned restrictions.

SuperMod should build upon these experiences and provide support for heterogeneous
(i.e., EMF-based and non-model) as well as interconnected (i.e., cross-references between
models) artifacts right from the beginning.

7.5 Conclusion

The key research result provided by the thesis at hand is a conceptual framework that
integrates MDSE, SPLE, and VC. The design of such a framework is not trivial as no
previous attempt for such an integrated solution has been described in the literature. The
design decisions made in this chapter rely on a careful interpretation of a literature review
regarding the integrating disciplines MDSPLE, MVC, and SPLVC, as well as a comparison
of existing approaches to integrated historical and logical versioning. Furthermore, a
collection of obstacles affecting state-of-the-art solutions have been taken into account.

The central design decision concerns the architecture of the repository, where the feature
model provides both a version and a product dimension. Several decisions are subordinate
to the VC domain: symmetric deltas, comparison-based differentiation, optimistic synchro-
nization, and distributed version control. Design choices in the SPL domain have been
resolved with the principles of filtered editing in mind: product-based product development
and analysis, hidden variation points, and transactional editing. The integration of historical
and logical versioning is achieved by considering extensional as a special case of intensional
versioning. In the product space, an extrinsic product model, which allows for unconstrained
variability in the repository, is employed. Herein, texts are treated as model instances.

All design decisions made here are formalized and refined throughout the description
of the conceptual framework in Chapters 9 until 13 of Part IV. In advance, the subsequent
chapter introduces the prerequisite mathematical formalisms.
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Chapter 8

Formal Foundations

Abstract

The conceptual framework presented in this thesis builds upon two simple mathematical
formalisms, namely set theory and propositional logic. In previous work, these formalisms
have been combined and extended in a way that they suit the specific requirements of
historical and logical version management. Also, multi-version representations for generic
data structures – sets, sequences, and graphs – are introduced. Furthermore, propositional
logic is extended to three values in order to deal with incomplete information as well as with
satisfiability problems. The chapter is concluded by an explanation of the Uniform Version
Model (UVM), the conceptual predecessor of the henceforth developed framework.
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8.1 Sets, Sequences, and Digraphs

Although being an integral part of common knowledge of computer science, sets, sequences,
and directed graphs are formally defined, since subsequently provided definitions, in partic-
ular Section 8.2, build on top of the notational and semantical details provided here.

8.1.1 Sets

A set S is an unordered collection of elements ei, where multiple occurrences of the same
element are forbidden (uniqueness).

S = {e1, . . . , en}, ∀i, j ∈ {1, . . . , n} : (i 6= j)⇒ (ei 6= ej) (8.1)

The cardinality |S| of a set S denotes the number of elements it contains. The empty
set ∅ = {} has a cardinality of 0. Furthermore, the operations union, intersection, and
difference are defined.

S1 ∪ S2 = {e | (e ∈ S1) ∨ (e ∈ S2)} (8.2)

S1 ∩ S2 = {e | (e ∈ S1) ∧ (e ∈ S2)} (8.3)

S1 \ S2 = {e | (e ∈ S1) ∧ ¬(e ∈ S2)} (8.4)

Furthermore, we define the subset relationship between two sets as follows:

S1 ⊆ S2 ⇔ (∀e ∈ S1 : e ∈ S2) (8.5)

Next, the Cartesian product S1×S2 of two sets is a set of tuples associating each element
of the first set with each element of the second set.

S1 × S2 = {(e1, e2)|e1 ∈ S1, e2 ∈ S2} (8.6)

The power set P(S) of a set contains all possible subsets U of S, including S itself as
well as the empty set ∅.

P(S) = {U |U ⊆ S} (8.7)

Last, a partition π of a set S is a set of disjoint sets S1, . . . , Sm whose union corresponds
to S. We define a boolean predicate partition that decides whether an arbitrary set of sets
matches this definition:

partition(π : {S1 ⊆ S, . . . , Sm ⊆ S}, S)⇔
(S1 ∪ . . . ∪ Sm = S) ∧

(
∀i, j ∈ {1, . . . ,m} : (i 6= j)⇒ (Si ∩ Sj = ∅)

) (8.8)
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8.1.2 Sequences

A sequence ~S is an ordered collection of elements ei, where multiple occurrences of the
same element are allowed (i.e., uniqueness is not in general required).

~S = [e1, . . . , en], ∀ei ∈ ~S : ei ∈ base(~S) (8.9)

The elements ei occurring in ~S are taken from a base set, base(~S), which in turn contains
all elements of the sequence exactly once. Therefore the length |~S| of a sequence is greater
or equal than the cardinality of its base set: |~S| ≥ |base(~S)|.

In addition to elements of the base set, sequences may contain a generic null element ε at
arbitrary positions (see Section 8.2.2).

To convert sets into sequences, we introduce an operation seq that arranges the elements
contained in the base set in a random order:

seq(S : {e1, . . . , en}) = ~S : [e1, . . . , en], S = base(~S) (8.10)

Furthermore, ~S(i) denotes the element of ~S at position i, where i ∈ {1, . . . , |~S|}. The
inverse operation index(~S, ej) returns a set of indexes denoting the locations where ej
occurs in ~S, or the empty set in case ej /∈ base(~S).

A special kind of sequences is ordered sets, which have the additional property of
uniqueness and which do not contain ε. In this special case, |~S| = |base(~S)|.

8.1.3 Directed Graphs

A directed graph – digraph for short – g is a tuple consisting of a vertex set V and an edge
set E.

g = (V,E), V = {v1, . . . , vn}, E = {e1, . . . , em} ⊆ V × V (8.11)

An instance of an edge is here written as a tuple eij : (vi, vj). By the components of its
tuple, each edge connects one source element of the vertex set to one target element thereof.
Correspondingly, the accessor functions src : E → V and trg : E → V are defined.

The in-degree of a vertex v denotes the number of edges in E having v as target; the
out-degree corresponds to the number of outgoing edges.

A path ~P in a graph g is a sequence of edges taken from the edge set E, where the source
vertex of a contained edge must correspond to the target vertex of the previous edge (if any).

~P = [e1, . . . , ek], base(~P ) ⊆ E, ∀i ∈ {2, . . . , k} : trg
(
~P (i−1)

)
= src

(
~P (i)

)
(8.12)

The boolean predicate path(~P ,E) denotes whether an arbitrary edge sequence ~P with base
set E matches this definition. The source vertex of the first edge and the target vertex of
the last edge in the sequence are referred to as path source and path target, respectively:
psrc : P → V and ptrg : P → V , where P denotes the set of all valid paths over E.

A specific target vertex vi ∈ V is defined to be reachable from a source vertex vj ∈ V if
there exists any path from vi to vj in E. This is denoted by the operator +−→.

v1
+−→ v2 ⇔ ∃~P : path(~P ,E) ∧

(
v1 = psrc(~P )

)
∧
(
v2 = ptrg(~P )

)
(8.13)
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A cycle is a path whose source and target vertex are identical. To this end, a predicate
cycle is introduced:

cycle(~P ,E)⇔ path(~P ,E) ∧
(
psrc(~P ) = ptrg(~P )

)
(8.14)

A graph is cyclic in case there exists a cyclic path over its edge set.

cyclic
(
g : (V,E)

)
⇔ ∃~P : cycle(~P ,E) (8.15)

For several graph-theoretical problems, the transitive closure g+ of a graph is of interest.
This is another graph g+ that contains the same vertex set as g, but its edge setE+ represents
tuples of vertices mutually reachable in E.

g+ = (V,E+), E+ = {(v1, v2) ∈ V × V | v1
+−→ v2} (8.16)

The inverse operation, transitive reduction g−, removes as many redundant edges as
possible without destroying existing reachability relationships. In contrast to closure,
transitive reduction is ambiguous. Rather than fully specifying the operation, we therefore
define a constraint that forbids transitive edges in E−.

g− = (V,E−), ∀(v1, v2) ∈ E− :
(
6 ∃v3 ∈ V : (v1

+−→ v3 ∧ v3
+−→ v2)

)
(8.17)

Thus, if there already exists a path (containing any vertex v3) from the source vertex v1 to
the target vertex v2, the direct edge (v1, v2) would be redundant.

Furthermore, the transitive reduction of g must still represent the same reachability
information, such that:

(g−)+ = g+ (8.18)

The union, intersection, and difference of two graphs g1 : (V1, E2) and g2 : (V2, E2) is
defined by the corresponding connection of vertex and edge sets, respectively:

g1 ∪ g2 = (V1 ∪ V2, E1 ∪ E2) (8.19)

g1 ∩ g2 = (V1 ∩ V2, E1 ∩ E2) (8.20)

g1 \ g2 =
(
V1 \ V2, E1 \ E2 \ ((V1 \ V2)× (V1 \ V2))

)
(8.21)

Next, a topological sort of a graph is an ordered partition – i.e., a sequence of sets of
vertices – ~π, representing a partial order, such that for every edge (vi, vj), the index of the
set containing vi is lower or equal than the index of the set containing vj . Correspondingly,
the predicate topsort is defined for partitions of g whose element sets match this criterion: 1

topsort
(
~π : [V1 ⊆ V, . . . , Vn ⊆ V ], g : (V,E)

)
⇔ partition

(
base(~π), V

)
∧

∀
(
(vi, vj) ∈ E, vi ∈ Vi, vj ∈ Vj

)
: index(~π, Vi) ≤ index(~π, Vj)

(8.22)

Several procedures deal with topological sorting of a graph. One example of an algorithm
that is applicable to potentially cyclics graph is Kosaraju’s Algorithm [SS03].

1 This definition of topsort does not necessarily require an acyclic graph.
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8.1.4 Converting Between Digraphs and Sequences

As shown below, we use graphs for a generalization of sequences, such that different mutual
orders of elements are stored in a superimposed way. Subsequently, we deal with both
directions for the conversion between graphs and sequences, respectively.

First, we define a function chain that converts an arbitrary sequence ~S into a linear
directed graph g, taking the base set of the sequence as vertex set and representing im-
mediate predecessor/successor relationships defined in the sequence order as edges with
corresponding source and target vertex.

chain(~S) = g :
(
base(~S

)
, E~S), E~S = {

(
~S(1), ~S(2)

)
, . . . ,

(
~S(|~S|−1), ~S(|~S|)

)
} (8.23)

Second, the opposite direction, graphs to sequences, is comparably more complicated,
since the graph may contain ambiguities in the form of mutually unrelated vertices or cycles.
To this end, we specify in Algorithm 8.1 a universalized form of the generalized topological
sort (GTS) algorithm presented in [SUW15], which was developed in the context of three-
way model merging. The procedure linearizes the graph by first applying a topological sort
and by thereafter traversing the individual components with a depth-first search, starting

function LINEARIZE(g : (V,E))
~S = []
~π : [V1 : {v11

, . . . , v1m1
}, . . . , Vn : {vn1

, . . . , vnmn
}]← topological sort of g

for all Vi : [vi1 , . . . , vimi
] ∈ ~π do

while |Vi| > 0 do
if |Vi| = 1 then

vi ← sole element of Vi
Append vi to S
Remove vi from V and all adjacent edges from E

else
~δi : [Vi1 , . . . , Vip ]← partition Vi by in-degree in ascending order
Vmin ← ~δi(1)
vdfs ← ε
if |Vmin| = 1 then

vdfs ← sole element of Vmin

else
vdfs ← select next element from Vmin

while vdfs 6= ε do
Append vdfs to S
Remove vdfs from V and all adjacent edges from E
Remove vdfs from Vi
if vdfs has exactly one successor vsucc ∈ Vi then

vdfs ← vsucc
else

vdfs ← ε

return ~S

Algorithm 8.1: Linearization of a digraph into a sequence.
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K T N

M P

J

F X

S

Figure 8.1: Example input for graph linearization algorithm. Modified from [SUW15, Section 4.4.1]

from vertices having the lowest in-degree. In the case of ambiguities, a non-deterministic2

resolution strategy, e.g., user input, is utilized.

Example. Figure 8.1 depicts an example digraph to be linearized. The result of the first
decisive step – topological sorting – is represented by dashed rectangles, which are assumed
to be ordered from left to right. We proceed component-wise.

1. In the first component, K is selected as the sole element.

2. The second component contains two vertices with equivalent in-degree (0, after
having removed the edges ensuing from K in the previous component). The non-
deterministic strategy arbitrarily selects M as next vertex. The depth-first search fails
(since M has no direct successor in the same component), but the next iteration of
in-degree partitioning returns T as sole vertex.

3. Next, N is selected deterministically. The intermediate result is ~S = [K,M, T,N ];
furthermore, edges (N, J) and (N,P ) are removed.

4. Sorting the next component by in-degree results in ~δ4 = [{J, P}, {F}]. From {J, P},
the vertex J is chosen non-deterministically as starting point for the depth-first search.
The search identifies P and F as next vertices, respectively.

5. All edges targeting S and X have been removed, such that their in-degree is equal.
We select S non-deterministically, such that X is inserted last. g now represents an
empty graph; the overall result is ~S = [K,M, T,N, J, P, F, S,X].

8.2 Multi-Version Sets, Sequences, and Digraphs

Above, single-version representations for sets, sequences and digraphs have been introduced.
The here considered framework internally relies on a superimposition of multiple versions
of the same data structures. To this end, we here introduce corresponding intrinsic multi-
version representations. The explanations given below build on [Wes14, Definitions 5 and
6], where extensional versioning is assumed, such that the version space is defined as an
enumeration of version identifiers3:

V ER = {ver1, . . . , verm} (8.24)

2 In the algorithmic descriptions provided in throughout the thesis, non-determinism that potentially involves
user interaction is indicated by underlined statements.
3 For consistency with other definitions provided here, some symbols and identifiers have been renamed.
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For the sake of simplicity, we here stick to the extensional representation; Section 8.2.4
discusses how the subsequently introduced multi-version structures can be made compatible
with intensional versioning (cf. Section 4.6).

8.2.1 Multi-Version Sets

A multi-version set S∗ is a set to whose elements several version identifiers can be assigned.
It is based on a single-version set S. The connection between elements and version identifiers
is established by a visibility mapping function vis. Therefore, S∗ is a triple:

S∗ =
(
S : {e1, . . . , en}, V ER : {ver1, . . . , verm}, vis : S → P(V ER)

)
(8.25)

In order to decide for an element’s inclusion in a specific version ver ∈ V ER of S∗, the
operator ∈ is redefined with a version-aware semantics:

e ∈ver S∗ ⇔ (e ∈ S) ∧
(
ver ∈ vis(e)

)
, ver ∈ V ER (8.26)

Correspondingly, a filter operator is defined. It converts a multi-version set into a single-
version representation based on a given version identifier:

S∗|ver = {e ∈ S|ver ∈ vis(e)}, ver ∈ V ER (8.27)

The union, intersection, and difference of two multi-version sets is realized by the
corresponding operations on their base sets, their version sets, and the version identifiers
assigned to specific elements, such that:

S∗1 ∪ S∗2 =
(
S1 ∪ S2, V ER1 ∪ V ER2, vis1(e) ∪ vis2(e)

)
(8.28)

S∗1 ∩ S∗2 =
(
S1 ∩ S2, V ER1 ∩ V ER2, vis1(e) ∩ vis2(e)

)
(8.29)

S∗1 \ S∗2 =
(
S1 \ S2, V ER1 \ V ER2, vis1(e) \ vis2(e)

)
(8.30)

In the three equations above, e ∈ S1 ∪ S2.

8.2.2 Multi-Version Sequences

The transition to multi-version sequences ~S∗ is realized in the analogous way.

~S∗ =
(
~S : [e1, . . . , en], V ER : {ver1, . . . , verm}, vis : {1, . . . , n} → P(V ER)

)
(8.31)

Since equal elements can occur in multiple positions, the mapping function assigns version
identifiers to indexes rather than to elements, respectively, such that vis(i) denotes the
visibility of the ith element of ~S, thus ~S(i).

The sequence filter operator maintains the absolute position of elements defined in the
multi-version set. Unselected elements are replaced by null entries ε.

~S∗|ver(i) =

{
~S(i) if ver ∈ vis(i)
ε otherwise

(8.32)
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Multi-version sequences as defined here may, however, not adequately express multi-
version ordered sets, since expressing the fact that the same element occurs at different
relative locations in different versions usually requires that multiple occurrences be allowed.
One solution to this problem is the conversion of the ordered set into a multi-version digraph
as described in [Wes14; SUW15]. The mutual order of elements is defined by edges
representing immediate predecessor/successor relationships. Single versions of the ordered
set may be obtained by selecting and traversing a single version of the graph.

8.2.3 Multi-Version Digraphs

According to [Wes14], a multi-version digraph is a four-tuple:

g∗ =
(
V : {v1, . . . , vn}, E ⊆ V × V,

V ER : {ver1, . . . , verm}, vis : (V ∪ E)→ P(V ER)
) (8.33)

Version identifiers are assigned to both vertices and edges. In order to ensure the referential
integrity of single versions of the graph – i.e., to avoid dangling edges in single-version
selections of the graph – the following constraint must be additionally ensured by the
visibility mapping function vis:

∀eij : (vi, vj) ∈ E : vis(eij) ⊆ vis(vi) ∩ vis(vj) (8.34)

The union, intersection, and difference of two multi-version digraphs is formed in analogy
to multi-version sets; cf. (8.28) until (8.30):

g∗1 ∪ g∗2 =
(
V1 ∪ V2, E1 ∪ E2, V ER1 ∪ V ER2, vis1(ve) ∪ vis2(ve)

)
(8.35)

g∗1 ∩ g∗2 =
(
V1 ∩ V2, E1 ∩ E2, V ER1 ∩ V ER2, vis1(ve) ∩ vis2(ve)

)
(8.36)

g∗1 \ g∗2 =
(
V1 \ V2, E1 \ E2, V ER1 \ V ER2, vis1(ve) \ vis2(ve)

)
(8.37)

In the three equations above, ve ∈ V1 ∪ V2 ∪ E1 ∪ E2.
From a multi-version digraph, a single-version digraph may be selected in a straightfor-

ward way by selecting matching elements of their vertex end edge sets.

g∗|ver = ({v ∈ V |ver ∈ vis(v)}, {e ∈ E|ver ∈ vis(e)}) (8.38)

8.2.4 Intensional Multi-Version Structures

For the reasons of clearness and comprehensibility, we have assumed extensional versioning
so far, having defined the version space as an enumerating set. Through the following
changes, the discussed multi-version structures can be made applicable to intensional
versioning:

– A version – still denoted as ver – is now an arbitrary boolean proposition.

– Redefine V ER by using a boolean predicate cons that defines whether a given version ver
is consistent (cf. (4.2)): V ER = {ver|cons(ver)}. As a consequence, the concept version
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identifier disappears in favor of consistent version, which denotes any allowed user-based
version specification, but is not defined more precisely.

– The combination of two version spaces is realized by combination of their predicates:
V ER1 ∪ V ER2 = {ver|cons1(ver) ∨ cons2(ver)};
V ER1 ∩ V ER2 = {ver|cons1(ver) ∧ cons2(ver)}; and
V ER1 \ V ER2 = {ver|cons1(ver) ∧ ¬cons2(ver)}.

– Redefine the mapping function vis in a way that it does not produce a set of version identi-
fiers, but rather returns a specific visibility vi, which is a boolean-valued function that decides
whether the element ei belongs to the provided version: vi : V ER→ {true, false}.

– Rather than expecting a single version identifier ver as input, the operators ∈ (inclusion)
and | (filter) now expect intensional version specifications, which must be accepted by the
version consistency predicate, such that cons(ver) holds.

– Replace all occurrences of the version inclusion check ver ∈ vis(ei) by vi(ver). Thus,
the specified intensional version ver is applied to the visibility of ei, returning a boolean
decision whether the version is “included in” the visibility.

With the UVM, a concrete adaptation of intensional versioning to multi-version sets is
presented in Section 8.4. Furthermore, multi-version graphs are revisited in Section 10.3
as a solution for applying intensional versioning to multi-version ordered (unique and/or
non-unique) collections.

8.3 Three-Valued Propositional Logic

The here considered framework deals with incomplete information, which stems from
resolving configuration decisions only partly. In particular, in the feature ambition, several
feature options may be left unbound. Propositional logic is usually defined upon boolean
logic, where two values, true and false, are defined. In order to deal with incomplete
information, a third value, representing the state unknown, must be introduced.

8.3.1 Kleene Logic

Several three-valued logics exist in the literature, of which Kleene logic [Fit91] is further
considered here. In Kleene logic, a variable may have one out of three values:

K = {true, false, undefined} (8.39)

Table 8.1 presents a value table for the basic combinations of the base operators not (¬),
and (∧), or (∨). From those, further logical combinations may be derived by applying
propositional axioms, e.g.:

(a⇒ b) ⇔K (¬a ∨ b), a, b ∈ K (8.40)

To formally cope with three-valued Kleene logic, naming conventions and additional
notation-related conversion operations are introduced here.
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a b ¬a a ∧ b a ∨ b

true true false true true
true undefined false undefined true
true false false false true

undefined undefined undefined undefined undefined
undefined false undefined false undefined
false false true false false

Table 8.1: Value table for three-valued Kleene logic and conjunction/disjunction operators. Symmet-
ric cases are omitted.

First of all, a logical expression Ξ may contain propositional logical combinations of
Kleene literals defined in K and variables enumerated in a variable space. With ΞO, we
explicitly state that an expression uses variables from a specific variable space O.

Expressions may be evaluated given a variable binding b, which maps each variable to a
value defined in K:

b : O → K (8.41)

A binding b over a variable space O (explicitly, bO) may be represented as a set of tuples:

bO = {(o1, k1), . . . , (om, km)}, oi ∈ O, ki ∈ K, i ∈ {1, . . . ,m} (8.42)

Furthermore, when using this notation, tuples for undefined variables may be omitted. When
evaluating expressions, the value undefined is implicitly assumed for unbound variables.

Ξ(b), or explicitly, ΞO(bO) denotes the logical evaluation of an expression with respect
to a variable binding under three-valued Kleene logic. All variables referenced in Ξ are
virtually replaced by their value bound in b, before simplifying the expression using the
rules in Table 8.1 until the expression is reduced to a Kleene literal, which represents the
evaluation result.

Tuple-represented variable bindings b may be converted into logical expressions b̂ by
conjunction of positively or negatively bound options.

b̂ = b1 ∧ . . . ∧ bm, bi =


oi if (oi, true) ∈ b
¬oi if (oi, false) ∈ b
true if (oi, undefined) ∈ b
true if (oi, . . .) 6∈ b

, i ∈ {1, . . . ,m} (8.43)

The resulting conjunction refers to bound variables by references to their identity or negation,
respectively. Furthermore, references to undefined variables are eliminated by appending
the neutral element true to the conjunction.

8.3.2 Approximation of Constrained Satisfiability

Obviously, in case a propositional logical expression is evaluated under an option binding
that contains no undefined (or unbound) variables, the evaluation strategy degenerates
to two-valued boolean logic. On the contrary, three-valued logic may also be used as an
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approximation for satisfiability questions formulated in two-valued logic.
By definition, an expression Ξ over the variable set O is satisfiable if and only if there

exists an option binding b whose application to Ξ returns true:(
Ξ is satisfiable over O

)
⇔
(
∃bO : Ξ(bO) = true

)
(8.44)

In general, satisfiability checks are NP-complete and require a high computation effort
[Lee90]. In many cases considered in this thesis, the constrained satisfiability of an ex-
pression Ξ with respect to a binding b is addressed, such that the conjunction Ξ ∧ b̂ must
be satisfiable. We introduce a sufficient but not necessary precondition for constrained
satisfiability, which requires only linear computation time:

Theorem 8.1— Provided that Ξ is a satisfiable boolean expression and b an option binding,
both over O. Then, Ξ(b) = true is a sufficient precondition for the satisfiability of Ξ ∧ b̂.(

Ξ(b) = true
)
⇒
(
Ξ ∧ b̂ is satisfiable over O

)
(8.45)

Proof. Without loss of generality, let us assume that Ξ is represented in conjunctive normal
form: Ξ = ξ1 ∧ . . . ∧ ξi. Let us suppose that Ξ(b) = true, but that Ξ ∧ b̂ is unsatisfiable
over O. Ξ is satisfiable by definition; as a conjunction of options, each occurring at most
once, b̂ is satisfiable, too. The conjunction of two satisfiable expressions can only be
unsatisfiable in the case of contradicting valuations. To this end, there must be a term ξi the
algebraic signs of whose members all contradict with the signs in b̂. Then, however, the
corresponding options in b must also result in a false evaluation of the same term, such that
ξi = false. This would imply Ξ(b) = false, which contradicts with the premise. �

Theorem 8.2— Provided that Ξ is a satisfiable boolean expression and b is an option binding,
both over O. Then, Ξ(b) = false is a sufficient precondition for the unsatisfiability of
Ξ ∧ b̂. (

Ξ(b) = false
)
⇒
(
Ξ ∧ b̂ is unsatisfiable over O

)
(8.46)

Proof. Ξ be represented in conjunctive normal form: Ξ = ξ1 ∧ . . . ∧ ξi. Since Ξ is
satisfiable but Ξ(b) = false, there must be at least one conjunctive term ξi the signs of
whose members all contradict with b. As a consequence, b̂⇒ ¬ξi. Given that Ξ contains ξi
and b̂ contains ¬ξi, the conjunction Ξ ∧ b̂ is a contradiction and therefore unsatisfiable. �

Being allowed to use these sufficient but not necessary preconditions for constrained
satisfiability has the following practical consequences:

– If Ξ(b) = false, then we may conclude that Ξ∧ b̂ is unsatisfiable. Correspondingly, Ξ(b) =
true safely indicates constrained satisfiability. In these cases, significant computation effort
is saved.

– If Ξ(b) = undefined , then we cannot make any safe conclusion. We have to solve the
NP-complete satisfiability problem for Ξ ∧ b̂.

– Ξ({}) 6= false is a sufficient precondition for the satisfiability of Ξ. 4

4 This way, however, not even trivial contradictions, e.g., o1 ∧ ¬o1, may be detected.
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– The more variables are bound to a defined value in b, the better the approximation of
satisfiability will be. On the contrary, a high degree of uncertainty included in b leads to
frequent NP-complete satisfiability checks.

8.4 The Uniform Version Model

The Uniform Version Model (UVM) was repeatedly mentioned above; an informal ex-
planation was provided in Section 6.4.4 with a focus on hybrid integration of logical
and historical versioning. Now, the theoretical formalisms of UVM are supplied in their
originally published form [WMC01], where the description is based on set theory and
three-valued propositional logic. After recapitulating the definition of the general UVM
concepts, we present the editing model that instantiates the concepts in order to provide an
“instrumentable version engine” [WMC01]. After a short example demonstrating both the
concepts and the editing model, an outlook motivates modifications to UVM that have been
added to the new conceptual framework provided in Part IV.

When compared to the original literature, we use different symbols and deviating notations
throughout the section, with the goal to keep the description in line with definitions provided
both above and in the subsequent chapters.

8.4.1 General Concept Definitions

Although extensional adaptations have been proposed, among others in [WMC01], UVM
primarily assumes intensional versioning.

Versions are created from a well-defined set of options, historical or logical configuration
properties that are collected in an option set5 constituting a global variable space.

O = {o1, . . . , on} (8.47)

The product space is defined by means of fragments, triples of the form fi = (idi, vi, ei),
denoting (item identifier, visibility, contents). Implicitly, a fragment set is defined.

F = {(id1, v1, e1), . . . , (idk, vk, ek)} (8.48)

The item identifiers and visibilities of different triples may be identical. Conversely, the
fragments’ unique contents are taken from a global product element set P :

P = {e1, . . . , ek}, e1 6= . . . 6= ek (8.49)

This way, versioned items are generally allowed to carry different contents in different
versions. The question in which version which contents are available is answered by
visibilities vi, implemented by propositional logical expressions over the variables of O.
The visibilities of multiple versions of a fragment – carrying the same item identifier – must

5 The option set was not explicitly defined in [WMC01]. Rather, a fixed numbers of options, identified by
individual names, were assumed.
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be disjoint, i.e., their conjunction must evaluate to false:

∀fi, fj ∈ F : (idi = idj ∧ i 6= j)⇒ ¬(vi ∧ vj) (8.50)

UVM distinguishes between a read filter – a choice – and a write filter – an ambition –,
respectively. Both are represented as option bindings in a conjunctive form. While a choice
refers to a unique version, an ambition may represent a set of versions to which a performed
change applies. Correspondingly, unbound options are forbidden in a choice, while in an
ambition, omitted bindings are excluded by the neutral element true.

ĉ = c1 ∧ . . . ∧ cn, ci ∈ {oi,¬oi}, i ∈ {1, . . . , n} (8.51)

â = a1 ∧ . . . ∧ an, ai ∈ {oi,¬oi, true}, i ∈ {1, . . . , n} (8.52)

The choice must represent the ambition. Therefore, choice and ambition must agree in all
option bindings. Mathematically, this has been implemented by the implication operator:

ĉ⇒ â (8.53)

Furthermore, a rule base is a conjunction of version rules—logical expressions imple-
menting the intensional predicate cons that must be fulfilled by option bindings in order to
represent a consistent version specification6.

R = ρ1 ∧ . . . ∧ ρm, ρi is an expression over O, i ∈ {1, . . . ,m} (8.54)

The rule base is used to validate both choices and ambitions. In the case of a choice,
strong consistency is required, i.e., the conjunction of constraints must evaluate to true
given the option binding as premise:

ĉ⇒ R (8.55)

In the case of ambitions, however, only weak consistency is required. The ambition
must include at least one valid version to which the associated change applies. Therefore,
ambition and rule base must have a non-empty overlap, such that there exists any strongly
consistent option binding b̂ in it.

∃b̂ : (b̂⇒ â) ∧ (b̂⇒ R) (8.56)

8.4.2 Editing Model

On top of the definitions given above, UVM provides a static filtered editing model7 that
abstracts from the functional principles of multi-version editors [Kru84; SBK88], thus
offering transparent variability management. The iterative editing model assumes that the
user performs a change, scoped by the ambition, in a representative view, defined by the
choice. The version to edit is made available in a workspace in form of the contents of the
selected fragments. Visibilities are transparent to the user and updated automatically upon

6 In [Mun93] and [WMC01], several types of version rules were distinguished, e.g., preferences and defaults.
These are revisited with modified semantics in the context of the new framework in Section 9.2.2.
7 The term static as used in this context is precisely defined in Chapter 11.
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finishing an iteration. To formally define the transfer of contents between the fragment set
and the workspace, two operations – filter and write – must be formally defined in advance.

First, filter takes a specific choice as argument and returns the contents belonging to the
described version, which are exported into the workspace.

F |ĉ = {ei ∈ P |∃fi ∈ F : fi = (idi, vi, ei) ∧ ĉ⇒ vi} (8.57)

Second, write creates a new version of the fragment set Fnew by taking the old version
Fold, a user-defined ambition â, as well as the set of locally inserted (Eins), deleted (Edel),
and modified content elements (Emod) into account:

– For inserted elements eins ∈ Eins, create a new fragment fnew := (idnew, â, eins). idnew
is a new, automatically generated item identifier. Moreover, the visibility of new elements
corresponds to the specified ambition: vins := â.

– Process deleted elements edel ∈ Edel as follows: Retrieve all fragments fdel from which edel
is referenced. Then, modify the visibilities vdel of all fragments carrying the same identifier
iddel as the deleted element as follows: vdel := vold ∧ ¬â. This way, the set of versions
described by the ambition is removed from the visibility.

– Modified elements emod ∈ Emod, whose original versions are still contained in P , are broken
down into insertions and deletions. Thus, add a new fragment fnew := (idmod, â, emod) and
change the visibility of all old versions of the fragment as follows: vnew := vold ∧ ¬â.

Theorem 8.3— UVM’s write operation preserves the property of disjointness of fragments’
visibilities as required by (8.50).

Proof. Given are two fragments fx, fy ∈ F referring to the same item identifier id. Their
original visibilities vx and vy are disjoint: ¬(vx∧vy). Without loss of generality, we assume
that vx was selected by the choice (ĉ ⇒ vx) and vy was filtered out (ĉ 6⇒ vy). We must
consider two cases, deletion of ex and modification of ex into e′x.

Deletion. fx is updated as follows: (id, vx ∧ ¬â, ex). Under the premise ¬(vx ∧ vy), the
visibilities are still disjoint: ¬((vx ∧ ¬â) ∧ vy), thus, ¬(false ∧ ¬â) = true.

Modification. fx is updated to (id, vx ∧ ¬â, ex), fy is updated to (id, vy ∧ ¬â, ey), and a
new fragment f ′x = (id, â, e′x) is inserted into F . The visibilities of the three fragments fx,
f ′x, and fy are pairwise disjoint: First, ¬(â ∧ (vx¬â)) = ¬(false ∧ vx) = true for any vx.
Second, ¬((vx ∧ ¬â) ∧ (vy ∧ ¬â)) corresponds to the deletion case after eliminating the
duplicate conjunctive term ¬â. Third, ¬(â ∧ (vy ∧ ¬â)) = true for any vy. �

Both operations are combined in UVM’s static filtered editing model. Each iteration of it
is organized as follows:

1. Let the user specify an ambition â that delineates the scope of the change to be
performed. The ambition must be weakly consistent (cf. (8.56)).

2. Let the user specify a choice ĉ that designates the version in which the change shall
be applied. The choice must be strongly consistent (cf. (8.55)) and, furthermore, must
be representative for the ambition (cf. (8.53)).
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3. Filter the contents according to the choice (cf. (8.57)) and make them available for
modification in a workspace.

4. As soon as the user has finished the iteration, detect insertions, deletions, and modifi-
cations by comparing the original and the modified workspace contents. Apply the
write operation as defined above, and replace Fold by Fnew. Furthermore, clear the
workspace contents in order to prepare for subsequent iterations.

8.4.3 Example

The usage of UVM is now illustrated by abstracting from the running Graph example
as represented in Section 2.6 on page 29. The example also demonstrates how a hybrid
integrated solution to historical and logical versioning – as claimed in Section 6.4.4 – can be
conceptually realized.

First of all, we define the product space by its element set P , which abstracts from the
concrete product space representation of elements:

P = {eGraph, eV ertex, eEdge, elabel, eweight}

For defining the version space, we assume that some features of the example feature
model, as well as three revisions, are mapped to options:

O = {fWeighted, fLabeled, fColored, r1, r2, r3}

The rule base includes two version rules ensuring that the selection of a revision option
requires the selection of the corresponding predecessor option.

R = {r2 ⇒ r1, r3 ⇒ r2}

The connection between elements e ∈ P and options of the version space is established
in the fragment set:

F = {(Graph, r1, eGraph), (V ertex, r1, eV ertex), (Edge, r1, eEdge),

(label, fLabeled ∧ r2, elabel), (weight, fWeighted ∧ r3, eweight)}

For a better readability, we here use user-defined (e.g., Edge) rather than artificially gener-
ated item identifiers.

To demonstrate UVM’s editing model, in a new revision 4, a new element eColor is
introduced that is connected to option fColored:

0. As a first bookkeeping step, the revision graph must be organized. To this end,the new
revision option r4 is added to O and the rule r4 ⇒ r3 is added toR.

1. The ambition â defines the scope of the change to be performed:
â = fColored ∧ r4.
The ambition is weakly consistent according to (8.56).

2. The choice ĉ is a unique representative version included by â:
ĉ = ¬fWeighted ∧ ¬fLabeled ∧ fColored ∧ r1 ∧ r2 ∧ r3 ∧ r4.
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The choice is strongly consistent according to (8.55) and represents the ambition as
required by (8.53).

3. The product space is transparently filtered by elements whose visibilities satisfy ĉ:
F |ĉ = {eGraph, eV ertex, eEdge}.
In the workspace, the element eColor is newly introduced.

4. After having finalized the edit session, the changes are written back to the repository’s
product spaceP , which is extended by eColor transparently. Furthermore, the fragment
set is extended by the tuple (Color, fColored ∧ r4, eColor), which is created based on
the detection of the inserted element eColor. As a consequence, the change is visible
only for revisions 4 or later of variants that include fColored.

8.4.4 Outlook

By intention, UVM was developed in a generic way from the beginning, making only mini-
mal assumptions about the structure of the version space and of the product space. The ex-
ample has demonstrated that UVM may provide a basis for hybrid historical and logical ver-
sioning. In addition, the editing model shares similarity with the check-out/modify/commit
workflow provided by version control systems. The new conceptual framework contributed
in this thesis is an extension and specialization of UVM that specifically considers the design
decisions stated in Section 7.3. The most prominent differences are listed below.

– The new framework explicitly combines historical and logical versioning, the former of
which is managed completely transparently in order to provide fully-fledged version control
functionality. (In particular, the bookkeeping step 0 of the example is automated.)

– Both the product space and the version space are concretized by providing mappings of the
option set and the element set to SCM-related, model-driven, or SPL-related formalisms
such as revision graphs, domain models and feature models.

– The concept of fragments is removed in the new framework. In favor of this, fine-grained
hierarchical versioning is applied, where each detail of the product space is considered as a
versioned item, such that there is essentially no difference between item and item version.
Correspondingly, (8.50) and Theorem 8.3 become obsolete.

– Therefore, mutually exclusive workspace contents are not checked on the base layer level in
the new framework. As a replacement, context-free well-formedness conditions are used to
detect equivalent, but also context-sensitive, conflict types.

– For the same reason, the update operation does not include a dedicated handling for modified
elements; rather, the operation is broken down into insertions and deletions of child elements
in the tree hierarchy formed by the product space.

– The editing model is dynamic inasmuch as the option space may co-evolve with the product
space, and the ambition may be specified at any point in time within an iteration. Rather
than clearing the workspace contents after commit, it is assumed that the user continues in
the existing workspace view as usual in VC.

Precise discussions of the differences between the new conceptual framework and UVM are
given in the related work sections of the individual chapters of the subsequent Part IV.
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Chapter 9

Hybrid Version Model

Abstract

In the following, the theoretical core contribution of this thesis is presented: a conceptual
framework for the integration of MDSE, SPLE, and version control. This chapter considers
the conceptual framework from the perspective of version management, relying on two
distinct formalisms. The structural part of the framework is defined by Ecore-compliant
metamodels. For the functional and behavioral perspective, the notions of UVM are extended
and specialized, still relying on (multi-version) set theory and propositional logic. First,
architecture and functionality of the whole conceptual framework are sketched, before
the focus is put on the version space. This is defined by an abstract base layer, which is
concretized by mappings to revision graphs and feature models, which are offered as version
definition metaphors to the user. We present a preliminary editing model, which combines
historical and logical versioning in the face of the previously discussed requirements. The
presentation is rounded out with two pieces of optimization, namely the change space and
so called visibility forests. Finally, related conceptual approaches are discussed.
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9.1 Architectural and Functional Overview

The framework utilizes well-known abstractions both from version control and from software
product line engineering. VC contributes the update/modify/commit paradigm as editing
model and the revision graph as a version definition and selection abstraction. From SPLE,
feature models and feature configurations are borrowed for the definition of the version
space as well as for specific versions therein. For delineating the scope of a change, the
concept feature ambition is newly introduced here. Both disciplines are combined in a
hybrid version model whose formal basis is the Uniform Version Model (see Section 8.4).

The chapter is organized as follows: First, user-visible abstractions of the framework
as well as the architecture of the transparent repository are presented in Sections 9.1.1
until 9.1.3. In Section 9.2, definitions for the version space base layer, which consist
of Ecore-compliant metamodels and of mathematical definitions based on the UVM, are
provided. The base layer in turn is instantiated by revision graphs and by feature models,
as explained in Sections 9.3 and 9.4, respectively. These version dimensions are finally
combined into a preliminary editing model in Section 9.5, which also contains a summarizing
example. Two sections are dedicated to optimization of the framework. First, the change
space is described as an optimizing, user-invisible base layer instantiation in Section 9.6.
Second, in Section 9.7 visibility forests are introduced as a global data structure for version
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membership information. Related work is presented in Section 9.8, before the chapter is
concluded with a summary. 1

9.1.1 Abstractions for Version Space Definition and Version Selection

The conceptual framework automates version management by exposing version definition
and version selection abstractions, represented by familiar concepts of VC and SPLE, to the
user. These concepts must be well-understood in order to guarantee a correct and meaningful
behavior of the framework. Figure 9.1 visualizes the abstractions introduced subsequently.
Both for choices and for ambitions, the framework assumes a fixed version selection order:
first in the revision graph, then in the feature model. This is due to the hybrid architecture,
which has been justified by design decision D1 in Section 7.3.

Revision Graph. For historical versioning, the framework utilizes a sequence of revisions,
such that branches are disallowed (see Section 4.2.2). The elements of this sequence are
here referred to, however, as nodes of a graph in order to conceptually prepare for multi-user
versioning (see Chapter 12). Each revision corresponds to one historical state of the product
line; the selection of multiple or no revision is forbidden. In this way, extensional versioning
is realized. For each node in the revision graph, details such as the revision number, the
commit message, author, as well as the revision creation date are recorded. Rather than
being available for arbitrary modification, the revision graph may be extended only indirectly
by committing one new revision per edit session.

Revision Choices. A choice in a revision graph, seen from the user’s perspective, consists
in the selection of one revision, i.e., a dedicated node in the revision graph. When confining
to historical versioning, precisely the state that has been committed as the selected revision
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Figure 9.1: Version definition and selection abstractions provided by the framework.

1 A large portion of the text of this chapter was pre-published in [Schwä+15; Schwä+16].
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is supposed to be reproduced in the workspace, whereas all changes performed in later
revisions (i.e., successors of the selected node) remain invisible.

Revision Ambitions. For the VCS user, the concept revision ambition is almost transpar-
ent. When committing, a new revision is created automatically as a successor of the most
recent revision, the head. Furthermore, details such as commit date, author, and revision
number can be inferred automatically (e.g., by auto-incrementing a revision counter). The
only detail to be added manually is a commit message that describes the user’s intent(s)
behind the committed change.

Feature Model. Logical variability is managed by a feature model, which provides a
high-level representation of individual properties of a system. Unless stated otherwise, we
assume feature models in their form as presented in Section 5.2. In contrast to the revision
graph, the feature model may be arbitrarily modified by the user in the course of an edit
session, by adding new features, changing details of features, or removing features. To this
end, the feature model is made available as an additional artifact in the workspace.

Feature Choices. As the feature model defines features as configuration options, a unique
selection in the feature model corresponds to what has been introduced as feature configura-
tion in Section 5.2. Thus, the user is requested to assign a unique selection state (selected or
deselected) to each feature. Moreover, the selected configuration must conform to version
selection rules defined in the feature model, including parent-child relationships, groups,
and requires/excludes relationships—the precise formal semantics of these constraints are
explained in Section 9.4.
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Feature Ambitions. After selection of a specific product variant by a feature choice, the
user applies changes to the working copy of the artifact made available in the workspace.
Nevertheless, these changes are seldom confined to the selected product variant, but typically
address a broader scope of product variants. During commit, therefore, the affected versions
must be identified. This is where the novel concept of feature ambition steps in.

A feature ambition is a partial selection in the feature model, such that in addition to
selected and deselected, a third selection state, neutral, is introduced. To neutral features,
the performed change is immaterial, i.e., it applies for product variants where the respective
feature is selected or deselected.

To illustrate the concept of feature ambition, several examples are provided in Figure 9.2.
Feature ambitions reside in a continuum between universal (i.e., all variants are affected),
and product-specific (i.e., only the variant described by the choice is affected). In general,
the more features are bound by non-neutral selection, the more specific is the change and
the smaller is the set of affected versions.

9.1.2 Repository Architecture

Constituting the entirety of available product versions, the repository is provided as a
persistent storage for the elements of the version space and of the product space. Like in
state-of-the-art version control systems, the contents of the repository are transparent to
the user, who accesses the repository indirectly by check-out and commit. Here, a specific
architecture is underlying the repository. Its elements are explained on a coarse-grained
level subsequently.

As depicted in Figure 9.3, the conceptual framework consists of elements distributed
over four spaces: A revision graph, which controls the historical evolution of both the
domain model and the feature model, which are summarized as product space. Elements of
the domain model are additionally versioned with respect to the feature model in order to
provide for logical variability. Optionally, both the revision space and the feature space are
organized by a transparent change space, an optimization that reduces run-time and memory
consumption and thereby increases comprehensibility. The revision graph, the change space,
and the feature model are subsumed under the term version space.

The feature model plays a dual role by being part of both the version space and the
product space. For the revision space, it is versioned the same way as the product space; for
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Figure 9.3: Relationships between different members of version and product space.
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the product space, it incorporates an additional variability model.
The relationship “versioned by” needs to be further explained. It is conceptually realized

by transparent visibilities assigned to elements of the space that is source of the relationship.
Visibilities in turn refer to elements of the relationship target. In particular, elements of the
feature model contain visibilities that refer to specific revisions, whereas elements of the
domain model carry hybrid visibilities that refer both to revisions and to features.

Internally, elements of the version space are mapped onto abstractions borrowed from
the UVM (cf. Section 8.4), such as options and version rules. This mapping happens
behind the scene, while only the higher-level abstractions of revision graph and feature
model/configuration are presented to the user for version selection and version space editing.

9.1.3 The Editing Model as Seen by the User

The interaction between the workspace and the repository is organized by generalized forms
of the version control metaphors check-out and commit, which utilize choices and ambitions
in the revision graph and in the feature model, respectively. Each edit session instantiated
from the iterative editing model consists of three – partly automated – steps, which are
further refined below. Figure 9.4 complements the explanations.

Check-Out. The user performs a version selection (a choice) in the repository. In the
revision graph, the selection comprises a single revision. In the (selected revision
of the) feature model, a feature configuration has to be specified. A single-version
working copy of the repository contents, filtered by the selected version, is exported
into the workspace.

Modify. In the workspace, the user applies a set of changes to the single-version domain
model and/or to the feature model.

Commit. The changes are written back to the repository. For this purpose, the user is
prompted for an additional selection of a feature ambition to delineate the logical
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2. modify

3. commit
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Figure 9.4: The editing model provided by the framework. Based on [SBW15, Figure 8].
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scope of the changes applied to the domain model. Visibilities of versioned elements
are updated automatically, and a newly created revision – to be described by a commit
message written by the author of the change – is submitted to the repository.

The editing model reflects the design decisions of an iterative and incremental edit-
ing model (D13 and D14). Furthermore, the suggested propagation mechanism (D16) is
provided; see Section 7.3.

9.2 Version Space Base Layer

In the following, the base layer of the version space, which is subsequently concretized
by revision graph, feature model, and change space, is presented. For the description, we
rely on a combination of two formalisms. The structural part is introduced in the form of
metamodels, which describe instantiable elements and their possible relationships part of
the repository2. The semantics of the framework is defined on the basis of propositional
logic and set theory, where concepts of UVM (cf. Section 8.4) are reused and extended as
suggested by design decision D15.

9.2.1 Core Metamodel

The general architecture of a repository is described by the core metamodel depicted in
Figure 9.5. By providing a mapping between version space and product space, the approach
follows annotative variability and therefore makes use of symmetric deltas (see D2).

A repository combines a version space and a product space, which are in turn divided
up into several product dimensions and version dimensions. A product dimension contains

version product meta

Repository

ProductSpaceVersionSpace VisibilityForest

VersionedElement

OptionExpr

ProductDimensionVersionDimension

Rule Option

* *

*

1

*

*

1

0..1

1 1

visibility

Metadata
1

core

mapping

visibilityForest

expressions

metadataversionSpace productSpace

dimensions dimensions

/allVersioned
Elements/options/rules

Figure 9.5: The core metamodel of the conceptual framework. Based on [SBW16a, Figure 2].

2 In the model-driven implementation of the conceptual framework, these metamodels have been taken as
input for the generation of initial source code for SuperMod; see Chapter 14.
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a tree of versioned elements, to each of which a visibility is assigned. Those visibilities
are organized in a global mapping structure, the visibility forest, which is explained in
Section 9.7. A version dimension contains options and (version) rules. Both visibilities
and specific sub-kinds of version rules are represented by option expressions, propositional
logical expressions on options (cf. Section 9.2.3). Contents of the packages product and
meta are further refined in Chapters 10 and 13.

By leaving product and version dimensions abstract, the framework is highly extensible
with respect to the concrete product and version space used in a specific versioning scenario.
This way, different repository architectures than described above, e.g., purely historical or
logical versioning, or variability formalisms different from feature models may be supported.
Below, however, we stick to the hybrid architecture sketched in Figure 9.3.

9.2.2 Version Space Core

Let us further refine the package core::version, which represents a base layer of the version
space to be instantiated by the revision graph, the feature model, and the change space
below. A detailed structural view is provided in Figure 9.6. When compared to UVM, we
here introduce a specialized rule base that divides version rules up into three categories,
invariants, preferences, and defaults, which have been originally described in [Mun93] but
whose semantics have been modified here (see related work).

Options. An option represents a (logical or historical) property that is either present or
absent in an individual product. Each version dimension defines a global option set, whose
elements are distinguished and uniquely identified by their index.

O = {o1, . . . , on} (9.1)

It depends on the higher-level version space implementation how the derived reference
/options, which makes this set available, is realized.

Specialized Rule Base. In the here considered conceptual framework, the rule base does
not only serve to validate choices and ambitions, but also complete them in order to assist

core::version

1
init

Expr1

VersionDimension

id : String

Rule

id : String

Option

** /options /rules
(from core::mapping)

OptionExpr

InvariantPreference
initState : core::mapping::Tristate

Default

constraining
Expr

0..1 default

preferences0..*

referencedOption1

1

referenced
Option

Figure 9.6: Detailed metamodel for the version space core in the base layer.
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the user in consistent version selection. For this sake, preferences and defaults are employed
as an orthogonal constraint propagation mechanism designed to enforce (not necessarily all)
invariants. 3

In its specialized definition, the rule baseR is a triple consisting of an invariant set J ,
a preference set P , and a default set D:

R = (J ,P,D) (9.2)

Invariants. Having a purely validating semantics, invariants adopt the notion of version
constraints. Thus, J is defined by a conjunction of invariants ρj , each being represented as
a logical expression over the option set O of the version dimension (see constrainingExpr in
the metamodel).

J = ρ1 ∧ . . . ∧ ρm, ρj is an expression over O, j ∈ {1, . . . ,m} (9.3)

Preferences. In complement, elements of the preference set P define initialization expres-
sions πij (initExpr) for unbound options oij (referencedOption) of the option set O.

P = {(oi1 , πi1), . . . , (oik , πik)}, oij ∈ O, πij is an expression over O, ij ∈ {1, . . . , k}
(9.4)

Defaults. Last, defaults contained in D are applied only for options that are not connected
to a preference, or all of whose corresponding initialization expressions returned undefined .
They define a default state sj (initState) for unbound options oj (referencedOption) of O.
For each option, at most one default may be defined.

D = {(oi1 , si1), . . . , (oil , sil)}, oij ∈ O, sij ∈ {true, false}, ij ∈ {1, . . . , l} (9.5)

Below, the term version rule is used as a generalization of invariants, preferences and
defaults. It also depends on the concrete version space implementation how the derived
reference /rules is realized.

9.2.3 Option Expressions

Option expressions are propositional logical expressions over the option set. They appear,
among others, within the visibilities of versioned elements, and in logical expressions
assigned to invariants and to preferences. Here, the structure, the formal syntax, and the
evaluation semantics of option expressions are clarified.

As shown in the metamodel in Figure 9.7, there exist three categories of option expressions.
Option references target an option o ∈ O. Compound expressions hierarchically combine

3 Recall that invariants, preferences, and defaults are not defined manually by the user, but automatically
derived by the framework from higher-level descriptions such as feature models (see Section 9.4) and revision
graphs (see Section 9.3). The corresponding mappings to the low-level rule base also have to ensure that
preferences and defaults are in line with corresponding invariants.
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core::mapping

evaluate(ob : OptionBinding) : Tristate

OptionExpr

NegExpr

OptionBinding

selection : Tristate

Entry

(from core::version)
Option
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negatedExpr1

operands
2

referenced
Option

unbound
true
false

<<enumeration>>
Tristate

BinaryExpr OptionRef OptionExprRef

And
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Xor

1
referencedExpr

1

*entries

bound
Option

Merge

0..1base

Figure 9.7: Metamodel for option expressions and option bindings.

option expressions (e.g., the negation ¬ is represented by NegExpr, the conjunction ∧ by
AndExpr)4. Option expression references re-use existing expressions in order to avoid their
repeated duplication (see Section 9.7).

Choices and ambitions are internally represented as option bindings, sets of entries
binding an option to a selection state. The enumeration Tristate defines the three values
allowed in three-valued Kleene logic (cf. Section 8.3).

Option expressions can be evaluated with respect to a given option binding. This is
realized by corresponding implementations of the operation evaluate in the subclasses of
OptionExpr. During evaluation, options are virtually replaced by the bound Kleene value.
The expression is then reduced to a value literal, which is returned as result.

9.2.4 Option Bindings and their Completion

Choices and ambitions, denoted by the symbols c and a, are represented as instances of
OptionBinding, which reflect variable bindings as introduced in Section 8.3.

As mentioned above, preferences and defaults assist the user in version specification by
assigning selection values to options not considered explicitly by a given variable binding.
The procedure of applying the semantics of preferences and defaults is called completion. It
consists of two steps, preference application and default application.

Preference Application. As defined by Algorithm 9.1, preference application is realized
by traversing the option set, looking for unbound options, and applying a suitable preference.
In case several preferences are defined for an option, but their evaluation yields different
boolean results, the situation is resolved non-deterministically. 5

4 The role of Merge expressions is explained in Section 12.4.4.
5 The non-determinism is caused by the preference set being unordered. Such situations, however, should
be avoided by corresponding higher-level mappings. This is the case for the revision graph and feature model
mappings provided subsequently.
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function APPLYPREFERENCES(b)
for all o ∈ O do

if
(
(o, true) /∈ b

)
∧
(
(o, false) /∈ b

)
then

for all (o, π) ∈ P do
s← π(b)
if s 6= undefined then

b← b ∪ (o, s)
break

return b

Algorithm 9.1: Preference application.

function APPLYDEFAULTS(b)
for all (o, s) ∈ D do

if
(
(o, true) /∈ b

)
∧
(
(o, false) /∈ b

)
then

b← b ∪ (o, s)

return b

Algorithm 9.2: Default application.

Default Application. Since at most one default may be defined for each option, no con-
flicting situations may occur here. Algorithm 9.2 precisely defines default application.

Completion. This comprises the application of preferences and defaults. As preferences
have a higher priority, they must be taken into account prior to defaults. Preferences may,
however, influence each other. Furthermore, after having applied a default, a previously
inapplicable preference may become applicable, too. Therefore, as formalized by Algo-
rithm 9.3, preferences are enforced twice, before and after default application, and moreover,
in a loop that terminates as soon as no preference could be applied.

In the subsequent chapters, the shorthand notations Pb and Db indicate that the algorithms
APPLYPREFERENCES and APPLYDEFAULTS have been applied to a given option binding b.

function COMPLETE(b)
curr ← |b|
last← curr − 1
while curr > last do

last← curr
APPLYPREFERENCES(b)
curr ← |b|

last← curr
APPLYDEFAULTS(b)
curr ← |b|
while curr > last do

last← curr
APPLYPREFERENCES(b)
curr ← |b|

Algorithm 9.3: Option binding completion.
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Furthermore, PDb denotes that the COMPLETE operator has been utilized.
Notice that the application of preferences or defaults does not allow for any guarantees

with respect to the “uniqueness” of an option binding. It may still include unbound options
and therefore represent a set of versions rather than a single version. Furthermore, on base
layer level, preferences (not defaults) may be contradicting, such that non-determinism is
introduced to APPLYPREFERENCES. It must be ensured by the higher-level mappings that
such situations are avoided.

9.3 Mapping Revision Graphs to the Version Space Base Layer

In SCM and particularly in version control, evolution and collaboration of software devel-
opment are addressed. This chapter focuses on the evolutionary aspects of VC, assuming
a single-user environment. The coordination of several collaborating users is a subject of
Chapter 12.

The history of a VC repository is typically represented by a revision graph, which is here
reduced to a linear sequence. Revision control deviates from variability management in
two aspects. First, revisions are organized extensionally, i.e., only revisions that have been
committed earlier may be checked out. Second, revisions are immutable: Once committed,
they are expected to be permanently available, and should not be affected by destructive
updates (see Section 7.1.7).

9.3.1 Structural Design

Figure 9.8 depicts the structural perspective onto revision graphs, which play the role of
a version dimension. A revision graph contains revisions as vertices, for each of which
particular version details are persisted; here, revision number, date, a commit message,
and the name of the authoring user are defined as attributes. The linear revision order is
expressed by the (acyclic and irreflexive) predecessor/successor relationship. Both classes

revisiongraph

revisionNo : Integer
date : Date
message : String
author : String

Revision

RevisionGraph

(from core::version)
VersionDimension revisions

*

predecessor

successor

0..1

0..1

(from core::version)
Option

revOption

predPref

1

0..1

initialInv

(from core::version)
Default

revDefault1

(from core::version)
Preference

(from core::version)
Invariant

predInv0..1

0..1

Figure 9.8: Metamodel for revision graphs including references to core concepts. Based
on [Schwä+16, Figure 7].
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Table 9.1: Mapping revision graphs to low-level rule base elements. Based on [Schwä+16, Table 2].

