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Abstract

We consider the three dimensional Vlasov-Poisson system in the plasma physical case.
It describes the time evolution of the distribution function of a very large number of
electrically charged particles. Those particles move under the influence of a self-consistent
electric field that is given by Poisson’s equation.

Our intention is to control the distribution function of the plasma by an external magnetic
field. At first we introduce the basics for variational calculus. Then we discuss two model
problems where the distribution function is to be controlled in such a way that it matches
a desired distribution function at a certain point of time as closely as possible. Those
model problems will be analyzed with respect to the following topics:

e Existence of a globally optimal solution

e Necessary conditions of first order for locally optimal solutions

Derivation of an optimality system

Sufficient conditions of second order for locally optimal solutions

e Uniqueness of the optimal control under certain conditions
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Chapter 1
Introduction

The three dimensional Vlasov-Poisson system in the plasma physical case is given by the
following system of partial differential equations:

Ouf +v-0pf —0x¢-0uf =0,
—Ay = 4mp, hm|m|—>oo ¢(t,l’) =0, (11)
p(t,z) = [ f(t,z,v) dv.

Here f = f(t,x,v) > 0 denotes the distribution function of the particle ensemble that is
a scalar function representing the density in phase space. Its time evolution is described
by the first line of (1.1) which is a first order partial differential equation referred to as
the Vlasov equation. For any measurable set M C R,

/M f(t,z,v) d(x,v)

yields the charge of the particles that have space coordinates x € R and velocity co-
ordinates v € R? with (x,v) € M at time ¢t > 0. The function 1 is the electrostatic
potential that is induced by the charge of the particles. It is given by Poisson’s equa-
tion —Aw = 47p with an homogeneous boundary condition where p denotes the volume
charge density. The self-consistent electric field is then given by —0,1. Note that both
1 and —0,1 depend linearly on f. Hence the Vlasov-Poisson system is nonlinear due to
the term —0,1 - 0, f in the Vlasov equation. Assuming f to be sufficiently regular (e.g.,
f(t) == f(t,-,-) € CLRO) for all t > 0), we can solve Poisson’s equation explicitly and
obtain

Yy(t,x) = // dedy for t > 0,2 € R3. (1.2)

Considering f ~ 1y to be a linear operator we can formally rewrite the Vlasov-Poisson
system as

Ouf +v - Opf — Oathy - Dy f = 0. (1.3)

Combined with the condition
fli=o=f (1.4)

for some function f € CL(R®) we obtain an initial value problem. A first local ex-
istence and uniqueness result to this initial value problem was proved by Kurth [5].
Later J. Batt [1] established a continuation criterion which claims that a local solution
can be extended as long as its velocity support is under control. Finally, two different
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proofs for global existence of classical solutions were established independently and al-
most simultaneously, one by K. Pfaffelmoser [11] and one by P.-L. Lions and B. Perthame
[8]. Later, a greatly simplified version of Pfaffelmoser’s proof was published by J. Schaef-
fer [13]. This means that the follwing result is established: Any nonnegative initial datum
f € CL(R®) launches a global classical solution f € C*([0, co[xRS) of the Vlasov-Poisson
system (1.1) satisfying the initial condition (1.4). Moreover, for every time ¢ € [0, oo],
f(t) = f(t,-,-) is compactly supported in R®. Hence equation (1.2) and the reformulation
of the Vlasov-Poisson system (1.3) are well-defined in the case f € C1(R®).

To control the distribution function f we will add an external magnetic field B to the
Vlasov equation:

Ouf +v-0nf — Outhy - Ouf + (W x B)-0yf =0, flimo=F. (1.5)

The cross product v x B occurs since, unlike the electric field, the magnetic field in-
teracts with the particles via Lorentz force. If we want to discuss an optimal control
problem where the PDE-constraint is given by (1.5) we must firstly establish the basics
for variational calculus. The aims are the following:

e We need some certain set B such that any field B € B induces a unique and
sufficiently regular solution f = fp of the initial value problem (1.5).

e The solution f is supposed to exist on any time interval [0, 7] which means global
existence.

e The solution f = fp is supposed to be continuous and Fréchet differentiable with
respect to the field B.

e The operator B — fp is supposed to be weakly compact in some suitable sense.

For fields B € C([0,T); C}) we will find out that the Pfaffelmoser-Schaeffer proof can be
adapted to this problem. Thus there is a unique classical solution on any time interval
[0,T]. However, this space is not particularly suitable for optimal control problems
where a reflexive Banach space is desired. We will choose the following set to be the set

of admissible fields:
By := {B € L*(0,T; W>* 0 H'(R*; R*)) | || Bll p20,mw2.6) + | Bll 2oy < K}

with K > 0 and 8 > 3. Then any field B € By still induces a unique strong solution fp
of the initial value problem (1.5) existing on [0, T]. It turns out that the high regularity
W28 is necessary to provide uniqueness and Fréchet differentiability. Now a field-state
operator B 2 B +— fp can be defined and we will be able to prove that this operator
is Holder-continuous and Fréchet differentiable. This operator is also weakly compact as
any weakly convergent sequence of admissible fields By — B € By yields a sequence of
strong solutions (fp, ) with fp, — fp in an appropriate sense.

With this foundations it is possible to analyze some application problems. A standard
problem is to control f in such a way that it matches a desired distribution function fy
at final time T > 0 as closely as possible. This can, for instance, be modeled by:

L 1 A
Minimize J(B) := 2 || fo(T) — fall2e + SI1DaBllr2orirey st B€Bi.
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In this model the field B is the control itself but in more realistic models the field will
be given by a control-field operator u — B(u). For example the magnetic field might
be generated by N fixed field coils. Each coil generates a magnetic field of a certain
shape m; = m;(x) and its intensity is determined by a multiplier u; = u;(¢). Then the
complete external magnetic field reads as follows:

N

Blu)(t,x) = > ui(t) mi(t) .

i=1

In this case u = (uq, ...,ux)T is the control in this model and we can define a control-field
operator u — B(u).

Both model problems will be analyzed in this paper with respect to the follwing topics:
e existence of a globally optimal solution,

e necessary conditions of first order for locally optimal solutions,

derivation of an optimality system,

sufficient conditions of second order for locally optimal solutions,

e uniqueness of the optimal control for small values of %
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Chapter 2

Some important tools

2.1 Gronwall’s lemma and some generalizations

Evidently Gronwall’s lemma is one of the most important tools in dealing with or-
dinary differential equations. Especially in this paper, we will require it to analyse the
characteristic system of the Vlasov equation. Of course, the "standard version" is well
known and is presented only for the sake of completeness. Yet, particularly in the con-
text of LP-spaces, we will need some nonlinear generalizations that are also listed in the
following lemma.

Lemma 1 Let I = [a,b] be an interval, A > 0 be any number and let u, o, B,7vy: I — Rg
be continuous functions.

(Standard version) Let us assume that the inequality

b

u(s) < a(s) + /,B(T)U(T) dr or wu(s) <a(s)+ /B(T)u(T) dr respectively

s

holds for every s € [a,b]. Then for all s € [a, ],

u(s) < als) + / o(7)B(7) exp ( f B(0) da) dr

or u(s) < als)+ /ba(T)ﬁ(T) exp <56(0) da> dr respectively

If additionally o is monotonically increasing or decreasing respectively, then for all
s € la,b],

s b
u(s) < afs) exp (f B(T) dT) or u(s) < afs)exp (f B(1) dT) respectively.

(Quadratic version) Let us assume that the inequality

s b
u(s)? < A+ /B(T)u(T) dr or wu(s)* <A+ /B(T)u(T) dr respectively
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holds for every s € [a,b]. Then for all s € [a, ],

1 r 1 /

u(s) < VA + B /6(7') dr or u(s) <VA+ B /B(T) dr respectively.
(p-th power version) Let us assume that the inequality
u(s) < A+ [ B(r)u(r) + ()l dr
b
or u(s) <A+ /B(T)U(T) + v(T)u(r)? dr respectively

holds for every s € [a,b] and some constant p €]0,1[. Then for all s € [a, b],

) < 4 4P exp | (1-p) ] 5(o) o]

a

‘ -

+(1-p) / r)exp (1) ] 6(0) do] ar
or u(s) < d AP exp [(1 ~p) jﬁ(o) da]
+(1—p) /S’y(T) exp [(1 —p)jﬂ(a) da} dr a respectively.

S
In the case [ the proofs of these inequalities can be found in [2]| that is a collection

a
of Gronwall type inequalities by S. Dragomir. Studying these proofs carefully one will
b

easily find out that the case [ can be proved completely analogously.
S

Comment

(a) When mentioning "Gronwall’s lemma" in the following, we refer to the "standard
version" from Lemma 1. The other versions will be named explicitely.

(b) The assertions of Lemma 1 hold true if 8, € L%(]a, b[) instead of 3,v € C([a,b]).
We will illustrate this fact by taking the example of the standard version:

If B € L?(Ja,b]) there exists some sequence (Bk)ren C C([a,b]) with B, — 3 in
L%*(Ja,b[). Let € > 0 be arbitrary. As

u(s) < (afs) +¢) + /B(T)u(T) dr = lim | (a(s)+¢e)+ /Bk(T)u(T) dr

k—o00
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we can find ky € N such that
u(s) < (a(s)+¢) + /,Bk(T)U(T) dr

for all k > kg. Then by Lemma 1,

u(s) < (a(s)+¢) + /(a(T) +¢) Br(T) exp <f Br(o) da> dr

a
S

S (a(r) o)+ / (a(7) + &) B(7) exp < fﬁ(a) da) dr

k—o0
a

S als) + / () B(7) exp ( f B(c) da) dr |

e—0
a

Hence

S

us) < als) + [a(seren (] 5(0) do ) ar.

T
a

2.2 A generalization of Jensen’s inequality

Another important tool in the context of LP-spaces is Jensen’s inequality as it relates
the value of a convex/concave function of an integral to the integral of the convex/concave
function. In the standard version, the domain of integration must be a set of finite
measure. Yet we will now present a generalized version for the domain R™ that has
infinite Lebesgue measure.

Lemma 2 Letn € N and let p: R - R, f: R" — R and {: R™ — [1,00[ be Lebesgue
measurable functions. We assume that [ ?1@ dx = 1. If ¢ is convex it holds that

o [1@ar) < [o(s@e) @) s
)

R”
If  is concave the same holds with ">" instead of "<".

Proof We define a measure 1 on R” by du(z) = £(x)~'de. This means that for any
measurable set M C R",

nO1) = [ duta) = [ ¢@) s

M M

and especially p(R™) = 1.
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Hence if ¢ is convex we have

R

by Jensen’s inequality. If ¢ is concave Jensen’s inequality provides an analogous estimate
with ">" instead of "<". O

2.3 Sobolev inequalities and continuous embeddings

Sobolev inequalities or Sobolev’s embedding theorems are further important tools we
will need in the later approach as they provide continuous embedding of a Sobolev space
WkP either in some W¥~14-space or in some Holder-Space C7.

For any open subset U C R" the Hélder space C*7(U) with k € N and v €]0,1][ is
defined by

CEI(U) = {u e CHU) | fullorn < oo}

where for any u € C*(U),

lull ok = ﬁ%}lé {HDg‘uHOO, [Dg‘u]v} with [DC“uLY :=sup —=

We will also use the notation [D:,cu]7 ‘= max [&riuh. Note that (C*7(U), || - [|gr~) is

i=1,...,n
a Banach space.

In this paper we will particularly need the following very general version of Sobolev’s

embedding theorem:

Lemma 3 Let k € N, 1 < p < 0o and let U be any open subset of R™ with a bounded
C*-boundary. Moreover let u € W*P(U) be arbitrary.

- . 1 1 k
(a) We assume that k < 2 and define q := nﬁ’];p, ie, ;=5 —n Thenue LYU)

with ||ul| L@y < C |lullwrp@y where C denotes a positive constant that depends
only on k, n, p and U.

(b) We assume that k > %. [f% € N we will additionally assume that U is bounded.
Then u € C*~V/PI=1(U7) where

= Pl = fo¢N
is any number in |0, 1], if 5 €N
and
Hu”ckﬂn/pjflfy(U) <C HUHWk,p(U)

where C' denotes a positive constant depending only on k, n, p, v and U.
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In the case that U is a bounded subset of R” with C'-boundary a proof is presented by
L. C. Evans in [3|. Studying this proof carefully one will find out that the boundedness
of U is necessary only in the case £k > 2 € N. If k < % or k > % ¢ N it suffices to
assume that the C'-boundary of U is bounded Note that the whole space R™ satisfies
this condition trivially as its boundary is empty.

2.4 A relation of Sobolev spaces and Bochner spaces

The identities that are presented in the following lemmata seem to be obvious at first
appearance. However, measurability in an LP space and measurability in a Bochner space
are two different concepts. Therefore we will give a detailed proof of those assertions. In
the following, C.([0,7] x R™) will denote the space of compactly supported continuous
functions whose support lies in [0, 7] x R™ but not necessarily in ]0, T[xR™.

Notation For brevity we will sometimes omit the argument "(R™)" (for any n € N)
when denoting a function space. For instance, we will just write LP, W*P or C’f instead
of LP(R™), WkP(R™) or CF(R™). If the function space refers to a proper subset  C R™
we will not use this abbreviation.

Lemma 4 Let 1 <p < oo and T > 0 be any real numbers. Then the following holds:
(a) Ce([0,T] x R™) is dense in the Bochner space LP(0,T; LP(R™)),

(b) LP(0, T[xR™) = LP(0,T; LP(R™)).

Proof Step 1: At first we will show that LP(]0, T[xR") is a subset of L? (0, T; LP(R™)).
Let f € LP(]0, T[xR") and g € LI(R") be arbitrary where ¢ := ;27 if p > 1 and ¢ := o0
if p = 1 denotes the dual exponent of p. Then by Fubini’s theorem, the function

10, T[>t~ /f(t,a:)g(x) dz

is measurable. As g was arbitrary this implies that the function ¢ — f(t) is weakly
measurable in the Banach space LP(R™). Then, since LP(R™) is separable, we can de-
duce that ¢ — f(t) is strongly measurable in LP(R™) according to B. J. Pettis [10] and
especially f(t) € LP(R") for almost all ¢ € [0,T]. Thus ¢ +— || f(¢)||r is measurable and

T
/ LF O dt = 12, g0z <
0

which means that f € LP (O, T; LP(R”)).

Step 2: We will prove that any function f € LP (O,T; Lp (R”)) can be approximated
by a sequence (fx)ren C Cc([0,T] x R™). Therefore we consider an arbitrary function
fe Lp(O,T; LP(R”)). According to K. Yosida [15, Chap. V, Sec.4-5] we can approxi-
mate f by a sequence of finitely-valued functions, i.e., for any k € N, there exist func-
tions Cf € LP(R™),i =1,...,k and a family of pairwise disjoint open subsets Iik c [0, 7],
i=1,...,k with A ([0 T] \ U, 1! ) = 0 such that the sequence defined by
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F(tz) = S o1t ¢f2), tel0,T], xR

satisfies
klim ||f,§1)(t) — f®)ller =0
—00

for almost every t € [0,T]. Since C. ( ") is dense in LP(R™), there exist &F € C.(R™),
i=1,....,k such that ||€¥F — ¢F||1» < k2 for every i € {1,...,k}. Hence we have

Jim 520 = 0Ol =0 = gim 520 = (1) =0

for almost every ¢ € [0, 7] where

) = 10t @), te0,T),zeR"
Now we define

F={te [ IFP Wl < 2Ol +1} -

For almost every t € [0, 7] there exists i € {1,...,k} such that ¢ € I¥. Assuming k to be
sufficiently large, we also have ¢ € Jf. Hence

. 3 2 . 3
lim 70 = 2O =0 = T 170 = fO)]] =0

for almost every ¢ € [0, 7] where

k
) = Zﬂjik(t) ehz), tel0,T),z€R"

Since Hf,gg) )= fO)lle < 3|[f()|lr + 1 for every k € N, Lebesgue’s dominated conver-
gence yields

. 3
klﬂg‘ollfé '~ flromiin =0.

For k € N, we choose x¥ € C([0,T)]),i = 1,..., k such that

1

3
k 1r<na><<kH£mHLp

ie{l,... k}

k
HXi - ]IJZ.’“Hip([o,T]) <

and define a sequence of C.(]0, 7] x R™)-functions by

(4) = ZXZ ef@), tel0,T],z € R™
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Then
T
4 3 _
1A = £ o gy < KOO / XE(H) = L (O dt [€F]17,
=1 0
1
< z —0, k— o0

Wthh dlreclly lmphes lhal
k—o0 k Y

Step 3: Now we will show that LP(0,T; LP(R™)) is a subset of LP(]0, T[xR™). Therefore
let f e LP (O,T; Lp (R")) be arbitrary. According to Step 2 there exists some sequence
(fx) C C.([0,T] x R™) C LP(]0, T[xR™) such that fr — f in LP(O,T; LP(R”)). This
means that (fi) is a Cauchy sequence in L (0, T; Li”(]R"))7 i.e., for all € > 0 there exists
ko € N such that for all k£,1 € N with k,1 > ko,

Il fr — leLP(]O,T[xR") = |frx — leLp(o,T;Lp) <e¢

Hence (fy) is also a Cauchy sequence in LP(]0,T[xR™) and consequently, because of
completeness, there exists some function f* € LP(]0,T[xR™) such that fr — f* in
LP(]J0,T[xR™). Then, however, Step 1 yields that f* € LP (O,T; LP(R”)) and thus

I fx = Fllzeo.1ney = 1fk = Fllrqozxrny = 0, k— o0

As the limit is unique we have f = f* € LP(]0, T[xR"). O

Lemma 5 Let 1 <p < oo and T > 0 be any real numbers. Then
W20, T[xR™) = WHP(0,T; LP(R™)) N LP (0, T; W'P(R™)) .

Proof In this proof 0;f and 0, f = (0z, f, ..., Oz, f)* will denote the partial derivatives
of a function f € WP(]0, T[xR"). On the other hand f will denote the derivative of
fe Wl’p(O,T; LP(R”)) and Vf will denote the derivative of f € Lp(O,T; lep(R”)).
We already know from Lemma 4 that LP(]0, T[xR™) = LP(0,T; LP(R™)).

Step 1: At first we will show that W'P(]0, T[xR™) is a subset of W?(0,T; LP(R™))

NLP(0,T; WHP(R™)). Therefore let f € WP(]0, T[xR™) be arbitrary. From Lemma 4

we can conclude that f, 9,f and 9, f are in L (0, T; LP(R")). It remains to show that f is

differentiable in the W'+ (0, T’; LP(R™))-sense with f = 8,f and in the LP(0, T; WP (R"))-
sense with Vf = 0, f. We have

/T/f(taw) Op(t,x) de dt = —/T/atf(t’ ) é(t, z) dz dt
0 0

for any arbitrary test function ¢ € C2°(]0, T[xR™). Let now ¢ € C°(]0,T[) and ¢ €
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C2°(R™) be arbitrary. Then ¢y € C2°(]0, T[xR™) and hence

T

//f(t, x)o(t) dty(x) do = /T/f(t,x) Oy [gmp] (t,z) dx dt
0 0

—/T/atf(t,ﬂf) (o] (t, z) do dt = //atf (t,x) p(t) dt(x) dz
0

Since 1 was arbitrary this means

O/f(t,x) : /atf (t,z)p(t) dt in LP(R™)

and thus f € WP (0, T, LP(R”)) where the derivative is given by f = 8,f. In the same
fashion one can show that f € LP (0, T, Wl’p(R”)) with Vf = 0,f.

Step 2: Now we will prove that Wl’p(O,T; LP(R”)) N LP(O,T; Wl’p(R”)) is a subset
of WhP(]0, T[xR™). Suppose that f € WP (0,T; LP(R™)) N LP(0,T; WHP(R™)). This
directly implies that f, f and Vf are in LP(]0, T[xR™) but we must still show that f
is differentiable in the W'?(]0, T[xR")-sense with d;f = f and d,f = Vf. Again, let
¢ € C(]0,T[xR™) denote an arbitrary test function. Then there exists some constant
R > 0 such that supp ¢(¢,-) C [-R, R]|" for all ¢t €]0,7[. For any number N € N we
can split the cube [—R, R]" into disjoint open subcubes Q;, i = 1,..., N™, all with edge
length 2R/N , such that

Nni
=Ja:.
1=1

Let Z; denote the center of the cube @Q; and let ¢ = -£5 denote the dual exponent to p.
We define

Z% J1g,(x) where ;(t) == é(t,z;), (t,x)€]0,T[xR", NeN.

Now [¢(t,2) — 6(t, )| < [Dodlloc [ — &i| < Vi 2 | Datllc i (t,2) €]0,T[xQ; and

hence

1/q

|9 — énll Lago,r(xrm) // (Z !qﬁ (t,x) (t,ii)| ]lQi(a:)> dx dt

1/q

T N7 q
2R
< V32 |Du6oc 0/ / (;nczxx)) du dt

< V32| D,é)lo (TR

=0, ifN —o00.

Note that for any i € {1,...,N"} the function ¢; is totally continuously differentiable
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with ¢; = g [qb(t xl)} = 0io(t, x;). Thus ¢y is partially differentiable with respect to ¢,
and it holds that

OpN = Zsbz‘ 1o, on]0,T[xR"
i=1

in the classical sense. Thus the derivative d;¢ can be approximated analogously by the
sequence 0;¢n and we finally have

N™ N™
o L o 1 i T -
b ngrlw;go,n@ and ¢ = lim_ ;%1@2 in L(]0, T[xR™)

Now, according to the definition of the WP (O, T; LP (R”))—derivative f ,

T T
/f (t,z) ps(t /f (t,z)pi(t)dt in LP(R"), i=1,..,N"
0 0

and thus

T NP T
[ [ emaottn) dwde= tim 3 [ [ 5(6.2)6:t0) de 1o, (@) do
0 =179

T T
-~ Jim Z//f(t,x) oilt) dt 1o, () dx——//f(t,x) b(t,2) du dt |
=17 3 0

This means that f is weakly partially differentiable with respect to t and its weak
derivative is 8,f = f. We can similarly prove that f is weakly partially differentiable
with respect to z and the weak derivative is d,f = Vf. Hence Wl’p(O,T; LP(R”))
NLP(0,T; WHP(R™)) is a subset of WP(]0, T[xR™).

This means equality of both spaces and completes the proof. O

2.5 The Newtonian potential

If f is a compactly supported continuous function the Newtonian potential yields a
weak solution of Poisson’s equation —Awu = f. In this thesis it will be used to describe
the electric potential that is generated by the charge of the particles. The following
lemma presents some well known properties.

Lemma 6 Let r > 0 be any real number and let f € C.(R®) with supp f C B,(0).
Moreover, let u be the Newtonian potential of f, i.e.,

reR?

u(x) = / B(r—y)fly) dy with B(z)=

47 |z|
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Then the following holds:

(a) u € CHR3) and its gradient is given by

Vu(z) = /V@(x —y)f(y)dy with V&(x)= zeR3. (2.1)

|z

(b) For |zx| — oo,

u(z) = O(jz|™) and Vu(z)=O(]z|7?).
(¢) w is a weak solution of Poisson’s equation —Au = f, i.e.,

/Vu-thdx—/fgodx for all o € C°(R?) .

If even u € C?*(R3) the same holds in the sense of classical solutions. Note that
f € CHR3) suffices to ensure that u € C?(R3).

Proof Initially we will assume that f € C}(R3). For ¢ > 0 we define
w@)i= [ e fe)dy= [ B -y .
|z—y|>e ly|>e

Note that for any € > 0, ® is continuously differentiable on the domain {y eER3: |yl > 5}
where the gradient V@ is the function that is declared in (2.1). Thus by integration by
parts and chain rule,

Ve () = / B(y) Vo[ fla — )] dy

ly[>e

lz—y|>e lyl=e
We will now assume that f € C.(R3). Since C}(R3) is dense in C.(R3) with respect to

the infinity norm, u. is also continuously differentiable if f € C,(R?) with

Ve (z) = / Vo —y) f(y) dy - / B(y) f(z — ) dS(y).

lz—y[>e ly|=e
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Then one can easily show that for ¢ — 0,

ue(z) = u(z) and Vuc(z)— /VCI)(:c —y) f(y) dy

both uniformely in x since

O(y) flx —y)dSH)| <ellflloo =0, €—0.

ly|=e

Hence u € C*(R?) and Vu is given by (2.1). Now we will assume that |z| > 27. Then

1 _ 1 _
u@l < [ o =l [ )] dy < el
drr [|z] — Jy|| a1 — ]
lyl<r lyl<r *
and similarly [Vu(z)| < 5= 2|72 || f||z1 that is (b). Moreover this implies that u and Vu
are bounded on R3 which proves (a).

To prove (c) note that u is a solution of Poisson’s equation in the sense of distributions
according to E. Lieb and M. Loss |6, sect. 6.21]. Then (a) and integration by parts imply
the assertion. O

The definition of the Newtonian potential does also make sense if f € LP(R3). The
following lemma presents some important regularity properties and inequalities. It is
commonly referred to as the Calderén-Zygmund inequality.

