
Weighted Committee Games

Sascha Kurz
Dept. of Mathematics, University of Bayreuth, Germany

sascha.kurz@uni-bayreuth.de

Alexander Mayer
Dept. of Economics, University of Bayreuth, Germany

alexander.mayer@uni-bayreuth.de

Stefan Napel
Dept. of Economics, University of Bayreuth, Germany

stefan.napel@uni-bayreuth.de

December 8, 2017

Abstract

Weighted committee games generalize n-player simple voting games to m ≥ 3 alternatives.
The committee’s aggregation rule treats votes anonymously but parties, shareholders, mem-
bers of supranational organizations, etc. differ in their numbers of votes. Infinitely many
vote distributions induce only finitely many distinct mappings from preference profiles to
winners, i.e., non-equivalent committees. We identify and compare all committees which
use Borda, Copeland, plurality or antiplurality rule. Their geometry and differing numbers
of equivalence classes – e.g., 51 for Borda vs. 4 for Copeland rule if n = m = 3 – have so far
escaped notice. They determine voting equilibria, the distribution of power and other aspects
of collective choice.
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Introduction

Consider a parliamentary committee, council, corporate board, hiring committee, etc.
which involves three players (parties, groups, shareholders, delegations). Suppose
the first wields 6 votes, the second 5 votes, and the third 2 votes. Does this distribution
differ from an equal vote distribution in terms of the implied opportunities for players
to achieve their goals by voting? Or from a (48%, 24%, 28%) distribution, say?

Such questions have been well studied for binary majority decisions. In that case,
the answers are negative: a coalition of any two players can implement its preferred
alternative against opposition of the remaining player – for each of the indicated
distributions of votes. They are just different weighted representations of the same
formal structure, known as a simple (voting) game, which links individual behavior of
the players to collective choices.

But what if the committee is to choose from m > 2 candidates? Then little
is known. Suppose the committee decides by plurality voting. The first player
now has greater influence for weights of (6, 5, 2) than for equal ones: whenever
players 2 and 3 fail to agree on a single candidate, player 1 will get its way. The same
applies for (48%, 24%, 28%). Committees involving voting weights of (6, 5, 2) and
(48%, 24%, 28%) are equivalent in terms of players’ influence and success chances;
while one with (10, 10, 10) is not. In analogy to the binary case, we can refer to the
former as different weighted representations of the same committee game. We define
the latter as a combination of a set N of players, a set A of alternatives and a mapping
ρ from the space of n-tuples of preferences over A to a winning alternative.

The goal of this paper is to identify equivalent committee games and to extend
existing knowledge on weighted committee decisions from two to more alternatives.
We study four standard aggregation methods: plurality, Borda, Copeland and an-
tiplurality rule. It is known that these rules can produce four different winners for the
same profile of preferences. We show that they also vary widely in the extent to which
group sizes or voting weights matter. For instance, there exist only 4 structurally dif-
ferent Copeland committees but 51 Borda committees with three players who choose
from three alternatives. These findings do not depend on whether sincere preference
statements or strategic votes are considered.

The extent to which different voting weights make real rather than only cosmetic
differences has practical relevance. For example, voting rights among the 24 Directors
of the International Monetary Fund’s Executive Board have been reformed in 2016. Is
there a possibility that this will affect any decisions, such as its choice of the next IMF
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Managing Director? Historically, the director was a European selected by consensus
with the US but emerging market economies have pushed for a more competitive
process. The Executive Board has therefore declared (IMF Press Release 2016/19) that
in the future a winner from a shortlist of at most three candidates shall be adopted “by
a majority of the votes cast”. Suppose this means (i) receiving the most votes suffices
(plurality rule). Did changes of the distribution of IMF drawing rights, hence votes,
then make a difference? One may also ask if it would make a difference to interpret
the declaration as calling instead for (ii) a two-candidate runoff if nobody gets an
outright majority (plurality runoff rule) or (iii) securing as many pairwise majority
wins against competitors as possible (Copeland rule)? Both types of questions –
comparing distinct vote distributions for a given rule or different rules for a given
distribution – are about equivalences between committees.

Committees that decide between two alternatives have received wide attention.
Von Neumann and Morgenstern (1953) introduced the notion of simple games; Shap-
ley and Shubik (1954) and Banzhaf (1965) constructed corresponding indices of vot-
ing power. Their application has ranged from the US Electoral College, UN Security
Council and EU Council to governing bodies of the IMF and private corporations. See
Mann and Shapley (1962), Riker and Shapley (1968), Owen (1975) or Brams (1978) for
seminal contributions. They and more recently Barberà and Jackson (2006), Felsen-
thal and Machover (2013), Leech and Leech (2013), Koriyama et al. (2013), Kurz
et al. (2017) and many others have sought to quantify a priori links between voting
weights and collective choices with the goal to evaluate democratic playing fields
from a power or welfare perspective.

Weighted committee games offer the potential to extend such analysis to decision
bodies that face more general non-binary options. One might, for instance, analyze
the world football association’s rules for deciding on FIFA World Cup locations or
top officials: its member organizations – the African CAF, the European UEFA, etc. –
differ in votes much like US states do in the Electoral College; or consider the Electoral
College and House choosing between more than two presidential candidates (as
happened in 1825); or the Council of the EU deciding on its recommendation of
the next President of the European Central Bank; a company board picking a new
headquarter location or a CEO; and so forth.

This paper lays foundations for corresponding investigations. We are not con-
cerned with any specific voting body here, nor do we study the problem of designing
committees with specific properties (e.g., proportionality of representation as oper-
ationalized by Chamberlin and Courant 1983, Monroe 1995, or Pothoff and Brams
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1998). Rather, we take arbitrary compositions of committees and a voting rule as
primitives and define suitable equivalence relations. On that basis, we seek to iden-
tify all structurally distinct weight distributions.

We provide minimal representations for the respective committee games for small
n and m. Comprehensive lists of games only existed for m = 2 so far (cf. von Neumann
and Morgenstern 1953, Sec. 52; Brams and Fishburn 1996). Our extensions could be
used, e.g., to establish sharp bounds on the numbers of voters and alternatives that
permit certain monotonicity violations or voting paradoxes (cf. Felsenthal and Nurmi
2017); or to generalize rule-specific findings on manipulability and implementation
from one to infinitely many equivalent committees (see Aleskerov and Kurbanov
1999, and Maskin and Sjöström 2002); or to check robustness of voting equilibria to
small reallocations of voting weights (cf. Myerson and Weber 1993, Bouton 2013, or
Buenrostro et al. 2013). We also give a glimpse of the fascinating geometry of equiva-
lent weighted committee games. This takes inspiration from the geometric approach
of Saari (1994, 1995, 2001) and provides a colorful complementary perspective.

The rest of the paper is organized as follows. We point to the most closely related
literature on simple games and extensions of the latter in Section 2. Then Section 3
introduces notation and our definition of weighted committee games. We develop
suitable equivalence relations and investigate the connections between the induced
equivalence classes of games in Section 4. Ways of finding minimal representations
of weighted committees and of identifying all distinct committees are described in
Section 5. The results which we have thus far obtained on numbers and the geometry
of weighted committee games are presented in Section 6. We discuss open issues and
draw conclusions for future research in Section 7. An appendix provides minimal
representations of Borda, Copeland, plurality and antiplurality committees.

Related literature

Our analysis considers arbitrary mappings ρ from n-tuples of preferences over alter-
natives A = {a1, . . . , am} to winning alternatives a∗ ∈ A. We seek to connect a given
mapping ρ to an anonymous baseline decision rule in the same way as weighted
representations of a simple game with player set N and coalitional function v con-
nect it to the majority rule characterized by May (1952) and qualified majority rules
(Buchanan and Tullock 1962).

Simple games and the subclass of weighted voting games (i.e., those which have
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weighted representations) received a complete chapter’s attention by von Neumann
and Morgenstern (1953, Ch. 10). More recently, Taylor and Zwicker (1999) devoted a
full-length monograph to them. Their investigation continues. See, e.g., Krohn and
Sudhölter (1995) or Kurz and Tautenhahn (2013) on open challenges in classifying and
enumerating simple games in the tradition of Isbell (1956, 1958) and Shapley (1962).
Machover and Terrington (2014) recently studied simple games as “mathematical
objects in their own right” and connected their algebraic structure to other areas of
mathematics. Beimel et al. (2008), Gvozdeva and Slinko (2011), Houy and Zwicker
(2014) or Freixas et al. (2017) document ongoing progress on the problem of verifying
if a given game (N, v) is weighted.

The literature which applies simple games has increasingly acknowledged that
the presumption of dichotomous decision making can be a severe limitation. Even
a binary decision to approve or reject a given proposal can involve more than two
actions for individual committee members: they may abstain, stay away from the
ballot, express different intensities of support, etc. And, obviously, many committee
decisions allow more than two outcomes.

The case of multiple individual actions has led to generalizations of simple games
which assume partially ordered levels of approval. For instance, Felsenthal and
Machover (1997) have considered ternary voting games with the individual options
to support a proposal, to abstain, or to reject it. Quaternary voting games introduced
by Laruelle and Valenciano (2012) add the possibility not to participate in a ballot.
The case of an arbitrary finite number of individual actions translating into one of
finitely many collective outcomes has been addressed by Hsiao and Raghavan (1993)
and Freixas and Zwicker (2003). In their ( j, k)-games each player expresses one of j
linearly ordered levels of approval and every resulting j-partition of player set N is
mapped to one of k ordered output levels.