Pattern Transformation Metamodel

revision i option ri revOption
non-initial revision i default (ri, false) revDefault

initial revision 0 invariant r0 initialInv
successor revision i+ 1 of revision i invariant ri+1 ⇒ ri predInv

preference (ri, ri+1) predPref

RevisionGraph and Revision contain references to concepts of the base versioning layer;
their semantics are explained below.

9.3.2 Formal Mapping

Revisions are intended to supersede each other in a series of commits. Nevertheless, it is
crucial that old states of the versioned data may be restored. For this reason, committed
changes are connected to an option that clearly identifies the revision and makes it available
for selection. Thus, historical versioning is realized by mapping each revision i to a revision
option ri. This way, extensional versioning is realized on top of intensional versioning;
cf. design decision D10.

In contrast to revisions themselves, revision options are interpreted with a transitive
semantics in mind: when selecting a revision, the workspace should not only incorporate
the changes associated with the corresponding revision option but also those changes which
have been committed earlier along with predecessor revisions. As summarized in Table 9.1,
the initial revision option r0 must always be selected, such that the corresponding baseline
in the product space is always active. To implement the transitive semantics, invariants of
the form ri+1 ⇒ ri are introduced for consecutive revisions ri and ri+1 transparently.

The options, invariants, preferences, and defaults derived this way from a revision graph
are referred to as Or, Jr, Pr, and Dr, respectively.

9.3.3 Version Selection

Revision Choices. A version in the revision graph is selected as a single revision j by the
user. The invariants described above require that, in addition to rj , all options of predecessor
revisions be selected. To ease version selection, a preference has been introduced to the
mapping shown in Table 9.1. Repeated applications of (ri, ri+1), beginning with the selected
option rj , propagate backwards until the initial revision r0. All remaining – i.e., more recent
– revisions’ options are explicitly deselected by the default (ri, false). Effectively, after
applying preferences and defaults, a revision choice PDcr is derived as:

PDcr = {(r0, b0), . . . , (rn, bn)}, ri ∈ Or, i ∈ {0, . . . , n},

bi =

{
true if ri belongs to the selected revision j or to a predecessor.
false otherwise.

(9.6)



172 Chapter 9 Hybrid Version Model

Revision Ambitions. In contrast to choices, ambitions in the revision space only consist
of one bound option, namely a newly introduced option whose revision k is a successor of
the head, i.e., the most recent revision h (regardless of which revision j was selected for
check-out). As a consequence, within a revision ambition ar, exactly one revision, rk, occurs
in a positive state. Bindings for further revision options are implicitly set to undefined.

ar = {(rk, true)}, revision k is a successor of head revision h. (9.7)

Due to the mechanisms explained subsequently, this results in comparably short visibilities
when confining to the revision graph; the corresponding expressions âr consist of one option
reference to rk only.

9.3.4 Example

Figure 9.9 introduces an example of a revision graph. At the beginning of the edit session, it
is mapped to the following options, invariants, preferences, and defaults:

Or = {r0, r1, r2, r3}

Jr = (r0) ∧ (r1 ⇒ r0) ∧ (r2 ⇒ r1) ∧ (r3 ⇒ r2)

Pr = {(r0, r1), (r1, r2), (r2, r3)}

Dr = {(r1, false), (r2, false), (r3, false)}

The user now decides to use revision 2 as starting point for modifications in the workspace.
Based upon this selection, the original revision choice would correspond to:

cr = {(r2, true)}

Thereafter, preferences, involving the selection of predecessor revision options of r2, are
transparently applied:

Pcr = {(r2, true), (r1, true), (r0, true)}

At this point in time, a binding for option r3 is missing. This is inferred from the defaults,
which produce the final revision choice:

PDcr = {(r2, true), (r1, true), (r0, true), (r3, false)}

As soon as the changes are committed to the repository, a new revision is introduced
transparently; its number 4 is generated automatically. The revision supersedes the former
head revision 3. When referring to the structural design, an instance of Revision is created.

initial revision
1 2 30 4

choice revision ambition revision

Figure 9.9: Example revision graph.
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A commit message is assigned based upon user inputs. Triggered by the mapping rules, an
option r4 is introduced to Or, the invariant (r4 ⇒ r3) is appended to Jr; Pr is extended by
(r3, r4), and Dr by (r4, false), respectively.

9.4 Mapping Feature Models to the Version Space Base Layer

Being based on UVM, the base layer of the framework is natively applicable to intensional
versioning. For reasons explained above, we rely on feature models as a higher-level
representation of the variant dimension (see Section 2.3.2). To this end, a feature metamodel
is defined in this section. In the literature, e.g., [Bat05; Ap+13b], several mappings of feature
models to propositional logical formula have been defined (see related work). Building upon
the distinction between invariants, preferences, and defaults presented above, we introduce
a mapping that is in line with the common understanding of feature model semantics. In
Section 10.7, (multi-revision) feature models are revisited in their role of an additional
product space dimension that is subject to historical evolution.

9.4.1 Structural Design

For the subsequent explanations, we assume the feature modeling constructs informally
introduced in Section 5.2. Figure 9.10 provides a view on the feature metamodel. By
extending the core concept VersionDimension, feature models provide a second version
dimension orthogonal to revision graphs.

Each feature model contains a dedicated root feature. Features carry a unique name, and
they may or may not be mandatory. Furthermore, to maintain the feature model’s history

featuremodel

FeatureModel
root

(from core::version)
VersionDimension

(from core::version)
Option

(from core::version)
Default

(from core::version)
Preference

(from core::version)
Invariant

name : String
mandatory : Boolean
deleted : Boolean

Feature
FeatureGroup
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XOR

Dependency

Requires

Excludes

1

0..1parent

*
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1
rootInv

deletionDef
1 0..1 parentInv

featureOpt 1 0..1 parentPref

groups

*

groupedFeatures
*

dependencies
*

depending
Feature1

1 dependInv

1 groupInv

0..1
group

Figure 9.10: Ecore class diagram for the metamodel of feature models. Based on [Schwä+16,
Figure 8].
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available, instances of Feature are never physically deleted; rather, a deleted flag is activated
that removes it from the user’s display. 6

The hierarchical composition of features is expressed by instantiating the reference
children, such that each feature except for the root has a dedicated parent feature. Children
of the same parent may be additionally organized in FeatureGroups. To this end, two group
types, OR and XOR, are available.

In addition, cross-tree dependencies, namely Requires and Excludes, may be instantiated.
They are contained by their source and cross-reference their target (dependingFeature).

Like the revision graph metamodel, the feature metamodel contains several references
to core version space concepts, implementing the dynamic semantics of feature models in
terms of propositional logic. It is assumed that these elements are created and maintained
transparently according to the mapping rules introduced below.

9.4.2 Formal Mapping

The formal mapping between feature model instances and specialized rule base concepts
is summarized in Table 9.2. Being the core configuration concept in SPLE, it is natural to
map features to logical options. Deleted features are no more available for selection, but
their options may still occur within visibilities; therefore, a default ensures that deleted
features are automatically deselected. Furthermore, the selection of the root feature is always
mandatory in a feature configuration. To this end, an invariant and a default are maintained,
which ensure and enforce root selection, respectively.

The way how parent/child relationships are mapped to the rule base depends on whether
the child is optional or mandatory. Optional features may or may not be selected in case
the parent is selected, whereas for mandatory children, the selection state must coincide

Table 9.2: Mapping feature models to low-level rule base elements. Based on [Schwä+16, Table 1].

Pattern Transformation Metamodel

feature A option fA featureOpt
deleted feature D default (fD, false) deletionDef

root feature R invariant fR rootInv
default (fR, true) rootDef

optional child C of parent P invariant fC ⇒ fP parentInv
mandatory child C of P invariant fC ⇔ fP parentInv

preference (fC , fP ) parentPref
OR group with members invariant fM1 ∨ . . . ∨ fMn ⇔ fF groupInv

M1, . . . , Mn below feature F
XOR group with members invariant (fM1 ∨ . . . ∨ fMn ⇔ fF )∧ groupInv

M1, . . . , Mn below feature F
∧
i<j≤n ¬(fMi ∧ fMj )

dependency A excludes B invariant ¬(fA ∧ fB) dependInv
dependency A requires B invariant fA ⇒ fB dependInv

6 Details of the feature deletion operator are elaborated in Section 11.3.2.
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with the parent. Configuration is supported by the preference (fC , fP ), which involves a
selection of all mandatory children as soon as a feature is selected by the user.

The formal mapping also implements the individual semantics of feature groups. In the
case of an OR group, at least one of the grouped features must be selected if and only if the
grouping feature is selected. For XOR groups, it is additionally required that at most one
grouped feature is selected, such that each pair of grouped features is mutually exclusive.

Last, requires and excludes dependencies are mapped to invariants straightforwardly by
combining the features with suitable propositional logical operators.

Below, we use Of , Jf , Pf , and Df to explicitly refer to the options, invariants, prefer-
ences, and defaults inferred from a feature model instance.

9.4.3 Version Selection

Feature Choices. As explained in Section 9.1.1, the specification of a choice in a feature
model comprises an unambiguous selection in the form of a feature configuration. Without
loss of generality, the framework assumes that the feature model is configured in a top-down
way, beginning with the feature model root. Furthermore, after each selection made by the
user, preferences and defaults are applied to all child features. A configuration obtained this
way is effectively converted to a low-level choice as follows:

PDcf = {(f1, b1), . . . , (fn, bn)}, fi ∈ Of , i ∈ {1, . . . , n},

bi =


true if fi belongs to a selected feature i
false if fi belongs to a deselected feature i
false if fi belongs to a deleted feature i

(9.8)

Feature Ambitions. It has been anticipated that feature ambitions are partial selections
in a feature model, which leave features, namely those to which the change is immaterial,
unbound (neutral selection state). Feature ambitions are converted to option bindings:

af = {(f1, b1), . . . , (fn, bn)}, ri ∈ Or, i ∈ {1, . . . , n},

bi =


true if fi belongs to a selected feature i
false if fi belongs to a deselected feature i

undefined if fi belongs to a neutral feature i
undefined if fi belongs to a deleted feature i

(9.9)

9.4.4 Example

The left part of Figure 9.11 depicts a cut-out of the feature model of the running Graph
example in the previously introduced concrete graphical syntax. The right hand side of
the figure shows the corresponding internal representation (abstract syntax) as an object
diagram conforming to the metamodel for feature models shown in Figure 9.10. Notice
that it contains an additional object for a deleted feature X, which is hidden from the user’s
display in the graphically represented feature model.

For compactness, references to rule base elements are faded out in the object diagram.
Given the mapping rules defined in Table 9.2, the following options, invariants, preferences,
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Graph

EdgesEdges

Directed Undirected

Algorithm

ShortestPath Transpose

DirectedthShortestPa 
DirectedTranspose 

name = “Graph“
mandatory = true

: Feature: FeatureModel

name = “Edges“
mandatory = true

: Feature

name = “Algorithm“

: Feature

: OR

name = “ShortestPath“

: Feature

name = “Transpose“

: Feature

: Requires

: Requires

: XOR

name = “Undirected“

: Feature

name = “Directed“

: Feature

name = “X“
deleted = true

: Feature

Figure 9.11: Example feature model in concrete and abstract syntax.

Graph
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Directed Undirected

Algorithm

ShortestPath Transpose

Graph

EdgesEdges

Directed Undirected

Algorithm

ShortestPath Transpose

Figure 9.12: Example feature choice and feature ambition.

and defaults are derived (we use the initial letters to address feature names):

Of = {fG, fE , fD, fU , fA, fS , fT , fX}

Jf = (fG) ∧ (fG ⇔ fE) ∧ (fD ⇒ fE) ∧ (fU ⇒ fE) ∧ (fX ⇒ fG) ∧
(
(fD ∨ fU ⇔ fE)

∧¬(fD ∧ fU )
)
∧ (fA ⇒ fG) ∧ (fS ⇒ fA) ∧ (fT ⇒ fA) ∧ (fS ∨ fT ⇔ fA)

Pf = {(fG, fE)}

Df = {(fG, true), (fX , false)}

In Figure 9.12, a feature choice and feature ambition, both basing on the feature model
introduced above, are shown. The version selections are mapped to these bindings:

cf = {(fG, true), (fE , true), (fD, false), (fU , true),
(fA, false), (fS , false), (fT , false)(fX , false)}

af = {(fU , true), (fA, false)}
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9.5 Preliminary Editing Model

After having explained in detail the mapping of revision graphs and feature models to the
low-level version space defined in the core metamodel, we combine these building blocks
into an initial editing model. After its semi-formal definition in Section 9.5.1, an example
is given in Section 9.5.2. A formally complete description of the conceptual framework’s
consistency-preserving dynamic filtered editing model is contributed in Chapter 11.

9.5.1 Semi-Formal Definition

Check-Out. The check-out operation is used to specify a unique version (i.e., revision
and variant) of the domain model, and a unique revision of the feature model, which both
populate the workspace.

1. The user selects a revision j from the revision graph. After applying the automatic
completions presented in (9.6) a revision choice PDcr is derived.

2. The multi-version feature model is filtered by PDcr. The filtered feature model is
exported into the workspace. 7

3. The user specifies a feature configuration in the filtered feature model. From this, a
feature choice PDcf is derived as specified by (9.8).

4. The effective choice c is calculated as the union PDc = PDcr ∪ PDcf .

5. The multi-version domain model is filtered by the effective choice PDc and then
exported into the workspace.

6. The choice PDcf is memorized in order to reproduce the checked-out variant of the
workspace during the subsequent commit.

Modify. In the workspace, the user applies modifications to the filtered domain model
and/or to the filtered feature model.

Commit. On commit, the performed modifications are written back to the multi-version
product space part of the repository. All changes shall be made conditional to a newly created
revision. Furthermore, changes to the domain model are scoped by a feature ambition, such
that they become visible only in affected variants.

1. The head revision h is retrieved. The head choice PDch is obtained according to (9.6).
The updated choice PDc is defined as follows based on the memorized feature choice:
PDc := PDch ∪ PDcf . The most recent states of feature model and domain model
are reproduced by applying PDch and PDc to the multi-revision feature model and to
the multi-version domain model, respectively.

2. By comparing the current workspace contents with the most recent states, differences
are deduced as lists of inserted elements eins ∈ Eins and deleted elements edel ∈
E6del.

7 The operation filter as well as the multi-version representation of the feature model are precisely explained
in Chapter 10.
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3. The revision graph is managed automatically: A new revision k is introduced with
user-specified details (i.e., commit message) and added as successor of the head
revision h. A corresponding revision option rk is added to Or. Furthermore, a default,
invariant, and preference are introduced as defined in Table 9.1.

4. The revision ambition is automatically set: ar = {(rk, true)} (cf. (9.7)).

5. The user specifies a feature ambition that delineates the scope of the change to the
domain model. From this, an option binding af is derived according to (9.9).

6. The applied modifications are written back to the multi-version representations of the
product space under suitable ambitions. For changes to the feature model, â := rk;
for changes to the product space, â := rk ∧ âf . Each modified (inserted or deleted)
element is processed as follows (cf. Section 8.4.2):

• Inserted elements eins are appended to the respective product space (domain or
feature model) of the repository. Their visibility is set to: vins := â.

• Deleted elements edel remain in the multi-version product space. Their visibility
is set to vdel := vold ∧ ¬â.

9.5.2 Example

We illustrate the editing model by means of an example that refers to an evolving product line
of flow diagrams, directed graphs with a dedicated start node (no incoming, one outgoing
control flow, cardinality 0/1), multiple activity nodes (1/1), binary decision nodes (1/2), join
nodes (+/1), and end nodes (1/0). Start and end nodes are represented by rounded rectangles,
decision nodes by diamonds, and join nodes by circles, respectively.

The product line is developed in subsequent steps: In revision 1, the product space is
initialized by performing a universal change that only affects the revision space. Next, two
independent changes are applied that correspond to two mutually exclusive features. In the
last revision, a change is re-assigned to a new feature, mapping an evolutionary increment
to a logical feature retrospectively. 8

Initialization. In the beginning, the version space consists of a revision graph that only
contains the initial revision 0 and a feature model with a mandatory root feature R. The
product space consists of an empty flow diagram. From the rules defined in Tables 9.1
and 9.2, the following low-level options, invariants, preferences, and defaults are
derived 9:

O0 := O0
r ∪O0

f = {r0} ∪ {fR}

J 0 := (J 0
r ) ∧ (J 0

f ) = (r0) ∧ (fR)

P0 := ∅

D0 := D0
r ∪ D0

f = ∅ ∪ {(fR, true)}

8 When compared to the original version of the example, presented in [Schwä+15], the employed feature
ambitions are slightly modified here, resulting in less complex visibilities.
9 We use superscripts in order to delineate different historical versions of the option set and the rule base, as
well as the choices and ambitions used in each step.
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Figure 9.13: Specified choices and ambitions as well as modifications performed during subsequent
iterations. Based on [Schwä+15, Figure 6].

Step 1. In order to populate the empty workspace, a choice must be specified. At the
moment, there is only one choice allowed, including revision 0 as well as a feature
configuration where the mandatory root feature R is selected. From this version
selection, the following choice is derived:

PDc1 := {(r0, true), (fR, true)}

Figure 9.13, step 1, shows the modifications applied: the insertions of a start node,
an activity node v and an end node, as well as flows between those. The change
is committed as a new revision 1. In the feature ambition, R is selected in order
to explicitly connect this change to the root of the product line. This results in the
following effective ambition:

a1 := {(r1, true), (fR, true)}

As a side effect, the following option, invariant, preference, and default are added to
the low-level option set Or and rule baseRr transparently:

O1
r := O0

r ∪ {r1}

J 1
r := J 0

r ∧ (r1 ⇒ r0)
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P1
r := P0

r ∪ {(r0, r1)}

D1
r := D0

r ∪ {(r1, false)}

Analogous constraints are inserted for subsequent revisions; they are omitted below
in favor of a better readability. Moreover, in this iteration, the low-level rule base of
the unmodified feature model remains unchanged.

Step 2. As there is no variability defined in the feature model yet (since the selection of fR
is mandatory), it suffices to select a revision. A selection of revision 1 generates the
choice

PDc2 := {(r0, true), (r1, true)(fR, true)}

In the checked-out workspace, v is deleted and a sequence of activity nodes consisting
of w and x is inserted (cf. Figure 9.13, step 2). Furthermore, an optional feature A is
introduced below R. The following option set and the invariants are derived from this
modification:

O2
f := O0

f ∪ {fA}

J 2
f := J 0

f ∧ (fA ⇒ fR)

For the commit, we specify a feature ambition with A selected, resulting in the
following ambition:

a2 := {(r2, true), (fA, true)}

Step 3. Once again, the latest revision is chosen. In the feature space, A is deselected,
which generates

PDc3 := (r0, true), (r1, true), (r2, true), (fR, true), (fA, false)}

Thus, the checked-out domain model version is not affected by the deletion of v in
step 2. As shown in Figure 9.13, step 3, an additional feature B is introduced, which
excludes A due to an XOR group added above both features. This results in the
following derived modifications to elements of the version space base layer:

O3
f := O2

f ∪ {fB}

J 3
f := J 2

f ∧ (fB ⇒ fR) ∧
(
(fR ⇔ fA ∨ fB) ∧ ¬(fA ∧ fB)

)
Within the workspace, we perform a corresponding realization: the replacement of
v by a new activity node z guarded by a conditional node y. Finally, we commit the
change under a feature ambition in which B is selected:

a3 := {(r3, true), (fB, true)}

Step 4. After revision 3 has been committed, we come to the conclusion that the guard y
should not realize feature B but rather an optional child feature C. This retrospective
feature assignment can be performed by checking out the latest revision with feature
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Figure 9.14: The transparent multi-variant product space of the example.

B included:

PDc4 := {(r0, true), . . . (r3, true), (fR, true), (fA, false), (fB, true)}

Then, a feature C is introduced as an optional child of B:

O4
f := O3

f ∪ {fC}

J 4
f := J 3

f ∧ (fC ⇒ fB)

In the domain model made available in the workspace, the guard as well as the join
node are deleted (cf. Figure 9.13, step 4). The domain model change is associated
with a selection of B and a deselection of C:

a4 := {(r4, true), (fB, true)(fC , false)}

As a consequence, since revision 4, the presence of guard y is restricted to product line
instances that include C. In case revision 3 is restored, however, y’s logical visibility
still depends on B only.

Inspecting the Repository. Taking the consecutive steps of the example together, we now
investigate the user-invisible contents of the repository. Apart from the revision
graph, which is merely a sequence connecting revisions 0 until 4 in this example, the
repository contains a transparent product space consisting of feature model and domain
model. Figure 9.14 depicts the product space in a superimposition representation,
including visibilities organized by the filtered editing model. The fact that the feature
model evolves only along the historical dimension is reflected by visibilities of features
being composed of revision options only, whereas domain model elements’ visibilities
reference both revision and feature options. Visibility updates caused by deletions,
affecting elements such as v or y, are characterized by multiple revision options
occurring inside an expression.
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9.6 The Change Space and its Mapping to the Base Layer

One of the key characteristics of the conceptual framework is the automated management of
visibilities that determine version membership of product space elements. The mechanism
of writing back changes using a global ambition (per product space dimension) results,
however, in option expressions corresponding to the ambition â repeatedly appearing in
the visibility of all affected elements. These expressions, on the one hand, increase the
size of the repository. On the other hand, in case the user requests to revise an ambition
retrospectively (see AMEND operation in Section 11.6.4), corrections of derived option
expressions would be necessary in several places.

To this end, we introduce as optimization the change space, which is internally managed
as a third version dimension in addition to the revision graph and the feature model. In
contrast to the other dimensions, the change space is entirely transparent to the end user.

Altogether, the revision graph, the feature model, and the change space disjointly divide
up the option set and the rule base, i.e., invariants, preferences and defaults:

O = Of ∪̇Or ∪̇O∆ (9.10)

R = Rf ∪̇Rr ∪̇R∆ =
(
(Jf ∧ Jr ∧ J∆), (Pf ∪̇ Pr ∪̇ P∆), (Df ∪̇ Dr ∪̇ D∆)

)
(9.11)

9.6.1 Structural Design

In the repository, the change space is represented as an instance of the metamodel depicted
as class diagram in Figure 9.15. The change space organizes a sequence of change sets –
representing commit actions triggered by the user –, which in turn are composed of several
changes that refer to one product dimension each and that are scoped with an individual
ambition. Each change is mapped to a triple of option, invariant, and preference based on
the mapping described below.

In general, the change space may abstract from arbitrarily composed version spaces.
When assuming the concrete three-layered repository architecture presented so far, each
change set would consist of two changes, one referring to the feature model dimension and

changespace

ChangeChangeSpace

(from core::version)
VersionDimension

changes

*

(from core::version)
OptionchangeOpt

affectedDimension 1

* (from core::version)
Preference

(from core::version)
Invariant

1

ChangeSet

(from core::product)
ProductDimension

(from core::mapping)
OptionBinding

ambition1change
Sets

1

1

changeInv

changePref

Figure 9.15: Metamodel for the transparent change space.
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Table 9.3: Mapping concepts of the change space to low-level rule base elements.

Pattern Transformation Metamodel

change to the feature model option ∆f changeOpt
for revision k invariant ∆f ⇔ rk changeInv

preference (∆f , rk) changePref

change to the domain model option ∆d changeOpt
for revision k invariant ∆d ⇔ rk ∧ âf changeInv

under feature ambition af preference (∆d, rk ∧ âf ) changePref

carrying an ambition that refers to the newly introduced revision, and another one referring
to the domain model and associating the effective ambition.

9.6.2 Formal Mapping

Rather than referring to metaphors exposed to the user – i.e., revision graphs and feature
models – the formal mapping for the change space refers to modifications (i.e., insertions
and deletions) detected in a specific product dimension. A write set connects a difference to
a user-specified ambition. 10

Table 9.3 specifies how write sets are mapped to changes. Since the decision whether
or not a change set shall be applied is boolean, it is adequate to map each write set to a
change option ∆i. Furthermore, each change abstracts from a user-specified, potentially
multi-dimensional ambition ai, such that preferences of the form (∆i, ai) ensure that the
change is activated if and only if the ambition includes the user-selected choice. Specific
invariants ensure consistency of change option and ambition.

9.6.3 Version Selection

When seen from the user’s perspective, version selection is not affected by the change space
optimization. Behind the scenes, the transparent mapping to low-level choices and ambitions
is altered as follows.

Change Choices. First of all, the user is asked for a combined choice in the revision
graph and in the feature model as usual, and preferences and defaults are applied. We refer
to this choice as PDc′ := PDcr ∪ PDcf . From this choice, a change choice PDc∆ is derived
automatically by applying the preferences derived from write sets:

PDc∆ = {(∆1, b1), . . . , (∆n, bn)}, ∆i ∈ O∆, i ∈ {1, . . . , n},
bi = âi(

PDc′), ai is the ambition assigned to the change mapped by ∆i

(9.12)

10 A precise definition of write sets is given in Section 10.8.1 in the context of product-level difference
computation.
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Thus, the choice is applied to the conjunctive representation of the change ambitions. 11

The effective choice PDc, which is used for filtering the product space, is unionized as
follows:

PDc = PDcr ∪ PDcf ∪ PDc∆ (9.13)

Change Ambitions. After an ambition a′ := {(rk, true)} ∪ af has been specified by the
user, rather than using rk for visibility updates to the feature model, the modifications are
persisted as follows:

1. A new change option ∆f is introduced to O∆.

2. The invariant ∆f ⇔ rk is added to J∆.

3. The preference (∆f , rk) is added to P∆.

4. The change to the feature model is committed under the change ambition
a∆f

:= {(∆f , true)}.

In analogy, for visibility updates to the domain model, a′ is replaced by a change option:

1. A new change option ∆d is introduced to O∆.

2. The invariant ∆d ⇔ â′ is added to J∆.

3. The preference (∆d, â
′) is added to P∆.

4. The change to the domain model is committed under the change ambition
a∆d

:= {(∆d, true)}.

Table 9.4: Low-level change space elements by the flow chart example.

Rev. Dimension Option Invariant Preference

0 feature ∆0f ∆0f ⇔ r0 (∆0f , r0)
0 domain ∆0d ∆0d ⇔ r0 (∆0d, r0)
1 feature ∆1f ∆1f ⇔ r1 (∆1f , r1)
1 domain ∆1d ∆1d ⇔ (r1 ∧ fR) (∆1d, (r1 ∧ fR))
2 feature ∆2f ∆2f ⇔ r2 (∆2f , r2)
2 domain ∆2d ∆2d ⇔ (r2 ∧ fA) (∆2d, (r2 ∧ fA))
3 feature ∆3f ∆3f ⇔ r3 (∆3f , r3)
3 domain ∆3d ∆3d ⇔ (r3 ∧ fB) (∆3d, (r3 ∧ fB))
4 feature ∆4f ∆4f ⇔ r4 (∆4f , r4)
4 domain ∆4d ∆4d ⇔ (r4 ∧ fB ∧ ¬fC) (∆4d, (r4 ∧ fB ∧ ¬fC))

11 With the same semantics but with a higher computational complexity involved, we could have written
ĉ′ ⇒ âi.
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Figure 9.16: The multi-variant domain model of the flow chart example with change space optimiza-
tion enabled.

Efficiency Estimation. The visibilities created by repeated application of this commit
strategy correspond to logical conjunctions of delta options, which may occur in positive or
negated form. By this optimization, visibilities grow linearly with the number of changes
applied to the respective elements, and in particular, do not depend on the complexity of the
ambition expression derived from selections in the feature model. Therefore, the complexity
is bound to O(|a|) (where |a| denotes the number of bindings in the ambition), which is in
most cases below the complexity of the unoptimized strategy, O(|E| · |vavg|) (where |E|
denotes the number of modified elements and |vavg| refers to the average complexity of the
visibilities before commit).

9.6.4 Example

The change space optimization is illustrated by the example introduced above in Sec-
tion 9.5.2. We assume that the same version history is replayed, such that the user does not
observe any change in behavior. Transparently, however, the change space manages new
version space elements. Table 9.4 lists the options, invariants, and preferences transparently
introduced before committing the change during subsequent commit operations.

Furthermore, as visualized in Figure 9.16, the transparently organized visibilities differ
inasmuch as they exclusively refer to change options. In particular, multiple occurrences of
option expression terms such as r4 ∧ fB ∧ ¬fC are condensed into single option references,
e.g., ∆4d. Particularly when considering larger change sets, this saves both memory when
storing the superimposition as well as run-time when evaluating option expressions.

9.7 Visibility Forest

A similar yet orthogonal optimization was mentioned in Section 9.2.3, where the metamodel
for option expressions has been explained. According to this, the visibility forest of a
repository is a global data structure for visibilities, avoiding repeated duplication. A further
practical purpose of visibility forests is the simplified representation of merged visibilities,
which comes into play as soon as different copies of a repository need to be synchronized;
this is a subject of Section 12.4.4.
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9.7.1 Structure and Functionality

The reuse of visibilities is mainly achieved by two design decisions reflected in the meta-
model for feature expressions, whose class diagram is depicted in Figures 9.5 and 9.7. First,
option expressions are not contained by their versioned elements but cross-referenced by
those only. The container for option expressions is a global VisibilityForest. Second, although
option expressions are essentially self-contained, the class OptionExprRef makes possible
that a sub-expression is a reference to an existing expression managed by the same visibility
forest. This way, identical sub-trees can be factored out.

A non-optimized visibility update strategy would behave as follows: Create a new feature
expression by applying the visibility update rule (cf. Section 9.5.1) and insert it into the
visibility forest. Then, reference it from the affected product space element. The strategy
does not make use of expression references at all, such that the visibility forest degenerates
into a flat collection of self-contained option expressions.

In contrast, the optimized strategy applies the following mode of procedure for a given
non-empty write set:

1. At the beginning of the processing of each write set, create an option expression
that represents the conjunctive form of the ambition â as a self-contained instance of
OptionExpr. Insert it into the visibility forest.

2. In case the write set contains deletions, create and insert into the visibility forest
an expression representing the negation of the ambition, ¬â. Reuse the ambition
expression node from step 1 using an OptionExprRef.

3. For each element insertion, reference the ambition expression (cf. step 1) from the
inserted element.

4. For each element deletion, create a new And expression. As its first operand, insert
an OptionExprRef that targets the old expression âold. As second operand, create
an OptionExprRef to the expression created for the negated ambition ¬â (cf. step 2).
Reference the And expression from the element affected by the deletion.

5. Avoid the repeated creation of identical And expressions in step 4. To this end, keep
track of the old visibilities of processed deleted elements. If the same visibility
(represented by the identical “old” forest node) was already processed, re-use the
expression by referencing it from the deleted element. 12

Efficiency Estimation. When considering only insertions, the size of a so created forest
would be directly proportional to the number of commits (cf. steps 1 and 3 above). De-
pending on the original visibilities of affected elements, deletions may involve the creation
of individual new visibilities, whose maximum number is bound to the number of deleted
elements. Nevertheless, it must be taken into consideration that the created “new” visibili-
ties consist of an And expression with two subordinate option expression references only.
Altogether, the number of visibility nodes added to the forest is bound toO(|Edel|), whereas
the unoptimized strategy exposes a complexity of O(|E| · |a|).

12 This can be straightforwardly implemented with the help of an associative auxiliary data structure.
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Figure 9.17: The multi-variant domain model of the flow chart example with visibility forest opti-
mization enabled.

9.7.2 Example

The visibility forest optimization is also demonstrated by the flow chart example from
Section 9.5.2. For a better comprehensibility, we fade out the orthogonal change space
optimization here.

Figure 9.17 illustrates the optimized usage of the visibility forest. For clearness, particular
details of the product space, e.g., flows, are omitted from the view. Each of the referenced
visibilities (represented using solid boxes) is contained by the used instance of VisibilityFor-
est. Dashed connectors indicate instances of the reference visibility, whereas solid arrows
represent instances of OptionExprRef.

In multiple places, the same feature expression is referenced from different product space
elements rather than occurring in multiple copies; e.g., nodes w and x, which are inserted in
the same iteration under the same ambition, share an option expression as their visibility.
The expression referenced by v was composed by applying the new strategy for element
deletions twice. Furthermore, the same And expression is referenced by decision node y and
its corresponding join node, which were both added and removed under the same logical
and historical scope.

When compared to the unoptimized usage of the visibility forest (see Figure 9.14), the
number of nodes contained in the forest is larger, however, their internal complexity is much
lower. This advantage becomes more significant when increasing the number of elements
affected in an iteration, or the complexity of ambitions used, or both.

9.8 Related Work

The conceptual framework has been influenced by several related theoretical approaches,
first and foremost UVM and its precursors. We also present concepts related to the building
blocks of the editing model, namely integrated repository architectures, the mapping of
feature model to propositional logic, feature ambitions, as well as the optimizations change
space and visibility forests.
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Integrated Repository Architectures. The hybrid repository architecture with the feature
model being part of both the version space and the product space is unique in the literature.
Nevertheless, there exist a couple of related architectures that allow for versioned version
control metadata in a similar way.

In [WMC01], a layered architecture for UVM-based software repositories is described.
On the lowest level, the instrumentable version engine combines a version model and version
rules (roughly corresponding to the option set and invariants presented here) with an abstract
delta storage. On top of this, transaction support is added, which organizes the historical
evolution of both versioned data and versioning metadata using a time-stamping mechanism.

As mentioned in Section 6.4.2, the VCS Adele [EC94] realizes an asymmetric architecture
towards integrated versioning. On the base layer, the version model is versioned indepen-
dently of the data model using directed deltas. The mapping between problem space and
solution space is contained in the data model itself – but also has to be managed manually –,
such that the necessity for versioned visibilities does not arise.

The feature logic approach implemented in the ICE system [ZS97] shares the property of
the new conceptual framework according to which extensional versioning is realized on top
of intensional versioning. As already pointed out in Section 6.4.4, change features represent
historical evolution steps. A superordinate transaction protocol, however, does not exist,
such that the management of the historical dimension is not automated to the extent that is
usual in VCS.

DeltaEcore [SSA14b] is an integrated approach towards variability (in space) and evolu-
tion (referred to as variability in time). The connection of variable and evolving parts of
the product line to the underlying product model is made by explicit directed deltas, which
are divided up into configuration deltas, which are specific to the selection of a feature, and
evolution deltas, which describe the product-level change between two historical revisions,
respectively. Rather than adding the feature model to historical version control, hyper fea-
ture models (see Section 6.3.2) come into play. Consequently, the selection order between
features and revisions is inverted when compared to our approach. For the dedicated end
user, long sequences of revisions may become difficult to understand given the multitude of
evolution deltas that must be kept in mind by the developer.

The approaches presented in [Fis+15; LELH16] manage a set of product variants without
intrinsically representing their differences in a finer-grained way. In this way, they realize
intensional on top of extensional versioning, which contrasts with the strategy applied here
(see design decision D10 on page 137).

Specialized Rule Base. In contrast to plain UVM (see Section 8.4), the specialized rule
base presented in Section 9.2.2 defines a disjoint partition of version rules into invariants,
preferences, and defaults. This distinction differs from [CW97] inasmuch as invariants are
called constraints13. Furthermore, in [CW97], defaults are weaker than here, being “only
applied when otherwise no unique selection could be performed”.

In the context of change-oriented versioning (CoV), the terms have entirely different
interpretations. Preferences are weights attached to options that are used for the heuristic
inference of a choice from an incomplete specification. Defaults are bindings created from

13 Here, we intentionally use the term “constraint” for the editing model exclusively.
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system-environment settings.
In [Mun+93], two additional related rule base concepts have been defined. First, a stability

is a logical expression determining choices for which the associated versions cannot be
changed on product level. Second, a validity determines which choices safely produce
valid or completed versions. Both concepts may be used for defining and guaranteeing the
consistency of released historical and logical versions.

Mapping Feature Models to Logic. The mapping of feature models to the specialized
rule base provided in Section 9.4.2 can be generalized to a mapping to propositional logical
formulas when confining to invariants. A so obtained mapping is equivalent to the semantic
descriptions provided in [SHT06].

In [Bat05], an additional group type, AND, is introduced, and all features except for the
root are forced to be contained in a group. Given that the feature model dialect used here
can be straightforwardly translated into the format used in [Bat05], the resulting mappings
to propositional logic are also equivalent.

In the formal introduction of feature models provided in [Ap+13b], requires/excludes
relationships are generalized into arbitrary logical expressions; apart from this, the described
mapping is semantically equivalent.

Feature Ambitions. A novel contribution is the concept of feature ambitions, partial
selections in the feature model which describe the logical scope of a change.

Partial feature configurations have been used for diverse purposes in the related work. For
instance, staged feature configurations [CHE04] are used for stepwise refinement during
application engineering and require additional consistency properties such as parent-child
co-selection. In contrast, feature ambitions as used here merely require consistency with the
feature configuration defined as choice; see Chapter 11.

In the flow chart example, most ambitions are of type (b) when referring to Figure 9.2,
i.e., one feature is selected positively. This matches well the paradigm of feature-driven
development (FDD) [PF01], where each increment should strictly associate with one feature.
Feature ambitions generalize from this by allowing for more complex scoping of changes
such as feature interaction or product-specific changes. Several related approaches lie
within the continuum between strictly FDD-like scope definition and feature ambitions. For
instance, in Feature Mapper [HKW08], one or more features may be positively selected.
Similarly, views are defined in CIDE [Käs+09].

Conversely, there exist related concepts having the same or different expressiveness
than feature ambitions, but reside at a lower level of abstraction by exposing configuration
options to the user. For instance, in UVM [WMC01], ambitions are represented as arbitrary
conjunctions of feature options occurring in a positive or negated form. In [Stă+16], a tool
relying on the partially filtered editing model by [WO14] is presented. On check-out, a
view is defined using a textual representation of the choice calculus [EW11]. In contrast to
feature ambitions, this formalism is situated at a lower level of abstraction but has a higher
expressiveness being fully equivalent to propositional logical expressions.
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Change Space and Visibility Forest. Both optimizing techniques presented above, the
change space and the visibility forest, are based on the observation that conjunctive forms of
ambitions repeatedly appear in the visibilities of elements added and removed in the same
iteration. Similar solutions for related problems can be found in the literature.

As reported in [WMC01], the EPOS system, on top of which UVM had been prototypi-
cally implemented, provides a data structure called visibility tree [Mun96]. In contrast to
the visibility forest presented here, these trees are not capable of reusing leaves by cross-
references, which still may lead to repeated duplication of option expressions derived from
the ambition. The strict tree structure may also become problematic when retrospectively
modifying ambitions; in contrast, the change space optimization presented here guarantees
that no ambition ever needs to be structurally copied internally.

9.9 Summary

The hybrid version model is at the heart of the new conceptual framework for the integration
of version control and SPLE based on MDSE. The version space base layer is defined by
means of an abstract metamodel and formal definitions for version definition and selection
concepts, including options and version rules. Relying on propositional logic, the base layer
demands for more abstract representations as soon as the user is involved. To this end, we
have introduced a mapping to revision graphs (for historical, extensional versioning) and to
feature models (for logical, intensional versioning). A preliminary editing model, which
was only sketched superficially in this chapter, combines both version dimensions.

Coming back to the requirements established in Section 2.3, both the historical and the
variant dimension are covered, such that R1 and R5 (revision graphs and feature models)
as well as R2 and R6 (extensional revision selection and intensional variant selection) are
satisfied by the individual version dimensions. As far as cross-cutting requirements are
concerned, a uniform mechanism (R15), which is aware of the overlap between historical
and logical versioning (R14), has been presented. The feature model may evolve in parallel
with the domain model (R13).

The change space and the data structure of visibility forests are two disjoint optimiza-
tions serving a similar purpose—avoiding duplication of visibilities created from the same
ambition. Despite their high similarity, it makes sense to use them both at a time, since
they have individual advantages that the opposite does not have. The change space allows
for retrospective amendments to ambitions, whereas visibility forests form a global data
structure that allows to uniquely identify visibilities; this becomes crucial as soon as several
copies of the repository (and the contained visibilities) need to be synchronized.

This chapter has been dedicated to the version management perspective on the conceptual
framework. In Chapter 10, we move the focus to the internal product representation
perspective and complete the presentation of the feature model’s dual role. The preliminary
editing model is revisited and formally specified in Chapter 11, making it consistency-
preserving. Revision graphs, as introduced here in Section 9.3, are extended in such a
way that they meet the requirements of multi-user operation in Chapter 12. Last, metadata
management, which was anticipated in this chapter, is explained in Chapter 13.
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Chapter 10

Extensible Extrinsic Product Model

Abstract

We move the focus from the version space to the product space, whose structure is also
defined using the formalism of Ecore class diagrams. The product space base layer –
which essentially arranges versioned elements that carry visibility annotations in a tree –
is instantiated in multiple places. First, a general representation for any kind of ordered
collection of product space elements is given. Then, a versioned representation for file
hierarchies is introduced, before concrete specializations for files – text files and EMF
model instances – are presented. Furthermore, a mapping between feature models and the
product space base layer is explained in order to complete the explanation of its hybrid
role in the conceptual framework. Generic algorithms are introduced for the operations of
matching, differencing, and (asymmetric two-way raw) merging. These algorithms rely on
element-specific sameness criterion definitions. Last, related concepts to extrinsic product
space representation as well as approaches to feature model versioning are compared.
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10.1 Characterization

In the previous chapter, we have explained how products are versioned—in an integrated way
that takes into consideration both historical evolution and logical variation. This chapter is
centered around the question what is versioned, and presents data structures and algorithms
for the transparently versioned contents of the repository. The presented product model is
extensible and extrinsic. These properties demand for further explanation.

Extensible. The framework makes only minimal assumptions about the contents of the
repository. In particular, it is assumed that the versioned information can be decom-
posed into a tree of fine-grained elements, each capable of carrying its own visibility.
This way, the described framework represents transparent annotative variability. These
assumptions are reflected in the product space base layer, which in turn is instantiated
by several product dimensions, e.g., versioned file hierarchies (consisting of text files
and EMF resources) and feature models as assumed in the default architecture. The
framework may be extended in order to support, e.g., diverse file content types or
entirely different product space models such as databases.
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Extrinsic. Inside the repository, the versioned contents are represented in a different way
than they are in the workspace. This way, the multi-version artifacts need not comply
to single-version well-formedness rules imposed by tools and interchange formats
used in the workspace. In particular, multi-version EMF models may violate single-
version metamodel rules, achieving unconstrained variability in the repository (see
design decision D6.1 on page 136). Workspace contents are presented intrinsically
(D6.2), making the approach tool-independent.

Figure 10.1 illustrates the connection between extrinsic and intrinsic representation by
an abstract and minimalistic example. The workspace, depicted on the right hand side,
comprises a copy of the feature model as well as a file hierarchy that includes three nested
folders and two files, a text file and a model file containing a simple state diagram. These
are the contents available for editing during the MODIFY phase. On the left hand side,
a corresponding repository-internal representation is shown. Every product dimension is
essentially a tree of elements, each of which may or may not carry an individual visibility
that refers to options of the superordinate version dimensions. The structure of the tree is
defined by several product space metamodels, which are refined further below. Sequences,
e.g., text files, are mapped to directed graphs. The figure contains several operations that
constitute building blocks of higher-level commands such as check-out and commit: IMPORT

and EXPORT convert between the intrinsic and extrinsic representation. MATCH, DIFF,
and MERGE are defined extrinsically, such that they may be used for the comparison of
workspace (after importing) and repository on the one hand, and of multiple copies of the
repository in distributed versioning (see Chapter 12) on the other hand.

The remainder of this chapter is organized as follows: First, the product space base layer
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Figure 10.1: relation between the extrinsic product representation used in the repository and the
intrinsic, workspace-level representation.
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is formally introduced by means of a generic metamodel and several function definitions.
Special emphasis is put on sameness criteria, which are used to match individual objects
of two copies of a concrete product dimension. Moreover, a generic multi-version repre-
sentation for ordered collections is discussed in Section 10.3. Next, two of those concrete
dimensions are presented: a versioned file hierarchy – which may comprise both text files
(cf. Section 10.5) and EMF model instances (10.6) –, and moreover, feature models in their
role as an additional product dimension. To this end, the feature metamodel introduced in
Section 9.4 is refined in Section 10.7. We return to the generic extrinsic representation in
Section 10.8, where data structures and algorithms for matching, differencing, and merging
diverged copies of a product space version are defined. Last, related work is presented.

10.2 Product Space Base Layer

Like the version space, the product space is organized along several dimensions, allowing
for a flexible repository architecture. The structure of each dimension in turn is defined by a
metamodel that extends the product space core metamodel. This in turn structurally defines
the product space base layer.

10.2.1 Structural Design

Figure 10.2 depicts a class diagram that refines the package core::product declared in Fig-
ure 9.5. A product dimension contains a tree of fine-grained (D18) versioned elements,
which in turn refer to a visibility from the visibility forest (not shown here, see Section 9.7).
Versioned elements carry a transaction number, which is relevant for collaborative version-
ing; see Section 12.3.1.

Root elements are directly contained by the dimension, whereas non-root elements have
a unique parent element. By cross-links, non-hierarchical dependency relationships such
as applied occurrences are represented. Both kinds of relationships are redefined for all

core::product

ProductDimension*

*

/allVersionedElements

(from core::mapping)
OptionExprisVisible(OptionBinding) : Tristate

isVisibleHierarchically(OptionBinding) : Tristate
isSame(other : VersionedElement) : Boolean

transactionId : Integer

VersionedElement

visibility
0..1

0..1 / hierarchical
Visibility

/roots

0..1 /dimension/parent0..1
/children*

/all
children*

/all
parents*

uuid : String

UUIDElement /cross
Links*

Figure 10.2: Ecore class diagram representing the product space core.
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individual product elements; unless stated otherwise, children corresponds to the values of
all containment, and crossLinks to non-containment references defined in instances of all
specializations of this abstract product space metamodel.

The operation isVisible applies the given option binding to the referenced visibility
and returns the result. The semantics of hierarchical visibility evaluation (see operation
isVisibleHierarchically and derived reference hierarchicalVisibility) is provided below.

Last, the polymorphic operation isSame is accessed during the comparison of two copies
of a product dimension. The operation is formally declared below, and its implementation
depends on the specific subclass of VersionedElement. In many cases, artificial string-valued
UUIDs are used here; for this purpose, the abstract base class UUIDElement is provided.

10.2.2 Operations on the Product Space

For our formal reasoning about the extrinsic representation of product dimensions, we
assume that the elements arranged in the hierarchy are taken from a base set P (which
corresponds to the values of the derived reference allVersionedElements):

P = {e1, . . . , eq} (10.1)

Furthermore, each versioned element is instance of a specific, non-abstract class that
corresponds to the name of the respective subclass of VersionedElement in the structural
view. This is here defined by the following function signature:

class : P → C (10.2)

Here and below, C denotes the domain of non-abstract classes defined in the extrinsic
repository metamodels.

The fact that the elements of the base set P are arranged in a tree is expressed by the
following function, which reflects the reference parent in the structural view:

parent : P → (P ∪ {ε}) (10.3)

Root elements of a product dimension do not have a parent element; in this case, the function
returns the null element ε.

In addition to parent/child relationship, we allow for cross-links between elements. In
concrete instantiations of the core model, these represent applied occurrences of elements.
The following relation is equivalent to the metamodel reference crossLinks:

crossLinks : P → P(P ) (10.4)

The functions class, parent, and crossLinks are, on the low product space layer,
version-insensitive. For specific version dimensions, in particular EMF models, however,
versioning of containment relationships or cross-links becomes relevant. This is achieved by
additional subclasses of VersionedElement organizing these links; see Section 10.6.1.

The notion of visibility must be understood by taking the semantics of the tree hierarchy
into consideration. Since a child element existentially depends on its parent element, the
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child’s visibility must be “at least as restricted as” the parent’s. It is this property that is
additionally satisfied by the hierarchical visibility v∗i of an element ei:

v∗i =

{
vi if parent(ei) = ε

vi ∧ v∗p otherwise, where ep = parent(ei)
(10.5)

This definition avoids repeated copies of visibility terms of parent elements to children,
such that visibility updates to the root of a sub-tree affect all direct and indirect contents.
Also, operations on the visibilities of the product space may skip a sub-tree in case its root
element need not be processed either.

According to the hierarchical (re-) definition of visibility, the new filter operator (previ-
ously introduced for UVM in Section 8.4) performs the following hierarchy-aware projection
on a given element set E using the specified choice c:

E|∗c = {ei ∈ E|v∗i (c) = true} (10.6)

As mentioned before, these definitions hold only for the extrinsic product space represen-
tation within the repository. The intrinsic representation of workspace contents, however, is
content-specific and therefore not covered by the base layer of the conceptual framework
(except for ordered collections, which are formalized in Section 10.3.2). We assume generic
operations to convert between the extrinsic and intrinsic representation:

– The operation IMPORT converts the currently available workspace contents into an element
set E conforming to the extrinsic definition. It is part of the higher-level operation COMMIT.

– The operation EXPORT, which is invoked during CHECKOUT, takes as input an element
set E – which is supposed to represent a single product version –, converts it into the
corresponding intrinsic representation, and makes this available in the workspace. This
involves dedicated well-formedness management, which is discussed in Chapter 13.

Last, operation CLONE creates an exact copy of an extrinsic element set E.

10.2.3 Sameness Criteria

During the operation COMMIT, it is necessary to compare two states of an (extrinsically
represented) product space. To this end, in Section 10.8, we specify generic matching and
differencing algorithms that rely on a comparison-based differentiation strategy (see design
decision D3). These algorithms make use of a two-valued predicate same (cf. polymorphic
operation isSame in Figure 10.2), which states whether or not two versioned elements part
of disjoint product spaces mutually correspond to each other.

same : P1 × P2 → {true, false}, P1 ∩ P2 = ∅ (10.7)

Sameness criteria are always applied locally in the hierarchy, such that a pair of elements
may be the same only in case their parent elements are the same:

same(ei, ej)⇒ same(parent(ei), parent(ej)) ∨ parent(ei) = parent(ej) = ε (10.8)
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Notice that the inverse implication is not required, such that the contents – i.e., children – of
“same” elements may be mutually different.

The exact semantics of this predicate depends on the concrete class of elements. In the
subsequent sections, we specify the predicate for concrete classes of the diverse product
space dimensions utilizing the Object Constraint Language (OCL; see Section 3.4.2). The
definitions assume that the elements to be compared are of the same class:

same(ei, ej)⇒ class(ei) = class(ej) (10.9)

In many cases, the sameness criterion relies on artificially generated, string-valued UUIDs.
Correspondingly, for subclasses of UUIDElement, the following operation is defined:

uuid : PUUID → S, PUUID ⊆ P (10.10)

By S, the domain of alphanumeric character strings is denoted.

10.3 Mapping Sequences to the Product Space Base Layer

After having explained the core mechanisms, we move onward to concrete product di-
mensions. As a first building block, ordered collections are presented here. Section 8.2.3
has described how version-aware ordered collections may be represented by multi-version
digraphs. This idea is adapted to the product model below.

10.3.1 Structural Design

A metamodel for multi-version ordered collections is depicted as class diagram in Fig-
ure 10.3. An ordered collection is defined by means of a vertex set (vertices, corresponding
to V in the formalization) and an edge set (edges, corresponding toE, respectively). Vertices
represent the applied occurrence of an elsewhere defined versioned element (cf. occurringEle-
ment) at a specific relative position in the collection. Each edge connects a source to a target
vertex. Both the occurrence of an element itself and the mutual order between occurrences
are subject to version control. Last, we define that vertices carry UUIDs, which are, however,
not persisted in the workspace.

Instances of this metamodel are used in specific product dimensions in several places
where ordered collections must be versioned. An example referring to text files – ordered
collections of lines – is provided in Section 10.5.3.

core::product::oc

OrderedCollection OCVertex

OCEdge

(from core::product)
UUIDElement*

*

1 1source target

occurrence 1

edges

vertices

(from core::product)
VersionedElement

Figure 10.3: Metamodel for multi-version ordered collections.
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10.3.2 Import and Export Transformations

Independently of concrete artifact types the user is confronted with in the workspace, we
here specify in a generic form the IMPORT and EXPORT transformations, employed during
commit and check-out, for ordered collections. Without loss of generality, we assume that
the workspace contains single-version sequences (cf. Section 8.1.2), which are translated
from and into multi-version digraphs (Section 8.2.3 and 8.2.4).

Import. Converting a non-versioned sequence ~S into an intensional multi-version di-
graph g∗ is straightforward and consists of two steps:

– Initialize the graph as a chain: g~S = chain(~S) (cf. (8.23) on page 145).

– Convert g~S : (V,E) into a multi-version graph: g∗~S = (V,E,R, vis), where vis(e) := â for
all e ∈ V ∪ E.

Here, â is the conjunctive form of the ambition specified by the user for commit, which is
assigned to all vertices and edges homologously. Moreover,R represents the current state
of the rule base.

Export. Converting between the repository and the workspace is comparably more compli-
cated. Here, a multi-version digraph g∗ has to be linearized into a single-version sequence.
The digraph may be arbitrarily shaped and may, in particular, contain cycles.

– Select a single-version view of the multi-version graph: g = g∗|c (cf. (8.38) on page 148).
This is usually achieved by a preceding filter step.

– Linearize the graph g into a sequence: ~S = linearize(g). (cf. Algorithm 8.1 on page 145).

Above, c denotes the tuple-represented choice inferred from the version specification made
by the user during check-out. The non-deterministic selection step included in Algorithm 8.1
is resolved using the framework’s a-posteriori product analysis mechanism by signaling
an order conflict; this is a subject of Section 13.3.1.

10.3.3 Sameness Criteria

The metamodel for ordered collections contains two non-abstract classes, OCVertex and
OCEdge, for which the sameness criterion formally introduced in Section 10.2.3 remains
to be defined. We here assume that vertices carry UUIDs, which can serve as sameness
criterion. The graph heuristic matching algorithm shown below explains how these UUIDs
are obtained.

Sameness Criterion 1 (OCVertex)— Two vertices are the same if their UUIDs are equal.
context OCVertex body isSame(other : OCVertex):
self.uuid = other.uuid

Sameness Criterion 2 (OCEdge)— Two edges are the same if their respective referenced
source and target vertices are the same.

context OCEdge body isSame(other : OCEdge):
self.source.isSame(other.source) and self.target.isSame(other.target)
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procedure OCMATCH(g∗1 : (V1, E1, V ER1, vis1), g∗2 : (V2, E2, V ER2, vis2))
M = ∅
for all v1 ∈ V1 do

e← v1.occurringElement
if @v1x ∈ V1

(
v1x 6= v1 ∧ v1x.occurringElement = e

)
then

V2same ← {v2 ∈ V2|same(v1, v2)}
if |V2same| = 1 then

v2 ← lone element of V2same

M ←M ∪ {(v1, v2)}
for all m : (v1, v2) ∈M do

M ←M∪ EXPANDPRED(v1, v2, g
∗
1 , g
∗
2 ,M)

M ←M∪ EXPANDSUCC(v1, v2, g
∗
1 , g
∗
2 ,M)

for all m : (v1, v2) ∈M do
if v1.uuid->oclIsUndefined() then

if v2.uuid->oclIsUndefined() then
uuid← generate new UUID
v1.uuid← uuid
v2.uuid← uuid

else
v1.uuid← v2.uuid

else if v2.uuid->oclIsUndefined() then
v2.uuid← v1.uuid

function EXPANDPRED(v1, v2, g
∗
1 , g
∗
2 ,M )

for all {v1p ∈ V1|(v1p, v1) ∈ E1} do
for all {v2p ∈ V2|(v2p, v2) ∈ E2} do

if same(v1p.occurringElement, v2p.occurringElement))∧
@m : (v1x, v2x) ∈M |v1x = v1p ∨ v2x = v2p then

M ←M ∪ {(v1p, v2p)}
M ←M∪ EXPANDPRED(v1p, v2p, g

∗
1 , g
∗
2 ,M)

return M
function EXPANDSUCC(v1, v2, g

∗
1 , g
∗
2 ,M )

for all {v1s ∈ V1|(v1, v1s) ∈ E1} do
for all {v2s ∈ V2|(v2, v2s) ∈ E2} do

if same(v1s.occurringElement, v2s.occurringElement)∧
@m : (v1x, v2x) ∈M |v1x = v1s ∨ v2x = v2s then

M ←M ∪ {(v1s, v2s)}
M ←M∪ EXPANDSUCC(v1p, v2p, g

∗
1 , g
∗
2 ,M)

return M

Algorithm 10.1: Heuristic Matching of two multi-version ordered collections.

