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Abstract 
 

Arsenic is a widespread contaminant of global concerns due to its neurotoxicity and carcinogenicity. 
Particularly critical is the speciation of arsenic, influencing its mobility, toxicity and retention 
capability. Recently, it was analytically proven that arsenic-sulfur (As-S) species play a dominant 
role for arsenic cycling in sulfidic systems. The geochemistry of As-S species is not well 
investigated, yet, and especially the nature of these species, thioarsenites vs. thioarsenates, has been 
under intense debate. The major objective of the present PhD work was to improve the current 
knowledge about As-S species by structural characterization, investigations of their occurrence, 
formation and transformation, and evaluation of the analytical techniques, X-ray absorption 
spectroscopy (XAS) and ion chromatography coupled to ICP-MS (IC-ICP-MS). 

By XAS it was shown that under strictly anoxic conditions thioarsenites form in arsenite-sulfide 
mixes with sulfide (SH-) excess and as co-occurring intermediates during acidic transformation of 
thioarsenates. Thioarsenites can be specified as highly labile, converting rapidly to thioarsenates in 
the presence of traces of oxygen, e.g. during standard IC-ICP-MS analyses. Excess hydroxide (OH-) 
either due to high pH or sample dilution in ultrapure water inhibits the formation of thioarsenites by 
SH--OH- competition. These facts make the current IC-ICP-MS method even under anoxic 
conditions unsuitable for thioarsenite analyses. However, thioarsenites were shown to be necessary 
intermediates for formation of thioarsenates. Thioarsenates determined in natural oxic systems are 
thus most likely the product of rapid in-situ thioarsenite oxidation. Direct thioarsenite determination 
is currently only possible by XAS with a limitation on > 5 mM-solutions for structural evaluations. 
The characteristic coordination and bond length (RAs-S 2.23-2.28 Å) makes thioarsenites 
distinguishable from thioarsenates (RAs-O 1.70 Å, RAs-S 2.13-2.18 Å). The individual thioarsenates are 
distinct in their coordination and absorption edge energies, successively decreasing about 1 eV per 
sulfur atom. Generally, the absorption edge energies decrease in the order arsenate > thioarsenates > 
arsenite > thioarsenites. This primary XAS-dataset enables the evaluation of (thio)arsenites and 
(thio)arsenates in mixed solutions.  

Despite the greater stability of thioarsenates vs. thioarsenites, they also have been shown to 
transform under certain conditions. Upon acidification they convert to thioarsenites (anoxic) or 
arsenite (oxic) with subsequent As-S precipitation. The presence of FeII in anoxic solutions or 
heating (80 °C) results in their decay to substantial amounts of arsenite. Thioarsenates are also easily 
oxidized by synthetic oxidants, air purging or naturally along hot spring drainage channels. For 
trithioarsenate, the major species of alkaline hot springs in Yellowstone National Park, two 
transformation processes have been identified: successive ligand exchange to arsenate, observed 
naturally and by using a strong oxidant, and the decay to arsenite (and trithioarsenate) in natural 
systems and under moderately reducing conditions. However, transformation under natural 
conditions was up to 500 times faster and is likely catalyzed by Thermocrinis spp..  

Naturally important are also processes promoting mobilization or immobilization of arsenic from 
and at mineral surfaces. Arsenopyrite and orpiment belong to the most abundant (Fe-)As-S minerals 
with particular importance as host rocks for gold refractory. Oxidative leaching of both minerals 
yielded up to 50% thioarsenates. The release of thioarsenates from orpiment, at pH 7 and 12, is 
possibly caused by thioarsenite oxidation. Contrary, physisorption of OH- is the proposed 
mechanism for arsenopyrite with thioarsenate formation only at highly alkaline pH. The 
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immobilization of monothioarsenate by sorption on ironhydroxide was less effective and kinetically 
slower compared to arsenate and arsenite.  

The presence of iron in As-S systems was hitherto considered to counteract thioarsenate occurrence. 
This was refuted by finding up to 17% thioarsenates in Czech spring waters. However, those 
Fe-As-S systems are a challenge for sample preservation. While acidification results in As-S 
precipitation and thioarsenate transformation, flash-freezing as preferred for thioarsenates induces 
ironhydroxide precipitation. An anoxic gas headspace, a strong matrix and an organic solvent 
supported the stability of pure thioarsenate solutions, whereas in the presence of iron a combination 
of EDTA-addition and cryo-preservation is required.  

Overall, the present PhD thesis reveals the importance of thioarsenites and thioarsenates for arsenic 
cycling. The results significantly increase the present knowledge on As-S geochemistry and help to 
define potential for future studies.  
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Zusammenfassung 
 

Arsen ist ein weitverbreitetes Umweltgift und stellt durch seine Neurotoxizität und Karzinogenität 
eine ernsthafte Bedrohung für Menschen und Organismen dar. Die Umweltwirkung, d.h. die 
Mobilität und Toxizität, von Arsen hängt dabei entscheidend von dessen Speziierung ab. Für 
sulfidische Systeme wurde in den letzten Jahren die Bedeutung von Arsen-Schwefel (As-S) 
Verbindungen für den Arsenkreislauf deutlich. Allerdings ist über die Geochemie dieser As-S 
Spezies noch relativ wenig bekannt und besonders die Natur dieser Spezies, Thioarsenate vs. 
Thioarsenite, wurde kontrovers diskutiert. Das Ziel dieser Promotionsarbeit war das aktuelle Wissen 
über As-S Spezies hinsichtlich ihrer Struktur, Vorkommen, Bildungs- und Transformations-
mechanismen sowie die Nutzung von XAS (Röntgenabsorptionsspektroskopie) und IC 
(Ionenchromatographie) gekoppelt mit ICP-MS als Analysetechniken, zu erweitern.  

