The best known (n, r)-arcs in $\operatorname{PG}(2,17)$

Rumen Daskalov
Department of Mathematics
Technical University of Gabrovo
5300 Gabrovo, Bulgaria
daskalovrn@gmail.com

Alfred Wassermann
Department of Mathematics University of Bayreuth
D-95440 Bayreuth, Germany
alfred.wassermann@uni-bayreuth.de

After the absurd death of Axel Kohnert in 2013 several hardware errors on the site of the University of Bayreuth have occurred and the database for (n, r)-arcs is no longer available. For that reason we decided to reconstruct the database.

Lower and upper bounds on $m_{r}(2,17)$ [1]

$r=2$	$r=3$	$r=4$	$r=5$	$r=6$	$r=7$	$r=8$	$r=9$
18	$28-33$	$48-52$	$61-69$	$79-86$	$95-103$	$114-120$	137
$r=10$	$r=11$	$r=12$	$r=13$	$r=14$	$r=15$	$r=16$	$r=17$
154	$166-171$	$183-189$	$205-207$	$221-225$	$239-243$	$256-261$	

1. A (28,3)-arc [2]

$(0,1,7),(1,7,0),(1,0,5),(0,1,14),(1,14,0),(1,0,11),(1,1,1),(1,1,12),(1,12,1),(1,10,10)$, $(1,13,6),(1,7,4),(1,3,5),(1,14,8),(1,3,11),(1,15,6),(1,11,13),(1,12,14),(1,4,10),(1,11,10)$, $(1,4,14),(1,12,13),(1,10,11),(1,13,12),(1,14,4),(1,10,14),(1,15,12),(1,11,8)$

The secant distribution of the arc is $\tau=(82,45,81,99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
The arc is found by prescribing the group generated by

$$
\left\langle\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right\rangle .
$$

The order of the group is 3 .
2. A $(48,4)-\operatorname{arc}[2]$

The points in the arc are as follows
$(1,1,3),(1,3,1),(1,2,7),(1,6,8),(1,7,2),(1,4,5),(1,8,6),(1,12,13),(1,14,16),(1,5,4),(1,16,14)$, $(1,13,12),(1,11,9),(1,10,15),(1,15,10),(1,9,11),(1,1,4),(1,4,1),(1,2,15),(1,8,8),(1,15,2)$, $(1,16,13),(1,13,16),(1,9,9),(1,1,13),(1,13,1),(1,2,2),(1,9,8),(1,4,16),(1,8,9),(1,16,4)$, $(1,15,15),(1,1,14),(1,14,1),(1,2,10),(1,11,8),(1,10,2),(1,4,12),(1,8,11),(1,5,13),(1,3,16)$, $(1,12,4),(1,16,3),(1,13,5),(1,6,9),(1,7,15),(1,15,7),(1,9,6)$

The secant distribution of the arc is $\tau=(55,0,48,48,156,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
The arc is found by prescribing the group generated by

$$
\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)\right\rangle
$$

The order of the group is 64 .

3. A $(61,5)-\operatorname{arc}[2]$

The points in the arc are as follows
$(0,1,15),(0,1,2),(0,1,8),(0,1,9),(1,0,0),(1,0,10),(1,0,7),(1,12,0),(1,0,11),(1,5,0),(1,0,6)$, $(1,14,0),(1,3,0),(1,1,7),(1,16,10),(1,5,2),(1,4,6),(1,12,15),(1,13,11),(1,3,9),(1,14,8)$, $(1,1,10),(1,16,7),(1,12,2),(1,4,11),(1,5,15),(1,13,6),(1,14,9),(1,3,8),(1,10,16),(1,7,1)$, $(1,9,3),(1,6,4),(1,8,14),(1,11,13),(1,2,5),(1,15,12),(1,10,1),(1,7,16),(1,8,3),(1,6,13)$, $(1,9,14),(1,11,4),(1,15,5),(1,2,12),(1,10,7),(1,7,10),(1,5,3),(1,6,6),(1,12,14),(1,11,11)$, $(1,3,5),(1,14,12),(1,10,10),(1,7,7),(1,12,3),(1,6,11),(1,5,14),(1,11,6),(1,14,5),(1,3,12)$

The secant distribution of the arc is $\tau=(32,16,20,32,89,118,0,0,0,0,0,0,0,0,0,0,0,0,0)$
The arc is found by prescribing the group generated by

$$
\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 16
\end{array}\right),\left(\begin{array}{ccc}
9 & 0 & 0 \\
0 & 0 & 4 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
13 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 16
\end{array}\right),\left(\begin{array}{ccc}
16 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 13
\end{array}\right)\right\rangle .
$$

The order of the group is 32 .