Linear orderings of actions and feasible outcomes are naturally given in many
applications. For instance, school or university committees who have to agree on
grades and distinctions may be modeled as ( j, k)-games; so do committees which
decide on the scale or intensity of a specific policy intervention. The assumption of
ordered actions and outcomes is, however, problematic when options have attributes
in more than one dimension – for instance, if the committee is to select a job candidate,
policy program, location of a facility, etc. Pertinent extensions of simple games have
been introduced as multicandidate voting games by Bolger (1980, 1986, 2002) and taken
up as simple r-games by Amer et al. (1998a, 1998b). They allow each player to vote
for a single candidate. This results in partitions of player set N which, in contrast to
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( j, k)-games, are mapped to a winning candidate without order restrictions.
As far as we are aware, multicandidate voting games are the most closely related

concept in the literature to weighted committee games. In particular, weighted
plurality committees (as defined below) have already featured in the framework of
Bolger and Amer et al. as “simple plurality games” and “relative majority r-games”.
The respective analysis, however, moved directly to the definition of value concepts
and power indices, without structural investigation of the games themselves. It
seems that we are therefore the first to find, e.g., that there are no more than 36
distinct “simple plurality games” in case of four players – and that consequently
only 36 different distributions of the power quantified by Bolger and Amer et al. may
arise. Their framework would allow analysis of antiplurality games, too; but not
committees which use Borda or Copeland rule.

Notation and definitions

Committees and simple games

We consider finite sets N of n ≥ 1 players or voters such that each voter i ∈ N has strict
preferences Pi over a set A = {a1, . . . , am} of m ≥ 2 alternatives. P(A) denotes the set
of all m! strict preference orderings on A. A (resolute) social choice rule ρ : P(A)n

→ A
maps each profile P = (P1, . . . ,Pn) to a single winning alternative a∗ = ρ(P). The
combination (N,A, ρ) of a set of voters, a set of alternatives and a particular social
choice rule will be referred to as a committee game or just as a committee.

For given N and A, there are m(m! n) distinct rules ρ and committees. Those which
treat all voters i ∈ N symmetrically will play a special role in our analysis: suppose
preference profile P′ results from applying a permutation π : N → N to profile P, so
P′ = (Pπ(1), . . . ,Pπ(n)). Then ρ is anonymous if for all such P, P′ the winning alternative
a∗ = ρ(P) = ρ(P′) is the same. We will write r instead of ρ if we want to highlight that a
considered rule is anonymous, i.e., we impose no restrictions on general social choice
rules denoted by ρ but require anonymity for rules denoted by r : P(A)n

→ A. A rule
ρ is neutral if it treats all alternatives a ∈ A symmetrically, i.e., for any permutation
π̃ : A→ A and π̃(a)P̃iπ̃(a′) :⇔ aPia′ we have ρ(P̃) = π̃(ρ(P)).

For m = 2 and binary alternatives a1 = 1 and a2 = 0, it is common to describe ρ
by a coalitional function v : 2N

→ {0, 1} with v(S) = 1 when 1 Pi 0 for all i ∈ S implies
ρ(P) = 1. Sets S ⊆ N with v(S) = 1 are also called winning coalitions. The pair (N, v) is
referred to as a simple voting game or simple game: it can be viewed as a cooperative
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game in which the worths v(S) of coalitions are restricted to {0, 1}.
A simple game (N, v) is weighted and then also called a weighted voting game if

there exists a non-negative, non-degenerate vector w = (w1, . . . ,wn) of weights and
a positive quota q such that v(S) = 1 ⇔

∑
i∈S wi ≥ q. One then refers to pair (q; w)

as a (weighted) representation of (N, v) and denotes the respective game by [q; w],
i.e., (N, v) = [q; w]. It is without loss of generality to focus on integer weights and
quota: given q ∈ R++ and w ∈ Rn

+ there always exist q′ ∈ N and w′ ∈ Nn
0 such that

[q; w] = [q′; w′]. Certificates for the non-weightedness of a given simple game (N, v)
can be rather complex and characterization of weightedness remains an active field
for m = 2 (see Section 2).

Somewhat involved analogues of winning coalitions and coalitional functions
exist for m > 2. For instance, Moulin (1981) introduced veto functions in order to
succinctly describe the outcomes that given coalitions of players could prevent if they
coordinated their behavior. Different types of effectivity functions clarify the power
structure associated with a rule ρ by enumerating the respective sets of alternatives
that specific coalitions of sincere or strategic voters, with no or perfect information
about others’ behavior, can force ρ(P) to lie in. See, e.g., Peleg (1984). We provide a
different perspective by investigating analogues to weightedness of a simple game
on the domain of general committee games.

Four anonymous social choice rules

We will define weightedness of social choice rulesρ relative to some fixed anonymous
rule r. For the latter we focus on four standard rules with lexicographic tie breaking.

The most simple one is plurality rule rP under which each voter endorses his or
her top-ranked alternative.1 Then the alternative which is ranked first by the most
voters will be chosen. That is, a∗ = rP(P) implies

a∗ ∈ arg max
a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣. (1)

Similarly, each voter disapproves of his or her bottom-ranked alternative under
antiplurality rule rA. The alternative that is ranked last by the fewest voters is chosen,

1The formal structure of a committee game is unaffected by whether voting is sincere or strategic.
The difference only lies in the interpretation of P(A)n: it refers to profiles of true preferences in the
former and stated ones in the latter case. So it is without loss of generality if we adopt the simpler
vocabulary of sincere voting and refer to a voter’s “top-ranked alternative”.
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i.e., a∗ = rA(P) implies

a∗ ∈ arg min
a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : a′Pia}
∣∣∣. (2)

The third benchmark is Copeland rule rC. Pairwise majority votes are held between
all alternatives; the alternative that beats the most others is selected. Formally, let the
majority relation �P

M be defined by

a �P
M a′ :⇔

∣∣∣{i ∈ N | aPia′}
∣∣∣ > ∣∣∣{i ∈ N | a′Pia}

∣∣∣.
Then a∗ = rC(P) implies

a∗ ∈ arg max
a∈A

∣∣∣{a′ ∈ A | a �P
M a′}

∣∣∣. (3)

Rule rC is a Condorcet method: if some alternative a is a Condorcet winner, i.e., beats
all others in pairwise majority comparisons, then rC(P) = a.

Finally, Borda rule rB requires each voter i to give m − 1, m − 2, . . . , 0 points to the
alternative that is ranked first, second, . . . , and last according to Pi. Then it selects the
alternative with the highest total number of points (known as Borda score). Formally,
let

bi(a,P) :=
∣∣∣{a′ ∈ A | aPia′}

∣∣∣
be the number of alternatives ranked below a according to i’s preferences. Then
a∗ = rB(P) implies

a∗ ∈ arg max
a∈A

∑
i∈N

bi(a,P). (4)

We assume that whenever there is a non-singleton set A∗ = {a∗i1 , . . . , a
∗

ik
} of op-

timizers in (1)–(4), the alternative a∗i∗ ∈ A∗ with lowest index i∗ = min{i1, . . . , ik} is
selected by the committee. This amounts to breaking ties lexicographically when
A ⊂ {a, . . . , z, aa, ab, . . .}. Our rules rA, rB, rC and rP are therefore not neutral but, as is
clear from (1)–(4), anonymous.

It has computational advantages to break ties rather than to work with set-valued
choice functions. In particular, only m(m!n) distinct mappings from preference profiles
to alternatives a∗ need to be considered, compared to (2m

− 1)(m!n) if each P were
mapped to a non-empty set A∗ ⊆ A. The former entails no loss of information as
we consider all P ∈ P(A)n: the set of optimizers A∗ in (1)–(4) for a profile P is fully
determined by a∗ = r(P) and the respective winning alternatives a∗∗, a∗∗∗, . . . for profiles
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P′,P′′, . . .which swap a∗with alternatives a′, a′′, . . . that might be tied with a∗ at P.2 The
considered rules rA, rB, rC, rP and their set-valued versions are hence in one-to-one
correspondence and give rise to the same equivalence classes.3

Weighted committee games

Committee games (N,A, ρ) that model real committees, councils, parliaments etc.
are more likely than not to involve a non-anonymous social choice rule ρ. This can
be because designated members like a chairperson have procedural privileges and
veto rights. Or an anonymous decision rule r applies not at the level of voters but
their respective shareholdings, IMF drawing rights, etc. Moreover, we may take the
relevant players i ∈ N in a committee game to be well-disciplined parties, factions or
interest groups with different numbers of seats. Anonymity of the underlying rule
at the level of individual voters then is destroyed at the level of voter blocs.

The latter two cases – individual voters with different numbers of votes and
groups of voters who act as monolithic blocs – are formally equivalent: the corre-
sponding rule ρ can be viewed as the combination of an anonymous social choice rule r
with integer voting weights w1, . . . ,wn attached to the relevant players.