Lemma 7 Let 1 < p < oo and f € LP(R3) with compact support supp f C B.(0)
for some radius r > 0. Moreover let u be the Newtonian potential of f as defined in
Lemma 6. Then the following holds:

(a) For any R >0, u € W*P(Bg(0)) with —Au = f almost everywhere on Br(0) and
there exists some constant C(p, R,r) > 0 such that

ID*u| 2o (Br(0y) < Co, Ryr) |y -

If additionally p > 3, there exists some constant ¢(R,r) > 0 (that does not depend
on p) such that C(p, R,r) < c¢(R,T) p.

(b) If p > %, then D?>u € LP(R3). If actually p > 3, there exists some constant
c*(r) > 0 such that

ID%ull o rsy < < (r) 0 1 f]lp -

Comment The conditions "p > 3" and "p > %" are not sharp but sufficient for subse-
quent utilization.
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Proof A proof of (a) can be found in [4, Chap. 9.4] by D. Gilbarg and N. S. Trudinger.
Studying this proof carefully, one will notice that the p-dependency of the constant
originates from the Marcinkiewicz interpolation theorem that is previously presented in
[4, Chap.9.3]. In fact the constant is given explicitely in the end of the proof of this
interpolation theorem. From that we can deduce that for p > 3 and its dual number
q = q(p) satisfying 1/p + 1/¢ = 1 our constant is given by

Cp, R.v) = &(R,7) ((q_l)q(z_q)> —d(R,r) (p i”) " 25(R,r) p

where ¢é(R,r) denotes some further positive constant. This proves (a) if we define
¢(R,r) :=2¢(R,r).

To prove (b) we will assume without loss of generality that r > I and choose R = 2r.
Let £ > 0 denote some generic constant depending at most on r and let € R3 be
arbitrary with |x| > R = 2r > 1. Then for all y € B,(0),

1
o= 91 [l = ol] = ol [1 = 4| > Jlel >+
and hence for all 4,j € {1,...,n},
K _
ontn @) < [ L W)y < wfal 1)

B (0)
. 4
Thus if p > 3,

3 P
ID%ul| Lo Bar o)) = | D /@ﬁxﬂ(ﬂf)lpdﬂf <&l fllp /\iﬁl_?’pd%’

BI=L g >2r e/ >2r

B =

1

1
p P
<kl flly 1+—/!ﬂ3“M <kl flly 1+»/|m4dx

|z|>1 |lz[>1

< wl £l 1+(/rm4dx < wlfllp -

|z[>1

Finally, if p > 3 > 3,

ID%ull 1o (gs) = 1D*ull o8y, (0)) + 1Dl 1o (83\ 8o, (0))
<c@r)p Ifllp+ & £l
<c(r)pllflp

for some constant ¢*(r) > 0. O
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Proposition 8 Let r > 0 be any radius. We define
LY(R%) := {p € L*(R?) | supp ¢ C B,(0)} .

For any function f € L2(R3) let uy denote the Newtonian potential of f as defined in
Lemma 6. Then the following holds:

(a) uy € H (R®) with —Auy = f almost everywhere on R® and its weak gradient Vugs
is given by (2.1). Moreover, uy has a continuous representative and is the unique
solution of the boundary value problem

~Auy = f ae. onR®  lim us(z) =0.
|z|—o0
(b) For |x| — oo,

u(zx) = O(|ZL‘|71), Vu(z) = (’)(|x\72) and D2u(as) = O(\mr?’)

(c) Let R > 0 be any radius. Then the operator L2(R3) > f +— uy € H*(Bg(0)) is
linear and continuous, i.e., there exists some constant C' > 0 depending only on r
and R such that |[ug|| 20y < C | fllz2 for every f € L2(R3).

(d) There exists some constant C > 0 depending only on r such that
sl poo sy < C [z -

If additionally f € L>®(R3) there exists some constant C > 0 depending only on r
such that

[Vugllzee < C [ f]lze -

(e) If we additionally assume that f € L°(R3) then for any v €]0,1[, uy € C17(R3)
and thus Vuy € C%7(R3).

Proof Since f € L%(R3) C L}, .(R?) it holds that us € L} (R3) with —Auy = f in
the sense of distributions. Moreover the distributional derivative of uy is a function

Vuy € Llloc that is given by

Vug(z) = /V<I>(x —y) f(y) dy (2.2)

This result is presented by E. Lieb and M. Loss in [6, sect.6.21]. On the other hand we
with —Auy = f
almost everywhere on R3. This means that the distributional derivative is even the

know from the Calderon-Zygmund inequality (Lemma 7) that uy € H 120 .
derivative in the weak sense. Hence the weak derivative is given by (2.2) and especially
Vuy € H} . For any s > 0, uy € H*(B,(0)) and hence uy € Cj(Bs(0)) according to
Sobolev’s embedding theorem. As s was arbitrary it also holds that u € C(R3).

Let now C' > 0 denote some generic constant depending only on r. Without loss of
generality we can assume that r > 1. If [z] > 2r we have |z — y| > L[z| > 1 for all
y € B.(0).
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Hence

w@i<c [ 'f% dy < C l2[ " £l

|z —
lyl<r

fly -
vu@lse [ 402 1,
lyl<r
fly _
Py@lc [ sy <ol i
ly[<r

This proves (b) and directly implies that us satisfies the boundary condition

lim us(x) =0.
|z| =00
Let us now assume that @ € H7 (R?) is another solution of the boundary value problem.
Then h := u — u satisfies Ah = 0 especially in the sense of distributions. Hence, by
Weyl’s lemma (cf. E. Lieb, M. Loss [6, sect.9.3|), h is a harmonic function that also
satisfies the boundary condition. This directly yields h = 0 which means uniqueness and
completes the proof of (a).

To prove (c) let R > 0 be arbitrary and let C' > 0 denote some constant that may depend

only on r and R. Then
2

laslsimnoy = [ lr@Pars [ | [ ee-lifeid]|

|z|<R lz|<R \|y|<r
2 2 o 2 2
< 12 / / B — )| dyde = || ]2 / / B(y)|? dyde
|z|<R |y|<r |z|<R |z—y|<r

<l [ [ WP dyde < OR 111 1903s(0,,, 0y < OIS
|z|<R |y|<R+r

From the Hardy-Littlewood-Sobolev inequality we know that

IVusllz2 oy < C 1 fllzes < C NI £l

and Lemma 7 yields || D*uyl| 2rsy < C||f[| 12 because 2 > 3. Hence we can deduce that
sl 2 (Br(0y) < Cllfllz2 that is (c).

Now we fix R = 2r. If |z| < 2r,

1/2 1/2
jup(@)] < £z / B —yPdy | = 1fl / B ()2 dy
lyl<r lz—y|<r
1/2
<1 f e / BW)Pdy | < 1]z 0 12 = C 1F]12e -

ly|<3r
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[Vug(@)] < [ fllLe / Ve(z —y)| dy = ||z~ / IVe(y)| dy

ly|<r |z —y|<r
<[ fll e / 1@(y)| dy < V[ 1By, 0)) [ fllzee =C || fllze= -
ly|<3r

If |z| > 2r,
ug(@)] < C la[ ™ Ifllr < C R fllze < ClIfll2
Vug(@)] < O 2| 72||fllr < C R7|fllzee < C || fllpe .

Note that the constant C' depends only on 7 because of the choice R = 2r. This is (d).

To prove (e) let v €]0, 1] be arbitrary. Note that f € L> N L2(R3) directly implies that
f € LP(R?) for any 1 < p < co. We choose p = % >3, ie,y=1+ L%J — %, Then the
Hardy-Littlewood-Sobolev inequality yields

luplle®sy < C | fllpsererinmsy and  |[Vug|zersy < C [ fll sr/orn ms)

and since p > 3 > % we know from the Calderén-Zygmund inequality (Lemma 7) that
D(Vug) = D*uy € LP(R?). Hence us € W?P(R3) and then we can deduce from the
Sobolev embedding theorem (Lemma 3) that uy € C17(R?). O
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Chapter 3

Admissible fields and the field-state
operator

In order to write down the three dimensional Vlasov-Poisson system concisely we will at
first define some operators and notations:

Ford € N, 1 < p < ooandr > 0let L¥(R?) denote the set of functions ¢ € LP(R?)
having compact support supp ¢ C B,.(0) C R%. Then the operator

p.: L2(RO) — L2(R?), ¢+ p, with p,(x) := /go(w,v) dv, z € R® (3.1)

is linear and bounded. It also holds that p, € L2(R3) for any ¢ € L2(R%). Let now
R > 0 be an arbitrary radius. Then we know from Proposition 8 that

.0 LA(RS) = H2(BR(0)), ¢ b, with ,(z) = oW 4 (32)

|z — ]

is a linear and bounded operator and its derivative with respect to z, that is
Outb.: L2(R®) = HY(BR(0)), ¢ v+ Oyt with O,th,(x) = _/‘36__53 po(y) dy, (3.3)

is also linear and bounded. Recall that 1, is the Newtonian potential of 4mp, and
thus, according to Proposition 8, it is the unique H lzoc—solution of Poisson’s equation
— A, = 4mp, with ¢, (x) = 0 if || — co. We will also use the notation pg, ¥ and
dyy5 for functions f = f(t,x,v) with ¢t > 0, z,v € R3. In this case we will write

pf(t,:c) = pf(t)(l‘)v wf(tv x) = ¢f(t)(x)) ax¢f<t’x) = aﬂcd}f(t)(x)

for any t and z. As already mentioned in the introduction we consider the following

initial value problem:

Ouf +0-Opf — Oathy - Ouf + (0 x B)-0yf =0 on [0,T] x RS,
(3.4)

f|t:0:f on R .

In the following let 7 > 0 and f € C2(RS;R}) be arbitrary but fixed. B = B(t,x)
is a given external magnetic field and f = f(¢,z,v) is the distribution function that is
supposed to be controlled. Its electric field 9,1y = 0,1 ¢(t, x) is formally defined as stated
above. In the following we will show that the solution f satisfies the required condition
"f(t) = f(t,-,-) € L2(R5)" that ensures py, 1y and 9,95 to be well defined. Of course
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this is possible only if the magnetic field B is regular enough. The regularity of those
fields will be specified in the following section.

3.1 The set of admissible fields
We will now introduce the set our magnetic fields will belong to: The set of admissible
fields.
Definition 9 Let K > 0 and 3 < 8 < 0o be arbitrary fived constants. We define
V= L2(0,T; W>°(R% R®)) N L?(0,T; H' (R%; R?)),
|-l = 11 ez mweey + [ - ez m1)
By = {B € L*(0, T; W27 (R% R?)) ’ 1Bl L2 (0.mw28) < K} .
By is called the set of admissible fields.

Some of its most essential properties are listed in the following lemma.

Lemma 10 The set of admissible fields Bx has the following properties:
(a) Bx is a bounded, convex and closed subset of V.

(b) The space WP (R3;R3) is continuously embedded in C7~17(R3;R?) for j € N and
vy=7(B)=1- % Thus there exist constants ko, k1 > 0 depending only on B such
that for all B € By,

I1B®)lcor < ko [BO)llwrs,  [1BE)llcrr < ki [|BE)|[w2s

for almost all t € [0,T]. Moreover for any r > 0 there exist constants ko, ks > 0
depending only on B and r such that for all B € By,

1B#)lcom (B, 0)) < k2 IBOlwrs, ),  N1BOlcr(s.0) < ks |1BE w258, 0))
for almost all t € [0,T].

(c) The space L?(0,T; W?P) is continuously embedded in L?(0,T;CY7). Hence for all
B € By,
1Bl 20,5007y < K1l Bllp2o,mw28) < k1K

(d) We define

M {B € Co([0.T] x B%R%)) Bl 2(0,rw28) < 2K and there exists m >0 :}

supp B(t) C B,,,(0) C R? for all t € [0,T)
Then for any B € B, there exists a sequence (By)reny C M such that

HB - BkHLQ(O,T;W?ﬂ) — 07 k— oo
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(e) Bx C V is weakly compact, i.e., any sequence in By contains a subsequence con-
verging weakly in Bx with respect to the V-norm.

Proof (a) is obvious and (b) is a direct consequence of Sobolev’s embedding theorem
(Lemma 3) and the fact that for all B € By, B(t) € WP for almost all t € [0,7].
Then the kj-inequality of (b) immediately implies (c). Let now B € Bg be arbi-
trary. According to K. Yosida [15, Chap.V,Sec.4-5| we can approximate B by a se-
quence of finitely-valued functions in the following sense: For any k € N, there exist
¢k e W28 i =1,...k and a family of pairwise disjoint open subsets I¥ C [0,T],i =1,...,k
with A <[0 T\ UZ L ) = 0 such that the sequence defined by

B (o) =Y 1) f(x), t€[0,T),z€R?
satisfies
lim [ B() = B(t)llws = 0
—00

for almost every ¢t € [0,7T]. Since C2°(R?) is dense in W2P(R?), there exist £&F € C2°(R3),
i=1,....,k such that [|€F — (Fllyys < 75 for every i € {1,...,k}. Hence we have

lim |BP (1) = BV () lyes =0 = lim |BP (1) = B(t)[lyyes = 0
k—o0 k—o0

for almost every t € [0, 7] where

Z]l,k ), telo,T],zeR®,
Now we define
JE={te I [ 1BP O)llwas < IBOwas +1} -

For almost every t € [0,7] there exists i € {1,...,k} such that ¢t € IF. If now k is
sufficiently large, we also have t € Jl-k. Hence

lim |BP (1) = BP () lyes =0 = lim |BP (1) = B(t)[lyyes = 0
k—o00 k—o00

for almost every ¢ € [0, 7] where
k
BY(tx) =Y 1(t) f(x), te[0,T),2 R,
i=1

Since HBE) (t) — B(t)|lwz2s < 2||B(t)|lwe2s + 1 for every k € N, Lebesgue’s dominated
convergence yields

. 3
kIEEO”Bl(c = Bl r20,7;m28) =0
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For k € N, we choose ¥ € C*([0,T]),i = 1, ..., k such that

1
||Xi€ - ]ljk||%2([o ) < 73 = , 1e{l,..,k}
k 1glrg)§<k|!£m|\ww
and define
k
BP(t) =Y k() (), te[0.T),z e R?.
=1
Then
k T
4 3
1B = BEI <k 3 ([ IO ~ Ly 0 a ks
=1 0
1
< % —0, k— o0

which directly implies that

. 4
lim B = Bl 20 rawasy = 0.

Without loss of generality it holds that || B ,£4) 220,728y < 2K,k € Nand thus B ,(€4) eM
for every k € N. This completes the proof of (d). As Bg is a bounded subset of
L?(0,T; W?2#) the Banach-Alaoglu theorem implies that any sequence (By) C Bx con-
tains a subsequence (B}) that is converging weakly to some limit B* € L?(0,T; W%P).
Since (B;) C By is also bounded in L?(0,T; H') we can extract a subsequence (B;*)
that is converging weakly to some function B € L?(0,T; H'). Because of uniqueness,
B = B*. Thus B € V and By — B in V. From the weak lower semicontinuity of the
V-norm we can easily conclude that ||B||y < K which proves (e). O

3.2 The characteristic flow of the Vlasov equation

Since the Vlasov equation is a first-order partial differential equation, it suggests itself
to consider the characteristic system. On that point, we will consider a general version
of the Vlasov equation,

hf+v-Ouf+F -0uf +vxG-0,f =0, (3.5)

with given fields F' = F'(¢,x) and G = G(¢,x). Then the following holds:

Lemma 11 Let I C R be an interval and let F,G € C(I x R3;R?) be continuously
differentiable with respect to x and bounded on J x R3 for every compact subinterval
J C I. Then for everyt € I and z = (z,v) € RS there exists a unique solution
I>s— (X,V)(s,t,x,v) of the characteristic system

t=v, 0=F(s,x)+vxG(s,x) (3.6)

to the initial condition (X,V)(t,t, z,v) = (z,v).
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The characteristic flow Z := (X, V) has the following properties:
(a) Z:Ix1I xRS = RS is continuously differentiable.
(b) For all s,t € I the mapping Z(s,t,-) : RS — RS is a C'-diffeomorphism with

inverse Z(t,s,+), and Z(s,t,+) is measure preserving, i.e.,

o0z
deta—(s,t,z) =1, stel, zeR".
z

Proof (a) is well-known from the standard theory of ordinary differential equations.
Because of uniqueness Z(r,t, Z(t,s,z)) = Z(r,s,z) and thus Z(s,t, Z(t,s,z)) = z, i.e.,
Z7Y(s,t,-) = Z(t,s,-). Let us now define

D(s,z) := <F(s,:p)+v y G(s,x)) , sel, z=(z,v) eRC.

Then the characteristic system is given by Z = D(s,z). Since D is source-free, i.e.,
div,D(s, z) = 0, we obtain

d A Z
gdet gz(s,t,z) =div,D(s, Z(s,t,2)) det gz(s,t, 2)=0, s,tcl, zcR"
and thus det %(s,t, z) = det %—f(t, t,z) =1 for any s,t € I and z € RS, O

The relation between the characteristic flow and the solution f of the Vlasov equation
(3.5) is described by the following lemma.
Lemma 12 Under the assumptions of Lemma 11 the following holds:

(a) A function f € CY(I xR®) satifies the Viasov equation (3.5) iff it is constant along
every solution of the characteristic system (11).

(b) Suppose that 0 € I. For f € CY(R®) the function

o

f(t,2) = f(Z(0,t,2)), tel zecR"
is the unique solution of (3.5) in the space C1(I x RS) with f(0) = f.
Iff 18 nonnegative then so is f,
suppf(t) = Z(t,0,suppf), tel
and for every p € [1,00],

LFOllp = 1fllps ¢ €T
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Proof For any solution z = z(s) of the characteristic system,

%f(s,z(s)): (3tf—i—v-8xf—3x¢f-8vf+v><B'&,f)(s,z(s))

This proves (a) since every point (¢,z,v) € I x R® is passed through by a characteristic
curve. Let now Z = Z(s,t,z) denote the solution of the characteristic system with
Z(t,t,z) = z. Because of (a), f is a solution of the Vlasov equation iff for all ¢ € [0, T
and z € RS,

o

f(t,Z) = f(t,Z(t,t,Z)) = f(OvZ(07t7Z)) = f(Z(O,t,Z)) :

Since Z is uniquely determined and continuously differentiable with respect to all its
variables according to Lemma 11 so is f. If 1 < p < oo we have

LFOllp = 1fllp, teT

by change of variables as the flow is measure preserving. The remaining assertions
(including the case p = co) are obvious. O

3.3 Classical solutions for smooth external fields

As already mentioned in the introduction, the standard initial value problem ((1.3), (1.4))
posesses a unique global classical solution. This result holds true if the Vlasov equation is
equipped with an external magnetic field B € C ([O, T); CH(R3; R3)) which will be estab-
lished in the next theorem. Unfortunately the proof does not work if the field is merely
an element of Bg. Since such fields are only L? in time, the same holds for the right-hand
side of the characteristic system. This makes it impossible to determine a solution in
the classical sense of ordinary differential equations. However, we can approximate any
field B € Bi by a sequence (By)reny C€ M C C([O, T);C} (R3;R3)) according to Lemma
10. This allows us to construct a certain kind of strong solution to the field B as a limit
of the classical solutions that are induced by the fields By.

Theorem 13 Let B € C([0,T]; Cy (R* R?)) with || B 20 rw2s) < 2K be arbitrary.
Then there exists a unique classical solution f € C([0,T] x R®) of the initial value
problem (3.4). Moreover for all t € [0,T], f(t) = f(t,-,-) is compactly supported in RS
in such a way that there exists some constant R > 0 depending only on T, f, K and 8
such that for all t € [0,T),

supp f(t) C B%(0) = {(z,v) € R®: |(z,v)| < R}.

Proof For the standard Vlasov-Poisson system ((1.3), (1.4)) the existence and unique-
ness of a local classical solution was firstly established by R. Kurth [5]. As the field
BeC ([O, T); CLH(R3; R?’)) is regular enough the existence and uniqueness of a local clas-
sical solution to our problem can be proved analogously. In this thesis we will only sketch
the most important steps of that proof. The idea is to define a recursive sequence by

fo(t, z) := f(z) and  fri1(t,2) := f(Zk(O,t,z)), ke Ny



ADMISSIBLE FIELDS AND THE FIELD-STATE OPERATOR 35

for any ¢t > 0 and z = (x,v) € R® where Z; denotes the solution of

(U) - (&wak(s,x) + v X B(s,x)) with - Zy(t,t,2) = 2.

Then, according to Lemma 12, fi41 € C*([0,T] x RY) is the unique solution of the initial
value problem

O +v-0uf — Buthg, - Buf + (v x B)-0,f =0, f|,_o=F

We intend to show that the sequence (fj) converges to the solution of the initial value
problem (3.4) if k tends to infinity. By induction we find out that for any k € Ny, Z, is
continuously differentiable with respect to all its variables and hence the same holds for
fx- One can show that there exists § > 0 and functions Z and f with Z € C([0, 5o)? xRS),
f € C([0,60] x R®) for any 6y < & such that

Z(s,t,z) = lim Zy(s,t,z) and f(t,z) = f(Z(O,t, z)) = lem fr(t, z)

- k—oo

uniformely in s, ¢ and z. For any arbitrary o < 4 it turns out that (9,9, ) and (D24, )
are Cauchy sequences in Cy ([0, §p] x R3). This implies that 9,1 ¢, D295 € Cy([0, 5] x R?)
and consequently Z € C1([0, 6p]? x RS). As &y was arbitrary this yields f € C1([0, 6[xRS).
Thus f is a local solution of the initial value problem (3.4) on the time interval [0, J]
according to Lemma 12 as it is constant along any characteristic curve.

Moreover, Batt’s continuation criterion (cf. J. Batt [1]) also holds true in our case. We
can show that the solution exists on [0, 7] by the following argumentation: We assume
that [0, 7% with T < T is the right maximal time interval of the local solution. In this
case we will show that
P(t) : = max{|v| : (x,v) € supp f(s),0 < s <t}
) (3.7)
= max{|V(s,0,2,0)| : (z,v) € supp f,0 < s <t}

is bounded on [0,7*[. But then, according to Batt, the solution f can be extended
beyond T™ which is a contradiction as T* was chosen to be maximal. From this we can
conclude that the solution exists on the whole time interval [0, T7].

For the standard Vlasov-Poisson system (without an external field) such a bound on P(t)
is established in the Pfaffelmoser-Schaeffer proof [11, 13]. We will proceed analogously
and single out one particle in our distribution. Mathematically, this means to fix a
characteristic (X,V)(s) = (X,V)(s,0,z,v) with (X,V)(0) = (z,v) € supp f. Now
suppose that 0 < § <t < T*. In the following, constants denoted by C' may depend only
on f , T, K and . The aim in the Pfaffelmoser-Schaeffer proof is to bound the difference
|[V(t) — V(t — 0)| from above by an expression in the shape of COP(t)® where a < 1
is essential. In our case an analogous approach would merely yield some bound that is
ideally in the fashion of C§P(t)* + CV/§P(t) because of the additional field term in the
v equation of the characteristic system. However, we can use the fact that an external
magnetic field does not accelerate or slow down the particles. Only the direction of
velocity is influenced by B but not its magnitude. This is reflected in the following
computation:
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For s € [t — 4,1,

S

VEP= V=P + [ VP ar

t—48

<|V(t—68)*+2 / (= Optbp(m, X (7)) + V(7) X B(1, X(7)) - V(1) dT
t—48

< P(t— 5)2 +2 / ‘3x1/1f(T,X(T))HV(T)| dr .
t—08

The quadratic version of Gronwall’s lemma then implies that

V(1) < P(t - 5) /|ax¢fsx )| ds < P(t — 4) ///’ysy’ dwdy ds .