Aus den XAS-Untersuchungen wurde deutlich, dass unter streng anoxischen Bedingungen 
Thioarsenite in Arsenit-Sulfid Mixen mit Sulfid-Überschuss (SH-) gebildet werden sowie als 
intermediäre Spezies beim Ansäuern von Thioarsenat entstehen. Thioarsenite können als sehr labil 
gekennzeichnet werden, die bereits in Anwesenheit geringster Sauerstoffmengen, beispielsweise bei 
der Standardanalyse mittels IC-ICP-MS, sehr schnell zu Thioarsenaten konvertieren. Durch den 
Überschuss an Hydroxid (OH-), entweder durch hohen pH-Wert oder Probenverdünnung in 
destilliertem Wasser, wird die Bildung von Thioarseniten durch SH--OH- Konkurrenz verhindert. 
Somit ist die OH--Konzentration ist ein weiterer Faktor, der die Thioarsenite auch unter anoxischen 
Bedingungen nicht nachweisbar mit der derzeit etablierten IC-ICP-MS Methode macht. Es wurde 
gezeigt, dass Thioarsenite notwendige intermediäre Spezies für die Bildung von Thioarsenaten sind. 
In natürlichen oxischen Systemen bestimmte Thioarsenate sind deshalb höchstwahrscheinlich das 
Produkt der rapiden in-situ Oxidation von Thioarseniten. Die direkte Bestimmung von Thioarseniten 
ist derzeit nur mittels XAS möglich, wobei die strukturelle Charakterisierung auf Lösungen mit 
> 5 mM Arsen begrenzt ist. Aufgrund ihrer typischen Koordination und Bindungslänge  (RAs-S 2.23-
2.28 Å) sind Thioarsenite sehr gut von Thioarsenaten (RAs-O 1.70 Å, RAs-S 2.13-2.18 Å) 
unterscheidbar. Die einzelnen Thioarsenat-Spezies unterscheiden sich ebenfalls in ihrer 
Koordination und der Absorptionsenergie, die sukzessive um 1 eV pro Schwefelatom sinkt. Generell 
verlaufen die Absorptionsenergien in folgender Reihenfolge: Arsenat > Thioarsenate > Arsenit > 
Thioarsenite. Dieser fundamentale XAS-Datensatz ermöglicht die Evaluierung von Mixen aus 
(Thio)arsenaten und (Thio)arseniten. 

Trotz ihrer gegenüber Thioarseniten vergleichsweise größeren Stabilität wurde auch für die 
Thioarsenate gezeigt, dass sie unter bestimmten Bedingungen Umwandlungsprozessen unterliegen. 
Beim Ansäuern konvertieren sie zu Thioarseniten (anoxische Bedingungen) bzw. zu Arsenit (oxisch) 
und fallen schließlich als As-S Phasen aus. Die Anwesenheit von FeII sowie Erhitzen (80 °C) führen 
zur Bildung von überwiegend Arsenit. Aber auch durch Oxidationsmittel, Luftzufuhr oder 
natürlicherweise entlang der Drainagekanäle von Geothermalquellen werden Thioarsenate oxidiert. 
Für Trithioarsenat, die Hauptspezies in alkalischen Geothermalenquellen des Yellowstone National 
Park, wurden zwei Transformationswege erörtert: der sukzessive Liganden-Austausch zu Arsenat, 
beobachtet in Natura sowie bei der Verwendung eines starken Oxidationsmittels, sowie der Abbau 
zu Arsenit und Trithioarsenat, ebenfalls natürlicherweise oder unter mäßig reduzierenden 
Bedingungen im Labor beobachtet. Generell waren jedoch die Umwandlungsraten in den natürlichen 
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Quellen bis zu 500-Mal größer und vermutlich spielt dabei die Mitwirkung von Thermocrinis spp. 
eine  maßgebliche Rolle. 

Für die Arsenmobilität stellen aber auch Mobilisierungs- und Immobilisierungsprozesse an 
Mineraloberflächen eine wichtige Rolle dar. Arsenopyrit und Auripigment gehören zu den 
häufigsten und als Gold-haltige Erze zu den Bergbau-relevanten (Fe-)As-S-Mineralen. Beide sind 
bei der Lösung unter oxischen Bedingungen Arsenquellen mit bis zu 50% Thioarsenaten. Dabei wird 
die Freisetzung von Thioarsenaten bei der Auripigment-Lösung bei pH 7 und 12 vermutlich über 
Thioarsenit-Oxidation gesteuert. Dagegen wird für die Thioarsenatbildung beim Leaching von 
Arsenopyrit bei pH 12 die OH--Physisorption als prozesssteuernd gesehen. Bezüglich der 
Immobilisierung zeigte Monothioarsenat eine geringere Effizienz und langsamere Kinetik an 
Eisenhydroxiden als Arsenit und Arsenat.   

Bislang wurde angenommen, dass die Anwesenheit von Eisen in As-S Systemen die Bildung von 
Thioarsenaten unterbindet. Mit den für die Eisen-reichen Thermalquellen in Tschechien bestimmten 
Thioarsenatgehalten von bis zu 17%  wird diese Annahme widerlegt. Aber solche Fe-As-S Systeme 
stellen eine große Herausforderung für die Probenstabilisierung dar. Während Ansäuern zur 
Ausfällung von As-S Phasen und Thioarsenat-Umwandlung führt, wird durch Schockfrieren, 
etabliert zur Stabilisierung von Thioarsenaten, die Ausfällung von Eisenhydroxiden erzwungen. Für 
pure Thioarsenatlösungen konnten ein anoxisches Gaspolster, eine starke Lösungsmatrix und 
organische Lösungsmittel die Stabilität verbessern. In Anwesenheit von Eisen kann eine 
Probenkonservierung aber nur durch die Kombination von EDTA-Zugabe und Kryo-Stabilisierung 
erreicht werden. 

Insgesamt macht die Arbeit deutlich, dass Thioarsenate und Thioarsenite relevante Spezies im 
Arsenkreislauf sind. Die Ergebnisse aus den Forschungsarbeiten dieser Doktorarbeit tragen dazu bei, 
das bisherige Wissen zur Geochemie der As-S Verbindungen zu erweitern und zeigen Potential auf 
für zukünftige Forschungen. 
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I Extended Abstract 

1 Introduction  
 

Inorganic arsenic, an ubiquitous element which is historically regarded as the “king of poison”1, 2, 

causes globally public attention due to its carcinogenicity and neurotoxicity3-5. Many studies have 

been conducted to provide arsenic-free drinking water, e.g. Bangladesh, Chile, India, Mexico,  USA, 

and Vietnam 6-8, but even the current WHO drinking water standard of 10 µg/L poses a residual 

cancer risk of 1/500 9. Pollution, distribution, and contamination hotspots are widespread with both 

natural and anthropogenic origins 2, 6, 8.  Natural mobilization processes comprise weathering of 

arsenic containing minerals, especially arsenic sulfides, and desorption from mineral phases such as 

iron(hydr)oxides 6, 8. The major anthropogenic source is the industrial leaching of arsenic-bearing 

sulfides 10-12 to extract elements of economic interest, such as Au, Ag, Pb, or Zn 8, 13, 14. In general the 

geochemical behavior of arsenic as for other elements depends on its speciation and thus it is crucial 

to evaluate the environmental fate of this element in terms of mobility and toxicity.  