4. A (79,6)-arc (Kohnert, 2008)

The points in the arc are
$(0,1,2),(0,1,4),(0,1,9),(0,1,11),(0,1,13),(0,1,14),(1,0,2),(1,0,4),(1,0,9),(1,0,11),(1,0,13)$,
$(1,0,14),(1,1,1),(1,1,8),(1,1,12),(1,1,14),(1,1,16),(1,2,0),(1,2,4),(1,2,9),(1,2,13),(1,2,16)$,
$(1,3,11),(1,3,13),(1,4,0),(1,4,2),(1,4,8),(1,4,12),(1,4,14),(1,5,12),(1,6,10),(1,6,15)$,
$(1,7,16),(1,8,1),(1,8,4),(1,8,9),(1,8,10),(1,8,14),(1,9,0),(1,9,2),(1,9,8),(1,9,13),(1,9,15)$,
$(1,10,6),(1,10,8),(1,10,10),(1,10,11),(1,10,16),(1,11,0),(1,11,3),(1,11,10),(1,11,11),(1,11,12)$,
$(1,12,1),(1,12,4),(1,12,5),(1,12,11),(1,12,13),(1,13,0),(1,13,2),(1,13,3),(1,13,9),(1,13,12)$,
$(1,14,0),(1,14,1),(1,14,4),(1,14,8),(1,14,15),(1,15,6),(1,15,9),(1,15,14),(1,15,15),(1,15,16)$,
$(1,16,1),(1,16,2),(1,16,7),(1,16,10),(1,16,15),(1,16,16)$

The secant distribution of the arc is $\tau=(21,9,18,9,36,78,136,0,0,0,0,0,0,0,0,0,0,0,0)$
5. A (95,7)-arc (Daskalov, 2010)

The points in the arc are
$(1,1,3),(1,1,6),(1,1,8),(1,1,11),(1,1,14),(1,1,15),(1,2,2),(1,2,3),(1,2,5),(1,2,12),(1,2,15)$, $(1,3,0),(1,3,3),(1,3,5),(1,3,6),(1,3,11),(1,3,14),(1,3,15),(1,4,1),(1,4,4),(1,4,6),(1,4,11)$, $(1,4,12),(1,4,13),(1,4,16),(1,5,0),(1,5,1),(1,5,3),(1,5,6),(1,5,7),(1,5,14),(1,5,16),(1,6,1)$, $(1,6,2),(1,6,4),(1,6,5),(1,6,13),(1,6,15),(1,6,16),(1,7,2),(1,7,4),(1,7,7),(1,7,8),(1,7,9)$, $(1,7,10),(1,7,13),(1,8,6),(1,8,7),(1,8,11),(1,8,13),(1,9,5),(1,9,6),(1,9,7),(1,9,9),(1,9,10)$, $(1,9,11),(1,9,16),(1,10,0),(1,10,2),(1,10,6),(1,10,8),(1,10,11),(1,10,15),(1,10,16),(1,11,0)$, $(1,11,3),(1,11,4),(1,11,14),(1,11,16),(1,12,0),(1,12,4),(1,12,5),(1,12,7),(1,12,11),(1,12,12)$, $(1,13,3),(1,13,4),(1,13,7),(1,13,10),(1,13,13),(1,13,14),(1,13,16),(1,14,0),(1,14,3),(1,14,5)$,

The secant distribution of the arc is $\tau=(21,1,3,9,23,43,80,127,0,0,0,0,0,0,0,0,0,0,0)$