By the change of variables y = X (s,t,z,v) and w = V(s,t,x,v),

VOl < P(t—0 /// X(s.t, ;Ux U)X(S),Q dvdz ds (3.8)

since f is constant along the measure perserving characteristic flow. For parameters
0 < p < P(t) and r > 0, we split the domain of integration in three sets My, M}, and
M,, which J. Schaeffer called "the Good, the Bad and the Ugly". They are defined as
follows:

My = {(s,2,0) € [t~ 6, xB® | |ol <pV o~ V()] <p},

[ >pAjo=V(#)>p
My = { (s,2,v) € [t —6,t] x RO | A [ | X (s,t,2,0) — X(s)] < T|v’_3
VX (s,t,2,0) — X(8)| < rlo— V(£ }

o] >pAfo=V(E)] >p
M, =< (s,z,v) € [t — 6,t] x RS | A|X(s,t,2,0) — X (s)] > r|v|>
AX(s,t,z,0) — X(s)| > rjv— V()3

The set M, is the good set since velocities are already bounded, either with respect to
our frame of reference or with respect to the particle we singled out. Mj is the bad set
because velocities are large and the particle whose contribution to the (z,v)-integral in
(3.8) we are computing is close in space to the singled out particle. This means that the
singularity of the Newton force is strong. The set M, is called the ugly set since the
integral over this domain cannot be estimated in a straight forward manner although
the situation is basically not as bad as in the case of the bad set. To estimate the
contribution of each of those sets to the integral in (3.8) the length of the time interval
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is chosen small enough that velocities do not change very much on that interval. The

term

pr(t,z) = /f(t,z:,v) dv, te0,T*], z € R?
can be bounded by [|pf(t)||c < CP(t)3 for all ¢t € [0,T*]. Moreover

10205 (D)l < C llos )25 s O, t e [0,77]

according to G. Rein [12, pp. 388-390]. In the Pfaffelmoser-Schaeffer proof, one further
essential result is that |[py(t)||5/3 is bounded uniformely in ¢ on the time interval [0, 7]
which is a consequence of energy conservation. Fortunately, the energy is still conserved
in our Vlasov equation that is equipped with the magnetic field B. Mathematically, this
means that

Hit) =5 [[ 1P dvds + o [ 1000 do

=5 [ [ 1) dvdo+ 5 [ vy 0s(0) d.

does not depend on t. By an interpolation argument we obtain that

losOllss = </ ﬂf<t>"’/3d$) BE (C [ weso dvdw) Ve vepr

as presented by Rein [12, p.416]. Consequently,
1020 (Do < C*P®)?, € [0,T7] (3.9)

for some positive constant C* that depends at most on f . Now we define

. t p?
6 =90(t) := 1, - .
(t) = min { "27 16(C* + 2k K )2P(1)8/3 }

Without loss of generality we may assume that P(t) > 1 for all ¢ € [0, T*[ (otherwise we
replace P(t) by P(t) + 1). Thus

V(s t,z,v) —v| =|V(s,t,x,v) = V(t,t,x,0)]

t
:/\V(T,t,x,vn dr

< / 102005 (7)lloo + P B(7) oo dr < 8C*P(£)*® + V5 2k1 K P(1)

< V5 (C" + 2k K)P(1)Y < &

for all s € [t —4,¢] and (z,v) € RS. Now the integrals over the three domains can be
estimated just as it is done in the Pfaffelmoser-Schaeffer proof.
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For the sake of brevity we will not present the entire computation but only cite the

results:
f(t,z,v) 4/3
<
\X s, t x,v) — X (s)]? d(s, z,v) < Cop™,
flt,z,v) 4P(t)
< In{ ——
\Xstxv “X(5) d(s’x’”)—cgrn< P >

tmv)

| X (s,t,z,v) — X(s)|?
My

d(s,z,v) < Cr~?

For a detailed derivation of those inequalities confer Rein [12, pp.418-422|. Thus in-
equality (3.8) yields

V(t)] < P(t—06) +C6 <p4/3 +rln (“jf”) + :5> ,

We will now choose p = P(t)*7 and r = P(t)'9/2! in order to enforce that the terms of
the sum on the right-hand side of this estimate are of the same order in P(¢). Then

o t L —32/21
5(75)—111111{1,2, 16(C*+2k1K)2P(t) .

Moreover, suppose that

—21/32
9

P(t) > 1+ (16(C* + 2k K)?) € [0, 7%

(otherwise we replace P(t) by P(t) + 14 (16(C* + 2k; K)?)~21/32). This yields

_ o Jt 1 —32/21
6(t)_mln{2’16(0*+2/€1K)2P(t) :

If for all t € [0, T,

1
16(C* + 2k, K )2

P82/ 5 %

then immediately P(t) < C’ on [0, T*[ for some constant C’ > 0 depending only on f,
K and . Else there exists

T' := inf {t € 0,77

1 t
p-32 < LU
16(C* + 2k, K )2 ®) =2

Since P(t) is monotonically increasing,

1

o) = 16(C* + 2k, K )2

Hence 0 is decreasing on [T”,T*[. For t € [T', T*|,

V()] < P(t—0(t) +Cot) <p4/3 +r In (41;> i P(t)32/21>
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P(t —6(t)) + C(t) P()'? In(P(t))
< P(t—(t)) + C(t) P(t)'7/2,

Let now tg €|T",T*[ be arbitrary. We define t;11 := t; — §(¢;) as long as ¢; > T". Since
ti —tiy1 = 6(t;) > 6(to), there exists k € N such that

thyr ST <ty <--- < t.

Without loss of generality, tx11 = 1" (otherwise we shrink 0(¢x) appropriately). Then
for i € {1, R k‘} and t € [ti-‘rluti]a

V(1) < P(tiz1) + CO(ti1)Pto) /.
Additionally, |V (t)| < P(t;41) if t < t;11 for any i € {1,...,k}. Thus

P(t:) < Pltisn) + Co(ti41) Plto) /%",
ie., P(t;) — P(tit1) < C8(tipr)P(to)" /" .

Consequently

k k
P(tg) — P(T") =Y (P(t;) — P(tit1)) < CP(to)""/*" Y "6(ti1) < CtoP(tg) '/
i—0 1=0

Since to € [T”, T*[ was arbitrary, this means that for all ¢t € [T/, T*],
P(t) < P(T') + CtP ()2 < (P(T)¥?' 4+ Ct) P(t)"/%! < C"(1 + t)P(t)"/*!
where C” depends only on f, K, 8 and T. This finally yields
P(t) < max{C’,C"}Y(1+t)*Y2, te[0,T*.

Now according to the continuation criterion the solution can be extended beyond T™*
which is a contradiction since T* was chosen as large as possible. This implies that the
solution exists on the whole time interval [0, 7], and

Pt)<CA+T)*Y? = Cp, te[0,T]
where C'p > 0 is depending only on T, f , K and 8. We will now consider

Q(t) : = max{|z| : (z,v) € supp f(s),0 <s <t}
= max{|X(s,0,,v)| : (z,v) € supp f,0 < s <t}, te0,T].

Obviously

T
Q(t) < Q(0) +/P(T) dr < C +TCp =: Co,
0
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so Cg > 0 also depends only on T', f , K and . Finally we define
S(t) == max{|(z,v)| : (z,v) € supp f(s),0<s<t}, te][0,T]

and obtain

St)<Pt)+Q(t)<Cp+Co+1=R, te[0,T],

which means that supp f(t) C B%(0) for all ¢ € [0, T]. The proof is complete. O

Temporarily we will write fp to denote the classical solution that is induced by the
field B.

Corollary 14 Suppose that f € C2R%), B € C([O,T];Cg(R3;R3)) and let fg be the
induced classical solution that is given by Theorem 13. Then it additionally holds that
fs € C([0,T]; CZ(RY)).

For the standard Vlasov-Poisson system (i.e., B = 0) the proof of this assertion is
given by A. Lindner in [7]. If B € C([0,T]; CZ(R* R?)) is arbitrary the proof proceeds
analogously.

In order to prove that any field B € By still induces a strong solution of the initial
value problem the following two lemmata are essential. For fields B € M Lemma 16
asserts that fp depends Lipschitz continuously on B while its derivatives 9, fp and 9, fp
are Holder continuous with respect to B. In the course of the construction of a strong
solution to some field B € By we will approximate B by a sequence (Bj) C M and then
Lemma 16 will ensure that (fg,), (0:fB,) and (0. fp,) are Cauchy sequences in some
sense. To prove Lemma 16 we will need some uniform bounds that are established in
Lemma 15.

Lemma 15 Let B € M be any admissible field. Fort,s € [0,T] and z = (z,v) € R, let
Zp = Zp(s,t,z) = (XB,VB)(s,t,x,v) be the solution of the characteristic system with
Zp(t,t,z) = z. Furthermore let fp be the classical solution of the initial value problem
(3.4) to the field B. Then, there exist constants Ry > R, c1,ca,c3,c4 > 0 depending only
on f, T, K, and 8 such that for all t,s € [0, 77,

1ZB(s,t, ) om0y < Bz, [D2ZB(s,t, )|l oo (59, (0)) < €15
10:fB(t)[loo < 2, D315 (1) [loo < 3, 10t fB L2 (0,1:04) < €4 -

Moreover Zg and fp are even twice weakly differentiable with respect to z and there exist
constants cs, cg > 0 depending only on f, T, K, and B such that

H [t = ZB(S’tv )] <S¢, s€E [O’T] and HszBHLOO(O,T;Lﬂ) < ¢s .

HLDO(O,T;WQ’B(BR(O))) -
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Lemma 16 Let B,H € M be admissible fields and let fp, fi be the induced classical
solutions. Moreover, let Zg denote the solution of the characteristic system to the field B
satisfying Zp(t,t,z) = z and let Zg be defined analogously. Then, there exist constants
l1,05, L1, Lo, L3 > 0 depending only on f, T, K and 8 such that

IN

128 = ZullcqoricyBroy) < GlB = Hlz2010w16Bx,, 0) »

eQHB HHLz

IN

10-25 = 9 Zn || c(0,11:¢4(Br(0)) (0,T;W28(Bg,, (0)))
1B = fullcqoric,y < LnllB = Hlpzrmw1655,0)) »
Hasz —aszHC([O,T];Cb) < L2||B HHLz 0,T;W28(Bg,(0))) ’

Hath - 8ltfHHLQ(O,T;Cb) < LS”B HHLz 0,7;W28 (B, (0)))
where v = ~(p) is the Hélder exponent from Lemma 10.

The proofs of Lemma 15 and Lemma 16 are very technical and require several Gronwall
loops. So as not to disturb the flow of reading, detailed versions of both proofs are
outsourced to the Appendix.

3.4 Strong solutions for admissible external fields

Now we will show that any field B € By still induces a unique strong solution which
can be constructed as the limit of solutions fp, where (By) C M with By — B in
L*(0,T; W?2#8). Such a strong solution is defined as follows:

Definition 17 Let B € Bi be any admissible field. We call f a strong solution of the
initial value problem (3.4) to the field B, iff the following holds:
(i) Foralll <p < oo, f € WH2(0,T; LP(R®))NL2(0, T; WHP(RS)) C C([0, T); LP(RS))

and
I fllwr20,m:00) + 1f l2 0,y < C
for some constant C' > 0 depending only on f, T, K and .

(ii) f satisfies the Viasov equation
Oif +v-0uf —0xp-0uf+ (v xB)-0yf =0

almost everywhere on [0,T] x RS.
iii) f satisfies the initial condition f|_. = f almost everywhere on RS,
(ili) f satisfies the initial condition f|,_, = f almost ywh RS

(iv) For everyt € [0,T], supp f(t) C Br(0) where R is the constant from Theorem 13.

First of all one can easily establish that such a strong solution is unique.

Proposition 18 Let B € Bi be any field and suppose that there exists a strong solution
f of the initial value problem (3.4) to the field B. Then this solution is unique.
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Proof Suppose that there exists another strong solution g to the field B. Then the
difference h := f — g satisfies

Oth + v - Ogh — by - Do f — Oathy - Ouh + (0 x B) - yh =10 .

almost everywhere on [0, 7] x R®. Thus by integration by parts and Proposition 8,
d
IO =2 [ohhdz=2 [ 0.0, -0, hd <2 10,f Ol [0:0O)]12 [1(2) 1

< C(R) [0uf()llo IR(E)]I7 -

Ast— ||h(t)]|3, is continuous with [|2(0)]|3, = 0, Gronwall’s lemma yields ||h(t)[|2, = 0
for all t € [0, 7). Hence for all t € [0,T], f(t) = g(t) almost everywhere on R® which
means uniqueness. O

Now we will show that any admissible field B € Bg actually induces a unique strong
solution. Note that this solution is even more regular than it was demanded in the
definition. However the weaker requirements of the definition will be essential in the
later approach (see Proposition 22) and it will also be important that uniqueness was
established under those weaker conditions.

Theorem 19 Let B € Bx. Then there exists a unique strong solution f of the initial
value problem (3.4) to the field B. Moreover this solution satisfies the following properties
which are even stronger than the conditions that are demanded in Definition 17:

(a) f € WL2(0,T;Cy(R®)) N C([0,T]; CHRS)) N L®(0, T; WP (RS)) with
IF @y = 1flp, te€(0,T], 1<p<oo

and
I fllw201:0,) + HfHC([O,T];C’Z}) + 1 ll oo o,rywr2sy < €
for some constant C > 0 depending only on fo, T, K and .
(b) f satisfies the initial condition f‘t:O = f everywhere on R,
Proof Let B € By arbitrary. According to Lemma 10, we can choose some sequence

(Bp)ren C M with By — B for k — oo in L?(0, T, W?#). Now Lemma 16 and Lemma 15
provide that for all ¢ € [0,7] and j, k € N,

/B, = fBjHC([O,T];Cb) < Ly By, - BJ'HL?(O,T;W?’B(BRZ(O))) )

10: 15, = 0= f; loqorien) < LallBr = Bill 2o mw.5(5p, o))

19e B, = OcfB; 120,150 < Lall By — BJ'HZQ(O,T;WQﬁ(BRZ(O))) )
ID2 B, | oo 0,755y < 6 -

in C([0,7T];C}) N WH2(0,T;Cp). Due to completeness there exists a unique function

where v = v(f) is the constant from Lemma 10. Hence, (fp, )nen is a Cauchy sequence
1
b

f€C(0,T);CHNWL2(0,T; Cy) such that fp, — f in C([0,T[;CL) N WH2(0,T; Cy).
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Since (fp,) is also bounded in L*(0,T;W?#) by some constant depending only on
f, T, K and B, the Banach-Alaoglu theorem states that there exists some function
f € L>(0,T;W?P) such that IB, X f up to a subsequence. This means that for any
a < 2, the sequence (DY fp, ) converges to DY f with respect to the weak-*-topology on
[LY(0,T; LP)]* = L>°(0, T; LP) where 1/5 + /g’ = 1. Because of uniqueness of the limit
it holds that D% f = D2 f and thus

f =T eW(0,T;Cp) N C([0,T]; Cy) N L=(0, T W7).
To show that f is a strong solution to the field B, we have to verify the conditions from
Definition 17. Uniqueness then follows directly from Proposition 18.
Condition (ii): For any measurable subset M C [0,7] x R,

/ 0f + 0+ Onf — Butby - Dof + (v x B) - B, f] d(t, z,0)
M

:/‘(@f—i—v-(‘)xf—awwf-avf—i—(v><B)-8,,f)
M

- (8thk +uv- 8:1:ka - 3m¢f3k . avak + (v X Bk) : 81,ka)‘ d(t,x,v)

< CHatf - athkHOO +C||arf _aa:kaHoo

T
e / (1029 (®)lloe + RIB®)lo0) A 180 — B fi, 1
0

T

T+ C 100l / (1015, 1 (B)lloo + RIB(E) — Be(t) 1)
0

< CIf = Ielwrzore,) + CIf = flleqorseyy + CIB = Brllzeo.rwes)

<C|B- BkHZ2( — 0,

0,T;W2:8)

if & — oo. This means that 0;f + v - Oy f — Oy - Ouf + (v X B) - 0, f = 0 for almost
every (t,x,v) € [0,7] x RS that is condition (ii).

Item (b): Obviously,

1£(0) = f| = |£(0) = f,(0)| < CIIf = follcqorcy = 0, k— o0,
so f(0) = f everywhere on RS that is (c).
Condition (iii): Of course (b) directly implies condition (iii) from Definition 17.

Condition (iv): Due to uniform convergence and continuity of f, it is evident that f(¢)
is also compactly supported in Bgr(0) for every ¢ € [0, T].

Item (a): For 1 < ¢ < oo arbitrary, ¢ € [0,7] and k € N, we have

1@l = 1£la] = [17ONa = 172 Oll| < 150 = F (D)

< (A(BR(O)))%Hf(t) — [B.()lloo < (1+A(Br(0))) IIf = fB.llcqo,r¢,) = 0,
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if & — oo where % =0 if ¢ = co. This means that ||f(t)||; = Hf||q for every ¢t € [0,7]
and 1 < ¢ < co. Moreover we can choose some fixed k € N such that

If = IBillwrzoric,) + IIf = fBilleqorsepn <1-

Also note that || f, llcqoricy) < O, Ifllwieorc,) < C and [|DZfpllr2072) < C
by Lemma 15. It holds that

I llwrzo.rc,) + 1floqomey

<|If = fBllwrzoricy) + I = IBilleqoriey) + 1 Bllwrzome,) + 1 fBlleqomicr
<C.

Moreover by the weak-* lower semicontinuity of the norm,
£l oo 0,28y < lién inf| fB, || oo 0,28y < C.
—00
This proves (a).
Condition (i): The condition (i) from Definition 17 follows directly from (a).

Thus the proof of Theorem 19 is complete. O

Now that we have showed that any magnetic field B € By yields a unique strong solution
of the initial value problem (3.4), we can define an operator mapping every admissible
field onto its induced state.

Definition 20 The operator
f.:Bx — C([0,T); L*(R%)), B+ fg

1s called the field-state operator. At this point fg denotes the unique strong solution
of (3.4) that is induced by the field B € B.

From now on the notation fg is to be understood as the value of the field-state operator
at point B € Bg.
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Chapter 4

Continuity and compactness of the
field-state operator

Obviously the Lipschitz estimates of Lemma 16 hold true for the strong solutions by
approximation.

Corollary 21 Let L1, Lo, Ly and c5 be the constants from Lemma 15 and Lemma 16.
Then for all B, H € By,

IN

IfB = fullcqoric,y < LnllB—=Hlp2rw1685,0)) »

A

Hasz - aszHC([O,T];Cb) = L2”B - H“ZQ(O,T;WQ’ﬂ(BRZ(O))) ’

vy
LsllB = Hl 120,726 (Br,, 0))) -

IN

10t f5 — OcfullL20,m:c4)

IN

ID2fBll L0 rmw2s) < 5.

This means that the field-state operator is globally Lipschitz-continuous with respect to
the norm on C([O, T C’b(R6)) and globally Holder-continuous with exponent v = ()
with respect to the norm on W12(0,T; C,(R%)) and the norm on C([0,T]; C}(R?)).

The following proposition provides (weak) compactness of the field-state operator that
will be very useful in terms of variational calculus.

Proposition 22 Let (Br)ken C Bgi be a sequence that is converging weakly in
L%(0,T;W?258) to some limit B € By. Then there exists a subsequence (Bk,) of (Bk)
such that

kaj — fg in WY2(0,T; LP) N L2(0,T; WHP) 0 L2(0, T; W2P)  for every 1 < p < oo,
fB, = fBin L*([0,T] x R%)

if 7 tends to infinity.

Proof Let (By)ren C By and B € By such that By, — B in L?(0,T; W?#). According
to Theorem 19, fi, := fg, is bounded in W12(0,T; LP) N L?(0, T; W1» N W?2#) for every
1 < p < 0. Note that this bound can be chosen independent of p. Hence the Banach-
Alaoglu theorem and Cantor’s diagonal argument imply that, after extraction of a sub-
sequence, (fy) is converging weakly in W12(0,T; L™) N L(0, T; W1™) N L2(0, T; W25)
for every m € N with m > 2.
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Thus there exists some function f € W142(0,T;L™) N L?(0, T; W'™) N L?(0, T; W25)
for every m € N, m > 2 such that

fe—f in WY20,T;L™) N L0, T; W™) N L?(0, T; W) for every m € N, m > 2

if & — co. Thus, by interpolation, f € W12(0,T; LP) N L*(0,T; W'P) N L2(0, T; W?#)
for every 2 < p < co. We will now show that f is a strong solution to the field B by
verifying the conditions from Definition 17.

Condition (iv): Let € > 0 be arbitrary. We will now assume that there exists some
measurable set M C [0,T] x (R \ Bg(0)) with Lebesgue-measure A(M) > 0 such that
f > ¢ almost everywhere on M. Then

0<s>\(M)</fd(t,z):/f—fkd(t,z):/(f—fk)]lMd(t,z)—>O, k- oo
M M

which is a contradiction. The case f < —e can be treated analogously. Hence —e <
f < e almost everywhere on [0,7] x (]R6 \ BR(O)) which immediately yields f = 0
almost everywhere on [0, 7] x (R%\ B(0)) because & was arbitrary. Since W12(0,T’; LP)
is continuously embedded in C([0,T]; LP) by Sobolev’s embedding theorem, we have
supp f(t) € Bgr(0) even for all ¢t € [0, T].

Condition (i): The fact that supp f(t) C Br(0) for all ¢ € [0,T] directly implies that
fewbt20,T; LP) N L2(0, T; WP) for every 1 < p < oo by interpolation. Then we can
easily conclude that

fo—f in WY2(0,T;LP) N L2(0,T; W) 0 L0, T; WP)  for every 1<p < .

The inequality
| w2010 ey + 1 fllL20,mwiey < C
where C' > 0 depends only on f , T, K and § follows directly from the weak convergence

and the weak lower semicontinuity of the norm. Since C' does not depend on p this
inequality holds true for p = cc.

Condition, (iii): It holds that f, — f in W52(0,T; L?) with f;(0) = f almost everywhere
on RS for all £k € N. By Mazur’s lemma we can construct some sequence (f;)ren such
that fi — f in Wh2(0,T; L?) where for any k € N, fr is a convex combination of

f1, s fr- Then of course f;(0) = f almost everywhere on RS as well and hence

1£(0) = fllzz = [1£(0) = £z (O)lz2 < C|If = fillwrernzy — 0, k — oo

Thus f(0) = f almost everywhere on RS,

Condition (ii): We know that f,, — f in W12(0,T; L?)nL%(0, T; W2) = H'(]0, T[xR5)
by Lemma 5. Then, because of the compact support, the Rellich-Kondrachov theorem
implies that fr — f in L2([0,T] x R%), up to a subsequence. From Proposition 8 we can
conclude that for any t € [0, 77,

10205 (t) = Outp, (W)l L2(BR(0)) < C IF () = fr(®)l[L2 =0, Kk —o0.



CONTINUITY AND COMPACTNESS 47

For brevity, we will now use the notation
V(p, [, B) i= 0o+ v Opp — 0phs - Opp + (v X B) - Opp .

Let ¢ € C°(]0, T[xR%)) be an arbitrary test function. Then V(, f, Bx) is bounded in
L?(]0, T[x Br(0)) uniformely in & (the bound may depend on ¢). It also holds that

V(e f,Br) = V(o fr, Br) = 0, k=00 in L*(]0, T[xBg(0)),
since 1, — ¢y in L?(]0,T[xBg(0)). Moreover,
V(@? f’ B) - V(@? fa Bk) - O> k — oo in LQ(]OaT[XBR(O))

Hence by integration by parts,

T T
O//V(f,f,B)«pdzdt = O//fV(ap,f,B)dzdt
T

N //fV(so,f,B)_fk V(p, fr, B) dzdt

0

IN

T
[ [+ (00 £.8) = Vip. £.B) dea
0

- O//f (V(%f’Bk)—V@,fk,Bk)) dz dt

T
+ 0/ / (F — i) Vip, i By) d=dt

-0,k > 0.

As ¢ was arbitrary this implies that V(f, f, B) = 0 almost everywhere on [0, 7] x RS
that is (ii).

Consequently f is a strong solution to the field B and thus f = fp because of uniqueness.

Furthermore we have showed that there exists a subsequence (By;) of (By) such that

(fB,.) is converging in the demanded fashion. O
J
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Chapter 5

Fréchet differentiability of the field-state
operator

Since the Fréchet derivative is a linear approximation of the field-state operator at some
certain point B € By it turns out that this derivative is determined by an inhomogenous
linear Vlasov equation. In the following section we will analyze those linear Vlasov
equations in general, i.e., we will establish some existence and uniqueness results. The
type and the regularity of the solution will depend on the regularity of the coefficients.

5.1 A general inhomogenous linear Vlasov equation

Let 7o > 0 and r2 > r; > 0 be arbitrary. We consider the following inhomogenous linear
version of the Vlasov equation:

{atfﬂ Ouf + A 0uf + (v xB)-8yf =0pthy C+xPay+b (5.1)
Flizo
The coefficients are supposed to have the following regularity:
=a(t,z,v) € C([0,T]; C; (RY)), supp a(t) C By, (0), t € [0,T],
= b(t,z,v) € C([0,T]; C} (RY)), supp b(t) C B,,(0), t € [0,T7,
= f(z,v) € C2(RY), supp f C B,,(0),
,x) € C([0,T); C*(R%; R?)), (5.2)

A(t
=B(t,z) € C([0,T]; 7 (R* R?)),
C(t,z,v) € C(0,T;CH(R%R?)), supp C(t) C B,,(0), t € [0,T7,
= x(z,v) € C:(R%[0,1]), x = 1 on B,,(0), supp x C B;,(0)

a=
b
f=
A=
B
C
X

Moreover @,  is given by

Dy f(t, ) - //\:c— - Ova(t,y,w) f(t,y,w) dwdy, (t,z)€[0,T] xR>. (5.3)
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For (t,x) € [0,7] x R? we will also use the notation

af(t, ) // - ’3 (8 aldyf — Opf Oy a)(t y,w) dwdy . (5.4)

Note that

3
Oaf = Onto,ar and [Py ] Zawavlaa, =00 fonas J=1,2,3.
=1 =1
As a € C([0,T]; C}(R%)) with compact support supp a(t) C By, (0) for all ¢ € [0,7],
Proposition 8 provides the following inequalities: For any r > 0 there exists some con-
stant ¢ > 0 that may depend only on r and r such that for almost all ¢ € [0, 77,

[@a,f (Dl 28,0y < cllOval)lloo 1 ()28, 0)) fe L0, T; L%,

195, (Dl 228, 0)) < €llza(®)lloo [10:F (D22, 0 [ € L*(0,T; HY), (5.5)
[@a, (D)L < cllOval)lloo 1 (D) Lo (B, (0)) f e L*0,T;L%),

195 (D)l zee < e [10:za(t)lloc 10:F (B) |2 (5, (0)) feL0,T;whe).