10.3.4 Heuristic Graph Matching

Since graphs imported from single-version collections, represented as sequences in the
workspace, do not carry UUIDs, it becomes necessary to infer them by comparison. To this
end, a heuristic graph matching strategy, which takes two instances of OrderedCollection
as input, is formalized by means of an algorithm. For each vertex matching identified, it is
ensured that the corresponding vertices carry equal UUIDs. This matching phase is executed
in advance to difference calculation; see Section 10.8.3.
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Algorithm 10.1 takes as input the two multi-version graphs that represent versioned
sequences extrinsically1. The intermediate result of the algorithm is a matching, represented
as a set of tuples, each containing a pair of matching vertices from the first and second version.
The underlying idea is a generalization of Heckel’s Algorithm (see Section 4.3.3) from
sequence comparison to graph comparison. The heuristics underlying Heckel’s Algorithm
suit well the particular graph matching scenario considered here, since the graphs are created
by chaining and unionizing single-version sequences; this produces rather weakly branched,
chain-like graphs. Like in the original form of Heckel’s Algorithm, a two-step procedure is
applied: First, vertices that uniquely refer to the same element in both versions are identified.
Second, immediate predecessors and successors of matched vertices are also matched in
case they refer to the same elements. The second step is applied repeatedly until no more
“same” predecessors or successors are retrieved. 2

After having been matched, vertices get the corresponding UUID of the opposite version
assigned. In case none of the vertex versions carries a UUID, a new identifier is artificially
generated and assigned to both versions.

10.3.5 Example

Figure 10.4 illustrates a concrete application of Algorithm 10.1 to an abstract example, in
which it is assumed that the upper graph represents an extrinsically represented version of
a collection selected for check out, whereas the lower graph corresponds to an imported
collection. Vertex labels represent the elements occurring in the multi-version order defined
by the graph. Visibilities, being irrelevant for matching, have been omitted.

Solid blue lines represent vertices matched in the first phase, i.e., which have the same,
unique content in both versions. The correspondence between the rightmost occurrences
of J is established by expanding the matching of S to predecessors. Conversely, recursive
EXPANDPRED/EXPANDSUCC calls produce matches referring to vertices with contents T ,
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Figure 10.4: Example input and output for heuristic graph matching.

1 Here and in algorithms provided subsequently, expressions written in a typewriter font comply to OCL.
2 For optimization, both phases can also be iterated until the matching does not grow. Furthermore, to increase
the number of matchings in the first phase, the comparison window might be increased from one to two elements.
Both optimizations were investigated and implemented in [Schi17].
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J , and X . In the non-optimized version of the algorithm, one additional pair of instances
of T remains unmatched as there remain no equivalent predecessors or successors, whose
expansion would reach this pair.

Having been imported from an intrinsic representation, the vertices of the modified version
do not initially carry UUIDs. For matching elements, they are copied from the checked-out
version, whereas for inserted elements, new UUIDs (10 or greater) are generated.

10.4 Mapping File Hierarchies to the Product Space Base Layer

Although having been referred to as domain model in the overview in Section 9.1.2, it would
be a too idealistic assumption for the primary versioned artifact to be defined by one single
model instance in the workspace. Rather than this, it must be taken into account that realistic
model-driven projects consist of several heterogeneous interconnected artifacts (D19). In
this section, a metamodel for versioned file hierarchies is presented.

Assumptions. The applicability is potentially restricted by the following items:

– The names of files and folders are stable and its contents are never moved; otherwise, this is
treated as a deletion and insertion of a file and all of its contents. This restriction is due to
the fact that we cannot make the premise that the underlying workspace file system assign
UUIDs to all files and folders.

– The content type of a file is stable in the sense that, e.g., a text file is never converted into a
model file, or vice versa.

10.4.1 Structural Design

As shown in the class diagram in Figure 10.5, files and folders are organized hierarchically,
supported by the Composite design pattern [Gam+95]. The abstract class Resource defines
a name for both files and folders. Class File is abstract and not further decomposed here;
it is used as a base class for modeling different concrete file types in subsequent sections.
References rootResources and contents determine the values of the derived references roots
and children introduced in Section 10.2.1.

file

Resource

File

name : String

Folder

contents
* *

FileHierarchy

roots

(from core::product)
ProductDimension

(from core::product)
VersionedElement

rootRes
ources

Figure 10.5: Metamodel for versioned file hierarchies. Based on [Schwä+16, Figure 5].
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10.4.2 Sameness Criteria

Due to the locality of the predicate same in the element hierarchy, as well as due to the
fact that file and folder names must be unique inside a parent folder (in usual file systems),
the sameness for both files and folders can be broken down to the equality of their names
defined in the abstract class VersionedResource:

Sameness Criterion 3 (VersionedResource)— Resources are the same if their names
match.

context VersionedResource body isSame(other : VersionedResource):
self.name = other.name

10.5 Text Files

A first concrete instantiation of versioned files is multi-version text files, which are essentially
represented as ordered collections of text lines. Extrinsically, texts are represented as models
according to design decision D11.

10.5.1 Structural Design

The metamodel for multi-version text files, shown in Figure 10.6, extends the basic file
metamodel and utilizes multi-version ordered collections as introduced in Section 10.3.
A text file comprises a base set of lines, whose versioned order is contained as an instance
of OrderedCollection; multiple occurrences of a line with the same content are handled by
reusing the same line instance as occurrences of multiple collection vertices.

Assumptions. The object granularity is fixed to text lines here. On the one hand, this may
cause pseudo-conflicts when it comes to concurrent modifications of disjoint regions of the
same text line. On the other hand, large blocks of text lines are not consolidated into a single
versioned element, which would provide for a better scalability.

10.5.2 Sameness Criterion

The list of sameness criteria is extended by a trivial item:

file::text

TextFile

Line

content : String

*

(from core::product)
VersionedElement

(from file)
File

lines

(from core::oc)
OrderedCollection

lineOrder

1

Figure 10.6: Metamodel of multi-version text file representation.
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Figure 10.7: Example of multi-version representation of a text file.

Sameness Criterion 4 (Line)— Two lines are the same if their contents are equal.

context Line body isSame(other : Line):
self.content = other.content

10.5.3 Example

The example depicted in Figure 10.7 demonstrates how an instance of the metamodel
shown in Figure 10.6 is capable of representing multiple versions – here, two revisions
– of the same text file extrinsically. Ensuing from the base contents – three lines, A, B,
and C – the second revision is derived by removing the trailing C and by adding another
occurrence of A at the beginning of the text file. Through the mechanisms explained in
Chapter 9, unmodified contents obtain the visibility r1, inserted elements r2, and deleted
elements r1 ∧ ¬r2, respectively. Option expressions are represented in a condensed form in
Figure 10.7. The example demonstrates that new occurrences (here, of line A) are created
rather than duplicating identical line contents. Furthermore, by deleting the occurrence of C,
the adjacent edge (B,C) is deleted, too.

10.6 EMF Model Instances

In Sections 6.2 and 6.3, it was argued that line-oriented representation of model instances –
e.g., based on the OMG XMI standard – is not the adequate representation for the operations
of VC and of SPLE, respectively. This makes it indispensable to introduce a structured
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multi-version model representation which we here refer to as extrinsic. Technically speaking,
in the repository, models are not represented as instances of their metamodel, but as instances
of a universal, version-aware metamodel for EMF instances.

Assumptions. Firstly, the extrinsic representation allows to add visibilities to model
elements. Secondly, EMF well-formedness rules would be too restrictive for representing
multi-version models in a superimposed way. In particular, the following restrictions hold
for the intrinsic, and are suspended by the extrinsic representation:

– The location of an object in the containment hierarchy of an EMF model must be fixed. This
disallows storing the result of a move operation in a superimposed form without creating
multiple copies of the object.

– The multiplicities of structural features are defined with single-version semantics in the
metamodels. In particular, it is not possible to represent multiple values for single-valued
attributes or references. This, however, is crucial when allowing rename operations.

– The class of an object is fixed after creation. Although model editing tools do not usually
offer a command “change class”, this should be taken into account when supporting co-
evolution of model and metamodel. For instance, a new revision of a metamodel may be
organized under a different package URI (see below).

As a consequence, the subsequently presented extrinsic EMF metamodel incorporates many
design decisions such as a flattened containment tree, versioned metadata (i.e., classes
and structural features), and fine-grained versioning (i.e., each individual value of every
structural feature carries its own visibility).

10.6.1 Structural Design

The metamodel3 shown in Figure 10.8 reflects these considerations by representing not
only objects but every possibly varying detail of objects, such as their classes and values of
structural features, as versioned elements. Furthermore, since the location of an object in
the EMF containment hierarchy is allowed to vary, the containment tree is flattened, such
that an EMF resource is extrinsically interpreted as a flat set of objects.

References to classes and structural features are further divided up into internal and
external. Here, internal means that the model is co-versioned with its metamodel, such that
the “instance of” relationship can be represented as an object link extrinsically. In the case of
external class and feature definition – which is the standard case, assuming that metamodels
are typically contained in separate resources outside the version control – , the reference to
metadata is made indirect by storing implicit addresses such as package URI, class name,
and feature name, which in turn refer to metamodels and models of the intrinsic workspace.

Similarly, yet orthogonally to the above distinction, values for references can be defined in
an internal or external way. An internal reference value targets a versioned object available
in the same resource set (i.e., file hierarchy), whereas an external reference value maps
an object stored elsewhere in the local file system by its persistent URI. The values of

3 This metamodel was heavily influenced by the metamodels underlying the tools BTMerge [SUW13b] (which
addresses three-way merging) and FAMILE [BS12b] (an MDSPLE tool based on annotative variability).
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Figure 10.8: Metamodel of multi-version EMF model representation. Based on [Schwä+16, Fig-
ure 6].

containment references are made explicit by subclass ContainmentRefVal. In turn, attribute
values are always serialized in their custom string-valued literal representation.

In case the metamodel defines a multi-valued structural feature as ordered, the versioned
set of values is supported by a valueOrder using the multi-version representation of sequences
described in Section 10.3. This order is taken into consideration when importing or exporting
the corresponding single-version collection.

10.6.2 Sameness Criteria

We define sameness criteria for all concrete subclasses of VersionedElement located in the
package file::emf. To begin with, objects are matched based upon their UUIDs. Internal and
external class references are matched by their metadata expressed. Accordingly, feature
references are handled. Last, the sameness criteria for structural feature values depend on
the specific value representation.

Sameness Criterion 5 (Object)— Two objects are the same if their UUIDs are equal.

context Object body isSame(other : Object):
self.uuid = other.uuid

Sameness Criterion 6 (ExternalClassRef )— Two external class references are the same if
their referenced package URI and class name are equal.

context ExternalClassRef body isSame(other : ExternalClassRef):
self.packageUri = other.packageUri and self.className = other.className
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Sameness Criterion 7 (InternalClassRef )— Two internal class references are the same if
the internal objects they are represented by are the same.

context InternalClassRef body isSame(other : InternalClassRef):
self.classObj.isSame(other.classObj)

Sameness Criterion 8 (ExternalFeatureRef )— Two external structural feature references
are the same if their names are equal.

context ExternalFeatureRef body isSame(other : ExternalFeatureRef):
self.featureName = other.featureName

Sameness Criterion 9 (InternalFeatureRef )— Two internal structural feature references
are the same if the internal objects they are represented by are the same.

context InternalFeatureRef body isSame(other : InternalFeatureRef):
self.featureObj.isSame(other.featureObj)

Sameness Criterion 10 (AttributeValue)— Two attribute values are the same if the literals
serialized from them are equal.

context AttributeValue body isSame(other : AttributeValue):
self.literal = other.literal

Sameness Criterion 11 (ExternalRefVal)— Two external reference values are the same if
their target objects’ URIs are equal.

context ExternalRefVal body isSame(other : ExternalRefVal):
self.targetUri = other.targetUri

Sameness Criterion 12 (InternalRefVal)— Two internal (containment or non-containment)
reference values are the same if the referenced objects are the same.

context InternalRefVal body isSame(other : InternalRefVal):
self.target.isSame(other.target)

10.6.3 Example

In Figure 10.9, a simplistic example of a state diagram is shown in both intrinsic – i.e., as
instance of its regular single-version metamodel – and extrinsic – i.e., as instance of the
extrinsic EMF metamodel introduced in this section – form. In the latter case, each model
element is represented as an instance of Object; its class is versioned externally. Furthermore,
the values of the structural features – names of both states and transition, source and target
of the transition – are represented as individual fine-grained versioned elements.

The example demonstrates that the extrinsic representation is finer grained than the
intrinsic. We have refrained from using visibilities when compared to the example shown in
Figure 10.7. Furthermore, there exists no ordered collection in this example, which would
have resulted in a considerably larger extrinsic model representation.
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Figure 10.9: Example of extrinsic EMF model representation.

10.7 Mapping Feature Models to the Product Space Base Layer

After having presented feature models as a part of the version space in Section 9.4, we here
revisit them in their dual role as an additional product dimension.

There are two reasons why it would be inadequate to reuse an existing single-version
metamodel for feature models and to extrinsically apply the multi-version EMF represen-
tation defined in the previous subsection to it. First, in addition to the syntactic structure,
the semantics, which is expressed by low-level rule base concepts, must be managed, too.
Second, an individual multi-variant feature metamodel provides for more precise conflict
detection and resolution; see Section 13.3.3.

Assumptions. The subsequently presented metamodel and sameness criteria take into
account that the following evolutionary modifications have to be supported:

– insertion and deletion of features, groups, and requires/excludes relationships;

– renaming of features;

– change of the mandatory/optional state of features;

– deletion of features;
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– changes in the parent/child hierarchy;

– definition of a different root feature;

– changes to the feature set contained in a group.

As a consequence, all pieces of information potentially changed through such modifications
should be version-aware. Therefore, even ordinary attributes like name, which suffice for
single-version representation, have been refined into classes – inheriting from VersionedEle-
ment in order to carry a visibility – in the multi-version format.

10.7.1 Structural Design

In Figure 9.10, a simplified view on the feature metamodel was provided. The class diagram
presented in Figure 10.10 refines this view, fading out version space related details such as
references to the base layer.

Moreover, parent/child relationships, group memberships, as well as the decision which
feature represents the root of the feature model, are variable. This is reflected in additional
classes such as ChildRelationship, GroupMembership, and RootRelationship. Motivated
by unconstrained variability, the multi-variant representation permits that features be part
of multiple groups or that they have multiple parents. Similarly to the extrinsic EMF
model representation, the hierarchy of feature models is flattened in their multi-version
representation.

featuremodel
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features

(from core::version)
VersionDimension

Feature
FeatureGroup
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XOR
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Requires

Excludes
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Figure 10.10: Product centric view on the metamodel for multi-version feature models. Based
on [Schwä+16, Figure 8].
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The existence of the versioned element class Deleted is justified by the fact that deleted
features are only graphically hidden in the workspace feature model (see Section 13.2.4);
therefore, deletions should not be made effective by the filtering mechanism, but rather, the
information in which revision a feature has been deleted must be versioned.

10.7.2 Sameness Criteria

Features and groups are matched based upon their UUIDs. Root and child relationships
as well as group memberships are the same in case their referenced root, child, or member
value correspond. Moreover, dependencies are matched based on the sameness of their
dependingFeature. Display names are matched by name, whereas versioned Mandatory and
Deleted flags have a trivial sameness criterion since there is only one such object contained
per feature. (Recall that sameness is local to the element hierarchy.)

Sameness Criterion 13 (Feature)— Two features are the same if their UUIDs are equal.

context Feature body isSame(other : Feature):
self.uuid = other.uuid

Sameness Criterion 14 (RootRelationship)— Two root relationships are the same if their
referenced features are the same.

context RootRelationship body isSame(other : RootRelationship):
self.root.isSame(other.root)

Sameness Criterion 15 (ChildRelationship)— Two child relationships are the same if their
referenced children are the same.

context ChildRelationship body isSame(other : ChildRelationship):
self.childFeature.isSame(other.childFeature)

Sameness Criterion 16 (FeatureGroup)— Feature groups (instances of OR or XOR) are
the same if their UUIDs are equal.

context FeatureGroup body isSame(other : FeatureGroup):
self.uuid = other.uuid

Sameness Criterion 17 (GroupMembership)— Two group memberships are the same if
their referenced members are the same.

context GroupMembership body isSame(other : GroupMembership):
self.member.isSame(other.member)

Sameness Criterion 18 (Dependency)— Two feature dependencies are the same if their
depending features are the same.

context Dependency body isSame(other : Dependency):
self.dependingFeature.isSame(other.dependingFeature)

Sameness Criterion 19 (DisplayName)— Display names are the same if their texts are
equal.
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context DisplayName body isSame(other : DisplayName):
self.name = other.name

Sameness Criterion 20 (Mandatory)— Flags for mandatory features are always the same.

context Mandatory body isSame(other : Mandatory): true

Sameness Criterion 21 (Deleted)— Two deletion flags are always the same.

context Deleted body isSame(other : Deleted): true

10.8 Matching, Differencing, and Merging

After having portrayed two different concrete product dimensions, let us now return to
the product space base layer, focusing on three low-level VCS operations that are used as
building blocks of CHECKOUT, COMMIT, et cetera.

The editing model semi-formally introduced in Section 9.5.1 implicitly includes the
problems of matching, differencing, and merging two copies of an extrinsically represented
repository (cf. steps 2 and 6 in the COMMIT phase). After having concretized the representa-
tion of different product dimensions, we are now able to define a data structure as well as
generic algorithms for matching, differencing, and asymmetric two-way raw merging.

10.8.1 Structural Design

In Figure 10.11, a metamodel for matchings and differences of two product space instances
is depicted. For the two-way comparison, two versions left and right are assumed, where the
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Figure 10.11: Metamodel for matchings, differences, and write sets.
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function MATCH(leftPs, rightPs)
psm← new ProductSpaceMatching
for all d ∈ {1, . . . , number of product dimensions} do

pdm← new DimensionMatching
pdm.left← leftPs.dimensions.at(d)
pdm.right← rightPs.dimensions.at(d)
rightMatches← ∅
for all l ∈ pdm.left.roots do

leftMatch← false
for all r ∈ pdm.right.roots do

if class(l) = class(r) ∧ same(l, r) then
pdm.matchings← pdm.matchings∪{MATCHREC(l, r)}
leftMatch← true
rightMatches← rightMatches ∪ {r}
break

if ¬leftMatch then
pem← new ElementMatching(l, ε)
pdm.matchings← pdm.matchings∪{pem}

for all r ∈ (pdm.right.roots \ rightMatches) do
pem← new ElementMatching(ε, r)
pdm.matchings← pdm.matchings∪{pem}

psm.dimensionMatchings← psm.dimensionMatchings∪{pdm}
return psm

function MATCHREC(l, r)
pem← new ElementMatching(l, r)
rightMatches← ∅
for all lc ∈ l.children do

leftMatch← false
for all rc ∈ r.children do

if class(lc) = class(rc) ∧ same(lc, rc) then
if class(lc) = class(rc) = OrderedCollection then

GRAPHMATCH(lc, rc) . Algorithm 10.1
pem.subMatchings← pem.subMatchings∪{MATCHREC(lc, rc)}
leftMatch← true
rightMatches← rightMatches ∪ {rc}
break

if ¬leftMatch then
cpem← new ElementMatching(lc, ε)
pem.subMatchings← pem.subMatchings∪{cpem}

for all rc ∈ (r.children \ rightMatches) do
cpem← new ElementMatching(ε, rc)
pem.subMatchings← pem.subMatchings∪{cpem}

return pem

Algorithm 10.2: Generic matching for two given product space versions.
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difference is calculated under the assumption that left is more recent than right. 4

A product space matching consists of a matching of mutually corresponding dimensions.
Each dimension matching in turn defines a tree of element matchings, each referring to a
versioned element from the left and/or right version. In case an element does not have a
matching partner in the opposite version, the corresponding reference is left unset.

Differences represent the same information as matchings, but in a further processed
form. An instance of ProductDimensionDifference refers to inserted and deleted sub-trees of
versioned elements. These differences are organized in a flat list rather than hierarchically as
in the corresponding matching. In this structural representation, a write set – semi-formally
introduced in Section 9.6.2 – is a product dimension difference decorated with an ambition
based on which the visibilities of inserted and deleted elements are to be updated.

10.8.2 Generic Matching Algorithm

Usually, a matching is computed based on two related versions of the same artifact, here,
product space. Based upon the predicate same, we are now able to give a specification of a
generic matching operation, which is shown in Algorithm 10.2.

The algorithm proceeds as follows: First, it is assumed that equivalent product dimensions
are matched by position5. Then, the sets of root elements of both versions are compared
in a pair-wise way. As soon as the sameness criterion holds for a pair, this is recorded as a
matching. In addition, unmatched elements are captured as matchings with a missing left
or right side. In the case of ordered collections, Algorithm 10.1 enhances the elements of
both versions of the graph with UUIDs. Function MATCHREC describes a recursive descent,
which is applied for the children sets of matched elements.

10.8.3 Generic Differencing Algorithm

As mentioned before, differences can be derived from given matches. In the generic
Algorithm 10.3, a product space matching is converted into a product space difference, and so
are contained product dimension matchings transformed into product dimension differences.
In contrast to the matching, the structure of referenced elements is not hierarchical, but each
detected modification is represented as an instance of the references insertions and deletions
directly ensuing from the corresponding dimension difference. By convention, insertions
refer to the left, and deletions to the right version only.

10.8.4 Generic Asymmetric Two-way Raw Merging

The product-level two-way merge operation defined in Algorithm 10.4 relies on two assump-
tions: First, one of the copies to be compared, namely the right version, is considered as a
“master” product space, such that differences are intended to be copied from left to right, but
not vice versa (raw merging). Second, deletions are ignored because they are made effective
not by modifying the contents of the version dimensions, but by updating the visibilities of

4 This convention is assumed in many model comparison tools including EMF Compare; see Section 6.2.1.
5 This implies that product dimensions cannot be dynamically added and removed in the course of the MODIFY

step.
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function DIFF(psm)
psDiff ← new ProductSpaceDifference
for all pdm ∈ psm.dimensionMatchings do

pdDiff ← new ProductDimensionDifference
for all pem ∈ pdm.matchings do

if pem.left = ε then
pdDiff .deletions← pdDiff .deletions∪{pem.right}

else if pem.right= ε then
pdDiff .insertions← pdDiff .insertions∪{pem.left}

else
DIFFREC(pdDiff , pem)

psDiff .dimensionDiffs← psDiff .dimensionDiffs∪{pdDiff }
return psDiff

procedure DIFFREC(pdDiff , pem)
for all cpem ∈ pem.subMatchings do

if cpem.left= ε then
pdDiff .deletions← pdDiff .deletions∪{cpem.right}

else if cpem.right= ε then
pdDiff .insertions← pdDiff .insertions∪{cpem.left}

else
DIFFREC(pdDiff , cpem)

Algorithm 10.3: Generic differencing based on a given product space matching.

affected elements as described in Section 9.5.1. This way, this special asymmetric type of
two-way raw merge algorithm effectively realizes what has been informally described as
“append inserted elements to the product space”.

In contrast to the previous operations, Algorithm 10.4 contains more informal steps since
its details can hardly be specified on a purely conceptual level without making assumptions
about the dimension-specific implementation of this operation. Insertions are transferred
by finding the corresponding location – i.e., the containing structural feature of the parent
element – in the right version and creating a copy of the inserted element.

procedure MERGE(leftPs, rightPs, psDiff , psMatch)
for all d ∈ {1, . . . , number of product dimensions} do

leftDim← leftPs.dimensions.at(d)
rightDim← rightPs.dimensions.at(d)
pdMatch← psMatch.dimensionMatchings.at(d)
pdDiff ← psDiff .dimensionDiffs.at(d)
for all leftIns ∈ pdDiff .insertions do

leftParent← leftIns.parent
rightParent← find match for leftParent in pdMatch
sf ← structural feature by which leftParent contains leftIns
rightIns← create copy of leftIns
resolve cross-links in contents of rightIns
add rightIns as new value to the structural feature sf of rightParent

Algorithm 10.4: Generic asymmetric two-way raw merging.
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10.9 Related Work

The concepts presented in this chapter have their equivalences mainly in the field of MD-
SPLE, but further specific algorithms are also VCS-related. Below, we list approaches
offering similar solutions for versioned file hierarchies, extrinsic model representation, and
versioned feature models. Furthermore, approaches belonging to the category of transforma-
tional variability are surveyed, as in this line of research, related problems are solved with
largely different techniques.

Versioned File Hierarchies. Here, a metamodel for versioned file hierarchies was con-
tributed; this enables version management for entire file hierarchies, explicitly supporting
two content types: plain text files and model resources complying to the Eclipse Modeling
Framework. Some related approaches support similar mechanisms.

The Leviathan file system [Hof+10] incorporates a toolchain-agnostic variability man-
agement solution for hierarchies of source code files containing preprocessor annotations.
Based on a variant definition specified by the user, the presented file contents are filtered.
To this end, low-level system calls such as mount, open, read, or write, are re-implemented
with a variability-aware semantics. In contrast to our approach, there exists no workspace
where the filtered contents are temporarily made available, but all operations directly alter
the underlying multi-variant representation through the filter.

Similarly, Rational MultiVersion File System6 (MVFS) allows to access versioned file
hierarchies through a (read-only) filter. The solution has been implemented at operating
system level, such that every change to the filter requires a re-mount. Nevertheless, this is
considered as the most general solution towards versioned file hierarchies.

ICE [ZS97] is equipped with a virtual file system whose back-end relies on C preprocessor
variability. Rather than re-implementing system calls as done in the Leviathan and Rational
MultiVersion systems, ICE relies on a version management layer on top, which is part of
the configuration management toolchain.

Multi-Version Sequences. The idea of representing multi-version sequences as graphs
is not unique in the literature. In [SBK88], a multi-version text file is represented as a set
of threads—ordered paths of text fragments, which may in turn be shared among different
threads. Effectively, the superimposed structure corresponds to a directed graph.

[EWC13] introduce a generic intensional versioning concepts for directed graphs based
on the choice calculus [EW11]. In addition to the structural representation, many graph
algorithms are translated into a variability-aware form, such that they operate on multi-
variant graphs. Sequence linearization, however, is not covered by this partially filtered
approach.

Graph Comparison Algorithms. The matching strategy shown in Algorithm 10.1 assumes
a directed graph whose specific properties – connectedness, sparseness, weak branching,
and potential cyclicity – are due to the fact that the graph versions to be compared have been
created from a superimposition of single-version sequences.

6 http://www-01.ibm.com/support/docview.wss?uid=swg21230196

http://www-01.ibm.com/support/docview.wss?uid=swg21230196
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Related to this algorithm are generic graph matching methods, which are divided up into
exact and non-exact algorithms [Con+04], as well as heuristics such as similarity flooding
[MGMR02]. These algorithms are more general and well-optimized, but not enough specific
to the here discussed multi-version sequence matching problem.

Extrinsic Multi-Version Model Representation. The extrinsic representation of EMF
model instances presented here relieves multi-version model instances from single-version
metamodel restrictions. Related approaches have their origins both in MDSPLE and in
model version control.

In [Wes14], an extrinsic representation for superimposed EMF model instances has
been proposed: versioned model graphs. Although originally intended for three-way
model merging, this structure can be generalized into arbitrary multi-version scenarios
by transitioning from extensional to intensional versioning (cf. Section 8.2.4). Merged
model graphs also consider that the class as well as the container of an object may vary;
a design decision that has been transferred to the extrinsic EMF metamodel presented in
Section 10.6.1.

The idea of representing models not as instances of their regular metamodel but of a
generic metamodel that allows to overcome context-free restrictions such as cardinalities,
was investigated in a more general form in the context of deep modeling [AK15], where
an explicit distinction between a linguistic and an ontological metamodel is made. On the
linguistic level, models may violate metamodel constraints; the ontological compliance
check is orthogonal and optional.

Several approaches aim at overcoming metamodel restrictions – in particular, the mul-
tiplicity of single-valued structural features – with virtual extensions to a multi-version
domain model, which is represented as an ordinary intrinsic metamodel instance. For
instance, the MDSPLE tool FAMILE offers alternative mappings [BS16c], which are physi-
cally contained in an explicit mapping model (cf. Section 6.1.1). Similarly, in the context of
MVC, the tool AMOR [Alt+08] represents alternative values for the resolution of three-way
merge conflicts as model annotations.

Versioned Feature Models. The refined feature metamodel presented here offers fine-
grained revision control for feature models in the sense that every detail – feature names,
parent/child relationships, dependencies, et cetera – are allowed to evolve. Related ap-
proaches to feature model versioning have different individual properties.

As anticipated in Section 6.3.2, hyper feature models [SSA14a] add an individual revision
graph to each feature. This way, however, only the connection to the product space (here,
model deltas) is versioned, but not the properties (such as name, optionality, etc.) of the
feature itself.

Transformational Variability. The conceptual framework presented here is an example of
the usage of annotative variability to manage fine-grained model versioning. In the literature,
there are representatives of transformational variability to organize the multi-version domain
model.



216 Chapter 10 Extensible Extrinsic Product Model

DeltaEcore [SSA14b] is a delta-oriented language for model-driven transformational
variability. The approach distinguishes between two types of deltas, which are explicitly
written in a delta dialect that must be defined in advance. Model-level deltas constitute a
natural combination of transformational variability and forward deltas. Yet, using (dialects
of) explicit delta languages requires to deviate from the actual modeling language (see
Section 7.1.4). In more recent research, it was attempted to mitigate the extent of explicit
user effort by inferring delta dialects as well as evolution deltas by change recording
[Wil+17].

In DeltaEcore, deltas are connected to features of the feature model. In contrast, the tool
SiPL [Pie+15] allows for a more general connection to the version space by defining presence
conditions for deltas. Furthermore, as already explained in Section 6.1.2, product-level
deltas are deduced by model comparison rather than being hand-written.

10.10 Summary

The conceptual framework presented in this thesis makes a general distinction between a
version space, which has been the subject of the preceding chapter, and a product space,
which has been presented in the current chapter. In general, the framework makes only few
assumptions about the structure of the product space; it is supposed to consist of a tree of
elements, each capable of carrying a visibility. Furthermore, for each type of element, a
sameness criterion is defined, which is used for comparing, differencing, and merging two
versions of a product space—corresponding algorithms have been provided at the end of
this chapter.

Two concrete version dimensions have been investigated. A versioned file hierarchy may
reflect an arbitrary cut-out of a file system. Supported file types comprise plain text and
EMF files, but new types such as XML can be added to the framework retrospectively. The
second dimension corresponds to the feature model, which also forms the intersection set
between version space and product space. This way, the extensible product space satisfies
the requirement of generality (cf. R11 from Section 2.3).

Both multi-version EMF models and feature models are represented inside the repository
in an extrinsic way; their representation differs from the workspace – where automatically
derived contents (R9) can be edited using single-version tools (R10) – inasmuch as they
allow for unconstrained variability, such that fine-grained revision and variant control (cf.
R16) is supported.

The algorithms MATCH, DIFF, and MERGE, as well as the translation operations IMPORT

and EXPORT are taken up in the subsequent Chapter 11, where the consistency-preserving
dynamic editing model of the conceptual framework is formally defined. Furthermore, in
Chapter 13, mechanisms for ensuring the well-formedness of product space artifacts to be
exported from the extrinsic representation into the single-version workspace are presented.
The metamodels presented in this chapter also serve as foundation for the model-driven
implementation of the tool SuperMod explained in Chapter 14.
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Chapter 11

Consistency-Preserving
Dynamic Editing Model

Abstract

The antagonists of the conceptual framework, namely the repository, which combines
version space and product space, as well as the workspace, where single-version artifacts
are organized, are combined by a filtered editing model. This editing model is dynamic
inasmuch as it allows for different kinds of evolution: The feature model and the domain
model may be edited concurrently. Features, which define the workspace contents or the
scope of the current change – represented by the ambition –, may be introduced or deleted.
Furthermore, the ambition may be revised until commit. The dynamism of this filtered
editing model raises consistency problems concerning the evolving relationships between
the version space, the choice, the ambition, and the modified workspace contents. In this
chapter, nine consistency constraints are formalized based on the version space base layer.
Furthermore, three consistency-preserving algorithms for the workspace operations check-
out, commit, as well as for a new operation, migrate, are presented. Last, a generalized
editing model, whose amount of dynamism can be adjusted by the user, is sketched.

Contents

11.1 Problem Statement — 218

11.1.1 Static vs. Dynamic Filtered Editing — 219

11.1.2 Unproblematic Iterations of Dynamic Filtered Editing — 220

11.1.3 Consistency Violations by Example — 220

11.1.4 General Evolution Scenario — 222

11.2 Dynamism-Aware Consistency Constraints — 224

11.2.1 Check-Out — 224

11.2.2 Modify — 225



218 Chapter 11 Consistency-Preserving Dynamic Editing Model

11.2.3 Commit — 225
11.2.4 Migrate — 226
11.3 Consistency-Preserving Algorithms — 227

11.3.1 Check-Out — 227
11.3.2 Modify — 228
11.3.3 Commit — 230
11.3.4 Migrate — 232
11.4 Automatic and Consistent Revision Graph Management — 234

11.4.1 Check-Out — 234
11.4.2 Commit — 235
11.4.3 Migrate — 235
11.5 Examples — 236

11.5.1 Unobtrusive and Consistent Dynamic Filtered Editing — 236
11.5.2 Consistency Violations Formally Revisited — 238
11.5.3 Inapplicable Migration — 240
11.6 Generalized Editing Model — 242

11.6.1 Static Filtered Editing — 242
11.6.2 Restricted and Alternating Transactions — 243
11.6.3 Earlier Ambition Specification — 243
11.6.4 The Operation Amend — 244
11.7 Related Work — 244

11.8 Summary — 246

11.1 Problem Statement

In the preceding chapters, it has been argued that supporting both evolution and variability
at a time is far from trivial. Things become even more complicated when allowing the
variability model, as well as the connection between variability model and product, to co-
evolve. This chapter is dedicated to consistency questions dealing with these relationships.
It contributes both consistency constraints and consistency-preserving algorithms that enable
dynamic filtered editing (DFE). 1

This chapter is organized as follows: After motivating and classifying the evolution
scenario in the remainder of the current Section 11.1, consistency constraints are formalized
upon the version space base layer in Section 11.2. Next, algorithms for the operations
CHECKOUT and COMMIT, which have been sketched semi-formally in Section 9.5.1, are
precisely defined in Section 11.3. In addition, we introduce a new operation, MIGRATE,
which prepares the current workspace contents for the subsequent iteration, obviating
repeated check-outs. In Section 11.4, we deal with the otherwise neglected revision graph,
supplying proof that it is managed automatically in a consistent way. The dynamic editing

1 A greater part of the problem motivation, as well as the formalization provided in Chapters 11.2 and 11.3,
have been pre-published in [SW17b].
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model is exemplified in multiple steps in Section 11.5. More informally, a generalized
editing model, which allows to mix the static and the dynamic style of filtered editing, is
presented in Section 11.6. Before concluding with a summary, we present differences to
related approaches to filtered editing in Section 11.7.

11.1.1 Static vs. Dynamic Filtered Editing

The peculiarities of the here contributed dynamic editing model are best explained by
a comparison with the so considered conventional approach, static filtered editing (SFE).
Concrete representatives are discussed in the related work section; we here use the vocabulary
used in the own conceptual framework and continue under the assumption that design
decisions D4 (fully filtered editing), D5 (hidden variation points), and D7 (transactional
filtered editing) have to be satisfied by both approaches.

Commonalities. The filtered editing (FE) approaches considered here have in common
that they operate in an iterative way, where each iteration is a transaction begun
with check-out and concluded with commit. In between, workspace contents may
be modified. The workspace view is defined by a choice – or read filter –, which
is a unique version selection. By an ambition – a partial write filter –, the versions
affected by the change are defined. This way, the version described by the choice is
representative for the set of versions described by the ambition.

Static Filtered Editing. In SFE, both the choice and the ambition are defined in one step at
the beginning of a workspace transaction, i.e., at check-out. Typically, the ambition
is defined first as a partial version selection, and further configured top-down into
a unique choice. Both choice and ambition, as well as the version space itself,
are immutable during MODIFY. After COMMIT, the transaction is closed and the
workspace is cleared; subsequent transactions must be started explicitly. Furthermore,
changes to the version space are allowed as long as no workspace transaction is active.

Dynamic Filtered Editing. With DFE, we here denote that the scope of a change – rep-
resented by the ambition – is specified only at COMMIT time. Furthermore, the
version space (or parts thereof, namely the feature model) is made available in the
workspace for modification. This way, it is possible to introduce those features to
which a change is relevant while the change is actually performed. Another property
of the dynamic approach is that a new transaction is started immediately after commit.
For the new transaction, it is assumed that the same choice as in the previous iteration
shall be used—an assumption that is obtained by generalizing the VCS workflow. It
is, however, possible to define a different view explicitly by CHECKOUT.

The here presented framework primarily assumes DFE, but it also allows to step back to
SFE in case a more restrictive workflow is desired. This is explained in Section 11.6 in the
context of the generalized editing model. As far as there, the given explanations assume that
purely dynamic filtered editing is applied.
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11.1.2 Unproblematic Iterations of Dynamic Filtered Editing

To begin with, let us reconsider two previously presented examples that already make the
benefits of DFE obvious.

In Figure 2.5 on page 30, an uncolored labeled graph is checked-out. Then, the workspace
is modified by adding an attribute weight to class Edge. This modification might have been
initially planned as an evolution step connected to an existing feature; however, right before
committing, the user might realize that this actually represents a new feature. Since it is
allowed to alter the feature model, he/she may introduce a new feature weighted, which is
used in the ambition thereafter.

A second example has been shown in Section 9.5.2, more precisely in Figure 9.13 on
page 179. In all revisions 1 until 3, features used for selection in the ambition are introduced
in the course of the MODIFY phase. The example also illustrates the aforementioned
assumption that it is usual to stay in the current workspace view for the subsequent iteration.
Merely, after having committed revision 1, new workspace content is generated by check-out.

11.1.3 Consistency Violations by Example

It is not difficult, however, to construct less benevolent cases where the dynamism implied by
the considered editing model becomes problematic. We here sketch representative instances
of consistency violations, illustrated by Figure 11.1, which are avoided by the consistency-
preserving DFE model. These constraints are further formalized in a generalized evolution
scenario subsequently.

Non-Unique or Inconsistent Choice. Let us assume the feature model depicted in Fig-
ure 11.1(a), from which a version is to be selected for CHECKOUT. Then, the feature
configuration shown in (b) is non-unique, since features Vertices and Colored do not
have a selection state assigned. Moreover, (c) represents an inconsistent choice: The
mandatory feature Vertices is deselected. In contrast, the feature configuration shown
in (d) is both unique and consistent, thus it is assumed for the subsequent steps.

Disallowed Feature Model Modification. During MODIFY, the feature model may be ed-
ited, however, not arbitrarily. For example, in (e), features Weighted and Directed are
made mandatory and at the same time arranged in an XOR group. This contradicts the
semantics of feature models. A different problem is illustrated in (f): Feature Weighted,
which is currently selected in the active choice (d), is deleted. In the workspace,
however, elements connected to this features are still present.As a consequence, the
workspace contains elements which could bot be selected by any future choice.

Non-Represented or Inconsistent Ambition. Moving further on to the COMMIT phase, in
Figure 11.1(g), a user-specified feature ambition is depicted. Since the mandatory
feature Vertices is bound negatively there, the ambition represents an inconsistent set
of versions. Similarly, the ambition depicted in (h) is not in line with the proposition
that the choice must be a representative of it: Feature Weighted, which is positively
selected in the choice (d), has a negative selection state assigned in the ambition (g).
Below, we assume that the valid ambition depicted in (j) has been selected.
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Figure 11.1: Examples of consistency violations connected to feature models, choices, and ambitions.

Choice not Suitable for Next Iteration. Unless the user interrupts this workflow, the DFE
model continues with the next iteration based on the current choice. The choice may,
however, become invalid for several reasons. First, (k) assumes that the original
feature model has been extended by a new feature Labeled, for which the original
choice, however, does not define a binding. Similarly, in (l), feature Directed is made
mandatory, but excluded from the current choice, such that this becomes invalid
for the next iteration. Last, in (m), a new user-defined choice is depicted. This
choice, however, disagrees with the ambition in the binding for Weighted, whose
corresponding product artifacts are still present in the workspace. Thus, it becomes
necessary to re-generate the workspace contents by check-out, such that an unweighted
graph is presented.
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Figure 11.2: Example of a non-representative product-level change, described with a too unspecific
ambition. In (q), artifacts belonging to Edges and sub-features thereof are hidden.

All the problems discussed above are related exclusively to version concepts, namely
version space (i.e., feature model), choice, and ambition. There exists an additional potential
source of inconsistency that is, in contrast, also connected to the product space:

Too Unspecific Ambition. Figure 11.2 depicts an iteration based on a choice that represents
a colored graph (p). The product-level-change shown in (q) consists in the introduction
of a new constructor to class Vertex. As constructor parameter type, the existing class
Color, whose visibility is restricted by feature colored, is chosen. An attempt to use
(r) as ambition for this change should fail, for the following reason: The choice
should be representative for all versions in which the change can be applied. Albeit,
the constructor would not be valid in variants that exclude feature colored, since
class Color is not available as parameter type then. A more specific ambition, which
adequately describes the set of versions in which the change is applicable, should be
used; the most general yet sufficiently specific ambition is shown in (s).

11.1.4 General Evolution Scenario

The generalized evolution scenario, forming the problem statement of this chapter, is
illustrated in Figure 11.3. The vertical dashed green lines divide the figure into four parts,
dedicated to the phases CHECKOUT, MODIFY, COMMIT, and MIGRATE, respectively.
Green arrows indicate evolution. Gray arrows represent consistency relationships and
are labeled with the same numbers as the constraints introduced in Section 11.2. For
abstraction, the domain model is not shown, and versioning of the feature model is not
illustrated explicitly. In contrast to the negative examples shown in the previous subsection,
this general problem description also considers the revision graph (whose consistency is,
however, managed automatically; see Section 11.4).

Check-Out. Unless the choice is produced automatically by migration (see below), an
iteration of the DFE model starts with an initial revision graph, from which a specific
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Figure 11.3: Evolution scenario generalizing the problem statement of this chapter. Based
on [SW17b, Figure 3].

revision is selected. In the resulting revision of the feature model, all features need
to be either selected or deselected. The version defined by the revision and feature
configuration is referred to as the choice. The provided CHECKOUT operation has
to ensure that the choice is unique – in particular, that no features from the feature
model may remain unbound – and strongly consistent—all version rules defined in
the feature model must hold.

Modify. In the workspace, the feature model may be edited as required, provided that it
remains satisfiable, i.e., non-contradictory. Moreover, in order to avoid conflicts that
might occur during commit, it ought to be ensured that active features must never be
deleted.

Commit. The COMMIT operation produces a revised version space, whose revision graph
is extended with a new revision for the performed change. The feature model may
have evolved, as well. For commit, the user needs to define a feature ambition;
the combination of feature ambition and the new revision is called ambition. This
ambition must be checked for weak consistency with the new revision of the feature
model, which means that there must be no contradiction to the version rules implied
by the feature model (such that there exists at least one valid version within the set of
versions described by the ambition). Furthermore, the ambition defined at commit
time must be represented by the choice at check-out time, which means that there
must be no contradiction between the old choice and the ambition (i.e., the ambition
must neither select a feature which was inactive nor deselect a feature which was
active in the old choice). Last, it must be ensured that the ambition is sufficiently
specific, such that the applied change would have been equally applicable in all other
choices included in it.

Migrate. Finally, the choice must co-evolve with the change: A new choice has to be
established which satisfies the same constraints as the old choice, since the end of
the previous iteration coincides with the start of the next iteration. To this end, we
introduce a novel operation MIGRATE, which is applied transparently after commit.
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Figure 11.4: Workspace operations as transitions in a state diagram.

It essentially extends the old choice with the ambition, ensures uniqueness of the
migrated choice and strong consistency with respect to the new feature model, as
well as inclusion of the migrated choice in the ambition. Consequently, executing a
new check-out under the migrated choice would result in a copy of the workspace as
present at commit time.

Figure 11.4 summarizes the underlying editing cycle as state diagram. Initially, the
workspace is Pending, i.e., not populated yet. On check-out, a specific version is selected
from the repository. After modifying the workspace and committing, the user may either
continue with the subsequent iteration in the same view, requiring to migrate the choice,
or migration is canceled, triggering a transition back into state Pending. To re-populate
the workspace, a new choice must be specified then in the context of a regular check-out.
Operation disconnect – to be further explained in Section 12.1.3 – breaks the editing cycle.

The constraints that are guaranteed by the respective transitions are depicted as post-
conditions. They refer to the constraint numbers introduced in Figure 11.3.

The figure underlines two important properties of the dynamic editing model: First, except
for the initial version, and as long as choice migration is never aborted, check-out is an
optional operation. Second, choice migration is a shortcut taking for granted that the user
wants to perform the subsequent iteration using the current workspace as starting point, as
usual in version control.

11.2 Dynamism-Aware Consistency Constraints

In this section, the consistency constraints mentioned in Figure 11.3 are elaborated on the
basis of the formal foundations 2. from Sections 8.3 and 9.2.2. Superscripts (ch = check-out,
mo = modify, cm = commit, mi = migrate) delineate the phases of each iteration.

11.2.1 Check-Out

In filtered editing, a choice designates an unambiguous version to describe the workspace
contents to be checked-out. Therefore, unbound options must not occur.

Constraint 1— The option binding cch specified as choice during check-out must be unique
with respect to the global option set Och defined at check-out time.

∀o ∈ Och : (∃(o, s) ∈ cch : s ∈ {true, false}) (11.1)

2 Recall in particular the tuple representation (b) and conjunctive form (b̂) of an option binding. See page 150.
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In the following, we assume in all constraints that choices are unique.

Moreover, the choice must comply with the rules derived by, e.g., feature dependencies:

Constraint 2— The choice cch defined at check-out time must be strongly consistent with
the invariants of the rule baseRch present at check-out time.

J ch(cch) = true (11.2)

Here, J ch(cch) denotes the evaluation3 of the invariants J ch under the choice cch.

11.2.2 Modify

By editing the feature model, the user indirectly modifies parts of the option set and of the
rule base. It must be avoided that the user introduces rules disallowing consistent version
selection in future check-outs.

Constraint 3— After each modification to the version space, the invariants of the rule base
Rmo must be satisfiable, such that there exists any strongly consistent choice:

∃c : Jmo(c) = true (11.3)

The aforementioned restriction, stating that active features must not be deleted, is beyond
the means of formalization available for the base layer, and therefore not presented as an
explicit constraint here. See Section 11.3.2.

11.2.3 Commit

The ambition defined at commit time describes a set of versions that should comply with
the rule base: At least one choice c must exist which agrees with acm in all common option
bindings (c⇒ acm) such that all rules hold under c.

Constraint 4— An ambition acm specified during commit must be weakly consistent with
the invariants of the rule baseRcm available at commit time:

∃c : (ĉ⇒ âcm) ∧ (J cm(c) = true) (11.4)

In the version determined by the choice, a change is applied representatively for the
ambition. Thus, there must not be any contradiction between option bindings of the check-
out time choice and the commit time ambition inferred from feature selections: 4

Constraint 5— The ambition acm must be represented by the check-out choice cch.

∀(o, s) ∈ acm : (o,¬s) 6∈ cch, s ∈ {true, false} (11.5)

3 Recall that J denotes a conjunction rather than a set of invariants.
4 This form of representativity is weaklier defined than the implication ĉ ⇒ âcm required by Constraints 4
and 9. Precisely, Constraint 5 allows to commit against a newly introduced feature that was not bound in cch.



226 Chapter 11 Consistency-Preserving Dynamic Editing Model

Requiring no contradictions between choice and ambition does, however, not guarantee
that the modifications performed between check-out and commit are representative at product
space level. To this end, it must be ensured that the performed change – here represented as
a write set of inserted and deleted elements Emod = Eins∪̇Edel – could have been equally
applied in any other version contained in the ambition:

Constraint 6— The ambition acm must be sufficiently specific to the write set Emod.

∀e ∈ Emod :
(
∀e′ ∈ P cm : (e

d−→ e′)⇒ v′(PDacm) = true
)

(11.6)

The symbols used in the equation above require further clarification. First, with e′ ∈ P cm,
we denote any element part of the commit time product space. The premise e d−→ e′ checks
whether an element of the write set depends on e′. Last, v′ denotes the visibility of e′ before
commit.

The completed – yet not in general satisfying the unique constraint – ambition PDacm

is obtained by applying preferences and defaults5 to the original ambition acm, such that
v′(PDacm) evaluates to true if and only if e′ is visible in all versions included in the
completed ambition. Taken together, the constraint checks whether all elements on which
any inserted or deleted element depends are visible in all affected versions.

The depends operator e d−→ e′, where e ∈ Emod and e′ ∈ P , remains to be defined upon
the product space base layer. Informally, e depends on e′ whenever at least one of the
following conditions hold:

– e is a deleted element and e equals e′. (Intuition: Elements must be visible in order to be
deletable.)

– e is an inserted element and e′ contains e. (Intuition: The insertion location, i.e., the
container of an inserted element, must be visible.)

– e is an inserted element and e′ is cross-referenced from e. (Intuition: When an inserted
element represents the applied occurrence of an existing element, the latter must be visible.)

Formally:

e
d−→ e′ ⇔

(
e ∈ Edel ∧ e = e′

)
∨(

e ∈ Eins ∧ (e′ = parent(e) ∨ e′ ∈ crossLinks(e))
) (11.7)

11.2.4 Migrate

Transitioning to post-commit time, it is assumed that the operation MIGRATE, to be formally
defined later, produces a choice that is used for the next iteration, tying on the non-disruptive
workflow provided by VCS. The same workspace can be reused with the migrated choice.

Due to modifications of the rule base, the choice cch specified at check-out time may
become non-unique with respect to the option setOcm, and/or inconsistent with the invariants

5 In this way, a “more complete” ambition is obtained, which represents, however, the same set of product
versions as acm. The options additionally included in PDacm may occur in visibilities v′, therefore v′(PDacm)
will less likely return undefined .
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of the rule base J cm at commit time. Such temporary inconsistencies are explicitly allowed
in order to support feature model evolution. However, before starting the subsequent
iteration, it is required that the version to be modified must be uniquely and consistently
identified by cmi.

Constraint 7— The option binding cmi describing the choice after migration must be unique
with respect to the commit time option set Ocm:

∀o ∈ Ocm : (∃(o, s) ∈ cmi : s ∈ {true, false}) (11.8)

Constraint 8— The migrated choice cmi must remain strongly consistent with the invariants
of the rule baseRcm available at commit time:

J cm(cmi) = true (11.9)

Apart from this, it is required that the migrated choice cmi must still comply with ambition
acm, which represents changes applied to the current workspace. Since all newly introduced
options are mandatory to be selected or deselected for the next choice, total inclusion
(implemented by propositional logical implication in the opposite direction) is required:

Constraint 9— An ambition acm must include the migrated choice cmi describing the
workspace contents for the subsequent iteration:

ĉmi ⇒ âcm (11.10)

11.3 Consistency-Preserving Algorithms

In this section, we contribute detailed algorithms for the operations CHECKOUT, MODIFY,
COMMIT, and MIGRATE, having been mentioned in Figure 11.3 and partly presented in a
semi-formal way in Section 9.5.1. Taken together, they realize the dynamic filtered editing
model. In addition to algorithmic descriptions, their properties are discussed and run-time
considerations are made. The algorithms contain interactive statements, which have been
underlined in the descriptions below.

11.3.1 Check-Out

The obvious purpose of CHECKOUT is to populate an empty (i.e., Pending, cf. Figure 11.4)
workspace with a consistent product version uniquely defined by the user with the help of
the abstractions of revision graph and feature model.

Algorithm 11.1 first asks the user for a revision selection. Using preferences and defaults
introduced during COMMIT (cf. Table 9.1 on page 171), it is ensured that options of the
selected revision as well as all predecessors are bound to true, whereas remaining options
are bound to false, making the revision choice unique.

Next, the feature model, whose elements’ visibilities exclusively refer to revision options,
is filtered by the revision choice. In the filtered feature model, the user specifies a feature
configuration; invisible options for deleted features are bound to false by corresponding
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defaults (cf. Table 9.2 on page 174). The effective choice cch is calculated by union of
revision and feature choice, before preferences and defaults are applied to it. Next, the
feature choice is checked for uniqueness and strong consistency.

After a well-formedness analysis, which has been intentionally omitted in the description
provided here as it is presented in Chapter 13, the workspace is populated with filtered
versions of feature and domain model. The feature choice is memorized to enable a later
re-construction of the checked-out workspace.

Properties. If successful, Algorithm 11.1 transitions the workspace into state Unmodified
and produces a choice both unique and strongly consistent with respect to the check-out time
rule base, such that Constraints 1 and 2 are ensured. In case the user specifies a non-unique
or inconsistent choice, the action is canceled and the workspace remains Pending.

Complexity Estimation. Applying preferences and defaults requires to iterate over the
preference set P and the default set D; the size of both is proportional to |O|. Ensuring
Constraints 1 and 2 requires iterations over O and J , respectively; the size of the latter
is – when assuming the rule base mappings provided in Chapter 9 and that the number of
requires/excludes constraints ensuing from a feature is linear – proportional to |O|. While
filtering, each element of E is considered. The total complexity is therefore O(|O|+ |E|).

11.3.2 Modify

The consistency of the domain model is supposed to be ensured by the respective single-
version editing tools employed. Feature model editing, however, is restricted. Rather than
giving a full specification of feature model editing, we explicitly define these restrictions by
providing redefined algorithms for SAVEFEATUREMODEL and DELETEFEATURE.

procedure CHECKOUT
rchi ← option in Och

r belonging to a selected revision i
cchr := (rchi , true)
PDcchr ← COMPLETE(cchr ) . Algorithm 9.3
P ch
F ← P ch

f |∗PDcchr
. Filter the feature model; (10.6)

EXPORT(P ch
F )

cchf ← define feature configuration in the exported filtered feature model
cch ← cchr ∪ cchf
PDcch ← COMPLETE(cch) . Algorithm 9.3
if not (∀o ∈ Och : (∃(o, s) ∈PD cch : s ∈ {true, false})) then . Constraint 1

return error “Choice is not unique.”
else if not (J ch(PDcch) = true) then . Constraint 2

return error “Choice is not strongly consistent.”
P ch
D ← P ch

d |∗PDcch . Filter the domain model; (10.6)
EXPORT(P ch

D )
Memorize cchf for the subsequent commit

Algorithm 11.1: Consistency-preserving CHECKOUT. From [SW17b, Algorithm 1].
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procedure SAVE(Pmo
F )

Rmo
f ← rule base derived from (Pmo

F ) . Table 9.2
if not ∃c : Jmo

f (c) = true then . Constraint 3
return error “Feature model is not satisfiable.”

else
Persist Pmo

F in its current state

Algorithm 11.2: Redefined operation SAVEFEATUREMODEL in feature model editor.

procedure DELETEFEATURE(D)
oD ← option belonging to feature D to be deleted
cchf ← feature choice memorized during preceding check-out or migration
if (oD, true) ∈ cchf then

return error “Cannot delete feature active in current choice.”
else

for all C ∈ D.children do
if DELETEFEATURE(C) 6= success then

Undo all modifications related to D.children
return error “Error during deletion of child C.”

set the deleted flag of D to true
Dmo

f := Dmo
f ∪ {(D, false)} . Table 9.2

Algorithm 11.3: Redefined operation DELETEFEATURE in feature model editor.

Feature Model Editing. Constraint 3 must be enforced; otherwise, no consistent variant
can be specified in subsequent check-outs. Rather than checking for feature model satisfia-
bility in the course of COMMIT, it is preponed to MODIFY in order to give feedback to the
user as early as possible. To this end, we redefine the SAVEFEATUREMODEL operation of
the feature model editor in Algorithm 11.2 in a way that only satisfiable feature models can
be persisted in the workspace.

Feature Deletion. Furthermore, deletion of features in the workspace version of the
feature model is redefined (see Algorithm 11.3): First, the operation is only applicable
to features bound to false in the current choice; otherwise, the feature model would
become unsatisfiable, or choice migration (see Section 11.3.4) would transfer the positive
selection state to the choice to be derived for the next iteration, where the deleted feature
and corresponding realization artifacts are supposed to be hidden.

Second, rather than persistently deleting a feature, it is merely hidden from the user’s
display and thus not available in the current and future revisions of the editable feature model
(cf. Section 10.7.1). Nevertheless, its feature option, which still may occur in visibilities
of domain model elements, remains. To maintain uniqueness of future choices, a default is
introduced. This default also affects version rules referencing the feature; their evaluation is
automated for future satisfiability checks in the feature model.