6. A $(114,8)-\operatorname{arc}[2]$

The points in the arc are
$(0,0,1),(0,1,0),(1,1,1),(1,15,8),(1,8,15),(1,4,13),(1,13,4),(1,9,2),(1,2,9),(1,16,16),(1,1,4)$, $(1,4,1),(1,15,15),(1,9,8),(1,8,9),(1,16,13),(1,13,16),(1,2,2),(1,1,5),(1,5,1),(1,15,6)$, $(1,7,8),(1,6,15),(1,4,14),(1,8,7),(1,3,13),(1,14,4),(1,9,10),(1,13,3),(1,11,2),(1,10,9)$, $(1,16,12),(1,2,11),(1,12,16),(1,1,7),(1,7,1),(1,15,5),(1,3,8),(1,5,15),(1,4,6),(1,8,3)$, $(1,11,13),(1,6,4),(1,9,14),(1,13,11),(1,12,2),(1,14,9),(1,16,10),(1,2,12),(1,10,16),(1,1,11)$, $(1,11,1),(1,15,3),(1,12,8),(1,3,15),(1,4,7),(1,8,12),(1,10,13),(1,7,4),(1,9,5),(1,13,10)$, $(1,14,2),(1,5,9),(1,16,6),(1,2,14),(1,6,16),(1,1,12),(1,12,1),(1,15,11),(1,10,8),(1,11,15)$, $(1,4,3),(1,8,10),(1,14,13),(1,3,4),(1,9,7),(1,13,14),(1,6,2),(1,7,9),(1,16,5),(1,2,6),(1,5,16)$, $(1,1,16),(1,16,1),(1,15,9),(1,2,8),(1,9,15),(1,4,4),(1,8,2),(1,13,13),(1,10,12),(1,12,10)$, $(1,14,11),(1,11,14),(1,6,3),(1,3,6),(1,5,7),(1,7,5),(1,10,14),(1,14,10),(1,6,12),(1,12,6)$, $(1,5,11),(1,11,5),(1,7,3),(1,3,7),(1,10,7),(1,7,10),(1,14,5),(1,3,12),(1,5,14),(1,6,6)$, $(1,12,3),(1,11,11)$

The secant distribution of the arc is $\tau=(16,2,1,0,12,24,24,88,140,0,0,0,0,0,0,0,0,0,0)$
The arc is found by prescribing the group generated by

$$
\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
13 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 2
\end{array}\right)\right\rangle .
$$

The order of the group is 32 .

7. A (137,9)-arc (Barlotti's construction)

The points in the arc are
$(0,1,0),(1,1,2),(1,1,3),(1,1,6),(1,1,8),(1,1,9),(1,1,11),(1,1,14),(1,1,15),(1,2,1),(1,2,2)$, $(1,2,3),(1,2,5),(1,2,12),(1,2,14),(1,2,15),(1,2,16),(1,3,0),(1,3,2),(1,3,3),(1,3,5),(1,3,6)$, $(1,3,11),(1,3,12),(1,3,14),(1,3,15),(1,4,1),(1,4,4),(1,4,5),(1,4,6),(1,4,11),(1,4,12),(1,4,13)$, $(1,4,16),(1,5,0),(1,5,1),(1,5,3),(1,5,6),(1,5,7),(1,5,10),(1,5,11),(1,5,14),(1,5,16),(1,6,0)$, $(1,6,1),(1,6,2),(1,6,4),(1,6,5),(1,6,12),(1,6,13),(1,6,15),(1,6,16),(1,7,0),(1,7,2),(1,7,4)$, $(1,7,7),(1,7,8),(1,7,9),(1,7,10),(1,7,13),(1,7,15),(1,8,2),(1,8,4),(1,8,6),(1,8,7),(1,8,10)$, $(1,8,11),(1,8,13),(1,8,15),(1,9,1),(1,9,6),(1,9,7),(1,9,8),(1,9,9),(1,9,10),(1,9,11),(1,9,16)$, $(1,10,0),(1,10,1),(1,10,2),(1,10,6),(1,10,8),(1,10,9),(1,10,15),(1,10,16),(1,11,0),(1,11,1)$, $(1,11,3),(1,11,4),(1,11,8),(1,11,9),(1,11,13),(1,11,14),(1,11,16),(1,12,0),(1,12,4),(1,12,5)$, $(1,12,6),(1,12,7),(1,12,10),(1,12,11),(1,12,12),(1,12,13),(1,13,1),(1,13,3),(1,13,4),(1,13,7)$, $(1,13,10),(1,13,13),(1,13,14),(1,13,16),(1,14,0),(1,14,3),(1,14,5),(1,14,7),(1,14,8),(1,14,9)$, $(1,14,10),(1,14,12),(1,14,14),(1,15,3),(1,15,4),(1,15,5),(1,15,8),(1,15,9),(1,15,12),(1,15,13)$, $(1,15,14),(1,16,2),(1,16,5),(1,16,7),(1,16,8),(1,16,9),(1,16,10),(1,16,12),(1,16,15),(1,10,11)$