If a € C([O,T];Cg(]Re;)) and f € C([O,T];C’l}(RG)) then ®, ¢ is continuously differen-
tiable with respect to x with

Oz, Pa,r(t, ) Zazﬁxlwa af—zamz¢avza8 400,00, af
=1 =1

3
=> Oz, Y0,;00,, 1~ 200, 1 = [P g] (1, @)

=1

for all (t, ) € [0, T]xR3. Because of density this result holds true ifa € C([0, T]; C}} (R?)).
If merely f € L%(0,T; H') the result holds true in the weak sense.

Lemma 23 Let A, B € C([0,T]; CL(R3;R3)) be arbitrary. Then for any t € [0,T] and

z € RS the characteristic system

T=v,
0v=A(s,r)+vxB(t,x),

has a unique solution Z € C1([0,T] x [0, T] x R%;R®) with Z(s,t,2) = (X,V)(s,t,2) to
the initial value condition Z(t,t,z) = z.

For any r > 0 and all 5,t € [0,T], Z(s,t, B;(0)) C Be(;)(0) where

() = (r+ VT Al 20 ra) ) -

Moreover there exists some positive constant C(r) depending only on r, HAHLz(&T;C;),
IBll 20,707y such that for all s,t € [0,T],

10:2 (5,8, )| o= (B,(0)) < C(r) and [|0:2(s,1,-)|[L=(5,(0)) < C(7) -
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Proof The existence of a unique solution Z € C*([0,T] x [0,7T] x R% R®) to the initial
value condition Z(t,t,z) = z is obvious. Let now s,¢ € [0, 7] be arbitrary. Without loss
of generality, s < t. If z € B,(0),

t
1Z(s,t,2) <12 4 2 / X (16, 2)] V(7. 2)| + [V, 1, 2)] [A(r, X (.8, 2))] dr

t t
§r2+2/\Z(T,t,z)| 1A (T)]| 0o dT+2/|Z(T,t,z)\2 dr.

S

Thus by Gronwall’s lemma
t
1Z(s,t,2)|% < 252 +2e2T/\Z(T,t,z)\ A(T)]|oo dr
S

and then the quadratic version of Gronwall’s lemma yields
1Z(5,t, M L (8,0)) < VeTr2 + TV Al 20,1y < C(r) - (5.6)

Now let C(r) denote a generic positive constant depending only on r, ||A|| L2(0,TCL)
||B||L2(07T;C§). For any i € {1,...,6} and z € B,(0),

02,2 (s, 2)| <1+ / 0=,V (1) + |D-A(7, X (7)) - 0, X (7)]

+ V(DI DB(7, X(7)) - 9:, X (7)[ + 0,V (7)] [B(7, X(7))] d7
<C)+C0) [ (L+IAD ey + [BO)ey)I0- 2(r,t,2)] ar
for all s € {1,...,6} and hence

t
10-Z(s,t,) | o= (B,(0)) < C(T)/HA(T)HC,} +[B(7)llgp d7 < C(r).
One can easily show that 9, Z(s,t, z) is given by

0Z(s,t,z) = —D,Z(s,t,z) (A(t 2 +Z « Bt z)) .

For more detail confer [9, p.14]. Thus we also have [|0;Z(s,t, )| Lo (B, (0)) < C(r) for
alli € {1,...,6}. O

Now we can establish an existence and uniqueness result for classical solutions of the
system (5.1) if the regularity conditions (5.2) hold. Unfortunately the coefficients of the
systems that will occur in this paper do not satisfy those strong conditions. However,
we will still be able to prove an existence and uniqueness result for strong solutions of

(5.1) if the regularity conditions are slightly weaker.
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Proposition 24 Suppose that the coefficients of the system (5.1) satisfy the regular-
ity condition (5.2). Then the initial value problem (5.1) has a unique classical so-
lution f € C'([0,T] x R).  Moreover for all t € [0,T], supp f(t) C Be(y41)(0) with
r =max{ro,r2} and f is implicitely given by

¢
ft,z) =1£(Z(0,t,2) +/ Ouby - C+ xPay +b| (s, Z(s,t,2)) ds (5.7)
0

for any t € [0,T], = € R®. Moreover there exists some constant C > 0 depending
only on T, 1o, 72, [|allcqo. 1,00y, Plleorycp), Hf||c2 [Allcomcrnys IBlleqomcry

ICleqo,r;cp) and lixllcy such that || fllcy o ryxrey < C-

The proof of Proposition 24 is very technical and is outsourced to the appendix.

Comment

(a) If we use a final value condition f ‘ o = = f instead of the initial value condition
f ‘ 0 = f the problem can be treated completely analogously. The results of
Proposition 24 and Corollary 26 hold true in this case. Only the implicit depiction
of a classical solution must be replaced by

T
ft,z) = f T,t,z / x?/)f-C+x<I>a7f+b](s,Z(s,t,z))ds (5.8)
t

(b) Suppose that C = 0 and recall that ®, y depends only on f | By (0)" Hence, if we
T0
choose r; = ((r¢) then for all ¢t € [0,T] and z € B,,(0),

f(t,z) =1£(Z(0,t,2)) +/ Pa s+ b (s, Z(s,t,2)) ds (5.9)
0

because in this case x(Z(s,t,2)) =1 as Z(s,t, By, (0)) C By, (0). This means that
the values of f‘B ) do not depend on the choice of x as long as x = 1 on B,, (0).
70

Definition 25 We call f a strong solution of the initial value problem (5.1) iff the
following holds:
() f € HY(0, T[xRS)  C([0,T); L2).
(i) f satisfies
Of+v-Ouf +A-Ouf+(vxB) -0pf =005 - C+Pay+b

almost everywhere on [0,T] x RS.
1ii satisfies the initial condition = f almost everywhere on RS,
t=0 Y

(iv) There exists some radius r > 0 such that for all t € [0,T], supp f(t) C B,(0).
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Corollary 26

(a) Suppose that the coefficients satisfy the following conditions:

a=a(t,z,v) € C’([O,T]; Cl} (R6)), supp a(t) C By, (0), t € [0,T7,

b =b(t,z,v) € L*(0,T;C, N H'(RY)), supp b(t) C B, (0), t € [0,T],

f = f‘(w,v) IS Ccl(RG), supp fC B,,(0),

A =A(t,z) € C([0,T]; CY(R* RY)), (5.10)

B = B(t,z) € L*(0,T; C"(R%; R?)),
C = C(t,z,v) € L*(0,T; H' N C,(R% R?)), supp C(t) C By, (0), t € [0, 7],
x = x(z,v) € C¢(R%[0,1]), X = lonB,,(0), supp x C By,(0)

Then the following holds:

(A) There exist sequences

(by) C C([0,T); CY) with by — b in L*(0,T;C, N HY),

(£,) C C2(R) with — f, = £ in CHRY),

(Bx) C C([0,T];CH7) with By — B in L*(0,T;C*),

(Cr) C C([0,T];CH) with ~ Cj — C in L*(0,T;C, N HY)
such that

supp by(1), supp fy, supp Ci(t) C Bro41(0)
for almost all t € [0,T] and all k € N.

For any k € N, there exists a unique classical solution fr of (5.1) to the
coefficients a, by, fi, A, By, Cr and x. Moreover, there exists some constant

C>0 depending only on T, 1o, T2, HaHC([O,T];Cl}y HbHLQ(O,T;Cb)7 HbHLQ(O,T;Hl);

Hf”q}; A e om0ty (1Bl 20,7501y, ||XHC§ and ||C|| z2(0,1;c,nH1) Such that

k|| Loo (J0,7[x RS) kIl H1(j0,T[xRE) < C.
I fxll + || fxll <C

(B) There exists some function f € L> N H*(J0, T[xR®) such that
£l oo qo,rixrey + L f 1 qo,7ixRey < C
and
fr = f € L®(0,T[xR%), fr — f € H'(J0,T[xR®)

if Kk — oo up to a subsequence.

(C) The function f is a unique strong solution of the initial value problem (5.1).
For almost all t € [0,T], supp f(t) C Be34)(0) with r = max{ro, ra}.
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(b) Suppose that the coefficients satisfy the following conditions:

a=al(t, z,v) € C([0,T]; C; (RY)), supp a(t) C By, (0), t € [0,T],
b =0,
f = f(z,v) € C2(RY), supp f C By, (0),
A =A(t,z) e C([0,T];CY(R* RY)), (5.11)
B = B(t,z) € L*(0,T; C"(R*; R?)),
C=0,
[ x = x(z,v) € CL(R%[0,1]), x = 1onB,,(0), supp x C By, (0)

Then the following holds:

(A) There exists a sequence
(By) c C([0,T];C*) with By — B in L*(0,T;C"7).

For any k € N, there exists a unique classical solution fy of (5.1) to the coeffi-
cientsa, b =0, f', A, B, C =0 andx. Moreover, there exists some constant
C > 0 depending only on T, ro, T2, |[allcqory0p), H%Hcgf 1Al cqo.r1:007)
1Bl £2(0,r;c1v) and HxHC; such that for all k,j € N,

1 fx = Filleqomiey) < C Bk — Bjll 20,101,
10 fi. = 0= filleorycy) < C1Br = Bjll 720 1,010y
10 fe = Ocfillr20,m,c) < C 1Bk = Bjill 29 1)
(B) There exists some function f € W12(0,T;Cy) N C([0,T); CL) such that
o= FEWP0,T5Gy),  fi — f € C(0,T];Cy)
if Kk — oo up to a subsequence. Moreover, there exists some constant C > 0
depending only onT', o, T2, HaHC([O,T];Cg)a HfHCg: HA”C([O,T};CM): HX”G; and

HBHLQ(O,T;cm) such that

1 llwi200m:0,) + HfHC([o,T];cg) <C.

(C) The function f is a unique strong solution of the initial value problem (5.1).
For almost all t € [0,T], supp f(t) C Be¢(24+)(0) with r = max{ro, ra}.

(D) If we fix r1 := ((ro) then f‘B 0) does not depend on the choice of x as long
70
as x =1 on By, (0).

The proof of this Corollary can also be found in the appendix.
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5.2 The Fréchet derivative of the field-state operator

Again, let K > 0 be arbitrary. We can now use the results of Section 5.1 to establish
Fréchet differentiability of the control state operator on By (that is the interior of Bg).

Theorem 27 Let f. be the field-state operator as defined in Definition 20. For B € By
and H € V there exists a unique strong solution f& € LN H(]0, T[xR) c C([0,T]; L?)
of the initial value problem

atf+U'amf_azwa'8vf_am¢f 'ava+ (UXB) '81,f—|— (UXH) 'anB =0

f’t:O =0

(5.12)

with supp f(t) C B,(0) for allt € [0,T] and some radius ¢ > 0 depending only on T, K,f
and 8. Then the following holds:

(a) Lett € [0,T) be arbitrary. Then f.(t) is Fréchet differentiable on By with respect
to the L?(R®)-norm, i.e., for any B € By there exists a unique linear operator

fe#) 1V — L%(R®) such that
Ve > 036> 0VH €V with | Hlly <6 :

| fB1u(t) — fB(t) — f()[H]| L2 .

B+ H e I@%K and
| H |y

The Fréchet derivative is given by
fpWIH] =[5 (1), HEeV.

(b) The field-state operator f. is Fréchet differentiable on I@K with respect to the
C([0,T); L?(R%))-norm, i.e., for any B € By there ewists a unique linear oper-
ator fi:V — C([0,T]; L*(R%)) such that

Ve>036>0VH €V with |[H|ly <6 :

!/
_ H )
| fB+u — fB — f5[H]llc0,m:02) e

B+ H e @K and
[ H[lv

The Fréchet derivative is given by

felH]=f§, HeV.

(¢) For all B,H € I@K, the solution fg depends Holder-continuously on B in such a
way that there exists some constant C' > 0 depending only on f,T, K and 8 such
that

o AT = S sz < C 1A = Bl pygasy A B € Bic
V>

Comment As K > 0 was arbitrary the obove results hold true on @2 i instead of B K-
Hence they are especially true for B € By
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Proof Let C' denote some generic positive constant depending only on f , K, T and S.
First note that the system (5.12) is of the type (5.1) where the quantities correspond in
the following way:

System (5.1) System (5.12)
To = R > 0
T = 0 Z 0
79 = R >y
a = 0 e C([0,T);C})
b = _(uxH) 0fs eL*0,T:Con HY)
f = 0 € C2(R%)
A = — 0,05, e o([0, T]; C')
B = B € L?(0,T;CY)
C = o fB € LQ(O,T; H! NCh)
X = 0 € CH(RO)

This means that the coefficients of (5.12) satisfy the regularity conditions (5.10) of Corol-
lary 26. Hence (5.12) has a strong solution fF € L°° N H'(]0, T[xR%).

To prove Fréchet differentiability of the field-state operator we must consider the differ-
ence fpyrg — fp with B € IBK and H € V such that B+ H € I@K. Therefore we will
assume that |[H|y < § for some sufficiently small § > 0. Now we expand the nonlinear
terms in the Vlasov equation (3.4) to pick out the linear parts. We have

OxVfp iy OufBrm — Oxtbyy - Ouf
= OuVyfp - Ou(fB+1 — [B) + Ou(fp, y—1s)  OufB + Ru,

(vx (B+H)) O0yfpsn — (vx B)-0ufB
= (vxB)-0(fp+a — fB) + (v x H) -0, fp + Ra

where

Ri = 0(sp,pf5)  Oo(fB+m — fB), Ro2:=(vxH) 0y(fp+n — [B)

are nonlinear remainders. Then R := Ry — Ra € L?(0,T; H' N Cy) and Corollary 21
implies that

IRl 2 < CllOufBsm — OufBllLemo) (10 fpsp—fsllrzo 2y + 1H | 120,7:12))
< ClloufBrm — OufBllLemrrey (IfB+a — fBllL20m02) + 1HI L200,7:22))
< C|H| .

Obviously fp+my — fB solves the initial value problem
8tf +uv- axf - 3x¢f5 . 8vf - 8x¢f . ava + (UXB) : 8vf + (UXH) : 8va =R

f‘t:O =0

(5.13)

almost everywhere on [0, 7] x RS.
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From Corollary 26 (a) we know that this solution is unique. Also according to Corollary
26 (a) the system

8tf+v'8zf_axwf3‘8vf_8z¢f'8vf3+(vXB)'avf:Ra

f‘t:OZO'

(5.14)

has a unique strong solution fz. Then f& + fr is a solution of (5.13) due to linearity
and thus

feem — fe=fH + Ir

because of uniqueness. It holds that

IR ()2, =2 / / Fr(5) 01 fr(s) dods

0

t
2 [ [ o (0 0ur ~ 0uty - Oufr — Outi - Dufin+ (v x B) Do~ R) dads
0

t
2//f73 (f%?#fﬁ -OufB + R) dzds

0

t
< C/ IR ()72 + IR ()] 2 IR ()2 ds -
0

Applying first the standard version and then the quadratic version of Gronwall’s lemma
yields

Ifr®)lz2 < C IR 200:02) < C [ HIY™
Let now € > 0 be arbitrary. Then for all ¢ € [0, 7],

V() — fo() — FEOe 10l |
B = ay, =€y <e

if ¢ is sufficiently small. Since the inequality holds for all ¢ € [0,7] and all the terms
depend continuously on time this also means that

I fB+m — fB = B ey e I fBu(t) — fB(t) — fH )]z

= <e
I1H v tef0.7] I1H|lv

Hence the assertions (a) and (b) are proved and the Fréchet derivative is determined by
the system (5.12).

To prove (c) let A, B, H € By be arbitrary and suppose that |H|y < 1. According to
Lemma 10 (d), we can choose sequences (Ay), (By), (Hy) C M such that

1Ak = Allz20,r;w28) = 0, 1Bk — Bllzeomw2sy — 0, | Hk — Hl|p20,7yw28) = 0

if k£ tends to infinity.
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From Corollary 26 we can conclude that
”fik”ffl(]of[xﬂ%"‘) <C and ”fgf”Hl(]o,T[foi) <C
and also
fak— i and  fHF— ff in H'(J0, T[xR).

Since the (x,v)-supports of all occurring functions are contained in some ball B,(0)
whose radius r depends only on f, K, T and 8 but not on k, we can apply the Rellich-
Kondrachov theorem to obtain

fir— 8 and fiF— ff in L2([0,7] x R)

up to a subsequence. As Ay, By and Hy, satisfy the regularity assumptions (5.2), fgf and

f g: are classical solutions and can be described implicitely by the representation formula
(5.7). Note that Lemma 15 holds true for p instead of R. Hence for all s,t € [0,7],

1Zr(s,t, M (sy0p < Co 10:07(8) 0 < C, 1D frll120m:02) < C

for all F' € {Ak, By, ‘ ke N}. Also recall that we know from Lemma 16 (with o instead
of R) that for all s,t € [0, 7],

1£40(5) = F5,(5)lloe < C 1Ak — Billaomaras)
10- Fa, (5) = 0= 5, ()10 < C 1Ak — Ball Yoo gy -

Apg\Sy byt ) = LB \S, 4y L>(By(0)) = k — Dk L2(07T;W2,5) .
1Za,(s,t,-) = Zp, (s, t, )] < C || Ak — By

Then it holds that

LF2 (8 = fae ()2
t

S / H (5x1/1ff: : avak) (57 ZAk (Sa tv )) - (83;?pr,€ : 81)ka) (Sa ZBk (Sa tv )) HL2 ds

By
0
t
+ / | (Va, xHi (s, X a,)) - Oufa, (s, Za,) — (VB xHy(s, XB,)) - 0ufB, (s, ZB,)|| > ds

<C [ (L ID2fan() e + 1 Hi(s)llw2s) 124, () = Z, (5)l| o (1,00 ds

o o
~+

t

0 [ (U 1) o) 10050, 5) = 0o, 5) o s

and thus by Gronwall’s lemma,

H H H H
1 faf = feillczomreey S Cfa) — Bl lL=orir2) < C | Ax — BkHZz(QT;Wz,ﬂ)-
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If kK — oo we obtain

that is (c).

Hff - ngLQ(O,T;LQ) <C ||A - BH’Z?(O,T;WQ#?)
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Chapter 6

The tracking problem

6.1 Optimal control with By-fields

6.1.1 The model

We will now consider the Vlasov-Poisson system equipped with an external magnetic
field B € By on the time interval [0, 7] with initial state f € C2(RS). Our aim is to
control the time evolution of the distribution function f = f(¢,z,v) in such a way that
its value at time 7' matches a desired distribution function f; € C%(R%) as closely as
possible. More precisely we want to find a magnetic field B such that the L2-difference
|f(T) — fall2 becomes as small as possible. Therefore we intend to minimze the cost

functional

1 A
I(f, B) = SIf(T) = falli2msy + 5 1 DaBll72 (071 xRo w3 (6.1)
9 ®S) T 5 ([0,7] )

where A is a nonnegative parameter. In this section the field B is the control in our
model and thus the field-state operator can also be referred to as the control-state
operator. Since [|f(t)], = Hpr for all 1 < p < oo, t € [0,7] it makes sense to choose
fa in such a way that ||fqll, = ||f||p for all 1 < p < oo because otherwise the exact
matching f(T) = f;4 would be impossible from the outset. Note that the L?-Norm of

the functional matrix is given by
3 3 3
1D:Bl22 = 102Bli2=) > 10:B;l2: -
i=1 i=1 j=1

We will also use the notation

(DyB, DyH) 2 =Y (0:,B,0,,H)p2 =)

=1 =17

3 3
(O, Bj, 00, Hj) 12
=1
At first appearance it seems that the term 3||D,B||2, is useless or even counterproduc-
tive as we actually want to minimize the expression ||f(T') — f4||z2. However this term
grants some crucial advantages in terms of variational calculus if A > 0. In this case
a magnetic field is "punished" by high values of the cost functional if its derivatives

become large. Of course the amount of punishment depends on the size of A. Thus the
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term has a smoothing effect on the optimal magnetic field and is hence referred to as
the regularization term. Now the optimization problem is to minimize the functional

I under the following constraints:
e B is an admissible field, i.e., B € By
e f is a strong solution of the Vlasov-Poisson system
Of +v-0uf — Oty 0uf + (v x B)-0,f =0, f|,_,=1f
to the control B.

Recalling the definition of the control-state operator we can alternatively consider the
optimization problem

L 1 A
Minimize J(B) = §HfB(T) - de%Q + §HDIBH2L2([O,T]><R3)
st. BeBg

(6.2)

which is equivalent to the first one. The advantage is that the cost functional J depends
only on B as the side condition is implemented by the control-state operator.

6.1.2 Existence of a globally optimal solution

Of course such an optimization problem does only make sense if there actually exists at
least one globally optimal solution. This fact will be established in the next Theorem.
The proof is quite short as most of the work was already done in the Chapters 3 and
4.

Theorem 28 The optimization problem (6.2) possesses a globally optimal solution B,
i.e., for all B € By, J(B) < J(B). Then B is also called the optimal control and fg is
called its optimal state.

Proof Suppose that A > 0 (if A = 0 the proof is similar but even easier). The
cost functional J is bounded from below since J(B) > 0 for all B € Bg. Hence
M :=infpep, J(B) exists and there also exists a minimizing sequence (Bj)gen such
that J(By) — M if k — oo. As Bxg C V is weakly compact according to Lemma 10 it
holds that By — B in V for some weak limit B € By after extraction of a subsequence.
Then Proposition 22 yields fp, — fg in W12(0,T; L?) after subsequence extraction.
Now for any ¢ € L?(R%),

T
/(ka(T,Z)—fB(T,Z)) ()O(z) dzz/i/(ka(t,Z)—fB(t,Z)) 90(2) dz dt
. 0
://(8tf3k(t,z)—8tfg(t,z))g0(z) dzdt -0, k— o0
0

which means that fg, (T) — fz(T) in L?(R®). Together with the weak lower semicon-
tinuity of the L?-norm this implies that
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1 A _
J(B) = Sfa(T) ~ fullla + 10 B
< Timinf | 2[5, (T) — fall22| + liminf | 2Dy By
= 1]{1;1’_1}})1.} 2 By d L2 11;51_1)1013 2 z Dk L2
L. 1 A ]
< timinf |51, (7) = alls + 5102 Bull| = fim () = M.

By the definition of infimum this yields J(B) = M. O

Of course this theorem does not provide uniqueness of a globally optimal solution.

6.1.3 Necessary conditions for local optimality

Since the control-state operator f. is nonlinear we cannot expect J to be convex. Of
course the regularization term is strictly convex with respect to B if A > 0 but if A is
rather small (which makes sense in this model) there is no chance that this property
can be transferred to J. For that reason it is possible that J has more than one locally
optimal solution. They are defined as follows:

Definition 29 A control B € By is called a locally optimal solution of the optimization
problem (6.2) iff there exists 6 > 0 such that

J(B) < J(B) forall B e Bs(B)NBg
where Bs(B) is the open ball in L*(0,T; W*P(R3;R3)) with radius § and center B.

To get an idea of necessary conditions let us at first consider some differentiable function
0 : R* = R, let U be any convex open subset of R¢ and suppose that ¢l has a local
minimum at the point z € U. For all h € R? with z + h € U we have x + th € U for all
t € [0, 1] because of convexity. Then the function [0,1] 3 ¢t — ¢(z + th) is differentiable
with

0 < i £+ th) = (@)

t—0 t
>

d
= &gp(a: + th)‘t:o = Vp(x) - h.

