
Stability with uniform bounds for online
dial-a-ride problems under reasonable load

Sven Oliver Krumke and Jörg Rambau

Abstract In continuously running logistic systems (like in-house pallet transporta-
tion systems), finite buffer capacities usually require controls achieving uniformly
bounded waiting queues (strong stability). Standard stochastic traffic assumptions
(arrival rates below service rates) can, in general, not guarantee these strong stabil-
ity requirements, no matter which control. Therefore, the worst-case traffic notion
of reasonable load was introduced, originally for the analysis of the Online-Dial-a-
Ride Problem. A set of requests is reasonable if the requests that are presented in
a sufficiently large time period can be served in a time period of at most the same
length. The rationale behind this concept is that the occurrence of non-reasonable re-
quest sets renders the system overloaded, and capacity should be extended. For rea-
sonable load, there are control policies that can guarantee uniformly bounded flow
times, leading to strong stability in many cases. Control policies based on naive re-
optimization, however, can in general achieve neither bounded flow times nor strong
stability. In this chapter, we review the concept and examples for reasonable load.
Moreover, we present new control policies achieving strong stability as well as new
elementary examples of request sets where naive reoptimization fails.

1 Introduction

Consider a distribution center with various floors, connected to a warehouse for
standard pallets. Pallets are moving horizontally along conveyor belts and vertically
in elevators. (One such system can be found in a distribution center of Herlitz for
office supply in Falkensee near Berlin.) By design of the micro-control, a pallet can
only move forward on a conveyor belt, if there is enough space in front of it. A

Sven Oliver Krumke
Technische Universität Kaiserslautern, e-mail: krumke@mathematik.uni-kl.de

Jörg Rambau
Universität Bayreuth, e-mail: joerg.rambau@uni-bayreuth.de

1

2 Sven Oliver Krumke and Jörg Rambau

section of a conveyor belt completely filled with pallets results in a complete stand-
still of that belt. In such an event, pallets have to be removed manually in order to
resume transportation.

For example, if pallets requesting an elevator stay too long in the subsystem
available for waiting pallets, that subsystem will seize to work. Thus, the goal is to
control an elevator in such a way that the waiting slot capacities are never exceeded.
The number of pallets in such waiting slots can be minimized by minimizing the
average flow times (also called sojourn times) of the pallets waiting for an elevator.
Another requirement is that the flow time of an individual pallet is not arbitrarily
large (infinite deferment), since such a forgotten pallet can hold back the delivery of
a large order. Figure 1 shows the single waiting slots in front of some pallet elevators
in the Herlitz distribution center.

Fig. 1 Pallet elevators at the distribution center of Herlitz with a single waiting slot in front of each

There are several mathematical theories that suggest a framework for the anal-
ysis of this system. Queuing theory [10] captures particularly well average entities
in the steady state of such a system. It utilizes stochastic information on the input
stream of requests. However, it is extremely difficult to derive non-trivial control
policies from it, since usually policies are an input and not an output of the compu-
tations. Stochastic dynamic programming in Markov Decision Processes [19] is in
principle suitable for finding an control policy for stochastic inputs that is optimal in
expectation, but in this case the curse of dimensionality renders a direct application
impossible. For example, an elevator system with one elevator of capacity one and
with n floors containing w waiting slots each requires a state space of at least nnw+1

Stability with uniform bounds for online dial-a-ride problems under reasonable load 3

states. For one waiting slot on each of eight floors—as can be found at Herlitz—this
means more than 134 million states, and this does not yet include state information
on already accumulated waiting times in the system. Approximate dynamic pro-
gramming [5, 6] yields policies that are reported to perform well in experiments,
but performance guarantees cannot be given.

An interest in worst-case results rather than expected performance measures then
triggered the concept of competitive analysis [4]: the worst case results computed
by min-max dynamic programming are often meaningless because in the worst-
case all policies are equally and maximally bad. See, for example the famous pag-
ing problem [4, 7], where, obviously, each paging policy may have page fault at
every page request. To present a principle solution to this dilemma, the more game-
theoretic competitive analysis was developed [4, 7] and founded the area of online-
optimization in algorithmic theory. In online-optimization, an online algorithm is
presented a sequence of requests. The online algorithm has to answer the requests
in such a way that an answer at any point in time is a function of all requests and
answers given up to that time, i.e., the online algorithm has no clairvoyant abili-
ties. In competitive analysis, the cost of an online algorithm on a particular request
sequence is compared to the cost of an optimal offline algorithm on the same re-
quest sequence. In contrast to the online algorithm, the optimal offline algorithm
is clairvoyant, i.e., it knows the whole sequence in advance and computes an opti-
mal sequence of answers. Both have unlimited computing power in order to stress
the fact that we want to evaluate how well an online algorithm handles the lack
of information about future requests. The supremum of the cost ratios over all re-
quest sequences is the competitiveness of the online algorithm. The infimum of the
competitivenesses over all online algorithms is the competitiveness of the online
problem.

However, for many practical problems, the so-called triviality barrier is met: all
online algorithms are equally bad if compared to an optimal offline algorithm. This
is, unfortunately, also the case in our application: the competitiveness of our problem
is infinite. The reason for this is simple: there are arbitrarily long request sequences
where the optimal offline algorithm can always be exactly at the floor where a new
request arrives (i.e., no waiting time), whereas this is impossible for any online
algorithm (i.e., positive waiting time). Thus, the cost ratio depends on the request
sequence, i.e., there is no uniform bound.

Recent progress has been made using stochastic dominance as a means for per-
formance comparison of online algorithms [14]. Stochastic dominance is a very
strong statement. Thus, the problems that could be tackled by this so far are quite
elementary.

Despite these difficulties in the theoretical analysis, experience shows a satis-
factory performance of so-called replan algorithms in online optimization. These
are online algorithms that resemble the paradigm of a receding-horizon in Model
Predictive Control (MPC): in a closed-loop, use a control that is computed as the
optimum open-loop control over some finite horizon. The development of the sys-
tem is estimated on the basis of a model of the system behaviour and assumptions
on the possible future inputs and/or disturbances. Since future requests in online op-

4 Sven Oliver Krumke and Jörg Rambau

timization are completely unknown and no deterministic prediction is likely enough
to become true, replan algorithms in online optimization usually perform their com-
putations with no future requests at all. The model prediction then restricts itself to
the forecast of future events when the schedule is carried out with no new requests
arriving. We assume in this chapter that this part of the prediction is exact.

In our application the structure of a generic replan algorithm is informally de-
scribed as follows. At a particular point in time, we consider only pallets known to
the system (a system-snapshot). We then compute an open-loop scheduling that is
optimal with respect to carefully engineered constraints and a carefully engineered
objective function (the snapshot problem). This scheduling is “used” until a new
request enters the system. The new request then triggers a new optimization compu-
tation. What does it mean to “use” a schedule? In order to interpret a policy utilizing
pre-computed schedules as a control policy for the elementary elevator movements,
the schedules need to be translated in sequences of microscopic controls like “Go
Up/Down one floor”, “Halt at current floor”, “Let pallet enter/exit”. Whereas in the
online optimization community this transformation of schedules and routings into
low-level controls is rarely mentioned explicitly, there are more detailed descrip-
tions of this process in the MPC literature [22]. We call the resulting control policy
a replan policy. Since we are assuming that carrying out a schedule happens with
no disturbances, this transition is straight-forward and is not made explicit in the
following. Therefore, the terms policy and online algorithm can be understood in-
terchangeably in the following.