In order to maintain the hierarchical consistency of the feature model, feature deletion is
recursively applied to all child features.
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Properties. Constraint 3 is actively enforced by Algorithm 11.2. Whenever the SAVE

operation has been applied successfully, the workspace enters (or remains in) state Modified.
By approximating the satisfiability of the feature model in conjunction with the current

choice, redefined feature deletion indirectly affects Constraint 8 inasmuch as certain situa-
tions in which migration would fail are prevented. Nevertheless, the satisfiability of neither
Constraint 8 nor any other constraint can be guaranteed.

Complexity Estimation. The satisfiability check described by Constraint 3 performed
after each save is NP-complete.

Given the worst case, where the entire feature tree is attempted to be deleted, the run-time
of feature deletion is linear with the number of features: O(|Of |).

11.3.3 Commit

A consistency-preserving COMMIT operation is formalized in Algorithm 11.4. The revision
graph is handled automatically, introducing a new revision option along with a preference
and a default ensuring that a single revision selection will yield unique and consistent
revision choices in future. By using the latest revision as reference point, a linear version
history is enforced. Through repeated application of preferences of the form (ri, ri+1), the
selection is propagated back until the initial revision. Defaults, having a lower priority, are
applied to unbound revision options thereafter, such that remaining revisions are deselected.

Besides, the user specifies a feature ambition. In case the domain model is unmodified6,
however, this step can be skipped. It is ensured by corresponding checks that feature
ambitions must be weakly consistent with the rule base (Constraint 4) and represented by
the previous choice (Constraint 5).

Next, the latest version of the workspace state (taking into consideration the logical
choice used for check-out) is reconstructed and differentiated with its commit time version.
Based on the deduced difference, it is now ensured that the specified ambition is sufficiently
specific to the performed change (Constraint 6).

In case all constraints are passed, inserted elements are appended to the product space
with the help of the generic asymmetric two-way raw MERGE operator (cf. Algorithm 10.4
on page 213). Next, visibilities of inserted and deleted elements are updated as defined
by Algorithm 11.5. For visibility updates applied to the feature model, the new revision
option serves as ambition. For the domain model, a conjunction of the new revision
option and the chosen feature ambition is used, such that presence conditions are implicitly
versioned (design decision D17). Transparently, the change space optimization as presented
in Section 9.6.2 is applied.

Properties. If successful, Algorithm 11.4 transitions the workspace into the state Commit-
ted, while ensuring Constraints 4, 5, and 6 for the specified ambition.

Otherwise, the workspace remains in state Modified; in this case, the user may re-attempt
the commit with a different ambition.

6 Such a situation can be detected by an a-priori comparison, e.g., based on hashing. See Section 14.5.2.
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Complexity Estimation. Reproducing the checked-out workspace and updating the visibil-
ities both imply a run-time proportional to the size of the product space, i.e., |P |. Constraint 5
checks a maximum of |O| options.

Assuming that the number of elements that depend ( d−→) on a modified element is constant,
we obtain a complexity of |P | for Constraint 6.

Run-time is, in theory, dominated by the NP-complete satisfiability check issued during
the evaluation of Constraint 4. In practice, however, we expect that the Filter and Export
operations applied to the domain model, which is typically considerably larger than the
feature model, become the bottleneck.

procedure COMMIT
cchf ← feature choice memorized during preceding check-out or migration
ri ← option of most recently committed revision i (head)
cch ← cchf ∪ {(ri, true)}
PDcch ← COMPLETE(cch) . Algorithm 9.3
i+ 1← new revision, successor of i, with user-specified details (commit message, etc.)
ri+1 ← new revision option for revision i+ 1
Ocm

r ← Och
r ∪ {ri+1}

J cm
r ← J ch

r ∧ (ri+1 ⇒ ri) . Table 9.2
Pcm
r ← Pch

r ∪ {(ri, ri+1)} . Table 9.2
Dcm

r ← Dch
r ∪ {(ri+1, false)} . Table 9.2

P ch
F ← P ch

f |∗PDcchr
. Reproduce latest revision of feature model

P ch
D ← P ch

d |∗PDcch . Reproduce latest revision of selected variant of domain model
P cm
F ← IMPORT current workspace version of the feature model
P cm
D ← IMPORT current workspace version of the domain model

if P cm = P ch then . Domain model is unmodified
acmf ← ∅ . No feature ambition is needed

else
acmf ← define feature ambition in the current workspace version of the feature model

acm ← acmf ∪ {(ri+1, true)}
if not (∃c : (ĉ⇒ âcm) ∧ (J cm(c) = true)) then

return error “Ambition is not weakly consistent.” . Constraint 4
else if not (∀(o, s) ∈ acm : (o,¬s) 6∈ cch) then

return error “Ambition is not represented by choice.” . Constraint 5
match← MATCH(P cm, P ch) . Algorithm 10.2
diff ← DIFF(match) . Algorithm 10.3
Emod ← all inserted or deleted elements according to diff
PDacm ← COMPLETE(acm) . Algorithm 9.3
if not (∀e ∈ Emod : (∀e′ ∈ P cm

D : (e
d−→ e′)⇒ v′(PDacm) = true)) then

return error “Ambition is not sufficiently specific to the change.” . Constraint 6
MERGE(P cm, P ch, diff ,match) . Algorithm 10.4
cs← new change set
UPDATEVISIBILITIES(difff , a

cm
r , cs) . Algorithm 11.5

UPDATEVISIBILITIES(diffd , a
cm, cs) . Algorithm 11.5

Algorithm 11.4: Consistency-preserving COMMIT. From [SW17b, Algorithm 2].
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procedure UPDATEVISIBILITIES(diff ,a, cs)
∆← new change under cs connected to ambition a
o∆ ← new change option for ∆
Ocm

∆ ← Ocm
∆ ∪ {o∆}

J cm
∆ ← J cm

∆ ∧ o∆ ⇔ â
Pcm

∆ ← Pcm
∆ ∪ {(o∆, â)}

for all eins ∈ diff .insertions do
vins ← ∆ . Initialize visibility vins of element eins

for all edel ∈ diff .deletions do
vdel ← vdel ∧ ¬∆ . Update visibility vdel of element edel

Algorithm 11.5: Visibility update using change space optimization.

11.3.4 Migrate

The operation MIGRATE prepares the workspace choice for the subsequent iteration, pro-
ceeding under the assumption that the user prefers to stay in the current view. Unlike
CHECKOUT and COMMIT, this operation is not triggered explicitly by the user but automat-
ically after COMMIT. Conversely, it makes the subsequent CHECKOUT optional, tying on
the unobtrusive revision control workflow.

Algorithm 11.6 considers options that remain unbound in the choice to be migrated. If
a corresponding option has been bound in the ambition, the binding is transferred to the
choice. Otherwise, by the COMPLETE operator, preferences and defaults are triggered as
far as applicable, with the aim to make cmi unique. As a “last resort”, a binding state of
remaining unbound options is obtained non-deterministically. Since the new option has
been ignored in the ambition, there cannot exist any reference to it in updated visibilities.
Therefore, it is immaterial for the subsequent choice whether or not the option is selected.
At this point, it is not known how new (and still unbound) features will be incorporated in

procedure MIGRATE
for (o, smi) ∈ ami do

if @(o, sx) ∈ cmi : sx ∈ {true, false} then
cmi ← cmi ∪ {(o, smi)}

cmi ← COMPLETE(cmi) . Algorithm 9.3
for o ∈ Ocm do

if @(o, sx) ∈ cmi : sx ∈ {true, false} then
smi ← user selection for o
if smi = undefined then

return error “Operation was canceled by the user.”
else

cmi ← cmi ∪ {(o, smi)}
if not J cm(cmi) = true then . Constraint 8

return error “Cannot migrate to a consistent choice.”
else

Memorize cmi
f for the subsequent commit . Obviate check-out

Algorithm 11.6: Consistency-preserving MIGRATE. From [SW17b, Algorithm 3].
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the next iteration. Therefore, the user may choose among the set of choices describing the
current workspace contents equivalently.

Properties. If migration succeeds, a strongly consistent choice (Constraint 8) is actively
enforced by the algorithm. Theorems 11.1 and 11.2 prove that Constraints 7 and 9 are satis-
fied, respectively. Conjecture 11.1 explicitly refers to the relationship between MIGRATE

and CHECKOUT.
Notice that there are three possible causes for failure of this operation. First, there may

be no correct solution regardless of the user selections performed7; an example is provided
in Section 11.5.3. Second, the user might introduce a contradiction although a different
selection would have provided a correct migrated choice8. Third, the user may cancel
intentionally.

If migration succeeds, the workspace immediately enters state Unmodified. Otherwise,
entering state Pending triggers an exceptional check-out, forcing the user into specifying a
new choice.

Theorem 11.1— After having applied MIGRATE successfully, Constraint 7 is satisfied.

Proof. The algorithm iterates over all options in Ocm, which equals Omi as no options can
be introduced between commit and migrate by any operation. In each iteration, either true
or false are assigned to bindings missing in cmi. Therefore, unless the migration is aborted,
cmi is complete (as required by Constraint 7). �

Theorem 11.2— After having applied MIGRATE successfully, Constraint 9 is satisfied.

Proof. Being its descendant, cmi includes cch. Moreover, acm is weakly consistent with
cch (cf. Constraint 5). Thus, no contradictions exist between cmi and acm. Bindings for
missing options are transferred from the ambition, or if not applicable, in a way that does
not contradict with any ambition binding. Altogether, the migrated choice cmi is included in
the ambition acm (such that ĉmi ⇒ âcm, as required by Constraint 9). �

Conjecture 11.1— It is taken as premise that migration has been applied successfully,
yielding the migrated choice. cmi. Then, an explicit check-out using cmi as choice produces
the same workspace content as already present.

Comment. This conjecture cannot be (dis)proved without making assumptions about the
bijectivity of the operations IMPORT and EXPORT, which we cannot guarantee here. In fact,
the conjecture might be disproved as soon as it comes to product-level well-formedness
violations (see Chapter 13) introduced during the iteration preceding the migrate operation.
(Then, it depends on the resolution decisions whether the conjecture holds.)

7 In such a case, newly introduced feature model rules prevent the product version available in the workspace
from being reproduced by further check-outs. The performed modifications are, however, valid for different
versions included in the ambition.
8 In SuperMod, all missing bindings are requested from the user at the same time in an interactive dialog,
where validation is applied in the background. This helps preventing such deadlock situations.
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Complexity Estimation. Assuming that the option bindings underlying choices and am-
bitions have been implemented with an associative data structure, iterating over all op-
tions requires a maximum run-time proportional to |O|. Preferences and defaults, whose
number is proportional to |O|, are taken into account exclusively for newly introduced
options onew ∈ Onew. Therefore, when neglecting user interaction, total complexity is
O(|O| · |Onew|).

11.4 Automatic and Consistent Revision Graph Management

Above, it has been repeatedly claimed that the consistency of the revision graph – faded out in
all examples – is guaranteed automatically, such that the user is not accosted with constraint
violations in this dimension. In this section, we supplement proof for the satisfaction of the
constraints defined in Section 11.2 by the historical dimension in isolation.

The remainder of this section is structured by phases, of which MODIFY has been omitted
since it does not affect the revision graph.

11.4.1 Check-Out

It has to be proved that the choice inferred from the selection of a single revision in
Algorithm 11.1 satisfies the check-out time consistency constraints.

Theorem 11.3— A revision choice derived at check-out is unique according to Constraint 1.

Proof. Preferences and defaults are applied in advance to filtering. According to Table 9.1,
a default of the form (ri, false) is introduced for each revision i, such that no unbound
revision option remains after having applied all defaults. �

Theorem 11.4— A revision choice derived at check-out is strongly consistent as required
by Constraint 2.

Proof. According to Table 9.1, there are two types of invariants to be potentially violated:
initial revision invariants (r0) and predecessor invariants (ri+1 ⇒ ri).

Except for the option ri of the user-selected revision, all other revision options are
bound by preferences or defaults. In Algorithm 11.4, it is ensured that together with each
invariant ri+1 ⇒ ri, a preference (ri, ri+1) is created. Through repeated application of this
preference, after a revision option ri has been selected, all predecessor revisions are bound
positively. For no predecessor of ri, a negative binding will be created since defaults have a
lower priority than preferences. Therefore, all predecessor invariants are satisfied.

Given the premise of a linear and acyclic revision graph, repeated application of pre-
decessor preferences will propagate to r0, regardless of which revision has been selected.
Therefore, (r0, true) will occur in every binding derived this way, such that the initial
revision constraint r0 is satisfied. �
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11.4.2 Commit

During COMMIT (cf. Algorithm 11.4), a new revision with option ri+1 is introduced for the
successor of revision i. We prove that the derived revision ambition {(ri+1, true)} satisfies
the constraints associated with the commit phase.

Theorem 11.5— A revision ambition derived at commit is weakly consistent as defined in
Constraint 4.

Proof. In order to be weakly inconsistent, it would be required that {(ri+1, true)} contra-
dicts with any invariant in J cmr . The only invariant in which ri+1 can appear is the newly
introduced ri+1 ⇒ ri. Though, (ri, false) /∈ acmr , thus weak consistency is given. �

Theorem 11.6— A revision ambition derived at commit is represented by the check-out
time choice as required by Constraint 5.

Proof. Not yet existing at check-out time, ri+1 is unbound in the revision choice cchr , such
that no contradiction with {(ri+1, true)} can occur. �

Theorem 11.7— A revision ambition derived at commit is sufficiently specific to describe
the historical component of a workspace change; see Constraint 6.

Proof. We represent the visibilities v of all elements as conjunctions vf ∧ vr. Furthermore,
we assume that all elements e′ on which modified elements e ∈ Emod may depend, have
passed the choice: v′r(c

ch) = true. After applying option binding completion, it is granted
that PDacmr ⊃ cchr . As a consequence, v′r(

PDacmr ) = true for all v′r. �

11.4.3 Migrate

During MIGRATE (cf. Algorithm 11.4), the binding tuple (ri+1, true) is transferred from
the ambition to the choice. We first consider the common case that the selected revision
equals the head; for the subsequent proofs, we may therefore presume cmir = cchr ∪ acmr ,
hence ĉcmr ⇒ âcmr .

Theorem 11.8— The migrated revision choice is unique; cf. Constraint 7.

Proof. cchr is unique with respect to Ocmr except for the only new option ri+1, which is,
however, bound in the ambition acmr and therefore transferred from there. Thus, cmir =
cchr ∪ acmr is unique. �

Theorem 11.9— The migrated revision choice is strongly consistent; cf. Constraint 8.

Proof. cchr is consistent with respect toJ chr . We may assume thatJ cmr = J chr ∧(ri+1 ⇒ ri).
From the choice, we know that ri = true. From the ambition, ri+1 = true. Taken together
(true⇒ true), the new predecessor invariant is fulfilled. �

Theorem 11.10— The migrated revision choice is included in the revision ambition as
demanded by Constraint 9.
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Proof. Since the binding tuple (ri+1, true) is transferred from the ambition to the migrated
choice, acmr ⊂ cmir . �

In case the check-out time choice did not equal the latest revision, however, MIGRATE

will definitely fail because ri+1 ⇒ ri is violated due to the negative selection state of ri set
by the revision default. In this case, an explicit CHECKOUT, including a consistent revision
selection, is enforced (cf. Fig. 11.4).

11.5 Examples

We exemplify the consistency constraints and the consistency-preserving algorithms in three
ways. First, in Section 11.5.1, a cut-out of an editing history, comprising four iterations, is
investigated, where the editing model imposes significant benefits. In Section 11.5.2, we
refer back to the consistency violations motivated in Section 11.1.3, explaining how they are
detected formally. A more sophisticated example demonstrating circumstances under which
the migrate operation may fail is supplied in Section 11.5.3.

11.5.1 Unobtrusive and Consistent Dynamic Filtered Editing

Figure 11.5 continues the Graph example and illustrates the user-visible artifacts of four
successful iterations of the editing model. Once more, to reduce complexity, the revision
graph has been entirely faded out.

Step 1. In the first revision, a colored, labeled, unweighted graph is chosen. Feature Labeled
remains to be realized, which is done during the MODIFY phase of the first iteration.
The change is committed against the existing feature Labeled. Since the feature model
is not modified, no new feature bindings need to be added during choice migration.

Step 2. Since we intend to stay in the current workspace view, an explicit check-out is
not necessary, such that the specification of a feature configuration is skipped. We
concurrently modify the domain model and the feature model: In the latter, a new
XOR feature group Direction, organizing the mutually exclusive features Directed and
Undirected, is introduced. The depicted domain model changes refer to the realization
of the feature Directed by two UML associations representing the source and the target
vertices of an edge, respectively. During MIGRATE, bindings for the new features are
inferred partly: The positive selection of Directed is transferred from the ambition; for
the superordinate feature Direction, a preference is applicable, setting it to true. The
binding for Undirected remains to be defined by the user9, who decides to cancel this
step anyway, since the current workspace view does not represent a suitable variant in
which the subsequently intended change can be made.

Step 3. In the beginning of iteration three, therefore, a feature configuration is specified
explicitly during CHECKOUT. It represents an uncolored, unweighted, labeled, and
undirected graph. Let us assume that the feature Colored shall be abandoned. The

9 Actually, only a negative binding comes into question, as negative selection would violate the rule base.
This, however, cannot be recognized by the MIGRATE algorithm in its form presented above.
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 Workspace ModificationsChoice Ambition Mig. Choice
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G = Graph, V = Vertices, E = Edges, C = Colored, W = Weighted, L = Labeled, Dn = Direction, Dd = Directed, Ud = Undirected
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inserted
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Figure 11.5: Four iterations of unobtrusive and consistent dynamic filtered editing.

corresponding deletion during MODIFY is allowed as the feature is neither mandatory
nor selected in the current configuration, nor is it required by another feature due
to a cross-tree relationship. Since no change is performed to the domain model, no
ambition needs to be specified10. For the same reason, the migrated choice equals the
check-out choice (when confining to the feature model).

Step 4. We use the current workspace view for the fourth and last iteration. Within this,
we commit the realization of feature Undirected: a UML association referencing two
vertices part of an undirected edge.

Observations. This cut-out illustrates three properties of the editing model that, altogether,
ensure an unobtrusive workflow. First, in two of four cases, no explicit check-out is
required thanks to the MIGRATE operation. In case, however, a different workspace
view is desired by the user, migration can be canceled at any time. Second, feature

10 For check-out, a feature configuration needs to be defined though. By feature model transactions, introduced
in Section 11.6, the user could be relieved from this task.
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deletion behaves consistently by also hiding corresponding realization artifacts from
the user. Third, in case the domain model is not modified, no feature ambition is
requested, such that the user actions necessary during COMMIT are reduced to defining
a commit message.

11.5.2 Consistency Violations Formally Revisited

Let us now return to the consistency violations informally explained in Section 11.1.3
in order to re-formulate them in terms of negative evaluations of Constraints 1 until 9
introduced in Section 11.2. Subscripts refer to corresponding sub-figures of Figure 11.1.

Non-Unique or Inconsistent Choice. The feature model depicted in Figure 11.1(a) can be
mapped to the following option set:

Och(a) = {oG, oV , oE , oC , oW , oD}

Furthermore, the following invariants are derived from it:

J ch(a) = (oG) ∧ (oV ⇔ oG) ∧ . . . ∧ (oC ⇒ oV ) ∧ . . .

The choice expressed by (b) is mapped to:

cch(b) = {(oG, true), (oE , true), (oW , true), (oD, false)}

Then, Constraint 1 is violated as neither (oV , sV ) nor (oC , sC) ∈ Och(a), where
sV , sC ∈ {true, false} (cf. (11.1)).

Choice (c) is internally represented as:

cch(c) = {(oG, true), (oV , false), (oE , true), (oC , true), (oW , true), (oD, false)}

Due to the contradiction

(oV = false) ∧ (oC = true) ∧ (oG) ∧ (oV ⇔ oG) ∧ (oC ⇒ OV )

the application J ch(a)(c
ch
(c)) evaluates to false (cf. (11.2)), such that Constraint 2 is

violated.

The unique and consistent choice selected by the user in (d) is mapped to:

cch(d) = {(oG, true), (oV , true), (oE , true), (oC , true), (oW , true), (oD, false)}

Disallowed Feature Model Modification. Algorithm 11.2 would actively prevent the fea-
ture model depicted in Figure 11.1(e) from being saved. Since the propositional
logical representation is a contradiction, Constraint 3 would be violated.

Jmod(e) = oG ∧ . . . ∧ (oE ⇔ oG) ∧ ¬(oW ∧ oD) ∧ (oW ⇔ oE) ∧ (oD ⇔ oE)
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Similarly, the deletion of feature Weighted in (f) is disallowed according to Algo-
rithm 11.3 because (oW , true) ∈ cch(d).

Non-Represented or Inconsistent Ambition. We still assume (a) as feature model and
cch(d) as active choice, and consider the ambitions depicted in Figure 11.1(g, h):

acm(g) = {(oV , false), (oW , true)}

acm(h) = {(oW , false)}

On the one hand, according to (11.4), there must exist choice c inside acm(g) that
satisfies J ch(a). Such c cannot exist due to the following contradiction:

oG ∧ (oG ⇔ oV ) ∧ (oV = false)

Therefore, Constraint 4 fails here.

On the other hand, (oW , false) ∈ acm(h) and (oW , true) ∈ cch(d) contradict (11.5), such
that a violation of Constraint 5 indicates that the ambition specified in (h) is not
represented by the choice defined in (d).

Too Unspecific Ambition. Figures 11.2(p) and (r) externally represent the following choice
and ambition:

cch(p) = {(oG, true), (oV , true), (oE , true), (oC , true), (oW , false), (oL, false)}

acm(r) = {(oV , true)}

After applying the COMPLETE operator, we obtain:

PDacm(r) = {(oV , true), (oG, true), (oE , true)}

In order to reason about the representativity of the performed product-level change,
we need to explicitly introduce three elements into our formal representation: eV and
eC represent the UML class Vertex and Color, respectively, whereas eV C1 ∈ Eins
corresponds to the constructor inserted into the list of operations of eV . We start
from the premise that the existing elements carry the following visibilities before the
commit is made effective:

vchV := oV ; vchC := oC ; vchV C1 := true

Furthermore, we assume that the dependencies eV C1
d−→ eV and eV C1

d−→ eC have
been inferred from the higher-level model structure; class Vertex contains the con-
structor, which in turn has a cross-link to its parameter type, class Color.

Formally, we can detect a violation of Constraint 6 by means of the following conclu-
sions being deduced from (11.6):

vV (PDacm(r)) = true ∧ vC(PDacm(r)) = true
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Albeit, when evaluating vC(PDacm(r)) under three-valued logic, we obtain undefined

since oC is unbound in PDacm(r) . This suffices to invalidate (11.6).

Migrated Choice not Suitable for Next Iteration. When being compared to (a), the feature
model underlying the choice shown in Figure 11.1(k) contains an additional option
Labeled, internally represented by oL:

Omi(k) = {oG, oV , oE , oC , oW , oD, oL}

The current choice (d) does not include a binding for the new option for feature
Labeled: (oL, sL) /∈ cmi(d), where sL ∈ {true, false}. This is, however, required by
(11.8). Therefore, Constraint 7 is violated.

For (l), we use O(l) = O(a), but the rule base J(l) contains an additional rule taking
into account that Directed was made mandatory:

J(l) = J(a) ∧ (oE ⇔ oD)

Due to the contradiction (oE = true)∧ (oD = false)∧ (oE ⇔ oD), the application
of J(l)(c

mi
(l) ) evaluates to false (11.9), thus Constraint 8 is violated.

Last, (11.10), when applied to this example, requires that ĉmi(m) ⇒ âcm(m), thus:

oG ∧ oV ∧ oE ∧ oC ∧ ¬oW ∧ ¬oD ⇒ oW (11.11)

By this contradiction, a violation of Constraint 9 is detected formally.

11.5.3 Inapplicable Migration

We conclude the examples section by giving a (maliciously constructed and minimalistic)
scenario where choice migration actually fails, such that it is not possible for Algorithm 11.6
to terminate successfully. In particular, the produced choice is both unique and including
the ambition, but has become strongly inconsistent with the evolved rule base Jmo. The
descriptions given below are illustrated by Figure 11.6.

The feature model depicted in sub-figure (u) is mapped to:

Och(u) = {fR, fA, fB}

J ch(u) = fR ∧ fA ∧ (fA ⇔ fR) ∧ (fB ⇒ fR)

Pch(u) = {(fA, fR)}

Dch(u) = {(fR, true)}

The choice depicted in (v) is unique and strongly consistent:

cch(v) = {(fR, true), (fA, true), (fB, true)}
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Figure 11.6: Example of inapplicability of the choice migration operation.

After the following changes, the feature model (w) remains satisfiable:

Omo(w) = {fR, fA, fB, fC , fD}

Jmo(w) = J ch(u) ∧ (fC ⇒ fA)∧ (fD ⇒ fA)∧ (fC ∨ fD ⇔ fA)∧¬(fC ∧ fD)∧¬(fB ∧ fD)

Preferences and defaults remain unaffected.
During commit, the following weakly consistent ambition (x), which is also represented

by the choice, is defined by the user:

acm(x) = {(fC , false)}

Then, we apply the MIGRATE operation as specified in Algorithm 11.6. Bindings for the
new options oC and oD need to be added. While binding (oC , false) can be inferred from
the ambition, oD remains to be user-defined as no preference or default are applicable either.
Based upon the two possible selections available to the user, the migrated choices depicted
in (y) and (z) can be created.

cmi(y) = {(fR, true), (fA, true), (fB, true), (fC , false), (fD, true)}

cmi(z) = {(fR, true), (fA, true), (fB, true), (fC , false), (fD, false)}

Both migrated choices are unique and include acm(x). Though, both cmi(y) and cmi(z) are strongly
inconsistent with the invariants of the migrated rule base Jmo(w) . In the first case, the excludes
relationship ¬(oB ∧ oD) is violated, whereas in the second case, both mutually exclusive
children C and D of the XOR group are deselected.

The example demonstrates that cases in which the migrate operation cannot be applied
successfully do exist, however, they require a certain amount of “viciousness”. But even
when assuming that this problem will occur in a more or less significant ratio of commits,
the consequences are not too severe. In such cases, a check-out is issued automatically in
order to re-populate the workspace.
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11.6 Generalized Editing Model

In the beginning of this chapter, the commonalities and differences between static and
dynamic filtered editing have been discussed. After having formalized the consistency
constraints implied by the dynamic editing model, we revisit this comparison. Figure 11.7
illustrates the different optional and mandatory phases of the respective iterations.

This section sketches – without providing formal definitions or proof – how the editing
model assumed so far can be generalized in order to support static filtered editing as well as
blended forms of the editing models.

11.6.1 Static Filtered Editing

When compared to the dynamic way assumed by the algorithms, static filtered editing
requires only to check a subset of the constraints investigated here. This is due to the missing
evolution of the feature model, as well as due to the lack of the operation MIGRATE; a
check-out is required in advance to each iteration. Furthermore, the order of consistency
checks is different because the ambition is selected during check-out already.

The algorithms presented in Section 11.3 can be adjusted for SFE as follows:

– Ambition selection – including the automated revision graph management – is moved from
COMMIT to CHECKOUT, more precisely to after filtering the feature model. Constraint 4
(weak ambition consistency) is preponed accordingly.

feature model
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Figure 11.7: Static vs. dynamic filtered editing by phases and constraints.
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– As the feature model is not made available for modification, it is not exported into the
workspace during CHECKOUT.

– Constraints 1 and 2 are ensured before filtering the domain model as in DFE. Immediately
afterwards, Constraint 5 (choice represents ambition) is checked. If this constraint fails, it is
not the ambition but the choice that has to be altered.

– During MODIFY, only the domain model can be edited.

– The only constraint that remains to be checked at COMMIT is Constraint 6. If this constraint
fails, however, the user cannot be asked for a new ambition. Rather, the write set representing
the product-level changes must be revised in order to be sufficiently general. 11

– MIGRATE (see Algorithm 11.6) is abandoned entirely.

– Feature model modification is enabled between workspace transactions in an unfiltered
editing mode.

11.6.2 Restricted and Alternating Transactions

More restrictive forms of (static or dynamic) filtered editing can be approached by tailoring
DFE towards only one product dimension, the feature model or the domain model.

Feature Model Transaction. In this form of restricted transaction, only the feature model
is made available in the workspace. Since this is only versioned by the revision graph,
whose consistency is managed automatically (see Section 11.4), constraint validation
becomes entirely transparent to the user, who is accosted only with selections in the
revision graph and, e.g., with commit messages.

Domain Model Transaction. It may also be desirable in many scenarios to remove the
feature model from the workspace, or to make it unmodifiable. Then, the co-evolution
problems motivating Constraints 3, 7, 8, and 9 become irrelevant.

A concrete workflow similar to the one implied by the SFE model can be realized by
applying restricted feature model transactions and domain model transactions alternatingly.
Furthermore, nested transactions are conceivable. A feature model transaction may aggregate
several domain model transactions, all committed under the same historical scope.

11.6.3 Earlier Ambition Specification

Even when sticking to the DFE model, the action specify ambition can be preponed to any
point in time after specify choice. This would allow the user to fix the scope of the intended
change earlier than during commit; furthermore, the check of Constraints 4 (weak ambition
consistency) and 5 (ambition represented by choice) can be applied earlier, which may
prevent particular consistency violations. Once specified, the ambition would be memorized
in a similar way as the choice is during CHECKOUT. Constraint 6 (sufficiently specific
ambition) still needs to be checked during commit.

11 This would require a dedicated user interface for inspecting and altering product-level changes. As this is
not available in SuperMod, a negative evaluation of this constraint only issues a warning in that case; the user
may decide whether to ignore the warning or to revert the change entirely.
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11.6.4 The Operation Amend

In Section 9.6, the change space optimization was presented, using which ambitions –
otherwise occurring in multiple instances in element visibilities – are mapped to a transparent
abstraction, namely changes. When using this optimization, changes are the singleton
location where ambitions specified by the user are recorded and managed. Besides other
advantages discussed previously, this introduces a convenient way to retrospectively correct
erroneous ambitions used for recent commits even after having closed the corresponding
transactions.

We semi-formally define an additional workspace operation AMEND, which behaves as
follows:

– The user is asked for a selection in the revision graph. The chosen revision option is ri.

– The feature model for ri is reconstructed. It is internally represented by Of andRf .

– The change space is searched for a change ∆i whose mapped ambition corresponds to
ri ∧ âf , where af describes the feature ambition specified there.

– The user is asked to define a new feature ambition a′f in Of as a substitute for af .

– Constraint 4 is re-checked using the new ambition a′f andRf . If the constraint is violated,
the operation is aborted.

– The ambition associated with ∆i is altered: ri ∧ â′f .

– In J∆, (∆i ⇔ ri ∧ âf ) is replaced by (∆i ⇔ ri ∧ â′f ).

– In P∆, (∆i, ri ∧ âf ) is replaced by (∆i, ri ∧ â′f ).

Notice that this operation potentially behaves less consistently than the conventional way
of ambition specification. In particular, Constraints 5 and 6, which ensure that the ambition
is represented by the choice on the one hand, and sufficiently general for the product-level
change on the other hand, are ignored. This is due to the fact that choices and write sets are
temporary concepts being valid within one transaction only. As a consequence, elements
connected to an amended ambition might not be fully reproducible in all versions included
in it, and unexpected product well-formedness violations may occur.

11.7 Related Work

Before we conclude this section, approaches found in the literature that provide similar
editing models or related consistency mechanisms are presented. Furthermore, we compare
details of related validation techniques for the specific constraints presented in this chapter.

Fully, Partially, and Temporarily Filtered SPL Editing. Related approaches to filtered
editing of software product lines may be categorized under fully filtered editing, partially
filtered editing, and temporarily filtered editing; see Section 5.4.1.

Approaches to fully filtered multi-variant editing were influenced by early concepts of
multi-version editors such as the Multi-Version Personal Editor (MVPE) [SBK88] or P-Edit
[Kru84] (see also Section 1.4.3). They assume that a view – similar to the workspace in the
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here considered framework – is created from a multi-variant document, which corresponds
to the repository here. The version available in the view is defined by a choice that uniquely
denotes a representative of the ambition. The here presented framework realizes fully filtered
editing. It does, however, not assume or require a specific multi-version editor, but allows
arbitrary tools to be used for editing the workspace. To this end, the operations that define
and interpret the choice and ambition are provided by generalized version control metaphors,
which additionally rely on SPLE abstractions.

Partially filtered editing [WO14; ZS97] aims at hiding variants to which the current
change is immaterial, without requiring the choice to be unique. There is only a single
filter serving as choice and ambition simultaneously. Variability information referring to
non-resolved configuration options is presented in the view, e.g., in the form of annotations.
As a consequence, specific tools or preprocessor languages are still required in order to cope
with variability in the workspace.

A source code centric approach to temporarily filtered editing of software product lines is
described in [Käs+09]. A partial feature configuration can be specified as write filter. Code
fragments immaterial for the intended change are hidden. As approximation of a read filter,
a context is derived as an extended view on the write filter. Similarly, the FeatureMapper
[HKW08] approach, which is based on annotative variability, offers a temporary write filter
in the multi-variant view. Having selected one or more features and invoked the record
operation, all changes performed in the MVDM are associated with a feature expression
derived from the provided feature selection.

View-Based vs. Transactional Filtered Editing. An orthogonal distinction can be made
between the categories view-based and transactional filtered editing. For starting and closing
transactions, different abstractions and metaphors are provided in the literature.

In the first case, the filter – which may or may not be further decomposed into read and
write filter – can be dynamically changed by fading in and out specific configuration options.
Altering the filter directly influences the visible workspace contents. Such an approach is
followed, e.g., in [Käs+09; WO14; BPB17]. View-based filtered editing, however, requires
specialized multi-version editors or at least a tight integration of the dynamic filter into
existing editors. This makes this approach difficult to implement, particularly in model-
driven development environments.

In contrast, the transactional approach assumes well-defined iterations during which the
read filter remains equal. In the here contributed approach as well as in the precursor UVM
[WMC01], transactions are opened and closed by generalized forms of the VCS metaphors
check-out and commit. The approach presented in [Stă+16] defines similar operations,
get and put, inspired by the view-update problem known from databases [BS81]. P-EDIT
[SBK88] relies on the metaphors of conditional compilation, introducing a write operation
that closes a transaction by a specific write filter. In FeatureMapper [HKW08], temporary
transactions are opened and closed by starting and stopping change recording (see above);
the view is inferred from a feature selection similar to feature ambitions.

Static vs. Dynamic Filtered Editing. Representatives of static filtered editing, e.g.,
UVM [WMC01] and EPOS [Mun93], require that the ambition be specified at check-
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out time; since the rule base does not evolve, constraints dealing with its evolution are
unnecessary. Similarly, in [WO14], having a single filter requires that the scope of a change
be known beforehand, inhibiting the concurrent introduction of a feature and its realization.

[Stă+16] moves the specification of the write filter from check-out time to commit time,
which slightly deviates from strict SFE as defined above. As the version space is not
represented explicitly, no co-evolution problems may occur, and no dynamism is required
for the editing model.

elIn the presented dynamic filtered editing model, the variability model may evolve during
an iteration embraced by CHECKOUT and COMMIT. In particular, new configuration options
and new configuration rules may be introduced this way. The flexibility implied by this
approach is – to the best of the author’s knowledge – unique in the literature. The implied
consistency problems are described by Constraints 7, 8, and 9, and solved by the novel
operation MIGRATE contributed in Algorithm 11.6.

Generality of the Write Set. In the list of dynamism-aware consistency constraints pro-
vided here, Constraint 6 plays a special role, considering not only the soundness of the
version space (i.e., options, rule base, choice, and ambition) but also of the connection to
the product space (by taking change sets and visibilities into consideration). Phrased in the
vocabulary used in this thesis, this constraint ensures that “the ambition is specific enough to
reproduce the change in all affected variants”, or conversely speaking “the change is general
enough to be reproduced in all variants included in the ambition”.

The potential inconsistencies that may occur by having the user inadvertently change
a larger set of variants than he/she intends to do – namely the variants that contain those
elements visible in the view – have been recognized in the literature previously. Different
solution strategies have been developed:

In [Kru84; SBK88], there is a distinction between fixed and unfixed fragments made
available in the workspace. Fixed fragments are visible in all variants included in the
ambition, whereas unfixed fragments are visible only in a part of the ambition that includes
the choice. Unfixed fragments must be managed in a more or less restrictive way. For
example, as explained in [SBK88], P-EDIT highlights unfixed fragments, such that the
developer becomes aware of a potentially undesired modification of hidden artifacts.

The edit isolation principle described in [WO14, p. 31] states that “the only variants that
change in the source are those that can be reached from the view”, where “source” denotes
the multi-version representation. This has been used as the central design constraint for the
specification of an update (here: commit) operation, which does not only detect but also
repair situations in which the principle is violated. When compared to the edit isolation
principle, Constraint 6 is more restrictive since it disallows, e.g., modifications that destroy
cross-links to invisible elements.

11.8 Summary

This chapter has addressed the combination of the version space (cf. Chapter 9) and the
product space (10) within a consistency-preserving dynamic filtered editing model.
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The following assumptions underlie the DFE model: First, the user wants to specify all
information referring to the version space as late as possible; therefore, the definition of an
ambition is deferred to the COMMIT phase, and modifications to the feature model need not
be performed in advance to an iteration, but may be incorporated during the MODIFY phase.
Second, the user wants to be accosted with version specification tasks as seldom as possible,
which vindicates the decision to make the CHECKOUT operation optional and to introduce
MIGRATE in favor of a reduced obtrusiveness. Third and last, the editing model should be
no more restrictive than necessary in order to prevent the user from performing changes that
cause product inconsistencies or that potentially cannot be reproduced.

Consistency is effectively checked by explicit constraints assigned to the different phases
of an editing cycle. During CHECKOUT, it is ensured that the specified choice – a feature
configuration – is unique and consistent with respect to the feature model. During MOD-
IFY, changes that would make the feature model unsatisfiable are disallowed. The feature
ambition defined by the user during COMMIT is checked for weak consistency, as well as
for being represented by the choice. Furthermore, it must be sufficiently specific for the
performed product-level change. The newly introduced operation MIGRATE automatically
produces a choice for the next iteration based on the previous choice and the ambition, in
order to obviate repeated check-outs that reproduce the current workspace view. By corre-
sponding constraints, the migrated choice is checked for uniqueness and strong consistency
with the evolved version of the feature model. Furthermore, it must include the ambition.

The constraints are formally defined based on the concepts introduced in Chapter 9, which
have been in turn inherited from UVM [WMC01]. The correctness of the consistency-
preserving operations is proved; furthermore, we provide evidence that the revision graph is
managed not only automatically but also consistently.

The decision whether to apply static or dynamic filtered editing is related to the amount of
flexibility (i.e., late ambition specification, co-evolution of feature model and domain model)
and of consistency guarantees (i.e., by preventing certain co-evolution problems) required
by a specific project. In the presented conceptual framework, it is assumed that DFE is the
preferred style, but SFE can be adopted gradually in case a more conservative workflow is
demanded.

Several ways of generalizing the presented dynamic editing model have been sketched.
On the one hand, purely static filtered editing model may be realized by moving particular
version selection interactions and constraint checks within the algorithms. Restricted
transactions may ensure that only the feature model or only the domain model are edited,
e.g., in an alternating fashion. Furthermore, the ambition may also be specified at an earlier
point in time, which slightly increases the consistency at the expense of a more restricted
editing model. Last, the AMEND operation even allows to retrospectively alter the ambition
used for a previous commit, such that erroneous version specifications can be revised.

Taken together, this chapter contributes to the satisfaction of multiple requirements
arrayed in Section 2.3. Filtered editing enables (automated) management of variability
annotations (R7), views on product variants (R8), and automated product derivation (R9).
Through the automated and consistent management of the revision dimension, R2 (exten-
sional revision selection), R3 (immutability of revisions), and R4 (transparent multi-revision
storage) are provably fulfilled. Furthermore, the evolution of the feature model (R13) is
now controlled in a consistent way, and the underlying uniform version mechanism (R15)
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is specified in greater detail. The AMEND operation potentially reduces the gap between
historical and logical versioning (R14) by allowing to retrospectively map an evolutionary
increment to an optional feature.

Implementation details with respect to both the DFE model and its generalizations are
provided in Section 14.2. Furthermore, in Sections 15.4.3 and 15.4.4, we evaluate the
benefits of the DFE model over unfiltered SPL editing as well as over the SFE model.
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Chapter 12

Collaborative and Distributed Versioning

Abstract

Collaborative software development represents one of the key functionalities to be supported
by version control, and it is also relevant to SPLE. Hitherto, the conceptual framework is
restricted to single-user operation. The basic design principle to overcome this restriction
is the controlled orchestration of the evolution and synchronization of physically inde-
pendent copies of a repository. Local transactions realized by check-out and commit are
complemented by remote transactions, which are provided through the operations pull and
push. The first extension concerns the revision graph metamodel: A distinction between
public revisions, embraced by pull and push, and private revisions, representing local check-
out/commit transactions, is made, introducing a two-level hierarchy to the revision graph.
Secondly, the dedicated master copy of the repository is extended by transaction support.
Third, as the optimistic synchronization strategy may involve conflicting modifications,
three-way merging comes into play. To this end, a context-free variability-aware three-way
merge strategy is contributed; merge conflict resolution is addressed by the successor chapter.
At the end of this chapter, the operations pull and push are semi-formally specified.
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12.1 Overview

In this chapter, we explain extensions to the conceptual framework providing the basis
for collaborative filtered MDSPLE. The remainder of this section sketches the extended
architecture as well as the most relevant design decisions. Furthermore, it gives a brief
introduction to the added functionality. In Section 12.2, the revision graph metamodel
and the corresponding mapping to the version space base layer, introduced in Section 9.3,
is refined in order to meet the extended architecture and functionality. Section 12.3 is
dedicated to the centralized management of public transactions. Specialized three-way
merging strategies for different copies of the repository are introduced in Section 12.4. The
building blocks presented in the preceding three sections are combined in a collaborative
editing model in Section 12.5, where the synchronizing operations PULL and PUSH are semi-
formally defined. Before the chapter is concluded, related work on distributed MDSPLE is
presented in Section 12.6. 1

12.1.1 Architectural Sketch

An architectural sketch illustrating the extended conceptual framework is depicted in Fig-
ure 12.1. The illustration complements Figure 9.4, whose contents are represented in a
condensed form on the right hand side. As before, the user performs modifications in a local
workspace and communicates with a – likewise local – repository using generalized forms
of the VCS commands CHECKOUT and COMMIT.

Several local repositories communicate with the central remote repository using the
synchronization operations PULL (for accepting changes incoming from remote copies)
and PUSH (for delivering local changes to other remote copies), inspired by the distributed
version control system (DVCS) Git [Cha09].

1 This chapter shares a significant amount of material with [SW16a].
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Figure 12.1: Architectural sketch: Collaborative extension of the conceptual framework. Based
on [SW16a, Figure 4].

The extrinsic representation of the repository artifacts, see Chapters 9 and 10, is used
within the remote repository in the same way. As shown in Figure 12.1, the remote
repository contains in addition a transaction layer on top of the revision graph. This
organizes synchronization operations invoked by different local repositories and detects,
e.g., concurrent modifications, which must be reported to the connected users.

Last, the information interchanged along with PULL and PUSH needs to be defined. As
the connection between the repositories is network-based, traffic should be reduced to a
minimum. Therefore, projections of symmetric deltas, which only contain those elements
that are required to describe the transferred repository updates, are employed.

12.1.2 Internal Design Decisions

The detailed explanations provided subsequently, which refine the described architecture,
are justified by the following design decisions.

Distributed Replication by Singleton Master. According to Section 4.5, there are two gen-
eral approaches based upon which collaborative version control, issued by design
decision D9 on page 137, may be realized. The centralized paradigm implies that
every check-out and commit read and write the state of a singleton master repository.
In contrast, the distributed approach allows for several copies of the repository, which
are synchronized not upon each and every check-out and commit but at dedicated
user-defined synchronization events. Different synchronization strategies include
peer-to-peer and singleton master; see related work in Section 12.6.

The conceptual extension contributed here employs the singleton master strategy for
synchronizing different copies of a repository. Accordingly, there is a central remote
repository, which communicates with multiple client repositories.

Remote and Local Transactions. The extended framework distinguishes between remote
transactions, which are started with a PULL and finished with a PUSH operation,
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from local transactions, which realize an CHECKOUT/MODIFY/COMMIT iteration.
This reduces synchronization overhead and enables off-line product line development.
Moreover, it is not necessary to start a remote transaction explicitly; rather, all
necessary bookkeeping steps are enforced after each PULL transparently.

Enforcement of a Linear Version History. Each revision committed to the repository is a
successor of the latest revision available, the head. More precisely, public revisions,
which organize remote transactions, form a totally ordered directed acyclic graph
(TODAG), which contains transitive edges (created by merging) in addition to a
sequential chain. Each public node is refined into a sequence of private revisions,
which organize local transactions. By intention, the conceptual framework does not
support permanent branches; as a replacement, configuration decisions that justify
co-existing versions of the product should be modeled as features.

Projected Symmetric Deltas for Information Interchange. The data transferred between
different copies of the repository during PULL and PUSH is represented as regular
model instances complying to the extrinsic metamodels introduced in Chapter 10.
To ensure that only the information necessary to reproduce the change is transferred,
unmodified parts of the product space are projected away from the symmetric deltas.

Referential Integrity. The conceptual framework abstracts from specific product space
types; however, it is assumed that cross-links between elements of the product space
need to be managed. Besides, references between higher-level version models and
low-level rule base elements (e.g., from features to their options) exist. Last, through
visibilities, product space elements refer to options defined in the version space. It is
therefore important to correctly handle links from elements part of a symmetric delta
to elements not included there.

Context-Free and Non-Interactive Three-Way Merging. According to our chosen optimis-
tic versioning strategy, concurrent modifications can occur. The here applied non-
interactive three-way merging procedure is context-free and deterministic. The sur-
rounding collaboration mechanism involves the user as late as possible, i.e., when
he/she attempts to check-out a product that contains conflicts. To reduce the cognitive
overhead for the user, only the contents available in the workspace are analyzed for
well-formedness. This is a subject of the next chapter; see Section 13.4.

12.1.3 Added Functionality

Besides the aforementioned PULL and PUSH, operations for initializing, connecting to,
and removing the connection to a central remote repository are needed. The overall added
functionality is listed in terms of user-visible operations below; Figure 12.2 illustrates the
collaborative editing model as seen from a single user’s perspective. The state chart extends
Figure 11.4 by new states and transitions, the latter of which correspond to synchronization
operations.

Create. The user should be enabled to create a new central remote repository with empty
contents, and empty version history. The workspace from which this operation was
called is considered to be the only client registered in the beginning.
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Figure 12.2: States and transitions of a client in the collaborative editing model.

Clone. The functionality provided by this operation comprises the initialization of a local
client repository whose contents are copied from a given master repository. The client
is registered with the master.

Pull. The contents of the client repository are updated in order to incorporate all changes to
all versioned elements pushed to the master repository by other clients since the last
synchronization. The operation is applicable only in case remote changes are pending
(out of date situation) and in case no private transaction is active. Local changes
committed in the meantime shall not get lost.

Push. Provides the inverse functionality of PULL. All changes locally committed since the
last synchronization are to be transferred to the master repository. Applicable only
when no remote changes can be pulled and when no private transaction is active.

Disconnect. The inverse of CLONE. Removes a client from the list of repositories con-
nected to the master. This operation also removes the client copy of the repository,
but never the workspace contents.

Destroy. Permanently deletes a master repository, forcing remaining clients to disconnect.

CREATE, CLONE, DISCONNECT, and DESTROY are mainly of technical interest and are
therefore not detailed any further in the remainder of this chapter. Their implementation
is briefly discussed in Section 14.5.4. In contrast, PULL and PUSH impose considerable
conceptual challenges, which are examined in the following.

12.2 Collaborative Revision Graphs and their Mapping

Figure 12.3 and Table 12.1 illustrate an Ecore-compliant metamodel for collaborative
revision graphs as well as a mapping to the low-level rule base for instances thereof. Both
the figure and the table redefine the mapping for single-user revision graphs from Section 9.3.
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Figure 12.3: Metamodel for collaborative revision graphs. Based on [SW16a, Figure 2].

12.2.1 Structural Design

A revision graph is a container for public revisions, which represent remote transactions and
in turn contain private revisions expressing local transactions. Both inherit from an abstract
base class Revision that defines an attribute for the revision number – private revisions are
externally displayed using the superordinate public revision as qualifier – and additional
commit details (date, message, author). Secondly, a generic predecessors/successors
relationship2 is defined, which is instantiated in order to connect both public and private
revisions according to the formal mapping defined below.

12.2.2 Formal Mapping

In addition to the structure of the revision graph, the metamodel shown in Figure 12.3 also
defines references to low-level rule base elements (see Section 9.2.2), which are transparently
derived using the transformation patterns defined in Table 12.1.

Private revisions are mapped to a revision option straightforwardly (cf. pattern 2), whereas
public revisions are mapped to two options, starting (1) and finishing (3) the transaction,
respectively. As in the single-user mapping (Table 9.1), either option is supplemented with
a default that defines a negative selection state in case a revision is (and all of its successors
are) deselected. Pattern (4) ensures that the initial public revision is always selected.

As in the single-user mapping described in Section 9.3, predecessor/successor relation-
ships between two revisions x and y are mapped to invariants of the form ry ⇒ rx and

2 There are two reasons why both references have been defined as multi-valued (unlike in single-user revision
graphs; see Figure 9.8): First, for public revisions, the TODAG structure may contain transitive edges in addition
to a chain that expresses a linear order. Second, some relationships between public and private revisions are
defined redundantly; e.g., a public revision has a public in addition to a private predecessor. See example.
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Table 12.1: Detailed mapping between collaborative revision graphs and low-level rule base concepts.
Based on [SW16a, Table 1].

Pattern Transformation Metamodel

1 public revision i option ri revOption
default (ri, false) revDefault

2 private revision i.j option ri.j revOption
nested in public revision i default (ri.j , false) revDefault

3 finished public revision i option ri.∞ finishedOption
default (ri.∞, false) finishedDefault

4 initial public revision 0 invariant r0 publicInitInv
5 public revision i as successor invariant ri ⇒ rf.∞ predInv

of finished public revision f preference (rf.∞, ri) predPref
6 initial private revision i.0 invariant ri.0 ⇒ ri privateInitInv

nested in public revision i
7 private revision i.[j + 1] as invariant ri.[j+1] ⇒ ri.j predInv

successor of private revision i.j preference (ri.j , ri.[j+1]) predPref
8 finished public revision f invariant rf.∞ ⇒ rf.h predInv

with private head f.h preference (rf.h, rf.∞) predPref
9 finished public f with remotely invariant rf.∞ ⇒ rc.∞ predInv

finished c causing out of date preference (rc.∞, rf.∞) predPref

defaults (rx, ry). There are several cases in which such relationships3 are created: (5) A
finished remote transaction is superseded by a succeeding remote transaction, which is
started immediately after PUSH. (6) All private revisions follow the start revision of the
parent public revision. Pattern (7) ensures successorship of private revisions, which are
organized as a sequence. Pattern (8) is instantiated before finishing a remote transaction
and connects the private head (the most recently committed private revision) to the finished
option of the organizing public revision.

Last, pattern (9) comes into play as soon as concurrent modifications happen—it enforces
a totally ordered version history by automatically superseding remotely finished transactions.
To the user, such a situation is signaled as out of date: A change represented by a remotely
finished transaction c must be pulled first, merging the changes locally before pushing f .

12.2.3 Example

To illustrate the dynamic behavior of a collaborative revision graph, represented as instance
of the metamodel shown in Figure 12.3, the example in Figure 12.4 depicts a version history
involving two fictional developers, Alice and Bob.

Alice creates the repository, which transparently introduces a revision 0 and a correspond-
ing public revision option r0, a default (r0, false), and an initial invariant r0 (cf. patterns

3 This is the only occurrence of ambiguous preferences for options in the whole framework. Conflicting
preferences, thus non-determinism, are avoided, one the one hand by the TODAG structure, and on the other
hand by the fact that preferences cannot evaluate to false (in contrast to defaults, which are applied secondly).
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Figure 12.4: Example revision graph illustrating the interplay between public and private revisions.
Boxes denote revisions with corresponding options. Black arrows starting at rx and
ending at ry denote an instantiation of a predecessor invariant ry ⇒ rx and of a
predecessor preference (rx, ry). Based on [SW16a, Figure 3].

1 and 4 in Table 12.1). Next, she performs an initial commit, which introduces a nested
private revision r0.0 as successor of r0 (pattern 6). By finishing the transaction through the
PUSH operation, option r0.∞, default (r0.∞, false) (3), and invariant r0.∞ ⇒ r0.0 (8) are
introduced transparently. The next transaction is started instantaneously, introducing r1,
(r1, false) (1), as well as invariant r1 ⇒ r0.∞ and preference (r0.∞, r1) (5).

In the meantime, Bob clones the repository, which also starts a write transaction (option
r2, preference (r2, false), invariant r2 ⇒ r0.∞, and preference (r0.∞, r2)). Concurrently,
both developers commit private revisions to their local repositories – such that pattern (7) is
applied repeatedly – and then finish their current remote transaction. Bob is the first to push,
r2 is closed, and r3 is started immediately. Thereafter, Alice attempts to push, but receives
an out of date error, enforcing a PULL based on the current head, such that the incoming
r2.∞ is locally merged with r1.∞. When pushing again, pattern (9) is instantiated, adding
the invariant r1.∞ ⇒ r2.∞ and the preference (r2.∞, r1.∞) to the rule base transparently.
Moreover, a new remote transaction is begun by introducing revision 4 and applying
patterns (1) and (5) in a suitable way.

Alice finishes her pending remote transaction straightforwardly. After that, Bob starts his
work forgetting to pull r4. Thus, he receives an out of date error when attempting to push
r3.∞. The incoming r4.∞ is automatically merged before finishing r3.

Lessons Learned. When compared to single-user revision graph management, the un-
derlying mechanisms defined above in this section and illustrated in this example are
intrinsically complex. Nevertheless, the fictional users are only exposed to few additional
revision control metaphors (push, PULL, out of date), such that the added functionality –
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collaborative SPL versioning – is paid with a tolerable increase in cognitive complexity.

12.3 Centralized Management of Remote Transactions

After having described the extensions to the version space, let us move on to the product
space related topics. As explained in the introductory section of this chapter, both the
master and local repositories each comprise a full copy of the product space. Nevertheless,
symmetric deltas transferred with PULL and PUSH should be kept small. To this end, it is
necessary to keep track of the elements modified by specific remote transactions. This is
provided by a low-level transaction layer; see Section 12.3.1. Proximately, Section 12.3.2
explains how symmetric deltas are eventually calculated.

12.3.1 Low-Level Transaction Layer

In order to keep track of the elements modified by the current write transaction, a primitive
transaction layer has been added to the conceptual framework. It is realized by the following
extensions to the server-side master and/or the client-side local repositories:

– Each local repository carries a read transaction number, which indicates the revision number
of the most recently pulled public revision; moreover, a write transaction number, which
equals the revision number of the public revision organizing the current remote transaction.
Both are part of the metadata section of local repositories; see Section 13.2.1, p. 271.

– Each product space element carries a numerical transaction identifier that indicates the trans-
action associated with its most recent modification (i.e., insertion, deletion, or modification
of a child element). In the product space base metamodel shown in Figure 10.2 on page 194,
this has been conceptually prepared by the attribute transactionId.

– The visibility update operation (cf. Algorithm 11.5 in Section 11.3.3 on page 232) is
modified such that it assigns the current write transaction number to inserted and deleted
elements.

– The master repository manages a global transaction log to which transaction starting and
finishing events are appended in historical order. Also from this log, new public revision
numbers are generated by incrementing the number of the most recently opened transaction
by one. Transactions are opened but not necessarily closed, in numerical order.

Example. The transaction log for the example from Figure 12.4 is

o0 c0 o1 o2 c2 o3 c1 o4 c4 o5 c3 o6

where oX denotes that a transaction X has been opened, and cX represents the corresponding
closing event. From this log, we may infer that transactions 5 and 6 are still running, and
that the subsequently started remote transaction will carry the number 7. Furthermore, out
of date situations can be detected; for instance, if Alice pushed now, she would be forced to
pull revision 3, pushed in the meantime, first. In contrast, Bob may push revision 6 without
being interrupted, since no new transaction was closed after the event o6.
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procedure PROJECTDELTA(P , tNo)
Π0 ← {e0 ∈ P | the transaction number of e0 equals tNo}
Π1 ← ∅
for e0 ∈ Π0 do

for {e1 ∈ P |e1 ∈ crossLinks(e0)} do
if e1 /∈ Π0 then

Π1 ← Π1 ∪ {e1}
for o1 ∈ options referred to in v0 (visibility of e0) do

ve1 ← high-level product space element (feature or revision) belonging to o1

if ve1 /∈ (Π0 ∪Π1) then
Π1 ← Π1 ∪ {ve1}

Πpar ← ∅
for e01 ∈ (Π0 ∪Π1) do

for epar ∈ parent+(e01) do
if epar /∈ (Π0 ∪Π1 ∪Πpar) then

Πpar ← Πpar ∪ {epar}
return Π0 ∪Π1 ∪Πpar

Algorithm 12.1: Symmetric delta projection. Based on [SW16a, Algorithm 1].