Of course Vip(z) = 0 if z € U. This fact can be generalized to functionals on Banach
spaces if the total gradient is replaced by the Fréchet derivative. Therefore we can
establish the following necessary optimality condition:
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Lemma 30 The cost functional J is Fréchet differentiable on B with Fréchet derivative
J(B)[H] = (fs(T) = fa, f5(T)[H]) 2(rsy + MD2B, Do H) 120, 1xR3R3%3), H €V,
Let B € By be a locally optimal solution of the optimization problem (6.2). Then

=0, ZfB E@K

_ ., HeV with B+ H € Bg.
>0, ifBe By

J’(B)[H]{

Proof As the control-state operator is Fréchet differentiable on By so is the cost func-
tional J by chain rule. If B+ H € Bg the function [0,1] > ¢t — J(B +tH) € R is
differentiable with respect to ¢ and since B is a local minimizer,

d - _ d - _
< = = ! — =J
O_dtJ(B—i—tH)}t:O (J(B+tH) [dt(B+tH)])‘t:0 J'(B)[H]
for any H € V with B+ H € Bg. O

If we consider By as a subset of L?([0, 7] x R3; R?) it might be possible to find an adjoint
operator (fy(T))" of f5(T) such that

3
J'(B)H] = (f5(T) = fa, f5(T)H)) r2re) + A > (02, B, 0x, H) 120 71xR2)
=1
3
= ((f5(D)"[fs(T) = fal, H) 2o myxrzy — A > (02, B, H) 120 11xR%)

=1
= ((f5BM)[fB(T) = fa = XA DB, H) 120 rixr3),  H € Bk .

This means that J’ has the explicit description
J(B) = (f5(T))"[f5(T) = fal = A AsB..
If now B € int Bg is a locally optimal solution it satisfies the semilinear Poisson equa-
tion
1 *
—A;B = —X(ffg(T)) [fB(T) — fdl -

In general such an adjoint operator is not uniquely determined. This means that we
cannot deduce uniqueness of our optimal solution. A common technique to find an

adjoint operator is the Lagrangian technique. For B € V and f,g € H'(]0, T[xR")
with supp f(t) C Bg(0) for all ¢t € [0,7T] we define

C(f.B.g) = I(f.B) - / (0] +v-0uf — Outy - 0uf + (v x B) - 0of) g d(t. z,v)

[0,T] xRS
1 A 9

- / (Ouf +v-0pf — Opthy - Opf + (v x B) -0y f) g d(t,z,v) .

[0,T] xRS
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L is called the Lagrangian. Obviously by integration by parts,

£(J.B.9) = SIF(T) ~ fulliz + S1DaBI% +{0(0), £z — (o(T), F(T))

+ / (0rg + v - 0zg — x5 - Dpg + (v x B) - Dyg) f d(t,x,v) .
[0,T]xR6

In the definition of the Lagrangian f, B and g are independent functions. However
inserting f = fp yields

J(B)=L(f5,B.9), BeBg, geH(0,T[xR°).
It is important that this equality does not depend on the choice of g. Since L is Fréchet
differentiable with respect to f in the H'(]0, T[xR%)-sense and with respect to B in the

L?(0,T; w28 )-sense we can use this fact to compute the derivative of J alternatively.
By chain rule,

J'(B)[H] = (8¢L)(fB, B, 9)[fs|H]] + (08L)(fB,B,g)[H]), BeBk,HecV (6.3)

for any g € H*(]0, T[xR%). Here 9L and dpL denote the partial Fréchet derivative of
L with respect to f and B. We will now fix f,g and B. Then
(0 L)(f, B, g)h] = (f(T) = fa, M(T)) > — {g(T), h(T)) > + (9(0), h(0)) >
+ / (&gg—i—v-@zg—@zqﬁf-@vg—k(v x B) -&,g) hd(t,z,v)

[0,T] xRS
+ / 8x¢h : 8vf g d(tv xz, 1))
[0,T] xRS
= (f(T) = fa, L(T)) 2 — {g(T), L(T)) 2 + (9(0), h(0)) 2
+ / (3tg+v-3xg—3m¢f-8yg+(v x B) -&,g) hd(t,z,v)

[0,T]xRS6

= [ et ) (6.4
(0,7 xRS

for all h € H'(]0, T[xR®) where

(I>f79(t7x) = _/;__yy’g ' avf(t7y7w)g(tay7w) d(va)

as defined in (5.3) and

(05L)(f, B, g)[H] = \(D.B, Do H) 12 — / (v x H) - 0,1 g d(t.z,0)

[0,T]x RS

_ / CAALB - H d(tx) + / (Hgvxavfgdv)-ﬂd(t,x). (6.5)

[0,T]xR3 [0,T]xRR3

for all H € V.
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Apparently the derivative with respect to B looks pretty nice while the derivative with
respect to f is rather complicated. However if we insert those terms in (6.3) we can still
choose g. Now the idea of the Lagrangian technique is to choose g in such a way that

the term (0¢L)(fB, B, g)[f5[H]] vanishes.

We consider the following final value problem which we will call the costate equation:

Org +v-0,9 — 0x0p, - Opg+ (VX B) - 0yg = Prp g X

(6.6)
9l,_p = fB(T) = fa

where y € C?(R%;[0,1]) with x = 1 on Bg,(0) and supp x € Ba2g,(0) denotes an
arbitrary but fixed cut-off function. Here Ry is the constant from Lemma 15. Existence
and uniqueness of a strong solution to this system will be established in the following
theorem:

Theorem 31 Let B € Bi be arbitrary and let fp be its strong solution as given by
the control-state operator. Then the costate equation (6.6) possesses a unique strong
solution gg € WH2(0,T; C(R%)) N C([0, T); CL(R®)) N L>(0, T'; H*(R®)) with compact
support supp gg(t) C Bpr+«(0) for all t € [0,T] and some radius R* > 0 depending only
on f,fd,T,K and f3.

In this case gB‘BR(O) does not depend on the choice of x as long as x =1 on Bg,(0).

Moreover gp depends Holder-continuously on B in such a way that there exists some
constant C > 0 depending only on f, fq,T, K, 3 and Hchg such that

lgs = gullwrzomic,) + 98 = 9ulloqorieny < CIB = Hl s payesyy B H € Bi.
The very technical proof is outsourced to the appendix.
Now inserting the state fp and its costate gp in (6.3) yields
J'(B)[H] = (0BL)(fB. B,gs)[H], HeV (6.7)
since fp[H]| ‘ +—o = 0. This provides a necessary optimality condition:

Theorem 32

(a) The Fréchet derivative of J at the point B € By is given by

J'(B)[H] = / —)\AJCB—l—/vx@UfB gpdv |- Hd(t,z), HE V.

[0,T]xR3 R3

(b) Let us assume that B € By is a locally optimal solution of the optimization problem
(6.2). Then for all B € B,

=0, ifBG@K

—)\AmB+/U><8U- sdv | - (B—-B)d(t,z) = _ .
fs 95 dv | - (B - B) d(t,2) {ZO’ o

[0,T]xR3 R3
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(¢) If we additionally assume that B € I@K then B satisfies the semilinear Poisson

equation

_ 1
—A,B = —)\/’U X Opfg 95 dv. (6.8)

R3

In this case B € C([0,T]; CZ(R?)) with

B(t.a) =~ [[ g v Ol w) ap(tyw) dpw)  (69)

for allt € [0,T] and x € R3. Thus B does not depend on the choice of X as long
as x =1 on Br,(0) as it only depends on gB‘BR(O)‘

Proof (a) follows immediately from (6.5) and (6.7). Then (b) is a direct consequence
of Lemma 30 and (a) with H := B — B. Now, (b) implies (6.8) and then (6.9) fol-
lows from Lemma 6. We must still prove that B € C([0,T]; CZ(R?)). First note that
f5,95 € WH(0,T; Co(R®)) NC([0, T]; CL(R®)) since B € Bg. Hence

p:[0,T] xR® = R3 (t,2) >—>/v x Oy fp g5 dv
R3
is continuous. Let (fi)ren € C([0,T]; CZ(R®)) be a sequence with supp fx(t) C Bg(0)
for all t € [0,7] and k € N and fi, — f5 in C([0,T);C}) if k — co. For any k € N

let pr be defined just as p but with f; instead of fz. Then for any i € {1,2,3}, pi is
continuously partially differentiable with respect to x; with

8xipk = /(vxavfk) awigB + axi(vxavfk) 9B dv

R3

= /(Uxavfk) 8acigB + (vxavaxifk) 9B dv = /(vxﬁvfk) axigB - (UxavgB) a:vlfk: dv
R3 R3

— /(Uxavfg) 8431.93 - (UX&UQB) (%fB dv
R3

in C([0,T); Cy) if k — oo. On the other hand pr — p, k — oo in C([0,T]; Cy). Since i
was arbitrary this implies that p € C([0, T]; C{(R3; R3)) with

OpiD = — /(U X Opfp) Ov,gp — (v X Ougp) Ox, f dv

R3

for any i € {1,2,3}. Consequently B € C([0,T]; CZ(R3;R?)). Since gz does not depend
on x as long as x = 1 on By, (0) the same holds for B. O

Note that Theorem 32 provides only a necessary but not a sufficient condition for local
optimality. If a control B satisfies the above condition it could still be a saddle point or
even a local maximum point. Theorem 32 does also not provide uniqueness of the locally
optimal solution. However the globally optimal solution that is predicted by Theorem
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28 is also locally optimal. Thus we have at least one control to satisfy the necessary
optimality condition of Theorem 32.

Assuming that there exists some locally optimal solution B € B K we can easily deduce
from Theorem 32 that the triple (fz, g5, B) is a strong solution of some certain system
of equations.

Corollary 33 Suppose that B € IB%K is a locally optimal solution of the optimization
problem (6.2). Let fz and gz be its induced state and costate.
Then fg,95 € CY([0,T] x RS) and the triple (fg,95, B) is a classical solution of the
optimality system
Ouf +v- Ouf =0ty - 0uf + (v x B) - 0,f =0, flmo=1
atg+v'azg_ax¢f'avg+(v XB)'avg:(bf,g)O g|t:T:f(T)_fd (6'1())

B(t,l‘) = _ﬁ ff |xiy\ w X 8vf(t7y7w) g(tvva) d(y7w) .

For allt € [0,T], supp f5(t) C Br(0) and supp g5(t) C Br+(0).

Proof From Theorem 32 we know that B € C([0,7]; C#). Thus by Theorem 13 the
solution f5 is classical, i.e., f5 € C([0,T] x R®) with supp fz(t) C Bg(0) for all
t € [0,T]. We can use the decomposition g5 = fz+hz from the proof of Theorem 31 and
from Proposition 24 we can easily deduce that gg is classical, i.e., gg € C1([0,T] x RS)
with supp gz(t) C Bg+(0) for all ¢t € [0, T]. The rest is obvious due to the construction
of fg, g5 and Theorem 32. O

6.1.4 A sufficient condition for local optimality

To motivate the following approach let us at first consider the following example: Suppose
that ¢ : R — R is a twice continuously differentiable function and let U be a convex
open subset of R?. Now, if there exists some point x € U such that V(x)-h >0 for
all h € R? with z + h € U and D?p(z) is strictly positive definit, we can conclude that
x is a strict local minimum of (. Again, this fact can be generalized to functionals on
Banach spaces using the Fréchet derivatives of first and second order.

To prove that our cost-functional is twice continuously Fréchet differentiable we will need

Fréchet differentiability of first order of the costate.

Lemma 34 Let g. : B — C([0,T]; L>(R%)), B+ gp denote the field-costate operator.
For any field B € Bi and any direction H € V there exists a unique strong solution
g € HY(]0, T[xRS) of the final value problem

Org+v- 0,9 — 8m¢f}/3[H] - OvgB — Ox¥ty - Ovg + (UXB) - 0pg + (VX H) - OvgB
= P gX — Pyp, 11X (6.11)

g‘t:T =0.
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Then the following holds:

(a) Lett € [0,T) be arbitrary. Then g.(t) is Fréchet differentiable on By with respect

to the L*(R%)-norm, i.e., for any B € IE%K there exists a unique linear operator

g(t) : V — L*(RY) such that
Ve > 030> 0VH €V with |H|y <0 :

lgB11(t) — gB(t) — gp(t)[H]]| L2

B+ H e I@K and
| H | 20,728

<e€.

The Fréchet derivative is given by

gs®)[H]=gat), HeV.

The control-costate operator g. is Fréchet differentiable on Br with respect to the
C([0,T); L3(R®))-norm, i.e., for any B € By there exists a unique linear operator
g1V — C([0,T]; L*(R%)) such that

Ve>035>0VH €V with |H|y < :

/
— — H .
||QB+H 9B QB[ ]HC([O,T},L2) <e

B+ HcByx and
| H | 20,728

The Fréchet derivative is given by

gplHl =g, HEeV.

For all B,H € I@K, the solution gg depends Holder-continuously on B in such a
way that there exists some constant C' > 0 depending only on f, T, K and B such
that

H;ﬁlpq gl H] — ng[H]HL2(O,T;L2) <C|lA- BHZz(O,T;Ww)a A,B € By,
V>

Comment As K was arbitrary the above results hold true if B Kk is replaced by IE%QK.
Hence they are especially true for B € Bg.

Proof First note that the system (6.11) is of the type (5.1) where the quantities corre-
spond in the following way:

—(vxH) - 0ygp + 8xwf2?[H] - OygB — (I)gB,fjg[H]X € LQ(O,T; CyN Hl)

System (5.1) System (6.11)

To = R* 2 0

T = 0 2 0

) = R* >

a = e € C([0,T]; Gy)

o T

0 € C%(RY)
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A = R e C([0,T); ')
B = B e L2(0,T;C)
c = 0 e o([0,T):C})
x = 0 e CL(RY)

This means that the coefficients of (6.11) satisfy the regularity conditions (5.10) of Corol-
lary 26 (a). Hence (6.11) has a strong solution g € L> N H(]0, T[xRS).

To prove Fréchet differentiability of the field-costate operator we must consider the dif-
ference gpry — gp with B € IB%K and H € V such that B+ H € IBK Therefore we
will assume that |[H|[ 12 7w2s) < 0 for some sufficiently small § > 0. Again, we will
expand the nonlinear terms in the Vlasov equation (6.6) to pick out the linear parts.
Recall the decomposition fp1mg — fp = fp[H]+ fr from the proof of Theorem 27. Then

amwa+H : avgB—‘,-H - axwa : 3vgB
= wafB : 8’!}(93—‘,—[’] - gB) + axw(fB+H—fB) ' a’UgB + a$¢(fB+H—fB) ' a’u(gB-{—H - gB)7

= Outhyp - Ou(9B+1 — gB) + %wf;gm] - OB
+ 0utpg - OugB + Ou(fp u—f5) - Oo(9B+H — 9B)

= Outpy - Ou(9B+H — 9B) + Outpr () - Ougn + R,

(v x (B +H)) < Owgp+ — (VX B) - 0ygB
= (v X B) - 0y(98+1 — gB) + (vx H) - Ougp + (v x H) - Ou(9B+H — 9B)

= (v X B)-0y(9p+u — gB) + (v x H) - 0ygB + Ra,

Prpin geuX ~ PrpanX
= Pspin—rp.05X T Progpin—95X T Proin—fromin—98X
=P, 95X + Pro,950m—98X + PrrigsX + Prpin—fo95in-95X
= =P X T Prpgpin—asX T R3

where
Ry = axwfn - OpgB + @cw(me—fB) ) av(gB+H o gB)
Ro:= (vx H)-0y(9p+n —gB), Rs:= PrgpX T ®f8+H*fB,QB+H*gBX

are nonlinear remainders. We already know that

1+
If=llz2 < CNHI 2o garzs);

| fe+m — fBlloqoric, < CINH | 20mw28)
9B+ — 9Bllcqomc,) < CIH| r200.1m:m25),
lfB+m = fBlloqricy < CIH 20 ravesy
lgB+a = gBllcqoricn < CNHI 20 1z

and hence, using Proposition 8 and (5.5), the term R := R; — Ra + R3 can be bounded

1+
by ||RHL2(0,T;L2) < C ||HHL22(/),T;W2¢7)'
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Obviously, gp+r — gp is a strong solution of the initial value problem
g+ v - 09 — 0uy ) - Oug — Outhyy - Ovg + (VX B) - Oug + (vXH) - Dugp
=P gX — Py primx + R (6.12)
g{t:T =0.

As the coefficients of this system satisfy the conditions (5.10) of Corollary 26 (a), we can
conclude that this solution is unique. Corollary 26 (a) also implies that the system

Ohg +v - 0rg = Outhyy - Oog + (VXB) - 9pg = Pppgx +R
(6.13)

g‘t:T:O'

has a unique strong solution that will be denoted by gr. Then gg + gr is a solution of
(6.12) and hence gp+y — gp = gg + gr because of uniqueness. Moreover

T

lor (Ol =2 [ gr(5) (@150 (5)x + R() ds

T
< C/ lgr ()72 + lgr(s)llz2 [IR(s) 2 ds
t

and thus applying at first the standard version and then the quadratic version of Gron-
wall’s lemma yields

T
lor(®llz < € [ IR(s) 2 ds < C AN, g
t

Let now & > 0 be arbitrary. Then for all ¢ € [0, T,

lgsen(®) — o) = gB Ol _ _lor®lzz g
- < B
I H | 2(0,7:2.5) I H || 20,725 L2(0,T;W2.8)

<e€

if ¢ is sufficiently small. Since the inequality holds for all ¢ € [0,7] and all the terms
depend continuously on time this also means that

H H
. t t t
|98+ — 9B 93||C([0,T],L2) ax lg+m(t) — gB(t) — g5 ()|l L2 <e

HHHLQ(O,T;WZﬁ) te[0,T] HH||L2(O,T;W2J3)

Hence the assertions (a) and (b) are proved and the Fréchet derivative is determined by
the system (6.11).

The proof of (c) is very similar to the proof of Theorem 27 as we already know that fg,
gp and fL[H] are Holder continuous with respect to B. O
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Continuous differentiability of the cost functional then follows:

Corollary 35 The cost functional J of the optimization problem (6.2) is twice Fréchet
differentiable on Br. The Fréchet derivative of second order at the point B € By can be
described as a bilinear operator J"(B) : V* — R that is given by

J"(B)[H1, Hy] = A (DyH1, Dy Ha) 12(j0,7)xR3)

- / (v % Hy) - (Buf5 gls[Ho] — Dugs fy[Ha]) d(t,z,0)
[0,T] xRS

for all Hi,Hy € V. Moreover there exists some constant C' > 0 depending only on ]g,
fa, T, K and B such that for all B,B € I@K,

177(B) = J"(B)| < C 1B = Bl}aq gy

where
|J"(B)|| = sup {‘JH(B)[HhHQH ’ I HillL20,mw20y = 1, (|1 H2 |l p200,mw208) = 1}

denotes the operator norm. This means that J is twice continuously differentiable.

Comment By definition the Fréchet derivative of second order is the Fréchet derivative
of the Fréchet derivative of first order. This means that, in the proper sense, it is an
operator J'(B) : V — L (V; E(V;R) ) Because of the two linear dependences we
can equivalently consider the Fréchet derivative of second order as a bilinear operator
J"(B) : V? — R as it was done in the above proposition. Since K was arbitrary, By can
be replaced by Box and hence all results of this proposition are also true on By instead
of By.

Proof Theorem 27 and Theorem 34 provide the decompositions
fByn — fB = fplH]+ frlH],  9B+m — 9B = gp[H] + gr[H]

for B € Bg, H €V with B+ H € Bg where

I fr[H] o2y = ol H || L20,mw26))  and  |lgr[H]l|co,r);z2) = o[ H | 2(0,mw2.6))
if |[H|z2(0,r;w25) tends to 0. We already know from Theorem 32 (a) that
J/(B)[H] = MDyH, Dy B) 2 — / (v x H) - 0fs g d(t,, v)
[0,T] xRS

forall B € Bg, H € V. Let now B € Bg and Hi,Hy € V with B+ Hy € Bg be
arbitrary .
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Then it holds that
J'(B + Hy)[H:) — J'(B)[Hi]
=MD, H1, D H) 2 — / (v x Hy) - (8o fB+Hy 9B+, — OufB gB) d(t,2,0)
[0,7] xRS
= )x(DxHh DxH2>L2

- / (vx Hy) - (0ufB (9841, — 9B) — OugB (fB4H, — [B)) A(t,2,0)
[0,T] xRS
= [ @x H) - Oufarm — 0u50) (gpm — gu) dit.z.0)

[0,T] xRS

= MND,Hy,D,Hj) > — /(’U x Hy) - (0ufB gplH2) — Ovgp [p[Ha]) d(t,z,v) + R

[0,7]xR6
where
R = — / (v x Hy) - (OufB gr[H2] — 0vgp fr[Ho2]) d(t,z,v)
[0,T]xRR6
- / (v x Hy) - (OufB+Hy — OufB) (9B+H, — 9B) A(t,7,v).
[0,T] xRS
Now

IR| < RVT ||Hil|120m22) (1068l l9r[H2)llco,1):02) + 1009800 Il fRIHR] |l (077:02))
+ R | Hillz2007;02) (|00 fB 41, — B0 fBlloo |9B+1, — 9Bll1200,7:02))

= ||H1”L2(0,T;L2) O(||H2HL2(0,T;W275))a
Le., | Rl = sup {|R| : [|Hilly < 1} = o( | Ha| s2(0.r25))

and hence J is twice Fréchet differentiable at the point B and the Fréchet derivative is
given by
J"(B)[H1, Ha] = X (DyHy, Dy Ha) 12(j0,1)xR%)
~ [ X ) (Oufn gplHe) - Ougn FplHL]) d(t.z0)

[0,T] xRS

This means that J is twice Fréchet differentiable and its Fréchet derivative of second
order at the point B with directions H; and Hs is given by the above expression.

To prove continuity let B,B € By and Hy, Hs € V be arbitrary and suppose that
||H;|[y <1 fori=1,2. Then

|.J"(B)[Hy, Ho] — J"(B)[Hy, Hy||

T
_ / / (oxHy) - (B f5 gylHa) — 0uf 5 o5 [Ha] — Oug fs[Ha) + 0005 F4[Ha]) dzdt
0
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r
/ VEL ()l [100f5(8) = D0 F5(8) 12 g5 [H ()22
0 + 100 £5®)122 llgh Ha)(5) — g5 [Ha] (1) 2
+10u95(5) — Bogig(8) 122 | FRIH)(E) | 22
+ 19ug5(O)2 | FEIHR(E) — fHIHL](E)] 2] dt
< RE [|lgls[Hal 2022 + 19S5 o ey + 1Bl 2ora)
+ 19095l 1B = Bl raves
<C|B- B},

(0,T;W2:8) (6.14)

where the constant C' > 0 depends only on f, fa, T, K and B. This directly yields
continuity of the second order derivative with respect to the operator norm. ]

The following theorem provides a sufficient condition for local optimality:

Theorem 36 Suppose that B € By and let f5 and g be its induced state and costate.
Let 0 < a < 2+ 7y be any real number. We assume that the variation inequality

/ —)\AwB+/v><8vaggdv {(B—B)d(t,z) = J(B)B—B] >0

[0,T]xR3 R3
(6.15)
holds for all B € By and that there exists some constant € > 0 such that
MID:HBeouay = [ (0% H) - (0085 g5H) — g5 FolH]) dt,,0)
[0,T]xRS (6.16)

= JY(B)[H, H] > e |H||72(01xrs
holds for oll H € V.

Then J satisfies the following growth condition: There exists § > 0 such that for all
B S EK with HB — BHLQ(O,T;W2’B) < 5,
— E Sa
J(B) > J(B) + SIB ~ Blao para (6.17)

and hence B is a strict local minimizer of J on the set By

Proof Let B € By be arbitrary. We define the auxillary function F : [0,1] — R,
s+ J(B+ s(B— B)). Then F is twice continuously differentiable by chain rule and
Taylor expansion yields

F(1) = F(0) + F'(0) + 3 F"(9)
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for some ¥ €]0, 1[. This yields

J(B)

J(B)+J'(B)[B-B]+1J"(B+9(B-B))B-B,B— B
> J(B

)+ 1J"(B+9(B - B))[B - B,B — B

J(B) +3J"(B)[B — B, B — B]
+3(J"(B+ (B~ B)) - J'(B))[B~B,B -
Now, according to Corollary 35,

(7"(B+0(B~B)) - J"(B)) (B~ B,B - B
<||7"(B+9(B = B)) = J"(B)|| 1B = Bl 20,1325

2
< CIB =B, pveny

Suppose now that ||B — B||L2(07T;W2,5) < ¢ for some 6 > 0. Then
(7"(B+0(B~B)) - J"(B)) B~ B,B - B

< OB - B||%2(O,T;W2v5)

9
< 5B = Blizarw2s)

[\

if ¢ is sufficiently small. In this case
_ e = o
J(B) 2 J(B) + 1B = B2 r.w2s) -

This especially means that J(B) > J(B) for all B € Bs(B) N Bk and consequently B

is a strict local minimizer of J. O

6.1.5 Uniqueness of the optimal solution on small time
intervals

We know from Corollary 33 that for any locally optimal solution B € IEOBK the triple
(f5, 95, B) is a classical solution of the optimality system
Ouf + v 0pf — Outby - Ouf + (v x B) - 0, f =0, flieo=1f
Og +v-0pg — O0xf - Oug + (v X B) - Opg = Py, 9l,_p = F(T) = fa (6.18)
B(t,l’) = _ﬁ ff ‘ziy‘ w X avf(t7y7 U}) g(t7y7 U)) d(y7w) .
The following theorem states that the solution of this system of equations is unique if
the final time 7" is small compared to A. As we will have to adjust % it is necessary

to assume that 0 < A < Ag for some constant A\g > 0. Of course large regularaization
parameters A do not make sense in our model, so we will just assume that A\g = 1.
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Theorem 37 Suppose that A\ €]0,1] and let us assume that there exists a classical
solution (f,g, B) of the optimality system (6.18), i.e., B € C([0,T]; C}(R*R?)) and
f,g € CH[0,T] x RS) with supp f(t), supp g(t) C B,(0) for some radius r > 0.