The arguably most straight-forward replan policy is what we call naive reopti-
mization. It assumes that there is a so-called associated offline-version of the prob-
lem. This is an offline-optimization problem that describes the best possible opera-
tion of the system given all inputs throughout an evaluation period. Such an evalua-
tion period may be one day for the elevator system in our application. The offline-
version should have the property that an optimal solution to it corresponds to a best
possible control of the system when the inputs are exactly as predicted. The (non-
implementable) policy given by a solution to the offline-version with exactly the
actual future requests can be interpreted as a policy used by a clairvoyant controller
that optimizes controls under exact predictions of the future on the whole evaluation
period. Naive reoptimization is the (implementable) policy that uses the same con-
straints and objective as in the offline-version; the inputs, however, are restricted to
all currently known inputs. Such a policy is optimal when no further inputs occur. In
our case: when no additional requests arrive. Note, that on the controller level this
policy still uses non-trivial predictions because carrying out a schedule through all
known requests usually takes many stages of low-level controls.

In order to utilize sensible stochastic forecasts about incoming requests, all replan
policies can in principle be enhanced by incorporating a probability distribution over
a limited number of future requests. This, however, leads to extremely hard-to-solve
stochastic optimization models in the snapshot problems, and we know of no real-
world example where this stochastic replan technique has been applied.

More common is to add further constraints or penalty terms in the objective func-
tion to the snapshot problem of naive reoptimization. These constraints and penalties

Stability with uniform bounds for online dial-a-ride problems under reasonable load 5

represent a mostly heuristic safe-guard against unwanted system states that are not
ruled-out by the offline-optimization model on known requests. One example is the
common technique of using an average squared waiting time in the objective of the
snapshot problem instead of an average waiting time [18, 16]. The goal of this is to
balance the desire for individually not-too-large waiting times (fairness) with small
average waiting times (performance). The main problem with this engineering ap-
proach is that in many cases nothing can be proved about the performance of the
resulting replan policy.

Our application is an instance of the so-called Online-dial-a-ride problem. For
the sake of an easier exposition, we restrict to the special case of a single server of
capacity one. In our application, this means that want to control an idealized elevator
of capacity one with one waiting queue of infinite capacity.

We show the following for such a system: the combination of ideas from online-
optimization, model predictive control, and queuing theory yields experimentally
and theoretically reliable control policies for these elevator systems. These stable
policies are not defined as REPLAN-policies: our policies ignore some open-loop so-
lutions and keep the ones computed earlier. The theoretical performance guarantees
are dependent on a bound on the combinatorial load in the system: the reasonability
of the input stream. As we go along, we put known results into context and present
some so far unpublished results.

The chapter is structured as follows: Section 2 defines the problem under consid-
eration formally. In Section 3 we define some online algorithms for the OLDARP,
followed by some known performance results in Section 4. Our original contribu-
tion beyond these results is outlined in Section 5. The core concept dealt with in
this chapter is introduced formally in Section 6, before we suggest the notion of
strong stability in Section 7. Sections 8 and 9 present performance guarantees under
reasonable load for two competitive algorithms IGNORE and SMARTSTART, respec-
tively. Sections 10 and 11 show that such performance guarantees do not exist for the
seemingly more natural competitive algorithms REPLAN and AVGFLOWREPLAN.
The analysis for the new algorithm DELTAREPLAN is carried out in Section 12. Sec-
tion 13 concludes the chapter with a conclusion and possible further directions.

2 Formal Problem Statement

After the informal introduction let us define the problem under consideration more
precisely. We are given a metric space (X ,d) with a special vertex o∈ X (the origin)
in which a server of capacity C ∈ R≥0 ∪{∞} moves at unit speed in order to serve
transportation requests. Requests are triples r = (t,a,b), where a is the start point
of a transportation task, b its end point, and t its release time, which is—in this
context—the time where r becomes known. If r is a request, we also use t(r) for its
release time and a(r) and b(r) for its start end point, respectively.

A transportation move is a quadruple m= (τ,x,y,R), where a is the starting point
and b the end point, and τ the starting time, while R is the set (possibly empty) of

6 Sven Oliver Krumke and Jörg Rambau

requests carried by the move. The arrival time of a move is the sum of its starting
time τ and d(x,y). A (closed) transportation schedule for a sequence σ of requests
is a sequence

S = (τ1,x1,y1,R1),(τ2,x2,y2,R2), . . . ,(τ`,x`,y`,R`)

of transportation moves with the following properties:

(i) The (i+1)st move starts at the endpoint of the ith move and not earlier than the
time that the ith move is completed, that is, xi+1 = yi and τi+1 ≥ τi +d(xi,yi)
for all i;

(ii) Each move carries at most C requests, that is, |Ri| ≤C for all i;
(iii) For any request r ∈ σ , the subsequence of S consisting of those moves

(τi,xi,yi,Ri) with r ∈ Ri is a contiguous nonempty subsequence

S(r) = (τl ,xl ,yl ,Rl), . . . ,(τl+p,xl+p,yl+p,Rl+p)

of S which forms a transportation from a(r) to b(r), that is, xl = a(r) and
yl+p = b(r). The sub-transportation S(r) does not start before r is released,
that is, τl ≥ t(r).

(iv) The first move starts in the origin o and the last move ends in the origin o.

The time τ1 and the point x1 ∈ X are called the starting time and the starting point
of S. Similarly, the time τ`+d(x`,y`) and the point y` are referred to as the end time,
and the end point of S.

An online algorithm for OLDARP has to move a server in X so as to fulfill all re-
leased transportation tasks without preemption (i.e., once an object has been picked
up it is not allowed to be dropped at any other place than its destination, see Con-
dition (ii) above), while it does not know about requests that are presented in the
future. In order to plan the work of the server, the online algorithm may maintain
a preliminary (closed) transportation schedule for all known requests, according to
which it moves the server.

A posteriori, the moves of the server induce a complete transportation schedule
that may be compared to an offline transportation schedule that is optimal with re-
spect to some objective function. This is the core of competitive analysis of online
algorithms.

An online algorithm A is called c-competitive if there exists a constant c such
that for any finite request sequence σ the inequality A(σ)≤ c ·OPT(σ) holds. Here,
X(σ) denotes the objective function value of the solution produced by algorithm X
on input σ and OPT denotes an optimal offline algorithm. Sometimes we are dealing
with various objectives at the same time. We then indicate the objective obj in the
superscript, as in Xobj(σ).

For a detailed set-up that focusses on competitive analysis see [1, 17].

Stability with uniform bounds for online dial-a-ride problems under reasonable load 7

3 Known Online Algorithms

Several online algorithms have been suggested in the literature so far: we discuss
REPLAN, IGNORE, and SMARTSTART because our stability results refer to them.
All these algorithms stem from [1]. The algorithm REPLAN is based on ideas in [3];
the algorithm IGNORE appears in [21] in a more general context. The algorithms can
be considered as typical representatives of construction principles for online algo-
rithms: REPLAN reoptimizes whenever a new request arrives, IGNORE reoptimizes
only when it becomes idle whereafter it immediately continues to work, SMART-
START reoptimizes only when idle and stays idle deliberately for a certain amount
of time to gather more information about unserved requests.