We will conceive of a rule r as representing the entire associated family of map-
pings from n-tuples of linear orders over A = {a1, . . . , am} to a winner a∗ ∈ A for
arbitrary n and m. Then the indicated combination amounts to a simple replication
operation. It defines the social choice rule r|w : P(A)wΣ → A by

r|w(P) := r(P1, . . . ,P1︸     ︷︷     ︸
w1 times

,P2, . . . ,P2︸     ︷︷     ︸
w2 times

, . . . ,Pn, . . . ,Pn︸     ︷︷     ︸
wn times

) (5)

for a given anonymous rule r and a non-negative, non-degenerate weight vector
w = (w1, . . . ,wn) ∈ Nn

0 with wΣ :=
∑n

i=1 wi > 0. In the degenerate case w = (0, . . . , 0),
let r|0(P) := a1.

We say a committee game (N,A, ρ) is r-weighted for a given anonymous social

2Given r(P) = b, for example, a tie with a can directly be ruled out; one sees if b was tied with c by
checking whether r(P′) = c or b where P′ only swaps b’s and c’s position in every player’s ranking Pi.

3Analogous reasoning would apply if ties were broken in a uniform random way, i.e., for the
most basic type of probabilistic social choice. See Brandl et al. (2016) on major differences between
deterministic and probabilistic social choice.
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P1 P2 P3 P4

d b c c
e c e b
b e a a
a a d d
c d b e

⇒

rA
|w(P) = a (a has min. bottom ranks 0)

rB
|w(P) = b (b has max. Borda score 28)

rC
|w(P) = c (c has max. pairwise wins 3)

rP
|w(P) = d (d has max. plurality tally 5)

Table 1: Choices for preference profile P when w = (5, 3, 2, 2)

choice rule r if there exists a weight vector w = (w1, . . . ,wn) ∈Nn
0 such that

ρ(P) = r|w(P) for all P = (P1, . . . ,Pn) ∈ P(A)n. (6)

Then – so whenever (N,A, ρ) = (N,A, r|w) – we refer to (N,A, r,w) as a (weighted)
representation of (N,A, ρ). The corresponding game will also be denoted by [N,A, r,w].

If the anonymous rule in question is plurality rule rP, we call (N,A, rP
|w) a

(weighted) plurality committee. Similarly, (N,A, rA
|w), (N,A, rB

|w) and (N,A, rC
|w) are

respectively referred to as an antiplurality committee, Borda committee or Copeland com-
mittee. That such committees may crucially differ for a fixed distribution w of seats
or voting stock is illustrated by Table 1: winning alternative a∗ all depends on the
voting rule r in use.4

Equivalence classes of weighted committees

Equivalence of committees

Weighted representations of given committee games are far from unique. Consider,
e.g., the j-dictatorship game (N,A, ρ j) where ρ j(P) equals the alternative that is top-
ranked by P j for every P ∈ P(A)n. This coincides with [N,A, r,w] for r ∈ {rC, rP

} and
any w ∈Nn

0 with w j >
∑

i, j wi.
In general, two committees (N,A, ρ) and (N,A, ρ′) are called equivalent if ρ ≡ ρ′,

i.e., ρ(P) = ρ′(P) for all P ∈ P(A)n. This defines an equivalence relation =N,A among
pairs of anonymous social choice rules and weight vectors by

(r,w) =N,A (r′,w′) :⇔ r|w(P) = r′|w′(P) for all P ∈ P(A)n. (7)

4Moreover, e wins under approval voting for suitable ballots (Brams and Fishburn 1978). See
Felsenthal et al. (1993), Leininger (1993) or Tabarrok and Spector (1999) for instructive case studies.
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For instance, (rC, (1, 0, 0, 0)) =N,A (rP, (4, 1, 1, 1)) holds for arbitrary N with n = 4 and
arbitrary A.

The labels by which players are referred to in N do not matter for anonymous
rules. So (r,w) =N,A (r′,w′) implies (r,w) =N′,A (r′,w′) whenever |N| = |N′|. The
respective tie-breaking methods which make rules r and r′ resolute may however
generate spurious equivalence of two committees involving sets A and A′ of equal
cardinality. For example, plurality rule with purely lexicographic tie-breaking, rP,
and its cousin, r̃P, which first tries to break ties in favor of female candidates are
equivalent when A = {Anne,Bob,Carl} but not for A′ = {Adam,Bob,Carol} assuming
n > 1. It therefore makes sense to tighten equivalence of two pairs (r,w) and (r′,w′)
to

(r,w) =n,m (r′,w′) :⇔
{
|N| = n and |A| = m⇒ (r,w) =N,A (r′,w′)

}
. (8)

Reference to the number m of alternatives in (8) is not redundant. For instance,
we have (rB,w) =n,2 (rC,w) for arbitrary w and n (see Proposition 1 below) but
(rB,w) ,3,3 (rC,w) even if w = (1, 1, 1).5 However, the common length of weight
vectors w, w′ fixes n. So we can write =m instead of =n,m if w,w′ ∈Nn

0 are given.
Mappings r|w, r|w′ and r|w′′ from profiles (P1,P2,P3) to a winning alternative a∗

typically differ for w = (3, 1, 1), w′ = (1, 3, 1) and w′′ = (1, 1, 3). Which one applies
may matter a lot to, e.g., three departments in a joint hiring committee or family
branches in a community of heirs. To an outsider, however, the committee games
(N,A, rC

|w), (N,A, rC
|w′) and (N,A, rC

|w′′) are structurally the same: each involves a
dictator player who always gets its most-preferred alternative and two null players
whose preferences do not matter for the selected outcome.

The corresponding notion of two weighted committee games being structurally
equivalent or equivalent up to isomorphisms (i.e., re-labelings of players or alternatives
and re-orderings of weights) is captured by the equivalence relation

(r,w) ∼m (r′,w′) :⇔ ∃π : N→ N s.t. (r, π(w)) =m (r′,w′) (9)

where π is a permutation of N and π(w1, . . . ,wn) := (wπ(1), . . . ,wπ(n)).
Based on this relation we finally define equivalence classes of weights for a fixed

rule r. Namely, using a reference distribution w̄ ∈ Nn
0 with w̄1 ≥ w̄2 ≥ . . . ≥ w̄n as

index, we let
E

r
w̄,m :=

{
w ∈Nn

0 | (r,w) ∼m (r, w̄)
}

(10)

5Consider cPibPia for i ∈ {1, 2} and bP3aP3c. Then c wins pairwise comparisons against b and a, i.e.,
rC(P) = c. But b and c have Borda scores of 4 and rB(P) = b.
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denote the set of all weight distributions which give rise to weighted committee
games equivalent to [N,A, r, w̄] up to isomorphisms. If n voters use rule r for deciding
between m alternatives, then distinct weight distributions w,w′ ∈ Er

w̄,m induce the
same mapping from true or stated preference profiles to collective choices. They come
with identical monotonicity properties, manipulation incentives, implementation
possibilities, strategic voting equilibria, paradoxes, etc.

As there exist m(m! n) distinct committees for given sets N and A, there are only
finitely many disjoint sets Er

w̄,m with w̄ ∈ Nn
0 for any given rule r. They constitute a

finite partition {
E

r
w̄1,m,E

r
w̄2,m, . . . ,E

r
w̄ξ,m

}
(11)

of the infinite spaceNn
0 of weight distributions, corresponding to a finite partition of

all r-weighted committees with n voters deciding on m alternatives.
We will see below that the number ξ of elements of such a partition – hence the

number of structurally distinct weighted committee games for given r, n and m –
varies widely across rules. It can also change drastically in n and m.

Illustration

As an example equivalence class, consider Borda rule rB for m = 3 and reference
weights w̄ = (5, 2, 1). To simplify the exposition, let us focus on the subset EB

(5,2,1),3 ⊂

E
rB

(5,2,1),3 which restricts attention to ordered vectors w (with w1 ≥ w2 ≥ w3).
Identity of ρ = rB

|(5, 2, 1) and rB
|w implies two inequalities for each profile P ∈

P(A)3: the Borda winner must beat each of the two other alternatives. Writing abc in
abbreviation of aPibPic, profile P = (cab, bac, abc), for instance, has ρ(P) = c and hence
the Borda score of (lexicograpically maximal) c under any suitable weight vector w
must strictly exceed that of a and b:

2w1 > w1 + w2 + 2w3 (I)

2w1 > 2w2 + w3. (II)

Similarly, profile P′ = (cab, abc, bac) makes a the winner. Being lexicographically
minimal, this implies a’s Borda score must not be smaller than those of b and c:

w1 + 2w2 + w3 ≥ w2 + 2w3 (III)

w1 + 2w2 + w3 ≥ 2w1. (IV)
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Profiles P′′ = (abc, bca, bac) and P′′′ = (abc, bca, bca) similarly induce ρ(P′′) = a and
ρ(P′′′) = b and imply

2w1 + w3 ≥ w1 + 2w2 + 2w3 (V)

2w1 + w3 ≥ w2 (VI)

w1 + 2w2 + 2w3 > 2w1 (VII)

w1 + 2w2 + 2w3 ≥ w2 + w3. (VIII)

Condition (VIII) is trivially satisfied for any w ∈ Nn
0 . (IV) and (V) imply w1 =

2w2 + w3. This makes (I) equivalent to w2 > w3 and (VII) to w3 > 0. Combining
w1 = 2w2+w3 and w2 > w3 > 0 also verifies (II), (III) and (VI). Exhaustive enumeration
of the 212 remaining profiles P ∈ P(A)3 reveals that inequalities associated with the
corresponding choices are also all satisfied by

w ∈ EB
(5,2,1),3 =

{
(2w2 + w3,w2,w3) ∈N3

0 : w2 > w3 > 0
}
. (12)

The full class ErB

(5,2,1),3 follows by permuting the weight distributions in EB
(5,2,1),3.