Then this solution is unique if the quotient % 1s sufficiently small.

Proof Suppose that the triple ( f , 0, B) is another classical solution that is satisfying
the support condition with radius 7. Without loss of generality we assume that r = 7.
Let C = C(T) > 0 denote some generic constant that may depend on T £, fa
||XHC§ and the C([0,T]; C})-norm of f, f, g and §. We can assume that C' = C(T) is

monotonically increasing in T'. First of all, by integration by parts,

< o) ~ 90l + SUFW) ~ FDller 1€ 0.7 (629)

1) - Bt < 5

Let now Z and Z denote the solutions of the characteristic system of the Vlasov equation

to the fields B and B satisfying Z(t,t,z) = z and Z(t,t,z) = z for any t € [0,T] and
z € R®. Then for any s,t € [0,T] (where s < t without loss of generality) and z € RS,

1 Z(s,t,2) — Z(s,t,2)|

t
< [ €12(r.t,2) = Z(r,t.2)| + C |:5(r) = u5y(7) o + € |1 B() = Bl dr
< [C1zrt2) - Zrt. 2] + § 1) = FOlle + § o) = 30l dr
and hence
Z(s,t,2) = 25,9 <€ [ 4 150) = FDllow + % l9(r) = 5Dl dr (620)

by Gronwall’s lemma. Consequently

1£(8) = F(D) oo < C 120,18, ) = Z(0,4,) |

<c / LIF(T) = F@)lloo + £ llg(r) = §(7) oo dr
0

which yields

and thus

If = flleqorcy) < C Lexp (C L) |lg - dllcqorso, - (6.21)
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For z € B,(0) and t € [0, 7] the representation formula of Proposition 24 yields

l9(t,2) = (¢, 2)]

<|(f(T) = fa)(Z(T,t,2)) = (F(T) — fa) (Z(T:t, 2))]

—

+

=l
=
Q
=
—~
i
N
i
\'@#
I\
~—
~—
|
E
.
A<
=
)
N
—~
ﬁ
\.@f-
N
~—
-
o,
\]

< C\Z(T,t,-) — Z(T,t,) || oo

+ [ | Prg(m, X(7,t,2)) — @7 (7, X(7,t,2))| dT

f,g(

+ H(I)f,gX] (T7 Z(T7 2 z)) - [q)ﬁgX] (T7 ZN(Tv t Z))| dr

T~y T T

T
< CNZ@4) = 2Tt Y + [ [915(7) = @55 (s 0 dr
t

T
+C [yl Zt) = 2.t o
t
We already know from inequality (6.20) that for t <7 < T,

1Z(r,t,) = Z(rt, ) < C /i 1£ () = F(@)llsc + 5 l9(0) = §(0) ]| dor.

Also recall that

1279l < M@ 1g(T)lloc + [1974(Tlloe < C Ml flqomcp l9lcqomep < €

for every 7 € [0,T]. Moreover by Proposition 8,

19 .4(T) = @ 5(T) | oo (B, 0)) < C 10:Glloc 1L (7) = F(T)lloo + CllO:flloc lg(T) = G(7)lloc
< CNf(r) = F()lloo + C llg(m) = §(7) oo

for all 7 € [0, T]. This implies that for all ¢ € [0, T,

lg(t) = g()[loc <C /i lg() = §(T)lloo + % 1/ (7) = F(7)llc dT

and hence

lg — dllcqorscy < C Lexp (C L) |f = Fllewr:on (6.22)

by Gronwall’s lemma. Inserting (6.22) in (6.21) yields

~ 2 ~
If = flleqoricy < C(5) exp (C ) IIf = flleqocy) -
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If now % is sufficiently small we have C' (% xp (C %) < 1 and we can conclude that
g

2
) e
f=fon0,T] xRS Then obviously g = g by (6.22) and B = B by (6.19) which means
uniqueness of the solution (f, g, B). O

If BeB K is a locally optimal solution, the following uniqueness result holds:

Corollary 38 Suppose that A €]0,1] and let B € B be a locally optimal solution of
the optimization problem (6.2). Then the tripel (fg, 95, B) is a classical solution of the
optimality system (6.18) according to Corollary 33.

If now A €]0,1] and % is sufficiently small then B is the only locally optimal solution of
the optimization problem (6.2) in By

Suppose that there is a globally optimal solution B € I@K. Then B = B is the unique
globally optimal solution in Bx. However it is still possible that there are other globally

optimal solutions in OB .

Proof If A €]0,1] and T is sufficiently small then Proposition 37 ensures that B is
the only locally optimal solution. Recall that there exists at least one globally optimal
solution according to Theorem 28. Let us assume that there is a globally optimal solution
BeB k- As any globally optimal solution is also locally optimal it follows that there is
only one globally optimal solution in B x and thus B = B. O



THE TRACKING PROBLEM 79

6.2 Optimal control by a finite number of field coils

6.2.1 The model

In real applications, for example in fusion research, the external magnetic field is to be
generated by a finite number N of field coils. Each coil generates a magnetic field of a
certain shape m; = m;(x) and its intensity at time ¢ is determined by a multiplier u;(t).
This means that the magnetic field of the i-th field coil is given by B;(t,x) = w;(t) m;(t)
and the complete external magnetic field is given by

N
B(u)(t,x) = Zuz(t) m;(z) .
i=1

We will suppose that m; € W28 0 H'(R?; R3) for every index i € {1,..., N} and, since
real magnetic fields are always source-free, we may also assume that divm; = 0. The
intensity function wu; is directly proportional to the intensity of the current that flows
through the i-th coil. Now the vector u = (uy, ...,un)? will be the control in our model.
Therefore we will assume u to be a L2([0, T]; R"V)-function in order to ensure that the
field B(u) has the desired regularity. All of this is specified in the following definition:

Definition 39 Let N be a fized positive integer and M > 0 be a real number. For
every i € {1, ...,N} let m; = (mil,mig,mig)T be a fized vector-valued function in
W28 0 HY(R?R?) ¢ CY(R3;R?) with |my]lyes < M and divim; = 0 on R3 for all
i € {1,2,3}. Moreover let a = (ay,...,an)? and b = (by,...,by)" be fized functions in
L2([0, T); RN) with a; < 0 < b; almost everywhere on [0,T] for all i € {1,...,N}. We
define

U; = {u € LQ([O,T]) ‘ a; <u<b; ae on [O,T]} ,

[UZ:[le XUN.

The set U will be referred to as the set of admissible controls. Moreover we define

the operator

B(-) : L*([0, T; RY) — L*(0, T; W*P(R* R?)), u — B(u)

where
N

Bu)(t,z) :=> ui(t)mi(x) .

i=1

The operator B(-) is referred to as the control-field operator.

This definition does only make sense if the fields that are generated by the control-field
operator are admissible in the sense of Definition 9, i.e., we must find some constant
K > 0 such that B(u) € By for all u € U. In this case the state fp(,) is well-defined
but we have to know how it depends on the control u. Therefore we introduce another
lemma:
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Lemma 40

(a) Foranyi € {1,..., N} the set U; is a bounded, convex and closed subset of L*([0,T])
and thus it is weakly compact. The same holds for U as a subset of L*([0,T]; RY).

(b) The operator B(-) is linear and continuous and there exists some constant K > 0
depending only on N,a,b and M such that B(U) C Bg/o C B, i.e., the control-
field operator provides only admissible fields.

(¢) The control-field operator B(-) is continuously Fréchet-differentiable on U and its
Fréchet derwative at the point u € U is given by

B'(u)[h] = B(h) for all h e L*([0,T];RY).

(d) The control-state operator fp.y = f. o B(-) is Fréchet-differentiable on U and
its Fréchet-derivative at the point u € U s given by

dfB(u)
du

[h] = fBeuB(R)]  for all b e L*([0,T);RY).

The Fréchet-derivative depends Holder-continuously on u, i.e., there exists some
constant C' > 0 depending only on f, T, K and [ such that

Hf/B(ul)[B(h)] - fJIB(ug)[B(h)]HLQ(O,T;LZ) <C Hul - UQH’IY/Z([QT];RN)
for all uy,uy € U and h € L*([0,T]; RN) where v is the constant from Lemma 10.

For brevity we will use the notation f, := fp(, and f;[h] := ij(u) [B(h)] for any u € U
and h € L2([0, T]; RY).

Proof For any i € {1,..., N} the set U; C L?([0,T]) is evidently bounded, convex and
closed. Thus weak compactness follows directly from the theorems of Banach-Alaoglu
and Mazur. The same holds for U € L2([0, T]; R") which proves (a). The operator B(-)
is obviously linear and for all v € L2([0, T]; RY),

N N
1Bl 20,2y < D uill z2o,) llmillwes < MY luill 2o
=1 i=1

N 1/2
< MVN (Z ||ui||%2([0,T})> = MV'N [l 20,32y -
=1

Hence B(+) is continuous. Moreover this yields

K
1Bl 20 w2y < MV'N (|lall t2o,rpvy + 1Bl 2q0.0728)) = 5 u€lU
and thus B(U) C B &/2- This proves (b) which directly implies (c). Finally (d) follows
directly from Theorem 27, (b), (c) and the chain rule. O
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We will now consider the following optimization problem with A; > 0,4 =1,..., N and
f, fa € C2(R®) such that || f||, = || fall, for all p € [1, 00]:

N
o 1 A
Minimize I(f,u) = SlIf(T) — Fall7aggey + ) EHWH%/?([O,T])
i=1
st. e wuel
e B=DB(u)eBgk (6.23)
e f is a strong solution of the Vlasov-Poisson system

O +v-0uf — Bty - 0uf + (0 x B)-0uf =0, f|_o=F
to the control B.

Using the control-state operator this problem can be reduced to

N
. 1 i
Minimize J(u) = §Hfu(T) — fallFame) + ) 5““1’”%2([011) (6.24)
i=1 :

st. uel.

6.2.2 Existence of a globally optimal solution
First we must show that this optimization has at least one solution:

Theorem 41 The optimization problem (6.24) possesses a globally optimal solution 1,
i.e., for allu € U, J(u) < J(u). In this case it holds that

_ 2 . .
HUZ'HL?([O,T]) < ﬁ ”fHLQ(]RG)a i1=1,...,.N.

Proof J is bounded from below since J(u) > 0 for all u € U. Hence M := inf,cyJ(u)
exists and there also exists a minimizing sequence (ux)geny C U such that J(ug) — M
if k — co. As U is weakly compact this yields ux — @ in L2([0, T]; RY) for some weak
limit % € U after extraction of a subsequence. Thus we also have [ug]; — @; in L?([0,T7])
for every i € {1,..., N} and B(uy) — B(@) € B in L?(0,T;W?#). From Proposition
22 we can conclude that f,, — fz in W12(0,T; L?) up to a subsequence. Then for any
¢ € L*(R%),

[ (a2 = 1@ 2)pte) d = [ [ G0t - fult,) deotc) dz
0

T
://«wg@@—@nw@ﬂmﬂ@w@duﬂ%m k0,
0

ie., fu,(T) — fa(T) in L?(RS).
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Hence we can deduce from the weak lower semicontinuity of the L?-norm that

() = Hfu — fallz2 + Z |7

! TN
< limnf [2||ka (1) - fdn%Q} + 305 tmint

k—o0

< lim inf [ | fur (T) = fall2s + Z k]iHiz] = lim J(ug) = M.

By the definition of infimum this yields J(@) = M. Let us now assume that there exists
some i € {1,..., N} such that ||| z2(0.7) > (2/vNi) HfHLz grey- Then

)\i _ 1 H 2 2
5 112 0,7 > 5 2I1fll2ms))” = 5 (I fo(T)lI 22 + | fall z2)

1
> 5 1 f6(T) = fallzz = 7(0)

J(u)

v

where 0 denotes the null function v = (0,...,0) € U. This, however, is a contradiction

to the global optimality of @ and thus the asserted inequality follows. O

6.2.3 Necessary conditions for local optimality

Since our set of admissible controls is a box-restricted subset of L2([0,7]; R") this pro-
vides better possibilities to establish necessary optimality conditions compared to the
model in the previous section. As the basic approach will be quite similar we will also
have to discuss the costate equation:

Proposition 42 Let u € L*([0,T];RY) be arbitrary and let f, = fpq, be its induced
state that is given by the control-state operator. Moreover suppose that x € C?(R%; [0, 1])
with x =1 on Br,(0). Then the the costate equation

g +v - 0zg — Ox¥y, - Oug + (v X B(u)) - 0pg = Py, 4 X

g’t T = fa(T) = fa
has a unique strong solution g, € W12(0,T; C,) NC([0, T); CL(R®)) N L>°(0, T; H?(RY))

with supp g,(t) C Bpg+(0), t € [0,T] for some constant R* > 0 depending only on
[ofa, T, K and (.

(6.25)

does not depend on the choice of x as long as x =1 on Bg,(0).

In this case gu}B

Moreover g, depends Hélder-continuously on u in such a way that there exists some
constant C > 0 depending only on f, fq, T, K, 8 and ||XHC§ such that

Guy — quHWL?(O,T;Cb) + 9wy — gm”C’([O,T];C,}) < Clluy - u2”22([0,T};RN)

for all uy,us € L2([0,T]; RY).
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Proof Since u € L2([0,T);RY) and thus B(u) € B this result follows directly from
Theorem 31 and the estimate

1B(u1) = B(ua)llr20,rsw2e) < Cllur = uzll 2oy, wr,uz € L2(0, T RY)

that is a direct consequence of Lemma 40(b). O

Of course the costate equation (6.25) does not appear out of thin air. Later, in the proof
of Theorem 43, this equation will be deduced by Lagrangian technique.

In the previous section it was only possible to obtain optimality conditions for inner
points of the set Br. Here, as U is a box-restricted subset of L2, the optimality conditions
can be established on the whole set U. This is essential because a discussion of the inner
points of U would not make any sense as the interior of U is empty. The following
theorem provides a list of equivalent necessary conditions for local optimality:

Theorem 43 Suppose that \; > 0 for everyi € {1,..., N} and let u € U be any function.
According to the definition of the control-state operator fz denotes the unique strong
solution of the state equation to the field B(u) € Bx. Moreover let gz denote the unique
strong solution of the costate equation (6.25). We define the function p(u) : [0,T] — RN

by p(@) = (p1(@), ...,pn(a))" with

pi(u)(t) :== / (v x mi(z)) - Ou fult, z,v) gu(t,z,v) d(z,v), i=1,..,N.

For every w € L2([0, T); RY), p(u) € C([0, T];RY).
Then the following items are equivalent:

(i) u satisfies the variation inequality, i.e., for all u = (uq,...,uy) € U,
T
/(/\lﬂl—pl(ﬂ)) (Uz_az) dt >0, +=1,.., N.
0

(il) For almost every t € [0,T] and every i € {1,..., N},

ai(t), if Aiui(t) — pi(a)(t) > 0
u;(t) = € [ai(t), bi(t)], if Ntig(t) — pi(u)(t) =0
bi(t), if i (t) — pi(a)(t) <0

where U is an arbitrary but fixed representative of its equivalence class.

(iii) u satisfies the pointwise variation inequality, i.e., for almost allt € [0,T] and
any i € {1,..., N},

(A () = pi(@)(0)) (w = wa(1) 2 0, w € aa(t), ba(e)]
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In other words u satisfies the weak minimum principle, i.e., for almost all
t€[0,T] x R and any i € {1,..., N},

min (At (t) — pi(@)(t))w = (Aitii(t) — pi (@) (t)) wa(t).
w € [a;(t), bi(t)]

(iv) u satisfies the (strong) minimum principle, i.e., for almost all t € [0,T] and
any 1 € {1,2,3},

min [%)\iw2 — pl(ﬂ) (t) w] = [%)\zﬂz(t)Z - pz(ﬂ) (t) U; (t)] .
w € [a;(t), b;(t)]

(v) @ is given implicitely by the projection formula, i.c., for almost all t € 0,7
and any i € {1,2,3},

_ 1 _
Ui (t) = Play(0) bs(0)] (x Pi(U)(t))

where P, p) denotes the projection of R onto the interval [a,b], i.e.,

Pla4)(w) = min {b,max{a,w}}, weR.

Now suppose that u is a locally optimal solution of the optimization problem (6.24),
i.e., there exists § > 0 such that J(u) < J(u) for every v € U with |4 —ul||;2 < 0. Then
u satisfies the assertions (i)-(v). This means that these items are necessary conditions
for local optimality.

Comment

(a) We can establish similar results if \; = 0. Actually the items (i)-(iv) stay true in
this case if we just replace A; by zero. Instead of (v) we only have

au(t) = {ai(t), if pi(@)(t) > 0
bi(t), if pi(u)(t) <0

but @; is undefined if p;(@)(t) = 0. This phenomenon is called a bang-bang
control as it switches abruptly between the two boundary functions.

(b) If a; and b; are continuous, so is @; due to item (v). If this holds for all ¢ € {1, ..., N}
we know that  is continuous and consequently B(u) € C([0,T]; C*7). In this case
fa and gz are classical solutions of their respective systems.

Proof The assertion p;(a) € C([0,T]) is obvious since fz and gy are in C([0,T7]; C}).
First we will show that item (i) holds if u is a locally optimal solution. Therefore we will
approach similarly to the previous section and apply the Lagrangian technique:
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For u € U and f,g € H*(]0, T[xR%) with supp f(t) C Br(0) for all t € [0,T] we define
the Lagrangian

‘C(fvu’g) = 7||f deL2 +Z ’ulHLQ

- / (Ouf + v Ouf — Opthyp - Ouf + (v x B(u)) - 0, f) g d(t,z,v) .

[0,T]xR6

Integration by parts yields

L(f,u,9) = *Ilf — fallz2 +Z HaallZe + (9(0), £(0)) 2 = (g(T), F(T)) 12

+ / ((9tg+v-3$g—8wwf~8vg+(v x B(u)) -&,g) fdt,z,v) .
[0,T]xR6

The Lagrangian is partially Fréchet differentiable with

07 L)(fru, g)[h] = (f(T) = fa, M(T)) > — (9(T), b(T)) 2 + (9(0), h(0)) L2
+ / (Org + v - 0pg — O35 - Opg + (v X B(w)) - 9yg) hd(t,z,v)

[0,T] xRS

- / Bt ) hd(t,z, v)

0,T] xRS

for any h € H'(]0, T[xR®) and

(OuL)(f,u, g)] Z)\ g, h / (vx B(h))-0uf g d(t,z,v)
[0,T]|xR6
T N T N
:/Z)"'ui h; dt—/Z/(vxmi)~8yfgd(a:,v) hi(t) dt
o =1 i=1 6

N T
=3 [ vt - m@@)hite) e
i=1
for any h € L2([0,T];RY). Obviously J(#) = L(fa, @, g) and hence

T (@)[h] = (9rL)(fa, @, 9)[JalD]] + (OL)(fa,u g)[A],  h € LA([0, T;RY).

Recall that J'(@)[h] is nonnegative if @ is a local minimizer of J. Thus inserting g = gz

yields

0< JI( )h (af‘c)(fmu ga) [f [h’H + (auﬁ)(fﬁaﬂ:gﬂ)[h]

N T
=3 [ vt = m(@ ) he) a
0
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for all h € L2([0,T];RY). For any fixed i € {1,..., N} we can choose h;j = 0 if j # i
while h; is still arbitrary. This finally implies that

(Nt — pi(w)) hy dt >0, i=1,...,N

St~

for all h € L2([0,T);RN) with u + h € U. For any arbitrary v € U we can now choose
h:=u—u € L*([0,T];RY) and hence we can conclude that for all u € U,

(Nw; —pi(w)) (wi — ;) dt >0, i=1,..,N.

St~

that is (i).
Now we will show that for any @ € U the items (i)-(v) are equivalent.

(i) = (ii): To prove that (i) implies (ii) we define the measurable sets

A:_ =4t € [O,T] ‘ )\Z'L_Ll(t) —pz('L_L)(t) > 0},
A; = {t S [O,T] ‘ )\Zﬁl(t) —pi(ﬁ)(t) < 0},
A? = {t S [O,T] ‘ )\Zﬂz(t) —pz(ﬂ)(t) = 0}

for ¢ = 1,2,3 where @ denotes an arbitrary but fixed representative of its equivalence
class. Let now i € {1,2,3} be arbitrary. We assume that there exists some measurable
subset B+ C Af such that u; > a; almost everywhere on ET or some measurable subset
E~ C A, such that @; < b; on E~. In the first case we choose u € U such that

(1), ifte Bt
() = 1 (1), i
u;(t), else

Then

T
/(/\Z-ai i) (s — ;) dt = /(/\Z-ai —pi(@)) (@i — @) dt < 0
0

E+

which is a contradiction to (i). The other case can be treated analogously. Hence u; = a;
on A} (@) and @; = b; on A; (@) that is (ii).

(ii) = (iii): As %; = a; almost everywhere on Aj (#) we can easily conclude that for
almost all ¢ € A () we have w — u;(t) > 0 for any real number w € [a;(t, z), bi(t, x)].
Hence the pointwise variation inequality holds almost everywhere on AZTF. We can show
similarly that this inequality also holds almost everywhere on A; . Obviously the in-
equality remains correct almost everywhere on A? because \;u; — p;(@) is vanishing
almost everywhere on this set. The weak minimum principle is only a reformulation of
the pointwise variation inequality.

(iii) = (iv): Let now t € [0,7] be any point where the pointwise variation inequality
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holds. We consider the continuously differentiable function
. )\1, 2 _
Jilai(t),bi(t)] = R, w 5 W —pi(a)(t)w .
As the interval [a;(t), b;(t)] is compact there exists w € [a;(t), b;(t)] such that

W = min (w) .
we[ai(t)vbi(t)]]( )

Of course the minimizer w is unique since j is strictly convex. This means that w is the
minimizer of j on [a;(t), b;(t)] iff
0 < j'(w0)(w—w) = (Aw—p;(w) @) (w—w), we [a;(t,z),b;(t,z)].

Hence we can conclude from the pointwise variation inequality that w is the unique
minimizer of j on the interval [a;(t), b;(t)] if and only if @ = u;(¢). This implies (iv) as
t was arbitrary.

(iv) = (v): Since j'(w) = \jw — p;(@)(t) it holds that

i —pi(u)(t) >0 iff w=at),
a0 — (@) () =0 iff @ € Jag(t), bi(t)[
Aiw —pi(a)(t) <0 iff @ = b;(t)

Consequently the minimizer w is uniquely determined by

_ _ r
ul(t) = w = P[ai(t)vbi(t)] <)\ pz(u) (t)) .

This proves (v).
(v) = (i): For any ¢ € {1,...,N} we can split the time interval into three disjoint
measurable sets, i.e., [0,7] = 14 U Iy UI_ up to a nullset where
o= {t€[0,T] | ps(a)(t) < Niai(t)},
Iy = {t S [O,T] ’ i a,(t) < pz(ﬂ)(t) <N\ bz(t)},
I_:={te[0,T]|pi(@)(t) = Xbi(t)}.

Then

+ [ (Nibi — pi(@)) (us — b;) dt
I/
>0

that is (i). O
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If w € U is a locally optimal control we can also show similarly to Proposition 33 that
the triple (fz, ga, u) satisfies a certain system of partial differential equation that will be
referred to as the optimality system of the optimization problem.

Definition 44 The triple (f, g,u) is called a strong solution of the optimality system
iff the following conditions hold:

(i) f,g € WH2(0,T;Cy) N C([0,T); C}) and u € L*([0,T]; RY).
(i) For anyt € [0,T],

supp [f(t) C Br(0) and supp g(t) C Bg+(0)

where R > 0 and R* > 0 are the constants from Theorem 13 and Theorem 42.

(iii) f, g and u satisfy the following system of equations almost everywhere:
Oif +v-0uf —0pp - Opf+ (v x B(u)-0pf =0

Org +v - 029 — Oxtpy - Opg + (v X B(u)) - Ovg = Py gx (6.26)

= (ui,...un)? with u; = Pla; b:] <)\% J(wxm;)-0ufg dv).

(iv) f and g satisfy the following initial/final value condition:

f‘t:O:]g’ g‘t:T:f(T)_fd- (6.27)
Then Theorem 43 (v) immediately yields the following result:

Corollary 45 Suppose that u € U is a locally optimal solution of the optimization
problem (6.2). Then the triple (fa,ga,u) is a strong solution of the optimality system
((6.26), (6.27)).