The online algorithm REPLAN for the OLDARP is based on the general idea of a
replan algorithm in the introduction in Section 1.

Definition 1 (Algorithm REPLAN). Whenever a new request becomes available,
REPLAN computes a preliminary transportation schedule for the set R of all available
requests by solving the problem of minimizing the total completion time of R. Then
it moves the server according to that schedule until a new request arrives or the
schedule is done.

The online algorithm IGNORE makes full use of every schedule it computes be-
fore it recomputes a new schedule:

Definition 2 (Algorithm IGNORE). Algorithm IGNORE works with an internal buf-
fer. It may assume the following states (initially it is IDLE):

IDLE Wait for the next point in time when requests become available. Goto
PLAN.

BUSY While the current schedule is in work store the upcoming requests in a
buffer (“ignore them”). Goto IDLE if the buffer is empty else goto PLAN.

PLAN Produce a preliminary transportation schedule for all currently available
requests R (taken from the buffer) minimizing the total completion time comp
of R. (Note: This yields a feasible transportation schedule for R because all re-
quests in R are immediately available.) Goto BUSY.

The algorithm SMARTSTART was developed to improve the competitive ratios
of REPLAN and IGNORE. The idea of this algorithm is basically to emulate the
IGNORE algorithm but to make sure that each sub-transportation schedule is com-
pleted “not too late”: if a sub-schedule would take “too long” to complete then the
algorithm waits for a specified amount of time. Intuitively this construction tries to
avoid the worst-case situation for IGNORE where, right after the algorithm starts its
work on a schedule, a new request becomes known.

In this section we use l(S) to denote the length of a schedule (tour) S computed
for a (sub-) set of requests. SMARTSTART has a fixed “waiting scaling” parame-
ter θ > 1. From time to time the algorithm consults its “work-or-sleep” routine:
this subroutine computes an (approximately) shortest schedule S for all unserved
requests, starting and ending in the origin. If this schedule can be completed no

8 Sven Oliver Krumke and Jörg Rambau

later than time θ t, i.e., if t + l(S) ≤ θ t, where t is the current time and l(S) de-
notes the length of the schedule S, the subroutine returns (S,work), otherwise it
returns (S,sleep).

In the sequel it will be convenient again to assume that the “work-or-sleep” sub-
routine uses a ρ-approximation algorithm for computing a schedule: the approx-
imation algorithm always finds a schedule of length at most ρ times the optimal
one.

Definition 3 (Algorithm SMARTSTART). The server of algorithm SMARTSTART
can assume three states (initially it is IDLE):

IDLE If the algorithm is idle at time T and new requests arrive, it calls “work-or-
sleep”. If the result is (S,work), the algorithm enters the busy state where it fol-
lows schedule S. Otherwise the algorithm enters the sleeping state with wakeup
time t ′, where t ′ ≥ T is the earliest time such that t ′+ l(S)≤ θ t ′ and l(S) denotes
the length of the just computed schedule S, i.e., t ′ = min{ t ≥ T : t + l(S)≤ θ t }.

SLEEPING In the sleeping state the algorithm simply does nothing until its
wakeup time t ′. At this time the algorithm reconsults the “work-or-sleep” sub-
routine. If the result is (S,work), then the algorithm enters the busy state and
follows S. Otherwise the algorithm continues to sleep with new wakeup time
min{ t ≥ t ′ : t + l(S)≤ θ t }.

BUSY In the busy state, i.e, while the server is following a schedule, all new re-
quests are (temporarily) ignored. As soon as the current schedule is completed the
server either enters the idle-state (if there are no unserved requests) or it recon-
sults the “work-or-sleep” subroutine which determines the next state (SLEEP-
ING or BUSY).

4 Known Performance Guarantees

Competitive analysis of OLDARP provided the following (see [1]):

• IGNORE and REPLAN are 2.5-competitive for the goal of minimizing the total
completion time of the schedule; SMARTSTART is 2-competitive for this problem,
which is best-possible.

• For the task of minimizing the maximal (average) waiting time or the maximal
(average) flow time there can be no algorithm with constant competitive ratio. In
particular, the algorithms REPLAN, IGNORE, and SMARTSTART have unbounded
competitive ratios for this problem.

It should be noted that the corresponding offline-versions with release times (where
all requests are known at the start of the algorithm) are NP-hard to solve for the
objective functions of minimizing the average or maximal flow time—it is even
NP-hard to find a solution within a constant factor from the optimum [15]. The
offline-version without release times of minimizing the total completion time is
polynomially solvable on special graph classes but NP-hard in general [9, 2, 8, 13].

Stability with uniform bounds for online dial-a-ride problems under reasonable load 9

If we are considering a continuously operating system with continuously arriv-
ing requests (i.e., the request set may be infinite) then the total completion time un-
bounded anyway, thus meaningless. Thus, in this case, the existing positive results
cannot be applied and the negative results tell us that we cannot hope for perfor-
mance guarantees that may be relevant in practice. In particular, the performances
of the two algorithms REPLAN and IGNORE cannot be distinguished by classical
competitive analysis at all (both are 2.5 competitive w.r.t. the total completion time
and not competitive at all w.r.t. the average or maximal flow time), and the perfor-
mance of SMARTSTART can not be distinguished from any other algorithm if the
average or maximal flow time is the goal.

In order to find theoretical guidance which algorithm should be chosen, the no-
tion of ∆ -reasonable load was developed [12]. A set of requests is ∆ -reasonable
if requests released during a period of time δ ≥ ∆ can always be served in time
at most δ . A set of requests R is reasonable if there exists a ∆ < ∞ such that R is
∆ -reasonable. That means, for non-reasonable request sets we find arbitrarily large
periods of time where requests are released faster than they can be served—even
if the server has an optimal offline schedule and all requests can be served imme-
diately. When a system has only to cope with reasonable request sets, we call this
situation reasonable load. Section 6 is devoted to the exact mathematical setting of
this idea, because we need it for the new results.

The main historical result based on this idea in [12] is: For the OLDARP under
∆ -reasonable load, IGNORE yields a maximal and an average flow time of at most
2∆ , whereas the maximal and the average flow time of REPLAN are unbounded.
The algorithms IGNORE and REPLAN have to solve a number of offline instances of
OLDARP, which is in general NP-hard, as we already remarked. One can derive re-
sults for IGNORE when using an approximate algorithm for solving offline instances
of OLDARP (for approximation algorithms for offline instances of OLDARP, refer
to [9, 2, 8, 13]). To this end, the notion of reasonable request sets was refined [12],
introducing a second parameter that tells us how “fault tolerant” the request set is.
In other words, the second parameter tells us, how “good” the algorithm has to be to
show stable behavior. Again, roughly speaking, a set of requests is (∆ ,ρ)-reasonable
if requests released during a period of time δ ≥∆ can be served in time at most δ/ρ .
If ρ = 1, we get the notion of ∆ -reasonable as described above. For ρ > 1, the al-
gorithm is allowed to work “sloppily” (e.g., employ approximation algorithms) or
have break-downs to an extent measured by ρ and still show a stable behavior.