Other equivalence classes, such as ErB

(1,1,1),3, ErB

(2,1,1),3, etc., can be characterized anal-
ogously. However, determining the total number of classes and suitable reference
distributions is more involved even for n = m = 3. We describe results from exact
and heuristic computations for up to five alternatives in Section 6.

Relationship between equivalence classes

Before turning to computations, we gather several analytical results on the relation-
ship between equivalence classes for different rules r or parameters n and m. Non-
surprisingly, the degenerate weight vector w0 = 0 always forms its own equivalence
class E0,m:

Lemma 1. Let m ≥ 2, r ∈ {rA, rB, rC, rP
} and w , 0 ∈Nn

0 . Then (r, 0) /m (r,w).

Proof. Consider w , 0 ∈ Nn
0 and the unanimous profile P = (P, . . . ,P) ∈ P(A)n with

a2Pa3P . . .PamPa1. Then r|0(P) = a1 but r|w(P) = a2 for any r ∈ {rA, rB, rC, rP
}.

We focus on non-degenerate weight vectors w , 0 below. The next observation for
m = 2 also is straightforward:

12



Proposition 1. The partitions
{
E

r
w̄1,2
, . . . ,Er

w̄ξ,2

}
ofNn

0 coincide for r ∈ {rA, rB, rC, rP
}.

Proof. For A = {a1, a2} and arbitrary fixed w , 0 ∈Nn
0

r|w(P) =


a2 if

∑
i : a2Pia1

wi >
∑

j : a1P ja2

w j,

a1 otherwise

for any r ∈ {rA, rB, rC, rP
}. So antiplurality, Borda, Copeland and plurality rule are

equivalent and hence have the same equivalence classes.

Furthermore, the considered weighted committees with m = 2 are in bijection to
the familiar weighted voting games [q; w1, . . . ,wn] with a 50%-majority quota:6

Proposition 2. Let N = {1, . . . ,n} and A = {a1, a2}. For any w , 0 ∈ Nn
0 and r ∈

{rA, rB, rC, rP
}

r|w(P) = a1 ⇔ v(S) = 1

where v is the coalitional function of weighted voting game (N, v) = [q; w] with q = 1
2

∑
i∈N wi

and coalition S = {i ∈ N | a1 Pi a2} ⊆ N collects all players who prefer a1 at profile P ∈ P(A)n.

Proof. Define w(T) :=
∑

i∈T wi for T ⊆ N. If w(S) ≥ w(N r S) then rP
|w(P) = a1 and

v(S) = 1. If w(S) < w(NrS) then rP
|w(P) = a2 and v(S) = 0. Proposition 1 extends this

observation to r ∈ {rA, rB, rC
} .

It follows that the respective partitions
{
E

r
w̄1,2
, . . . ,Er

w̄ξ,2

}
ofNn

0 coincide with those for
weighted voting games with a simple majority quota. Their study and enumeration
for n ≤ 5 dates back to von Neumann and Morgenstern (1953, Ch. 10).

The remaining propositions pertain to equivalence classes for a fixed rule r as the
number m of alternatives is varied. For a given set of alternatives A = {a1, . . . , am}

and any subset A′ ⊆ A which preserves the order of the alternatives, we denote the
projection of preference profile P ∈ P(A)n to A′ by P↓A′ with ak Pi↓A′ al :⇔ [akPial and
ak, al ∈ A′]. For instance, for P = (a1a2a3, a3a1a2, a2a3a1) and A′ = {a1, a3} we have P↓A′=

(a1a3, a3a1, a3a1). Conversely, if A′ ⊇ A is a superset of A with A′ r A = {am+1, . . . , am′}

we define the lifting P↑A′ of P ∈ P(A)n to A′ by appending alternatives am+1, . . . , am′

to each ordering Pi below the lowest-ranked alternative from A. That is, for P =

(a1a2a3, a3a1a2, a2a3a1) and A′ = {a1, a2, a3, a4}we have P↑A′= (a1a2a3a4, a3a1a2a4, a2a3a1a4).

6Weighted voting games [q; w] and [q′; w] with quota q =
∑

wi/2 and q′ = q + ε for small ε > 0 are
in a well-defined sense duals of each other, i.e., are also in bijection.
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We letρ or r refer to whole families of mappings and, for instance, writeρ(P) = ρ(P↓A′)
if the same alternative a∗ ∈ A′ ⊂ A happens to win for both A and the smaller set A′.

Proposition 3. For Copeland rule rC, the partitions
{
E

rC

w̄1,m, . . . ,E
rC

w̄ξ,m

}
ofNn

0 coincide for all
m ≥ 2.

Proof. First consider A = {a1, . . . , am} for m > 2 and any w,w′ ∈Nn
0 such that (rC,w) /m

(rC,w′). So there exists P ∈ P(A)n with rC
|w(P) , rC

|w′(P). The w and w′-weighted
versions of the majority relation differ at P: if all pairwise comparisons produced the
same winners for weights w and w′, identical Copeland winners would follow. So a
weak victory of some ak over some al for w turns into a strict victory of al over ak for
w′, i.e., ∑

i : akPial

wi ≥

∑
j : alP jak

w j and
∑

i : akPial

w′i <
∑

j : alP jak

w′j. (13)

Now consider A′ = {ak, al} ⊂ A where |A′| = 2 and projection P↓A′ . (13) implies∑
i : ak Pi↓A′ al

wi ≥

∑
j : al P j↓A′ ak

w j and
∑

i : ak Pi↓A′ al

w′i <
∑

j : al P j↓A′ ak

w′j. (14)

If both inequalities are strict or k < l then rC
|w(P↓A′) = ak , rC

|w′(P↓A′) = al and
hence (rC,w) /2 (rC,w′). If not, al wins also for w by lexicographic tie-breaking but
we can consider profile P′ ∈ P(A′)n with alP′iak ⇔ akPi ↓A′ al for all i ∈ N. Then
rC
|w(P′) = al , rC

|w′(P′) = ak and (rC,w) /2 (rC,w′).
Conversely take A = {a1, a2} and w,w′ ∈ Nn

0 such that (rC,w) /2 (rC,w′) and
rC
|w(P) = a1 , rC

|w′(P) = a2 for some P ∈ P(A)n. Then∑
i : a1Pia2

wi ≥

∑
j : a2P ja1

w j and
∑

i : a1Pia2

w′i <
∑

j : a2P ja1

w′j. (15)

Consider A′ = {a1, a2, . . . , am} ⊃ A where |A′| = m and lifting P↑A′ . (15) implies∑
i : a1 Pi↑A′a2

wi ≥

∑
j : a2 P j↑A′a1

w j and
∑

i : a1 Pi↑A′a2

w′i <
∑

j : a2 P j↑A′a1

w′j (16)

and alternatives a3, . . . , am lose all weighted majority comparisons against a1 and a2

by construction of P↑A′ . So rC
|w(P↑A′) = a1 , rC

|w′(P↑A′) = a2. Hence (rC,w) /m

(rC,w′). In summary, (rC,w) /2 (rC,w′)⇔ (rC,w) /m (rC,w′) and, a fortiori, (rC,w) ∼2

(rC,w′)⇔ (rC,w) ∼m (rC,w′).
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Proposition 4. For plurality rule rP, the partitions
{
E

rP

w̄1,m, . . . ,E
rP

w̄ξ,m

}
ofNn

0 coincide for all
m ≥ n.

Proof. Let m > n. Consider A = {a1, . . . , am} and any w,w′ ∈ Nn
0 such that (rP,w) /m

(rP,w′). So there exists P ∈ P(A)n with rP
|w(P) = ak , rP

|w′(P) = al. . For this P let

Â :=
{
a | ∃i ∈ N : ∀a′ , a : aPia′

}
(17)

denote the set of all alternatives that are top-ranked by some voter. (Obviously,
ak, al ∈ Â.) Now define A′ ⊂ A as the union of Â and some arbitrary elements of Ar Â
such that |A′| = n. By construction, each a ∈ A′ has the same weighted number of
top positions for projection P↓A′ as it had for P. So rP

|w(P↓A′) = ak , rP
|w′(P↓A′) = al.

Hence (rP,w) /n (rP,w′).
Analogously, consider A = {a1, . . . , an} and w,w′ ∈Nn

0 such that (rP,w) /n (rP,w′).
A profile P ∈ P(A)n with rP

|w(P) = ak , rP
|w′(P) = al can then be lifted to A′ =

A∪{an+1, . . . , am}. By construction, rP
|w(P↑A′) = ak , rP

|w′(P↑A′) = al. Hence (rP,w) /m

(rP,w′). Overall, we can conclude (rP,w) ∼m (rP,w′)⇔ (rP,w) ∼n (rP,w′).