12.3.2 Symmetric Delta Projection

The increments transferred along with push and pull are symmetric deltas; they are internally
represented as subsets of the product space, which in turn consists of the feature model and
the domain model. As pointed out in Section 12.1.2, special emphasis is put on the integrity
of cross-links between different types of elements.

Algorithm 12.1 describes a generic procedure for computing symmetric deltas as a
projection of the product space based on a given transaction number. The delta is returned
as the subset of the product space that is unionized by the following elements:

0-Context. All elements that carry the specified transaction number.

1-Context. Elements cross-referenced by elements in 0-context or by the visibilities of
elements in 0-context.

Parent Context. The transitive closure over the containers (denoted as parent+) of all
elements in the union of 0-context and 1-context.

Symmetric delta projection is used in two instances in the extended editing model (see
Section 12.5): on the client side for identifying the elements to PUSH based on the write
transaction number, and on the remote side when calculating the element set to be transferred
to the client who requested a PULL for a given read transaction number.

12.4 Context-Free Three-Way Merging

The counterpart to delta projection is merging, the key functionality to be offered by an
optimistic synchronization strategy (see design decision D9). This operation applies an
incoming delta to a product space P , which is an “append-only” structure; no element is ever
permanently removed in order to enable the reconstruction of previous historical versions.
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Three-way merging as explained here is context-free and non-interactive; it assumes a
purely set-theoretic definition of the product space and does not take into consideration
the well-formedness rules defined by the underlying metamodels. Such inconsistencies are
detected in local workspaces in a product-based way; details are explained in Chapter 13.

12.4.1 Element Merging

Relying on the asymmetric two-way raw MERGE operation introduced in Algorithm 10.4
on page 213, a merged product space P ′ can be easily computed from a master version P
and an incoming delta Π as follows:

P ′ = MERGE(Π,P, diff ,match) (12.1)

In the above equation, match = MATCH(Π,P ), and diff = DIFF(match).
The merge is performed based on the criterion same introduced in Section 10.2.2, thus:

∀e1, e2 ∈ P ′ : same(e1, e2)⇒ e1 = e2 (12.2)

12.4.2 Raw Visibility Merging

Though, visibility conflicts4 arise whenever two same elements ePi ∈ P and eΠi ∈ Π , which
are merged to one element in e′i ∈ P ′, carry different visibilities in the mappings provided
by P and Π . Special attention must be paid since visibilities encode insertions and deletions
of elements. We have to distinguish between raw merging (an incoming delta is supposed to
be integrated into the repository that has so far been up to date) and three-way merging (a
local repository contains outgoing changes which conflict with an incoming delta, i.e., the
local repository is out of date).

In case no outgoing changes exist to redefine the visibility of an element ePi ∈ P , the
(more recent) visibility vΠi is transferred from the delta version Π to the master version P .

Thus, visibilities are raw merged as follows:

v′i =

{
vΠi if ei ∈ Π and vΠi is defined
vPi otherwise

(12.3)

As before, in case an element ei does carry a visibility, vi = true is assumed implicitly.

12.4.3 Three-Way Visibility Merging

If the local repository is out of date, however, the visibilities of its elements in P may
conflict with the visibilities defined in Π . In this case, the common base version B must be
considered:

v′i =


vPi if ei /∈ Π or if vΠi is undefined
vΠi if ei /∈ P or if vPi is undefined
µ(vBi , v

P
i , v

Π
i ) otherwise

(12.4)

4 To avoid confusion between element identifiers and versions of a product space, the latter are here denoted
using superscripts rather than subscripts, i.e., vPi denotes the visibility of element ei in product space P .
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Here, vBi is the visibility of ei in the common base version B of the considered revisions
in the revision graph. Product space version B can be identified by searching the revision
graph for the latest common predecessor of the revisions underlying P and Π . 5

Along with this, µ denotes the three-way visibility merge function6:

µ(vBi , v
1
i , v

2
i ) = (v1

i ∧ v2
i ) ∨ (v1

i ∧ ¬vBi ) ∨ (v2
i ∧ ¬vBi ) (12.5)

In case there is no difference between vBi and v1
i , this function degenerates to v2

i (and
conversely for swapping v1

i and v2
i ). Otherwise, insertions and deletions made effective by

the visibility update operation (Algorithm 11.5) in v1
i and v2

i in isolation are combined.

12.4.4 Visibility Forest Merging

Provided the visibility forest optimization presented in Section 9.7, where propositional
logical operations are represented as nodes in a directed graph structure, the evaluation
effort as well as the traceability of visibility expressions created by the three-way merging
operator µ may be further improved: We have introduced a ternary node type Merge
– technically, a subtype of BinaryExpr with an additional operand base – in the option
expression metamodel in Figure 9.7. Altogether, the base and the other two operands
refer to vBi , v1

i , and v2
i , which are internally represented by option expression references to

existing nodes. The evaluation of a merge node, externally represented by the operator µ, is
then realized as defined in (12.5).

12.4.5 Example

Let us illustrate the visibility forest merging strategy by the following example. An element
ei is assumed to have been introduced in revision 0 by user Bob with a global scope, such
that vBi = r0.0. Then, Bob commits and pushes. Next, Alice pulls revision 0 and deletes ei
under a logical ambition where feature A is selected. Therefore, v1

i = r0.0 ∧ ¬(r1.0 ∧ fA).
She commits and pushes. In the meantime, Bob pulls and locally deletes the same element ei,

0.0r

Afr 0.1 Bfr 0.2  

0.0r0.0rAfr 0.1


0.0r Bfr 0.2

 a) base visibility

b) remote visibility c) local visibility

d) merged visibility

base

Figure 12.5: An instance of a visibility forest with merge node.

5 Technically, vBi is obtained by taking as a basis vPi and removing all terms from the conjunctively represented
visibility which refer to a revision option that supersedes B.
6 This function is a propositional logical conversion of the three-way merge formula for sets; see 6.1 on
page 109, which originates from [Wes14].
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but under ambition B. Before pushing, the local visibility of ei is v2
i = r0.0 ∧ ¬(r2.0 ∧ fB).

When attempting to push, Bob gets an out of date warning and is forced to pull Alice’s
change first. The affected repository contents are merged in his local workspace. Since the
visibility of ei has been modified conflictingly, three-way visibility merging is applied as
follows in order to construct the merged revision r3.0:

µ(vBi , v
1
i , v

2
i ) =

(
(r0.0 ∧ ¬(r1.0 ∧ fA)) ∧ (r0.0 ∧ ¬(r2.0 ∧ fB))∨(

r0.0 ∧ ¬(r1.0 ∧ fA) ∧ ¬r0.0

)
∨
(
r0.0 ∧ ¬(r2.0 ∧ fB) ∧ ¬r0.0

)
= r0.0 ∧ ¬(r1.0 ∧ fA) ∧ ¬(r2.0 ∧ fB)

Figure 12.5 depicts the internal representation of the relevant cut-outs of the visibility
forest in its state at vBi , v1

i , v2
i , and the merged visibility v′i. A merge node, represented

by µ, was introduced in the course of three-way visibility merging. The node labeled with
r0.0 was identified as base node, whereas the alternative visibility values, after merging the
forest, are referenced as operands.

12.5 Semi-Formal Definition of a Collaborative Editing Model

Based upon the definitions from the preceding subsections, we semi-formally define the
operations PULL and PUSH referred to in Figure 12.1. By intention, we refrain from
specifying the operations at the level of detail of algorithms as in Section 11.3. After
all, too many details depend on implementation decisions; see Sections 14.4.5 and 14.5.4.
Furthermore, the existing operation COMMIT must be extended in order to comply with the
rule base mapping redefined in Table 12.1, particularly with respect to the management of
private revisions.

The descriptions given for both operations assume that the master repository has already
been initialized using the CREATE operation introduced in Section 12.1.3. The collaborative
revision graph is equipped with an empty public revision 0.0, and accordingly, patterns 1
and 4 defined in Table 12.1 have been instantiated. Furthermore, both operations are only
allowed if there are not any pending local changes (cf. Figure 12.2); for preventing them
from getting lost, these need to be committed in advance.

12.5.1 Pull

Operation PULL fetches incoming changes from the master and appends them to a dedicated
client repository, from which the operation is called. It proceeds in the following way:

1. The current read transaction number r of the client repository is sent to the master as
part of a pull request.

2. The transaction log of the master is analyzed in order to find all write transactions
w1, . . . , wm closed after the closing event corresponding to the transmitted read
transaction number r.

3. If there are not any closed write transactions, the client repository is up to date. Then,
cancel the operation.
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4. For each write transaction wi, a symmetric delta Πwi is computed using Algo-
rithm 12.1. As the base element set P , the master repository’s product space is
taken.

5. The deltas Πw1 , . . . ,Πwm are serialized and sent to the client.

6. On the client, the incoming deltas are successively raw-merged with the product space
as shown in Section 12.4.2. Visibilities are processed as follows:

a) In case there are no outgoing changes, raw merging is applied; cf. (12.3).

b) In case there are outgoing changes (i.e., pending commits in an unfinished public
revision), three-way merging (12.4) is applied.

7. The client’s read transaction number is updated to the write transaction number wm
that belongs to the most recent symmetric delta pulled, Πwm .

8. A CHECKOUT is recommended to the client user in order to transfer the pulled
changes from the local repository to the workspace. Here, product well-formedness
violations caused by three-way merging are addressed (see Chapter 13).

12.5.2 Push

The inverse operation, PUSH, finishes a remote transaction – representing a sequence of
local transactions – and transfers all therein committed changes to the server.

1. The client’s read transaction number r is matched with the most recently closed
transaction number available in the sever-side transaction log, wm. If the numbers
differ (r 6= wm) the client is out of date. This is signaled to the user, who may decide
either to PULL the incoming changes or to abort the operation.

2. If necessary and if the user agrees, a PULL is enforced. For incoming changes,
corresponding public revisions w1, . . . , wm are memorized.

3. The current remote transaction w is finished, instantiating patterns 3 and 8 from
Table 12.1. Revision details (author, date, commit message) are applied.

4. A symmetric delta Πw is computed using Algorithm 12.1 and the current write
transaction number w. The local repository’s product space is taken as base set P .

5. The delta Πw is sent to the master as part of a push request.

6. On the master repository, the incoming delta Πw is raw-merged with the remote
repository’s product space P as shown in Section 12.4.1. For visibility merging, the
raw strategy (cf. Section 12.4.2) is applied.

7. The transaction log is updated by closing the client’s write transaction and by opening
a new write transaction immediately.

8. The new write transaction number is transferred to the client.

9. In the client revision graph, a new public revision is introduced, instantiating patterns 1
and 5 from Table 12.1. In addition, for each of the incoming revisions w1, . . . , wm
memorized in step 2, pattern 9 is enforced.
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12.5.3 Collaboration-Aware Commit

The mapping of several patterns in the collaborative revision graph to low-level rule base
elements also refers to private revisions. These are organized not by the operation PUSH,
but by COMMIT, which finalizes a local transaction. Rather than formally redefining the
operation here, we describe situations in which corresponding patterns are instantiated:

– If the current public revision i does not contain any private revision yet, create an initial
private revision i.0 and apply patterns 2 and 6 listed in Table 12.1.

– Otherwise, take the current private head revision, i.j as a basis. Create a new private revision
i.[j + 1] as successor of i.j. Instantiate patterns 2 and 7 from Table 12.1.

– In both cases, execute the standard COMMIT operation defined in Section 11.3.3, omitting
all revision management steps, which are replaced by the collaborative patterns redefined
here. Use the new revision option (ri.0 or ri.[j+1]) for the historical part of the ambition
(acmr ). In case the operation fails, undo the pattern applications described above.

– Extend the utility operation UPDATEVISIBILITIES (cf. Algorithm 11.5) in such a way that
the current write transaction number of the enclosing remote transaction is assigned to all
inserted or deleted elements to which visibility updates are applied.

12.5.4 Example

We refer back to the example introduced in Section 12.2.3 and move the focus from the
instantiation of rule base mapping patterns to delta calculation, three-way merging, and the
peculiarities of the collaborative editing model.

To facilitate understanding the example, we make some simplifications: (1) One change
is performed per commit. (2) For each remote transaction, only the first commit is shown.
(3) The feature model consists of a root feature with option fR and of two optional features
having options fA and fB and not imposing any further constraints. (4) The product space
is represented as a simple bubbles and arcs model. Both bubbles and arcs carry a label,
which also serves as equality criterion. 7

The final state of the remote repository’s multi-version domain model, including visibili-
ties, is depicted in Figure 12.6. Below, the performed changes (each followed by PUSH and
COMMIT) are ordered by push date (but not necessarily by public revision number).

Revision 0. Alice initializes the repository, creates the entire feature model, and an initial
product consisting of bubbles v, w, x and arc q, which are all contained by the
diagram canvas k. She does not associate her change with a specific feature, resulting
in the logical ambition true for the lone private revision 0.0. The symmetric delta
projection transferred is Π0 = {R,A,B, v, w, x, q, k}. Here and in subsequent steps,
k is included since it is the parent of all affected bubbles and arcs (therefore, an
element of the parent context).

Revision 2. Ensuing from revision 0, Bob removes q and x, and inserts arc s and bubble z,
all under ambition {(fB, true)}. The delta is Π2 = {q, x, s, z, B, k}. In this case, B

7 Bubbles and arcs essentially correspond to labeled directed graphs, but have been renamed here in order to
avoid confusion with internals of the conceptual framework.
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is included because its low-level option fB is referenced in the visibilities of newly
inserted domain model elements (1-context).

Revision 1. Alice concurrently removes arc q and bubble x, and adds arc p, under ambition
{(fA, true)}. The delta is Π1 = {q, x, p, w,A, k}. Here, w is included as an element
cross-referenced by the inserted arc p (1-context).

Merging Revisions 1 and 2. Bob was the first to finish, so Alice receives an out of date
error when attempting to push. Upon pulling revision 2, the incoming delta is merged.
The visibility of arc q and bubble x has been concurrently modified, such that
vPq,x = r0.0 ∧ ¬(r1.0 ∧ fA) and vΠq,x = r0.0 ∧ ¬(r2.0 ∧ fB). Using the base visibility
vbq,x = r0.0, the three-way visibility merge function (12.5) evaluates to
v′q,x = µ(vbq,x, v

P
q,x, v

Π
q,x) = r0.0 ∧ ¬(r1.0 ∧ fA) ∧ ¬(r2.0 ∧ fB). Moreover, the

visibility of z is raw-merged in order to obtain Bob’s insertion under feature ambition
{(fB, true)}.

Revision 4. Alice adds bubble y, arcs t and u under feature ambition {(fA, true)}. There-
fore, Π4 = {y, t, u, w, x,A, k}. Here, w, x, and A are 1-context elements.

Revision 3. Ensuing from revision 1, Bob concurrently deletes bubble w and arc s under
feature ambition {(fB, true)}. The transferred delta is calculated as
Π3 = {w, s, z, B, k}. Here, bubble z is a 1-context element cross-referenced by s.

Merging Revisions 3 and 4. Bob receives an out of date error when attempting to push
revision 3. As a consequence, the incoming delta belonging to revision 4 is merged.
In the master repository, the visibilities of bubble y, arcs t and u added by Alice are
raw-merged: v′y,t,u = r4.0 ∧ fA.

Lessons Learned. In this example, we have focused on the internals of low-level transac-
tion management, delta calculation, visibility update, and visibility merging. It is important
to notice again that the Alice and Bob do not get accosted with these details, since they
operate in their local workspaces using the VCS abstractions COMMIT, PUSH, and PULL,
which hide complexity from them.
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Figure 12.6: Example product space including visibilities (red boxes) and transaction numbers (filled
black boxes, white font). Based on [SW16a, Figure 5].
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The example also shows that visibility merging produces the intuitive result; the concur-
rent deletions of q and t under different ambitions as well as Alice’s insertions of u and y
have been combined, while the logical scopes – the ambitions specified by the users – have
been maintained. During delta calculation, the smallest subset necessary to describe the
changes in a self-contained way is yielded, reducing synchronization traffic to a minimum.

12.6 Related Work

The here presented extensions, which add multi-user support to the conceptual framework
presented in the previous chapters, are related to other approaches described in the literature.
On the one hand, the extensions are inspired by distributed version control systems. On the
other hand, conceptually different solutions for collaborative SPLE have been proposed.
Moreover, related approaches to change-oriented versioning offer collaboration support on
the basis of different transaction management mechanisms and/or different (pessimistic or
optimistic) synchronization strategies.

Distributed VCS. The distinction between local and remote transactions used in the pre-
sented extension was borrowed from distributed version control systems (DVCS), which
extend centralized VCS such as Subversion [CFP04], where every transaction is a remote
transaction, by allowing for multiple, distributed copies of a repository.

Many DVCS, especially those employed in the open source community, follow an open
replication strategy that does not define a global master repository per se, but technically
relies on a peer-to-peer synchronization principle, where each repository may push and
pull from a dedicated origin. Examples include Git8 and Mercurial9. In this way, arbitrary
hierarchies of repositories can be built, such that at the same time, higher-level management
of repositories, e.g., through hosting platforms, becomes relevant. In contrast, the here
considered framework extension follows a closed strategy that allows for only one level of
replication (singleton master repository).

The concepts contributed here advance the state of the art in DVCS in two ways. On the
one hand, support for logical variants has been added by integrating SPLE metaphors; by
providing the possibility of combining independently developed features (i.e., intensional
versioning), the approach at hand goes considerably beyond branches and forks offered
by centralized and distributed VCS. On the other hand, models are versioned as structured
artifacts rather than taking their text-based serialization as a basis for line-oriented version
control.

Collaborative SPLE. It seems natural to build support for collaborative SPLE on top of
existing general purpose version control systems. Tools following the clone-and-own ap-
proach (see Section 5.4.1) natively support multi-user operation. Approaches that explicitly
address collaborative SPLE include [RCC13; Pfo+16; LELH16]. They have, however, in
common that they organize product-level variation extensionally by explicitly persisting
branches rather than relying on a fine-grained decomposition of the product.

8 https://git-scm.com/
9 https://www.mercurial-scm.org

https://git-scm.com/
https://www.mercurial-scm.org
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The component-based approach to SPL versioning described in [Tha12a] relies on change
propagation at configuration level, realizing unfiltered collaborative SPLE. A solution for
semi-automatic backward propagation of product-specific changes to the product line is
presented. However, instead of connecting visibilities of updated elements to an ambition as
provided here, manual visibility updates are required.

Revision Graph Management. Open DVCS that follow a peer-to-peer replication strategy,
such as Git [Cha09], allow for an arbitrarily deep multi-level organization of nested revisions.

The collaborative revision graph metamodel introduced in Section 12.2.1 represents a
special case of a two-level organization (cf. Section 4.2.2). The first level, formed by public
revisions, is a totally ordered directed acyclic graph (TODAG), whereas the private revisions
contained on the second level correspond to a sequence. A similar two-level organization is
applied, among others, in CVS [Ves06], where the restriction of a totally ordered first level
is suspended in favor of parallel branches. By intention, branches are not supported by the
here considered conceptual framework as the variant dimension is covered by an orthogonal
feature model.

A problem related to the hierarchical organization of revisions is their labeling. The con-
ceptual framework introduced above uses a two-level scheme of the form public.private,
where both components are created by counters. In contrast to related approaches, pub-
lic revisions are incremented not by order of finishing but by starting events of remote
transactions. As a consequence, finished revisions are not necessarily ordered by commit
date, which potentially causes confusion. In the literature, two other methods can be found
to circumvent this problem: First, ordering by finishing events of remote transactions, as
applied in the centralized VCS Subversion [CFP04]; then, however, the prefix of pending
private revisions must be represented by a placeholder until the definite public revision
number becomes available upon push. Second, replacing integer-valued revision numbers
by randomly generated identifiers or hashes, as performed in Git [Cha09], does not suggest
any linear order among revisions to the user.

Transactions in Change-Oriented Version Control. The Uniform Version Model (UVM)
(cf. Section 8.4 and [WMC01]) is a descendant of change-oriented versioning (CoV),
which was implemented in the version control system EPOS [Mun93]. The design of a
collaborative component for EPOS is presented in [CM91]. EPOS and the framework
at hand have in common a low-level transaction layer assigning transaction identifiers to
versioned elements. UVM’s layered architecture [WMC01] extends the low-level transaction
layer of the database versioning system EPOS. Transactions are manifested in visibilities by
means of transaction options, which coarsely correspond to public revision options. These
are, though, not shown to the user as an explicit VCS artifact, e.g., in the form of a revision
graph.

As another difference, in EPOS, transactions may be nested in a tree rather than being
restricted to a two-level layout; user modifications are allowed only in leaf transactions.
Synchronization is orchestrated by a propagation mechanism between different workspaces.
In contrast, the new conceptual framework separates filtered editing (check-out/commit)
from synchronization (pull/push) and transfers symmetric deltas only on demand.
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Pessimistic Synchronization. The aforementioned EPOS system [Mun93] offers (but is
not restricted to) pessimistic synchronization by inhibiting multiple transactions that are
intended to be run under mutually overlapping logical ambitions. Such strategy is not
applicable to the here considered dynamic editing model, where the ambition is specified
at commit time. Therefore and in order to enable non-restrictive collaboration, the pre-
sented framework extensions rely on optimistic synchronization. Conversely, following the
pessimistic paradigm, EPOS does not require three-way merging.

In [Kel17], a distributed model versioning strategy based on the lock-modify-unlock
paradigm is presented. The approach is feasible with, but does not explicitly address,
model-driven product lines.

12.7 Summary

The key contribution of this chapter consists in the multi-user extension of a conceptual
framework that enables (single-user) MDSPLE on the basis of a filtered editing model. To
this end, the existing repertoire of operations CHECKOUT and COMMIT has been enhanced
by PULL and PUSH, which synchronize different copies of local repositories with the help
of a dedicated master repository. The operations are defined based upon a collaborative
revision graph, which organizes remote and local transactions. The central remote repository
organizes the transaction history in a log. The artifacts transferred along with the operations
pull and push are symmetric deltas, which are projected from the entire multi-version domain
model based upon transaction identifiers.

When referring back to the requirements stated at the beginning of this thesis in Sec-
tion 2.3, the presented contributions help satisfy R17 (multi-user version control) and R18
(collaborative SPLE). By adopting Git’s pull/push model, the framework adheres to the
distributed paradigm. Furthermore, optimistic synchronization is applied to the domain
model, to the feature model, as well as to the (transparent) mapping in between.

As soon as several users apply concurrent modifications to the same versioned element(s),
conflicts at product level may arise. To resolve these, a generic three-way merge procedure
has been introduced, which is, firstly, non-interactive by not allowing the user to intervene
in merge decisions, and secondly, context-free in a sense that it does not guarantee the
well-formedness of workspace contents. This type of consistency control is supposed to be
orthogonal to the here considered problem of collaborative editing. Product well-formedness
analysis is therefore addressed by the subsequent chapter.

As proof of concept, a client/server application that implements the collaborative editing
model and its underlying extensions to the framework is presented in Chapter 14.





Before software can be reusable
it first has to be usable.

RALPH JOHNSON

Chapter 13

Metadata Management
and Well-Formedness Analysis

Abstract

The description of the conceptual framework is concluded with two closely related topics,
metadata management and well-formedness analysis of products presented in the workspace.
Workspace metadata subsumes information that must be organized in addition to the user-
visible workspace contents. This information in turn depends on the concrete product
dimensions employed as well as on the (single or multi-user) execution mode. We formalize
by Ecore-compliant metamodels the metadata for the versioned file system and for the
feature model. By the same dimensions, we organize the description of well-formedness
conditions by means of which conflicts are detected in the product to be checked out at the
beginning of an editing model iteration. The conflict handling employed in the framework
follows a product-based a-posteriori paradigm using default resolution strategies, whose
properties considerably differ from related analysis techniques described in the literature.
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13.1 The Rough Edges of the Conceptual Framework

The preceding chapters have dealt with specific parts of the conceptual framework in
isolation and have left some design decisions, which refer to products being developed by
the user in the workspace, open. The workspace contains the artifacts the users of a tool
following the approach at hand are supposed to read and manipulate during the greater part
of their working time. So far, we have assumed that the workspace is physically isolated
from the repository. Nevertheless, questions like the following demand for a more precise
definition of this concept:

– How is the cut-out of the local file system, which corresponds to the workspace in the
domain model dimension, managed? Typically, VCS allow that files are dynamically added
to and removed from version control. Furthermore, there is also the possibility to ignore
files. To support such operations, it is necessary to keep track of which part of the local file
system is currently mapped to the repository.

– Where is the workspace feature model, which is made available for modification within an
editing model iteration, located? In which format is it persisted, and how does it differ from
the repository-internal (i.e., extrinsic) representation?

– In the algorithmic descriptions in Section 11.3, statements of the form “memorize the current
choice for a subsequent commit” have been used. Furthermore, the generalized editing
model presented in Section 11.6 assumes that the ambition may also be defined before
commit. How are the memorized choice and ambition, temporarily valid within one local
transaction, represented?

– The COMMIT operation has been defined in such a way that for unaffected product dimen-
sions, no version membership needs to be specified—for instance, in case the domain model
remains unmodified, the user need not be asked for a feature ambition. This raises the
question how to detect modifications. (In graphical VCS back-ends, it is also common to
display to the user the files having been modified within the current transaction.)

– In Chapter 12, collaborative versioning has been explained; it is based on a low-level
transaction layer that extends both the master and client repositories. How are the local
read/write transaction numbers managed? How is the transaction log belonging to the
master repository represented? How is the non-permanent connection from client to master
organized in order to be established on demand?
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– Two properties of the conceptual framework may give rise to product well-formedness
conflicts, which impede the filtered repository contents from being completely and/or
consistently exported into the workspace: On the one hand, when combining multiple
optional features, which do not exclude each other according to the feature model rules,
variability conflicts such as static feature interaction (cf. Section 5.5.1) may occur. On the
other hand, collaboration may cause similar types of conflicts, provided that the three-way
merge strategy presented in Section 12.4 does not consider context-sensitive correctness.
The internal representation as well as the precise conditions for the detection of different
types of conflicts remain to be introduced formally.

From this list of items, we deduce two important roles for the workspace which need
to be formally defined in a more detailed way. On the one hand, metadata management
comes into play. On the other hand, by supporting optional features as well as through
collaboration, product well-formedness conflicts, which prevent the selected version from
being consistently represented in the workspace, may occur. These need to be presented to
the user in a meaningful way, in order to help him/her resolve them.

The remainder of this chapter is structured in the following way. The two aforementioned
roles, metadata management and conflict detection, are discussed in Sections 13.2 and 13.3;
the sections are structured along the product space dimensions (file hierarchy consisting
of text and EMF files, as well as feature model). In Section 13.4, we motivate and explain
the product-based a-posteriori analysis and conflict resolution strategy employed in this
conceptual framework. Related work, with a focus on well-formedness analysis, is presented
in Section 13.5, and Section 13.6 concludes this chapter and thereby Part IV of the thesis. 1

13.2 Metadata Management

Under workspace metadata, we subsume all information that must be organized in addition
to the user-visible workspace contents in order to be able to provide for a meaningful and
consistent workflow. In the here presented conceptual framework, the metadata section is a
regular part of the transparently organized repository. Without loss of generality, we assume
a one-to-one relationship between local repository and workspace.

In Section 9.2.1, Figure 9.5 on page 165, this has been conceptually prepared by an abstract
class Metadata to be contained by each instance of Repository. Figure 13.1 refines the
corresponding package core::meta, whose contents are explained throughout the subsequent
subsections and thereafter.

13.2.1 Metadata for Distributed Versioning

The framework extensions necessary to support collaborative versioning have been presented
in Section 12.3.1, relying on a primitive transaction management layer. The corresponding
properties have been incorporated while making an explicit distinction between client and
master metadata (cf. metamodel in Figure 13.1).

1 An excerpt of the text of this chapter has been published in a considerably more concise form in [Schwä+16].
It is, moreover, planned to submit the here presented a-posteriori product-based analysis approach in a more
general form for publication [SW18].
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core::meta

Metadata
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writeTNo : Integer
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(from core::product)
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Figure 13.1: General workspace management metamodel. Partly based on [Schwä+16, Figure 9].

Class ClientMetadata contains as attributes a read (readTNo) and a write transaction
number (writeTNo). Furthermore, the aforementioned non-permanent link to the mas-
ter repository has been conceptually modeled by means of a uniform resource identifier
(masterUri). It strongly depends on the technical implementation how this information is
interpreted; a concrete example is given in Section 14.4.5.

Complementarily, MasterMetadata contains a transaction log which is organized as an
ordered collection of Open and Close events, both carrying the corresponding transaction
number (tNo). Furthermore, it is possible to navigate from a closing event to a corresponding
opening event, and, if applicable, vice versa. The attribute busy ensures by a semaphore
mechanism [HDH02] that no write transaction is executed concurrently with any other
transaction on the same master repository instance. Concurrent read transactions, however,
are allowed.

13.2.2 Local Workspace Management Metadata

The aforementioned class ClientMetadata specializes LocalMetadata, which in turn represents
the metadata section of the lone repository copy in single-user scenarios. Local metadata
augment the information represented by the workspace itself by data necessary for organizing
local transactions. As the metamodel shown in Figure 13.1 suggests, they consist of four
components.

First of all, the activeChoice persists the effective choice derived from user-based version
selections made for the current local transaction. It is represented as an instance of Option-
Binding, whose bound options refer to the version space of the local repository. On the one
hand, the active choice is needed during COMMIT in order to reconstruct the checked-out
workspace. On the other hand, it is purposeful to present the active choice to the user,
making him aware of the selection of features that describe the current read filter.
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Optionally, the reference reservedAmbition is used for static filtered editing as well as
for earlier ambition specification; see Section 11.6. Like the choice, it is serialized in
non-completed form, i.e., in its state before applying preferences and defaults to it.

The workspace descriptor augments the visible parts of the workspace with management
metadata that differ among specific product dimensions; concrete subclasses of Dimension-
Descriptor are provided in the two following subsections. The derived attribute modified
must be defined in order to state whether any artifact of the corresponding dimension has
been edited during the current local transaction. This is necessary to detect situations in
which COMMIT is inapplicable (i.e., if no dimension is modified), and in which ambition
specification can be omitted for a certain version dimension (i.e., in case the domain model
is unmodified, no feature ambition is required; cf. Algorithm 11.4 on page 231).

Last, the local metadata section contains a list of product conflicts, concrete instances of
which are listed in Section 13.3. Each conflict refers to a dedicated context—the element
that is supposed to be reported as conflicting to the user. After each commit, this list is
purged.

13.2.3 Dimension Descriptor for Versioned File System

When confining to the versioned file hierarchy dimension, the workspace corresponds to
a cut-out of the user’s local file system that can be uniquely defined by a root folder. In
instances of the file hierarchy descriptor, whose metamodel is depicted in Figure 13.2 as
Ecore-compliant class diagram, this is covered by a corresponding attribute workspaceRoot-
Uri. This determines where in the local file system to apply the corresponding transformations
IMPORT and EXPORT in order to convert between the intrinsic and the extrinsic product
representation. 2

It is also a responsibility of the file hierarchy descriptor to keep track of which files
and folders are currently under version control, which of them are explicitly ignored, and
whether or not the contents of a specific versioned file have been modified in the course of
the running local transaction. These responsibilities are covered by corresponding attributes,
where it is assumed that the internal state of a file is processed by a hash function. The value
of the attribute hash corresponds to the result of applying this function to the corresponding

file::meta

ResourceDescriptor

hash : String

FileDescriptor

versioned : Boolean
ignored : Boolean

FolderDescriptor

contents*

*

FileHierarchyDescriptor

workspaceRootUri : String

(from core::meta)
DimensionDescriptor

roots

Figure 13.2: Local metadata for file hierarchy available in workspace.

2 Conversely, we assume holistic versioning of the file hierarchy; i.e., selections of sub-directories in the
versioned file hierarchy are not supported at check-out.
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featuremodel::meta

FeatureModelDescriptor(from core::meta)
DimensionDescriptor

(from featuremodel)
FeatureModel

0..1

workspace
FeatureModel

Figure 13.3: Local metadata for feature model in workspace.

file right after check-out. In case hashing the file contents in their current state delivers a
different result, the file, hence the superordinate file hierarchy, are considered as modified.

13.2.4 Dimension Descriptor for Feature Model

In contrast to the domain model – which is represented as a file hierarchy as shown above
– the feature model is not supposed to be accessible by third-party tools. Most notably, it
must be protected from external modification in order to disallow inconsistencies. Therefore,
in the conceptual framework, it is assumed that the feature model is only editable by
means of a specialized editor, which particularly implements the auxiliary operations
SAVEFEATUREMODEL and DELETEFEATURE as defined in Section 11.3.2 on page 228.
Furthermore, the editor must ensure that the feature model is always consistent with its
low-level mapping; cf. Table 9.2 on page 174.

For these reasons, the workspace version of the feature model is hidden in the local
metadata section, being directly contained by the feature model descriptor; see Figure 13.3.
As a consequence, local feature model metadata are self-describing.

The metamodel clarifies another internal design decision: For the feature model, the
intrinsic and extrinsic representation are equal3 in the sense that there is no specific single-
version feature metamodel defined. As a consequence, the transformations IMPORT and
EXPORT may be easily implemented by the identity function, with one exception: during
export, all visibilities are removed from the workspace feature model. Also after export,
well-formedness conditions ensure that the feature model represents a single consistent
version, despite being represented as an instance of a multi-version metamodel. Conditions
describing well-formedness violations are listed in Section 13.3.3.

13.3 Product Well-Formedness Conflicts and Conditions

Also part of the local metadata sections are product conflicts. Rules for the detection of
these are here called well-formedness conflict conditions, since they cannot guarantee that
the checked artifacts are semantically meaningful, but only syntactically valid inasmuch as
they can be exported into the local workspace in a way that allows external tools to open the
models, and to report potential semantical errors to the user(s) in the usual way.

Below, specific types of product conflicts are explained together with their well-formed-
ness conflict conditions. In case a violation is detected on an arbitrary instance of the context
class, an instance of the corresponding subclass of ProductConflict is created and appended

3 Though, the instances, of course differ. In particular, workspaceFeatureModel represents the checked-out
state of the corresponding version dimension, filtered by the active workspace choice.
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to conflicts. There are three product dimensions (or building blocks thereof) relevant for
product conflicts: ordered collections, which occur in both EMF and text files, extrinsic
EMF model instances as parts of the versioned file hierarchy, and finally, feature models.

The formal description of each conflict is divided up into the following four parts:

Context. The class for whose instances the conflict may occur.

Condition. A formal description of the condition that must be fulfilled for the conflict to be
present. If adequate, the condition is phrased as an OCL invariant that holds unless
the conflict has been resolved.

Message. The message that is displayed to the user based on a given unresolved conflict
instance. OCL-compliant navigating expressions in curly braces are replaced by the
actual values of the corresponding properties of the conflict instance.

Resolution. Available conflict resolution alternatives, including a description of how con-
flict resolution is expressed in concrete conflict instances.

13.3.1 Generic Conflict Condition for Sequences

According to Section 10.3.2, the EXPORT transformation for multi-version sequences –
internally represented as directed graphs – consists of two steps, filtering the graph by
the specified choice and linearizing the graph according to Algorithm 8.1 (see page 145).
This algorithm contains an interactive step, which is here modeled as a product conflict.
Figure 13.4 provides a structural view.

Conflict 1 (Order )— The linearization of a sequence is ambiguous.
Context: core::product::oc::OrderedCollection
Condition: Algorithm 8.1 is interrupted by an input prompt that requires to choose one

among multiple successorCandidates after a given previousVertex.
Message: “The element order in {contextCollection} is ambiguous. Multiple candi-

dates may immediately succeed {previousVertex.occurringElement}: {successorCandi-
dates.occurringElement}.”

Resolution: One of the elements available in successorCandidates is chosen and the cor-
responding vertex is set as selectedSuccessor. A new edge is inserted between
previousVertex and selectedSuccessor, and edges in the opposite direction, if present,
are removed. Then, the algorithm is resumed.

core::product::oc::meta

1 context
Collection

(from core::meta)
ProductConflict

OrderConflict

(from core::product::oc)
OrderedCollection

(from core::product::oc)
OCVertex

previousVertex
successorCandidates

0..1

2..*

selectedSuccessor 0..1

Figure 13.4: Extended metadata for product conflicts in ordered collections.
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In case the conflict appears for the first element of the collection, the corresponding
remarks referring to previousVertex are omitted from the definitions given above.

In the assumed product model, sequences represented by OrderedCollection exist in
two concrete places: For defining the line order in text files (cf. Section 10.5.1) and for
ordered multi-valued collections in extrinsically represented EMF model instances (see Sec-
tion 10.6.1). Accordingly, Conflict 1 is checked in these places.

13.3.2 Conflict Conditions for Extrinsic EMF Model Instances

The semantical validity of EMF model instances present in the workspace is supposed
to be ensured by external mechanisms, such as metamodel-specific OCL constraints or
tool-internal validation routines. In order to guarantee that EMF models can be represented
in their abstract syntax, allowing to serialize models, e.g., in XMI, the metamodel-agnostic
well-formedness conflict conditions listed in the following come into play. The structural
perspective onto these conflicts is provided in Figure 13.5.

Conflict 2 (Object Classification)— The class of an EMF object is ambiguous.
Context: file::emf::Object
Condition: contextObject.classes->size() > 1

Message: “The class of object {contextObject} is ambiguous. Multiple candidates are
available: {contextObject.classes}.”
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Figure 13.5: Extended metadata for product conflicts in EMF model instances.
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Resolution: One of the classes available in contextObject.classes is interactively chosen
and set as selectedClass. All other candidate classes are removed.

Conflict 3 (Class Target)— The externally defined class of an EMF object is not available
in the local modeling environment.
Context: file::emf::ExternalClassRef
Condition: In the modeling environment, no package with URI contextClass.packageUri is

defined4, or the package does not contain a class named contextClass.className.
Message: “The class {contextClass.packageUri}::{contextClass.className} is not avail-

able in the modeling environment.”
Resolution: A legal class available in the modeling environment is selected interactively

and the packageUri and className are updated accordingly. After having resolved
the conflict, property resolved is set to true.

Conflict 4 (Structural Feature Compatibility)— An EMF object contains a value for a
structural feature that is not defined for the object’s class in the local modeling environment.
Context: file::emf::FeatureRef
Condition: In the modeling environment, no feature named contextFeature.featureName is

defined for class contextFeature.object.classes->at(0) or one of its superclasses.
Message: “The feature {contextFeature.featureName} is not defined for class

{contextFeature.object.classes->at(0).className}.”
Resolution: A legal feature of the object class is selected and the featureName are updated

accordingly. After having successfully resolved the conflict, property resolved is set
to true.

Conflict 5 (Object Container)— The container of an EMF object is ambiguous.
Context: file::emf::Object
Condition: contextObject.incomingRefVals->filter(oclIsKindOf(

ContainmentRefVal))->size() > 1

Message: “The container of object {contextObject} is ambiguous. Multiple candidates are
available: {contextObject.incomingRefVals->filter(oclIsKindOf(ContainmentRefVal))}.”

Resolution: One of the suggested candidates is chosen and set as selectedContainer. The
incoming containment links from all other candidate objects are removed.

Conflict 6 (Cyclic Containment)— The containment hierarchy formed by several EMF
objects contains a cycle.
Context: file::emf::Object
Condition: affectedObjects->forAll(o | o->closure(features.values->filter(

oclIsKindOf(ContainmentRefVal)).target->includes(o))

Message: “The following objects form a containment cycle: {affectedElements}.”
Resolution: From the list of affected objects, one is chosen to represent the top of the

containment hierarchy and set as selectedRoot. Incoming containment links ensuing
from any other affected object are removed.

4 It depends on the employed modeling framework how references to the metamodel are resolved. For instance,
in the Eclipse Modeling Framework, the global package registry for metamodels can be queried.
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Conflict 7 (Single-Valued Structural Feature Value)— Multiple values exist for a single-
valued structural feature. 5

Context: file::emf::FeatureRef
Condition: Provided that the context feature reference represents a valid structural feature

with an upper multiplicity bound of 1, the following precondition is checked:
contextFeature.values->size() > 1

Message: “Object {contextFeature.object} defines multiple values for the single-valued
structural feature {contextFeature}: {contextFeature.values}.”

Resolution: From the list of available values (contextFeature.values), one is chosen and set
as selectedValue. All other candidate values are removed.

Conflict 8 (External Link Target)— The target of an external reference value ensuing from
an EMF object is not defined in the local modeling environment.
Context: file::emf::ExternalRefVal
Condition: In the local modeling environment, no object with URI contextLink.targetUri is

defined.
Message: “Object {contextLink.featureRef.object} contains a reference to an external EMF

object with URI {contextLink.targetUri}. Such object cannot be found in the modeling
environment.”

Resolution: A legal link target is chosen in the local file system; the value of the link con-
textLink.targetUri is updated accordingly. After having resolved the conflict, property
resolved is set to true.

Conflict 9 (Internal Link Target)— The target of an internal reference value ensuing from
an EMF object is not defined in the filtered product space.
Context: file::emf::InternalRefVal
Condition: contextLink.target->oclIsUndefined()

Message: “Object {contextLink.featureRef.object} contains a reference to an undefined
internal object.”

Resolution: A legal link target is chosen in the product space and set as selectedTarget. The
value of contextLink.target is updated accordingly.

Conflict 10 (Link Compatibility)— An EMF object contains a value for a reference whose
target is not compatible with the class of its structural feature.
Context: file::emf::InvernalRefVal
Condition: The class contextLink.target.classes.at(0) does neither match the class defined

as reference type in contextLink.featureRef nor one of its superclasses.
Message: “Object {contextLink.featureRef.object} contains a link to {contextLink.target},

which is incompatible with the type of the reference {contextLink.featureRef}.”
Resolution: A legal link target is chosen and the value of contextLink.target is updated

accordingly. After resolution, property resolved is set to true.

5 A more restrictive form of this condition would check whether the precise upper and lower bounds of the
corresponding structural feature are violated. This relaxed form is oriented towards EMF, which technically
merely distinguishes between single-valued (upper bound of 1) and multi-valued properties.
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Together with Conflict 1 (order), the list of EMF-specific conflicts completes the descrip-
tion of conflict conditions in the versioned file system. On files and folders, no conflicts may
occur since resources are unambiguously identified based upon their parent and name. For
text files, exclusively (line) order conflicts are relevant.

13.3.3 Conflict Conditions for Feature Models

The second product dimension consists in the feature model, which is versioned by the
revision graph when assuming the default three-layered architecture introduced in Chapter 9.
At that point, version rules for the semantical correctness of single-version feature models
were defined. One has to distinguish these from syntactical well-formedness rules, whose vi-
olation would disallow the representation of a single-version feature model in the workspace
(see Section 13.2.4). The conflicts listed below can be caused by concurrent modifications
to the same feature model instance. A structural view, provided in Figure 13.6, complements
the textual description.

Conflict 11 (Root Feature)— The root feature of the feature model is ambiguous.
Context: featuremodel::FeatureModel
Condition: contextModel.roots->size() > 1

Message: “The root of the feature model is ambiguous. Multiple candidates are available:
{contextModel.roots.root}.”

Resolution: One of the suggested candidates is chosen and the corresponding instance of
RootRelationship is set as selectedRoot. All remaining candidate instances of the
same class are removed.

Conflict 12 (Parent Feature)— The parent of a feature is ambiguous.
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Figure 13.6: Extended metadata for (syntactic) product conflicts in feature models.
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Context: featuremodel::Feature
Condition: contextFeature.parents->size() > 1

Message: “The parent of feature {contextFeature} is ambiguous. Multiple candidates are
available: {contextFeature.parents.parent}.”

Resolution: One of the suggested candidates is chosen and the corresponding instance of
ChildRelationship is set as selectedParent. Remaining candidate parents are removed.

Conflict 13 (Cyclic Feature Tree)— The containment hierarchy formed by several features
contains a cycle.
Context: featuremodel::Feature
Condition: affectedFeatures->forAll(f | f->closure(children.childFeature)

->includes(f))

Message: “The following features form a cycle: {affectedFeatures}.”
Resolution: From the list of affected features, one is chosen to represent the root of the tree

and set as selectedRoot. Incoming parent relationship links from any other affected
feature are removed.

Conflict 14 (Group Membership)— A feature is part of multiple groups.
Context: featuremodel::Feature
Condition: contextFeature.groupedBy->size() > 1

Message: “{contextFeature} is in multiple groups: {contextFeature.groupedBy.group}.”
Resolution: One of the suggested group candidates is chosen and the corresponding instance

of GroupMembership is set as selectedGroup. All remaining candidate parents are
removed from the reference contextFeature.groupedBy.

Conflict 15 (Non-Optional Grouped Feature)— A feature part of any group is not optional.
Context: featuremodel::Feature
Condition: not (contextFeature.groupedBy->size() > 0 implies

contextFeature.mandatory->oclIsUndefined())

Message: “Feature {contextFeature} is part of a feature group but not optional”
Resolution: The feature is made optional or it is removed from the group(s) containing it.

Conflict 16 (Display Name)— Multiple display names are defined for a feature.
Context: featuremodel::Feature
Condition: contextFeature.names->size() > 1

Message: “For the same feature, multiple names are defined: {contextFeature.names}.”
Resolution: One name is chosen and set as selectedName. All remaining candidate in-

stances of DisplayName are removed.

13.4 A-Posteriori Product-Based Well-Formedness Analysis

After having explained the conditions, the structure, as well as resolution alternatives for
specific types of conflicts that can occur in the versioned file system and/or in the feature
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model organized in the workspace, the question when and how the analysis and the repair
are applied in the conceptual framework remains to be answered. The here presented
approach performs an a-posteriori (i.e., after filtering) product-based (i.e., only the checked-
out version is considered) analysis and relies on default resolution strategies that can be
manually revised later; see design decision D12 on page 137. In this section, we delineate
the chosen solution from other candidate analysis strategies and justify why it integrates
better with the underlying filtered editing model. After the corresponding explanations, an
example of a concrete conflict handling workflow is presented.

13.4.1 Three Candidate Analysis Strategies

A general and intuitive requirement for all analysis techniques is that the analysis results be
presented to the user in a meaningful and comprehensible way. As explained in Section 5.5.2,
well-formedness analysis is preferably applied during domain engineering in a family-based
way rather than on concrete product instances. In the conceptual framework assumed here,
however, domain engineering is essentially realized by filtered application engineering—a
design decision that also affects analysis.

The product version to be analyzed is specified along with the operation CHECKOUT.
Therefore, the activities well-formedness analysis, i.e., the detection, and well-formedness
repair, i.e., the resolution of conflicts must be arranged with the existing activities FILTER

and EXPORT, which, taken together, realize the conversion of a multi-version product space
available in the repository into a single-version workspace. According to Figure 13.7, there
are at least three candidate orders in which the activities might be arranged.

A-Priori Family-Based Analysis. When adopting this strategy, conflicts are detected and
resolved based on the extrinsically represented multi-variant domain model, which
is exposed to the user for this purpose. The operations FILTER and EXPORT may
correctly assume that their input is syntactically well-formed. Essentially, well-
formedness management is not entangled with the operations part of check-out, such
that it may be applied between subsequent editing model iterations, but not as a part
thereof.

A-Priori Product-Based Analysis. In many scenarios, the well-formedness not of the
whole product line but only of the variant to be derived is of interest. Then, analysis
and repair may be moved after filter, such that they are applied in a single-variant
context. The representation upon which the conflict conditions are evaluated, however,
is still the internal (i.e., extrinsic) repository format, which differs from the (intrinsic)
workspace representation, which is generated as output of the concluding EXPORT

transformation.

A-Posteriori Product-Based Analysis. When compared to the a-priori approach, check-
out and well-formedness management are entangled to a greater extent. Analysis is
still applied in the extrinsic representation, but for offering the user the possibility of
conflict resolution, a preliminary workspace representation is created. All conflicts
are supposed to be resolved until the subsequent COMMIT. Special attention must be
paid in order to guarantee that the EXPORT transformation is applicable; this may not
be the case if conflicts have been detected.
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From the list of viable analysis strategies, exclusively the a-posteriori product-based
approach visualized in Figure 13.7(c) has been chosen for further consideration in the
conceptual framework (and also for implementation in SuperMod, see Section 14.6). This
decision needs to be justified.

In both a-priori approaches, well-formedness conditions are validated based upon the
extrinsic representation before being exported into the local workspace. The designated user,
however, prefers to get notified about well-formedness violations based upon the familiar
intrinsic representation, which is available only after having exported the filtered product.
Therefore, a-posteriori approaches are here considered as more user-friendly.

The question whether to employ product-based or family-based analysis must be answered
in a twofold way. On the one hand, when browsing the available literature, there is an
agreement that family-based analysis techniques are preferable because they are more
precise than repeated product-based analysis, but also because they may more reliably
ensure that the whole product line is in a well-formed state.

On the other hand, when considering the specific requirements and circumstances under
which the conceptual framework is intended to be employed, there are also two arguments
against. First, family-based analysis is irreconcilable with the a-posteriori approach since
the multi-variant domain model cannot be represented in a form that is meaningful and
comprehensible to the user. Second, the filtered editing model represents product-based
product line creation—a paradigm switch to family-based product line analysis would seem
contradictory and confusing to the user.
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Seen from the requirements perspective, the ideal solution would have been a-posteriori
family-based analysis, which is, however, not feasible due to the distinction between intrinsic
and extrinsic product representation, whose existence in turn is justified by several arguments
(namely unconstrained variability and tool independence; see Section 2.8).

13.4.2 A Check-Out Operation that Enforces Product Well-Formedness

Due to the aforementioned strong entanglement of the operations FILTER and EXPORT with
analysis and repair, well-formedness management is defined as another extension to the
operation CHECKOUT, which has been formally defined in Section 11.3.1.

Since a more exact description would require too many assumptions about the implemen-
tation, we here explain the extended CHECKOUT operation only informally at a comparably
low level of detail. Implementation remarks, especially concerning the presentation of
conflicts to the user in the development environment, are given in Section 14.6.

1. Request a choice from the user and apply all necessary version consistency checks.

2. FILTER the multi-version product space by the choice; the outcome is here denoted as
filtered product space.

3. Identify conflicts in the filtered product space by matching the corresponding conflict
conditions described in Section 13.3 with all applicable context elements.

4. Apply a default resolution strategy (see Section 13.4.3 below) to each detected conflict.
Extend the generated conflict description by a remark that explains how the conflict
has been automatically resolved. The results of this step include a preliminarily
repaired filtered product space and a list of enhanced conflict descriptions.

5. EXPORT the preliminarily repaired filtered product space into the local workspace.

6. For each element of the enhanced conflict set, find the workspace element that
corresponds to the contextual instance of the conflict. Attach the enhanced description
of the corresponding conflict (including the default resolution remark) to this element.

During the subsequent MODIFY phase, the user may inspect the automatically applied
conflict resolutions and, if necessary, correct them using his/her preferred single-version
editing tool in the workspace. All manual revisions are connected to a common feature
ambition at COMMIT.

13.4.3 Default Resolution Strategies

The semi-formal definition presented above includes one peculiarity that has not been further
explained so far, namely default resolution. The reason why this mechanism is applied
is buried in the following dichotomy: On the one hand, users deal with conflicts in the
workspace, which is available after exporting. On the other hand, conflicts must be resolved
before applying the export transformation, since the output would potentially be illegal
otherwise. Therefore, the strategy is to apply conflict resolution both before and after
export. The first run is non-interactive and has the goal to make the product well-formed,
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whereas the second and interactive run is controlled by the user, who may revise the effects
of non-interactive default resolution for the sake of context-free and semantical correctness.

Subsequently, six viable default conflict resolution strategies, which can be employed
in the first and non-interactive run, are listed. They are based upon different assumptions
referring to the version space (i.e., commit time, commit author, or feature ambition used).

The Most Recent Change Wins. This strategy is applicable to all product elements ver-
sioned by the revision graph. When selecting a suitable element to resolve the conflict
(see resolution paragraphs in conflict descriptions), the element whose visibility refers
to the most recently introduced revision obtains the highest priority.

The Least Recent Change Wins. The inverse strategy, prioritizing “older” revisions.

My Change Wins. In case the source of a conflict is concurrent modifications in collabora-
tive mode, this resolution strategy gives elements that have been inserted or modified
locally a higher selection priority than elements touched in a remote transaction.

Their Change Wins. The inverse strategy, prioritizing remotely modified elements.

The More Specific Change Wins. By comparing the mandatory flags of features refer-
enced in the visibilities of candidate elements, “more optional” elements get a higher
selection priority assigned. (Intuition: specific changes override general changes.)

The Less Specific Change Wins. The inverse strategy, prioritizing elements whose visi-
bility refers primarily to mandatory features. (Intuition: the change that is present in a
greater number of product variants is preferred.)

Random Resolution. Selects a random element. The randomization strategy may also be
trivial, e.g., by selecting always the first element from the list of candidates.

The sources of conflict can be manifold, and so can the corresponding default resolution
strategies be combined. For instance, a conflict involving both collaboration and the selection
of multiple optional interacting features might be resolved by a combination of “their change
wins” and “the more specific change wins”. It also depends on the user’s preferences whether
the described strategies are applied globally or in a conflict-specific way that resolves, for
instance, conflicts in the feature model by “most recent change wins” and conflicts in the
versioned file system by “more specific change wins”, if applicable.

In any case, it remains to be mentioned that default resolution is a heuristic strategy that
has its limitations. In particular:

– It depends on the organization of the repository whether some of the presented strategies
are applicable. For instance, feature-related strategies are not applicable to elements of the
feature model, whose visibilities do not refer to feature options. Similarly, the terms “my”
and “their change” are accurate in collaborative mode only.

– The strategies may be non-deterministic in some cases. For instance, there may exist several
optional features in the visibility of a candidate element. Such situations are resolved by
random selection.

– For specific kinds of conflicts, the semantics of default resolution is not clear. For instance,
Conflict 4 (EMF feature compatibility) and 9 (EMF link compatibility) require selections
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of domain model elements. These cannot be assessed by the criteria underlying default
resolution, e.g., “mine” or “less specific”. In such cases, the context element is deleted, and
the default resolution message communicates to the user that he/she must manually create a
new value or a new link ensuing from the context object during manual revision.

– Potential interaction between different conflicts is ignored. For instance, the default res-
olution of one conflict may cause another conflict or obviate an existing conflict. Such
situations must be analyzed and resolved manually.

13.4.4 Example

In the following, an example based on the running Graph scenario is presented. Three
sources of conflicts occur. First, a common base version of a feature model is extended with
different features by two developers without raising a well-formedness violation; another
feature is renamed conflictingly. Second, the developers realize their own optional features
in a fashion that causes an order conflict as soon as both features are combined. Third, the
two developers conflictingly change the target of a link using different feature ambitions.
After synchronization, the conflicts are detected and default-resolved in Bob’s workspace.
Last, the revised feature and domain model – containing manual corrections to the automatic
repairs – are committed and pushed. The explanations given below are visually supported
by Figure 13.8.

Base Version. Sub-figure 13.8(a) unveils the transparent contents of the master repository
based on which Alice and Bob initiate their work. All contents have been created
during remote transaction 1, and different feature ambitions have been used to incor-
porate modifications specific to the features Graph, Vertices, Edges, and the optional
Couleured – incorrectly spelled –, within nested local transactions 1.1 until 1.4. The
product space contains a (semantically incorrect) derived unidirectional association
elements, which connects class Graph to Vertex.

Alice’s Changes. In (b), a single-version view (with all features activated) on Alice’s local
repository, after the modifications she performed during remote transaction 2, is
presented. In the lone local transaction 2.1, the feature model is extended by a feature
Weighted, and moreover, Couleured is renamed to Kolored—not the correct spelling
either. As modification to the product space, which is performed under ambition
{(oWeighted, true)}, she introduces an attribute weight and changes the target of the
association end elements to Edge. The second change is questionable for two reasons.
First, vertices should also be considered as elements. Last, the change should be
global rather than being specific to feature Weighted.

Bob’s Changes. Sub-figure 13.8(c) presents Bob’s local workspace contents (with all
features activated) after his concurrent remote transaction 3, which contains three
nested local transactions. Revision 3.1 is committed in a global scope (i.e., using
the empty set as ambition). In the domain model, an abstract class GraphElement
with incoming generalizations from Vertex and Edge is introduced. This class is used
as the new target of association elements. Additionally, Couleured is renamed to
Coloured—the British spelling. In revision 3.2, Bob introduces the feature Labeled
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and uses this for the ambition {(oLabeled, true)}, which describes the insertion of an
attribute label.