Obviously the necessary optimality condition that is given by this corollary is equivalent
to the items of Theorem 43.

6.2.4 A sufficient condition for local optimality

The derivation of sufficient conditions for local optimality is basically similar to the
approach for the Bg-fields. First of all we will also need Fréchet-differentiability of the
costate.
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Lemma 46 Let g. : L*([0,T);RY) — C([0,T]; L*(R%)), u + g, denote the control-
costate operator. For any u,h € L*([0,T];RN) with B(u) € By there exists a unique
strong solution g € LN H(]0, T[xR%) c C([0,T]; L2(R%))) of the final value problem

Org +v - 029 — Ouxgr () - OuGu — Oxtby, - Oug + (VX B(u)) - Oyg + (VX B(h)) - Opgu
= Pfug X — Do 110 X5 (6.28)
9ly—g =0
Recall that f,[h] denotes the deriative f]’3(u) [B(h)] of the control-state operator. Then

the following holds:

(a) Let t € [0,T) be arbitrary. Then g.(t) is Fréchet differentiable on U with respect
to the Lz(RG)-norm, 1.e., for any uw € U there exists a unique linear operator
g, () : L2([0, T); RY) — L%(RS) such that

Ve > 030 > 0Vh e L2([0, T]; RY) with ||h||2 < 6 :

B(u + h) e EBK and ||gu+h(t) - gu(t) — g/u(t)[h]HL? <e

11l 22 fo,77:m)

The Fréchet derivative is given by

gu)h] = gi(t), he L*([0,T;RY).

(b) The control-costate operator g. is Fréchet differentiable on U with respect to the

C([0,T); L?(R))-norm, i.e., for any u € U there exists a unique linear operator
gl - L2([0, T);RY) — C([0, T); L*(RS)) such that

Ve > 030 > 0Vh € L*([0, T); RY) with ||h||p2 < 6

/
ut+h — Gu — Gy lh )
HQ +h — 9 g [ ]HC([O,T],LQ) e

B(u+h) € By and
1l 22 fo,17:m)

The Fréchet derivative is given by

gu[hl =g, he L*([0,T]);RY).

(c) For all h € L2([0,T);RY), the solution g depends Hélder-continuously on u € U
in such a way that there exists some constant C' > 0 depending only on f, T, K
and 3 such that

sup ||g’:l,1 [h] - g:LQ [h] ||L2(O,T;L2) < C Hul - u2||22([07T];RN)
||h||L2([07T];RN)S1

for all uy,uy € U and h € L([0, T]; RY).

The proof proceeds analogously to the proof of Theorem 27. Therefore it will not be
presented.
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From this result we can conclude that the control-state operator is twice continuously
Fréchet-differentiable.

Corollary 47 The cost functional J of the optimization problem (6.2) is twice Fréchet
differentiable on U. The Fréchet derivative of second order at the point u € U can be
described as a bilinear operator J"(u) : L*([0, T];RN)2 — R that is given by

J"(u)[h, B
N ~ ~ ~

=3 i (b B oo,y — / (v x ;) - (Do fu gulh] — Duvgu fulR]) hi d(t,z,v)
=1

[0,T]xR6

for all hyh € L2([0,T];RN). Moreover there exists some constant C' > 0 depending only
on f, fa, K, T and B such that for all u,u € U,

177 (u) = @) < C = oy,

where

1 ()| = sup {7 () o, Bl | 1A o ey = 1 Il oo ey = 1
denotes the operator norm. This means that J is twice continuously differentiable.

Finally we obtain a sufficient condition for local optimality:

Theorem 48 Suppose that u € B and let fz and gz be its induced state and costate.
Let 0 < a < 2+ 7y be any real number. We assume that the variation inequality

T
/ ()\Z’ljz —pz(ﬂ))(ul — az> dt>0, 2=1,..,.N (6.29)
0

holds for all u € U and there exists some £ > 0 such that for all h € L*([0,T]; RYN),

i MillZ2 0.2y — / (v x m;) - (Oufa g[h] — Ovga filh]) hi d(t,x,v)
=1 [0,T] xRS
>e ||h||%2([(),T];RN) . (6.30)

In this case J satisfies the following growth condition: There exist § > 0 such that for
all w € U with ||u - EHLQ([O,T];RN) < 4,

.\, € e
J(u) > J(a) + ZHU - uHLQ([QT];RN) (6.31)
and hence u is even a strict local minimizer of J on the set U.

The proofs of the above results are analogous to those of Corollary 35 and Theorem 36.
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6.2.5 Uniqueness of the optimal solution on small time
intervals

Theorem 49 Let A > 0 be defined by A := min{\, ..., Any}. Suppose that A €]0,1]
and let us assume that there exists a strong solution (f,g,u) of the optimality system
((6.26), (6.27)). Then this solution is unique if the quotient % 18 sufficiently small.

Proof Suppose that the triple (f,g, @) is another strong solution. Let C' = C(T) > 0
denote some generic constant that may depend on T, a, b, f, f; and the C([0,T); C})-
norm of f, f, g and §. We can assume that C' = C(T') is monotonically increasing in 7',
Then for almost all ¢ € [0, 7],

- 1 1
5(8) = (0] = Py (3.20) ~ Promon (5050

1
< — |pu.(t) = pa
C C
< < ful®) = fa(®lloo + 5 ll9u(t) — ga(®)llo
A A
and hence
- C C
1B(u)(t) = B(@)(®)lloo = + [1£u(t) = fa)lloo + 5 llgu(t) = ga(t)lloc -
The rest proceeds analogously to the proof of Theorem 37. O

Finally, we can easily deduce uniqueness of the globally optimal solution if % is small:

Corollary 50 Let A > 0 be the constant from Theorem 49 and let u € U be a locally
optimal solution of the optimization problem (6.24). Then the tripel (fa, ga,w) is a strong
solution of the optimality system ((6.26), (6.27)) according to Corollary 45.

If now X €]0,1] and % is sufficiently small then w is the only locally optimal solution of
the optimization problem (6.24).

In this case 4 is also the unique globally optimal solution of the optimization problem
(6.24) and the items of Theorem 43 are necessary and sufficient conditions for global

optimality.

Proof If A €]0,1] and £ is sufficiently small then Theorem 49 and Corollary 45 ensure
that « is the only locally optimal solution in U. Recall that there exists at least one
globally optimal solution u* according to Theorem 41. As any globally optimal solution
is also locally optimal it follows that u* = u. Hence there is exactly one globally optimal
solution and this solution must be %. As the assertion of Corollary 45 is equivalent to
the items of Theorem 43 those items are necessary and sufficient conditions for global

optimality. O
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Appendix

Proof of Lemma 15  Let s,¢t € [0,7] and z € Bg(0) be arbitrary (without loss
of generality s < t) and let i,7 € 1,...,6 be arbitrary indices. Let B € M be an
arbitrary field and let Zg: [0,T] x [0,T] x R® — RS denote the induced solution of
the characteristic system satisfying the initial condition Zp(t,t,2) = z. For brevity, we
will use the notation Zg(s) = Zp(s,t,z). The letter C' will denote a positive generic
constant depending only on f , K, T and (. It holds that

t t
d
Za(s) < o + [ £-1Za(M dr < B 4 [ 1Xn(lVa(r)] + Va(r)l 0,07, (7) |dr

S

T T
<R+ [ 12 dr+ [ 126010555 (D)l dr.

Hence by Gronwall’s lemma,

T
Z5(5) < C+C [ 1Z6()] [t55 (Dl

Now applying the quadratic version of Gronwall’s lemma yields

T
1Z5(5)| 1 (o)) < C +C / 10,4 5 () loo dr < C = Ry.

For any 7 € [0, 7],
10 Zp(7)| < 10, Vi (7)| +10:, (0ut 15 (7, X5 (7)) | + 10, (Vis(7) x B(r, Xp(7)))|

< C(14+ 1D 55 (1)l + 1B e + D2 B(r) o ) 10, Z5(r)

Hence
t
0:,ZB(s)] <1+ /0(1 + | D2 ss (7)lloo + 1B(T) w1.) |0, Zp(7)| dT

and then Gronwall’s Lemma implies that

t
I1D-Z5()laion < exp | € [ (L4 D2y (7)ow + 1Bl dr

s
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< Cexp (C/ 1D 15 (7) [l dT) (A1)

An estimate to bound || D29, (7)||c is presented by G. Rein in [12, page 389]. It states
that

102075 (lloe < CLL+ 195 () loe) (1 + 104 18215 (8)lloc) + Nl (8)]12]
< O[04 Clflloo) 4+ 4 10215 (1)) + 111

< C 4 Clny [Oupsy (1) oo - (A2)
Moreover
|0zpfy (t, )| = |O /thxvdv_/\(?fta:v)\dv
lv|<R lv|<R

t
4 o V% o
< I R 0, 0. 25OV o) < SR 0.l Cexp (c [ 120 dT)
0

and now (A.2) implies that
D267 Ol < C+C [ D205 (7)1 dr

Gronwall’s Lemma provides
ID2%1s ()]l < C
and since t was arbitrary, this means
IDZ 45 (T)lloo < C =t c5, 7 €[0,T].
Hence, by (A.1),
|D.ZB(8)|| Lo (Br(o)) < C =t c1
and thus
105 (E)lse < 110=Fllocll D=Z5(0) | o (B(0)) < C =t €2 - (A.3)

Then it finally holds that

T T
/ 10 £ (1112 dt =/ [0 - 00 f(t) = 0utpyy () - Dufp(t) + vXB(t) - Do f (|70 (5 (0))dt
T

R |0:f(0) |5 + C 15013 100 f)|5% + B |B®)]13% 100f5(t)|5 dt

o\

| /\
,,9
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We will now define F' := —0,vy,, ie., F; = —a,.fp for ¢ = 1,2,3. Recall that
Oz, fB € C([0,T] x RY) with compact support supp Oz, f5(t) C Br(0), t € [0,T]. From
the Hardy-Littlewood-Sobolev inequality (cf. E. Stein [14, p.119|) and (A.3) we can
deduce that

IFE@)lze@sy < C |0 fB)|138/c815) < C |0z fB(1)|[Le < C,
IDF#)|lsm@sy < C |0:fB(t)| 1387613 < C |0z fB(t)|[Le < C .

Furthermore the Calderon-Zygmund inequality (Lemma 7) and (A.3) imply that
ID?F ()|l sy < C 10 f5(®)llLs < C 102 fp(t)l| < C

and thus F' € LOO([O,T];WQ’B(R?’;RS)) C LQ(O,T; WQ’B(Rg;RS)). Moreover, because
of linearity, for any s,t € [0,7],

[1E(s) = F@)llw2s < Cll02fB(s) = Oufp(t)|1e =0 if s =1

and hence F € C([0,T]; W*#(R3R?)). Analogously to Lemma 10 (d) we can choose
(Fy) € C>=([0,T] x R3R?) such that F}, — F in L?(0,7;W?#). Without loss of
generality, [|Fll20rw2s) < 2[[F|r20mrw2s) for all k € N. Now, for k& € N let
Zy = Zi(s,t, z) denote the solution of the system

i=v, 9=F,+uvxB
with Z(t,t,z) = z. This means that for all k¥ € N, the map t — Zi(s,t,-) lies
in C([0,T];C?) and thus also in L*°(0,T; W>#(Bg(0))). One can easily show that

t — Zi(s,t,-) converges to t — Zpg(s,t,-) in L>(0,T; L>°) (confer the methods that are
used in the proof of Lemma 16) and, similar to the approach on page 93,

<C

[t = Zi(s,t,)] |0 o =

o By < It Zi(s:t,)]

for all s € [0,7] where C' depends only on f, T, K and 8 but not on k. Now let
i,7 € {1,...,6} be arbitrary. Then for all s,¢ € [0, T] (without loss of generality s < ),

¢
d
/ |8Z1.8Z].Zk(s,t,z)]'8 dz:/dT / ’aziazjzk(ﬂtyz”ﬁ dz dr

Br(0) s Br(0)
t
_ 3 / / 10.,0:, Zi(r,t, )P 192,05, Zi(ry 1, 2)| dz d.
5 Br(0)
where, for all s,t € [0,7] and z € Bg(0),
02,0, Zk (7., 2))]
< C10:,0:, 2x(7)| (1 + |Da Fi(r, Xi(7))| + [B(r, Xx(r))| + D B(7, X(7))])
+C (|27, Xp(7)| + Do B(r, Xk(r))| + [D2B(7, Xi(7))])
< C10:,0:, 26D (1+ 11Dl + B w2 )

+C (|D2E(r, Xi(7)| + [ D B(r, X ()] + |D2B(r, Xi(r))])
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Thus, applying Hélder’s inequality with exponents p = % and ¢ = 3,

/ 102,02, Zi(s, 1, 2)| dz
Br(0)

t
+C [ [ 120,20 (1D2RT 0| + DB Xi)| + | DEB(r X)) de dr

s BRr(0)

t
<c [ [ 100,200 @ (14 IR s + [BEwas) dr

s Br(0)
-1
t B
vo [ [ wo,z@l az | (1B lwes + 1B wes ) dr
s Br(0)
Now we can use the p-th power version of Gronwall’s lemma with p = % €]0, 1] to

obtain that

/ 10.,0:, Zn(s,1,2) dz < C.
Br(0)

This finally implies that

[t = Zi(s,t,-)] <C, s€l0,T)

HLOO(07T§W2”B(BR(O)))
where the constant C' depends only on f , T, K and 8 but not on k. Consequently,

due to the Banach-Alaoglu theorem, for any s € [0,7] there exists some function
Zs € L=(0,T;W*P(Bg(0))) such that

[t = Zi(s,t,)] = Zs in L0, T; WP (Bg(0))),

i.e. for any o < 2 the map t — D%Z(s,t,-) converges to D%Z, with respect to the
weak-*-topology on [L'(0,T; L%)]* = L>®(0,T; L®) where /3 + 1/ = 1. Because of
uniqueness this implies that [t — Zg(s,t,-)] = Z, € L>(0,T; W*#(Bg(0))) for all
s € [0,T] with

<C=:c5.

1t = Z(s:t, )] e 0 v (Brioy)) <

From this result we can conclude that fp is twice weakly differentiable with respect to
z by chain rule with

HaziazijLoo(O,T;LB) = Haziazjf”Loo(o,T;Lﬂ(BR(o)))
S HfHC'bz H [t = Z(07t7 )] HLDO(O,T;WQ*B(BR(O))) S C = Cg -

The proof is complete. O
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Proof of Lemma 16 Let B, H € M, s,t € [0,T] and z € Br(0) be arbitrary. Without
loss of generality s < t. Moreover, let C' > 0 denote a generic constant depending only
on f , T and K and let Zp, Zy be the solutions of the characteristic system satisfying
Zp(t,t,z) =z and Zy(t,t,2) = z. We have

t

Z0(s) = Zu(s)| < [ \Z(r) = Zu(r) s

s

/va Valr \d7+/\a$% . Xp(7)) = Buibg,, (7, Xpa (7)) dr

+ / |Ve(T) x B(1,Xp(7)) — V(1) x H(1, X (7))| dT

s

/ Vis(r) = Vir(r) dr + / 0,53 (7. Xi(7)) = Dty (7, Xir () dr
+ / 0.5 (7, Xt (1) = gy (7, Xia(P)ldr + [ [Vi(r) = Via(DI|B(r, Xa(r)| dr

—I—/|VH(T)||B(T,XB)—B(T,XH)]dT+/|VH(T)||B(T,XH)—H(T,XH)|dT

/C (1 + 1D20 15 (Do + I1B(T) lwie) |25 (7) = Zu(7)] dT

Lem 15

[ 102610(1) = 0.5 (D180 A+ € [ 1B(T) = HE) (e 09 7

P'r‘op 8d /C L+ |B(r )||W1°°)|ZB( ) — Zg(1)| dr

Lem.10b s
Lem. 15

e / 1£5(r) = fu(D)lw A7 +CIIB = Hll 20 rawn (55, 01 -
Thus by Gronwall’s lemma and Lemma 10,
1ZB(s) — Zu(s)| < C/ 1/8(7) = fu(T)lloo dT + C||B = H||12(0,7,w1.5(B5,, (0)))

Now

1/8(t) = fu()]l < HDflloo 128(0,t,-) = Zu (0,1, )|l Lo (Br(0))

<c / 1£8(7) = £ (7)o 7 + CIB = Bl 2, 0
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which implies that

1B = fullcqorie,) < LallB = Hllp20,mw16 (85, (0))) -

if Ly is chosen appropriately. Additionally, this yields

128 = Zu (0,150, (Bro)) < GllB = Hllz20,7:w1.8(Bg,, (0))) -

if ¢ is chosen suitably. Hence, according to Proposition 8 (e) and Lemma 15,

|aﬂfi8$j¢f}3 (7—7 XB(T)) - a$i8$jwf3 (T> XH(T))‘
= |a€5i¢81jfB (T7 XB(T)) - aﬂﬁidjaz]va (T7 XH(T))‘
< C|Xp(r) = Xu(r)]

< CIB = Hl o ra1.5(84, 0))

for every 7 € [0,7] and every i,j € {1,...,6}.

Let now i € {1, ...,6} be arbitrary. It holds that
10:,25(s) — 021 (s)]

t

< [ 1o Za(r) - 0., Zur)| ar

s

t
< [ 10.Va(r) ~ 0. Via(r)| ar
t

+ / |D§¢f3 (Tv XB)aZiXB - Dgwa (Tv XH)aszH(T” dr

s

t
=+ / |321VB X B(T,XB) - aleH X H(T7XH)’ dr

t
+ / |VB X DxB(T, XB)(?ZZ,XB — Vg X DmH(T, XH)aleHl dr

S

t
< O [ A+ 1D (D)o + 1B lwree) 10, Z5(7) = 02, Z (1) dr

Lem. 15

t t
+C/|D§¢fB(T,XB)—Dgwa(T,XHMdT+C/]B(T,XB)—H(T,XH)|dr

t t
+C/|DIB(T,XB)—DIH(T,XH)|dT+C/||DIB(T)||OO Vi — Vigl dr
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< c/(1+ IB(T)lwioe) |02 Z5(7) — 82y Zu(7)| dr

Prop. 8d,
Lem. 15 S
Eq.(A.6) t

+C /|XB XH )|7 dT—FC/”a fB ) aZfH(T)HLoo(BRZ(O)) dr

+C / D2 B0l [Xa(r) = Xu()] dr+ C [ |B(r) ~ H(7) o a7

T
4O |IX5 - XalL / [D,B(r)], dr + c/ | Do B(7)||oo Vi — Vir| dr
0

e / ID,B(7) = DoH (7)1 (5, 0y A7

< c/ (14 1B()|c1r) 102 Z5(r) — 02 Zu(7)] dr
Lem. 10

Eq.(A5) °

e / 10-f5() i (Dl A7 + C 1B = Yoo s s o)

+C / I1B() = H) o, o o7

t
< C (1 + ||B(7')HW2»B) ‘aziZB(T) - azzZH(T)| dr

Lem. 10

X
2

+ OVTE( (/B (2, @) 47 )

"’C/Hasz(T) —0:fu(T)|lec d7 + C'[|B — H||L2 (0,T;W2B(Bp,, (0)))

< C/ (1 + |B(T)lw2s) 10:Z5(T) — 05, Zu (7)| dT

+C [10:08(r) = 0.fu(T) e A7 + C B = Hllg ayasisy, o)
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Again, Gronwall’s lemma implies that

’aZiZB(S) - aZzZH(‘S)’

t
(CB HHL2 (0,T;W28(Bg,, (0)) +C/Hasz(7') 8sz(T)oo)

T
exp (/1 B s dT)

0
< CIB = Hll sz, o + € [ 1050 = 0.fu(Dll . (A7)

Finally
10-fB(t) = 0:fu(t)lo = 10:fB(t) — 02 fu (t)|| L= (BR(0))

< C)10.ZB(0) = 0.Z1(0)|| oo (Br(0)) + CllZB(0) — Zz(0)|| Lo (BR(0))

< CIB - Hlgpapss, o + € [ 10:08(0) = 0-fu(r) e
Eq.(A.5), (A.9)
and hence
||8sz - aszHC([O,T];C;,) < LQHB - H”Z/z(O,T;Ww(BRZ 0)))’ (A-8)
10225 = 0= Zulloqoryonro) < CIB = Bl rav265,, 0)) (A.9)

if £5 and Lo are chosen appropriately. The third assertion can simply be proved by

T
/ 10uf5(t) — Dy fur (1)]1% dt
0

T
= / [0 0u(f(t) = fu(t) — 0utps(t) - Du(fB(t) — fu(t))
O = 0upp—py(t) Oufu(t) + (v x B(t)) - 0u(fB(t) — fu(t))
+ (v x (B(t) - H(1))) '&sz(t)HiDO(BR(O)) dt

T
Ot ()| dt+ O / 1051, () — Butogy (£)]12 b
0

T

/‘afB

0
+C/HB

(O 2o (B (0y) At

2
i / 1B() = H )25, 0 U+ C / 1B = H Ol 55, o) &
¢ (Ad),(

2
< L3 ||B— H||L2 (0,7;W26(Bg,,(0)))

if L3 is chosen suitably. The proof is complete. O
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Proof of Proposition 24 Let ¢ > 0 denote a generic constant depending only on 7g, 72,

T, l[allogo,mcyy: Plleqoryop: Hf||c2 [Allco,ricrms Blleqo,ricrms ICIeqommien
and |x|lc;-

Fort € [0,7] and z € R let Z = (X, V)(s,t,2) denote the solution of the characteristic
system with Z(t,t,z) = z. Moreover, for t € [0,7] and z € R%, we define a recursive

sequence by

t
for1(t,z) :=1£(Z(0,¢, 2) +/ 0w, - C+ xPay, +b|(s,Z(s,t,2)) ds, neNp.
0

By induction we can conclude that all f,, are continuous. Then for any fixed 7 € [0, T]
and n € N the functions f, (020, - C](7), [XPa,f,](T) and b(7) are continuous and
compactly supported in B,.(0) with r := max{rg,r2}. This directly implies that fo(¢)
is compactly supported with supp fo(t) C B,(0) for all ¢ € [0,7]. Moreover for any
T €[0,7T],

supp %(Z(s,t, ) = Z(t, s, supp )
supp [85,;%0 -Cl(1,Z(s,t,-)) = Z(t s,supp Ozvy, - C(T ))
C BC(T)(O) .
supp [X<I>a7fn}(T,Z(s,t, ) = Z(t,s supp XPa, s, (T )) Lemma 23
supp b(T,Z(s,t, )) Z(t s,supp b( ))

If we choose 7 = s we can inductively deduce that supp f,,(t) C Be((0) for all t € [0, 7]
and all n € N. Finally, by another induction, f,, € C'(]0, T[xR%) as the partial deriva-

tives can be recursively described by:

8tf0(t7 Z) = 0
0., fo(t, z) = 0y, (z),
Otfr1(t, 2) = 0.£(Z(0,t,2)) - 0, Z2(0,t, 2) + Oxty, - C(t, 2) + X Pa,f, (£, 2) + b(t, 2)

£

t
+ /82 (020, - C+ xPa,f, + b (s, Z(s,t,2)) - 0, Z(s,t,2) ds
Oz, fus1(t, 2) = 0.£(2(0,1, 2)) - 0., Z(0,t, )

(
t
+ /(9z (0205, - C+ xPa,f, +b|(s,Z(s,t,2)) - 0:,Z(s,t,2) ds .
0

where

D24y, C+ D, C by, + 0ux Pap, + X Pl +0;b
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Hence one can easily show that

111() = fo(D)lleo < ¢, 100f1(E) = Difo()lloo < €, 102, f1() = Oz fo(t)]loo < .
Furthermore we obtain the following estimates:

[ 1) = fu(®)loo

< [0t X O [ X

<e /ufn — faa(9)ll, ds,

||8Z¢fn+1(t) - aZifn(t)Hoo
t

< e [ 10205 o XD+ g5 XD, s
+e / g s (5, XD+ 106, (52 (5D o

<c /”fn — a1 )HWl,oo ds,

10¢ frir1(t) — O fru () || o

§ Hamwfnffnfl(t)uoo + H@adcn*fnfl(t)uoo

+C/ HDQchjfn—fnﬂ(SvX(S))Hoo + Hagcwfn—fn,l(S,X(S))Hoo ds
b [ B smps (5 XD+ 10, (5 X () ds
0
< ¢ Ifult) = fua( +0/an = fat () e ds

t
Sc/uam O fur (s d8+0/||fn — Far() Iy ds -
0

Hence there exists some constant ¢, > 0 such that for all ¢ € [0, 7],

Mio(t) <c. and Mpi1,(t) <c. /Mn,n_l(s) ds, neN
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where

M (t) 3= max {|| fm () = fu()lloc, 10:Fm () = Orfn(t)lloc, 10z fim () — Oz fr(t) [0 }

for m,n € Nyg. Thus by induction,

t" IAE
MnJrl,n(t) < C*m < ci—

, te€0,T],neN
n!

and hence for m,n € N with n < m,
< Z M;jiq15(t) < Zc*f‘ —0, n—o.
— — " j!