In recent years, analytical methods have demonstrated that soluble As-S species constitute a major 

fraction of dissolved arsenic in sulfidic systems 15-17. However, their general biogeochemical 

behavior is so far-largely unexplored and also the exact chemical nature of these compounds is still 

subject to controversial scientific debate, since X-ray absorption spectroscopy (XAS) data suggest 

the presence of (oxy)thioarsenites (≙ trivalent As-S species, H3AsIIIOxS3-x, x = 0-2), while ion 

chromatographic (IC) and mass spectroscopic (MS) data indicate the presence of (oxy)thioarsenates 

(≙ pentavalent As-S species, H3AsVOxS4-x, x = 0-3).  

1.1 Arsenic-sulfur species: in historic view and as subject of late scientific discussions   

As early as at the end of the 19th century As-S species were subject to chemical studies which 

reported the formation of thioarsenates from dissolution of arsenic-sulfides and interaction of sulfide 

and arsenic acid 18-24. Thioarsenates, comprising mono- (H3AsVO3S), di- (H3AsVO2S2), tri- 

(H3AsVOS3), and tetrathioarsenate (H3AsVS4
3), were proposed to form as a result of arsenite 

disproportionation to elemental arsenic and the binding of elemental sulfur to the free electron pair 

of arsenite. The existence of thioarsenites, comprising mono- (H3AsIIIO2S), di- (H3AsIIIOS2), and 

trithioarsenite (H3AsIIIS3), which would be expected based on geochemical expectations when 

reduced arsenic and sulfur species react, was excluded.  

With the beginning of the late 1970`s sodium and potassium salts of trioxymono- 25-27, dioxydi- 28, 

29, monooxytri- 30, and tetrathioarsenate 31-33 were synthesized, characterized and identified by 

radiocrystallographic structure and heat stabilization studies. Thilo and coworkers 34 focused on the 

aqueous thioarsenate complexes and determined their pK values (H3AsO3S: pKs1 3.3, pKs2 7.2, pKs3 

11.0; H3AsO2S2: pKsl 2.4, pKs2 7.1, pKs3 10.9; H3AsOS3, pKs3 10.8; H3AsS4: pKs3 5.2). They 
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postulated that upon acidification, thioarsenates will be stable as long as AsOH-groups can form; 

once the formation of AsSH-groups is forced, the ions become instable. Thus tetrathioarsenate 

(H3AsS4) becomes immediately instable as pH decreases. The hydrolysis to trithioarsenate was 

suspected as a minor reaction, instead, the formation of polymeric trithioarsenites (AsS3)n
n- was 

suggested.  

However, modern analytical techniques, introduced for the measurement of As-S speciation in the 

late 1990s, yielded contradictory evidence on the formation of thioarsenites versus thioarsenates. 

Support for the identification of As-S species as thioarsenates in natural samples, arsenite-sulfide 

mixes and through thioarsenate acidification comes from studies using ion-chromatography (IC) and 

electro-spray coupled to mass-spectrometry (ES-MS) 15-17, 35-37. By combining IC and ES-MS the 

previously labeled “thioarsenites” were later identified as thioarsenates 17, 38. The line of evidence 

came from matching retention times of the unknown As-S-species with those of synthesized mono-, 

di-, tri-, and tetrathioarsenates, and ES-MS 17. Because low-resolution mass spectrometry cannot 

distinguish between monothioarsenite/arsenate (m/z 141), dithioarsenite/monothioarsenate (m/z 

157), and trithioarsenite/dithioarsenate (m/z 173), high-resolution quadrupole-time-of flight (Q-

TOF) had to be used. It showed consistently better agreement between measured and theoretical 

exact m/z ratios postulating (oxy)thioarsenates rather than the corresponding (oxy)thioarsenites 17. 

Furthermore, quadrupole-quadrupole (Q-Q) ES-MS-MS yielded a couple of characteristic 

fractionation patterns that excluded the presence of thioarsenites. For example, elimination of H2O 

(m/z 18) from the molecule with m/z 173 confirmed its identification as thioarsenate H2AsO2S2
- 

because the respective trithioarsenite (H3AsS3) could not eliminate H2O. Finally, molecular mass 

analysis by ES-MS of IC fractions with known As:S ratios confirmed their identification as 

thioarsenates.  

Thioarsenites have so far never been positively identified by IC or ES-MS. A recent study 39 

cautions that AsIII and AsV differ greatly in their kinetic lability and therefore require different 

speciation approaches. While inertness of AsV species makes thioarsenates identifiable by 

chromatographic methods, thioarsenites could be much more labile and undergo speciation changes 

in the mobile phase. As potential reasons co-elution 40, oxidation 40, or hydrolysis 39-41 have been 

suggested. Co-elution of thioarsenites and thioarsenates can be excluded based on the different 

chromatographic behavior of AsIII versus AsV species 39 as well as on the characterization of IC 

fractions by ES-MS 17 which reinforced thioarsenates vs. thioarsenites. Oxidation has been widely 

excluded by preparing samples under anoxic conditions and immediate analysis with oxygen-free 

eluents and thus was considered as unlikely regarding conversion of thioarsenites to thioarsenates 35. 

Hydrolysis could be a factor, considering that chromatographic elution of thioarsenates requires 

highly alkaline eluents and excess OH- may destabilize thioarsenites.  