The secant distribution of the arc is $\tau=(17,1,0,0,0,0,0,0,136,153,0,0,0,0,0,0,0,0,0)$

8. A $(\mathbf{1 5 4 , 1 0})$-arc (Barlotti's construction)

The points in the arc are
$(0,1,0),(1,1,2),(1,1,3),(1,1,6),(1,1,8),(1,1,9),(1,1,11),(1,1,14),(1,1,15),(1,2,1),(1,2,2)$, $(1,2,3),(1,2,5),(1,2,12),(1,2,14),(1,2,15),(1,2,16),(1,3,0),(1,3,2),(1,3,3),(1,3,5),(1,3,6)$,
$(1,3,11),(1,3,12),(1,3,14),(1,3,15),(1,4,1),(1,4,4),(1,4,5),(1,4,6),(1,4,11),(1,4,12),(1,4,13)$, $(1,4,16),(1,5,0),(1,5,1),(1,5,3),(1,5,6),(1,5,7),(1,5,10),(1,5,11),(1,5,14),(1,5,16),(1,6,0)$, $(1,6,1),(1,6,2),(1,6,4),(1,6,5),(1,6,12),(1,6,13),(1,6,15),(1,6,16),(1,7,0),(1,7,2),(1,7,4)$, $(1,7,7),(1,7,8),(1,7,9),(1,7,10),(1,7,13),(1,7,15),(1,8,2),(1,8,4),(1,8,6),(1,8,7),(1,8,10)$, $(1,8,11),(1,8,13),(1,8,15),(1,9,1),(1,9,6),(1,9,7),(1,9,8),(1,9,9),(1,9,10),(1,9,11),(1,9,16)$, $(1,10,0),(1,10,1),(1,10,2),(1,10,6),(1,10,8),(1,10,9),(1,10,15),(1,10,16),(1,11,0),(1,11,1)$, $(1,11,3),(1,11,4),(1,11,8),(1,11,9),(1,11,13),(1,11,14),(1,11,16),(1,12,0),(1,12,4),(1,12,5)$, $(1,12,6),(1,12,7),(1,12,10),(1,12,11),(1,12,12),(1,12,13),(1,13,1),(1,13,3),(1,13,4),(1,13,7)$, $(1,13,10),(1,13,13),(1,13,14),(1,13,16),(1,14,0),(1,14,3),(1,14,5),(1,14,7),(1,14,8),(1,14,9)$, $(1,14,10),(1,14,12),(1,14,14),(1,15,3),(1,15,4),(1,15,5),(1,15,8),(1,15,9),(1,15,12),(1,15,13)$, $(1,15,14),(1,16,2),(1,16,5),(1,16,7),(1,16,8),(1,16,9),(1,16,10),(1,16,12),(1,16,15),(1,10,11)$, $(0,1,0),(1,0,0),(1,1,4),(1,1,13),(1,2,7),(1,2,10),(1,4,8),(1,4,9),(1,8,3),(1,8,14),(1,9,5)$, $(1,9,12),(1,13,2),(1,13,15),(1,15,6),(1,15,11),(1,16,1)$

The secant distribution of the arc is $\tau=(1,16,1,0,0,0,0,0,0,152,121,16,0,0,0,0,0,0,0)$