5 Outline of New Contributions

Simulation results [11] show that IGNORE indeed outperforms REPLAN in terms of
the maximal flow time, but in terms of the average flow time the behaviour of RE-
PLAN is usually much better. This left open the question about whether IGNORE can
be improved empirically without losing the performance guarantee. Alternatively:
is there a version of REPLAN that wins the performance guarantee of IGNORE but

10 Sven Oliver Krumke and Jörg Rambau

stays empirically efficient? As an answer to this question we present the algorithm
DELTAREPLAN in Section 12.

The following results in this chapter have not been published elsewhere before:

• We present a proof that the replan policy SMARTSTART that is optimally compet-
itive for the total completion time (the makespan) has bounded flow times under
reasonable load as well;

• we show an example for which a replan policy with snapshot objective “minimize
the average flow time” produces unbounded maximal and average flow times in
the long run;

• we present one particular replan policy DELTAREPLAN that inherits the perfor-
mance guarantee of IGNORE but is able to yield a better average flow time in
simulations;

• we show that using a policy with bounded flow times yields uniformly bounded
waiting queues, i.e., strong stability.

6 Reasonable Load in Detail

Crucial for the concept of reasonable load is the offline version of a request set.

Definition 4. The offline version of r = (t,a,b) is the request

roffline := (0,a,b).

The offline version of R is the request set

Roffline :=
{

roffline : r ∈ R
}
.

An important characteristic of a request set with respect to system load consider-
ations is the time period in which it is released.

Definition 5. Let R be a finite request set for OLDARP. The release span δ (R) of R
is defined as

δ (R) := max
r∈R

t(r)−min
r∈R

t(r).

Provably good offline-algorithms exist for the total completion time and the
weighted sum of completion times. How can we make use of these algorithms in
order to get performance guarantees for minimizing the maximum (average) wait-
ing (flow) times? We suggest a way of characterizing request sets which we want to
consider “reasonable”.

In a continuously operating system we wish to guarantee that work can be ac-
complished at least as fast as it is presented. The idea is stolen from queuing theory
where the input rate should not exceed the output rate. In the following we propose
a mathematical set-up which models this idea in a worst-case fashion. Since we are

Stability with uniform bounds for online dial-a-ride problems under reasonable load 11

always working on finite subsets of the whole request set, the request set itself may
be infinite, modeling a continuously operating system.

We start by relating the release spans of finite subsets of a request set to the time
we need to fulfill the requests.

Definition 6. Let R be a request set for the OLDARP. A weakly monotone function

f :
{
R → R,
δ 7→ f (δ);

is a load bound on R if for any δ ∈ R and any finite subset S of R with δ (S) ≤ δ

the completion time OPTcomp(Soffline) of the optimum schedule for the offline ver-
sion Soffline of S is at most f (δ). In formula:

OPTcomp(Soffline)≤ f (δ).

Remark 1. If the whole request set R is finite then there is always the trivial load
bound given by the total completion time of R. For every load bound f we may set
f (0) to be the maximum completion time we need for a single request, and nothing
better can be achieved.

A “stable” situation would easily obtained by a load bound equal to the identity
x 7→ x on R. (By “stable” we mean that the number of unserved requests in the
system does not become arbitrarily large.) In that case we would never get more
work to do than we can accomplish. If it has a load bound equal to a function id/ρ ,
where id is the identity and where ρ ≥ 1, then ρ measures the tolerance of the
request set: assume we have an offline-algorithm at our disposal that produces in
the worst case cost of ρ times the cost of an optimal offline algorithm, then we can
still accomplish all the incoming work by using the IGNORE-algorithm: compute
a ρ-approximate schedule for the set R of all released but unserved requests. The
load bound and the performance guarantee ensure that the schedule takes no longer
than ρ ·∆(R)/ρ = ∆(R). Thus, the set of requests that are released in the meantime
has a release span no larger than ∆(R), and we can proceed by computing a ρ-
approximate schedule for that set.

However, we cannot expect that the identity (or any linear function) is a load
bound for OLDARP because of the following observation: a request set consisting
of one single request has a release span of 0 whereas in general it takes non-zero time
to serve this request. In the following definition we introduce a parameter describing
how far a request set is from being load-bounded by the identity.

Definition 7. A load bound f is (∆ ,ρ)-reasonable for some ∆ ,ρ ∈ R with ρ ≥ 1 if

ρ f (δ)≤ δ for all δ ≥ ∆

A request set R is (∆ ,ρ)-reasonable if it has a (∆ ,ρ)-reasonable load bound. For
ρ = 1, we say that the request set is ∆ -reasonable.

12 Sven Oliver Krumke and Jörg Rambau

In other words, a load bound is (∆ ,ρ)-reasonable, if it is bounded from above
by id(x)/ρ for all x≥ ∆ and by the constant function with value ∆/ρ otherwise.

Remark 2. If ∆ is sufficiently small so that all request sets consisting of two or more
requests have a release span larger than ∆ then the first-come-first-serve policy is
good enough to ensure that there are never more than two unserved requests in the
system. Hence, the request set does not require scheduling the requests in order to
provide for a stable system.

In a sense, ∆ is a measure for the combinatorial difficulty of the request set R.
If R is not ∆ -reasonable for any ∆ > 0, then this indicates that the capacity of the
system does not suffice to keep the system stable. Then, the task is not to find the
best control but to add capacity first.

Thus, it is natural to ask for performance guarantees for the flow times of al-
gorithms in terms of the reasonability ∆ of the input. This is discussed for various
algorithms in Sections 8 through 12. Before that, we want to argue that flow time
bounds guarantee a certain form of stability.

7 Strong Stability

We want to find an online algorithm for which there is a uniform bound on the
number of requests in the system. More formally:

Definition 8. An online algorithm ALG for OLDARP on (X ,d) with origin o is
strongly ∆ -stable if there exists M ≥ 0 such that for each ∆ -reasonable request set R
the number of unserved requests in the system controlled by ALG is never larger
than M.

In the stochastic setting, Little’s formula (see, e.g., [10]) provides a relation be-
tween the traffic, the expected number of requests in the system and the expected
flow time of the requests: the expected number of requests in the system equals the
average number of requests entering the system times the expected flow time of re-
quests. We would like to replace the traffic intensity by our ∆ , but since we are in a
worst-case setting, the corresponding relation does not always hold.

In contrast to traffic conditions in queuing theory, ∆ is only indirectly related to
the number of requests in the system. The problem occurs when the service times for
requests are not bounded away from zero. The extreme case is an Online Traveling
Salesman Problem where requests must be visited, nothing else; in that case, the
server can serve an unlimited number of requests in arbitrarily little time if it is
already very close to the position of the requests. For a short time then, there may
be an unlimited number of requests in the system although serving them requires
only an arbitrarily small amount of time, thereby not violating any ∆ -reasonability
requirement. It is clear that in such a situation no algorithm can achieve strong
stability.

Stability with uniform bounds for online dial-a-ride problems under reasonable load 13

The situation is different when serving a request takes at least time τ > 0. In the
elevator example this is true, because each pallet has to be transported for at least
one floor. We call this variant of OLDARP the Online-Dial-a-Ride-Problem with
minimal transport time τ or τ-OLDARP, for short.