However, currently analytical evidence for the occurrence of thioarsenites in arsenite-sulfide 

mixes comes from X-ray absorption spectroscopy (XAS) and Raman spectroscopy experiments 40-43 
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with some support from earlier structural analysis by X-ray diffraction (XRD) for trithioarsenite 

salts 44-46. Based on the arsenic oxidation state of +3 and characteristic AsIII-S bond distances of 

2.23-2.24 Å  species in arsenite-sulfide model solutions were assigned as thioarsenites 40. However, 

the XAS data suffer from a lack of thioarsenite reference material and the differentiation of 

individual thioarsenites. The use of methyl-thioarsenicals or copper-thioarsenates (e.g. used in Beak 

et al. 40) is questionable since their spectroscopic and structural composition do not necessarily have 

to inevitably coincide with  aqueous thioarsenite and thioarsenate complexes. Since the 

“thioarsenite” species mentioned above were deducted from undefined arsenite-sulfide mixes, 

separation or distinction from potentially co-occurring thioarsenates, postulated in quantum 

chemical ab initio calculations 39, fails also due to the lack of the respective reference spectra for 

thioarsenates. Thioarsenites were suggested to be unstable compared to thioarsenates but possibly 

also formed during their decay 34.  

Structural and analytical evidence for stability of thioarsenates and thioarsenites, especially 

regarding beam-induced conversions and pH changes, did not exist. Thus, the challenge remained to 

collect a set of XAS reference spectra of solid, aqueous, and flash-frozen thioarsenicals, which can 

be used to distinguish between thioarsenites and thioarsenates, and as a basic dataset for evaluation 

of unknown mixes and their possible co-occurrence of species by statistical based methods. 

Furthermore, the alleged formation of thioarsenates in anoxic arsenite-sulfide mixes by IC and 

contrary, the structural proof of thioarsenites by XAS was questionable and required studies to 

evaluate the effect of certain parameters, such as redox-conditions, OH- and SH--concentrations, 

conversion kinetics, and a comparison of both techniques based on equimolar solutions. 

1.2 Transformation processes of thioarsenates in natural systems 

In natural environments thioarsenic species have been shown to play an important role for the 

chemistry and cycling of arsenic in sulfidic environments 15, 16, 35, 38. However, there is still little 

information on their response to changing ambient conditions, e.g. of pH, temperature, or oxygen.  

Upon acidification, synthesized thioarsenates have been shown to be unstable and precipitate as 

As-S phases at acidic pH 16, 34, 47, 48. While mono- and dithioarsenate were reported to be stable over a 

wide pH-range of 1-13 and 4-13, respectively, tetrathioarsenate transforms, based on results from 

chromatographic separation quantitatively to trithioarsenate at pH 9 and to arsenite < pH 7 followed 

by substantial As-S precipitation at pH < 5 48.  

The behavior of thioarsenates under increasingly oxidizing conditions is largely unknown. One of 

the few published data reported the transformation of trithioarsenate (H3AsVOS3) from contaminated  

groundwater to arsenite (H3AsIIIO3) when bottles were stored with an air-filled headspace for 12 

hours and to arsenate (H3AsVO4) after storage of 5-12 days 35. The transformation of trithioarsenate 

can be seen as a consecutive ligand exchange (SH- versus OH-) from trithioarsenate via 

dithioarsenate (H3AsVO2S2) and monothioarsenate (H3AsVO3S) to arsenate (H3AsVO4). However, 
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neither the transformation mechanisms to arsenate are analytically proven nor can the formation of 

arsenite be explained by successive ligand exchange and thus this requires detailed investigations. 

In geothermal waters of Yellowstone National Park thioarsenates occur in a variety of hot springs 

with pH between 2.1 and 9.3 beside arsenite and arsenate and are subject to transformation with the 

increasing presence of oxygen along the drainage channels 16. Especially in alkaline springs 

trithioarsenate predominates and has been shown to convert to arsenite and arsenate at the study site 

Ojo Caljente, with a major transformation of trithioarsenate to arsenite within the first meters from 

the source, and successive ligand exchange only as a minor reaction 16. However,  the oxidation of 

arsenite to arsenate, previously described as the dominant transformation mechanism in geothermal 

springs 49-53 mediated by arsenite-oxidizing microbes, i.e. Archaea and Eubacteria 54, became only 

quantitatively important as thioarsenates have disappeared 16. 

The importance of abiotic vs. microbially catalyzed thioarsenate transformation in sulfidic systems 

and the identity of involved microbes, e.g. the potential influence of sulfur metabolizing 

microorganism 55, are so far unknown. Also the effect of sulfide is unclear. Sulfide has been reported 

to cause inhibition of arsenite oxidation in acidic solutions 53, while recent laboratory studies 

suggested growth stimulation for sulfide and thiosulfate oxidizers by free sulfide or reduced arsenic-

bound sulfur 36. Thus conversion of thioarsenates needed further investigations to examine the role 

of biotic vs. abiotic processes, comprising redox-conditions, travel time, temperature and 

identification of microorganisms. 

1.3 Mobilization and immobilization of arsenic-sulfur species by mineral dissolution 
and sorption 

Overall, the formation of As-S complexes and their precipitation as amorphous As-S phases 

control arsenic cycling, i.e. arsenic solubility, mobility and toxicity in (natural) sulfidic systems 39, 56-

62. As formation of thioarsenic species can be the result of recombination reactions of arsenite and 

sulfide, the formation upon dissolution of arsenic and sulfur bearing minerals is only sparsely 

investigated but geochemically well feasible. 

 Although the leaching behavior of arsenic sulfides, such as arsenopyrite (FeAsS) and orpiment 

(As2S3) 13, 63, was investigated extensively due to the importance for ore recovery processes, the most 

studies focused mainly on dissolution rates and efficacy, which were shown to be positively 

influenced under oxic conditions and by the presence of redox-agents such as FeIII and oxygen 63-71, 

pH-value 13, 63, 67, 70, 72, microorganisms 73-75, complex formation (arsenic-carbonate 76-80, iron-

carbonate 81, As-S 62, gold-thiosulfate (FeAsS) or gold-sulfur (orpiment) complexes 12, 82, 83, 

temperature increase 56, 58, 61, 62, 83, and surface reactions induced by sulfide (FeAsS) 84.  

Beside net arsenic release, determination of species formed at the mineral surface and in solution 

is of central importance to evaluate the impact and behavior of arsenic in sulfidic mineral systems. 