Three-Way Merging. Public revisions 2 and 3 have been created by Alice and Bob as
successors of revision 1, such that a concurrent modification is detected, which
involves three-way merging (see Section 12.4). Since Alice pushes first, merging
takes place in Bob’s local workspace as soon as he attempts to push. After merging,
the product space is pushed automatically, remote transaction 3 is finished, and the
successor transaction 5 is started immediately. 6

Conflict Detection. During the enforced CHECKOUT operation, Bob selects a choice with
all available features, including Alice’s feature Weighted, positively selected. In the
filtered product space, three conflicts with the following descriptions are detected:

– Order Conflict: “The element order in the properties list of class Edge is ambiguous.
Multiple candidates may immediately succeed adjacents: {label, weight}.” 7

– Single-Valued Feature Value Conflict: “Object elements defines multiple values for
the single-valued structural feature type: {GraphElement, Edge}.”

– Display Name Conflict: “For the same feature, multiple names have been defined:
Coloured, Kolored”.

Default Conflict Resolution. Let us assume that the following default conflict resolution
has been set up: If applicable, “the more specific change wins”; otherwise, “my [i.e.,
Bob’s] change wins”. Then, before exporting, the following repair actions would be
applied transparently:

– Both changes refer to optional features, so the secondary strategy is applied, such that
Bob’s insertion obtains a higher priority. The order conflict is resolved by inserting an
edge (label, weight) into the underlying collection graph. The linearized order is [. . . ,
adjacents, label, weight].

– Being more specific, Alice’s change – accidentally connected to the optional feature
Weighted – is preferred here: The conflict is resolved by setting Edge as target of the
unidirectional association elements. The alternative value for the type specified by
Bob, namely GraphElement, is removed although semantically more meaningful.

– The feature name Coloured defined by Bob is chosen, and Kolored is abandoned.

Enhanced Conflict Descriptions. After the default resolutions have been applied, the pre-
liminary filtered domain model is exported into Bob’s workspace; the result is shown
in Figure 13.8(d). Furthermore, the conflict descriptions, which are made available to
Bob, too, are enhanced:

– Order Conflict: “[. . . ] The conflict was default-resolved by selecting label.”

– Single-Valued Feature Value Conflict: “[. . . ] The conflict was default-resolved by
selecting Edge.”

– Display Name Conflict: “[. . . ] The conflict was default-resolved selecting Coloured.”

6 Revision number 4 was given to Alice’s new public revision, which is, however, not considered any further.
7 In the UML metamodel, attributes and association ends are shared in a meta-reference properties.
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Manual Reconciliation. Bob now utilizes this conflict list in order to revise the applied
default repair actions. He agrees with the first correction, provided that the order
of attributes is not semantically decisive anyway. For the second conflict resolu-
tion, however, Bob disagrees with Alice’s change, which has been preferred by
the strategy. Accordingly, he manually reverts the association target from Edge
to GraphElement. Concerning the display name conflict, Bob recognizes that both
spellings are incorrect (with respect to American English), and manually defines a
fourth value: Colored. The final revised workspace is visualized in a single-version
view in Figure 11.5(e). Bob commits this as revision 5.1 under feature ambition8

{(oLabeled, true), (oWeighted, true), (oColored, true)}. He finishes remote transac-
tion 5 with a PUSH.

13.4.5 Retrospective Discussion

Let us recall the presented example while considering different aspects: the amount and
complexity of user interaction, the degree of correctness that is guaranteed, and the flexibility
of the illustrated a-posteriori product-based well-formedness checking strategy.

User Effort. Considering the first aspect, the amount of user interaction, Alice and Bob
must intervene only in case default resolution produces an unexpected result. Furthermore,
conflicts not relevant for the currently selected product variant are faded out, which reduces
complexity. For the reconciliation of conflict resolution, familiar workspace editing tools
may be employed without accosting the user(s) with additional tools9. The user is, moreover,
guided by meaningful conflict descriptions.

Conversely, as the example has demonstrated, the user who revises the preliminary
workspace is forced to define a rather specific feature ambition; it may therefore happen that
the same or similar reconciliations have to be applied repeatedly for related product variants.
As aforementioned, less restrictive well-formedness checking is accepted, however, in favor
of systematically following a dynamic product-based product line creation (and, therefore,
validation) paradigm.

Correctness. As far as correctness is concerned, it must be mentioned that this is only
ensured locally in the workspace, which is determined by the choice. Although the applied
conflict resolutions may affect other variants, potentially all versions described by the
ambition, the only variant for which one can really guarantee correctness after applying
default conflict resolution is the one available in the workspace.

8 This appears to be a rather specific ambition, however, the corrections are not applicable in a more general
scope as they depend on product elements connected to all three features bound. Omitting some of the bindings
would violate Constraint 6 (see page 226). This problem could have been avoided by organizing the resolution
decisions into multiple commits; however, in its current state, the framework requires that all conflicts be
resolved in one single iteration.
9 Nevertheless, user experience can still be improved by a better integration of the conflict descriptions, which
are in this example assumed as a flat list of textual renderings. In the tool SuperMod, conflict descriptions
are attached to the context element in question as conflict resolution markers, which ease the identification of
conflicting model elements. See Section 14.6.3.
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Moreover, the reported conflict set depends on the choice. When deselecting, e.g., the
feature Weighted, only the display conflict would be reported as both other conflicts are
conditional to that feature. When being compared to family-based, global analysis strategies,
this involves the danger of “overlooked” conflicts hidden in other variants, particularly those
caused by unforeseen static feature interaction.

Flexibility. The amount of flexibility provided by the here considered conflict resolution
approach is high. In contrast to many three-way merging tools, the definition of a fourth
alternative value is allowed, e.g., the conflicting renaming of Couleured to Coloured and
Kolored could be resolved by freely defining the alternative name Colored. In some cases,
the added flexibility is paid, however, with a higher effort of conflict resolution. For example,
the target of the association elements had to be manually redefined.

13.5 Related Work

Being a quite technical topic, workspace metadata management is not extensively covered
by related work. Product well-formedness analysis, in contrast, has been the subject of a
multitude of publications; an introduction was given in Section 5.5.2. Further below, tech-
niques related to the here considered a-posteriori product-based well-formedness checking
approach are outlined. They have their origins, among others, in line-oriented VCS, in
three-way model merging, in MDSPLE, and in family-based SPL analysis.

Metadata Management in Model VCS. Every version control system needs to keep track
of the exported workspace contents. Here, we are particularly interested in how other model
VCS manage this task.

In AMOR [Alt+08], the models part of the workspace are virtually extended by profiles
that contain two types of information: general versioning data and conflicts. Furthermore,
a specialized editor (restricted to UML diagrams), which graphically displays version and
conflict information, is provided.

EMFStore [KH10], an operation-based model VCS that follows a classical client/server
architecture, organizes the multitude of metadata centrally on the master repository—there
is no distinction between local repository and local workspace. The metadata stored for
clients is confined to the data required to establish the network connection to the server.
There, the entire version history, including three-way merge conflicts, is managed in terms
of change packages.

Batch-Oriented Three-Way Merging of Text Files. The strategy underlying a-posteriori
product-based analysis, namely exporting a preliminarily merged file into the workspace
and having the user incorporate his/her conflict resolution decisions in a post-processing
step, is similar to the behavior of many contemporary text-oriented version control systems
when it comes to resolving three-way merge conflicts.

To mention only two representatives, in Git [Cha09] and in Subversion [CFP04], con-
flictingly inserted blocks of text are appended to the workspace text files in both versions
and surrounded by corresponding merge tags that indicate the block’s origin. The user



290 Chapter 13 Metadata Management and Well-Formedness Analysis

may resolve the conflict either by deleting one of the candidate blocks or by combining the
blocks’ contents manually. To this end, support is provided, among others, by graphical
tools relying on diff3 [KKP07] as back-end.

The difference to the here presented strategy is that all candidate versions of conflicting
elements are presented in the workspace. In general, this is not feasible for intrinsically
represented model instances since these need to comply to single-version metamodel rules.
Therefore, one of the candidate versions is selected by the default resolution strategy as a
“best guess”, and the other candidates are only presented indirectly in the form of enhanced
conflict descriptions (or conflict resolution markers in SuperMod).

Consistent Three-Way Merging of EMF Models. The state-based three-way EMF model
merging approach described in [Wes14] supports the detection of an exhaustive catalog
of context-free and context-sensitive merge conflicts, a subset of which have been also
introduced in a generalized form in Section 13.3.2. In contrast to the approach presented
here, where well-formedness violations can be due to conflicting modifications, but also
to the combination of optional features, the description in [Wes14] explicitly assumes
optimistic collaboration as reason for conflicts. On the one hand, this restricts the scope
of conflict detection to three-way merging. On the other hand, both conflict detection and
resolution can be defined in a more accurate way; for instance, a delete-reference conflict is
caused by the deletion of an object in one alternative revision and a concurrently inserted
new reference to the same object in the opposite revision. Using the approach presented
here, such a situation would be recognized as a (less specific) internal link target conflict,
and a dedicated opportunity to restore the deleted object would not become available during
conflict resolution.

The three-way merge algorithm has been implemented by the tool BTMerge [SUW13b],
which has technically influenced the tool SuperMod to be presented in Chapter 14. BTMerge
presents the extensional multi-version domain model (here: merge model) in a three-column
tree editor, and conflicts must be resolved interactively before the merge result is exported.
Thus, the tool follows an a-priori approach, which is connected to the disadvantage of
restricting the user to a specialized editor he/she may not be familiar with. Furthermore,
by only allowing for predefined conflict resolution actions, the tool is less flexible than the
strategy presented here.

Well-Formedness Repair by Default Strategies. The MDSPLE tool FAMILE [BS12b]
employs a similar product-based strategy for the analysis and preliminary resolution of
context-free – and, to a limited extent, context-sensitive – conflicts that may occur in specific
product variants due to contradictory presence conditions attached to interdependent domain
model elements. FAMILE uses an ordinary (intrinsic) model instance as multi-variant
domain model, but allows to virtually extend the model by alternative model elements.

As described by [BS16a], two generic forms of conflict can be detected: dependency
conflicts, which occur whenever an element included in the selected variant structurally
depends (i.e., by a context-free cross-link or a domain-specific context-sensitive dependency)
on an element not included there; and mutex conflicts, which appear in case several (regular
or alternative) model elements compete for the value of a single-valued structural feature.
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For the preliminary resolution, so called propagation strategies – default resolution
instructions for dependency conflicts – and selection strategies – for mutex conflicts –
can be defined globally for a product line. These strategies retrospectively change the
selection state of affected elements, such that the conflict is (locally) resolved. If desired,
the effect of conflict resolution can be reverted in a product preview between selecting the
feature configuration and exporting the product variant. When regarding the classification
introduced in Section 13.4.1, FAMILE relies on an a-priori product-based analysis strategy.
Albeit, manual repair actions are made effective in the variant presented in the preview
exclusively.

Family-Based Well-Formedness Analysis for Models. It was repeatedly mentioned that
the generally preferred SPL analysis approach is family-based well-formedness checking as
it allows to guarantee that each consistent feature configuration will produce a syntactically
well-formed product variant. In Section 5.5.2, it has also been explained that family-based
strategies are computationally complex, such that approximations like sample-based or in
particular feature-based analysis come into question. The survey by Thüm et al. [Thü+14a]
presents a multitude of approaches to integrate variability-aware analysis into model-driven
software product line support.

The question whether a model conforms to a metamodel can be formulated as a type-
checking problem. Correspondingly, variability-aware analysis of models may be performed
using family-based type checking, which is realized, among others, by [Ap+10] in a compo-
sitional SPL approach.

[Hei09] describes the family-based analysis approach realized in the tool FeatureMapper.
The performed generic multi-variant checks consider multiplicity and typing of model
elements. Albeit, the constraint class of semantical validity is not further refined since it
intrinsically depends on the modeling language in question. This property is shared with the
approach presented in the text at hand.

Rules for the semantical correctness of models are often defined by means of OCL
constraints; see Section 3.4.2. The variability-aware well-formedness checking approach
by [CP06] evaluates OCL constraints in a multi-variant context, such that they are transpar-
ently ensured for all valid product variants. The product line to be validated is expected
in the custom form of a a feature-based model template, which realizes transformational
variability. Reported conflicts are, however, difficult to interpret by the modeler, who is
forced to operate in a multi-variant context.

13.6 Summary and Conclusion

The description of the conceptual framework has been concluded by two related topics,
workspace metadata management and product well-formedness analysis.

As workspace metadata, we understand all information that must be organized in addition
to the user-visible workspace contents themselves in order to guarantee a consistent and
accountable editing model workflow. Internally, metadata are represented as an extension
to the model that represents the repository extrinsically. The information is differently
shaped for master and for local copies of the repository, such that distributed versioning is
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enabled. Local metadata, which is also relevant in single-user mode, comprise the active
choice and optionally the reserved ambition, a workspace descriptor that is divided up into
several dimension descriptors, which keep track of modification of different parts of the
workspace, and a list of product conflicts that have been detected in the beginning of the
current iteration.

For the detection and resolution of individual conflicts, suitable conditions have been
formalized for the diverse product dimensions (the versioned file system, particularly EMF
models, and the feature model). These conflict conditions are supposed to be evaluated based
upon the internal, i.e., extrinsic product space representation that exists in the repository.
As we argue that the designated users prefer to get notified about conflicts in their familiar
intrinsic product representation that is used in the workspace, a compromise has been
made with respect to the employed well-formedness management approach: a-posteriori
product-based analysis. Using this technique, conflicts are detected in the filtered repository
view that is internally created upon check-out; then, non-interactive default resolution is
applied before the preliminary workspace is exported; and finally, the user may revise the
automatically applied resolution decisions in the workspace with his/her preferred modeling
tool, while being supported by meaningful conflict (resolution) descriptions.

The concepts explained in this chapter have made contributions towards the satisfaction
of requirement R12 (product well-formedness control; see page 21) and complemented the
description of collaborative SPLE (R18) begun in the previous chapter.

All in all, the contributed approach to a-posteriori product-based well-formedness check-
ing requires a moderate amount of user interaction, guarantees local correctness, and
provides for a high level of flexibility for conflict resolution. When being evaluated in
isolation, this technique is not necessarily the best choice for SPL analysis; however, it
integrates well with the filtered editing model – which provides essentially product-based
product line creation – underlying the conceptual framework. It must be kept in mind that
product-based conflict resolution decisions are not confined to the product available in the
workspace, but they also affect related members of the product family—a property that is
unique when comparing the here presented strategy to other product-based approaches from
the literature.

When compared to the four preceding chapters, this chapter was prone to many more
assumptions about the technical realization of the framework. Not at least because of this,
we now transition from the specification to the implementation – see Chapter 14 – and
evaluation—see Chapter 15.
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Chapter 14

Implementation

Abstract

The presented conceptual framework for the integration of MDSE, VC, and SPLE has been
fully implemented in SuperMod, a model-driven tool that is embedded into the integrated
development environment Eclipse. This chapter first describes the user-visible functionali-
ties offered by the tool, before implementation details are considered. SuperMod follows a
client/server architecture; for the implementation of both components, the Eclipse Modeling
Framework has been utilized. Relying on a dependency injection framework for the manage-
ment of behavior, the application is highly modular. Moreover, a SAT solver supports the
implementation of feature model constraint checking. The communication between client
and server has been implemented as a REST-based web service. Product well-formedness
analysis deeply integrates into Eclipse by enhancing the user-visible workspace contents
with conflict resolution markers.
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14.1 Overview

The purpose of this chapter is twofold. On the one hand, the description of the conceptual
framework provided in the preceding Part IV left a couple of realization decisions open.
They are resolved in this chapter, where the underlying technology is introduced. On the
other hand, the evaluation provided in the next chapter utilizes the implementation described
here in order to draw conclusions about the properties of the formal conceptual framework.
This indirection is necessary because many observations require a practical application.
The latter is here provided as the tool SuperMod1, a complete Java-based model-driven
implementation of the conceptual framework. Still, the tool is an academic prototype;
restrictions that must be eliminated before making the tool applicable to industrial-scale
projects are listed in the conclusion of this thesis.

The remainder is organized as follows: First, the tool’s functionality is explained from
the user’s perspective in Section 14.2. Subsequently, supported repository architectures
are distinguished. In Section 14.4, the utilized implementation techniques are presented.
Section 14.5 deals with optimizing implementation details concerning both the client and
the server side of the application. Remarks regarding the realization of the a-posteriori
product-based well-formedness analysis strategy are provided in Section 14.6. An overview
of related implementation topics found in the literature is given in Section 14.7. The chapter
is concluded with tool availability remarks.

14.2 User Interface and Functionalities

This section2 provides a functionally organized description of SuperMod. In the respective
subsections, the provided user interface (UI) commands are described one after another. As

1 The acronym is for “Superimposition of Models”, reflecting the central design decision D2.
2 The current Section 14.2 shares material with the tool demonstration paper [SW16b].
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Figure 14.1: SuperMod’s team context menu. From [SW16b, Figure 2].

shown in Figure 14.1, the commands have been integrated into Eclipse by means of a team
context menu that is enabled for all projects managed by SuperMod.

14.2.1 Workspace Management

The workspace, represented by the contents of an Eclipse project, presents the currently
selected product variant described by the choice. According to the extrinsic product model
(see Chapter 10), the workspace may consist of arbitrary EMF model resources and of plain
text files. Following a purely state-based approach, no tool extensions are required for
resources to be supported by SuperMod.

A non-versioned Eclipse project may be put under version control using the UI command
Share (not shown in Figure 14.1). As in ordinary version control systems, individual folders
and files may then be added to or removed from version control—see UI commands Add
to and Remove from Version Control in Figure 14.1. In case the user has not decided on
whether a new file is to be versioned, a dialog, where the user may select relevant files and
folders, is shown in the beginning of Commit.

For a better overview, the active choice is presented in a textual form in the Eclipse
project explorer next to the project name. In this condensed representation, only positively
selected leaf features are listed. Furthermore, in case an ambition is reserved (see below),
its non-neutral bindings are also shown here. The displayed information originates from the
metadata attributes activeChoice and reservedAmbition (cf. Figure 13.1 on page 272.)

Figure 14.2 shows an example where the choice includes a positive selection of the
optional features weighted and undirected, and the ambition is defined by a positive selection

Figure 14.2: The Eclipse project explorer with an active SuperMod project. From [SW16b, Figure 3].
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of a newly introduced feature colored.
Alongside of the workspace files and folders, the visibilities of the corresponding ver-

sioned elements in the repository are displayed in a human-readable form. Within file
contents, however, no visibilities are displayed due to technical restrictions resulting from
requirement R10 (reuse of existing tools).

Finally, the UI command Disconnect removes all local version control metadata and
retains only the current variant of the project in the local workspace.

14.2.2 Feature Model Editor

Conceptually, the feature model is part of the workspace as it incorporates an additional
product dimension.

For its editing, a dedicated UI command Edit Version Space is provided (see Figure 14.1).
Once selected, the feature model editor (a customized EMF tree editor; cf. screenshot in
Figure 14.3) is opened, presenting the chosen revision of the feature model. Here, features
can be added or deleted, toggled mandatory (filled circle) or optional (empty circle), or
renamed. Furthermore, the tree structure can be modified arbitrarily, and feature groups and
requires/excludes constraints can be specified.

In the background, the feature model is kept consistent with its mapping to the low-level
rule base; see Section 9.4.2. In addition, dedicated EMF Validation [Ste+09], in connection
with satisfiability checking (see Section 14.4.3), ensures that the feature model remains
satisfiable according to Constraint 3 (see Section 11.2.2 on page 225).

14.2.3 Version Selection

Every editing model iteration is embraced by the commands CHECKOUT and COMMIT

formally defined in Section 11.3. As shown in Figure 14.1, UI commands are offered for both
actions. Furthermore, the operation MIGRATE is transparently invoked after each commit.
This subsection considers the “straightforward” dynamic workflow, where the choice is
specified during check-out and the ambition during commit. The user may deviate from this
by using one of the specialized commands presented subsequently in Section 14.2.5.

Check-Out. SuperMod follows the two-level version selection strategy provided by the
conceptual framework. Having executed the UI command Check-Out, a revision must be

Figure 14.3: The feature model editor. From [SW16b, Figure 4].
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Figure 14.4: Dialogs for revision and feature configuration selection shown during check-out. Based
on [SW16b, Figure 5].

selected first (cf. left hand part of Figure 14.4; column Scope displays the ambition having
been used for the respective commit). Then, the selected revision of the feature model is
presented to the user, who must then specify a feature configuration binding all visible
features either to selected (cyan) or to deselected (orange symbols in the right hand part of
Figure 14.4). The configuration is created in a top-down way, where mandatory children are
automatically bound positively.

The feature configuration specification dialog also ensures that the selected configuration
is consistent according to Constraints 1 and 2; see page 224. The inconsistency reported in
Figure 14.4, for instance, is caused by none of the features undirected and directed located
in the same XOR group being selected.

Update. Technically, the UI command Update specializes Check-Out in a non-interactive
way. In the revision graph, the latest revision is selected; in the feature model, the current
choice is retained. If the selected revision of the feature model contains a feature that is not
bound currently, the user is requested to complete the configuration in an exceptional dialog.
The effects equal those of the operation Check-Out: The workspace contents are replaced
according to the choice, and product well-formedness conflicts are reported if present.

Both check-out and update are only applicable as long as the workspace contents have
not been modified; otherwise, an explicit Revert (see below) is necessary in advance. Also
notice that an explicit Pull (see below) is required in order to synchronize with remote
modifications; update does not enforce pull.

Commit. The UI command Commit terminates an iteration and prompts the user for an
ambition that delineates the set of versions for which the change, representatively applied in
the version described by the choice, is intended. A new revision is introduced transparently;
the author of the commit is merely prompted for a commit message (see left hand part of
Figure 14.5).

Thereafter, the feature ambition specification dialog appears (right hand part). In addition
to selected and deselected, the value neutral (yellow) is permitted here, signaling that the
change is immaterial to the respective feature. Following Constraints 4 and 5 (cf. page 225),
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Figure 14.5: Dialogs for commit message and feature ambition selection shown during commit.
From [SW16b, Figure 6].

Figure 14.6: Dialog supporting choice migration.

the dialog ensures that the ambition is weakly consistent and represented by the previously
defined choice.

Furthermore, it is checked whether the selected feature ambition is sufficiently specific
to the performed product-level modification (cf. Constraint 6). If this is not the case, the
user has two options: Either, the current iteration is reverted (see below), or the feature
configuration is refined by additional non-neutral bindings in order to satisfy the constraint 3.
The user is assisted by a pre-calculated sufficiently specific ambition; see Section 14.5.2.

Migrate. In the dynamic filtered editing model realized by SuperMod, repeated check-outs
become optional—it is assumed that the user wants to stay in the current variant after having
committed. For this sake, the choice is migrated into the next iteration; see Section 11.3.4.

The non-deterministic selections included in Algorithm 11.6 are realized by an addi-
tional choice migration dialog, an example of which is depicted in Figure 14.6. Without

3 This constraint can be globally disabled in SuperMod in order to follow a less restrictive yet more error-prone
workflow.
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predefining a concrete selection order, those features whose binding state cannot be inferred
automatically from the ambition or from preferences or from defaults are made available for
selection or deselection. The dialog actively enforces Constraints 7, 8, and 9, and always
offers the possibility to cancel, which triggers a new check-out immediately.

14.2.4 Additional Workspace Operations

Revert. This operation cancels the current iteration, undoing all modifications made after
the last check-out or migration. The original workspace contents are reproduced by applying
the active choice to the product space and by exporting the results.

Export Project. To finally deploy products to customers, the development loop may be
left by the UI command Export Project. A revision and a feature configuration must be
selected by the user; the product represented by the specified version is exported into a new
Eclipse project clear of version control metadata. 4

14.2.5 Generalized Editing Model

As explained in Section 11.6, the editing model part of the conceptual framework can be
generalized such that it weakens the assumption that the choice is always specified during
check-out and the ambition during commit. In SuperMod, parts of the generalized editing
model have been realized.

A Lightweight Form of Static Filtered Editing. First of all, the tool may be used in a
lightweight static way, supported by the UI command Scope and Check-Out. Here, both the
ambition and the choice are specified already during check-out in order to fix the scope of
the change as early as possible. After selecting a revision, the ambition selection dialog is
shown first; thereafter, the user selects a representative choice—the validation of according
consistency constraints is preponed.

In contrast to fully static filtered editing, feature model editing is, however, not inhibited;
the validation of Constraint 5 is repeated during commit if necessary, and the sufficiently
specific ambition check (Constraint 6) is applied as usual. In case it fails, the user may
correct the ambition dynamically. Also, the MIGRATE operation is applied at the end of a
static iteration.

Reserving Ambitions. Second, when selecting only a choice during check-out (or when
omitting the check-out), it is still possible to reserve an ambition at arbitrary points in time
during MODIFY. Upon having selected the UI operation Scope, the ambition selection
dialog appears. Reserved ambitions – also those enabled by Scope and Check-Out – are
displayed in the project explorer (cf. colored in Figure 14.2). During commit, the ambition
selection dialog is omitted in case the ambition still satisfies all necessary constraints.

4 The inverse operation, Import Project, has been neither conceptually investigated nor implemented to date.
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Amending Ambitions. Last, following the theoretical explanations provided in Sec-
tion 11.6.4, an erroneously specified ambition can be retrospectively altered by using
the UI command Amend Previous Commit. When selected, the ambition specification dialog
shows up, where the ambition used for the preceding iteration may be redefined.

14.2.6 Collaboration

Being a fully-fledged version control system, SuperMod natively supports collaborative de-
velopment. This has been realized using the singleton master replication strategy explained
in Chapter 12. Each user interacts with a local repository using the commands Check-Out
and Commit (see above). In multi-user mode, the revision selection dialog shown upon
Check-Out presents additional details including author, commit date, the logical scope (i.e.,
the feature ambition defined for the respective commit), and the two-level revision naming
scheme (see Figure 14.7).

In order to orchestrate multiple copies of the repository, the UI commands Pull and
Push are provided, which communicate with a central remote repository according to the
multi-user editing model semi-formally defined in Section 12.5.

Pull. In order to avoid conflicts between pending local changes and incoming remote
modifications, the command Pull is enabled only if the local workspace is in an unmodified
state. Furthermore, a network connection to the server must have been established.

After pull, the repository contents are up to date with the server-side master repository. In
order to make this visible in the workspace, an Update is recommended to the user.

Push. This operation makes the same prerequisites: no unfinished private transactions and
an active network connection to the server.

Before pushing, the central master repository is scanned for incoming changes. If present,
an out of date situation is signaled to the user and a Pull is enforced in advance. In this case,
however, the update recommended by the pull operation is delayed.

Figure 14.7: Revision selection dialog in collaborative versioning mode. From [SW16b, Figure 8].
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In order to describe the intent behind the series of commits underlying the push, the user
may phrase a push message in an additional dialog (not depicted here).

Then, the push is executed and all bookkeeping steps are applied as described in Sec-
tion 12.5.2. Also here, non-interactive element raw merging and three-way visibility merging
are applied (cf. Section 12.4).

Now, in the out of date case, an update is applied in order to transfer those remote
changes that affect the selected product variant to the workspace. On this occasion, product
well-formedness violations may arise due to conflicting remote and local changes. These
are default-resolved and then reported in the local workspace according to the a-posteriori
product-based analysis strategy; see Section 14.6.

14.3 Supported Repository Architectures

In most of the explanations and examples provided in previous chapters, we implicitly
assumed that the contents of the repository conform to the hybrid architecture sketched
in, e.g., Figure 9.4 on page 164. Furthermore, there was an explicit distinction between
single-user mode and multi-user (collaborative) versioning, which has been introduced in
Chapter 12 as a conceptual extension to the revision graph metamodel and its mapping.

In advance to the realization of the conceptual framework, it has turned out that differently
shaped repositories, which reuse the same version dimensions, provide potentially useful
applications, too. For instance, historical variability may already be covered by an external
VCS, or logical variability may not be required at all, in specific projects.

In addition to the product and version dimensions explained in Part IV – revision graph,
feature model, versioned file system, and collaborative revision graph – a low-level logical
dimension has been implemented as an additional version dimension mainly for experimental
purposes. This dimension straightly maps the rule base defined in Section 9.2.1 to a textual

1 logical dimension Graph {
2 option Graph
3 invariant graphMandatory { Graph }
4 default graphTrue for Graph { true }
5 option labeled
6 option directed
7 option undirected
8 invariant direction { directed xor undirected }
9 preference undirectedPref for undirected { not directed }

10 preference directedPref for directed { not undirected }
11 option transpose
12 invariant transposeDirected { transpose implies directed }
13 }

Listing 14.1: Example of a low-level textual version space definition. Options, invariants,
preferences, and defaults have unique identifiers. The contents of lines 2, 4, 8,
and 9 are mapped to the option oGraph, the default (oGraph, true), the invariant
¬(directed ∧ undirected), and the preference (odirected,¬oundirected), respectively.
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(a) low-level logical (b) historical (c) feature model

(d) orthogonal historical and low-level logical (e) hybrid (integrated historical/feature) 

(f) collaborative historical (g) collaborative hybrid

Figure 14.8: Seven distinct repository architectures available in SuperMod.

syntax; the corresponding file is made available for editing upon Edit Version Space. A
textual definition referring to the Graph example is provided in Listing 14.1.

Technically, the co-existence of different configurations is realized with the help of
dependency injection; details are provided in Section 14.4.2. The decision which architecture
to use for a specific project versioned by SuperMod is made by the user during the Share
action. Rather than being allowed for arbitrary composition of the five dimensions, the user
may choose among the following pre-defined repository architectures (see Figure 14.8):

(a) Low-Level Logical Versioning. No historical versioning is applied. The version space
is defined by low-level propositional logic in textual syntax. The level of abstraction
is relatively low. Moreover, the logical rule base is not versioned at all.

(b) Historical Versioning. Using this configuration, the primary product space is exclu-
sively historically versioned by a (single-user) revision graph. There is no possibility
to define logical variability in addition.

(c) Versioning by a Feature Model. When compared to (a), this architecture provides a
higher-level abstraction for purely logical versioning. Apart from this, the same
restrictions with respect to historical versioning hold.

(d) Orthogonal Historical and Low-Level Logical Versioning. Historical and logical ver-
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sioning are applied in an orthogonal way, i.e., a revision graph and a low-level logical
rule base are available, but they are not connected in any way. In particular, this may
lead to lost updates, e.g., when a logical option is deleted. Behind the scenes, an
invisible change space (cf. Section 9.6) is used to abstract from both the revision
graph and the logical rule base.

(e) Hybrid Versioning. The three-layered hybrid architecture introduced in Chapter 9. The
feature model plays a dual role, being both a product and a version dimension. The
change space is used as optimization in the background.

(f) Collaborative Historical Versioning. Like (b), but uses a collaborative revision graph
and the distributed replication strategy presented in Chapter 12.

(g) Collaborative Hybrid Versioning. The most powerful but potentially the most complex
alternative. Collaborative versioning is applied in an integrated architecture; see (e).
This enables fully collaborative (MD)SPLE.

All of the architectures assume that the main product dimension to be versioned is an
Eclipse project represented as a versioned file system extrinsically. We have not found any
meaningful advantage of omitting this dimension except for collaborative feature model
versioning. This, however, is enabled without any further restrictions by (g). Furthermore,
the visibility forest optimization introduced in Section 9.7 is applied in all cases.

14.4 Internal Architecture and Implementation Technologies

The package diagram depicted in Figure 14.9 offers a coarse-grained view on the internal
architecture of the tool. It consists of four tiers (displayed top-down), which are further
refined by the available version and product dimensions. The metamodel tier defines the
contents of the repository; see Section 14.4.1. Package supermod::services contains interface
declarations and corresponding implementations for low-level operations such as FILTER,
EXPORT, or MATCH. On the third tier, represented by supermod::commands, user actions
such as CHECKOUT or PUSH (see Section 14.2) are provided; their implementation depends
on the selected repository architecture (see previous section), all of which are mapped to
individual sub-packages. Last, the client and server applications provide these commands to
the user by a graphical interface or by web services, respectively.

For modularity, each of the overall 41 packages has been realized as an individual
Eclipse project deployable on its own. For each of the repository architectures listed in the
preceding chapter, a corresponding Eclipse plug-in packages the necessary deployables—see
installation remarks in Section 14.9.

The remainder of this section explains how existing technology has been used for the
implementation of particular packages resembling components of the tool.

14.4.1 Eclipse Modeling Framework

It was mentioned that SuperMod has been implemented in a model-driven way, relying
on the Eclipse Modeling Framework (EMF). More precisely, source code for the structure
of the repository contents (see package supermod::metamodels), enabling the extrinsic
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Figure 14.9: Package diagram describing SuperMod’s repository structure. All dashed errors denote
public imports (i.e., they are transitive and available in all inner packages).

representation, has been obtained through EMF code generation (see Section 3.5), taking as
input extended versions of the metamodels presented in Chapters 9, 10, 12, and 13, as well
as an additional (trivial) metamodel for the low-level version dimension logic.

The initial version of the feature model editor was generated by EMF, too. Since the
workspace version is represented in an extrinsic multi-version format (cf. Section 13.2.4),
the Edit and Editor code had to be significantly customized in order to simulate a single-
version feature model to the end user. The customized editor ensures that all feature
model well-formedness conditions listed in Section 13.3.3 remain satisfied at all times. The
customized feature model editor also ensures the dynamic consistency constraints introduced
in Section 11.3.2. For instance, in the case of deletion, an instance of Deleted is created
under the respective feature; cf. Section 10.7.1 and Algorithm 11.3 on page 229.
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14.4.2 Dependency Injection with Guice

The orchestration of the structural and behavioral components part of the tiers super-
mod::services and supermod::commands is achieved with the help of the dependency injec-
tion framework Guice [Van08].

Following the design principle of inversion of control, the Guice framework interprets
Java classes as services, whose design contract is declared by an interface. The decision
which concrete implementation to use for a service is made at run-time and can be controlled
by modules, which bind specific interfaces to their preferred implementation. Services may
depend on other, existing services, which are referenced by their interface. This way, service
implementations can be exchanged, specialized, or extended on demand, without the need
of changing the client code.

A concrete example of how this mechanism is exploited in SuperMod is provided in
Listing 14.2. It presents, in simplified form, the implementation of the command CHECK-
OUT specific to the hybrid repository architecture (cf. Figure 14.8(e)). The corresponding
service interface ICheckout is defined in the core package of the supermod::commands tier;
the binding to HybridCheckout is defined externally in a Guice module part of package
supermod::commands::hybrid.

1 package supermod.commands.hybrid;
2

3 import com.google.inject.Inject;
4 import supermod.metamodels.core.OptionBinding;
5 import supermod.metamodels.core.Repository;
6 import supermod.metamodels.revisiongraph.RevisionGraph;
7 import supermod.metamodels.featuremodel.FeatureModel;
8 import supermod.metamodels.file.VersionedFileSystem;
9 import supermod.services.*;

10

11 public class HybridCheckout implements supermod.commands.core.ICheckout {
12

13 @Inject @supermod.services.revisiongraph.Revisiongraph
14 private supermod.services.IChoiceDefinitionService rgChoiceServce;
15

16 @Inject @supermod.services.featuremodel.Feature
17 private supermod.services.IChoiceDefinitionService fmChoiceServce;
18

19 @Inject
20 private supermod.services.IFilterService coreFilterService;
21

22 @Inject @supermod.services.featuremodel.Feature
23 private supermod.services.IExportService fmExportService;
24

25 @Inject @supermod.services.file.File
26 private supermod.services.IExportService fileExportService;
27

28 @Override public void checkout(Repository repo) {
29 RevisionGraph rg = repo.getVersionDimensions().get(0);
30 FeatureModel fm = repo.getVersionDimensions().get(1);
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31 VersionedFileSystem vf = repo.getProductDimensions().get(1);
32 OptionBinding rgChoice = rgChoiceService.choose(rg);
33 FeatureModel filteredFm = coreFilterService.filter(fm, rgChoice);
34 OptionBinding fmChoice = fmChoiceService.choose(filteredFm);
35 OptionBinding choice = rgChoice.union(fmChoice);
36 VersionedFileSystem filteredVf = coreFilterService.Filter(vf, choice);
37 fmExportService.export(filteredFm);
38 fileExportService.export(filteredVf);
39 }
40 }

Listing 14.2: Use of Guice dependency injection in the hybrid check-out command.

The interface defines a method checkout. As explained in Section 11.3.1, CHECKOUT is
essentially a combination of FILTER (by a user-defined choice) and EXPORT. Due to the
hybrid role of the feature model, a fixed selection order must be maintained.

Class HybridCheckout makes use of elsewhere defined services, whose concrete im-
plementation is injected at run-time, such that instances of the corresponding classes are
assigned to the object variables annotated with Inject. In the case of choice definition
and exporting, dimension-specific services are invoked—the corresponding dimensions are
defined by a constraining annotation, e.g., @Feature. In addition, the operation FILTER

has been qualified in a generic way by the interface IFilterService, such that it can be
applied to both the feature model and the versioned file system.

The fact that this service class implements ICheckoutService for the specific hybrid
architecture is expressed by a module binding externally; see Listing 14.3.

1 package supermod.commands.hybrid;
2

3 public class HybridModule extends com.google.inject.AbstractModule {
4

5 @Override public void configure() {
6 bind(ICheckoutService.class).annotatedWith(Hybrid)
7 .to(HybridCheckoutService.class);
8 }
9 }

Listing 14.3: Guice module binding for hybrid check-out command.

14.4.3 Satisfiability Checks with Sat4j

SuperMod fully implements the consistency-preserving dynamic filtered editing model
presented in Chapter 11. Constraints 3 and 4 require to check the (constrained) satisfiability
of the invariant set J part of the low-level rule base. Furthermore, in Section 8.3.2, it was
mentioned that satisfiability checks can be approximated using three-valued logic.

This approximation has been implemented in SuperMod, too. If not applicable, the
satisfiability check is performed with the help of the SAT solver Sat4j [BP10]. Internally,
Sat4j maps satisfiability checks to systems of numerical equations and provides optimized
strategies for solving those. As a programming interface, a so called gate translator is
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offered by the library. With its help, the system of equations can be deduced from logical
clauses ki of the following form:

ki : vi ⇔ vi1 opi . . . opi vin (14.1)

Where vi denotes either a positive or negated reference to a free variable or a boolean
constant (true or false). Moreover, vi1 until vin correspond to positive or negative occur-
rences of free variables different from vi and others in the same clause, and opi denotes one
of the logical operators ∧, ∨, ⊗, or⇔.

Invariants, in SuperMod internally represented as instances of OptionExpr (see Sec-
tion 9.2.1), may be, however, arbitrarily complex shaped. Therefore, before applying a
satisfiability check to them, they need to be translated into Sat4j-compliant logical clauses
in a pre-processing step. The corresponding implementation located in the package super-
mod::services::core proceeds as follows: Complex expressions are reduced by introducing
substitute variables, and by introducing new clauses in which the contained expressions are
refined, using the substitute variable as left hand side. Operators not supported by Sat4j, in
particular,⇒, are rearranged correspondingly. The substitution step is repeated recursively
until all remaining gate clauses are valid with regard to the gate translator.

Taking into consideration feature models as a metaphor for invariants of the variant
dimension, the satisfiability check involves a total of four levels of abstraction (see example
depicted in Figure 14.10): feature models, propositional logical invariants, Sat4j-compliant
clauses, and finally, systems of numerical equations. The last level is hidden from Super-
Mod’s implementation and has therefore been omitted in the example.

Edge
sEdges

DirectionWeighted

Directed Undirected

(a) feature model

(b) propositional logical invariants

(c) Sat4j-compliant gates

Figure 14.10: Connection between feature models, invariants, and Sat4j clauses.
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14.4.4 Eclipse Team Provider

The client side of the application has been implemented as an Eclipse team provider5

extension. For modularity, all dependencies to the programming interface of Eclipse –
except for dependencies inherited from EMF – have been encapsulated in the package
supermod::client (see Figure 14.9).

The team provider interface is defined by an extension point (see Section 5.4.3, component
frameworks), whose mandatory operations – the Share command and the team menu – have
been implemented by delegation to corresponding classes in the supermod::commands tier.

In Figure 14.2, another capability provided by the team provider extension has been
presented: decorating versioned contents with a label. For SuperMod’s implementation,
this has been exploited for presenting the workspace choice and ambition (if present) at the
workspace root, as well as the visibilities of versioned files and folders.

14.4.5 Representational State Transfer

The server component6 of SuperMod has been realized as a REST-based (Representational
State Transfer) web service designed to be hosted on an Apache Tomcat 7 servlet container7

locally or on an external machine. The remote repository instance utilizes the server-side
metadata structure defined in Section 13.2.1. For the implementation of the server-side REST
interface (cf. package supermod::server in Figure 14.9), the framework Jax-RS [Bur09] has
been utilized.

The architectural style REST is based on the Hypertext Transfer Protocol (HTTP). Re-
motely available data is universally addressed by means of resources encoded in hierarchical
URLs. The content transferred with and obtained from a HTTP request – the entity – may
have binary or text format. Moreover, different methods are distinguished: GET serves for
reading, POST for creation, and PUT for modification of resources. Requests may return
a result entity and a return code that distinguishes successfully processed requests from
different types of failure situations, each being mapped to an individual error code.

Tomcat 7

SuperMod Server
Web Application

Eclipse IDE

SuperMod
Client

Repo

Eclipse Team Provider

CREATE

PULL

PUSH

     HTTP/REST

CREATE

PULL

PUSH

Repo

<xmi>

<xmi>

POST

GET

PUT

Figure 14.11: Implementation of client/server communication. Based on [SW16a, Figure 6].

5 https://projects.eclipse.org/free-tags/team-provider
6 This subsection is partly based on [SW16a, Section 5].
7 http://tomcat.apache.org/

https://projects.eclipse.org/free-tags/team-provider
http://tomcat.apache.org/
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Below, the mapping of the distributed VCS commands CREATE, PULL, and PUSH, to
HTTP methods is explained as illustrated in Figure 14.11, assuming that the servlet is
running at http://root.url/supermod/.

Create. The initialization of a new remote repository is mapped to a POST request of the
form http://root.url/supermod/repoPath/create?user=X

where the entity contains the XMI serialization of the entire initial repository. Variable
repoPath distinguishes several independent repositories. Parameter user is for
authentication8 and logging purposes. The initial write transaction number 1 is
returned as result entity.

Pull. Server-side changes are requested using
GET http://root.url/supermod/repoPath/pull?user=X&readTNo=Y

where the query entity is kept empty. An XMI-serialized symmetric delta – see
Section 12.3.2 – is returned that includes all changes referring to transactions closed
after Y, which denotes the requesting client’s latest read transaction number. (In the
case of Y= −1, the entire repository contents are returned. This is exploited by the
operation CLONE.)

Push. Transferring client-side changes to the remote repository is provided as PUT method:
http://root.url/supermod/repoPath/push?user=X&readTNo=Y&writeTNo=Z

where writeTNo denotes the number of the write transaction to be closed on the client
side. In case Y does not match the most recently closed server-side transaction, the
repository is out of date. Then, an error response code is returned that signals to the
client that a PULL must be performed first. Otherwise, the local repository is merged
with the XMI-serialized symmetric delta transferred in the entity—see Section 12.4.
A new write transaction is started, whose number is returned in the result entity.

These methods are invoked by the SuperMod client (cf. package supermod::client in
Figure 14.9) when the user selects the corresponding command. This has been implemented
with the help of the network communication classes provided by the Java standard library.

14.5 Detailed Implementation Remarks

After having sketched the coarse architecture of SuperMod and having presented existing
technologies used for its realization, we revisit particular pieces of implementation at a
higher level of detail. Special emphasis is put on optimization strategies, which require to
make assumptions about the underlying technical framework and were thus not introduced
as part of the theoretical framework in Part IV.

14.5.1 Physical Organization of Local Repository and Metadata

The contents of the local repository and the metadata sections were conceptually presented in
Part IV in terms of instances of different metamodels. Here, we supplement information how

8 To date, secure authentication is not supported by SuperMod.
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Figure 14.12: Mapping of workspace, repository, and version control metadata to the physical file
system of the client.

these model instances are physically distributed over multiple files and folders. Figure 14.12
illustrates the explanations.

A SuperMod project is distinguished from a standard Eclipse project by a hidden folder
.supermod below the workspace root. This folder contains both the local repository and the
metadata section. The entry point, file main/main.repo, contains an instance of the core
metamodel presented in Figure 9.5. In contrast to the conceptual description, however, the
containment references visibilityForest, metadata, and both instances of dimensions have
been replaced by cross-resource references, such that the corresponding model instances
are contained in individual files (with suffixes .metadata, .vforest, .featuremodel,
etc.). Also the different dimension descriptors (see Figure 13.1) are organized in this way
(cf. .fmdescriptor and .vfsdescriptor).

The workspace version of the feature model is contained in the feature model descriptor
as described in Section 13.2.4. For the reason of scalability, the product dimension versioned
file hierarchy is decomposed into individual resources. The file hierarchy presented in the
workspace is reflected, and the files part of the multi-version file hierarchy are represented as
instances of subclasses of VersionedFile (see Figure 10.5) in individual physical files, whose
extension depends on the multi-version file type (e.g..mvemf for EMF files; see Figure 10.8).

To keep track of modifications made to workspace artifacts, file hashes are utilized
as suggested in Section 13.2.3. In SuperMod, these are computed by the Secure Hash
Algorithm SHA-1 [EJ01].

14.5.2 Optimizing Local Repository Operations

The description of the underlying conceptual framework already includes several optimizing
strategies, which have been implemented in SuperMod accordingly. For instance, the
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change space (see Section 9.6) and the visibility forest (see Section 9.7) avoid duplication
of visibility expressions. Moreover, the constrained satisfiability approximation presented
in Section 8.3.2 may accelerate the validation of consistency constraints presented in
Chapter 11.

We here add implementation-level optimizations that have been realized in the client.

Visibility Evaluation Cache. The visibility forest is a global data structure for visibilities
designed to reduce memory consumption. In addition, run-time can also be saved by caching
evaluation results. To this end, in SuperMod, every node of the visibility forest, represented
by instances of subclasses of OptionExpr obtains two additional attributes when compared to
Figure 9.7:

– a cachedValue of type Tristate, and

– a boolean cacheValid with default value false.

In advance to each evaluation of the visibility vi of an element ei (see operation FILTER

defined by (10.6)), it is checked whether cacheValid is true; if so, the cachedValue is returned
for vi(c); otherwise, the visibility is evaluated normally, the result to be returned is saved as
cachedValue, and cacheValid is set to true.

The validity of the cached value depends on the current workspace choice c. In the
dynamic filtered editing model implemented, a Commit operation (followed by a transparent
Migrate; cf. Section 11.3) will not change9 any existing bindings in c, and therefore not
invalidate the cached visibilities. Visibility updates are always represented by new (and
non-cached) visibility nodes. Therefore, there are only two situations remaining in which
cacheValid needs to be set to false:

– After an explicit CHECKOUT (or UPDATE), where a new choice is defined, whose binding
may disagree with the cached visibilities.

– After a PULL in case three-way merging was involved.

Values of both attributes are never transferred along with push/pull operations since they
are valid within one workspace (carrying an individual choice) only.

Revision Choice Completion. When confining to the revision graph dimension, the op-
eration COMPLETE (see Algorithm 9.3 on page 169) behaves inefficiently. After the user
has selected a revision n, it takes n − 1 iterations until relevant preferences of the form
(ri, ri+1) have been applied, and one additional iteration for defaults (ri, false). In each
iteration, all preference expressions are evaluated, exposing quadratic complexity in total.

Optimized revision choice completion exploits that the graph structure is encoded in the
pair of references predecessor/successor. Redefining Algorithm 9.3, the strategy proceeds
as follows based on the selected revision j (thus, cr = {(rj , true)}):

1. A depth-first search is started from revision j, following the successor reference10.
Options of visited revisions are stored in a set Osucc.

9 For newly introduced options, new bindings are added. These do, however, not occur in cached visibilities.
10 This assumes that more recent revisions are accessed more likely than revisions located at the beginning of
the revision graph.
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2. For all ri ∈ Osucc, a binding (ri, false) is added to cr.

3. For all rk ∈ (Or \Osucc), (rk, true) is added to cr.

Altogether, linear run-time is achieved.
An analogous optimization exists for collaborative revision graphs, whose mapping

has been defined by Table 12.1 on page 255. The fact that a revision may have multiple
successors does not negatively affect the performance.

Exceptions to the Sufficiently Specific Ambition Check. Practical application of Super-
Mod has shown that requiring a sufficiently specific ambition as defined by Constraint 6
unnecessarily hampers the workflow in certain situations. To overcome this, SuperMod
offers an extension point for the definition of exceptions, which exclude specific types of
elements from this check.

Currently, two exceptions have been implemented—the list can be extended in future:

– After changing the order of elements in the workspace projection of a versioned collection, it
may happen that specific edges transparently created or deleted may refer to hidden vertices,
whose visibility is not included in the full ambition. Therefore, elements of versioned
collections, i.e., instances of OCVertex and OCEdge are excepted under the assumption that
non-representative changes to the mutual order of changes cannot cause errors more severe
than order conflicts.

– When modifying the graphical representation of models in the workspace, layout changes
are seldom meant to be connected to the ambition. In order to avoid pseudo inconsistencies
of this type, an exception for EMF objects whose classes are defined in the GMF (graphical
modeling framework, see Section 3.6.3) notation package has been introduced.

Recommendation of a Sufficiently Specific Feature Ambition. As another user-visible
optimization based on Constraint 6, in case a correcting ambition is required after the con-
straint was violated, the feature ambition specification dialog (cf. Figure 14.5) is initialized
with a recommended ambition that satisfies the constraint.

To this end, the following procedure has been implemented:

1. Identify those feature options f! ∈ O!
f ⊆ Of that are not bound to true or false in

the completed feature ambition PDacmf , but that appear in the visibility v′i of any
depending element e′i that causes failure of Constraint 6 (i.e., v′i(

PDacm) 6= true).

2. For all f! ∈ O!
f , transfer the selection state from the check-out time choice cchf , if

bound there, to acmf . (This cannot guarantee in general that e′i are visible.)

In the feature ambition specification dialog, the user may bind additional features, but never
delete any existing bindings from the recommended ambition acmf . In case the second dialog
is canceled, however, the commit is definitely aborted and the user must revise his/her local
workspace modifications.
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14.5.3 Handling Multi-Version EMF Models

In Section 10.6, particular details with respect to the connection between intrinsic and
extrinsic representation of EMF models have been left unexplained. The most relevant
implementation remarks are summarized below.

Two-Phase Importing and Exporting of EMF Models. Both intrinsically and extrinsically
(see Figure 10.8 on page 205), EMF models are highly connected graph structures, such that
the question arises in which order the elements are processed during the operations IMPORT

and EXPORT. Both transformations have been implemented as two-phase procedures, of
which we here describe IMPORT representatively:

– Traverse the spanning containment tree of each EMF model part of the workspace in a
top-down way. At this occasion, instances of Object, (subclasses of) ClassRef, (subclasses
of) FeatureRef, EMFAttributeValue, and EMFContainmentRefVal are created. In a trace11, the
created instances of Object are associated with their intrinsic source EObject.

– Iterate over all instances of Object stored in the map (touching every object in the workspace
for a second time). Resolve cross-references with the help of the map, and create correspond-
ing instances of InternalRefVal, or ExternalRefVal in case no corresponding target Object
exists. Last, for all references to multi-valued structural features, create a corresponding
instance of OrderedCollection and set it as valueOrder.

To correctly resolve internal references to meta-concepts (i.e., InternalClassRef and
InternalFeatureRef), the whole two-stage procedure is separately applied for two meta-levels.
First, metamodels (carrying the extension .ecore in the workspace), and thereafter, model
instances (having different file extensions) are processed.

Proxy-Based Comparison and Merging. With a similar motivation, extrinsically repre-
sented multi-version EMF model instances are temporarily converted into trees clear of
cross-references before the operations MATCH and MERGE are applied to them. To this
end, an internal proxy strategy (orthogonal to EMF’s built-in proxy mechanism) has been
implemented.

In particular, all instances of InternalRefVal, InternalClassRef, and InternalFeatureRef are
extended such that their references to Object are replaced by a proxy attribute that gets the
UUID of the target object assigned.

Both the implementation complexity and the run-time of MATCH and MERGE are posi-
tively affected by this optimization. After applying the corresponding operation, proxies
are replaced by object links again. To this end, a strategy similar to step 2 of the Import
operation described above comes into play.

Intrinsic vs. Extrinsic Object UUIDs. Depending on the concrete EMF-based tool(s)
employed, intrinsically represented model resources may or may not attach string-valued
UUIDs to individual objects. In case UUIDs are available, they can be straightforwardly

11 Traces creating during EXPORT are reused for a-posteriori product-based validation; see below. Corre-
sponding export traces are created not only for EMF models but for all product dimensions and parts thereof.
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transferred to the corresponding extrinsic object part of the repository during IMPORT, and
in the opposite direction during EXPORT. In order to guarantee the uniqueness also among
different resources and to avoid ambiguity problems with external modeling tools, the UUID
is reversed at each conversion between intrinsic and extrinsic model representation.

Fragment Paths as Pseudo UUIDs. In case UUIDs are not used intrinsically, however,
a corresponding extrinsic UUID needs to be created nonetheless, in order to provide for
correct and meaningful behavior of the operations MATCH and MERGE, which rely on the
UUIDs as sameness criteria (see Sections 10.6.2 and 10.8). Our technical solution here uses
the fragment paths encoded in the XMI file as pseudo UUIDs. This solution is, however, not
stable with respect to rename or move operations, as fragment paths may contain element
names or absolute positions in a collection belonging to the container object. To pseudo
UUIDs, the reversing strategy described above is not applied.

14.5.4 The Server Side Application

The central remote repository is deployed as a Tomcat servlet in a self-contained web archive
(WAR). Below, the architectural remarks given in Section 14.4.5 are detailed.

Dependencies. Being embedded into the Eclipse platform, the client side of the appli-
cation has an inevitably long list of dependencies. It was an important goal to reduce the
number of external libraries to be exported to the server side application.

The external dependencies of the server side include the REST API Jax-RS, the depen-
dency injection framework Guice, the core of the Eclipse Modeling Framework (excluding
Edit and Editor plug-ins), as well as the tiers metamodels (excluding all meta packages),
services (excluding package client), and commands (restricted to packages core, server,
collaborative, and collabhybrid). All UI-related dependencies are decoupled.

Physical Organization of Repositories. As mentioned before, a SuperMod server ap-
plication is capable of managing multiple independent repositories, each of which is
identified by an individual repository path (see variable repoPath used in the queries
in Section 14.4.5).

As illustrated by Figure 14.13, different repository paths are mapped to physical folders
in the working directory of the servlet application. Here, the same repository data as on the
client side are managed, with one exception: the local workspace descriptors, which are part
of the client-specific metadata section only.

Low-Level Synchronization Strategies. In Section 13.2.1, it has been explained that the
conceptual framework provides a dedicated metamodel for collaborative metadata, a subset
of which are meant to be managed by the server-side repository. Unless suggested in
Figure 13.1, however, SuperMod represents master metadata and its contents not as a part
of a model instance, but uses two low-level text files for this purpose. 12

12 The reason for this is rather technical; the EMF resource framework cannot readily avoid that a model file
is opened in multiple parallel sessions because queries are executed in different static contexts.
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Figure 14.13: Physical organization of repositories on the server side.

More precisely, the semaphore lock (see main.lock) and the transaction log (see main.tlog
in the example in Figure 14.13) are represented in an individual textual format. This way,
the isolation of write transactions is already ensured at file system level. In the case of
concurrent write access, a suitable response code signals to the client that the request should
be re-attempted later.

An additional text file is dedicated to the distinction between different repository archi-
tectures supported (see Section 14.3). In order to ensure that all clients and the server agree
with the architecture assumed for a specific repository, each repository folder contains a
plain text file (see main.arch in the example), where the individual repository architecture
code is recorded. This remains stable throughout the life-cycle of a server-side repository
(i.e., until DESTROY).

Peripheral Web Service Requests. In addition to the aforementioned CREATE, PULL

(including the special case CLONE), and PUSH, the web service offers additional low-level
requests, which are summarized as peripheral requests here.

Ping. A simple request that checks whether a server-side repository, qualified by a specific
repository path, is capable of receiving further requests. It is transparently invoked
during the processing of all client commands prior to the actual requests.

Browse. Returns a list of valid repository paths available below a specified root URI.
The query is executed by the user interface of the commands SHARE (in order to
avoid collisions with existing repository paths) and CLONE (for suggesting paths of
repositories to connect to).