We then obtain the following:

Theorem 1. If the maximal flow time of ALG for τ-OLDARP is at most f (∆) for
all ∆ -reasonable request sets, then ALG is strongly ∆ -stable. More specifically, the
number of requests in the system is never larger than f (∆)/τ .

Proof. The time we need to serve a request is at least τ . If a request subset with
release span at most ∆ contains more than ∆/τ requests, then we need more time
than ∆ = τ∆/τ to serve it offline. The maximal number of requests that can enter
the system in time ∆ is therefore ∆/τ . If each request leaves the system after at most
f (∆) time units, then there may be at most

f (∆) · ∆
τ
· 1

∆
(1)

requests at the same time in the system. ut

The result of this (elementary) discussion is: in order to obtain strongly stable
online algorithms it is sufficient to find online algorithms with bounded maximal
flow times.

8 Bounds for the Flow Times of IGNORE

We are now in a position to prove bounds for the maximal resp. average flow time
in the OLDARP for algorithm IGNORE. We assume that IGNORE solves offline in-
stances of OLDARP employing a ρ-approximation algorithm.

Let us consider the intervals in which IGNORE organizes its work in more detail.
The algorithm IGNORE induces a dissection of the time axis R in the following way:
We can assume, w.l.o.g., that the first set of requests arrives at time 0. Let δ0 = 0,
i.e., the point in time where the first set of requests is released (these are processed
by IGNORE in its first schedule). For i > 0 let δi be the duration of the time period
the server is working on the requests that have been ignored during the last δi−1 time
units. Then the time axis is split into the intervals

[δ0 = 0,δ0],(δ0,δ1],(δ1,δ1 +δ2],(δ1 +δ2,δ1 +δ2 +δ3], . . .

Let us denote these intervals by I0, I1, I2, I3, Moreover, let Ri be the set of those
requests that are presented in Ii. Clearly, the complete set of requests R is the disjoint
union of all the Ri.

At the end of each interval Ii we solve an offline problem: all requests to be sched-
uled are already available. The work on the computed schedule starts immediately

14 Sven Oliver Krumke and Jörg Rambau

(at the end of interval Ii) and is done δi+1 time units later (at the end of interval Ii+1).
On the other hand, the time we need to serve the schedule is not more than ρ times
the optimal completion time OPTcomp(Ri

offline) of Ri
offline. In other words:

Lemma 1. For all i≥ 0 we have

δi+1 ≤ ρ ·OPTcomp(Ri
offline).

Let us now state and prove the main result of this section, first proved in [12],
about the maximal flow time IGNOREmaxflow(R) incurred by IGNORE on any rea-
sonable request set R.

Theorem 2 ([12]). Let ∆ > 0 and ρ ≥ 1. For all instances of OLDARP with (∆ ,ρ)-
reasonable request sets, IGNORE employing a ρ-approximate algorithm for solving
offline instances of OLDARP yields a maximal flow time of no more than 2∆ .

Proof. Let r be an arbitrary request in Ri for some i≥ 0, i.e., r is released in Ii. By
construction, the schedule containing r is finished at the end of interval Ii+1, i.e., at
most δi +δi+1 time units later than r was released. Thus, for all i > 0 we get that

IGNOREmaxflow(Ri)≤ δi +δi+1.

If we can show that δi ≤ ∆ for all i > 0 then we are done. To this end, let f : R→
R be a (∆ ,ρ)-reasonable load bound for R. Then OPTcomp(Ri

offline)≤ f (δi) because
δ (Ri)≤ δi.

By Lemma 1, we get for all i > 0

δi+1 ≤ ρOPTcomp(Ri
offline)≤ ρ f (δi)≤max{δi,∆}.

Using δ0 = 0 the claim now follows by induction on i. ut

The average flow time of IGNORE is also bounded, because the average is never
larger than the maximum.

Corollary 1. Let ∆ > 0. For all ∆ -reasonable request sets algorithm IGNORE yields
a average flow time of no more than 2∆ .

9 Bounds for the Flow Times of SMARTSTART

The analysis of SMARTSTART under reasonable load was not published before; it
essentially parallels that of IGNORE, so we only highlight the differences. The cru-
cial observation needed is formulated in the following lemma:

Lemma 2. For (∆ ,ρ)-reasonable request sequences the server of SMARTSTART
never sleeps after time t̄ := ∆

θ−1 .

Stability with uniform bounds for online dial-a-ride problems under reasonable load 15

Proof. Consider a call to the “work-or-sleep” routine at an arbitrary time t ≥ t̄.
Let R be the set of requests not served by SMARTSTART at time t and let S be
a ρ-approximate shortest schedule for R. By the (∆ ,ρ)-reasonability of the input
sequence, the length of schedule S for R can be bounded from above by

l(S)≤ ρ ·max
{

∆

ρ
,

δ (R)
ρ

}
= max{∆ ,δ (R)}.

Trivially, we have δ (R) ≤ t, since all requests in R have been released at time t.
Hence, it follows that

t + l(S)≤ t +max{∆ ,δ (R)}
≤ t +max{∆ , t} (since δ (R)≤ t)
= t +max{(θ −1)t̄, t} (since t̄ = ∆/(θ −1))
≤ θ t (since t ≥ t̄).

Consequently, the “work-or-sleep” routine does not return the invitation to sleep.
The same arguments as given above show that, if SMARTSTART goes to sleep

before some time t < t̄, the wakeup time is no later than time t̄. Hence, the lemma
follows. ut

Let S be the last schedule started by SMARTSTART no later than time t̄ and denote
by tS ≤ t̄ its start time. From Lemma 2 we conclude that from time t̄ on, SMART-
START behaves like IGNORE, provided the input sequence is (∆ ,ρ)-reasonable. Us-
ing the arguments given in the proof of Theorem 2 we can conclude that the flow
time of any request released after time tS is bounded from above by 2∆ .

It remains to treat the requests released before time t̄. Using again the arguments
of Theorem 2 we derive that all requests released after time tS have flow time at
most 2∆ and we finally need to consider those requests released until time tS. Each
of these requests is either served by S or by an even earlier schedule. Since by
definition of SMARTSTART, the transportation schedule S is completed no later than
time θ tS < θ t̄ = θ

θ−1 ∆ , we obtain the following result:

Theorem 3. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, Algorithm SMARTSTART employing a ρ-approximation algorithm in its
“work-or-sleep” routine yields a maximal flow time of no more than max

{
θ

θ−1 ∆ ,2∆
}

.
In particular, if θ ≥ 2, then the maximal flow time provided by SMARTSTART is
bounded from above by 2∆ . ut

As in the case of IGNORE a we can derive a trivial upper bound of 2∆ for the
average flow time of SMARTSTART under reasonable load.

16 Sven Oliver Krumke and Jörg Rambau

d

G

0
t

ε ε ε

`

ε ε ε

3/2`− ε `−2ε `−2ε

a

b

c

Fig. 2 A sketch of a (2 2
3 `)-reasonable instance of OLDARP (` = 18ε). The horizontal axis holds

the time, the vertical axis depicts the metric space in which the server moves. A request is denoted
by an arrow from its starting point to its end point horizontally positioned at its release time.