At the orpiment surface arsenite and disulfide are formed 63, 85 and complexes of S-As-S and 
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S-As-S-OH are assumed to detach from the surface by bond-polarization as a base (OH-)-promoted 

reaction mechanism 64. In sulfide-rich anoxic solutions the formation of trivalent thioarsenites was 

proposed 56, 58 and predicted by thermodynamic model calculations 39, 42, even though analytical 

evidence is still missing. In sulfide-deficient anoxic solutions arsenite was suggested as major 

species (70-90%) and analytically proven coupled with model calculations 56, 64. Also oxidation of 

orpiment (pH 7-9) resulted in arsenite predominance (50-70%) beside the release of an unknown 

sulfur species (80-90%), suggested to be polythionate 57. However, the authors used hydride 

generation techniques (HGAAS) for arsenic speciation analyses. For thioarsenates, this techniques 

showed As-S precipitation upon acidification prior to reduction or if pre-reduction was used that 

only monothioarsenate was co-determined with arsenate, while tetra-, tri-, and dithioarsenate react 

with the arsenite fraction 48. Thus As-S species might have been overlooked in previous studies 

conducted by HG-techniques. For highly alkaline electrochemical oxidation experiments direct 

formation of  thioarsenites by recombination of the released arsenide and sulfide was determined by 

cyclic voltametry 86. However, based on the suggestions about redox-stability of thioarsenites 39 it is 

unlikely that these species are formed via electrochemical oxidation.  Direct analytical evidence for 

thioarsenate formation came from IC-ICP-MS analyses of presumably anoxic sulfidic orpiment 

leachates at neutral pH, although thioarsenates occurred only as a minority beside arsenite 35. As 

mentioned earlier the question about the nature of species formed under anoxic vs. oxic conditions 

remains unresolved. Detailed studies of kinetics-, pH-, and redox-depending species formation 

during orpiment leaching are missing. 

Similarly for arsenopyrite extensive information exists about the formation of different surface 

species at acidic, neutral and alkaline conditions (metal-deficient sulfur-enriched surface, As:S > 1 
67, 87-90 vs. arsenic- and iron-oxide-surface coatings, Fe:As, Fe:S, As:S < 1 67 vs. ironhydroxide 

formation , Fe:As < 1 67, 87, 91) in addition to some speciation studies in solution 69-71, 83, 92, 93. In these 

studies arsenite was found to predominate over a broad pH-range from 2-12 in leaching studies of 

several hours up to one day 70, 71, 92, 93, while sulfate  predominates at acidic to neutral conditions 67, 93 

and thiosulfate at alkaline pH 83.  In long-term view arsenate will predominate even if abiotic 

oxidation is slow 94. For the release of As-S species during arsenopyrite leaching, Rosskovsky 11 

proposed the formation of thioarsenites at highly alkaline conditions. However, the only analytical 

evidence for As-S species as thioarsenates (monothioarsenate) was found by IC-ICP-MS analyses in 

an unpublished PhD-thesis 83 proposing hydroxide physisorption as release mechanism.  

Overall the leaching of arsenopyrite is largely governed by surface structure and the formation of 

surface coatings, causing dissolution passivation at neutral pH resulting in a minimum net release 

and arsenic sorption on ironhydroxides at alkaline pH, which may reduce dissolution in the long-

term view. However, sorption characteristics for thioarsenates are unknown and it is questionable if 

they follow the observed trends for pentavalent or trivalent arsenic or are completely different. From 

numerous sorption studies with arsenite and arsenate it is known, that arsenate has a higher sorption 
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efficacy on goethite and ironhydroxides compared to arsenite at pH 5-6 (sorption maxima at pH 4), 

forming monodentate or/and bidentate-binuclear complexes at low/intermediate coverages, and 

bidentate-mononuclear complexing at high coverages 95. Contrary arsenite sorbs preferentially at 

higher pH with sorption maxima between pH 8-9 96, 97 appearing as bidentate-binuclear surface 

complexes 98, suggesting a stronger bonding at high pH for arsenite. Sorption kinetics is reported to 

be relatively fast for both arsenite and arsenate on ironhydroxides. At high concentration arsenite 

reaction is faster and at low concentrations arsenate reaction 97.  

To what extent and under what conditions thioarsenate-formation plays a role during (oxidative) 

dissolution of orpiment and arsenopyrite and for re-sorption by mineral surfaces remained as an 

open, but for both natural and industrial leaching processes fundamental question. 

1.4 Stability and sample stabilization of thioarsenates in iron-containing waters 

Since As-S species play a key role in manifold systems from natural waters to industrial processes 

and laboratory investigations, samples preservation especially for the field studies is indispensable 
99, to avoid speciation changes due to the redox-sensitivity of arsenic species.  

Although abiotic redox-reactions are slow 100, 101 oxidation and reduction can be accelerated by pH 

and in low concentrated solutions 102, in the presence of redox-agents, e.g. FeIII, H2S 101, 103, or by 

photo-oxidation through radicals formed in the presence of acids (HNO3, HCl) or FeIII 104-106. 

Microbially-catalyzed transformations are generally more important than abiotic reactions for 

arsenic species transformations in natural samples, but are widely excluded by the application of 

filtration (0.2 µm-pore-size), acidification (< pH 2), light exclusion, and cool storage (4-6 °C) 107. In 

general HCl was reported as the most suitable acid, while HNO3 is inappropriate because of its 

photo-oxidation potential, and H2SO4/H3PO4 due to formation of metal-sulfate or -phosphate 

precipitates 107. However, in the presence of sulfide acidification results in precipitation of As2S3-

phases 47, 108, as also reported for thioarsenate-containing waters 34, 48, predominant species in those 

systems 15-17, 109. Due to their limited pH-stability, thioarsenates convert upon acidification and thus 

for their stabilization special preservation techniques are required. For preservation of total arsenic 

in sulfidic waters (> 0.4 mg/L) different methods were suggested, comprising a three-step 

preservation method with base addition, oxidation, and acidification 47 and on-site separation of AsV 

species with subsequent elution by NaOCl, a strong oxidant 108. But these methods can only preserve 

total arsenic concentrations and fail due to oxidation and acidification for stabilizing individual 

thioarsenic species. More promising is cryo-stabilization, i.e. flash-freezing with storage in a freezer, 

already proposed for arsenate/arsenite stabilization by Crecelius and co-workers 110, and approved 

for thioarsenate-containing natural waters 15, 16. 

In complex systems containing arsenic, sulfur, and iron, freezing (and thawing) is problematic 

because the technique is known to promote oxidation of iron and the co-precipitation of arsenic with 

the newly formed ironhydroxides 107, 111, resulting in a measurable loss of total arsenic. Also 
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common methods for arsenic stabilization in iron-rich waters to prevent iron-induced 

(photo)oxidation 104, 106, 112 and ironhydroxide formation, comprising pH-buffering with HCl 113 or 

acetic acid 114, 115, iron-complexation by EDTA (ethylendiaminetetraacetic acid), and light-exclusion 
105, 107, 111-113, 115-119 fail, due to the reported pH-sensitivity of As-S species and sulfidic solutions 16, 34, 

47, 48, 108.  