Repository Architecture Code. Returns the repository architecture code assigned to a
specific repository qualified by a given path. Used during the CLONE command in
order to inject the correct dependencies that match the cloned repository’s architecture.

Transactions. Offers various types of requests for the latest read and write transaction
numbers, and for generating new public revision numbers. Transparently invoked by
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the client in advance to the operations PULL and PUSH, and after CLONE (starting a
public transaction immediately).

Destroy. This request is issued by the client when the corresponding command is selected
by the user. Rather than physically deleting the repository on the server, a destroyed
flag – represented by an additional file main.destroyed – is set. Upon any future
request, it is signaled to clients by a corresponding response code that the server-side
repository is no longer available; the clients may decide whether to step back to
single-user version control or whether to apply the local DISCONNECT command,
which also destroys the client-side copy of the repository.

Currently, SuperMod does not support an authentication mechanism. In future, this might
be offered as an additional peripheral request to extend the above list.

14.6 Product Well-Formedness Analysis

This section completes the description of the tool SuperMod by providing implementation
remarks concerning the a-posteriori product-based well-formedness analysis strategy in-
troduced in Chapter 13. The strategy can be summarized as follows: After filtering out a
single-version product, detect conflicts based on the extrinsic representation (see implemen-
tation remarks in Section 14.6.1). Then, apply default resolution actions (14.6.2). Last,
export the repaired product to the workspace and attach conflict markers (14.6.3), which
enable the user to accept or to retrospectively adjust the performed resolution actions. By the
subsequent commit, the corrections are made persistent for those variants that are included
in the specified feature ambition.

The explanations refer exclusively to the client side application; recall that synchronization
problems caused by concurrent modifications are addressed by the context-free three-way
merging strategy introduced in Section 12.4.

14.6.1 Conflict Detection

For the detection of conflicts, a low-level service interface VALIDATE has been defined; it
is supposed to be implemented by specific product dimension dimensions. The operation
takes as input an extrinsically represented product dimension and returns a set of conflicts.
For the versioned file system dimension, the operation is further decomposed according to
the respective file types supported.

Without any exception, the product constraints listed in Sections 13.3 have been imple-
mented. In general, the conflict condition is checked for each instance of the context class.
If the condition holds, an instance of the corresponding conflict class is created and attached
to the metadata section of the local repository (see Section 13.2.2).

The list of recently detected (and currently unresolved) conflicts is temporarily made
available to the user in a dedicated conflicts dialog. An example is provided in Figure 14.14.
The three conflicts displayed emerge from a conflicting realization of the features labeled
(renaming of class Edge into LabeledEdge and insertion of an attribute label) and weighted
(renaming into WeightedEdge; insertion of weight). The value order conflicts refer to the
abstract syntax and to the order in the attributes compartment of the diagram, respectively.
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Figure 14.14: Example of SuperMod’s conflicts dialog.

The user may accept the conflicts (OK), which triggers default resolution and the creation
of conflict markers (see below). In case he/she selects Cancel, the surrounding check-out
operation is aborted.

14.6.2 Default Resolution

Default conflict resolution has been implemented by another low-level service, DEFAULTRE-
SOLVE, which takes as input the filtered product and the conflicts. Furthermore, the chosen
default resolution strategy is available from a corresponding Eclipse preference page—the
available options have been shown in Section 13.4.3.

In order to select a preferred element based on the selected default resolution strategy,
the visibility of the context element is taken into consideration. For instance, given that the
strategy “my change wins” has been selected and the visibility of an element refers to a
revision option part of the locally running remote transaction, this element is preferred.

As sketched in Figure 13.7(b), the result of default resolution is a preliminarily repaired
filtered multi-variant domain model. To this extrinsically represented product, the operation
EXPORT can now be applied both deterministically and (syntactically) consistently.

14.6.3 Conflict Markers

After having exported the repaired MVDM into the workspace, the temporary export trace
(see Section 14.5.3) is analyzed in order to identify those workspace elements that correspond
to the context elements of specific products. Depending on the intrinsic representation, a
workspace element can be an EMF object, a line of a text file, or a feature model element, for
instance. This information is exploited for the creation of conflict markers, which basically
implement enhanced conflict descriptions in the theoretical description of the redefined
check-out operation provided in Section 13.4.2.

Conflict markers rely on an extension of the Eclipse-internal marker concept, which is
also used, e.g., for showing compilation errors in source code files or for semantic model
errors detected by the EMF Validation Framework [Ste+09].

Figure 14.15 depicts a screenshot of the markers generated based on the conflict set
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Figure 14.15: Conflict default resolution markers by example.

illustrated in Figure 14.14 above13. When the user selects an item, the focus of the editor
opened in the workspace is automatically set to the workspace equivalent of the context
element. Using his/her preferred editor, the user may now accept or manually revise the
resolution action. After that, he/she can remove the marker from the list in order to indicate
that the conflict has been resolved as desired.

On commit, all pending markers are deleted as it is assumed that the user accepts default
resolution decisions he/she has not explicitly removed from the list. Moreover, depending
on the specificity of the feature ambition, it may happen that the same conflict is reported
repeatedly in a later iteration started with another check-out operation.

14.7 Related Implementation

We conclude this section by a brief discussion of tools that follow comparable implemen-
tation principles, or that use different technologies for similar purposes as SuperMod. We
concentrate on tools that are built upon the Eclipse IDE.

The Ancestors of SuperMod. SuperMod has been technically influenced by two model
management tools developed in precursor projects.

Firstly, the filtered MDSPLE tool FAMILE [BS12b; BS16a; BS16b] offers an optically
similar feature model editor, which was also obtained from a generated EMF tree editor.
When compared to SuperMod, this editor supports additional variability modeling capabili-
ties, particularly cardinality-based feature modeling [CHE05]. Although FAMILE assumes
an intrinsic multi-variant domain model, the mapping model, which connects domain model
elements to feature expressions, is capable of virtually extending the MVDM by extrinsic
alternative mappings. The metamodel of the mapping model shares similarities with the
extrinsic EMF product dimension presented in Section 10.6.1.

13 The default resolution of order conflicts referring to ordered structural EMF features is not displayed as a
marker if the corresponding meta-attribute ordered is set to false.
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Secondly, BTMerge is an EMF-based tool for consistent three-way model merging. After
a similarity-based matching, the model versions to be merged are combined into a merged
model graph, which also resembles extrinsic EMF models used in SuperMod. This extrinsic
representation is displayed to the user in the form of a three-column tree during the interactive
merge. A conflicts list, which coarsely corresponds to the combination of conflicts dialog
and markers in SuperMod, is presented to the user. In contrast, conflicts must be resolved
deterministically in the dialog. The offered resolution actions are similar to the default repair
actions used here; see also discussion in Section 13.5.

Feature Model Editing. For the creation as well as for the editing of feature models, many
EMF-based editors have been described in the literature.

EMF tree editors are used, among others, in FAMILE [BS12b], FeaturePlugin [AC04],
and FeatureMapper [HKW08].

Apart from trees, two additional forms of representation exist: In Clafer [BCW11] and in
PLiBS [ZJ07], feature models are edited based on a textual syntax. Diagram-based feature
model editors are provided by SiPL [Pie+15] and by FeatureIDE [Thü+14b].

Feature Model Satisfiability. SuperMod implements satisfiability checks by translating
the invariants derived from a feature model into logical gates, which are then analyzed by
the SAT solver Sat4j [BP10]. This strategy is shared with the tool Feature IDE [Thü+14b],
where feature models may contain arbitrary propositional logical formulas.

Beyond SAT solvers, more specific solutions to feature model satisfiability exist. Fea-
turePlugin [AC04] utilizes binary decision diagrams [Ake78] for detecting conflicting
relationships or constraints. Furthermore, model checking techniques are frequently em-
ployed for this purpose; a survey of Alloy-based (therefore not necessarily Eclipse-based)
approaches is provided in [SPC16].

Client-Server Communication in Model VCS. SuperMod’s technical solution for client-
server communication for VCS relies on a REST-based web service. Alternative technical
solutions (also those not relying on Eclipse) have been discussed in Section 6.2.3.

For comparison, the EMF-based model VCS EMFStore [KH10] uses XML-based remote
procedure calls (RPC) in order to synchronize a central server with several clients over
the physical network. In contrast to SuperMod, secure authentication – here built upon the
Secure Sockets Layer (SSL) – is provided.

Conversely, the combination of EMF with REST has also been addressed in [EdD+16].
The technical framework EMF-REST allows to generate a REST-based web service API
that offers direct model manipulation requests. Albeit, neither historical nor logical version
management is supported.

14.8 Summary

The research prototype SuperMod is a model-driven tool for the integration of MDSE, SPLE,
and version control. The tool relies on well-known formalisms (such as feature models and
revision graphs) and metaphors (check-out and commit), and thereby provides an intuitive
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yet decent user interface. It is also important to note that all of the three disciplines are
supported optionally: By corresponding repository architectures, the feature model or the
revision graph may be omitted. Furthermore, the tool may also be applied to purely source
code centric projects (offering a line-oriented product granularity).

For collaborative versioning, SuperMod provides the metaphors pull and push. These
have been implemented upon a REST-based web service that manages the central remote
repository. The tool applies optimistic versioning. In the case of concurrent modifications,
three-way merging is applied non-interactively; the context-free well-formedness is ensured
not until conflicting revisions or features are combined during check-out. Conflict markers
assist the user in reviewing automatic repair actions.

By the tool SuperMod, we have demonstrated that the conceptual framework elaborated in
Part IV is implementable. The functionality offered by the tool covers the requirements listed
in Section 2.3. The evaluation presented in the subsequent Chapter 15 aims at providing
evidence that the usage of the tool offers practical benefits to the relevant stakeholders.
Retrospectively, implementation gaps are critically reflected in the conclusion of this thesis.

14.9 Tool Availability

The tool SuperMod referred to in this chapter is publicly available for evaluation purposes.
Here, resources for documentation and installation are listed. 14

Client Side. The tool is available as a set of Eclipse plug-ins, consisting of a core appli-
cation and one additional plug-in for each repository architecture (see Section 14.3). For
the installation, we recommend a clean Eclipse Modeling Mars distribution. The plug-ins
are allowed to co-exist in the same IDE; they may be retrieved from the following Eclipse
update site: 15

Server Side. In case one of the two collaborative repository architectures has been selected,
it is mandatory to install in addition a server side application, which requires an Apache
Tomcat 7 web-server. A ready-to-deploy web archive can be found here: 16

Tool Demo Video. The following tool demonstration video accompanies the descriptions
given in [SW16b]: 17

For initial experiments, it is recommended to install the plug-ins SuperMod Core and
Revision+Feature Layered Version Model without server side application.

14 The availability of these links is guaranteed only as long as the research project is active.
15 http://btn1x4.inf.uni-bayreuth.de/supermod/update/
16 http://btn1x4.inf.uni-bayreuth.de/supermod/webapp/supermod-server.war
17 https://www.youtube.com/watch?v=5XOk3x5kjFc

http://btn1x4.inf.uni-bayreuth.de/supermod/update/
http://btn1x4.inf.uni-bayreuth.de/supermod/webapp/supermod-server.war
https://www.youtube.com/watch?v=5XOk3x5kjFc
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Chapter 15

Evaluation

Abstract

This chapter is dedicated to the experimental investigation of the practical value of the
formal approach, whose conceptual elaboration and implementation has been contributed in
the preceding chapters of the thesis. Emphasis is put on those properties of the approach
that immediately affect designated end users. The here presented results rely on three
case studies conducted with SuperMod: an extended version of the running Graph Library
example, a model-driven product line for Home Automation Systems, and a bootstrapping
experiment where SuperMod itself is re-engineered as a product line based on a domain-
specific modeling language. The data obtained in this way is analyzed in order to draw
conclusions about the theoretical framework, in particular: the added value over filtered
editing referring to the management of both the product space and the version space, impacts
of the dynamic editing model, and properties of a-posteriori product-based analysis. In a
retrospective critical discussion, we match the results as well as additional observations with
properties postulated throughout the thesis.
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15.1 Methodology

After having presented a conceptual framework for the integration of MDSE, SPLE, and
version control, as well as an implementation thereof, we now transition to a discussion of
the practical benefits of the approach. To this end, an evaluation based on three case studies
is presented in this chapter. We provide a detailed description of the conduction of the case
studies themselves, as well as a presentation and discussion of the results obtained by an
analysis of these. We make a distinction between primary and secondary evaluation goals.

The case studies include an extended and collaboratively developed version of the running
Graph example, a larger case study adopted from the SPL literature, namely a product line
for Home Automation Systems (HAS), and finally, a bootstrapping case in which SuperMod’s
variable repository architecture is redesigned based on a domain-specific language.

The primary goal of the evaluation is to obtain an accountable measure of the added
value that immediately affects designated end users. To this end, we apply a lightweight
form of the goal question metric (GQM) approach [BCR94]: First, three specific goals
of the conceptual framework are defined from the end user’s perspective. Second, we ask
four primary research questions whose answer should reflect whether the goals have been
reached. Third, to answer the questions, we apply statistical metrics to the evaluation objects,
which are represented by both user action logs and the transparent repository contents in
their state after the conduction of the case studies.

As far as secondary results are concerned, we qualitatively evaluate properties of further
aspects of the framework, e.g., the collaborative distributed version model, its compatibility
with different modeling languages and generated source code, its ability to react to customer
requests, and the effect of the fine-grained versioning strategy applied.

Distinctly and by intention, the evaluation does not include a technical examination of the
research prototype SuperMod in terms of performance analyses, scalability experiments, or
stress tests. The scientific contribution of this thesis consists in the conceptual framework,
whereas the technical implementation is intended as a proof of concept and as a vehicle
to conduct case studies that allow conclusions about the user-relevant properties of the
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underlying conceptual approach. Thus, the evaluation presented in this chapter refers to the
scientific but not to the technical contribution.

The remainder of this section is organized as follows: Subsequently, we define three
primary goals, we explicitly phrase primary and secondary evaluation questions, and we
sketch the metrics applied in order to answer the former. In Section 15.3, we introduce
three case studies from which the experimental results have been obtained. Section 15.4
presents and discusses the applied metrics as well as results obtained; also, potential threats
to validity are listed. Further discussion of secondary observations with respect to secondary
questions are provided in Section 15.5. A summary concludes this chapter and part.

15.2 Goals, Questions, and Metrics

The evaluation is guided by three primary goals, as well as by four primary and by five
secondary evaluation questions. The connection between goals, primary questions, and
metrics is made explicit in Table 15.1. In addition, Figure 15.1 clarifies the connection
between case studies and both primary and secondary evaluation questions.

15.2.1 Goals

The overall goal of the approach presented in this thesis is the integration of MDSE, SPLE,
and VC in a single tool. SuperMod supplies a proof of concept, however, the question of the
added value for potential users must be asked. In the following, we evaluate whether three
particular goals – G1, G2, and G3 – have been achieved, using state-of-the-art approaches
(e.g., unfiltered or statically organized editing models, as well as product-based or family-
based well-formedness analysis) as reference points:

G1. Reduce the effort of software product line development, compared to unfiltered editing.

Table 15.1: Goals, Questions, and Metrics guiding the primary evaluation.

Goals Questions Metrics

G1 PQ1 number of modified elements
workspace/repository ratio

PQ2 ambition complexity
visibility complexity
ambitions/visibilities quotient

G2 PQ3 share of iterations with new features in ambition
explicit check-outs ratio
interactive migration ratio
unsatisfactory migration ratio
migration effort

G3 PQ4 default resolution accuracy
resolution scope
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G2. Be less obtrusive with version definition tasks, compared to static filtered editing.

G3. Improve the well-formedness of derived product variants, compared to standard product-
based SPL analysis.

15.2.2 Primary Questions and Metrics

According to Table 15.1, the first goal is refined into two primary questions, PQ1 and
PQ2, investigating the product and the version perspective of the SPL development effort,
respectively, whereas G2 and G3 are straightforwardly mapped to individual questions PQ3
and PQ4. The metrics informally introduced under the primary questions below are further
refined in Section 15.4.

PQ1. To What Extent does the Filtered Editing Model Reduce the Complexity of Editing
Products in the Workspace, Compared to Unfiltered Editing? Approaches based on
unfiltered MDSPLE expose to the user a multi-variant domain model, which represents a
superimposition of all available product variants. Depending on the number of variation
points and the complexity of their realization, this may significantly complicate multi-variant
editing (see Section 7.1.5) by overloading the user with irrelevant contents. In contrast, the
here applied filtered editing model hides those elements from the workspace that are not
relevant for the intended change.

To quantify the complexity of the edit steps themselves, we indicate the number of
modified elements within each iteration. The reduction of cognitive complexity cannot be
measured; as a replacement, we put in relation the number of (graphical or textual) elements
the user is exposed to in the workspace and the number of corresponding elements belonging
to the equivalent model resource or text file in the transparent repository. In this way, we

Case Study 1:
Graph Library

(UML)

Case Study 2:
Home Auto-

mation System
(UML)

Case Study 3:
Bootstrapping

(SuperStrap)

PQ1. Reduced Product Editing Complexity over Unfiltered Editing

PQ2. Reduced Version Management Effort over Unfiltered Editing 

PQ3. Reduced Obtrusiveness of Dynamic Filtered Editing

PQ4. Performance of A-Posteriori Product-Based Analysis

SQ1. Properties of Distributed Collaborative Versioning

SQ2. Suitability for Heterogeneous Projects with Generated Code

SQ3. Feasibility of Reactive SPLE

SQ4. Compatibility with Domain-Specific Languages

SQ5. Impact of Fine-Grained Product Space Organization

Figure 15.1: Case studies and evaluation questions in context.
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obtain as metric the workspace/repository ratio, which is the complement to the degree of
filtering applied in each specific editing model iteration.

PQ2. To What Extent does the Filtered Editing Model Reduce the Effort for Manual
Version Management, Compared to Unfiltered Editing? Both the variability model and
the platform, as well as traceability links in between have to be created and maintained
manually when applying unfiltered editing as realized in state-of-the-art SPLE approaches.
SuperMod and the underlying approach, in contrast, follow filtered editing; the developer is
not exposed to multi-variant artifacts, but he/she performs modifications based on single-
variant views. Traceability links are created automatically based on a user-defined version
specification, the feature ambition, at each commit.

As a first indicator for the complexity of version management in filtered editing, we
define the ambition complexity of each iteration as the number of clicks necessary for feature
ambition specification. In analogy, the visibility complexity characterizes the number of
elements found in the abstract syntax tree of a traceability link created manually.

To finally compare the version management effort of filtered editing with a corresponding
unfiltered approach, we put in relation the number and complexity of feature ambitions
defined and the number and complexity of visibilities transparently created. The ambi-
tions/visibility quotient obtained in this way quantifies the degree of version management
automation gained by the filtered editing model.

PQ3. To what Extent does the Dynamic Filtered Editing Model Behave Less Obtrusively
than Static Filtered Editing? As explained before, the contributed conceptual framework
differs from related approaches to filtered editing [WMC01; WO14] inasmuch as it applies
a dynamic editing model, where the feature model is made available for modification in
the workspace, such that new features can be introduced and realized in the same iteration.
Moreover, the CHECKOUT operation is made optional by a new workspace operation
MIGRATE that prepares the workspace choice for the subsequent iteration, assuming that the
user wants to continue the next development iteration in the current workspace view. DFE
was claimed to be less obtrusive (in terms of version definition tasks) than SFE.

The first metric applied for answering the question is the ratio of iterations in which new
features are bound in the ambition.

In order to quantitatively assess the positive impact of the operation MIGRATE on the
filtered editing workflow, we define and compute four additional metrics: first, the relation-
ship between those situations where the migrated choice equals the choice desired by the
evaluation subjects, and those situations where he/she had to issue an explicit CHECKOUT.
Second, in case user interaction is required, we approximate the extra user effort of migration
by the number of user interactions required for producing the desired choice. Third, we
count the ratio of events where migration produced an unsatisfactory choice unsuitable
for the subsequent iteration. Besides, the migration effort reflects the number of clicks
necessary for each interactive migration.

All in all, the deduced quantities reflect the share of user interaction saved by dynamic
filtered editing on the one hand as well as the precision of the operation MIGRATE on the
other hand. In order to judge about the unobtrusiveness implied by the DFE model, we
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compare the effort saved by the DFE model to the overall new user interaction caused by it.

PQ4. How Does A-Posteriori Product-Based Well-Formedness Analysis Perform when
Compared to Ordinary Single-Product Analysis? In Chapter 13, a-posteriori product-
based analysis has been presented. After a non-interactive default repair phase, the user
may revise all well-formedness violations and the performed repairs in a single-variant
workspace without having to analyze or modify multi-variant artifacts. The repair actions
are, however, not restricted to the product variant presented in the workspace, but they
potentially affect all variants included in the ambition.

Analyzing concrete occurrences of well-formedness repair in the case studies, this primary
question is answered in a twofold way. First, we determine the accuracy of default resolution
by counting the number of conflict repairs that matched the user’s intents. Second, we
put the affected product variants, e.g., those included in the ambition, in relation with the
lone product variant in which the repair actions are applied. For each product conflict, we
determine the resolution scope, i.e., the percentage of valid product configurations that
become transparently affected by the applied conflict resolution action. This number serves
as a measure for the efficiency of the here applied analysis strategy compared to approaches
restricted to single-product repair.

In Figure 15.1, this primary question is not connected to the Home Automation case study
since product conflicts do not occur there.

15.2.3 Secondary Questions: Specific Properties of the Framework

In addition to data-based evaluation, backed by the four primary questions listed above, we
qualitatively evaluate and discuss properties of the conceptual framework that cannot be
deduced in an objective and reproducible way in the form of metrics. These properties are
reflected by the following secondary evaluation questions:

SQ1. What are the limitations and implications of the distributed collaborative versioning
strategy?

SQ2. How suitable is the presented approach for heterogeneous software product lines that
contain both models and text files connected by implicit and explicit relationships?

SQ3. Is reactive SPLE – i.e., the ability to respond to customer feedback on demand –
adequately supported by the presented conceptual framework?

SQ4. Is the approach compatible with domain-specific modeling languages?

SQ5. What are the positive and negative implications of the applied fine-grained versioning
strategy?

In contrast to primary questions, secondary questions are addressed by individual case
studies rather than by an aggregation of quantitative results emerging from all studies (see
connections in Figure 15.1). This explains why the case studies are conducted under differ-
ent specific experimentation conditions (e.g., single/multi user mode, different modeling
languages and resource types, and varying amount of alternative variability).
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15.3 Case Studies

In this section, the case studies conducted with regard to the evaluation are presented.
The evaluation subjects – represented by the author himself and a master student; see
individual case studies – developed the multi-version artifacts from scratch based on a list of
requirements provided beforehand. These requirements lists also contain synthetic obstacles
emerging from secondary evaluation questions. For the reason of compactness, we only
present relevant extracts of the resources available in the local workspace.

15.3.1 The Extended Graph Library Case Study

Throughout this thesis, excerpts of a product line for Graph Libraries have been used as
examples for demonstrating particular aspects of the contributed conceptual framework.
The case study was initially described as an evaluation case in [LHB01] and adapted for the
demonstration of many SPL approaches in literature. Below, we present a complete version
of the product line that has been developed by the author from scratch1, guided by [LHB01].

Specific Experimentation Conditions. To address SQ1, collaborative MDSPLE was sim-
ulated by involving two fictional developers, Alice and Bob; the actions of both were
executed by the author of this thesis. In this experiment, the server side application of
SuperMod, which managed the central remote repository, was running on the host ma-
chine; Alice’s and Bob’s local repository and workspace were physically separated in two
independent Eclipse installations.

Requirements. To make the experimentation of this synthetic case study as realistic as
possible, the requirements for the product line were assigned to different product line
increments realized by Alice and Bob alternatingly. Furthermore, intentional obstacles were
created, such that synchronization conflicts and product well-formedness violations came
into play. The list of task descriptions is reproduced here:

1. Alice: Initialize the repository. Add basic support for graphs that contain a node set
and an edge set. Assume graphs are undirected, but do not define a feature for this.

2. Bob: Clone Alice’s repository. Introduce a mutually exclusive distinction between
directed and undirected graphs. Ensure that Alice’s realization of edges is valid for
undirected graphs only, and commit a new realization for directed graphs.

3. Alice: Concurrently to Bob’s change above, add support for labeled and weighted
graphs as two optional, independent features. Reconcile your changes with Bob’s.

4. Bob: Wait until Alice pushes revision 3. Add support for colored graphs.

5. Alice: Add constructors to the classes for vertices and edges. Their parameters should
match the available properties for colored/labeled/weighted/directed graphs.

1 Therefore, revision numbers and details of both the feature model and the domain model may differ from
previously presented examples. Apart from this, similar case studies were reported on in [SW16b] and in
[SW17b]; the experimentation was repeated here, since a more detailed analysis of the user interaction was
required in this evaluation.
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6. Bob: Concurrently, define new features for the graph algorithms transpose (requires a
directed graph) and shortest path (requires a directed and weighted graph). Reconcile
your changes with Alice’s.

Preliminaries. The case study was conducted with SuperMod in combination with the
UML modeling tool Valkyrie [Buc12].

The technical preparations were made in Alice’s fictional modeling environment. After
having initialized the Valkyrie project using the provided project wizard, the domain model
created is represented as two models, an abstract syntax model (an instance of the Eclipse
UML 2.0 metamodel), and a GMF notation model that defines concrete graphical class
diagram syntax for abstract model elements.

Table 15.2: Version history underlying the Graph Library case study.

Rev. Author Feature Amb. Change Description

1.1 Alice true Eclipse metadata and empty model files
1.2 true added Graph, Vertices, Edges to feature model
1.3 Graph added Graph to domain model
1.4 Vertices class Vertex, assoc. has Vertices
1.5 Edges class Edge, assoc. has Edges
1.6 Edges added association connects

3.1 Bob not Undirected added XOR-group with Directed, Undirected;
removed association connects

3.2 Directed associations starts at, ends at

2.1 Alice Weighted optional features Weighted, Labeled;
attribute weight

2.2 Labeled attribute label

4.1 Bob Colored optional feature Colored;
class Color, association has Color

5.1 Alice Vertices empty constructor Vertex
5.2 Colored constructor parameter color
5.3 Edges empty constructor Edge
5.4 Undirected constructor parameter adjacents
5.5 Directed constructor parameters source, target
5.6 Weighted constructor parameter weight
5.7 Weigh. and Undir. defined order for adjacents/weight
5.8 Labeled constructor parameter label

6.1 Bob true features Algorithm, Transpose, ShortestPath
6.2 Transpose operation transpose
6.3 ShortestPath operation shortestPath
6.4 ShortestPath defined order Vertex/shortestPath
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To this Eclipse project, SuperMod support was added by the Share command. After
selecting the hybrid collaborative repository architecture in a first step, the connection to
the central remote repository was established. In addition to the model files, two text-based
Eclipse project metadata files (.project and .classpath) were selected in the initial resource
selection dialog.

Overall Version History. Before we present the key user actions performed in the subse-
quent remote transactions, we summarize the complete version history of the case study in
Table 15.2. Recall that public revisions are ordered by creation date rather than by push
date; therefore, revision 3.2 is less recent than revision 2.2.

The majority of private revisions was processed in what is referred to as “the straight-
forward way” below: introduce a new feature, add corresponding realization artifacts to
the domain model, and commit, using an ambition where the newly introduced feature is
positively bound and no further bindings are set.

Public Revision 1. In revision 1.1, Alice commits the initial workspace contents using
an empty ambition (as no features are defined yet). Revision 1.2 exclusively refers to the
feature model—the result of the corresponding modifications is shown in Figure 15.2(a). In
revisions 1.3 until 1.5, the features Graph, Vertices, and Edges are realized straightforwardly
(cf. Table 15.2). Revision 1.6 is an evolutionary change and therefore addresses the same set
of variants (ambition {(OEdges, true)}). The resulting view on the domain model – which
equals here the multi-variant domain model as all features are mandatory so far – is depicted
in Figure 15.2(b). Alice concludes the remote transaction by a PUSH. Public revision 2 is
started transparently in Alice’s workspace.

Public Revision 3. Bob joins the fictional project based on a CLONE of revision 1 pushed
by Alice. The remote transaction running in his workspace gets the public revision number 3
assigned.

(a) feature model (b) domain model in the lone available variant

Figure 15.2: Alice’s workspace contents after public revision 1.
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(a) feature ambition 
for revision 3.1

(b) feature choice migration 
before revision 3.2

Figure 15.3: Variant definitions provided by Bob in revision 3.

(a) feature model (b) domain model (directed graph)

Figure 15.4: Bob’s repository contents at the end of revision 3.

After defining the mutually exclusive features Directed and Undirected, Bob is faced with
the problem that the realization of the second feature is already present in the workspace.
The corresponding elements, therefore, need to be constrained to Undirected variants. Bob
achieves this by removing the elements in question from his workspace and by committing
this deletion using an ambition where Undirected is negatively selected2—see Figure 15.3(a).

Subsequently, Bob is prompted for the definition for an option binding for Directed in
an interactive migration. Selecting true, this produces the correct choice for the change
realized in revision 3.2, namely the definition of two associations for directed edges. An
explicit check-out is not required either. Figure 15.4 depicts Bob’s repository contents at
push time. Public transaction 4 is started in his workspace.

Public Revision 2. Alice starts her work on the subsequent public transaction in advance
to Bob’s push; therefore, the version history is temporarily branched. In revision 2.1, she
introduces the features Weighted and Labeled. Furthermore, she realizes the former feature
in the domain model.

After committing, Alice is prompted for an interactive choice migration since the binding
for feature Labeled is missing. She specifies a positive selection (cf. Figure 15.5(a)) because
this matches her intention for the subsequent private transaction 2.2, where she realizes this
feature straightforwardly. The final workspace contents are depicted in Figure 15.5(b).

As prescribed by the experimentation requirements, as soon as Alice attempts to push, a
synchronization obstacle occurs as Alice’s version history must be reconciled with Bob’s
public revision finished in the meantime. Following SuperMod’s collaborative workflow, an
out of date situation is signaled to Alice, who is forced to pull and to update her workspace
to the latest revision. As her current workspace choice does not provide bindings for the

2 Through this “double negation”, the visibilities of deleted elements will be automatically conjuncted with the
feature option belonging to Undirected. The same principle has also been applied in revision 3 of the example
presented in Section 9.5.2 and will be applied in revisions 35 until 37 of the Home Automation Example.
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(a) feature choice migration 
before revision 2.2

(b) workspace domain model 
(weighted, labeled graph)

Figure 15.5: Version space and workspace presented to Alice in revision 2.

(a) choice before Alice’s selections (b) choice after Alice’s selections

Figure 15.6: Interactive choice migration after Alice’s pull during revision 2.

remotely defined features Directed and Undirected, Alice is forced to complete her workspace
choice interactively—see Figure 15.6.

Alice’s and Bob’s concurrent modifications are, however, not conflicting at product level,
such that no well-formedness violations occur in Alice’s workspace after pull and update.
She may therefore resume her push without any further restrictions.

Public Revision 4. Bob waits for Alice to push, preventing synchronization problems
beforehand. Then, he checks-out a weighted, directed, unlabeled variant. The realization
of the feature Colored defined by the requirements list happens in a straightforward way—
see Table 15.2. Figure 15.7 depicts Bob’s workspace contents as he pushes.

(a) feature model
(b) domain model 

(colored, weighted, directed)

Figure 15.7: Bob’s workspace contents after public revision 4.
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Figure 15.8: Alice’s workspace domain model after private revision 5.4.

Public Revision 5. Alice, too, avoids synchronization problems by awaiting Bob’s push.
For defining the constructor of class Vertex, she checks-out a colored, labeled, weighted,
undirected variant. The realization is split into two distinct commits (with different am-
bitions): In revision 5.1, the constructor is introduced without parameters for the feature
Vertices. The parameter color is added conditionally for Colored variants in revision 5.2.

Still in the same workspace view, Alice defines the constructor for Edge in revision 5.3,
as well as the parameter for undirected edges (adjacents of type Vertex with multiplicity 2)
in revision 5.4. The intermediate workspace contents are depicted in Figure 15.8.

Thereafter, the constructor parameters for directed graphs are addressed. To this end,
Alice must check-out based on a different choice, selecting feature Directed as well as all
other non-conflicting optional features. In revision 5.5, the parameters source and target are
added conditionally for Directed graphs. In the same view, the parameter weight is added for
Weighted graphs in revision 5.6; see Figure 15.9.

In this way, the mutual order of the constructor parameters belonging to Directed and
Weighted is fixed; however, no mutual order for adjacents and weight has been defined,
although the features are allowed to be combined. In order to avoid well-formedness
violations in future products derived, Alice uses revision 5.7 to make the order explicit.
Switching back to her first choice (checking-out an undirected, colored, weighted, labeled
graph), an order conflict is reported to Alice as expected. This is default-resolved by placing
adjacents before weight, which matches Alice’s preference. For the subsequent commit, she
must specify an ambition that is specific enough for the performed change—she positively
selects the features Undirected and Weighted, which are realized by the affected parameters.

Last, Alice straightforwardly adds a last constructor parameter for Labeled graphs. After
this, a total order (except for the parameters belonging to the mutually exclusive features
Directed and Undirected) is defined in the transparent multi-version collection that organizes
the constructor parameters of Edge. The workspace domain model present in Alice’s
workspace as she pushes is shown in Figure 15.10.

Figure 15.9: Alice’s workspace domain model after private revision 5.6.



15.3 Case Studies 335

Figure 15.10: Alice’s workspace domain model after private revision 5.8.

(a) feature model (b) domain model (weighted, directed)

Figure 15.11: Bob’s final workspace contents after public revision 6.

Public Revision 6. Without awaiting Alice’s push, Bob contributes the final public revision
in the straightforward way. The first revision 6.1 is used to introduce features and constraints
for the algorithms Transpose and ShortestPath; see Figure 15.11(a). These are positively
selected in the subsequent interactive migration and then realized as operations using the
corresponding features as ambitions in revisions 6.2 and 6.3. Then, Bob attempts to push,
being forced to pull Alice’s changes connected to public revision 5 first.

Since both Alice and Bob add elements to the operations list of class Vertex, another order
conflict is raised here. This time, the default resolution strategy suggests an order that is
not in line with the usual convention that constructors are placed before regular operations:
[shortestPath, Vertex]. Therefore, Bob manually revises the repair action and switches the
order. The resulting workspace content depicted in Figure 15.11(b) is committed under
ambition {(oShortestPath, true)}. Bob pushes the final state of the Graph case study.

15.3.2 Home Automation System

In a second evaluation case3, we apply SuperMod to the standard of a product line for Home
Automation Systems (HAS) from [PBL05]. A HAS consists of several technical components
communicating with each other; since most components are optional and interchangeable,
this case study is frequently used for product lines. We here abstract from the communication
layer and consider a requirements-centric view of the system.

3 This section is based on [SBW16a, Section 4].
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Table 15.3: Version history of the use case diagram. Based on [SBW16a, Table 1].

R. F. Amb. Feature Model Changes Changes to Use Case Diagram

1 HAS feature HAS actor Resident, component HAS
2 Id.Mech. feature Id.Mech. component Id.Mech., contained use

cases, includes, and connected use links
3 DoorLock feature DoorLock comp. DoorL., use cases Lock, Unlock
4 DoorLock — missing links for Lock and Unlock
5 AlarmAct. feature AlarmActivision component AlarmAct., contained use

cases, connected links
6 SMSToO. features Ac.Sig., Vid.S.,

PoliceInf., SMSToO.
use case Change Phone Number

7 Heat.Cont. feature Heat.Cont. component Heat.Cont. and contents

Specific Experimentation Conditions. In contrast to the Graph study, where the sec-
ondary evaluation question of collaborative versioning was addressed, single-user mode was
employed here. To this end, we applied the hybrid repository architecture. Conversely, this
case study features a considerably larger version history, a domain model that is distributed
over several heterogeneous model and non-model (Java source code) resources (SQ2). The
case study was conducted by a master student with MDSE and SPLE background. Due
to the size of the product line, the descriptions are less detailed than those referring to the
Graph case study.

The larger part of the case study is organized in a rather plan-driven way. Consecutively,
the activities analysis, design, and implementation (based on generated source code) are
executed. For analysis and design, we rely on UML use case, activity, package, and class
diagrams using Valkyrie [Buc12] (see above) and its Java code generator. At the end,
fictional customer feedback that required to revisit design decisions in a reactive fashion
(SQ3) is given.

Figure 15.12: The use case diagram of the HAS study after revision 7, shown in a variant that includes
all mandatory and optional features available. From [SBW16a, Figure 7].
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Figure 15.13: The activity diagram of the use case Identify after revision 12, shown in a variant that
includes all sub-features of IdentificationMechanism. From [SBW16a, Figure 8].

Requirements Analysis. Requirements analysis is split into two phases. To begin with,
residents’ interactions with the HAS are documented in a use case diagram. Subsequently,
one use case is representatively refined by means of an activity diagram.

After having initialized a Valkyrie project and having connected it to SuperMod version
control, the first phase is initiated based on an empty use case diagram. In consecutive
iterations, we introduce actors, components, use cases, and relationships as summarized
in Table 15.3. The table also shows that the feature model is developed simultaneously,
introducing new features on demand in order to delineate the scope of the respective changes.
Figure 15.12 depicts a variant of the final use case diagram.

During the second analysis phase, the feature IdentificationMechanism is further refined by
adding three concrete mechanisms, namely Keypad, MagneticCard, and FingerprintScanner.
Features representing these mechanisms are organized in an OR-group, meaning that at least

Table 15.4: Version history of the activity diagram for Identify. Based on [SBW16a, Table 2].

R. F. Amb. Feature Model Changes Changes to Use Case Diagram

8 HAS added XOR groups below
DoorL. and HeatingCont.

—

9 Id.Mech. — initialized diagram, added initial and
final nodes, Choose Mech., decision/
merge nodes, and flows

10 Keypad OR group with Keypad,
Mag.Card, Fp.Scanner

added action KeypadIdentification and
incoming/outgoing flow

11 M.Card — added action Mag.Card.Id. and incom-
ing/outgoing flow

12 Fp.Scan. — added action FingerprintId. and incom-
ing/outgoing flow
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Figure 15.14: The final HAS feature model after revision 12. From [SBW16a, Figure 9].

one mechanism must be chosen in a valid configuration. In case several mechanisms are
available, one of them must be chosen during identification at run-time (see below). The
available selection should be restricted by the active features; this is realized in revisions 10
until 12 shown in Table 15.4. The resulting activity diagram is depicted in Figure 15.13;
Figure 15.14 presents the feature model in its state at the end of the analysis phase.

Design. The static structure of the HAS product line is also developed in two phases.
After modeling an initial package diagram, specific packages are refined by class diagrams.

Table 15.5 indicates that the package diagram (see Figure 15.15) is developed in an

Table 15.5: Version history of the package diagram. Additional horizontal lines indicate that an
explicit check-out was necessary between the affected revisions. Based on [SBW16a,
Table 3].

R. Feature Amb. Changes to Package Diagram

13 HomeAutomationS. added package has and contained class HAS
14 Ident.Mechanism package identification, class Id.Mech., interface IMech.
15 Keypad added class Keypad
16 MagneticCard added class MagneticCard
17 FingerprintScanner added class FingerprintScanner
18 DoorLock added package doorLock and interface IDoorLock
19 Active added class ActiveLock

20 Passive added class PassiveLock
21 AlarmActivision package alarm, class AlarmAct., interface IAlarmService
22 AcousticSignal added class AcousticSignal
23 VideoSurveillance added class VideoSurveillance
24 PoliceInformation added class PoliceInformation
25 SMSToOwner added class SMSNotifier
26 HeatingControl package heating, contained interface IHeatingControl
27 Automatic added class heating::Automatic

28 Manual added class heating::Manual
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Figure 15.15: The package diagram after revision 28. The product variant shown does not in-
clude features Active and Automatic, thus not classes doorLock::ActiveLock and heat-
ing::Automatic, either. From [SBW16a, Figure 10].

Table 15.6: Revision history of the class diagram refining package identification. Based on [SBW16a,
Table 4].

R. Feature Amb. Changes to Class Diagram for package identification

29 Ident.Mech. initialized diagram, detailed class Id.Mech., interface IMech.
30 Keypad interface realization from class Keypad
31 MagneticCard interface realization from class MagneticCard
32 Fp.Scanner interface realization from class FingerprintScanner

iterative and incremental way by realizing one feature after another. Variation points are
anticipated by static modeling of appropriate design patterns, namely Strategy and Command
[Gam+95], which are thereafter refined by class diagrams. Here, we refrain from introducing
new features during the design phase.

As shown in Table 15.6, the package identification is refined by a class diagram, exem-
plifying the realization of (implicit and spontaneous) variation points during design. In
revision 29, general details are added to the class IdentificationMechanism as well as to the
interface IMechanism that realizes the command pattern. Its specific realizations are added
subsequently and scoped with the respective feature. In this case, the only necessary changes
are to make the respective command classes realize IMechanism (see Figure 15.16). Similar
refinements might have been applied to the packages doorLock, alarm, and heating.

Implementation. In the here considered model-driven product line, the structural part
of the source code can be derived from the artifacts developed in the design phase using
Valkyrie’s Java source code generator. The main class HomeAutomationSystem shall contain
the main executable as command line application. Below, we confine the presentation to the
implementation of the method identify() of class IdentificationMechanism, which implements
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Figure 15.16: The class diagram that refines package identification (revision 32), with Keypad, Mag-
neticCard, and FingerprintScanner selected. From [SBW16a, Figure 11].

the activity diagram shown in Figure 15.13 above.
Variability is achieved by making the declarations and usages of specific mechanism

classes dependent on their respective features. As indicated in Table 15.7, after the initial
code generation run in revision 33, a variant that includes all identification mechanisms
available is made available in the workspace. In revision 34, a multi-variant implementation
is provided by manual source code extensions (see Listing 15.1). We then connect the
variable constructor calls and the concrete implementation classes to their respective features
by applying the negative implementation, i.e., by removing the corresponding source code
file and the statement containing the constructor call, and by committing against the negation
of the respective feature4. In advance to performing these deletions, it is necessary to check-
out explicitly a suitable choice where the respective features are deselected.

Table 15.7: Overall commit history of the implementation phase. Based on [SBW16a, Table 5].

R. Feature Amb. Changes to IdentificationMechanism.java

33 HomeAutomationS. generated Java source code
34 Ident.Mechanism multi-variant implementation of identify() (l. 96 – 101)

35 not Fp.Scanner removed FingerprintScanner.java and line 99

36 not MagneticCard removed MagneticCard.java and line 98

37 not Keypad removed MagneticCard.java and line 97

4 Equivalently, we could have applied the positive realization and committed it against positively bound
features; however, this would have required three additional code generation runs.
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95 private void identify() {
96 List<IMechanism> mechs = new LinkedList<>();
97 mechs.add(new Keypad());
98 mechs.add(new MagneticCard());
99 mechs.add(new FingerprintScanner());

100 IMechanism mech = (...) // choose interactively
101 return mech.checkIdentification(getIdentifySignature());
102 }

Listing 15.1: Implementation of method IdentificationMechanism.identify() in revision 34.
Based on [SBW16a, Listing 1].

Responding to Customer Feedback. So far, the SPL has been developed in a phase-
structured and proactive way, following the classical development activities analysis, design,
and implementation. In advance to a later discussion of the secondary evaluation ques-
tion SQ3, we now investigate to which extent SuperMod and the underlying approach allow
to react to a new customer request that cross-cuts all three development activities. The
fictional customer feedback consists in a feature request to extend the list of identification
mechanisms available by a biometric mechanism.

In response to this feedback, we check-out the latest revision of the HAS, choosing the
customer’s product variant (which includes all sub-features of IdentificationMechanism).
Then, we realize the increment in one single iteration under the same feature ambition.

Analysis. A new feature Biometric is introduced to the OR-group below IdentificationMech-
anism (cf. Figure 15.14). The request does not affect the use cases themselves, but
the activity diagram that details the use case Identify (cf. Figure 15.13): We add a new
activity BiometricIdentification and connect it to the decision/merge node in analogy to
the existing identification actions.

Design. We define a new class Biometric as well as an outgoing realization relationship to the
interface IMechanism in the class diagram shown in Figure 15.16. This transparently
extends the package diagram’s view (cf. Figure 15.15).

Implementation. The (incremental) code generation is re-invoked, creating a new source
file Biometric.java. To the implementation of method IdentificationMechanism.identify()
(cf. Listing 15.1), we add after line 99: mechs.add(new Biometric());

Deployment. The current iteration is finalized by committing all pending changes to the
repository under revision 38. In the feature ambition, exclusively the new feature
Biometric is selected positively. Last, the same product variant as present in the
developer’s workspace is deployed to the customer using the EXPORT command.

The implications of this reactive SPLE increment are discussed in Section 15.5.3.

15.3.3 Bootstrapping SuperMod

In a third case study, SuperMod is applied to an instance of a custom metamodel, which
in turn is based on Ecore. The considered modeling language reflects an extended subset
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Figure 15.17: The SuperStrap metamodel underlying the third evaluation case.

of the conceptual framework’s core metamodel introduced in Section 9.2.1; it is capable
of describing the architecture provided by as well as the operations offered by a concrete
SuperMod repository5. The architecture in turn comprises a specific combination of pre-
defined dimensions, which can be version-related (e.g., the revision graph), product-related
(e.g., the versioned file system), hybrid (e.g., the feature model), or transparent (e.g., the
change space optimization presented in Section 9.6). Overall, the product line shall be
capable of reproducing at least the seven repository architectures presented in Section 14.3.

The SuperStrap (for SuperMod bootstrap) metamodel is depicted as Ecore class diagram
in Figure 15.17. A repository consists of an ordered set of dimensions. These are connected
by a cross-reference controlledDimensions, which indicates a versioning relationship. A set
of operations represents the commands available to the user.

For editing the singleton instance of the SuperStrap metamodel versioned by SuperMod,
a customized generated EMF tree editor is used in this experiment. For better precision, the
generated source code has been extended such that the editor relies on UUIDs.

Specific Experimentation Conditions. The focus of this experiment lies on the satisfi-
ability of the approach for domain-specific languages (SQ4), as well as for fine-grained
variability (SQ5). For the latter reason, we add an intentional obstacle, which is reflected by
the attribute architectureCode. Since this attribute is necessary for the distinction of different
repository architectures in distributed mode (cf. Section 14.5.4), its value must be unique
for every allowed repository architecture mapped by corresponding feature configurations.
Conversely, the metamodel defines this attribute as single-valued, such that alternative values
cannot be expressed in a single-version (i.e., intrinsic) model instance.

Requirements. Feature model and domain model shall be edited concurrently based on a
list of domain model artifacts to be considered in consecutive blocks of iterations:

1. The specific dimensions and their relationships.

5 A fully-fledged re-engineering of SuperMod is out of the scope of this modeling language.
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2. Pieces of optimization controlled by individual features: visibility forest and change
space (see Chapter 9); their details are beyond the scope of this modeling language.

3. Operations to be offered by concrete variants of the repository. We here confine the
list to CHECKOUT, COMMIT, PULL, PUSH, and AMEND (see Section 11.6.4).

4. Finally, the distinct values of the attribute architectureCode.

Preliminaries. In an empty Eclipse project, a new model conforming to the SuperStrap
metamodel is created, instantiating a new Repository as root object. Then, SuperMod version
control support is added based on the hybrid (non-collaborative) repository architecture.
Besides the model resource, relevant project metadata (text file .project) are added to the list
of files under version control. These initial contents are committed as revision 1.

Dimensions and Relationships. In the first phase of the case study, we introduce features
for the human-visible dimensions (file hierarchy, low-level logical dimension, feature model,
revision graph, and collaborative revision graph). As evident from the revision history
shown in Table 15.8, there is a one-to-one correspondence between features and instances
of Dimension. Furthermore, the relationships between the dimensions – represented as
instances of controlledDimension – depend on combinations of source and target feature.

Due to the mutual exclusions between features Logical and FeatureModel, as well as
RevisionGraph and Collab, it is necessary to apply the changes in three different views, such
that two explicit check-outs become necessary. In these situations, the operation Migrate is

Table 15.8: Revision history of the first phase of the bootstrapping case. Additional horizontal lines
indicate that an explicit check-out was necessary.

R. Feature Ambition Change Description

2 FileHierarchy Features SuperStrap, Dimensions, FileHierarchy; product
dimension FileHierarchy

3 Logical OR-group, feature Logical; version dimension Logical
4 Logical and FileH. link Logical → FileHierarchy (as instance of reference

controlledDimensions)
5 true feature FeatureModel (excludes Logical)

6 FeatureModel hybrid dimension FeatureModel
7 FeatureM. and FileH. FeatureModel→ FileHierarchy
8 RevisionGraph version dimension RevisionGraph
9 Rev.G. and Feat.M. RevisionGraph→ FeatureModel
10 RevisionG. and FileH. RevisionGraph→ FileHierarchy
11 true feature Collaborative (excludes RevisionGraph)

12 Collaborative version dimension Collaborative
13 Collab. and FeatureM. Collaborative→ FeatureModel
14 Collab. and FileH. Collaborative→ FileHierarchy
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(a) feature model

(b) workspace domain model, revision 5

(c) workspace domain model, revision 11

(d) workspace domain model, revision 14

Figure 15.18: Workspace artifacts belonging to the first phase of the bootstrapping case.

not applicable since the respective bindings added in the ambition are conflicting with the
subsequently intended choice.

Single-version views on different revisions of the domain model, as well as the final
revision of the feature model, are provided in Figure 15.18.

Optimization. The optimizing features suggested by the requirements list are reflected in
the domain model in two different ways. First, the visibility forest is covered by an instance
of a corresponding class attached to the repository (see revision 15 in Table 15.9); this
modification involves a successful interactive migration step. Second, the change space is
represented in the solution space as an additional, transparent dimension that controls all
other version dimensions, except for the low-level logical dimension, to which an excludes
relationship is defined in the feature model.

The corresponding controlledDimensions links are added under suitable ambitions; this
requires to use two different choices in total, such that one additional check-out operation
comes into play. We begin in a collaborative variant – this feature is still present in the
workspace after revision 14 – and switch to a single-user variant (here, feature VisibilityForest

Table 15.9: Revision history for the second phase of the bootstrapping case.

R. Feature Ambition Change Description

15 VisibilityForest Features Optimization, VisibilityForest; object Visibili-
tyForest

16 ChangeSpace Feature ChangeSpace (excludes Logical); transparent
dimension ChangeSpace

17 ChangeS. and FeatureM. link ChangeSpace→ FeatureModel
18 ChangeS. and Collab. link ChangeSpace→ Collaborative

19 ChangeS. and RevisionG. link ChangeSpace→ RevisionGraph
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(a) feature model

(b) workspace domain model, revision 18

(c) workspace domain model, revision 19

Figure 15.19: Workspace artifacts for the second phase of the bootstrapping case.

Table 15.10: Revision history for phase three of the bootstrapping case.

R. Feature Ambition Change Description

20 SuperStrap Operations CheckOut, Commit
21 Collaborative Operations Pull, Push

22 ChangeSpace and FeatureModel Operation Amend

is disabled randomly) in advance to realizing revision 19. Figure 15.19 presents relevant
cut-outs of the artifacts modified in the local workspace.

Operations. When compared to the two previous phases, the changes connected to the
operations offered by the repository are less invasive. Furthermore, the operations are not
explicitly modeled as features.

As indicated by Table 15.10, CHECKOUT and COMMIT are offered by all repository
architectures available, whereas PULL and PUSH require the existence of a collaborative
dimension. Last, the operation AMEND is exclusive for repository architectures that contain
both a change space and a feature model as dimensions.

In this specific version history, it is necessary to explicitly check-out by a choice where
ChangeSpace is active, since this feature is positively bound in the ambition of revision 22.

Figure 15.20 depicts a product variant with all operations enabled.

Architecture Code. In spite of its rather simple representation in the solution space
– the value of a string-valued attribute – the architecture code appears to be the most
complex detail for multi-variant realization. As listed in the requirements, the value of
architectureCode is supposed to match the most adequate identifier of the seven SuperMod
architectures presented in Section 14.3.

Since the different values of this attribute are mutually exclusive in the model instance
presented in the workspace, seven different ambitions are necessary to match this require-
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Figure 15.20: Workspace domain model, revision 22, of the bootstrapping case.

ment. These iterations can be planned in a rather static way; therefore, we use SuperMod’s
Scope and Check-Out command here (see Section 14.2.5), beginning with revision 24.
Table 15.11 summarizes the revision history; six explicit check-outs are applied between the
corresponding iterations, provided that we can stay in the view obtained after revision 22
before realizing and committing revision 23.

In the check-out performed in advance to the final revision 29, we are faced with a
product conflict: the mutual order of the dimensions RevisionGraph and Logical has not
been defined unambiguously during the first phase of the case study (cf. Table 15.8), as the
orthogonal architecture does not assume any relationship between these dimensions. The
default resolution strategy (which gives priority to the least recent value) resolves the order
conflict by placing the logical dimension before the revision graph. Albeit, version selection
is performed in the historical dimension first, thus we correct this order. Figure 15.21 shows
both the revised workspace contents and the ambition used for the final commit.

Notice that the feature model allows for variants that do not represent one of the supported
SuperMod repository architectures. For instance, the low-level logical dimension might be
combined with a collaborative revision graph. In this case, the corresponding variant of the
domain model would not have any value for its architectureCode defined. This could be
solved either by defining new values for this attribute and committing them under suitable
ambitions, or by introducing new feature model constraints disallowing combinations not
supported by the actual SuperMod implementation.

Table 15.11: Architecture codes specified during phase four of the bootstrapping case.

R. Feature Ambition Arch. Code

23 FileH. and FeatureModel and Collaborative collabhybrid

24 FileH. and FeatureModel and RevisionGraph hybrid

25 FileH. and FeatureM. and not Collab. and not Rev.G. feature

26 FileH. and not FeatureModel and RevisionGraph historical

27 FileH. and not FeatureModel and Collaborative collaborative

28 FileH. and Logical and not Collab. and not Rev.G. logical

29 FileH. and Logical and not Collab. and Rev.G. orthogonal
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(a) revised workspace domain model (b) feature ambition

Figure 15.21: Workspace contents and feature ambition for revision 29.

15.4 Metrics and Results for Primary Questions

In the following, results extracted from the case studies are presented in an aggregated
form. The presented data have two origins. First, the contents of the repository – which is
transparent to the evaluation subjects who conducted the case studies – have been analyzed
in their state at the end of the version history. Second, throughout the entire experimentation,
user actions have been logged manually in order to quantify properties referring to the DFE
model.

15.4.1 Synoptic Data

In advance to a thorough discussion of the actual metrics and results, we present neutral
key figures in Table 15.12. These figures have a synoptic purpose rather than intending
to address the primary research questions. For each of the three case studies, the number
of (private) revisions and the number of features in the final feature model have been
captured. Furthermore, the number of valid feature configurations gives insights into the
customizability of the product lines. For quantifying the size of the product space, we use
four disjoint figures: the number of versioned files, the numbers of model objects (from
the abstract syntax of all versioned model resources) and of concrete syntax elements (i.e.,
model objects located in GMF diagram resources, or visible and editable tree elements and

Table 15.12: Key figures of the three case studies.

Graph HAS SuperStrap

Revisions 23 38 29
Features 11 16 10

Valid Feature Configurations 56 448 28
Versioned Files 4 24 2
Model Objects 89 197 13

Concrete Syntax Elements 23 97 29
Lines of Text 21 374 11
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Feature Ambition
Interactive Migrate

1.1 3.1 5.1 6.12.1 4.1

Product Conflicts
Check-out

Modify FM

Figure 15.22: History of interactive commands for the Graph case study.

properties in the case of the SuperStrap editor), and the lines of text (including both project
metadata and versioned source code files).

The manually recorded user interactions serve as a second source of data. The logs
obtained for the individual case studies are presented in a condensed form in Figures 15.22,
15.23, and 15.24. The user actions performed (represented by black rectangles) are catego-
rized into five different event types.

1. The operation CHECKOUT is optional in the DFE model; it is invoked either explicitly
in case the presented workspace view does not match the evaluation subject’s intent,
or automatically after a PULL in collaborative mode. In sum, 21 check-outs have been
made in all case studies.

2. Product conflicts are presented as soon as the user defines a choice that produces
them. In three iterations, automatic repair actions are applied and conflict markers
are presented to the user. In two of them, the subject revises the default resolution
actions.

3. In 20 iterations overall, the feature model is modified by the subject. All modifications
consist in the definition of at least one new feature. Furthermore, feature groups or
requires/excludes constraints are defined in 9 distinct iterations.

4. Upon COMMIT, SuperMod requests a feature ambition from the user in case the
feature model is not empty and changes to the domain model have been applied.
When referring to the case studies, for six commit events, no feature ambition had to
be defined.