10 An Example with Unbounded Flow Times for REPLAN

In the sequel, we provide an instance of OLDARP and a ∆ -reasonable request set R
such that the maximal flow time REPLANmaxflow(R) (and thus also the average flow
time) of REPLAN is unbounded. This was first proved in [12]. Recall that REPLAN
uses a snapshot optimization problem in which the total completion time is mini-
mized. Hence, REPLAN is not a naive replan policy since our evaluation objective is
the maximal flow time.

Theorem 4 ([12]). There is an instance of OLDARP under reasonable load such
that the maximal and the average flow time of REPLAN is unbounded.

Proof. In Figure 2 there is a sketch of an instance for the OLDARP. The metric
space is a path on four nodes a,b,c,d with origin a; the length of the path is `, the
distances are d(a,b) = d(c,d) = ε , and hence d(b,c) = `−2ε . At time 0 a request
from a to d is issued; at time 3/2`− ε , the remaining requests periodically come in
pairs from b to a and from c to d, resp. The time distance between them is `−2ε .

We show that for ` = 18ε the request set R indicated in the picture is 2 2
3`-

reasonable. Indeed: it is easy to see that the first request from a to d does not in-
fluence reasonability. Consider an arbitrary set Rk of k adjacent pairs of requests
from b to a resp. from c to d. Then the release span δ (Rk) of Rk is

δ (Rk) = (k−1)(`−2ε).

Stability with uniform bounds for online dial-a-ride problems under reasonable load 17

The offline version Rk
offline of Rk can be served as follows: first, move the server

to c, the starting point of the upper requests: this contributes cost `− ε . Next, serve
all the upper requests and go back to c: this contributes cost k×2ε . Then, go down
to b, the starting point of the lower requests: this contributes another `− 2ε to the
cost. Now, serve the first lower requests: the additional cost for this is ε . Finally,
serve the remaining lower requests at an additional cost of (k−1) ·2ε . In total, we
have the following:

OPTcomp(Rk
offline) = 2`+(k−1) ·4ε.

In order to find the smallest parameter ∆ for which the request set Rk is ∆ -
reasonable we solve for the integer k−1 and get

k−1 =

⌈
2`

`−6ε

⌉
= 3.

Hence, we can set ∆ to

∆ := OPTcomp(R4
offline) = 2 2

3`.

Now we define

f :


R → R,

δ 7→

{
∆ for δ < ∆ ,

δ otherwise.

By construction, f is a load bound for R4. Because the time gap after which a
new pair of requests occurs is certainly larger than the additional time we need to
serve it (offline), f is also a load bound for R. Thus, R is ∆ -reasonable, as desired.

Now: how does REPLAN perform on this instance? In Figure 3 we see the track of
the server following the preliminary schedules produced by REPLAN on the request
set R.

The maximal flow time of REPLAN on this instance is realized by the flow time
of the request (3/2`− ε,b,a), which is unbounded.

Moreover, since all requests from b to a are postponed after serving all the re-
quests from c to d we get that REPLAN produces an unbounded average flow time
as well. ut

In Figure 4 we show the track of the server under the control of the IGNORE-
algorithm. After an initial inefficient phase the server ends up in a stable operating
mode. This example also shows that the analysis of IGNORE in Section 8 is sharp.

18 Sven Oliver Krumke and Jörg Rambau

`−2ε

G

0
t

ε ε ε

`

ε ε ε

3/2`− ε `−2ε

Fig. 3 The track of the REPLAN-server is drawn as a line in the diagram: at each point in time t we
can read off the position of the server by looking at the height of the line at the horizontal position t.
Because a new pair of requests is issued exactly when the server is still closer to the requests at the
top all the requests at the bottom will be postponed in an optimal preliminary schedule. Thus, the
server always returns to the top when a new pair of requests arrives.

Fig. 4 The track of the IGNORE-server.

Stability with uniform bounds for online dial-a-ride problems under reasonable load 19

11 An Example with Unbounded Flow Times for
AVGFLOWREPLAN

It is quite a natural question to ask whether modified replan strategies AVGFLOWRE-
PLAN or MAXFLOWREPLAN that use snapshot problems that minimize the average
resp. maximal flow times would give a reasonable bound on the maximal and av-
erage flow times in the online situation. In our taxinomy, MAXFLOWREPLAN im-
plements the naive replan policy when the evaluation objective is the minimization
of the maximal flow time. And AVGFLOWREPLAN corresponds to the naive replan
policy when the evaluation objective is the minimization of the average flow time.

We mentioned already that the offline problem of minimizing the average flow
time is very hard. In the offline problem that AVGFLOWREPLAN has to solve, how-
ever, all requests have release times in the past. It is then easy to see that the problem
is equivalent to the minimization of the average completion time counted from the
point in time where the planning takes place. Moreover, since the average flow time
is larger by the “average age” of the requests, the performance guarantees of ap-
proximation algorithms minimizing the average completion time carry over. Still,
in our computational experience minimization of the average completion time takes
more time than minimizing the total completion time.

Anyway: the following result shows that even under reasonable load we cannot
expect a worst case stable behaviour of AVGFLOWREPLAN, a so far unpublished
result.

Theorem 5. There is an instance of OLDARP under reasonable load such that the
maximal and average flow times of AVGFLOWREPLAN are unbounded.

Proof. We construct a set of requests in the same metric space as in the previous
Section 10 as follows:

• At time 0 we issue again one request from a to d.
• At time T0 := 3/2`− ε we issue a pair of requests Ru

1 from c to d and Rl
1 from b

to a.
• At time Ti+1 := Ti + `+2(i−2)ε we issue

– a set of i “upper” requests Ru
i+1 from c to d and

– one “lower” request Rl
i+1 from b to a.

Figure 5 sketches the construction.
For `= 18ε this request set is again 2 2

3`-reasonable since we have increased the
time intervals between the release times of the requests by the additional amount
that is needed to serve the additional copies of upper requests.

At time Ti, for all i > 0, AVGFLOWREPLAN has still to serve as many upper
requests as there are lower requests. Thus, at Ti the schedule with minimum average
flow time for the currently available requests serves the upper requests first. Hence,
the requests at the bottom have to wait for an arbitrarily long period of time.

20 Sven Oliver Krumke and Jörg Rambau

5×Ru
5

G

t
a

b

c

d

0
3
2 `− ε `+4ε

i×Ru
i (i+1)×Ru

i+1

Rl
i+1Rl

i

`+2(i−2)ε

Rl
5Rl

4Rl
3Rl

2Rl
1

`−2ε `+2ε

`

2×Ru
21×Ru

1 3×Ru
3

4×Ru
4

Fig. 5 The track of the AVGFLOWREPLAN-server on a the example from Theorem 5.

In order to prove the assertion concerning the average flow time we consider the
result f (RN) that AVGFLOWREPLAN produces on the input set RN that contains all
requests up to time TN .

The sum of all flow times fΣ (RN) is dominated by the waiting times of the lower
requests. That is, it is at least

fΣ (RN)≥
N

∑
k=1

N

∑
i=k

(`+2(i−2)ε)

≥
N

∑
k=1

N

∑
i=k

(i−2)ε.