Coincidence results similar to Propositions 3 and 4 do not apply to Borda com-
mittees. We conjecture that for any given n ≥ 2, the number of structurally distinct
Borda committees grows without bound as m goes to infinity. In contrast, there are
exactly n distinct (non-degenerate) antiplurality committees when m is big enough.
They are fully characterized by

Proposition 5. For antiplurality rule rA, the partitions
{
E

rA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄ξ,m

}
ofNn

0 r {0}
consist of ξ = n equivalence classes identified by weight vectors

w̄1 = (1, 0, . . . , 0)

w̄2 = (1, 1, . . . , 0)
... (18)

w̄n = (1, 1, . . . , 1)

for all m ≥ n + 1.

Proof. The claim is obvious for n = 1, as each non-degenerate weight then is equiv-
alent to w1 = 1. So consider m ≥ n + 1 for n ≥ 2. Let A = {a1, . . . , am} and Pi

∈ P(A)n

be any preference profile where the first i players rank alternative a1 last and the
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remaining n − i players rank alternative a2 last. Consider any w̄k and w̄l with k < l.
Then rA

|w̄k(Pk) = a2 , rA
|w̄l(Pk) = a3. So ErA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄n,m all differ.
Now assume some w ∈ Nn

0 r {0} with w1 ≥ w2 ≥ . . . ≥ wn satisfies (rA,w) /m

(rA, w̄k) for all k ∈ {1, . . . ,n}. Let l denote the index such that wl > 0 and wl+1 = 0.
Then both rA

|w(P) and rA
|w̄l(P) equal the lexicographically minimal element in set

Zl(P) :=
{
a ∈ A | ∀i ∈ {1, . . . , l} : ∃a′ ∈ A : aPia′

}
(19)

which collects all alternatives not ranked last by any of the players who have positive
weight. These coincide for w and w̄l; and Zl(P) is non-empty because m ≥ n + 1. This
holds for arbitrary P ∈ P(A)n. Hence rA

|w ≡ rA
|w̄l, contradicting the assumption that

(rA,w) /m (rA, w̄k) for all k ∈ {1, . . . ,n}. Consequently, ErA

w̄1,m,E
rA

w̄2,m, . . . ,E
rA

w̄n,m are all
antiplurality classes that exist for m ≥ n + 1 (plus the degenerate E0,m).

We remark that each of the reference vectors w̄k listed in (18) is minimal in the
respective class ErA

w̄k,m in terms of its weight sum. Before finding such minimal repre-
sentations and testing for weightedness more generally, be reminded that equivalence
classes would be unchanged if we considered set-valued versions of rA, rB, rC or rP

instead (cf. end of Section 3.2). Lexicographic tie-breaking may yield coincidences
r|w(P) = r|w′(P) = a∗ even though the sets of alternatives tied at P, say A∗ and A′∗,
differ between r|w and r|w′. But then construct profile P′ as follows: fix an alternative
a′ ∈ A∗ \A′∗ and swap positions of a∗ and a′ in P.7 Now r|w(P′) = a∗ is unchanged but
r|w′(P′) , a∗. Set-valued versions of r|w and r|w′ for r ∈ {rA, rB, rC, rP

} are equivalent
if and only if our resolute versions are.

Identifying weighted committee games

Minimal representations and test for weightedness

Rules r ∈ {rA, rB, rC, rP
} have the property that [N,A, r,w] = [N,A, r,w′] if w = k ·w′ for

k ∈ N. Even if w represents the actual distribution of seats or vote shares in a given
setting, it can be analytically more convenient to work with w′. More generally, given
(N,A, ρ) = (N,A, r|w), we say that (N,A, r,w) has minimum integer sum or is a minimal
representation of (N,A, ρ) if

∑
i∈N w′i ≥

∑
i∈N wi for all representations (N,A, r,w′) of

(N,A, ρ) which involve rule r. The games in a given equivalence class Er
w̄,m in many

7This supposes A∗ 1 A′∗. If A∗ ⊂ A′∗, consider a′ ∈ A′∗ \ A∗ analogously.
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cases have a unique minimal representation.8 The corresponding minimal weights
then are the focal choice for w̄. For instance, (5, 2, 1) has minimal sum among all
w ∈ ErB

(5,2,1),3 characterized in Section 4.2.
Proposition 3 implies that finding minimal representations of arbitrary Copeland

committees simplifies to finding them for Copeland committees with m = 2. By
Propositions 1 and 2, this means finding minimum sum integer representations
of specific weighted voting games. Linear programming techniques have proven
helpful for this task.

Their use (see, e.g., Kurz 2012) can straightforwardly be adapted to committees
which apply rA, rB or rP. As a preliminary step note that these three rules are positional
or scoring rules: winning alternatives can be characterized as maximizers of scores
derived from alternatives’ positions in P and a suitable scoring vector s ∈ Zm with
s1 ≥ s2 ≥ . . . ≥ sm. Specifically, let the fact that alternative a is ranked at the j-th highest
position in ordering Pi contribute s j points for a, and refer to the sum of all points
received as a’s score. Then score maximization for sB = (m − 1,m − 2, . . . , 1, 0) yields
the Borda winner, sP = (1, 0, . . . , 0, 0) the plurality winner, and sA = (0, 0, . . . , 0,−1) or
(1, 1, . . . , 1, 0) the antiplurality winner.

For a fixed scoring rule r which induces social choice rule ρ for appropriate
weights, let us denote the index of the winning alternative at profile P by ωρ(P) ∈
{1, . . . ,m}, i.e., ρ(P) = aωρ(P) ∈ A. Moreover, write Sk(Pi) ∈ Z for the unweighted s-score
of alternative ak derived from its position in ordering Pi (e.g., for m = 3 and a3 = c,
we have S3(Pi) = s2 if either aPicPib or bPicPia). Then any solution to the following
integer linear program yields a minimal representation (N,A, r,w) of (N,A, ρ):9

min
n∑

i=1

wi s.t. (ILP)

n∑
i=1

Sk(Pi) · wi ≤

n∑
i=1

Sωρ(P)(Pi) · wi − 1 ∀P ∈ P(A)n
∀1 ≤ k ≤ ωρ(P) − 1,

n∑
i=1

Sk(Pi) · wi ≤

n∑
i=1

Sωρ(P)(Pi) · wi ∀P ∈ P(A)n
∀ωρ(P) + 1 ≤ k ≤ m,

wi ∈N0 ∀1 ≤ i ≤ n.

8If m = 2, minimal representations are unique for up to n = 7 players (Kurz 2012). Multiplicities
for games with larger values of m or n arise but are rare.

9This applies to rules based on arbitrary scoring vectors s ∈ Zm, not just rA, rB and rP.
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The case distinction in lines 2 and 3 between scores of non-winning alternatives ak

with index k < ωρ(P) vs. k > ωρ(P) reflects our tie-breaking assumption. If some
(non-minimal) representation (N,A, r,w′) of (N,A, ρ) is already known and satisfies
w′1 ≥ w′2 ≥ . . . ≥ w′n then adding the constraints wi ≥ wi+1,∀1 ≤ i ≤ n−1, to (ILP) helps
to speed up computations.

If it is not yet known whether ρ is r-weighted, (ILP) provides a decisive test for
r-weightedness for any scoring rule r.10 Namely, the constraints in (ILP) characterize
a non-empty compact set if and only if ρ is r-weighted. Checking if the constraint
set is non-empty for a given ρ answers the question of its r-weightedness. This can
be done with optimization software (e.g., Gurobi or CPLEX) that also identifies the
weight sum minimizer at little extra effort.

Algorithmic strategy

In principle, one can characterize all r-committee games for fixed n and m as follows:
loop over the m(m!n) different social choice rules ρ : P(A)n

→ A; conduct above test
for r-weightedness; if it was successful, determine a representation (N,A, r, w̄) and
characterize Er

w̄,m as in Section 4.2; continue until all rules ρ have been covered.
The extreme growth of m(m!n) prevents a direct implementation of this idea.11

An improved version, however, can be made to work because many mappings
ρ : P(A)n

→ A can be dropped from consideration in large batches. If ρ(P) = a1 for
one of the (m − 1)!n profiles P where a1 is unanimously ranked last, for instance,
then ρ cannot be r-weighted for r ∈ {rA, rB, rC, rP

}. This rules out m(m!n−1) candidate
mappings in one go. Similarly, if weights w such that r|w(P) = a1 can be shown
to be incompatible with r|w(P′) = a2 for two suitable profiles P,P′, then all m(m!n−2)

mappings ρ with ρ(P) = a1 and ρ(P′) = a2 can be disregarded at once.
The algorithm described in Table 2 operationalizes these considerations. It can

be tuned – and performance significantly improved – if the rule r in question uses
only partial preference information, such as top ranks. For plurality rP it suffices
to consider individual preferences for which all alternatives below the top are in
lexicographic order. Then only mn profiles instead of (m!)n need to be looped over.
Analogous reasoning applies to antiplurality rule rA.

Unfortunately, no such simplifications apply to Borda rule rB. There, the top-down
approach of going through different mappings and checking their weightedness

10This extends to Copeland rule rC by Propositions 1 and 3.
11Already n = m = 3 gives rise to an intractable 3216 > 10103 different mappings.
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Branch-and-Cut Algorithm
Given n, m and r, identify every class Er

w̄k,m by a minimal representation.

Step 1 Generate all J := (m!)n profiles P1, . . . ,PJ
∈ P(A)n for A := {a1, . . . , am}.

Set F := ∅.

Step 2 For every P j
∈ P(A)n and every ai ∈ A, check if there is any weight

vector w ∈ Nn
0 s.t. r|w(P j) = ai by testing feasibility of the implied

constraints (cf. Section 4.2). If yes, then append (i, j) to F .