 Although formation of iron sulfides is discussed as competing mechanism to formation of As-S 

species 38, arsenopyrite leaching studies support the potential for occurrence of thioarsenic species in 

iron-sulfide solutions 11, 83. However, preservation strategies for those systems are challenging, since 

freezing, considered as the best preservation technique for arsenic-sulfide systems, and acidification, 

currently regarded as optimal for arsenic-iron systems, seem to be mutually exclusive and 

predestined to fail in more complex arsenic-sulfide-iron-systems. 

 

Overall, As-S species were already in the focus of research studies as early as in the late 19th 

century. Their environmental relevance became more and more apparent over the last years. 

Although their existence in natural systems was analytically proven, only little information exists 

about the biogeochemistry and exact chemical nature of these As-S complexes. The analytical 

techniques give contradictory evidence for thioarsenates (IC-ICP-MS) vs. thioarsenites (XAS), 

suffer from the lack of available reference materials and spectra and remain an analytical challenge. 

However, for evaluation of natural sulfidic systems, industrial processes and prospective As-S 

sources/pools, extensive information on As-S species formation, (co-)occurrence of thioarsenites and 

thioarsenates, stability and stabilization, abiotic/biotic transformation mechanisms and toxicity are 

definitely necessary.  
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2 Objectives 
 

The general aim of this PhD thesis was to contribute to a better understanding of the nature and 

geochemistry of aqueous arsenic-sulfide species. To reach this goal scenarios and experiments about 

formation mechanisms had to be examined as well as preservation techniques and analytical 

procedures developed and tested under laboratory and natural conditions. The following objectives 

can be summarized: 

 

▸ Structural characterization of aqueous and solid thioarsenate species with the XAS, a non-
destructive and redox-state preservative technique, using synthesized reference materials 
consolidating existing information of solid thioarsenate salts (XRD) and aqueous thioarsenate 
complexes (IC-ICP-MS and ES-MS) as basic dataset for further characterizations (Study 1). 

▸ Structural investigations of the pH-dependent stability of (tetra)thioarsenate under controlled 
redox-conditions to get analytical proof for possible co-occurrence of thioarsenites and 
thioarsenates with comparison of existing transformation data 37, 48, 120 and modeling results 
(Study 1). 

▸ Comparative investigations of thioarsenate and thioarsenite formation in arsenite-sulfide mixes 
using XAS and IC-ICP-MS by evaluation of redox-conditions, dilution, and pH on As-S species 
formation and stability (Study 2). 

▸ Determination of abiotic and biotic thioarsenate transformation pathways in natural geothermal 
systems vs. laboratory oxidation studies (Study 3). 

▸ Formation of thioarsenates during oxidative dissolution of arsenic-sulfide and arsenic-iron-
sulfide minerals as further naturally and industrially relevant formation mechanism (Study 4). 

▸ Sorption of monothioarsenate on ironhydroxide exemplary as a first information for the natural 
behavior of released aqueous thioarsenates and potential immobilization processes (Study 4).  

▸ Examination of iron-containing natural spring waters for resolving the importance of 
thioarsenates in As-Fe-S systems (Study 5). 

▸ Behaviour and stability of thioarsenates in the presence of iron (Study 5). 

▸ Evaluation and development of preservation strategies of thioarsenates under the aspect of 
sampling and redox-influence, storage time, stabilizing amendments and presence of iron (Study 
5). 
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3 Methodology 
 

The key-experiments to resolve the geochemical behavior of thioarsenic species are based on 

structure and redox-state characterizations by X-ray absorption spectroscopy (XAS; see 3.1) and 

aqueous thioarsenate speciation by ion-chromatography coupled to inductively coupled plasma mass 

spectroscopy (IC-ICP-MS; see 3.2).  

Currently, IC-ICP-MS with a high-alkaline eluent is the standard method to determine the 

speciation of aqueous inorganic arsenic species in sulfidic systems, i.e. arsenite, arsenate, and 

monomeric thioarsenates 16, 17, within detection ranges of approximately 0.5 µM to 0.1 mM, i.e. 

higher concentrated solutions require dissolution. Determination of thioarsenites is presently not 

possible by this technique. Structural and direct redox-state information of the complexes cannot be 

deduced from the results. 

Structural characterization (local coordination, Extended X-ray absorption fine-structure, EXAFS) 

and redox-state determination (X-ray absorption near-edge structure, XANES) can be received by 

XAS, a non-destructive technique for analyses of solutions at room temperature and flash-frozen as 

well as for solid materials. Redox-state transformations can be prevented by using cryo-techniques 

(cryo-preservation = flash-freezing in dry-ice (-79 °C)/liquid N2 (-196 °C) and storage in a freezer 

(-18 to -20 °C), cryostat), which enables the investigation of extremely redox-sensitive species. By 

resolution of characteristic local complex coordination combined with the prediction of the redox-

state the distinction of several species is possible, even though “average” signals in mixtures require 

statistically based evaluation techniques, e.g. iterative transformation factor analysis (ITFA). In 

contrast to IC-ICP-MS detection limits of XAS are magnitudes of order higher and thus the 

analytical use is limited to high concentrated arsenic solutions, synthetic model and/or reference 

solutions.  

In the following, brief information on the analytical techniques is given; detailed experiments can 

be looked up in the respective studies, in the Annex or briefly summarized in Table 2. 