9. A $(166,11)-\operatorname{arc}[2]$

The points in the arc are
$(0,1,15),(1,15,0),(0,1,2),(1,0,8),(1,2,0),(1,0,9),(0,1,14),(1,14,0),(0,1,3),(1,0,11),(1,3,0)$, $(1,0,6),(0,1,13),(1,13,0),(0,1,4),(1,0,4),(1,4,0),(1,0,13),(0,1,12),(1,12,0),(0,1,5),(1,0,10)$, $(1,5,0),(1,0,7),(0,1,10),(1,10,0),(0,1,7),(1,0,12),(1,7,0),(1,0,5),(1,1,1),(1,1,16),(1,16,1)$, $(1,16,16),(1,1,13),(1,13,1),(1,1,4),(1,4,4),(1,13,16),(1,4,1),(1,4,13),(1,13,4),(1,13,13)$, $(1,4,16),(1,16,13),(1,16,4),(1,1,12),(1,12,1),(1,1,5),(1,10,10),(1,12,16),(1,5,1),(1,10,7)$, $(1,7,10),(1,7,7),(1,5,16),(1,16,12),(1,16,5),(1,1,10),(1,10,1),(1,1,7),(1,12,12),(1,10,16)$, $(1,7,1),(1,12,5),(1,5,12),(1,5,5),(1,7,16),(1,16,10),(1,16,7),(1,1,8),(1,8,1),(1,1,9),(1,15,15)$, $(1,8,16),(1,9,1),(1,15,2),(1,2,15),(1,2,2),(1,9,16),(1,16,8),(1,16,9),(1,13,8),(1,15,4)$, $(1,13,9),(1,15,8),(1,15,13),(1,2,4),(1,15,9),(1,2,8),(1,2,9),(1,2,13),(1,4,8),(1,4,9),(1,10,14)$, $(1,15,12),(1,10,3),(1,11,8),(1,15,5),(1,2,12),(1,11,9),(1,6,8),(1,6,9),(1,2,5),(1,7,14)$, $(1,7,3),(1,12,10),(1,15,10),(1,12,7),(1,12,8),(1,15,7),(1,2,10),(1,12,9),(1,5,8),(1,5,9)$, $(1,2,7),(1,5,10),(1,5,7),(1,13,15),(1,9,4),(1,13,2),(1,8,2),(1,9,13),(1,8,4),(1,8,15),(1,9,2)$, $(1,9,15),(1,8,13),(1,4,15),(1,4,2),(1,11,13),(1,12,14),(1,11,4),(1,4,10),(1,12,3),(1,5,14)$, $(1,4,7),(1,13,10),(1,13,7),(1,5,3),(1,6,13),(1,6,4),(1,11,14),(1,9,14),(1,11,3),(1,11,2)$, $(1,9,3),(1,8,14),(1,11,15),(1,6,2),(1,6,15),(1,8,3),(1,6,14),(1,6,3),(1,10,12),(1,8,12)$, $(1,10,5),(1,10,15),(1,8,5),(1,9,12),(1,10,2),(1,7,15),(1,7,2),(1,9,5),(1,7,12),(1,7,5)$

The secant distribution of the arc is $\tau=(4,6,0,0,0,0,0,12,42,12,87,144,0,0,0,0,0,0,0)$
The arc is found by prescribing the group generated by

$$
\left\langle\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 15
\end{array}\right)\right\rangle
$$

The order of the group is 96 .
10. A (183,12)-arc (Daskalov, 2010)

The complement of the $(124,6)$-blocking set
$(0,0,1),(0,1,1),(0,1,2),(0,1,7),(0,1,10),(0,1,16),(1,0,1),(1,0,5),(1,0,7),(1,0,10),(1,0,16)$, $(1,1,6),(1,1,7),(1,1,8),(1,1,9),(1,1,11),(1,2,5),(1,2,8),(1,2,9),(1,2,12),(1,2,13),(1,2,15)$, $(1,3,3),(1,3,4),(1,3,5),(1,3,7),(1,3,10),(1,3,11),(1,3,13),(1,3,14),(1,4,0),(1,4,1),(1,4,3)$, $(1,4,6),(1,4,7),(1,4,8),(1,4,10),(1,4,11),(1,4,12),(1,4,13),(1,4,14),(1,5,0),(1,5,2),(1,5,5)$,
$(1,5,12),(1,5,14),(1,5,15),(1,6,0),(1,6,1),(1,6,4),(1,6,7),(1,6,9),(1,6,10),(1,6,11),(1,6,12)$, $(1,6,13),(1,6,16),(1,7,0),(1,7,2),(1,7,3),(1,7,14),(1,7,16),(1,8,1),(1,8,2),(1,8,4),(1,8,6)$, $(1,8,13),(1,8,15),(1,8,16),(1,9,1),(1,9,2),(1,9,6),(1,9,10),(1,9,11),(1,9,13),(1,9,15)$, $(1,9,16),(1,10,0),(1,10,1),(1,10,3),(1,10,14),(1,10,16),(1,11,1),(1,11,4),(1,11,5),(1,11,6)$, $(1,11,8),(1,11,9),(1,11,10),(1,11,13),(1,11,16),(1,12,0),(1,12,2),(1,12,5),(1,12,12),(1,12,15)$, $(1,13,3),(1,13,5),(1,13,6),(1,13,7),(1,13,11),(1,13,12),(1,13,14),(1,14,4),(1,14,5),(1,14,7)$, $(1,14,10),(1,14,12),(1,14,13),(1,14,14),(1,14,16),(1,15,1),(1,15,2),(1,15,4),(1,15,5),(1,15,8)$, $(1,15,9),(1,15,12),(1,15,15),(1,16,3),(1,16,6),(1,16,8),(1,16,9),(1,16,11)$