Step 3 Loop over j from 1 to J.

Step 3a If j = 1, then set C1 :=
{
1 ≤ i ≤ m | (i, j) ∈ F

}
.

Step 3b If j ≥ 2, then set C j := ∅ and loop over all (p1, . . . , p j−1) ∈ C j−1 and
all p j ∈ {1, . . . ,m} with (p j, j) ∈ F . If (ILP) has a solution for the
restriction to the profiles P1, . . . ,Pj with prescribed winners ρ(Pi) =
api for 1 ≤ i ≤ j, then append (p1, . . . , p j) to Cp.

Step 4 Loop over the elements (p1, . . . , p j, . . . , pJ) ∈ CJ and output minimal
weights w̄ such that r|w̄ ≡ ρ with ρ(Pj) = p j by solving (ILP).

Table 2: Determining the classes of r-weighted committees for given n and m

requires large memory in addition to immense running time. It is then worthwhile
to opt for a heuristic bottom-up approach: start from weighted committees and check
if they are structurally distinct from those already known.

Specifically, one can also determine minimal representations and lower bounds
on the number of structurally distinct r-committee games as follows: start with an
empty list Ŵ of weight vectors and wΣ = 0; increase the sum of weights wΣ in steps
of 1; generate the set

WwΣ
:=

{
w ∈Nn

0 | w1 ≥ · · · ≥ wn and w1 + · · · + wn = wΣ

}
(20)

and then loop over all w ∈ WwΣ
. The respective weight vector w is appended to

Ŵ if for every w′ ∈ Ŵ we have r|w(P) , r|w′(P) for at least one P ∈ P(A)n. The
set Ŵ then contains a growing list of minimal weight vectors which correspond to
structurally distinct committee games [N,A, r,w]. This search is stopped manually
if increases of wΣ have not resulted in the discovery of new equivalence classes for
a long time. The method consumes less memory than the branch-and-cut algorithm
but only generates lower bounds on the exact number of classes due to the heuristic
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stopping criterion.12 While the linear programming approach in (ILP) is tailored to
rules that are positional or whose investigation reduces to m = 2, the heuristic search
for a maximal list Ŵ based on (20) applies to arbitrary anonymous rules.

Number and geometry of weighted committee games

Number of antiplurality, Borda, Copeland and plurality games

A combination of the presented analytical findings (Section 4.3) and computational
methods (Section 5) permits to determine numbers and minimal representations of
all structurally distinct weighted committee games with rule r ∈ {rA, rB, rC, rP

} at least
for small n,m. This can be useful in several ways: demonstrating, for instance, that a
certain voting paradox does not occur for any of the 34 distinct plurality committees
with n = 4, m = 3, which we list in the appendix, suffices to establish that at least
five voter groups or at least four alternatives are needed for rP to exhibit the paradox.
Similarly, a characterization of strategic voting equilibria for, say, the 7 weight vectors
listed for antiplurality rule when n = m = 4 would automatically extend to all other
distributions of board seats or voting stock between four investors in a corporation.
Related research could benefit from availability of more comprehensive lists in the
future.

Table 3 summarizes our findings on the numbers of structurally distinct weighted
committee games for the four considered decision rules. Figures do not include the
degenerate class E0,m. When less than 150 equivalence classes exist, we report a
minimum sum integer representation for each in the appendix.13

Recall that the four rules coincide for m = 2 by Proposition 1. Invoking Proposi-
tion 2, one can utilize existing enumeration results for weighted voting games with
up to n = 9 voters (see Kartak et al. 2015) and check which of them admit represen-
tation with a 50% majority quota. Our respective findings nest results by Brams and
Fishburn (1996). Their analysis excludes individual weights of zero and above 50%
and identifies representations for all games with n ≤ 6 players; we provide minimal
representations without exclusions.

For Copeland committees, Proposition 3 allows to extend results from m = 2 to

12One can compute upper bounds on the weight sum that guarantees coverage of all equivalence
classes, analogously to bounds for minimal representation of weighted voting games (see Muroga
1971, Thm. 9.3.2.1). But in our context such bounds are way too large to be practical.

13When there are less than a million classes, representations will be made available on our websites.
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n,m

r Antiplurality Borda Copeland Plurality

3,2 4

4,2 9

5,2 27

6,2 138

7,2 1 663

8,2 63 764

9,2 9 425 479

3, 3 5 51 4 6

3, 4 3 505 4 6

3, 5 3 ≥ 2 251 4 6

4, 3 19 5 255 9 34

4, 4 7 � 635 622 9 36

4, 5 4 � 635 622 9 36

5, 3 263 � 1 153 448 27 852

6, 3 ≥ 33 583 � 1 153 448 138 � 132 822

Table 3: Number of non-degenerate equivalence classes Er
w̄,m ⊂N

n
0 r {0}
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Figure 1: Simplex of all distributions of relative voting weights for n = 3

m ≥ 3; and Proposition 5 directly provides the exact number of antiplurality classes
when m ≥ n + 1. With the proviso that Proposition 4 permits to extend findings
for plurality rule rP from m = n to any m > n, all other cases have required new
computations. Top-down consideration of arbitrary mappings ρ did not work with
Borda committees for m > 4 nor n = m ≥ 4 because the branch-and-cut algorithm
described in Table 2 ran out of memory. We indicate lower bounds obtained with
the heuristic search method by “≥ . . .” in Table 3 if we conjecture that these numbers
are exact. Bounds are indicated by “� . . .” if search was prematurely interrupted for
reasons of memory or running time.14

Geometry of committee games with n=3

It would theoretically be feasible to characterize the equivalence class of weights and
committee games for each reference distribution which we list in the appendix. We
have indicated how in Section 4.2. But computation of the respective partition ofNn

0

would be very arduous – much more than determining which equivalence class a
given game [N,A, r,w] belongs to.

We have done the latter for a large enough number of weight distributions to

14We mostly used 128 GB RAM and eight 3.0 GHz cores. Some instances ran more than a month.
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obtain an informative overview of the geometry of committee games. The illus-
trations in this section differ in content but echo the geometric approach to voting
espoused by Saari (1994, 1995, 2001). His eponymous triangles concern m = 3 alter-
natives and consider an arbitrary number of voters. They illuminate how collective
rankings vary with the applicable voting procedure for a fixed preference profile.
Sub-regions of Saari triangles indicate different orderings of alternatives; individual
points correspond to cardinal tallies of votes.

We, by contrast, assume n = 3 voter groups or players and consider different
numbers of alternatives. The points in our triangles correspond to voting weight
distributions; colors group them into equivalence classes. We use the standard pro-
jection of the 3-dimensional unit simplex of relative weights to the plane, illustrated
in Figure 1: extreme points of the resulting equilateral triangle match committees in
which only one of the groups has voting rights; the midpoint reflects equal numbers
of votes for each group, such as w = (10, 10, 10). The relative weight axes are sup-
pressed in subsequent figures. Points of identical color correspond to structurally
equivalent weight distributions, i.e., they induce isomorphic committee games for
the social choice rule r under investigation. We can thus depict the partition of all
non-degenerate weight distributions w ∈ N3

0 into equivalence classes Er
w,m in terms

of relative vote shares. When classes correspond to line segments or single points
in the simplex, we have manually enlarged these in Figures 2–4 in order to improve
visibility.

Copeland committees

Figure 2 shows all Copeland committees with n = 3 voters. The four equivalence
classes ErC

w̄,m with w̄ ∈

{
(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)

}
, m ≥ 2, can be identified

as follows. The dark blue triangles in the corners collect all weight distributions
in ErC

(1,0,0),m: one group with more than 50% of the votes can impose its preferred

alternative as a dictator. The green lines cover all weight distributions in ErC

(2,1,1),m:
one player holds 50% of the votes, the others share the rest in an arbitrary positive
proportion. The three black points depict situations in which two players have equal
positive numbers of votes while the third has no votes, i.e.,ErC

(1,1,0),m. Finally, the yellow

triangle in the middle reflects the many equivalent weight configurations in ErC

(1,1,1),m:
each player wields a positive number of votes less than half of the total. As known
from the analysis of binary weighted voting, the weight shares do not matter inside
the central triangle: quite dissimilar distributions like (33, 33, 33) and (49, 49, 1) induce
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Figure 2: The four Copeland equivalence classes for m ≥ 2

1 2

3

Figure 3: The six plurality equivalence classes for m ≥ 3
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(a) m = 3 (b) m ≥ 4

1 2

3

1 2

3

Figure 4: The five or three antiplurality equivalence classes

the same pairwise majorities; hence possibilities for players to influence outcomes
and to achieve their goals are identical.

Plurality committees

Figure 3 illustrates how the situation differs for m ≥ 3 alternatives when plurality
rule rP is used. Weight vectors w that belong to Copeland class ErC

(1,1,1),m either fall

into plurality class ErP

(1,1,1),m with identical weights for all three players in the triangle’s

mid-point, or ErP

(2,2,1),m or ErP

(3,2,2),m. The former corresponds to weights on the orange
lines that lead to the center: two players each have a plurality of votes. The latter
class involves only one player with a plurality.