3.1 X-ray absorption spectroscopy  

Structural characterization by XAS was done for synthesized reference materials of thioarsenates 

(Table 1), for the pH-dependent tetrathioarsenate transformation experiments under anoxic 

conditions, and the evaluation of As-S species in oxic and anoxic arsenite-sulfide mixes in 

comparison to anoxic and standard IC-ICP-MS speciation. Samples were handled under nitrogen 

atmosphere (exceptions were samples to evaluate the effect of oxidation) and either pressed as 

pellets (solids) or pipetted into slit-sample holders as aqueous solutions, caped with Kapton® tape, 

and finally stored under nitrogen atmosphere (thioarsenate reference solutions only, max. 1 hour) or 

flash-frozen, as redox-stability had to be guaranteed (thioarsenate reference solutions, solids, 

tetrathioarsenate titration, and As-S mixes, 1 hour to max. 8 days).  
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XANES and EXAFS spectra (arsenic K-edge, 11,867 eV) were collected at the Rossendorf 

Beamline (BM20) at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), using 

a Si(111) double crystal monochromator (DCM) and the settings described in more detailed in the 

respective publications 121, 122. Fluorescence spectra were collected with a 13-element Ge-detector 

(Canberra). The measurements of aqueous reference samples were performed at room temperature 

(RT), while flash-frozen aqueous and solid samples were measured at 15 K in a closed-cycle He 

cryostat (CryoVac). By using the cryostat, sample stabilization could be guaranteed by exclusion of 

oxygen and photon-induced redox-processes during the measurements 123, 124 and the detection was 

improved by elimination of thermal vibrations 125. Data processing of several fluorescence spectra 

was performed with the software packages SixPack and WinXAS 3.1 126, 127. To determine the local 

structure of the As-S complexes, shell fitting was performed on the Fourier transforms (FTs) using 

As-O and/or As-S paths with FEFF 7.02 and WinXAS 3.1. Fitting parameters included the passive 

electron reduction factor (SO2), the coordination number (CN±25%), the radial distance (R±0.02 Å), 

the Debye-Waller factor (σ²±0.0005 Å), and the phase shift (∆E0). The sample coordination, local 

structure, and edge positions were compared with those of defined references: arsenic pentoxide 

(As2O5, solid), orpiment (As2S3, solid), and sodium arsenite (NaAsO2). 

Table 1: Description of thioarsenate reference materials and standard handling procedure 

Reference material (synthesis 122) pH-stability and handling 

monothioarsenate (MONO) 
Na3AsO3S•12 H2O 

stability pH 1-13 48, aqueous complex (AsO3S3-) by dissolution in 
ultrapure water (in specific experiments 0.1 M NaOH, 1% EtOH) 

dithioarsenate (DI) 
Na3AsO2S2•11 H2O 

stability pH 4-1148, conversion to arsenite, aqueous complex (AsO2S2
3-) 

by dissolution in UPW, final solution contains 1% EtOH from synthesis 
122, 128 

trithioarsenate (TRI) 
AsS3O3‐ 
 

not available as solid, aqueous complex (AsS3O3‐) by  dissolution in 
UPW (pH 9-10) for standard IC-ICP-MS, synthesized aqueous reference 
for XAS, stability pH 7-10 48, conversion to arsenite + precipitation 

tetrathioarsenate (TETRA) 
Na3AsS4•8 H2O 

stability pH 11-13 34, 48 resp. 13-9 37, 122, aqueous complex (AsS4
3-) by 

dissolution in 0.1 M NaOH 

 

For species determination in mixed solutions, iterative transformation factor analysis (ITFA, 129, 

130), combining principal component analysis (PCA) with the factor analysis procedures varimax 

rotation and iterative target test (ITT), were performed with the EXAFS spectra of mixes and 

references. PCA was used to determine the number of components in the model solutions (minimum 

Malinowski factor, graphically on PCA FTs) and to identify the spectra corresponding to the 

components, which were then added to the ITFA series. Visually the series spectra are recombined 

by linear combination (LC) of the principle components displaying the goodness of the reproduction. 

To estimate the component distribution in the model solutions concentrations of the references were 



15 

normalized to 100% for ITT calculations. For trithioarsenite a theoretical chi-function was built with 

FEFF 7.02 131, based on the structure of trithioarsenite 122 (CNAs-S = 3 and RAs-S = 2.2536 Å) and 

fixed fitting parameters (S0
2 = 0.9, σ2 = 0.003 Å2 , ∆E = 11.59 eV). ITFA analyses and EXAFS shell 

fitting were used complementary to identify and ensure the speciation in mixes.   

3.2 IC-ICP-MS 

The samples from oxic and anoxic arsenite-sulfide mixes as described above were subjected to 

speciation analyses by IC-ICP-MS. Furthermore the solutions to determine thioarsenate stability in 

iron-containing systems, solutions from batch sorption experiments, oxic leachates of arsenopyrite 

and orpiment, and natural samples (Yellowstone National Park, Czech Republic) were analyzed by 

IC-ICP-MS (Annex and Table 2). If not stated otherwise, species determination was done with an 

instrument outside the glovebox (= standard IC-ICP-MS). Only for selected samples a gradient 

pump inside the glovebox was used (same setting as the standard IC-ICP-MS) to avoid any oxygen 

in the instrument, not at least to show that standard IC-ICP-MS even by using N2 purged eluents is 

affected by oxygen traces.  

Samples of redox-sensitive solutions (As-S mixes, flash-frozen natural, sorption and stability study 

solutions) were handled in the glovebox prior to standard IC-ICP-MS analyses, oxic leachates were 

filled outside, and selected sample solutions were handled and directly injected into the HPLC pump 

in the glovebox. In general, sample preparation comprised filtration and centrifugation (natural 

samples, sorption studies), dilution of high concentrated samples, and finally pipetting into IC 

sample vials with filter cap. After preparation samples were analyzed immediately, i.e. injected 

manually (HPLC inside the glovebox) or by autosampler (outside).  

Arsenic speciation measurements were conducted by anion-exchange chromatography with an 

AG16/AS16 IonPac® column using an alkaline gradient (20-100 mM NaOH) at a flow rate of 1.2 

mL/min 16, 109, 121, 128, 132. Especially for analyzing the arsenic-sulfide mixes the eluents were nitrogen-

purged and kept under constant nitrogen pressure during analysis. The standard setup was an ICS-

3000 SP (Dionex) with an anionic self-regenerating suppressor (ASRS) outside the glovebox 

coupled to an ICP-MS (X-Series2, Thermo Scientific or Elan DRC II, PerkinElmer). Arsenic and 

sulfur were monitored as AsO+ (m/z 91) and SO+ (m/z 48) using 10% oxygen in 90% helium as 

reaction/collision gas. Thioarsenates were quantified based on calibration curves for commercial 

arsenite and arsenate standards. For selected experiments, an HPLC gradient pump (System 525, 

BioTek Instruments) was set up inside the glovebox coupled to the ICP-MS (outside the glovebox) 

to exclude any traces of oxygen during chromatographic separation. Sample injection and gradient 

changes were done manually.  