The secant distribution of the blocking set is $\tau=(0,0,0,0,0,0,124,93,53,23,3,2,1,0,0,0,0,2,6)$

11. A $(205,13)-\operatorname{arc}$ (Daskalov)

The complement of the $(102,5)$-blocking set
$(0,0,1),(0,1,0),(0,1,1),(0,1,4),(0,1,13),(0,1,16),(1,0,0),(1,0,1),(1,0,4),(1,0,13),(1,0,16)$, $(1,1,0),(1,1,1),(1,1,4),(1,1,13),(1,2,4),(1,2,8),(1,2,9),(1,2,13),(1,3,4),(1,3,5),(1,3,12)$, $(1,3,13),(1,4,0),(1,4,1),(1,4,2),(1,4,3),(1,4,4),(1,4,5),(1,4,6),(1,4,7),(1,4,8),(1,4,9)$, $(1,4,10),(1,4,11),(1,4,12),(1,4,13),(1,4,14),(1,4,15),(1,4,16),(1,5,3),(1,5,4),(1,5,13)$, $(1,5,14),(1,6,4),(1,6,7),(1,6,10),(1,6,13),(1,7,4),(1,7,6),(1,7,11),(1,7,13),(1,8,2),(1,8,4)$, $(1,8,13),(1,8,15),(1,9,2),(1,9,4),(1,9,13),(1,9,15),(1,10,4),(1,10,6),(1,10,11),(1,10,13)$, $(1,11,4),(1,11,7),(1,11,10),(1,11,13),(1,12,3),(1,12,4),(1,12,13),(1,12,14),(1,13,0),(1,13,1)$, $(1,13,2),(1,13,3),(1,13,4),(1,13,5),(1,13,6),(1,13,7),(1,13,8),(1,13,9),(1,13,10),(1,13,11)$, $(1,13,12),(1,13,13),(1,13,14),(1,13,15),(1,13,16),(1,14,4),(1,14,5),(1,14,12),(1,14,13)$, $(1,15,4),(1,15,8),(1,15,9),(1,15,13),(1,16,0),(1,16,1),(1,16,4),(1,16,13),(1,16,16)$

The secant distribution of the blocking set is $\tau=(0,0,0,0,0,169,65,51,10,4,2,0,0,0,0,0,0,0,6)$