For non-dictatorial weight configurations, plurality rule is more sensitive to the
configuration of seats or voting rights than Copeland rule. This becomes more pro-
nounced the more players are involved, as indicated by Table 3. There are about four
and 32 times more structurally different committees with plurality than Copeland
rule for n = 4 and 5, respectively; we conjecture this factor exceeds 1 000 for n = 6.

Antiplurality committees

In Figure 4, the dark blue triangles which reflected existence of a dictator player
under rC and rP in Figures 2 and 3 shrink to the three vertices for antiplurality rule.
The outcome is fully determined by one player’s preferences only in the degenerate
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case in which no one else has a say. Otherwise, even a single vote can disqualify an
alternative under rA.

The equivalence classes ErA

w̄,3 with w̄ ∈
{
(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1)

}
differ according to whether one (blue vertices), two (dark green edges) or all three
players have positive weight. The latter case comes with the possibility that none
(yellow center), one (orange lines) or two of them (light green triangles) have greater
weight than others and hence elevated roles if the three players vote against a different
alternative each. For m = 4, this distinction becomes obsolete because there is always
at least one alternative not disapproved by anyone (Proposition 5). Then there are
just the three classes ErA

w̄,4 with w̄ ∈
{
(1, 0, 0), (1, 1, 0), (1, 1, 1)

}
.

Borda committees

Visually the most interesting geometry of committee games is induced by Borda rule.
Figures 2 and 5–7 illustrate the quick increase in equivalence classes as the number
of alternatives rises. (Recall that Figure 2 captures the case of m = 2 for all rules
r ∈ {rA, rB, rC, rP

} by Proposition 1.)
The pictures indicate how sensitive Borda decision structures are to the underlying

vote distribution – the more alternatives, the higher the sensitivity. This need not
make a big difference in practice. Incidences of rB

|w(P) , rB
|w′(P) for similar w,w′

imply that the respective committee games differ; but depending on the context at
hand, corresponding preference profiles P may have zero or smaller probability than
profiles P′ such that rB

|w(P′) = rB
|w′(P′).15 Still, from an a priori perspective the three

other considered rules, rA, rC and rP, involve less scope than rB for changes in the
distribution of seats or voting rights to induce different decisions.

The dark blue triangles in the corners of Figures 5–7 are smaller than those in
Figures 2–3 for Copeland and plurality rule. This attests to the fact that the minimal
weight w1 required to make player 1 a dictator and players 2 and 3 null players
is bigger: having 50% plus one vote suffices to win all pairwise comparisons and
plurality votes while more than two thirds are needed to secure that one’s top-ranked
alternative is the Borda winner. The required weight increases in m.16

15Our color choices provide a rough guide to how much two mappings r|w and r|w′ differ: points
of similar color correspond to committees whose decisions differ for few profiles.

16Player 1’s relative weight must exceed (m−1)/m in order to be a Borda dictator. This was already
observed by Borda (1784) and follows from the condition that unanimous players 2, . . . ,n cannot make
1’s second choice the winner. Moulin (1982) studies a more nuanced notion of veto power for Borda
and Copeland rule which corresponds to lighter colors in our figures.
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Figure 5: The 51 Borda equivalence classes for m = 3

1 2

3

Figure 6: The 505 Borda equivalence classes for m = 4
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1 2

3

Figure 7: At least 2251 Borda equivalence classes for m = 5

Minimal representations of all 51 structurally distinct Borda committees when
n = m = 3 are provided in the Appendix. Those for larger parameters will be made
available online.

Concluding remarks

The equivalence of different distributions of seats, drawing rights, voting stock,
etc. depends highly on whether decisions involve two, three, or more candidates
and the considered voting rule. Weight distributions such as (6, 5, 2), (10, 10, 10)
or (48%, 24%, 28%) translate preferences into identical outcomes for binary majority
decisions but not more generally, as Figures 3–7 illustrate. Scope for weight combi-
nations to be equivalent is characterized and compared across rules in this paper.

Copeland rule, as the only Condorcet method that we investigated here, behaves
somewhat at odds with the others. It extends binary equivalences to arbitrarily
many options (cf. Figure 2). This may, at least after seeing it, feel very intuitive
because the rule selects winners via binary comparisons. One is tempted to suspect:
it is unproblematic to apply results and analytical tools for binary games such as
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traditional voting power indices17 also to voting bodies that face non-binary options,
provided decisions satisfy the Condorcet winner criterion.

This conjecture is wrong. Copeland rule is special in that it invokes only or-
dinal evaluations while most other Condorcet methods use information on victory
margins, rank positions, or distances between alternatives. Then more alternatives
generate more scope for weights to matter; Proposition 3 fails to generalize. This is
easily seen for the Black rule, for example. It uses Borda scores in order to break cycli-
cal majorities. Weight distributions of (6, 4, 3) and (4, 4, 2) are equivalent for m = 2.
They give rise to a preference cycle over A = {a, b, c} for profile P = (cab, abc, bca). The
Black winner hence is c for the former weight distribution, with a score of 15; but a
wins with a score of 12 for the latter, i.e., they are non-equivalent for m = 3. The same
applies to Kemeny rule, which minimizes total pairwise disagreements (Kemeny dis-
tances) between individual rankings in profile P and the induced collective ranking;
or maximin rule, where a winner must maximize the minimum support across all
pairwise comparisons: c wins for distribution (6, 4, 3), a wins for (4, 4, 2). There are
consequently more Black, Kemeny or maximin equivalence classes than Copeland
classes or weighted voting games with simple majority.

This gives ample choice for extending the analysis to more than the four rules
considered here. The list of established single-winner voting procedures is long
(see, e.g., Aleskerov and Kurbanov 1999; Nurmi 2006, Ch. 7; or Laslier 2012). The
two-stage plurality runoff rule used, e.g., in French presidential elections is one of the
most popular. But there are also prominent Condorcet extensions like Dodgson rule,
Nanson rule, Schulze rule, or Young rule; and instant runoff voting (single transferable
vote); or the full family of scoring rules axiomatized by Myerson (1995).

The latter includes plurality, Borda and antiplurality rule as the most focal mem-
bers. We have tentatively computed equivalence classes for n = m = 3 also in the
general case with a scoring vector s = (1, s2, 0) ∈ Q3 as the middle score is raised
gradually from s2 = 0 (plurality rule) to s2 = 0.5 (Borda rule) and s2 = 1 (antiplu-
rality rule). The numbers of structurally distinct weight distributions appear to be
M-shaped: they increase from 6 plurality committees to more than 160 for s2 = 0.25,
fall to 51 Borda committees, increase again to at least 229 for s2 = 0.9 and then drop
sharply to just 5 antiplurality committees.18 Exact numbers for these intermediate
cases as well as future extensions of Table 3 to more players or alternatives are likely

17See, e.g., Napel (2018).
18The corresponding geometric illustrations are available upon request. They are almost reminis-

cences of paintings, e.g., by Bauhaus artists Paul Klee and Johannes Itten.
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to require more computing power and improved algorithms, however.
Equivalence of seemingly different committee games is of theoretical and ap-

plied interest. It is relevant for the design of actual voting bodies such as the IMF’s
Executive Board, councils of non-governmental organizations, boards of private com-
panies, and possibly even for empirical analysis and forecasting: sampling errors in
opinion poll data should matter less, for instance, when population shares of the
relevant groups fall into the middle of a big equivalence class of the applicable elec-
tion rule than for a boundary point. Whether high sensitivity to weight differences –
e.g., using Borda rule instead of Copeland rule – is good from a general institutional
design perspective or bad will obviously depend on context and objectives. Higher
sensitivity may induce bigger incentives for parties to campaign or investors to buy
voting stock. But this needs to be weighed against other (un)desirable properties of
the respective rules. Links between voting weights and decisions are one aspect of
collective choice among many – but one that matters beyond binary options.
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Appendix: Minimal representations of committees

n,m Minimal w̄ for all antiplurality classes ErA

w̄,m

3, 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)
2. (1,1,0) 4. (2,1,1)

3,m ≥ 4 1. (1,0,0) 2. (1,1,0) 3. (1,1,1)

4, 3 1. (1,0,0,0) 6. (2,1,1,1) 11. (3,2,2,1) 16. (4,3,2,2)
2. (1,1,0,0) 7. (2,2,1,0) 12. (3,3,1,1) 17. (4,4,2,1)
3. (1,1,1,0) 8. (2,2,1,1) 13. (3,3,2,1) 18. (4,4,3,2)
4. (1,1,1,1) 9. (2,2,2,1) 14. (3,3,2,2) 19. (5,4,3,2)
5. (2,1,1,0) 10. (3,2,1,1) 15. (4,3,2,1)

4, 4 1. (1,0,0,0) 3. (1,1,1,0) 5. (2,1,1,1) 7. (2,2,2,1)
2. (1,1,0,0) 4. (1,1,1,1) 6. (2,2,1,1)

4,m ≥ 5 1. (1,0,0,0) 2. (1,1,0,0) 3. (1,1,1,0) 4. (1,1,1,1)