Consequently (f,) is a Cauchy-sequence in C{ ([0, T]xR%) and converges to some function
f € CL([0,T] x RY) because of completeness. Obviously, as the radius ¢(r) does not

depend on n,
supp f(t) C BQ(T) (O) - BC(T—H)(O): te [O’T]

and f satisfies the equation
t
ft,z) =£(Z(0,t, 2) +/ Doy - C+ Py 5+ bl (s, Z(s,t,2)) ds . (A.10)
0

The function f is a solution of the initial value problem because for every ¢ € [0, 7] and
z € RS it holds that f(0,z) = f(z) and

0= [ 4 ¢z, z))}

- =% Lt (20,7, 20,1, 2)]

dr

T=t

d a
(Aio) |:d7_f(7‘, Z(1,t, Z)) - dT/ [axwf "C At Pyt b] (37 Z(s,m,Z(7,t, Z)))dS]
0

d
= |:d7_f(7' Z(7,t,2) / Oy - C+ @q 5+ b] (s, Z(s,t,2)) ds]

0

= [(%f(T, Z(,t, z)) +V (7t z2)- &Uf(T, Z(1,t, z)) +A(T, X(,t, z)) -&,f(T, Z(r,t, z))
+ (V(T, t,z) x B(r, X(,t, z))) -&,f(T, Z(1,t, z)) — b(T, Z(T,t,z))
— x(7,Z(1,t,2)) ®a ¢ (1, X(7,t, 2)) — Ops (7, X (7, ¢, 2)) - C(1, Z(7, 1, z))}

=0 f(t,z) +v-0uf(t,2) + A(t,z) - 0, f(t,2) + (v x B(t,x)) - O f(t, 2)
— Of(t,z) - C(t,z,v) — x(t, z,v) Par(t, z) — b(t, z,v) .
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We will finally prove uniqueness by assuming that there exists another solution f of the
initial value problem and define d := f — f. Then for any t € [0, 7],

1d(0)][22 = / d(t)? dz = 2 j / 0yd(s) d(s) d=ds

0
=92 0/ / —v - 0zd(s) d(s) — A(s) - Oyd(s) d(s) — (v x B(s)) - Opd(s) d(s)
+ 0utbas) - C(s) d(s) + xPaa(s) d(s) dzds

—9 O/ / Outbats) - C(s) d(s) + x®aa(s) d(s) dzds

t
< c/ud<s>ui2 ds
0

and hence [|d(t)]|z2 = 0 for all t € [0, T] once again by Gronwall’s lemma. This directly

implies that f = f almost everywhere which means uniqueness of the solution f. O

Proof of Corollary 26 In (a) the coefficients satisfy the regularity assumptions
(5.10). Because of density we can choose sequences (bg) C C([0,T]; C}), (f;) C C*(R®),
(Bg) € C([0,T]; C17) and (Cg) C C([0,T]; C}) such that

by — b in L*(0,T5C, N H'), 1bill 220,11y < 2[IbllL2(0,7;81),
bxl 2 0,m:¢) < 20BlL2(0,7:04)

fi, = f in Cj(R°), Ikl < 2lIflle

B — B in L*(0,T;C"7), 1Bkl 220,701y < 2(Bllp2(0,7501)

Cr — Cin L*(0,T; H' N Cy), ICkll20,75m1) < 20CllL2(0,7:81)5

1Ckllz20,1:0,) < 2lCllz200,7:04)

and for all ¢ € [0, 7],

supp by (1), supp fr, supp C(t) C By 11(0).

Then for every k € N, according to Proposition 24, there exists a unique classical solution
fr of (5.1) to the coefficients by, fi, By and Cy. Moreover for all ¢ € [0, 7],

supp fr(t) C Bo(0) with p:={(2+ max{rg,r2}) =C¢(2+7r).

Now let Zj, denote the solution of the characteristic system to A and By satisfying
Zi(t,t,z) = z and let ¢ > 0 denote some generic constant depending only on T, rg,
r2, llalleqorepy, llzzorcy), llzorm, [IElleps [Aleqoricry, 1Bllrzorcor,

ICll 20,750,001y and [|x[| ;-
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From Lemma 23 we know that for any » > 0 and all s,¢ € [0,7],
12t Mmooy <€) and [0.Z(s, )| ooy < C0)

where C(r) denotes some positive constant depending only on 7, ||A]| 20,0}y and

IBI|£2(0,7:cp)- Then for any (¢, z) € [0,T] x B,(0),
it 2)] < [l lloo + / 10235, (8) loo 1Cr(8) oo + 1Pa, i ()00 + [r(5)[loo ds

gc+c/un@mmw+wcuam»w
0

which yields || fx(t)||= < ¢ by Gronwall. The z-derivative can be bounded by

/ 0., fu(t, 2)2 dz

B,(0)

< | DE1% / 10,20, , 2) 2 d=

B,(0)
t
ve f
0
‘2

t
+ C/ / MDka Opf, + OuxPa g, + avbk] (s, Zr(s))| ds
0 B, (0)

2
[ |1D265, €1+ Doty + 0xPas, + Xy, +0.u] 5, Zu(o)| s
B, (0)

<c+ 0/ 1fe()1Zoe (ICk ()2 + [Crk ()l 7r1) + 0= (3)lIZ2 + Ibr(s) [ Fn ds
0

and hence,

t
n@numézuaﬂ@w;BMDSc+c/M@n@m;ds
0

which implies that |0, f(t)||z2 < ¢ for all ¢t € [0,T]. Finally
T

//|3tfktz] dzdt
0

B,(0
T

/ / 000 fil + (A + (0 % B)) -0 fil + 1050, - Cil + [xa g | + [bi]) dzcl
0 B,(0)
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T

<e / / G 10 it 2)2 + (JA)]Z + PIBR(t)]1%) 18 it ) + ¢ + [bi(t, 2)*ddt
0 B,(0)

C. (A.ll)

IN

Since all fi(t) are compactly supported in B,(0) this yields

| fill oo o, rxmsy + |1 ficll m1 o, rpx sy < €

Recall that due to the Riesz representation theorem L*(]0, T[xR®) can be interpreted
as the dual space of L'(]0, T[xR®) that is denoted by L!(]0,T[xR®)*. Furthermore
L'(]0, T[xR®) can be interpreted as a subset of the dual space L>(]0, T[xR%)*.

Then, according to the Banach-Alaoglu theorem, there exists f € H'(]0, T[xR%) such
that fr — f after extraction of a subsequence. Moreover there exists some function
f* € L7°(]0, T[xRP) such that f;, = f* up to a subsequence. This means that a subse-
quence of (fx) converges to f* with respect to the weak-*-topology on L!(]0, T[xR%)*.
More precisely, for any ¢ € L'(]0, T[xRS),

/ fu(t,x) (t,x) d(t, z) — / [t x) e(t,z) d(t,z), n— o0

10,T[xRS6 10,T[xR6
up to a subsequence by Riesz’ representation theorem. This directly implies that f = f*

and consequently f € L>(]0, T[xR%) N H(]0, T[xR").

We will now show that f is a strong solution of (5.1) by verifying the conditions of
Definition 25.

Condition (i) is evident since we have already proved that f € H!(]0,T[xR6)
C WhH2(0,T; L?) which directly yields f € C([0,7]; L?) by Sobolev’s embedding the-
orem.

Condition (iv) is also obvious because supp fr C B,(0) for all k € N, ¢ € [0,7]. The
radius ¢ does not depend on k and satisfies o < ((3 + ).

Condition (ii): By Rellich-Kondrachov, fr — f in L?([0,7] x R%) up to a subsequence.
Thus for any ¢ € C2°(]0, T[xRS),
0 :/(&ffk +v-0ufi + A0 fi + (vXByg) - Oy fr — by, - Cr — X Pa, s, — br)pd(t, 2)
[0,T] xRS
— /(atf+v-8mf+A-8vf+ (vxB) - Oy f — Optpy - C — xPa,r — b) 0 d(t, 2)
[0,T]xRR6
if K — oo. This means (ii) as ¢ was arbitrary.

Condition (iii): Finally, according to Mazur’s lemma, there exists some sequence
(fr)ken C H'Y(]0, T[xRS) such that f, — f in H'(]0,T[xR®) where for all k € N,
fx is a convex combination of fi, ..., fr. This means fx(0) = f and hence

1£(0) = £llp2 <c|lf — Fillwrzorizy < e lf = fellmgorixrey = 0, k— o0



APPENDIX 107

Consequently f is a strong solution but we still have to prove uniqueness. We assume
that there exists another strong solution f and define d := f—f. Then for all t € [0,T],

1d®)|132 = /d dz-2//8t ) dzds

—9 O/ / - Byd(s) d(s) — A(s) - ud(s) d(s) — (v x B(s)) - ud(s) d(s)

+ Oztbq(sy - C(s) d(s) + xPa,a(s) d(s) dzds

- / [ Ot O d(s) + XPaa(s) dls) dds

t
<c [ ds
0

Hence || f(t) — f(t)||%2 = ||d(t)||72 = 0 for every t € [0,T] once again by Gronwall’s
lemma which proves (a).

To prove (b) we only have to approximate B. Therefore we choose some sequence
(Bx) € C(]0,T]; C*7) such that

IBe = Bllr201,c10) = 0, k=00 and  |[Bglz2007.017) < 2|Bllr20.1,010), k€N

Then for any k € N there exists a unique classical solution fj of the system (5.1) to the
coefficients a, f , A, By and x according to Proposition 24. Recall that for all ¢ € [0, T,
supp fr(t) C B,(0) where p := ((r + 1) with r = max{rg,r2}. Again, let Z; denote
the solution of the characteristic system to A and By satisfying Zj(t,t,z) = z and in
the following the letter ¢ denotes some generic positive constant depending only on 7',

ro. 72, llalleqorycyys Il IAleqorycrmy, IBllz2riciy and [Ixlley- Now for all

s,t € [0,T] (where s <t without loss of generality) and z € B,(0),

|Z1(s,t, 2) = Zj(s,1,2)| < /C |Z1(1) = Zi(T)| + [A(7, Zk(7)) — A(T, Z;(7))]

+ ¢ |By(T, Zik(7)) — Bj(1, Zj(1))| dT
< /C (L4 [D2A(T)lloo + [ D2Br(7)llo0) 1Zk(7) — Z;(7)] dT

+e / [Bu(r) - B(r)]l dr

which implies that

12k(s,t,) = Zj(s, ) loo < ¢ By = Bjl| 20,1 L%)
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For any i € {1, ...,6} the difference of the i-th derivative can be bounded in the following
manner:

0.2(5) - 9. 2] < [ [10:() ~ 0.3(7)
4 DA(T, Xi(7)0e Xk(7) — DaA(r, X;(7))02, X ()]
+ [Vi(r) = Vi (1) |DaBi (7, X (7)) 02 X (7))
+ 102, Vi (1) = 0, Vi(7)[ [Bi (7, X (7))

+c ’Dka(T, Xk(T))alek(T) — Dij(T, X}(T))@ZZX](T)‘

+ ¢ [Bi(7, Xi(7))0-, Xe(7) = By(7, X, (7)0:, X, (7)] | dr

< [ @+ IADlc + Bur)losn) 10.2(r) - 0,247

+e (4 [JA@) ety + [Br(T)ller) [126() = Z5 (1) 1%

+c|Bi(r) = Bj(n)lly | dr

t
< /C L+ AT llerr + [Br()llc1) 102 Zk(7) — 02, Z;(T)| dT

+c ||Bk - Bj||z2(07T;C;)
for all s,t € [0,T] and z € B,(0). Thus
1022k(s) — 0:Z;(s)|| Lo (B,0)) < ¢ I Br =

1Y
B; HL?(O,T;q}) :

Now for all ¢ € [0,T7], z € B,(0),
t
[filt,2) = £, 2)] < | DElloo 121(0,8,2) = Z;(0,8,2)] + /C 1f1(7) = fi(T)llo A7
0

t
< ¢ | By — Byl 20 + € / 1/(7) = £5(7)lloo dr
0

and thus Gronwall’s lemma implies that

I fx = fill s (o,mse00) < € [1Br — Byl 20,7 00)
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Moreover for all ¢t € [0,T7], z € B,(0),

’asz(ta Z) - azfj(tv Z)‘

t
< D 0:2(0.8.2) = 0.2,00.8.2) + [ € [0.Fulr) = 0:15(7) o O
. 0
+ [ el = 557 o a7
0

t
< l1Bi = By lagncyy + ¢ [ 10:-51() = 0.5;(7) o 0
0

and consequently
Hﬁsz’ - azfj”LOO(O,T;LOO) <c HBk - Bj||z2(07T;Cl,'y)-

Similar to (A.11) we can easily conclude that
10efi = Oefillz20,m0) < € 1IBi = Bill 720 1)

This means that (fx) is a Cauchy sequence in W2(0,T;C,) N C([0,T]; C}) and thus
it converges to some function f € W12(0,T;Cy) N C([0,T7]; C}(RY)) because of com-
pleteness. Note that for all ¢ € [0, 7], supp f(t) C B¢(42). One can easily show that
f satisfies the system (5.1) almost everywhere and thus f is a strong solution due to
Definition 25.

Moreover, by the definition of convergence, we can find £ € N such that

1f = fellwrzorcy) + I1f = felleoren <1

and consequently

1A llwr20,m00) + flleomey)
<Nf = fellwrzorc,) + 1F = felleoreyy + 1 fellwrzore,) + 1 felloorep
< |f = fellwr2oric,) + 11 = felloomey + ¢ 1fellergorixre
<c.

as the sequence (fy) is bounded in C}(]0, T[xR®) according to Proposition 24 and the
bound HBkHL?(o,T;CM) < QHBHLQ(O,T;CM)-

We will now assume that 1 = ((r). As it has already been discussed in the comment

do not depend on the choice of x as long as

uniformely on [0,7] x B,,(0) this
O

to Proposition 24 the values of fk’B )
T0

x = 1 on B, (0). As fk‘B (o) converges to
o
result holds true for f

f‘BTO (0)

By (0)°
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Proof of Theorem 31  Step 1: Obviously the system (6.6) has a unique strong
solution gp in the sense of Corollary 26 (a). Unfortunately the coefficients do not satisfy
the stronger regularity conditions (5.11) of Corollary 26 (b) as the final value fp(T)— f4
is not in C’c2 (Rﬁ). However, because of linearity, it holds that gg = gp — hp where gp is
a solution of

Otg+v-0pG — Oxfy - 0ug+ (VX B) -0, =Ppp5 X
3l,_p = F(T)
and hp is a solution of

Oth +v-0h — axwa - Oyh + (v X B) - Oyh = (I)f&h X
h‘t:T:fd

Now the first system has a unique strong solution in the sense of Corollary 26 (a) and the
second one possesses a strong solution in the sense of Corollary 26 (b) since f; € C2(RS).
Indeed the solution gp is much more regular. As ®7, r, = 0 one can easily see that fp
is a solution of the first system and thus, because of uniqueness, gg = fg. Consequently
g5 = fg—hg € W2(0,T;Cy) N C([0,T]; C}). Due to Corollary 26 (b) and Lemma 15,
the values that hp takes on Br(0) do not depend on the choice of x. Of course fp does
not depend on x either and hence gB’BR(O) does not depend on the choice of x.

Step 2: We will now prove the Hélder estimate. It suffices to establish the result for h.
as the result has already been proved for f. in Corollary 21. Therefore let B, H € Bx be
arbitrary and let C' > 0 denote some generic constant depending only on f , fa, T, K,
B and ||X||C§- According to Lemma 10 (d) there exist sequences (By), (H) C M such

that
1Bk~ Bllsorawsay = 0, |Hy — Hllzozavas = 0, k= co.

By Corollary 26 (b) the induced classical solutions hp, and hy, satisfy
hp, = hp, hi, = by in WH(0,T; Cy) N C([0,T]; Cy),
1R, lwrz07,0) + 1B llcqorseyy < C and ||ha, lwrzo7,0,) + [1ha ooy < C-

Note that the constant C' does not depend on k since || B || 20,7, w26y and || Hg|| 20 7,w2.8)
are bounded by 2K. Also note that there exists some constant ¢ > 0 depending only on
f, fa, T, K and § (but not on k) such that supp hp, C B,(0) and supp hg, C B,(0).

As hp, and hp, are classical solutions they satisfy the implicit representation formula
(5.8). We also know from Lemma 16 and its proof (with p instead of R) that

1/, () = fr,(D)lloo < C | Be — Hillp2(0,m:w205) -

1D= 15, (t) = Dz fr, Wlloo < C 1Bk = Hill 120 ey 5
128, (t) = Zu,, ()|l (B,0)) < C | Br — Hill 1200,7,m2.5)
1D=Zp, (t) = D:Zn, ()| o= (B,(0)) < C Bk = Hill 120 1020

for all ¢ € [0, T7.
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Together with Lemma 15 this yields
Hth (t) - th (t) ||L°°

< HdeCg HZBk (T7t7 ) — Zm, (T,t, ')HL‘X’(BQ(O))

T
+ / ||<I)ka,th (57 ZBk(Svtv )) - <I)fHkJLHk (Sa ZHk (57t7 '))HL"O(BQ(O)) ds
t
< C|Br — Hill 20,729
T
+C /||th(8)||L°° 102 fB (5l Loo 1284 (s) = Zr (8)l| Lo (B,(0)) ds
t
T
+C /Hth(S)HL? 100fB,.(s) — Ou [, (s)l|lLe ds
t

T
€ [ 1hmu(5) = b (912 100 i, (5) = s
t

T
< C 1B~ Hillagorarasy + € [ o (s) = by (5)]z2 ds
t

5

L2(0,T5W258)" Furthermore,

and hence [|hp, — hu,[lc(o,ry;c,) < C || Br — Hill
10:hp, (t) = O:hp, (1)L

< Cllfallez 128,(T\t,-) = Zn, (T’ 1, ) llwreo(5,(0))

T
€ [ 10, 1, (5 Zm (D= 1Z,(5) = Ziy (9w oo, 05
t
T
€ [ 1070, 5 Zm D)= 1Z,(5) = Ziy (9w, 05
t
T
+ C/ 195, hs, (5 ZB.(5)) = ;g (8 20, (5)) | oo (B,(0)) 128, (5)llwoo (B, (0)) ds
t

T
+ C/ 195, hs, (5. ZB,,(8)) = Py, har, (8, Zh,, (8)) | Loe(B,(0)) 128, (8)[lwroe (B, (0)) ds
t
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S C ||Bk - HkH’[y/Q(O,T;WZ’ﬁ)

+C /Hth(S)HWIOO 1B, () wree 12, (5) = Zp, (8)llwr.20 (,(0)) s
+C /Hth(S)HWLOQ 1/B.(s) = fr,(s)llwre [| 25, (s)lwree (B, (0)) ds
+C /Hth(S) — hp (8)lwroe |, (8)lwree [ Zm,, (s)[wiee (B, (0)) ds

< C B = Hillpggayan + € [ 10:,(5) = 0uhiy (9] ds

and consequently [|0.hp, (t) — 0-hu,llcor.c,) < C || Br — Hy
The difference of the t-derivatives can be bounded by

HL2 0,T;W28) by Gronwall.

10thp, (8) = Oihor, () 1o

< 0 0shp, (1) = Ohm, (D)L + (10:¢ 5y oo 10uhBy, (t) — vl ()| Lo

+ 10205, — Oabpy, lloo 10vhm, (V)] zoe + 0| Bi(t)lloo |06, (t) — Ovhm, (t) || Loe
+ 0|1 Be(t) = He(t) oo [|0vhm, ()| Loe + @ fz, g, —hu, ()2 (B,(0))

1@ sa, — fr, b, O oo (B,(0))

< C(1+1Be(®)lloc) 1Bk = Hill 72 pypzsy + C 1Br(t) — He(t) Iy

from which we can conclude that ||0;hp, — Oihm, |l 12010, < C || Bk — Hk:HZz(O T2
In summary we have established that

1hsy, = hallwrzomc,) + 1hs, = hadleqmopy < C 1Bk — Hill 12 paps) -

For k — oo this directly yields

lhp = hallwrzrc,) + 1hs = halloqorson < C 1B = Hll 2 pap2s) -

and hence
lgs — gullwr20,1c,) + 98 = 9allcqoropy < C 1B — HHZ2(O,T;W2,6) :

Step 3: We must still prove that gg € L>(0,T; H?). Since fg € L°°(0,T; H?) has
already been established in Theorem 19 it suffices to show that hp is twice weakly
differentiable with respect to z and D2hg € L*°(0,T; L?). Recall that for any k € N,
I, € C([0,T);C}?) according to Corollary 14 and hp, € C([0,T];C}) according to
Theorem 24. Thus for all i € {1, 2,3},

aﬂ?iavika th + avi ka aﬂﬂith € C([()? T]; Cb)a

supp [8%81,1 ka, th + avika 8%113,@] (t) C BR(O), for allt € [0, T]
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Thus by Lemma 6 and Proposition 8§,
V(0,80 fs, sy 00, 5, D) € C(10, T Cy) N C ([0, T): H?(B,(0)))

and consequently

3
Oy hp, = O Ouoy, f5, b,
=1

3
=Y U(0r,00, 15, hi 00, 15, 00,h,) € C([0:T1;Cy) N C([0,T]; H(B,(0)))
=1

for any » > 0. Hence
O, np, x € C([0,T;Cy) NC([0,T); H?) (A.12)

since x is compactly supported. We also know from Lemma 15 (which holds true with o

instead of R) that Zp, is twice continuously differentiable with respect to z and for all
s €[0,T],

[t — ZB,(s,t,")] <C.

HLoO(O,T;HQ(Bg(O)))

Now recall the implicit representation formula (5.8) for hp, that is

T
hp,(t,2z) = fa(ZB, (T, t, z) / <1>ka7th (s,ZB,(s,t,2)) ds (A.13)
t

for all (t,z) € [0,7] x R6. As fq € C*(R®) and Zg,(T,t,-) € C?*(R%), the term
fa(Zp, (T,t,2)) is twice continuously differentiable with respect to z by chain rule. The
second term of the right-hand side of (A.13) is once continuously differentiable with

T T
0
azj/ [(I)ka,th X] (S ZBk / ka,hB 3 ZBk (3)) 'aZjXBk(S) ds
! ! (A.14)

T
+/ q)ka,th ZX] (5 ZBk( )) 'aZjZBk(S) ds
t

Obviously the second summand on the right-hand side of (A.14) is once more continu-
ously differentiable. Moreover,

F = @fB g, X € c([o,7); H)
and thus we can choose some sequence (F,,) C C([0,T];C}) such that F,, — F in
C([0,T); HY). As Zp,(s,t,-) is a measure preserving C'-diffeomorphism according to

Lemma 11 it also holds that

1Em (s, ZB,.(s,t,-)) = F(s, Z, (s,t, ) = [|Fn(s, ) = F(s,)llgr = 0, m — o0
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uniformely in s € [0, T]. Consequently,

T T
/ [(I)/ka,th X] (5’ ZBk<S>) ’ aZiXBk (5) ds = mh_{rloo Fm(s’ ZBk (8)) ’ 8ZiXBk (S) ds
t t
in L2(R%) and
8 T T
5 [ Pl Z5,(9) -0, X5, (5) ds = [ (D5, 20, () 02 21, ()] - 02, X, (5) s
t t

T
+/ [Fin(s, Zp,(s))] - 0;,0.,XB,(s) ds
- / [D.F(s,Zp,(5)) 0:,Z5,(5)] - 05, Xp, (5) ds

+ (s,Zp, (s ] 0,0, Xp,(s) ds

“\ﬂ

in L2(R%) if m — oo where D,F is the weak derivative of F. From this we can con-
clude that the right-hand side of (A.13) is twice weakly differentiable with respect to
z and hence the same holds for the left-hand side that is hp,. It also follows that the
weak partial derivatives can be computed by the chain rule formula (if necessary with
weak instead of classical derivatives). Thus for any i,7 € {1,2,3} the weak derivative
0.,0.;hp, can be bounded by

1020z 1, (D)l 22 < C [ fall e 128,08, )l 125, (0))

+C [ 10, ) 23,0 10- 2, 528 By 05

€ 183, 0, 9rsecison 12, (5,1, s, 09 s
t

< C+C|Zp,(0,t, )|l 28,0y + C / 1ZB, (5,1, )| zr2(B,(0)) ds -

y (A.12) this finally yields
Hazz-azthkH%oo(o,T;LQ) <C.

This implies that (0,0.,;hp,) is converging with respect to the weak-*-topology on
[L1(0,T; L?)])* = L*(0,T; L?) up to a subsequence. Because of uniqueness, the weak-*-
limit of the sequence (9,,0.;hp,) must be 0,,0..hp and especially hp € L>(0, T} H?).
This completes the proof. O
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