12. A $(221,14)-\operatorname{arc}$ (Daskalov)

The complement of the $(86,4)$-blocking set
$(0,1,5),(0,1,12),(1,0,12),(1,1,0),(1,1,7),(1,1,10),(1,2,2),(1,2,5),(1,2,15),(1,3,3),(1,3,10)$, $(1,3,14),(1,4,8),(1,4,9),(1,4,15),(1,5,3),(1,5,4),(1,5,13),(1,6,1),(1,6,8),(1,6,16),(1,7,6)$, $(1,7,11),(1,7,13),(1,8,1),(1,8,6),(1,8,11),(1,9,1),(1,9,6),(1,9,16),(1,10,4),(1,10,11)$, $(1,11,8),(1,11,9),(1,11,16),(1,12,3),(1,12,4),(1,12,14),(1,13,9),(1,13,15),(1,14,7),(1,14,10)$, $(1,14,14),(1,15,0),(1,15,1),(1,15,2),(1,15,3),(1,15,5),(1,15,6),(1,15,9),(1,15,10),(1,15,11)$, $(1,15,12),(1,15,13),(1,15,15),(1,15,16),(1,16,0),(1,16,7),(1,15,8),(1,15,14),(1,15,4),(1,0,15)$, $(1,15,7),(1,10,13),(1,13,2),(1,0,5),(0,0,1),(1,14,1),(1,14,8),(1,14,16),(1,14,5),(1,14,11)$, $(1,14,12),(1,14,13),(1,14,6),(1,14,9),(1,14,3),(1,14,4),(1,14,0),(1,14,15),(1,5,9),(1,16,3)$, $(1,4,2),(1,4,12),(1,6,13),(0,1,9)$

The secant distribution of the blocking set is $\tau=(0,0,0,0,126,114,52,7,3,0,0,0,0,0,0,0,0,1,4)$

13. A $(239,15)-\operatorname{arc}$ (Daskalov)

The complement of the $(68,3)$-blocking set
$(0,0,1),(0,1,5),(0,1,12),(1,0,5),(1,0,12),(1,1,0),(1,1,6),(1,1,7),(1,1,10),(1,2,2),(1,2,5)$,
$(1,2,10),(1,2,15),(1,3,3),(1,3,10),(1,3,13),(1,3,14),(1,4,8),(1,4,9),(1,4,15),(1,5,3),(1,5,4)$, $(1,5,13),(1,6,1),(1,6,8),(1,6,16),(1,7,6),(1,7,11),(1,7,13),(1,8,1),(1,8,6),(1,8,11),(1,9,1)$, $(1,9,6),(1,9,16),(1,10,4),(1,10,11),(1,10,12),(1,10,13),(1,11,8),(1,11,9),(1,11,16),(1,12,3)$, $(1,12,4),(1,12,14),(1,13,2),(1,13,4),(1,13,9),(1,13,15),(1,14,7),(1,14,10),(1,14,14),(1,15,0)$, $(1,15,1),(1,15,2),(1,15,3),(1,15,4),(1,15,5),(1,15,6),(1,15,9),(1,15,10),(1,15,11),(1,15,12)$,
$(1,15,13),(1,15,15),(1,15,16),(1,16,0),(1,16,7)$
The secant distribution of the blocking set is $\tau=(0,0,0,114,141,40,7,1,0,0,0,0,0,0,0,1,0,0,3)$

14. A $(256,16)-\operatorname{arc}$ (Daskalov)

The complement of the $(51,2)$-blocking set
$(0,0,1),(0,1,0),(1,0,13),(1,1,13),(1,2,13),(1,3,13),(1,4,0),(1,4,1),(1,4,2),(1,4,3),(1,4,4)$, $(1,4,5),(1,4,6),(1,4,7),(1,4,8),(1,4,9),(1,4,10),(1,4,11),(1,4,12),(1,4,13),(1,4,14),(1,4,15)$, $(1,4,16),(1,5,13),(1,6,13),(1,7,13),(1,8,13),(1,9,13),(1,10,13),(1,11,13),(1,12,13),(1,13,0)$, $(1,13,1),(1,13,2),(1,13,3),(1,13,4),(1,13,5),(1,13,6),(1,13,7),(1,13,8),(1,13,9),(1,13,10)$, $(1,13,11),(1,13,12),(1,13,13),(1,13,14),(1,13,15),(1,13,16),(1,14,13),(1,15,13),(1,16,13)$

The secant distribution of the blocking set is $\tau=(0,0,48,256,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3)$

References

[1] Ball S., Three-dimensional linear codes, Online table, http://mat-web.upc.edu/people/simeon.michael.ball/codebounds.html.
[2] M. Braun, A. Kohnert, A. Wassermann, Construction of ($n, r)$-arcs in $\mathrm{PG}(2, \mathrm{q})$, Innov. Incid. Geometry, 1, 133-141, 2005.
[3] A. Barlotti, Some Topics in Finite Geometrical Structures, Institute of Statistics Mimeo Series, vol.439, University of North Carolina, 1965, 439.