Table 4: Minimal representations of different antiplurality committees

n,m Minimal w̄ for all Borda classes ErB

w̄,3

3, 3 1. (1,0,0) 14. (3,3,2) 27. (5,4,3) 40. (8,6,3)
2. (1,1,0) 15. (4,3,1) 28. (7,4,1) 41. (9,6,2)
3. (1,1,1) 16. (5,2,1) 29. (6,5,2) 42. (8,7,3)
4. (2,1,0) 17. (4,3,2) 30. (7,5,1) 43. (8,6,5)
5. (2,1,1) 18. (5,2,2) 31. (6,5,3) 44. (10,7,2)
6. (2,2,1) 19. (5,3,1) 32. (7,5,2) 45. (11,7,2)
7. (3,1,1) 20. (4,3,3) 33. (8,5,1) 46. (9,7,5)
8. (3,2,0) 21. (5,4,1) 34. (6,5,4) 47. (10,8,3)
9. (3,2,1) 22. (6,3,1) 35. (7,5,3) 48. (11,8,2)

10. (4,1,1) 23. (5,3,3) 36. (7,6,2) 49. (11,9,3)
11. (3,2,2) 24. (5,4,2) 37. (8,5,2) 50. (13,8,2)
12. (3,3,1) 25. (6,4,1) 38. (7,5,4) 51. (12,9,7)
13. (4,2,1) 26. (7,2,2) 39. (7,6,4)

Table 5: Minimal representations of different Borda committees
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n Minimal w̄ for all Copeland classes ErC

w̄,m

and for all classes Er
w̄,2 when r ∈

{
rA, rB, rP

}
and for all weighted voting games [q; w] with q = 0.5

∑
wi

3 1. (1,0,0) 2. (1,1,0) 3. (1,1,1) 4. (2,1,1)

4 1. (1,0,0,0) 4. (1,1,1,1) 7. (2,2,1,1)
2. (1,1,0,0) 5. (2,1,1,0) 8. (3,1,1,1)
3. (1,1,1,0) 6. (2,1,1,1) 9. (3,2,2,1)

5 1. (1,0,0,0,0) 8. (2,1,1,1,1) 15. (3,2,2,1,0) 22. (4,3,2,2,1)
2. (1,1,0,0,0) 9. (2,2,1,1,0) 16. (4,1,1,1,1) 23. (4,3,3,1,1)
3. (1,1,1,0,0) 10. (3,1,1,1,0) 17. (3,2,2,1,1) 24. (5,2,2,2,1)
4. (1,1,1,1,0) 11. (2,2,1,1,1) 18. (3,2,2,2,1) 25. (4,3,3,2,2)
5. (2,1,1,0,0) 12. (3,1,1,1,1) 19. (3,3,2,1,1) 26. (5,3,3,2,1)
6. (1,1,1,1,1) 13. (2,2,2,1,1) 20. (4,2,2,1,1) 27. (5,4,3,2,2)
7. (2,1,1,1,0) 14. (3,2,1,1,1) 21. (3,3,2,2,2)

6 see next page . . .
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5 . . . see previous page

6 1. (1,0,0,0,0,0) 36. (3,2,2,2,2,1) 71. (5,4,3,2,1,1) 106. (5,5,4,3,3,2)
2. (1,1,0,0,0,0) 37. (3,3,2,2,1,1) 72. (5,4,3,2,2,0) 107. (6,4,4,3,3,2)
3. (1,1,1,0,0,0) 38. (3,3,2,2,2,0) 73. (5,4,4,1,1,1) 108. (6,5,4,3,2,2)
4. (1,1,1,1,0,0) 39. (3,3,3,1,1,1) 74. (6,3,2,2,2,1) 109. (6,5,4,3,3,1)
5. (2,1,1,0,0,0) 40. (4,2,2,2,1,1) 75. (6,3,3,2,1,1) 110. (6,5,5,2,2,2)
6. (1,1,1,1,1,0) 41. (4,3,2,1,1,1) 76. (7,2,2,2,2,1) 111. (7,4,4,3,2,2)
7. (2,1,1,1,0,0) 42. (4,3,2,2,1,0) 77. (5,4,3,2,2,1) 112. (7,5,3,3,2,2)
8. (1,1,1,1,1,1) 43. (4,3,3,1,1,0) 78. (4,4,3,3,2,2) 113. (7,5,4,3,2,1)
9. (2,1,1,1,1,0) 44. (5,2,2,1,1,1) 79. (4,4,3,3,3,1) 114. (7,5,5,2,2,1)

10. (2,2,1,1,0,0) 45. (5,2,2,2,1,0) 80. (5,3,3,3,2,2) 115. (8,4,3,3,2,2)
11. (3,1,1,1,0,0) 46. (3,3,2,2,2,1) 81. (5,4,3,2,2,2) 116. (6,5,4,4,3,2)
12. (2,1,1,1,1,1) 47. (4,3,2,2,1,1) 82. (5,4,3,3,2,1) 117. (6,5,5,3,3,2)
13. (2,2,1,1,1,0) 48. (4,3,3,1,1,1) 83. (5,4,4,2,2,1) 118. (7,5,4,3,3,2)
14. (3,1,1,1,1,0) 49. (5,2,2,2,1,1) 84. (5,5,3,2,2,1) 119. (7,5,4,4,2,2)
15. (2,2,1,1,1,1) 50. (3,3,2,2,2,2) 85. (6,3,3,2,2,2) 120. (7,5,5,3,3,1)
16. (2,2,2,1,1,0) 51. (3,3,3,2,2,1) 86. (6,4,3,2,2,1) 121. (7,6,4,3,2,2)
17. (3,1,1,1,1,1) 52. (4,3,2,2,2,1) 87. (6,4,3,3,1,1) 122. (7,6,4,3,3,1)
18. (3,2,1,1,1,0) 53. (4,3,3,2,1,1) 88. (6,4,4,2,1,1) 123. (7,6,5,2,2,2)
19. (3,2,2,1,0,0) 54. (4,3,3,2,2,0) 89. (7,3,3,2,2,1) 124. (8,5,4,3,2,2)
20. (4,1,1,1,1,0) 55. (4,4,2,2,1,1) 90. (7,3,3,3,1,1) 125. (8,5,5,3,2,1)
21. (2,2,2,1,1,1) 56. (4,4,3,1,1,1) 91. (5,4,3,3,3,2) 126. (9,4,4,3,2,2)
22. (3,2,1,1,1,1) 57. (5,2,2,2,2,1) 92. (5,4,4,3,2,2) 127. (7,5,5,4,3,2)
23. (3,2,2,1,1,0) 58. (5,3,2,2,1,1) 93. (5,4,4,3,3,1) 128. (7,6,5,3,3,2)
24. (4,1,1,1,1,1) 59. (5,3,3,1,1,1) 94. (5,5,3,3,3,1) 129. (8,5,5,4,2,2)
25. (2,2,2,2,1,1) 60. (5,3,3,2,1,0) 95. (5,5,4,2,2,2) 130. (8,6,4,3,3,2)
26. (3,2,2,1,1,1) 61. (6,2,2,2,1,1) 96. (6,4,3,3,2,2) 131. (8,6,5,3,3,1)
27. (3,2,2,2,1,0) 62. (4,3,3,2,2,1) 97. (6,4,4,3,2,1) 132. (9,5,5,3,2,2)
28. (3,3,1,1,1,1) 63. (5,3,3,2,1,1) 98. (6,5,3,2,2,2) 133. (7,6,5,4,4,2)
29. (3,3,2,1,1,0) 64. (4,3,3,2,2,2) 99. (6,5,3,3,2,1) 134. (8,6,5,4,3,2)
30. (4,2,1,1,1,1) 65. (4,3,3,3,2,1) 100. (6,5,4,2,2,1) 135. (8,7,5,3,3,2)
31. (4,2,2,1,1,0) 66. (4,4,3,2,2,1) 101. (7,3,3,3,2,2) 136. (9,6,5,4,2,2)
32. (5,1,1,1,1,1) 67. (5,3,2,2,2,2) 102. (7,4,3,2,2,2) 137. (9,7,5,4,3,2)
33. (3,2,2,2,1,1) 68. (5,3,3,2,2,1) 103. (7,4,4,2,2,1) 138. (9,7,6,4,4,2)
34. (3,3,2,1,1,1) 69. (5,3,3,3,1,1) 104. (7,4,4,3,1,1)
35. (4,2,2,1,1,1) 70. (5,4,2,2,2,1) 105. (8,3,3,3,2,1)

Table 6: Minimal representation of different Copeland committees for m ≥ 2,
and of different antiplurality, Borda and plurality committees for m = 2,
and of different weighted voting games with a simple majority requirement
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n,m Minimal w̄ for all plurality classes ErP

w̄,m

3,m ≥ 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)
2. (1,1,0) 4. (2,1,1) 6. (3,2,2)

4, 3 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,3,1)
2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,2)
3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (6,4,3,2)
4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (6,5,3,2)
5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,5,4,2)
6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (7,4,4,2)
7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (7,6,4,2)
8. (2,2,1,1) 17. (4,2,2,1) 26. (5,3,3,2)
9. (3,1,1,1) 18. (3,3,2,2) 27. (5,4,2,2)

4,m ≥ 4 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,2,2)
2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,1)
3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (5,4,3,2)
4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (5,4,4,2)
5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,4,3,2)
6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (6,5,3,2)
7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (6,5,4,2)
8. (2,2,1,1) 17. (4,2,2,1) 26. (4,4,3,2) 35. (7,4,4,2)
9. (3,1,1,1) 18. (3,3,2,2) 27. (5,3,3,2) 36. (7,6,4,2)

Table 7: Minimal representations of different plurality committees
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