The number of requests #RN in RN is

#RN = 1+
N

∑
k=1

(k+1),

so that

f (RN) =
fΣ (RN)

#RN

N→∞−→ ∞,

which completes the proof. ut

A policy that minimizes just the maximal flow time does not make a lot of sense
since sometimes this only determines which request is to be served first; the order
in which all the other requests are scheduled is unspecified. Thus, the most sensible
policy in this respect seems to be the following: consider an offline instance of the

Stability with uniform bounds for online dial-a-ride problems under reasonable load 21

dial-a-ride problem. The vector consisting of all flow times of requests in a feasible
solution ordered decreasingly is the flow vector. All flow vectors are ordered lexico-
graphically. The online policy MAXFLOWREPLAN for the online dial-a-ride problem
does the following: whenever a new request becomes available MAXFLOWREPLAN
computes a new schedule of all yet unserved requests minimizing the flow vector.

It is an open problem what the performance of this policy is under ∆ -reasonable
load. In practice, however, it is probably too difficult to solve the snapshot problem
with this objective function.

12 Combining the Best of two Ideas: DELTAREPLAN

A closer inspection of the behaviour of IGNORE and SMARTSTART, resp., versus the
behaviour of REPLAN and AVGFLOWREPLAN, resp., shows: REPLAN is unstable
under ∆ -reasonable load because of infinite deferment of requests, which can not
happen in IGNORE, since IGNORE does not replan often enough to defer requests.
On the other hand: reoptimizing less frequently means leaving out opportunities to
improve, and thus, on average, IGNORE is empirically worse than REPLAN. The key
idea to combine the advantages of both policies is to constrain the reoptimization
that REPLAN performs. The result is the following online algorithm DELTAREPLAN,
so far unpublished, which works as follows:

Whenever a new request becomes available, DELTAREPLAN computes a prelim-
inary transportation schedule for the set R of all available requests by solving the
problem of minimizing the total completion time of Roffline under the restriction
that no request in the transportation schedule has predicted flow time more than
2∆ . If the makespan of the optimal transportation schedule is at most ∆ , the new
schedule is accepted and becomes the active schedule. The new schedule is rejected
otherwise, whence the previous schedule is kept active. It then moves the server ac-
cording to the active schedule until a new request arrives or the schedule is done.
Note, that the new requests that trigger the reoptimization are not rejected. It is the
new schedule that is rejected. Thus, since we do not allow rejection of requests,
DELTAREPLAN is only feasible if each request is in an accepted schedule, sooner or
later.

Summarized, we define:

Definition 9 (Algorithm DELTAREPLAN). Algorithm DELTAREPLAN (∆ ,ρ) has
parameters ∆ > 0,ρ > 1 (indicating that it aims at (∆ ,ρ)-reasonable request sets)
and works with an internal buffer holding an active schedule and possibly some
requests. It may assume the following states (initially it is IDLE):

IDLE Wait for the next point in time when requests become available. Goto
PLAN.

PLAN Produce a preliminary transportation schedule for all currently available
requests R (taken from the buffer) minimizing comp for Roffline under the con-
straint that no request has a predicted flow time exceeding 2∆ , possibly by a

22 Sven Oliver Krumke and Jörg Rambau

ρ-approximation algorithm. If the problem is infeasible or the computed comple-
tion time exceeds ∆ reject the new schedule and keep the old one active, thereby
buffering the new requests. Otherwise replace the active schedule by the new
one. Goto BUSY.

BUSY Serve requests according to the active schedule. If a new requests is re-
leased or the active schedule is done, goto PLAN.

The result is:

Theorem 6. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable request
sets, Algorithm DELTAREPLAN (∆ ,ρ) employing a ρ-approximation algorithm for
reoptimization yields a maximal flow time of no more than 2∆ .

Proof. As long as all new schedules are rejected, DELTAREPLAN (∆ ,ρ) works in
the same way as IGNORE. Whenever a new schedule is accepted the constraints on
the flow times of the scheduled requests guarantee the bound by construction. Since
no schedule of length larger than ∆ is accepted, rejection of all optimal schedules
thereafter yields a maximal release span for buffered requests of at most ∆ . The
buffered requests can therefore theoretically be served in time at most ∆/ρ . Because
DELTAREPLAN(∆ ,ρ) employs a ρ-approximation algorithm, it computes a schedule
of length at most ∆ . Since all requests during the work on a schedule have been
ignored, the flow times of them are exactly the flow times IGNORE would have
produced. Thus, the flow time constraints are satisfied for all of them. Therefore,
the first computed schedule after the work on the active schedule has finished will
be accepted. Consequently, every request will be in an accepted schedule at some
point. Thus, the claim holds. ut

What happens if we do not know, how reasonable the request sets are going to
be, i.e., if we do not know (∆ ,ρ) in advance? Let us restrict to the case with approx-
imation factor ρ = 1 in order to concentrate on the core aspect. If DELTAREPLAN is
run with a ∆ ′ < ∆ on a ∆ -reasonable request set then still all schedules that would
be rejected with DELTAREPLAN (∆) would also be rejected by DELTAREPLAN (∆ ′).
A problem may occur that when the active schedule is done, the new schedule has
makespan larger than ∆ ′ so that we have to reject it; but then we are stuck. We can
then modify DELTAREPLAN in three ways to by-pass this problem:

IGNORE-DELTAREPLAN Accept all schedules that are computed because the old
schedule is done.

DOUBLE-DELTAREPLAN Take ∆ ′′ := 2∆ ′ as a new estimate of ∆ and run DELTARE-
PLAN (∆ ′′). This is often called doubling technique for parametrized algorithms
[4].

DELTAREPLAN Take the makespan ∆ ′′ of the new schedule (which is at most ∆)
as a new estimate of ∆ and run DELTAREPLAN (∆ ′′).

The first option uses IGNORE as a back-up whenever DELTAREPLAN (∆ ′) fails to
produce a schedule. This way, we obtain the same bound 2∆ on the flow times but
we may lose some efficiency due to too many rejected schedules.

Stability with uniform bounds for online dial-a-ride problems under reasonable load 23

Theorem 7. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable request
sets, Algorithm IGNORE-DELTAREPLAN employing a ρ-approximation algorithm
for reoptimization yields a maximal flow time of no more than 2∆ . ut

The estimate for ∆ in the doubling technique will at some point surpass the true ∆ .
Then, we still get a bound on the flow times, but only with respect to the over-
estimated ∆ , i.e., a bound of 4∆ in the worst case.

Theorem 8. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable request
sets, Algorithm DOUBLE-DELTAREPLAN employing a ρ-approximation algorithm
for reoptimization yields a maximal flow time of no more than 4∆ . ut

Since for DELTAREPLAN the estimates for ∆ never exceed ∆ and the reoptimization
problems as well as the acceptance of new schedules are at least as constrained as
for DELTAREPLAN(∆), we conclude that DELTAREPLAN has flow times bounded
by 2∆ , and the loss of efficiency is decreasing as the estimate of ∆ gets closer and
closer to ∆ . We obtain the following result:

Theorem 9. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable request
sets, Algorithm DELTAREPLAN employing a ρ-approximation algorithm for reopti-
mization yields a maximal flow time of no more than 2∆ . ut

This basic DELTAREPLAN-technique can be applied in much more general situa-
tions (see [20] for a sketch). We arrived at an algorithm very much in the spirit of
MPC with ingredients from online-optimization and queuing theory: For a classi-
cal problem in online optimization, estimate the characteristic difficulty of the input
stream in terms of ∆ , the definition of which was inspired by queuing theory, and
use cleverly constrained reoptimization model with a suitable objective to obtain a
strongly stable system.