5. The operation MIGRATE is a key element of the DFE model. In general, migration
comes into play as soon as new features are added (here, in 20 iterations; see MOD-

1 33298 13

Feature Ambition
Interactive Migrate

Product Conflicts
Check-out

Modify FM

3820

Figure 15.23: Command History of the HAS case study.
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1 15 2320

Feature Ambition
Interactive Migrate

Product Conflicts
Check-out

Modify FM

296 12

Figure 15.24: Command History of the SuperStrap case study.

IFY). From the action log, we can infer that a total of nine migrations required user
interaction.

The data aggregated in Table 15.12 and in Figures 15.22 until 15.24 are further decom-
posed and refined in the subsequent subsections in order to respond to the primary evaluation
questions using adequate metrics as introduced informally in Section 15.2.

15.4.2 Reduced Product Editing Complexity over Unfiltered Editing

The first question, PQ1, refers to the added value of the filtered editing approach over
unfiltered approaches in terms of product editing. As a concrete representative of unfiltered
approaches, we assume (not without the loss of generality) an explicitly mapping-based
annotative tool (see Section 5.4.2) for comparison. Furthermore, we approximate the number
of elements visible and editable by an unfiltered tool as the number of elements available in
the transparent repository of our filtered approach.

As a first metric, we define the number of modified elements of a specific editing model
iteration as the number of elements added, deleted, or modified therein. According to the
mechanisms explained in Section 11.3.3, the visibility of each modified element, i.e., each
element contained in the write set Emod, is modified during commit. For a fair comparison,
we confine the write set to the following elements:

– text files or model files;

– graphically or textually visible domain elements (i.e., nodes, connections, or lines of text);

– objects parts of the abstract syntax persisted in addition to graphical diagram resources.
In particular, in case a value of a structural feature is added, updated, or deleted, the
corresponding object is considered as modified.

Furthermore, we define the workspace/repository ratio (W/R ratio) rwr of an editing
model iteration as the quotient obtained by the number of graphical or textual elements
visible in the workspace (i.e., the cardinality of the workspace element set Ew, which
does neither include files nor concrete syntax objects), being divided by the number of
corresponding repository elements (cardinality of Er):

rwr =
|Ew|
|Er|

(15.1)
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Figure 15.25: Numbers of modified elements and W/R ratios (Graph study).

For a fair comparison, both element sets are confined to the model resource(s) and/or text
file(s) in which modifications have been applied. Furthermore, in collaborative mode, only
those repository elements that are available in the active local repository copy are counted.

In general, the W/R ratio is the complement to the degree of filtering rdf present in a
specific iteration:

rdf = 1− rwr (15.2)

When applying unfiltered editing with a mapping-based annotative tool, the W/R ratio is
constantly 1. This is due to the fact that all elements of the product space are visible and
potentially editable. In filtered editing, however, those elements that do not pass the choice
are filtered out from the workspace. Furthermore, default conflict resolution actions may
automatically remove (but never automatically add) new elements. Therefore, in the here
applied filtered editing model, we generally obtain a W/R ratio between (and including)
0 and 1, where low values indicate a high degree of filtering, from which in turn a high
reduction of cognitive complexity of product space editing may be deduced.
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Figure 15.26: Numbers of modified elements and W/R ratios (Home Automation study).
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Figure 15.27: Numbers of modified elements and W/R ratios (SuperStrap study).

The histograms and quotients shown in Figures 15.25, 15.26, and 15.27 present the
numbers of modified elements |Emod| and the W/R ratios rwr obtained for the Graph, HAS,
and SuperStrap studies, respectively. Table 15.13 contains aggregate results. We interpret
them separately, beginning with the case study having the highest W/R ratio.

HAS. The average number of modified elements of 7.47 confirms that the commits were
rather coarse-grained. Moreover, the average W/R ratio of 0.98 indicates almost no
reduction of product space complexity when compared to unfiltered editing. This is
due to two properties of the HAS study: First, the case study exposes a comparably
low amount of alternative variability, which is reflected by only two XOR groups
from which a mutual exclusion of domain model elements is derived. Second, the
straightforward development strategy followed in the analysis phase was to introduce
a new feature and to immediately realize it and therefore bind it positively in the
ambition. The transparent choice migration performed after each commit encouraged
the evaluation subject to stay in an almost-superimposition view. Taken together,
filtered editing was not noticeably exploited here, but conversely, this functionality
was not necessary due to the comparably few occurrences of alternative variation.

Graph. When compared to the HAS study, the commits were more fine-grained (2.17 ele-
ments modified in average). The minimum and average W/R ratios of 0.79 and 0.918
do not indicate a high impact of filtered editing at product level either. Nevertheless,
we can observe an increase in the number of graphical elements filtered out with
growing size of the revision history and occurrences of feature interaction, e.g., when
considering the constructor parameters added in public revision 5.

SuperStrap. In this case study, the added value of filtered editing for MDSPLE becomes
most apparent. Only in the first five revisions, we stayed in a view equivalent to the
superimposition. Due to the high number of feature dependencies and occurrences
of feature interaction, the W/R ratio becomes as low as 0.26 in revision 28; the
average ratio is 0.643. Conversely, the high degree of alternative variability forced
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Table 15.13: Aggregated data connected to the number of modified elements and workspace/reposi-
tory ratios of all case studies.

Graph HAS SuperStrap

Maximum |Emod| 8 34 4
Average |Emod| 2.17 7.47 1.41

Total |Emod| 50 284 41

Maximum |Ew| 17 164 17
Average |Ew| 8.61 28.32 7.45

Maximum |Er| 18 169 28
Average |Er| 9.65 28.87 13.14

Minimum rwr 0.79 0.91 0.26
Average rwr 0.918 0.980 0.643

the evaluation subjects into comparably fine-grained commits. A maximum of four
elements, in average 1.41 per iteration, were modified.

Taken together, the degree of filtering observed in the case studies is measurable but not
significant. We expect, but cannot experimentally confirm, that the necessity and benefits of
filtered editing will increase, and therefore, the W/R ratios will decrease, when transitioning
into the maintenance phase of larger product lines.

15.4.3 Reduced Version Management Effort over Unfiltered Editing

PQ2 refers to the added value over approaches relying on unfiltered editing in terms of
reduced version management effort. Like above, we assume an explicitly mapping-based
annotative approach for comparison. Furthermore, we proceed under the premise that
an SPL developer who uses such a hypothetical approach would create exactly the same
feature annotations as transparently produced by SuperMod; in particular, we allege that the
hypothetical approach supports hierarchical visibilities as defined in Section 10.2.2.

To be able to estimate the user effort implied by both approaches, we have to put in
relation the events of user interaction required to establish the mapping (i.e., traceability
links). In the mapping-based approach, we assume that all annotations are created or updated
manually by text input. As an initial approximation, we define that the visibility complexity
cv, i.e., the effort for creating one text annotation is proportional to the number of elements
found in the abstract syntax tree of the corresponding expression Ξ:

cv(Ξ) =


1 if Ξ is a reference to a feature

1 + cv(ΞN ) if Ξ is the negation of an expression ΞN
1 + cv(ΞL) + cv(ΞR) if Ξ is a logical combination of ΞL and ΞR

(15.3)

In SuperMod, the definition of an ambition – which automates the creation of feature
annotations – requires a certain number of clicks in the feature ambition dialog. Taking
into account that the creation of negative feature bindings requires two clicks onto the
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Figure 15.28: Visibility and ambition complexity measured for the Graph case study.

corresponding feature, we approximate the ambition complexity as the minimum number of
clicks necessary for the creation of a feature ambition af as follows:

ca(af ) =
∑
oi∈Of

cb(oi, af ); cb(oi, af ) =


1 if (oi, true) ∈ af
2 if (oi, false) ∈ af
0 otherwise

(15.4)

The histograms shown in Figures 15.28, 15.29, and 15.30 present the ambition complexity
values (and the corresponding visibility complexity values) connected to the feature ambition
af (and the visibility expression âf derived from it) of every commit performed in the three
case studies. In the Graph and in the HAS study, the majority of ambitions have a complexity
of 1, which is connected to the fact that these experiments were organized in a rather feature-
driven way. In contrast, the SuperStrap case study contains many domain model elements
connected to a combination of (positively or negatively selected) features; this is reflected
in a much higher average ambition complexity, but also in a higher complexity of the
derived visibility expressions. In particular, beginning with the changes related to the value
of the attribute architectureCode in revisions 23f., defining a suitable ambition does not
only require a certain number of clicks but also additional cognitive capacities. The values
presented in the upper two compartments of Table 15.14 aggregate the data visualized in
Figure 15.28 until 15.30.

The aggregate results suggest – not surprisingly – that the complexity of a feature ambition
is proportional to the complexity of a corresponding visibility derived from it. Nevertheless,
the mechanisms of visibility update of the compared approaches differ with respect to one
decisive property: Ambition specification is required from the user once per commit, while
manual visibility management in unfiltered editing would require to update the visibility of
each modified element. Therefore, when computing the ambition/visibility quotient of an
editing model iteration, the number of modified elements |Emod| (see above) must be taken
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Figure 15.29: Visibility and ambition complexity of the Home Automation study.
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Figure 15.30: Visibility and ambition complexity of the SuperStrap case study.

into account in addition:

rav =
ca(af )

cv(âf ) · |Emod|
(15.5)

With this definition, we make a rather pessimistic assumption for unfiltered editing, namely
that the user repeats the same text input for every updated visibility. A less expensive
alternative would be to copy the feature expression corresponding to the ambition to the
hypothetical clipboard and to paste it into the visibility of all |Emod| modified elements.
Assuming that paste operations imply a complexity of 1, we may define the alternative
ambition/visibility quotient as:

r′av =
ca(af )

cv(âf ) + |Emod|
(15.6)

Some of the SPLE approaches categorized into temporarily filtered editing (see Section 9.8)
offer a change recording mechanism that actually automates this copy-and-paste strategy.

The results of applying both the default and the alternative metric to the data obtained
from the case studies are presented in the bottom compartment of Table 15.14.

In total, the low values for the rav coefficient reflect significant savings of user effort.
The complexity of filtered editing lies in between 13% and 68% of unfiltered editing when

Table 15.14: Aggregate complexity values and ambition/visibility quotients.

Graph HAS SuperStrap

Maximum cv(âf ) 3 2 9
Average cv(âf ) 1.04 1.08 3.00

Total cv(âf ) 24 41 87

Maximum ca(af ) 2 2 6
Average ca(af ) 1.00 1.08 2.27

Total ca(af ) 23 41 66

Average rav 0.44 0.13 0.68
Average r′av 0.31 0.13 0.53
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applying the first quotient, and between 13% and 53% for the second. The figures also
suggest that filtered editing outperforms unfiltered editing especially in the HAS case, but
the differences are less in the Graph and in the SuperStrap case.

15.4.4 Impact of the Dynamic Filtered Editing Model

We transition to PQ3, which addresses the unobtrusiveness of dynamic filtered editing,
compared to the (state-of-the-art) static approach, claimed by goal G2. First, emphasis is put
on the possibility to introduce features concurrently with their corresponding domain model
elements by allowing for feature model editing during MODIFY. Implicitly, we assume
alternating domain and feature model editing (see Section 11.6) for the SFE counterpart.

We also quantify the situations in which a second property of the DFE model was
exploited: the operation MIGRATE, which promises to reduce the number of explicit
CHECKOUT operations necessary, but which may also introduce additional events of user
interaction to the DFE model. 6

From the event log manually recorded during the experimentation, we can reproduce the
following metrics that are supposed to quantify the impact of the DFE model:

New Features Bound. The number of iterations in which at least one feature was intro-
duced and (positively or negatively) bound in the ambition used for the corresponding
commit, divided by the number of commits performed in the case study.

rnfb =
#iterations | ∃fi : fi ∈ Eins ∧ (fi, si) ∈ af

#iterations
, si ∈ {true, false} (15.7)

Explicit Check-Outs. The ratio of iterations started with an explicit CHECKOUT operation,
indicating that the choice used for the previous iteration was not suitable (after having
applied the MIGRATE operation). Updates enforced after a PULL are not considered
as explicit check-outs.

rech =
#iterations | cchi 6= cmii−1

#iterations
, i is the revision number (15.8)

Interactive Migration. The number of iterations in which the MIGRATE operation could
not be executed in a deterministic way (such that user interaction became necessary),
divided by the overall number of migrations executed.

rimi =
#iterations with interactive migration

#iterations with migration
(15.9)

Unsatisfactory Migration. The percentage of iterations in which an interactive MIGRATE

was enforced, but due to consistency constraints, the dialog did not allow to define a

6 The here presented data emerge from metrics similar to those employed in a preliminary evaluation of
the DFE model in [SW17b, Section 8]. Albeit, the reported values differ for two reasons. First, different
experiments are underlying the mentioned Graph case studies. Second, the terms migration interaction and
canceled/unsatisfactory migration have different interpretations. The bootstrapping case study has not been
considered in [SW17b].
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choice that would have matched the subject’s intents for the subsequent iteration.

rumi =
#iterations with interactive migration | cmii 6= cchi+1

#iterations with interactive migration
(15.10)

In Table 15.15, the results of applying these metrics to the three case studies are listed.
From those, we can draw several conclusions about the DFE model as applied in the case
studies.

– In 19% of all commits concluded by an interactive feature ambition specification, the user
selects a feature that has been introduced in the same iteration. The same ratio of additional
iterations would be required in a comparative SFE model, since the definition of a new
feature and its realization in the domain model must be separated. We conclude that DFE
allows to develop the same product line in a shorter revision history than SFE.

– The deduced average ratio of 23% of explicit check-outs confirms the hypothesis that the
DFE model requires less user interaction than the SFE model, where a check-out is needed
in advance to 100% of the iterations. Even when taking into consideration the additional
effort caused by the new operation MIGRATE (here, 9

84 = 11%), the required user effort for
version definition is less than a third, compared to SFE.

The bootstrapping case study plays a special role: Explicit check-outs were necessary in
advance to the final six iterations. As described in Section 15.3.3, these were executed in
SuperMod’s lightweight static filtered editing mode; for these individual cases, the DFE
model would not expose a significant benefit.

– One potential disadvantage of the DFE model is the additional user interactions implied
by the operation MIGRATE. Yet, based on the data obtained from the case studies, we
can observe only a slight increase. On the one hand, only about the half of all migrations
performed basically required user interaction. On the other hand, when examining in greater
detail the user effort effectively required in migration dialogs, the overall result of all case
studies is 19 clicks. The histogram presented in Figure 15.31 breaks down the number of
clicks (approximated as migration effort) performed in all cases of migration.

Table 15.15: Aggregated values quantifying the impact of the DFE model.

Graph HAS SuperStrap Total

rnfb
3

20
= 15%

8

38
= 21%

5

26
= 19%

16

84
= 19%

rech
5

23
= 22%

6

38
= 16%

10

29
= 34%

21

90
= 23%

rimi
3

5
= 60%

3

8
= 38%

3

6
= 50%

9

20
= 45%

rumi
1

3
= 33%

0

3
= 0%

2

3
= 66%

3

9
= 33%
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Figure 15.31: User effort required for the operation MIGRATE.

– Also, migration might be counterintuitive in some cases. When the user already knows at
commit time that he/she will need a different choice for the subsequently planned change, the
migration dialog may constitute a superfluous interactive event—he/she must hit the cancel
button (or complete the dialog randomly) and invoke the check-out operation manually.
When considering the case studies in total, there were only three such events (likeliness
3
90 = 3.3%).

For the presented case studies, we may deduce that the DFE model implies considerably
more savings in terms of user interaction events than it causes. In 60 of a total of 90
iterations, no user interaction is required at all. Moreover, in 21 iterations, the user effort
is as high as in SFE. Last, only 9 additional user interactions are required. Altogether, this
suggests that the dynamic filtered editing model behaves significantly less obtrusively than
SFE. Due to the heterogeneity of the applied metrics, we cannot indicate a final percentage
for quantifying the reduced obtrusiveness.

15.4.5 Performance of A-Posteriori Product-Based Analysis

The fourth primary question, PQ4, refers to the performance of the here presented a-
posteriori product-based well-formedness analysis approach. In particular, the precision of
the default resolution strategy as well as the number of variants affected by the analysis and
repair, compared to purely product-based analysis, is of interest.

It has not been a goal of the case studies to provoke an exhaustive sample of product con-
flicts intentionally; therefore, we can only observe a total of three product well-formedness
violations reported in total (see Figures 15.22 until 15.24). To increase the data basis, we take
in addition the conflict resolution example presented in Section 13.4.4 under consideration.
This contains three extra product conflicts, which are reported and resolved in one single
iteration.

For quantifying the performance of the considered analysis strategy in the specific case
studies and examples presented, we collected additional data by analyzing the recorded
action logs; see upper part of Table 15.16. Two metrics applied below demand for further
explanation:

Accuracy of Default Resolution. The ratio of reported conflicts (within one editing model
iteration) for which the automatically applied resolution action (depending on the
previously selected default resolution strategy) matches the subject’s expectations,
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Table 15.16: Data connected to the occurrences of product well-formedness conflicts. (o.c. is short
for order conflict.)

Graph (5.7) Graph (6.4) Graph (ext.) SuperStrap (29)

Conflicts 1 (o.c.) 1 (o.c.) 3 (8) 1 (o.c.)
Variants Affected 4 8 1 5

Variants Available 16 56 8 28

rdra
1

1
= 100%

0

1
= 0%

1

3
= 33%

0

1
= 0%

rrs
4

16
= 25%

8

56
= 14%

1

8
= 13%

5

28
= 18%

such that no manual revision is required.

rdra =
#conflicts−#manually revised conflicts

#conflicts
(15.11)

Resolution Scope. The maximum number of variants potentially affected by an individual
conflict resolution action. This quantity is obtained by dividing the number of variants
described by the feature ambition defined at commit through the total number of
variants available at this stage of the case study. Based on this ratio, the logical scope
of each (automatically applied and possibly manually revised) resolution action can
be quantified. 7

rrs =
#variants affected
#variants available

(15.12)

The lower part of Table 15.16 lists values for the two metrics for each revision in which
product well-formedness violations occurred. Column Graph (ext.) refers to the additional
example from Section 13.4.4. From the presented values, we may conclude:

– Concerning the accuracy of default resolution, the presented values do not allow for a
general statement; after all, different resolution strategies were applied in the case studies.
In a total of four out of six cases, the subjects had to manually revert the resolution actions
in the specific cases considered here.

– The resolution scope values can be interpreted as follows: In one out of four cases, the
corrections were local, e.g., confined to the single variant presented in the workspace. In the
remaining three cases, a considerable subset of the available variants was repaired indirectly
by performing conflict resolution actions in a single-variant view. Altogether, the repair

7 Due to its filtered nature, the product validation approach may guarantee neither that the same conflict would
occur in all variants included in the ambition, nor that the conflict resolution actions lead to a syntactically
correct result in all affected variants. The only statement that can be made is: If the same conflict (with the same
parameters) occurs in another variant included in the ambition, the performed resolution action will be applied
in the same way unless it is reverted by another conflict resolution decision.
8 order conflict, single-valued feature value conflict, (feature) display name conflict
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actions applied transparently in the repository have the qualities of sample-based analysis,
although they are actually applied in a single-version context, i.e., in a product-based way.

It remains to be mentioned that one of the conflicts contained in the data set constitutes a
special case: the feature display name conflict in Graph (ext.) refers to the feature model
rather than to the domain model; it is therefore independent from the feature ambition.
Accordingly, for this specific conflict, we may assume that all 8 variants are affected,
resulting in an effective resolution scope of 100%.

15.4.6 Threats to Validity

The properties concluded from the results presented here must be understood with the
following potential restrictions towards generality and validity in mind:

– The performed case studies were of academic scale and synthetic. Therefore, the numerical
values presented in this section cannot serve as expectation frame for real-world applications.
Furthermore, the case studies have dealt with the software development activities analysis,
design, and (to a limited extent) implementation. A transfer of the positive evaluation results
to the feasibility of the approach with testing and maintenance is disallowed.

– In the Graph and in the SuperStrap case, we performed the experimentation based on a
fictional requirements list, where the product line was planned in advance in a coarse-
grained way. Furthermore, in the Graph case, the expected result (also in the product
space) was known to the evaluation subject. This is in contrast to realistic SPL engineering
problems, where the requirements must be acquired manually and where the expected result
is not known. To compensate for this, intentional obstacles have been scattered over the
requirements lists, but it is questionable that they have the quality of real-world obstacles
such as unclear requirements, or unforeseen feature interaction.

– Most of the analyses referring to the editing model rely on a manual log of user interactions.
In general, when conducting the case studies, the evaluation subjects attempted to organize
the subsequent iterations in such a way that as few revisions as possible have to be performed.
Nevertheless, the revision histories also contain superfluous revisions, which could have
been avoided by more thorough planning in advance. For instance, revision 3.1 of the Graph
study and revision 4 of the HAS study could have been eliminated. We can neither assume
that real-world users would stick to the same strategy (rather than organizing the history
into more revisions), nor that more than the here reported superfluous revisions would be
produced by less experienced users. Therefore, all reported quantities that emerge from the
number of revisions are potentially affected by a bias.

– In Section 15.4.3, we assumed a hypothetical explicitly mapping-based approach as “gold
standard”; compared to this, we have observed that the indirect specification of version
information via ambitions requires a lower user effort than manual editing of presence
conditions. The underlying assumption might be problematic inasmuch as we have defined
two different metrics for the complexity of visibilities and ambitions, respectively. These
metrics cannot be compared without bias; e.g., the length of feature names is ignored.

– The number of user interactions need not necessarily be proportional to the subjectively
observed level of obtrusiveness of user interactions of both filtered editing models compared
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in Section 15.4.4. Several factors such as the point in time when the dialogs were shown or
the duration of the interaction have not been considered.

– For quantifying the manual effort for ambition specification as well as for interactive
migration, we used the minimum number of clicks necessary to complete the presented
feature configuration as metric. These do not necessarily reflect the actual number of clicks
applied.

– Concerning the performance of a-posteriori product-based well-formedness analysis pre-
sented in Section 15.4.5, only a small subset of conflicts (belonging to four out of 16 conflict
types described in Section 13.3) were observed in the case studies. To obtain reliable results
for the performance of default resolution, a larger case study with an exhaustive list of
conflicts would be required. Nevertheless, the reported values for the resolution scope are
independent of the concrete conflict type.

15.5 Qualitative Discussion of Secondary Questions

From the conducted case studies, we can also draw several conclusions that cannot be directly
expressed by numerical values obtained from metrics. The corresponding observations,
motivated by the secondary evaluation questions SQ1 until SQ5 at the beginning, are
discussed in a qualitative way below.

15.5.1 Properties of Distributed Collaborative Versioning

The distributed multi-user versioning model, realized by explicit synchronization events
triggered by PULL and PUSH, was applied in the Graph case study as suggested by SQ1.

In this case, the orchestration of changes was almost unproblematic since the concurrently
developed modifications addressed disjoint features. We expect the number of reported
product conflicts to grow rapidly as soon as the same feature (or same combination thereof)
is addressed in ambitions of concurrent private transactions.

Furthermore, the explicit synchronization strategy requires discipline to pull frequently.
Otherwise, synchronization problems are delayed until push, where the pull operation would
be enforced (see public revisions 2 and 6 in the case study).

Supported by the product-based analysis and repair approach, resolving multi-variant
merge conflicts is as easy or as difficult as in single-system development. It may, however,
turn out to be a problem that the resolution of conflicts not affecting the workspace view is
delayed until an ill-formed product variant is checked-out. In this specific case study, we
have not observed any “overlooked” product conflict caused by multi-user operation.

15.5.2 Suitability for Heterogeneous Projects with Generated Code

SuperMod and its underlying conceptual framework primarily target model-driven projects.
The HAS case study has successfully demonstrated that SuperMod is capable of versioning
realistic model-driven product lines, which consist of both models and source code, the
former of which are connected by cross-resource links (see SQ2).
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Albeit, the HAS case study has also demonstrated that the combination of filtered SPLE
and model transformations (see Section 3.7) – here, generation of Java source code – causes
a new type of problem, which we here denote as the filter/transform dilemma [SBW16b]: as
soon as a model transformation is invoked, all (newly) produced elements obtain the same
visibility (through the ambition), although the corresponding elements in the source model
may carry different (and more adequate) visibilities.

In the HAS case, the initial code generation step was invoked from a variant that almost
corresponds to the multi-variant class diagram (except for the realization of the features
of a XOR group, i.e., Active/Passive and Automatic/Manual; here, one feature was chosen
randomly for each group). We were able to derive a large portion of the corresponding
multi-variant source code, but all generated files (e.g., the classes reflecting more specific
features, such as PassiveLock or AcousticSignal) obtained the same visibility: r33 ∧ fHAS .

To overcome the problem of incorrect visibilities, beginning with iteration 34, we removed
those parts of the generated code that are specific to a feature, and committed the change
against an ambition consisting in a negative reference to the feature. Corresponding actions
would be necessary for the implementation of all further features. An alternative to this
“double negation” strategy would be to exploit incremental code generation by activating
one feature after another, re-generating code, and committing against an ambition where
the feature is positively selected. This, however, would require many additional explicit
check-outs.

We cannot take this as a general solution. In contrast, multi-variant model transformations
(MVMT) [SBW16b] might address the problem correctly and reliably. In Section 16.3.3,
we sketch current obstacles to the application of MVMT in the SuperMod context.

15.5.3 Feasibility of Reactive SPLE

In SQ3, the feasibility of the conceptual approach underlying SuperMod with reactive
adoption paths to SPLE has been issued. The larger part of the HAS study, namely revisions
1 until 37, have been developed in a proactive style by carefully selecting the features during
domain analysis, and further refining them during design and implementation. For the
technical realization, fine-grained commits have been employed. Revision 38 reflects a
fictional customer request to extend the scope of the product line by a new feature, whose
analysis, design, and implementation are committed in one iteration reactively.

Figure 15.32 aligns the specific process phases of the HAS study with features, making
obvious that the principle underlying SuperMod’s editing model, namely the feature-by-
feature development controlled by feature ambition, is independent of the (proactive versus
reactive) SPLE style.

The case study has demonstrated that our approach is compatible with both a proactive
and a reactive adoption path to SPLE, allowing for both phase-structured and feature-driven
domain engineering processes—this distinction is further generalized in Section 16.3.2.
Revision 38 has also demonstrated that SuperMod allows to overcome the duplicate main-
tenance problem (see Section 7.1.6): actually, the request is handled in a representative
product variant, but through commit, the changes are automatically propagated to all relevant
variants.
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Figure 15.32: Transitioning from proactive to reactive SPLE in the HAS study. Based on [SBW16a,
Figure 12].

15.5.4 Compatibility with Domain-Specific Modeling Languages

In two out of three case studies, we have shown that the approach is feasible with the general
purpose modeling language UML. Both the Graph and the HAS case include a UML class
diagram; in the HAS study, in addition, a package diagram, a use case diagram, and an
activity diagram were managed.

Being based on EMF’s reflective metadata mechanism, SuperMod provides support for
arbitrary Ecore-compliant modeling languages (including Ecore itself) and is therefore suit-
able for domain-specific modeling languages (DSMLs). Guided by SQ4, in the SuperStrap
case study, an instance of a user-defined metamodel was versioned successfully.

Concerning the support for different types of concrete syntax, we have learned that the
approach supports both EMF tree syntax and GMF-based graphical syntax out of the box. In
the latter case, diagrams are technically interpreted as regular model instances. In the case
studies, we have maintained discipline in not connecting layout-related changes to specific
logical ambitions; however, in general, we cannot exclude the possibility of pseudo conflicts
concerning, e.g., absolute positioning of elements on the canvas.

Especially in the HAS study, text-based resources – here, Java source code – were
managed in a line-oriented way based on SuperMod’s extrinsic text metamodel. In general,
line-oriented versioning can also be transferred to textual DSMLs. When using Xtext-based
languages, however, the contents are interpreted as models (see Section 3.6). Therefore, it is
the abstract syntax tree that would be versioned by SuperMod extrinsically in the repository.
This was not practically applied by any of the case studies.
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15.5.5 Impact of Fine-Grained Product Space Organization

The last of the secondary questions, SQ5, refers to the properties of the fine-grained
versioning strategy followed by the conceptual framework. The case study to answer this
question is the bootstrapping experiment described in Section 15.3.3, particularly the last
phase, when seven disjoint values for the single-valued attribute architectureCode have been
defined, each under an individual feature ambition.

The fact that SuperMod allows to correctly map the values to the intended logical visibility
demonstrates the advantage of two design decisions applied, namely hierarchical product
space organization (see D18 on page 139) and extrinsic product space representation in the
repository (D6.1, page 136). Taken together, they enable the existence of multiple alternative
values for the attribute architectureCode. The requirement that the values must be disjoint is
in addition fulfilled by product validation (see revision 29).

Taken together, fine-grained product space organization allows for unconstrained vari-
ability, which has been repeatedly claimed as one of the greatest advantages of the fully
filtered editing model over unfiltered annotative SPLE approaches. Due to the distinction
between extrinsic (repository-internal) and intrinsic (workspace-internal) representation, the
compatibility of product variants with existing editing tools is not limited.

15.6 Summary

We have applied the tool SuperMod (see Chapter 14) to three different case studies in order
to obtain insights about the properties of the tool itself and of the underlying conceptual
framework contributed in Part IV.

The considered case studies include an extended version of the running example of
a Graph Library; its product space is represented as a UML class diagram, which is
collaboratively developed by two fictional users, Alice and Bob. In the second case study,
a product line for Home Automation Systems (HAS), four different UML diagram types
came into consideration; furthermore, we examined the management of the Java source code
generated from the static model as well as the handling of a customer request. Last, in a
bootstrapping case study, we defined a domain-specific modeling language (SuperStrap), an
instance of which was versioned by SuperMod; when compared to the previous two cases,
this study exposes a finer object granularity with respect to the versioned model details.

We analyzed the final repository contents and a manually recorded user action log by the
application of several metrics. The positive answers to the primary research questions asked
beforehand confirm beneficial properties of the presented approach:

PQ1. When compared to unfiltered editing, the here applied filtered editing approach
slightly reduces the complexity of product editing in the workspace. The desired and
actually applied degree of filtering depends on the modeling language as well as on
the amount of alternative variation in the product space.

PQ2. The presented filtered editing model requires only a small proportion of the user
effort for version management, when compared to unfiltered editing. The low val-
ues obtained for the ambition complexity confirm that the concept feature ambition
is a useful and not too complicated indirection to automatically create or modify
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the traceability links (visibilities) of product space elements affected by a specific
modification.

PQ3. Next, we have compared the here presented dynamic filtered editing (DFE) approach
to the so-considered standard, static filtered editing (SFE). The results suggest that
the newly introduced operation MIGRATE obviates repeated check-outs in many
cases. Allowing to use newly introduced features in the ambition slightly reduces the
number of iterations necessary. Moreover, the extra user effort caused by additional
interactions issued by the DFE model (e.g., when migration produces unsatisfactory
results) can be neglected.

PQ4. The contributed a-posteriori product-based well-formedness analysis strategy is as
easy to apply as any purely product-based strategy; though, due to the ambition
mechanism, the applied repair actions affect a comparably larger set of versions,
which is reflected by a noticeable resolution scope. The approach has similar qualities
as sample-based product line analysis.

Altogether, the positive answers indicate that the goals have been fulfilled in the case studies.

G1. The effort of SPL editing is lower when compared to unfiltered approaches based on
annotative variability.

G2. The dynamic editing model is less obtrusive than its static counterpart.

G3. A-posteriori product based analysis slightly increases the well-formedness of products.

From the experience made throughout the experimentation, we can qualitatively deduce
several secondary properties of the approach.

SQ1. Collaborative MDSPL editing appears to be unproblematic as long as the users agree
on disjoint ambitions in order to avoid conflicts. Concurrent modifications are merged
in a single-version view.

SQ2. SuperMod readily supports heterogeneous projects, where interconnected models
and source code are mixed. Yet, as soon as the approach is combined with model
transformations, the developer is faced with the filter/transform dilemma.

SQ3. The conceptual approach allows for both proactive and reactive SPLE, and in particu-
lar, it encourages a transition from the proactive to the reactive style.

SQ4. SuperMod is applicable to text files as well as to tree-based and diagram-based model
files; its suitability for textual modeling languages remains to be examined.

SQ5. By relying on a fine-grained version strategy, the approach supports unconstrained
variability, while not negatively affecting the compatibility of single-version models
with external modeling tools.

The next chapter concludes the thesis and critically reflects, among others, the evaluation.
A large share of the future work suggested builds on the results gained in this chapter.



Part VI

Reflections





Look at me: still talking
when there’s science to do!
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Chapter 16

Conclusions and Outlook

Abstract

The thesis is concluded by a summary of its contents and contributions as well as by a
discussion of the the added value promised by the presented scientific work. The benefits,
which emerge from particular design decisions underlying the framework, go hand in hand
with conceptual limitations, whose consequences are reflected here. In a retrospective
discussion, we critically visit the tool’s barriers to entry, the framework’s relation to SPLE
processes, and the connection to multi-variant model transformations. We also identify
potential topics for future work in terms of technical extensions of SuperMod. Alongside
of final remarks, the relevance of the presented approach for research and for software
engineering practitioners is reflected.
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16.1 Achievements

In the following, the thesis is summed up from a retrospective point of view, before the
contributions and the implied benefits are made explicit.

16.1.1 Summary

Abstraction, evolution, and variability are three phenomena the stakeholders of almost
every software engineering project are faced with. Traditionally, abstraction is achieved
through the application of model-driven engineering tools, evolution is addressed by version
control systems, and variability is either organized in an ad-hoc way (e.g., by branching
or conditional compilation), or explicitly addressed by means of software product line
engineering approaches. Traditionally, developers must use three different tools to meet the
peculiarities of all three phenomena.

With SuperMod, we have presented “one tool to rule them all”: an integrated solution
that obviates the need for context switches between tools for historical and logical (model)
version management. Though, tools are ephemeral—therefore, the focus of this thesis has
been put on the underlying conceptual framework. It builds on top of the Uniform Version
Model (UVM), which utilizes formalisms as simple as propositional logic and set theory;
furthermore, we have utilized Ecore metamodels – which are compatible with the OMG
MOF standard and therefore promise to be long-lasting – for the static modeling of the
approach. The elements of the framework are connected by means of a formal editing model,
whose interactive operations have been defined as algorithms.

SuperMod encourages the development of a model-driven software product line in an
iterative way, organized by a sequence of development increments, which are controlled by
metaphors common in version control. Version selections, having a historical and a logical
component, are performed in a revision graph and in a feature model, respectively. For
the development of product lines, the framework relies on a filtered editing strategy: One
version – being described by the choice, consisting of a selection in the revision graph and
of the definition of a feature configuration – is edited representatively in a local workspace.
The modifications are written back to the repository automatically, and the visibilities (which
reflect the SPLE concepts of presence conditions, traceability links, or feature annotations)
of versioned elements are updated in such a way that they are visible in future revisions
of those variants included in a so called feature ambition, a partial selection in the feature
model delineating the logical scope of a change. After each iteration, the defined choice
is migrated – if necessary, interactively – in order to immediately prepare the subsequent
revision without the need of manually starting the next iteration.

When speaking in SPLE terms, SuperMod allows developers to “perform application
engineering, and get domain engineering for free”, following a product-based product line
development paradigm. The analogous strategy, product-based product-line analysis is
applied for the detection and resolution of well-formedness violations. These may emerge
either from unintended feature interaction or from conflicting modifications applied by
different developers concurrently. Collaborative MDSPLE, in turn, is offered by a distributed
replication strategy organized by the metaphors pull and push.

Here, the terms “model-driven” and “product line” should by no means be understood
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as restrictions: the approach and tool are applicable to non-model resources just as well –
concretely, entire Eclipse projects can be versioned – and the usage of a feature model is
optional. The tool may even be applied without historical or collaborative versioning in case
this is intended to be covered by an external VCS.

Taken together, in this thesis, we have shown that an integrated approach combining
MDSE, SPLE, and VC is feasible, that it brings significant advantages over an off-the-shelf
tool combination, and that it does not add noticeable cognitive obstacles.

16.1.2 Contributions Made Explicit

Below, we revisit the chapters of this thesis and summarize the theoretical and practical
contributions presented therein. These include:

– A conceptual overview of the software engineering disciplines model-driven software
engineering (MDSE), version control (VC), and software product line engineering (SPLE).
See Chapters 3 until 5.

– A literature review of state-of-the-art tools addressing the integrating disciplines MDSPLE
(model-driven software product line engineering), MVC (model version control), and SPLVC
(software product line version control) in Chapter 6.

– The exploration of the requirements and of the design choices of an integrated system
towards combined MDSE, SPLE, and VC. (Chapters 2 and 7)

– The design and the analysis of a technology-independent integrating conceptual framework.
It relies on EMF models, feature models, and revision graphs as user abstractions, on the
UVM as formal foundation, and on Ecore-compliant metamodels as design formalism. The
framework consists of the following components:

• A hybrid version model for the integration of historical and logical versioning. Exten-
sional versioning is realized on top of intensional versioning. (Chapter 9)

• An extrinsic product model providing for unconstrained variability of versioned file
systems (containing EMF and non-model resources) and feature models. (Chapter 10)

• A consistency-preserving dynamic filtered editing model that transparently manages
the connection between the version space and the product space. See Chapter 11.

• The framework’s extension toward collaborative versioning, realized by two-level
revision graphs and a distributed replication strategy, both shown in Chapter 12.

• An a-posteriori product-based well-formedness analysis approach that relies on default
resolution actions, which can be revised manually; repair actions affect a larger scope
of versions. See Chapter 13.

– SuperMod, a model-driven implementation of the conceptual framework. (Chapter 14)

– An evaluation of the user-relevant properties of the approach based on three case studies to
which the tool SuperMod has been applied; see Chapter 15. The results confirm the benefits
of the approach (see below).

The remaining chapters were connected to introductory purposes (Chapter 1) and to the
definition of formal foundations (Chapter 8), respectively.
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16.1.3 Benefits Re-Explained

In Section 2.8, we have claimed four key benefits of an integrated conceptual framework
over state-of-the-art solutions. After having presented the conceptual and technical solu-
tion as well as its evaluation, we revisit this list, assigning concrete design decisions and
consequences to the respective benefits.

B1. Uniform Versioning. Externally, a revision graph and a feature model are presented
to the user, suggesting two orthogonal version management mechanisms. Internally,
however, the framework relies on a hybrid repository architecture based on mappings
to concepts inherited from the UVM [WMC01]: options, version rules, choices, and
ambitions. Although these internals are never exposed to the user, he/she can profit
from their uniformity. For instance, the operation COMMIT allows to map a historical
increment added in a well-defined transaction to a specific set of logical versions,
blurring the distinction between revisions and variants for the user’s sake.

B2. Reduction of Cognitive Complexity. The approach and tool relieve the SPL developer
from two complex tasks: the management of multi-variant solution artifacts and
the definition of traceability links between problem space and solution space. The
product variant available in the workspace contains the realization of only those
features that are relevant to the intended change. Through commit, the transparent
repository contents are updated automatically. In the evaluation, we have confirmed
that through the ambition mechanism, the effort for version membership management
is considerably lower when compared to the manual creation of traceability links.

B3. Unconstrained Variability. Although the workspace – by intention – contains only
single-version models, the transparent multi-version repository relieves the managed
artifacts from single-version consistency rules impeding alternative variation. The
extrinsic product model obviates the need for explicit, language-based (e.g., aspects)
or tool-based (e.g., model transformations) mechanisms for the definition of variation
points. As confirmed by the evaluation, this benefit becomes particularly important
when a fine object granularity is demanded in the product space.

B4. Tool Independence. Since the comparison-based versioning strategy does not require
change logs, SuperMod does by no means prescribe the usage of a custom tool, nor a
specific class of tools, to be used for modifications in the workspace, inside which a
standardized intrinsic model representation is employed. Technically supported are
all (model or non-model) editors that integrate with Eclipse.

16.2 Limitations

The positive properties listed above ensue from particular design decisions made in advance
to the elaboration of the conceptual framework; see Section 7.3. Nevertheless, for a fair
résumé, we have to consider also the other sides of the coins. The benefits are inadvertently
connected to particular drawbacks, which are detailed in the following. Figure 16.1 illustrates
how design decisions, benefits, and limitations are connected to each other. 1

1 This subsection shares material with [Schwä+15, Section 6].
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Figure 16.1: Connection between benefits and limitations of the conceptual approach.

L1. Limited Awareness of Other Versions. A key advantage of filtered SPLE is reduced
complexity in the sense that artifacts not relevant for a specific change are hidden from the
single-version workspace. On the downside, filtered editing also reduces awareness of other
versions being composed of elements that are not visible under the current choice and that
are inaccessible in the transparent repository. Furthermore, version membership information,
which is encoded in the visibilities of versioned elements, is faded out. The unawareness of
hidden product space artifacts may complicate multi-variant design decisions and lead to
maintenance problems such as doubly introduced domain model elements, heterogeneous
realization of variants belonging to the same variation point. In general, the advantage of
reduced complexity is instantaneously linked to the shortcoming of limited awareness.

L2. Equal Scope Assumption. In the hybrid and transactional editing model presented
here, all modifications performed to the workspace domain model within an edit session
are written back to the repository at commit time under one common feature ambition.
Therefore, it is implicitly assumed that these modifications have the same logical scope.
As mentioned before, this forces developers into rather fine-grained commits; however, we
cannot exclude the possibility of developers accidentally realizing multiple features (or
combinations thereof) in a session. In such a situation, the iteration must be reverted in
order to avoid incorrect visibilities being created at commit. The equal scope assumption
may cause frustration among users.

L3. Limited Precision of Matching. The advantage of tool independence is due to the
comparison-based differentiation strategy. On the downside, refraining from employing a
change recording mechanism also reduces the precision of matching, which is performed
transparently at commit. Due to the usage of UUIDs, this limitation has not negatively
affected the case studies presented in the evaluation, but it may become problematic for
resource types that do not support UUIDs (e.g., textually persisted Xtext models).
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L4. Uncertainty of Product Line Analysis. A-posteriori product-based analysis can guar-
antee the syntactical well-formedness of no other than one product variant: the contents
available in the workspace. After commit, the applied repair actions prevent the same con-
flict from being reported in other variants, but there is no guaranty for the absence of related
conflicts, and furthermore, for the syntactical correctness of other variants transparently
managed in the repository.

Another potential drawback of the strategy, which relies on filtered product reconciliation,
is that product conflicts not relevant for the current workspace view may be overlooked,
particularly when emerging from collaboration.

Altogether, the benefit of being able to apply single-product validation techniques in a
single-version workspace view is paid with uncertainty related to the well-formedness of
product elements not visible in the workspace.

16.3 Retrospective Discussions

Several topics are situated rather at the edge of the scope of this thesis. They have been
repeatedly referred to, but the explanations provided in previous chapters did not give
satisfying answers to related questions. Here, we provide brief retrospective discussions.

After a general discussion of the barriers to entry implied by the presented approach, we
reflect the topics of SPL development processes, as well as the connection of the presented
filtered editing model with model transformations.

16.3.1 Barriers to Entry

The HAS case study (see Section 15.3.2) has been conducted by a master student after
a training session, in which an earlier version of the Graph Library case study has been
demonstrated. We interpret the most important issues that have been communicated in a
feedback session:

– For users familiar with the concepts of revision control (i.e., the operations check-out and
commit, revision graphs, and commit messages) as well as of SPLE (i.e., feature models,
feature configurations, and automatic product derivation), the only new concepts that must
be studied are feature ambitions – probably the most difficult part of the editing model – and
interactive choice migration—which, conceptually, is not much different from completing a
partial feature configuration.

– It requires discipline to keep the logical scope within an iteration equal, i.e., not to mingle
logically disjoint changes, which actually require different ambitions, in the same commit.
When compared to conventional version control, this causes much more frequent commits.

– By intention, the here contributed conceptual framework blurs domain engineering and
application engineering; the former is actually derived from the latter. Users familiar
with annotative variability may be tempted to keep a multi-variant domain model in the
workspace, which impedes the definition of variation points on product level.

All in all, this suggests that the training effort required for a tool like SuperMod is not
higher when compared to explicitly mapping-based approaches (where the mechanisms for
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assigning feature annotations must be taught) and to tools relying on transformational or
compositional variability (where new composition languages or extensions to the domain
language must be taught).

16.3.2 Agile Filtered SPLE Processes

According to the state-of-the-art exploration provided in Section 5.3, traditional SPL devel-
opment processes are tailored towards proactive SPL adoption paths and follow a rather
plan-driven paradigm. In general, software engineering processes range between plan-driven
and agile—an analogous classification should be made also for the special case of SPLE.

As motivated in Section 7.1.1, the necessity to quickly respond to customer feedback and
to adapt to changing requirements also raises arguments for an agile style of SPLE, which
is still subject to research [TC06; GM08]. Agile principles are also desirable in reactive
SPLE [Ap+13b], given the fact that features can be added to the product line at any time
after products have been derived.

The separation of development activities into domain engineering (DE) and application
engineering (AE) is independent of the process paradigm. Let us consider DE first: In the
HAS case study, we have observed a transition from phase-structured to feature-driven
domain engineering (DE); see below. Both paradigms are supported by SuperMod, but the
feature-driven style is assumed as the default.

Phase-Structured Domain Engineering. Here, DE is performed in a sequential way as
shown in Figure 16.2. In the beginning of each iteration, during domain analysis,
features are identified and captured in the variability model. These features are
further designed, implemented, and tested during the subsequent activities, where
the platform is created or extended. Phase-structured DE typically consists of long-
running iterations, which, on the one hand, have to be thoroughly planned in advance,
and on the other hand, address multiple features at the same time. 2

Feature-Driven Domain Engineering. This is characterized in Figure 16.3 as counterpart
to the phase-structured way. Here, both the feature model and the platform are evolved
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Figure 16.2: Phase-structured domain engineering. The identifiers fi refer to different features and
their connected realization artifacts in the platform. From [Schwä+16, Figure 4].

2 In the HAS case study, the subsequent phases have been organized into a sequence of fine-grained commits
each. These, however, do not correspond to iterations in the process management sense.
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Figure 16.3: Feature-driven domain engineering. Based on [Schwä+16, Figure 5].

feature by feature. By introducing one feature (i.e., one increment) at a time, this
results in comparably short-running iterations.

As far as AE is concerned, SuperMod’s filtered editing model actually derives this activity
from DE by relying on a product-based product line development approach. In the summary,
it has been provocatively claimed that SuperMod allows to “perform application engineering,
and get domain engineering for free”. But is it really pure AE that is performed in the edit
sessions? By definition, AE addresses development activities referring to single product
variants; when transferred to SuperMod, this would correspond to iterations in which the
choice equals the ambition, such that all changes are product-specific. Rather than entirely
replacing DE by repeated AE, the here presented editing model blurs the distinction between
both activities.

All remarks provided above refer to the development activities analysis, design, and
implementation. Nevertheless, a fully-fledged development process, especially an agile one,
should also cover maintenance. This was out of the scope of this thesis, but should be taken
into consideration when defining an agile SPLE process.

16.3.3 Multi-Variant Model Transformations

In Section 15.5.2, we have discussed an occurrence of the filter/transform dilemma in one of
the evaluation case studies. The presented solution – relying on an “almost-multi”-variant
domain model and the concept of negative implementation – has been assessed as neither
fully satisfactory nor generalizable.

Let us formally explain the general filter/transform dilemma. As sketched in Figure 16.4,
the combination of product derivation (filter) and the application of a model transformation
(transform) can be achieved in two ways. On the one hand, the filter can be repeatedly
applied first, and the single-variant products can be transformed to corresponding target
models by an existing model transformation. On the other hand, the transformation may
be applied at first, transforming the multi-variant source model into a multi-variant target
model, which can thereafter be configured into single-variant instances of the target product
line.

In [SBW16b], we argue that the order transform→filter has significant advantages over
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Figure 16.4: Modes of execution of the operations filter and transform. In a correct MVDM, the
diagram should commute. From [SBW16b, Figure 2].

the off-the-shelf filter→transform solution, giving rise to multi-variant model transforma-
tions (MVMT). Albeit, the problem has been solved only for special cases of modeling
languages or model transformation approaches in the literature. For instance, in [GSW17],
a reuse-oriented approach towards MVMT based on the MDSPLE tool FAMILE [BS12b]
(see Section 6.1.1) and the model-to-model transformation language ATL [Jou+08] (see
Section 3.7.2) has been presented. Related approaches to MVMT, conducted under different
premises, have been published by [Sal+14], by [Are+10], and by [Fam+15].

When transferred to SuperMod, MVMT are connected to additional challenges. First,
multi-variant models are represented extrinsically, such that they do not conform to the
source and target metamodel expected by the transformation engine; due to unconstrained
variability, this does not only imply a conversion problem, but also a potential information
loss as alternative variation must be resolved. Second, the transformation must also correctly
propagate traceability links attached to elements of the source model to elements of the
target model. This contradicts with the base mechanism of filtered editing, according to
which the visibilities of new elements (part of the target model) are determined by the
ambition.

16.4 Future Work

Subsequently to the conceptual discussions provided above, we present rather technical sug-
gestions for future extensions to SuperMod (cf. Chapter 14). These should be implemented
in order to make the approach feasible in real-world productive scenarios.

More VCS Commands. Being a research prototype, the tool offers a set of commands
sufficient to conduct scientific experiments. In order to meet industrial requirements, the
palette should be extended. Many VCS that follow an optimistic synchronization paradigm
support in addition a LOCK operation that prevents specific resources from being modified
remotely. Furthermore, visual difference reports are essential for understanding changes.
Last, branches have been intentionally forbidden in the current version of SuperMod in favor
of intensional versioning. Nevertheless, many continuous integration strategies employed in
industry build upon branches, such that a corresponding command should be offered. In
addition to the session-based check-out/commit model, an alternative instant sharing mode
as offered, e.g., by [Dem+15] might increase the acceptance of the tool.



376 Chapter 16 Conclusions and Outlook

Improved Version Selection through Constraint Propagation. In the version space base
layer (see Section 9.2.2), invariants have been introduced as propositional logical expressions
that decide about the consistency of versions, whereas preferences and defaults assist the
user in version selection. In many cases, preferences enforce related invariants, but in
general, the underlying mechanisms are disjoint.

There are, however, situations in which the states of missing bindings can be determined
from invariants directly. For instance, in a XOR feature group, when selecting one grouped
feature positively, the only allowed selection state for all sibling features is negative. Such
situations can be detected and enforced by satisfiability analysis and constraint propagation,
respectively [Bat05].

Secure Authentication and Privileges Management. The server side application does
not support secure authentication currently; everybody who knows the URI of a remote
repository may access it. This, of course, does not meet any security guidelines.

Read or write access to specific resources (or even to their contents on a fine-grained
basis) may be restricted to specific users or groups thereof.

Additional Version Dimensions. Privileges management as motivated by the above item
might be modeled as an additional version dimension; read/write access rules for newly
added/modified artifacts would be defined at commit. Furthermore, requirements tracing
may be covered as follows: Each requirement is mapped to an option; on commit, the
addressed requirements are indicated by the developer. As the underlying requirements
model is subject to historical evolution, this might be another example of a hybrid dimension.

Apart from additional dimensions, new applications might involve a new composition
of existing dimensions. SuperMod’s flexible architecture generally allows for multiple
instantiations of dimensions; therefore, e.g., feature model variability might be realized by a
two-level hierarchy of feature models where one instance serves as variability model for the
other instance.

Selections in the Product Space. In SuperMod, the root of a versioned SPL is an Eclipse
project. It is possible to check-out the whole project, but not a part (i.e., a specific sub-
directory) thereof. In order to meet the requirements of larger-scaled projects, selections in
the product space should be supported.

Split Ambitions. The conceptual problem underlying limitation L2 (equal scope assump-
tion) might be solved by providing the possibility to split the commit into different logical
scopes, each being described by an individual feature ambition. Conceptually, supporting
split ambitions would require to introduce a human-interpretable representation of write sets
and the possibility to decompose them in a disjoint way.

Import of Existing Product Line Projects. With the command EXPORT, SuperMod offers
the possibility of making a specified version of a managed project available for external tools.
The inverse operation, IMPORT, has not been realized, though. It would offer benefits such
as the integration with unfiltered SPLE tools, such that developers might switch between
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single-version and multi-version views, e.g., when being restricted by limited awareness
(L1, see above).

Due to a lack of standardization, this is difficult from a technical point of view. Different
SPLE tools have their individual language for feature models, their own limitations with
respect to the structure of the multi-variant domain model (or components in the case of
compositional variability), or they follow entirely different paradigms (such as extensional
versioning in extractive clone-and-own approaches). Moreover, the most widespread SPL im-
plementation technique, conditional compilation by preprocessor directives, is irreconcilable
with the conceptual level of the SuperMod approach.

Further Content Types for Multi-Variant Files. In analogy to EMF instances and plain
text files, additional file types can be supported in future. These include, among others,
XML files, CSV files, specific formats of configuration files, or database entities.

AST-based Versioning of Source Code. According to Section 6.2, line-oriented version-
ing is inadequate for XMI-serialized model resources. But also for text files, the object
granularity “line” is no more than an approximation. Better precision could be achieved by
a structured versioning approach based on the abstract syntax tree (AST) of source code.

Using reverse engineering plug-ins such as MoDisco [Bru+10], source code conforming
to particular programming languages can be represented as model instances immediately
reflecting the corresponding AST. The combination of AST-based versioning and SuperMod
promises a finer object granularity for the versioning of source code.

Eclipse-Independent Tool Interface. SuperMod’s user interface is tightly coupled into
Eclipse, although the base functionality is generic and has been designed and implemented
in a reusable way; see Section 14.4. For scientific applications, being tied to Eclipse may not
constitute a decisive obstacle, but industrial stakeholders may prefer to use their individual
IDEs. To better integrate with other tools, it would become necessary to develop an Eclipse-
independent user interface that relies, e.g., on a command line interface as back-end, and
that connects to different IDEs.

Evaluation Perspectives. In many regards, the evaluation presented in Chapter 15 must
be understood as a preliminary proof of concept that should be extended to a quantitative
comparison of the approach against state-of-the-art tools. In order to learn more about
the benefits and limitations of the approach, the experimentation might be extended into
multiple directions.

– First, the assessment of the product well-formedness analysis approach was of limited sig-
nificance inasmuch as only three out of 16 possible product conflict types were investigated.
In an additional case study, the remaining conflicts might be intentionally produced in order
to investigate, e.g., the precision of default resolution and the meaningfulness of the conflict
descriptions produced.

– Second, the HAS case study was organized along the classical development phases require-
ments analysis, design, and implementation. SPL processes additionally include testing as
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an essential activity. SPL testing involves, e.g., test case modularization or feature interaction
handling [ER11]. It is worth investigating how the filtered SPL editing paradigm harmonizes
with these challenges.

– Third, in Chapter 15, the evaluation of memory consumption and runtime behavior was
disregarded intentionally. Although it was not a goal of this project to develop a “faster
Subversion”, insights into corresponding numbers might reflect the feasibility and scalability
of the approach, and therefore provide important input for future work.

– Last, for a fair comparison with related SPL editing approaches, independent comparative
studies should be conducted, for instance, in a contest format à la Transformation Tool
Contest [GKR16]. In this way, we expect to learn more about the barriers of entry and the
intuitiveness of the here presented approach.

To address many of these perspectives, the tool SuperMod must be extended with support
for automatic quantitative evaluation, which will obviate the manual analysis of repositories
and user interaction logs that served as a basis for the evaluation presented here.

16.5 Relevance for Research and Industry

The thesis is concluded by a natural question: Who may profit from the research presented
here? The answer is twofold, pointing out to the academic and the industrial relevance of
the research, respectively.

On the one hand, in the course of the development of the conceptual framework, it has
turned out that the connection between evolution and variability, as well as the connection
of both with abstraction, has not been fully investigated in the literature yet. The research
presented here aims at increasing the theoretical body of knowledge in concepts and tool
support for the integration of the considered software engineering sub-disciplines. Moreover,
the research presented here has contributed to the upcoming research area of variation
control systems [WO14; Stă+16; LBG17]. The implications of product-based product line
development and of the underlying software process motivate future scientific work.

On the other hand, with SuperMod, we provide a tool that exploits synergy effects be-
tween SPLE and VC. With feature models, we employ an established mechanism for logical
versioning that decisively goes beyond the state-of-the-art VC variability mechanism of
branches. By adopting the filtered editing strategy and the VCS metaphors check-out, mod-
ify, and commit, the tool relieves SPL developers from cognitively complex multi-variant
decisions. Version management is managed automatically behind the curtains, while only a
single-version workspace is presented to the user, who may use arbitrary editing tools. The
strict separation between DE and AE is blurred in favor of the compatibility with agile de-
velopment practices and reactive SPL adoption. The presented solution holistically supports
collaborative model-driven and/or software product line engineering. Software engineers,
regardless of whether or not they align themselves with the model-driven paradigm, are
equipped with an integrated yet unobtrusive tool that automatically and consistently manages
the evolution and the variability of both models and source code.
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