13 Conclusion

We have shown how naive reoptimization policies in the control of elevators may
lead to unstable systems. Moreover, via the notion of (∆ ,ρ)-reasonable load we
found a modification of the usual reoptimization policies that achieves strong sta-
bility, a new notion aiming at stability in worst-case analysis in a queuing system.
The new notions and the policies emerge as a combination of paradigms from basic
online-optimization, queuing theory, and model predictive control. We conjecture
that closing the gap between these fields will lead to interesting, sometimes surpris-
ingly simple but yet useful innovations.

The analysis under reasonable load is valid in much larger generality. Essen-
tially, every system in which servers have to serve requests can be captured. This
encompasses also general dial-a-ride problems. A generic formulation of the princi-
ple based on a generic integer linear programming formulation of the offline version
of some online problem is presented in [20]. We did not present this here for the sake
of a less abstract exposition.

24 Sven Oliver Krumke and Jörg Rambau

There are a couple of open questions in this area:

• Does MAXFLOWREPLAN produce bounded flow times in terms of ∆ under ∆ -
reasonable load?

• The policies in this chapter are all based on the computation of higher-level in-
formation, namely a precomputed schedule. On this higher level, there is no im-
mediate notion of a “terminal state”. Is there any version of “terminal state con-
straints” or “terminal costs” for the snapshot problem that can guarantee stability
of the corresponding replan policy?

• Of course, since the reasonability ∆ is a worst-case measure, performance may
benefit if ∆ is considered as a dynamically changing property of the request set
which should be estimated in a time-dependent fashion in order not to use a
too large ∆ most of the time; especially, when there are traffic peaks. Can one
rigorously quantify the benefits of such a dynamic approach?

• We have no non-trivial theoretical guarantees for the expected average flow-times
over a distribution of request sets. Does DELTAREPLAN have provably better
average flow times than IGNORE, as it seems empirically?

• Experience shows that minimizing the average quadratic flow times in the snap-
shot problem leads to empirically stable systems. Can one guarantee strong sta-
bility for them?

The LCCC theme semester revealed that quite a few types of logistic control prob-
lems are attacked by more than one mathematical community; up to now rather in
isolation than in cooperation. We would be very happy if this volume—and, in par-
ticular, this chapter—motivated a thorough performance comparison. More specif-
ically: what can be achieved, in theory and practice, by the various techniques in
queuing theory, model predictive control, stochastic dynamic optimization, and on-
line optimization on a common set of problems?

∗
We thank two anonymous referees for helpful comments on the presentation of this
chapter. The second author is grateful for the opportunity to participate in a very
inspiring theme semester at LCCC and the financial support by LCCC.

References

1. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing the com-
pletion time. In: Proceedings of the 17th International Symposium on Theoretical Aspects of
Computer Science, vol. 1770, pp. 639–650. Springer (2000)

2. Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems with appli-
cations to minimizing robot arm travel. SIAM Journal on Computing 17, 849–869 (1988)

3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Competitive algorithms
for the traveling salesman. In: Proceedings of the 4th Workshop on Algorithms and Data
Structures (WADS’95), Lecture Notes in Computer Science, vol. 955, pp. 206–217 (1995)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge Uni-
versity Press (1998)

Stability with uniform bounds for online dial-a-ride problems under reasonable load 25

5. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning. In:
S. Touretsky D. C. Mozer M. E. Hasselmo M. (eds.) Advances in Neural Information Pro-
cessing Systems 8. MIT Press, Cambridge MA (1996)

6. Crites, R.H., Barto, A.G.: Elevator group control using multiple reinforcement learning agents.
Machine Learning 33(2–3), 235–262 (1998)

7. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms: The State of the Art, Lecture Notes in
Computer Science, vol. 1442. Springer (1998)

8. Frederickson, G.N., Guan, D.J.: Nonpreemptive ensemble motion planning on a tree. Journal
of Algorithms 15, 29–60 (1993)

9. Frederickson, G.N., Hecht, M.S., Kim, C.: Approximation algorithms for some routing prob-
lems. SIAM Journal on Computing 7, 178–193 (1978)

10. Gross, D., Harris, C.: Fundamentals of queueing theory. Wiley Series in Probability and
Statistics. Wiley (1998)

11. Grötschel, M., Hauptmeier, D., Krumke, S.O., Rambau, J.: Simulation studies for the on-
line dial-a-ride-problem. Preprint SC 99-09, Konrad-Zuse-Zentrum für Informationstechnik
Berlin (1999). URL http://opus4web.zib.de/documents-zib/401/SC-99-09.pdf. Extended ab-
stract accepted for presentation at Odysseus 2000, first workshop on freight transportation and
logistics, Crete, 2000

12. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online dial-a-ride problem under reasonable
load. In: Proceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture
Notes in Computer Science, vol. 1767, pp. 137–149. Springer (2000)

13. Hauptmeier, D., Krumke, S.O., Rambau, J., Wirth, H.C.: Euler is standing in line—dial-a-
ride problems with FIFO-precedence-constraints. Discrete Applied Mathematics 113, 87–107
(2001)

14. Hiller, B., Vredeveld, T.: Probabilistic analysis of online bin coloring algorithms via stochastic
comparison. In: D. Halperin, K. Mehlhorn (eds.) ESA, Lecture Notes in Computer Science,
vol. 5193, pp. 528–539. Springer (2008)

15. Kellerer, H., Tautenhahn, T., Woeginger, G.: Approximability and nonapproximabiblity results
for minimizing total flow time on a single machine. In: Proceedings of the Symposium on the
Theory of Computing (1996)

16. Klug, T., Hiller, B., Tuchscherer, A.: Improving the performance of elevator systems using
exact reoptimization algorithms. Tech. Rep. 09-05, Konrad-Zuse-Zentrum für Information-
stechnik Berlin (2009)

17. Krumke, S.O.: Competitive analysis and beyond. Habilitationsschrift, Technische Universität
Berlin (2002)

18. Krumke, S.O., Rambau, J., Torres, L.M.: Realtime-dispatching of guided and unguided auto-
mobile service units with soft time windows. In: R.H. Möhring, R. Raman (eds.) Algorithms
– ESA 2002, 10th Annual European Symposium, Rome, Italy, September 17–21, 2002, Pro-
ceedings, Lecture Notes in Computer Science, vol. 2461. Springer (2002)

19. Putermann, M.L.: Markov Decision Processes. Wiley Interscience (2005)
20. Rambau, J.: Deferment control for reoptimization – how to find fair reoptimized dispatches.

In: S. Albers, R.H. Möhring, G.C. Pflug, R. Schultz (eds.) Algorithms for Optimization
with Incomplete Information, no. 05031 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2005). URL
http://drops.dagstuhl.de/opus/volltexte/2005/66 [date of citation: 2010-12-28]

21. Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-line. SIAM Jour-
nal on Computing 24(6), 1313–1331 (1995)

22. Tarău, A.: Model-based control for postal automation and baggage handling. Ph.D. thesis,
Technische Universiteit Delft (2010)