Total analyzes of arsenic (and sulfur) were determined as AsO+ (and SO+) by ICP-MS as described 

above. Calibration, data correction, and quality-control can looked up in the respective publications. 

All samples for total determinations required dilution, performed by addition of UPW.  
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Table 2: Summary of studies, objectives, major experimental settings and results 

Objective Experimental setup/Sampling Analyses Results 

Study 1: Discrimination of Thioarsenites and Thioarsenates by X-ray Absorption Spectroscopy 

▸ structural 
characterization 
(EXAFS) and arsenic 
redox-state 
determination 
(XANES) of aqueous 
and solid AsV-S 
complexes to provide 
a dataset for 
differentiation of the 
species in the 
homologue series and 
AsIII-S species 

▸ structural monitoring 
of TETRA pH-
instability under 
anoxic conditions – 
differentiation of 
AsV-S and AsIII-S in 
mixes 
 

reference structures + evaluation of 
possible transformation via 
dissolution, cryo-preservation, and 
analyses 
▸ sample handling under N2-

atmosphere 
▸ pellets (8.9 mg As) of solid AsV-S 

reference salts (see below), 10 mM 
solutions (aqueous, flash-frozen in 
liquid N2, anoxic/cryo-storage max. 
1h) 

▸ further references 
NaAsO2(arsenite),  As2S3, As2O5 
(arsenate) 

pH-dependent behavior of TETRA 
▸ 10 mM TETRA in 0.1 M NaOH 

(pH 12), in UPW (pH 9.5) → 
acidification (HCl) to pH 6.3, 5.8, 
and 2.8 

▸  cryo-preservation + anoxic 
handling 

PhreeqC-modeling of TETRA-
acidification 
▸ 10 mM As, 40 mM S-II, pe -4 
 

▸ XAS (As K-edge 
(E0)11,867 eV, XANES 
E0±50 eV, EXAFS 
E0+50 to 12,600 eV) 

▸ He-cryostat (15K) for 
solids, cryo-preserved 
solutions 

▸ spectra evaluation 
SixPack, WinXAS, Feff 
7.02 

▸ ITFA (PCA, ITT) for 
mixed solutions 
(TETRA acidification) 
 

AsV-S species characterization with EXAFS and XANES 
▸ structural similarity of solid, aqueous (RT, flash-frozen) complexes = stability 

towards dissolution, flash-freezing → cryo- and redox-state preservation, use 
as references for liquid based analytics 

▸ RAs-O 1.67-1.69 Å, RAs-S 2.14-2.15 Å, CN as expected ±25% (arsenates: RAs-O 
1.68-1.71 Å, arsenites: R A-O 1.80 Å, AsIII-S RA-S 2.21-2.25 Å,  As2S3 2.28Å)  

▸ XANES edges differ by ≈1 eV, edge↓ with SH↑ (arsenate→MONO→ 
DI→TETRA), ∆ TETRA and arsenite ≈1 eV → misidentification in mixes 

Differentiation of AsV-S and AsIII-S species in mixes 
▸ conversion of TETRA through acidification (edge shift -2eV, RAs-S↑ to 2.28 Å) 
▸ evaluation with ITFA: TETRA-pH-series two aqueous species  

= end members pH 12 (= TETRA) and  pH 2.8 (= trithioAsIII →EXAFS CN 
3.8/ RAs-S 2.28 Å)  

▸ pH 6.3, 5.8 co-existence of TETRA and trithioAsIII 
Modeling 
▸  support of TETRA-transformation to trithioAsIII (pH 5-7), TRI 0.1% at pH 7 

(below XAS detection limit), underestimation of TETRA-stability at alkaline 
pH (arsenate prediction) 

CONCLUSION:  
▸ detection limits XAS (≥ 0.5 mM XANES, ≥ 5 mM EXAFS, ITFA 5%) → 

limitation high conc. (synthetic) systems 
▸ structure solids = aqueous complexes → use as IC-standards 
▸ AsV-S /AsIII-S structurally distinct 
▸ TETRA-conversion by pH ↓(anoxic) → trithioAsIII, co-existence and triggered 

by polysulfides 
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Objective Experimental setup/Sampling Analyses Results 

Study 2: Arsenic Speciation in Sulfidic Waters: Reconciling Contradictory Spectroscopic and Chromatographic Evidence 

▸ comparative analyses 
of anoxic arsenite-
sulfide (AsIII-S-II) 
mixes with IC-ICP-
MS (undiluted) and 
XAS 

▸ effect of oxygen 
elimination on As-S 
speciation in anoxic 
mixes during IC-ICP-
MS analyses 

▸ oxidation kinetics of 
As-S species in AsIII-
S-II mixes (XAS/IC-
ICP-MS) 

▸ effect of dilution in 
mixes with SH-- 
excess (S:As 10) 
(IC-ICP-MS) 

▸ effect of pH mix S:As 
10 (0.1 mM As) with 
IC-ICP-MS 

S:As mixes for XAS/IC-ICP-MS 
▸ speciation in anoxic AsIII-S-II mixes: 

(10 mM As, S:As ratio of 0.1, 1, 2, 
4, and 10, anoxic preparation, i.e. 
glovebox, pH 11.2 to 12.5, 
immediate analyzes/sampling 

▸ mix S:As 10 after 3 days under N2 
▸ oxidation: subsamples mix S:As 10 

on air (1h/24 h) 
 cryo-preservation of XAS 
samples, standard IC-ICP-MS 
(undiluted!) 

Dilution effect (IC-ICP-MS) 
▸ mixes with S:As 10 → dilution 

series 0.1, 0.5, 1, 5, and 10 mM As 
▸ pH-influence (IC-ICP-MS) 
▸ S:As 10, As 0.1 mM 
▸ pH-values 3, 5, 6, 7, 9, 11, 12, 13 
▸ analyses immediately/after 7 days 
Oxidation kinetics of AsIII-S species 
by anoxic determination with HPLC in 
glovebox 
▸ mix S:As 10 (0.1 mM As) exposed 

to oxygen for 0.5-96 h in open/ 1-
96h closed IC-vials (filter-cap) 

▸ anoxic reference 3/24 h 
 

▸ XAS of cryo-preserved 
mixes and evaluation by 
fitting, ITFA (cf. study 
1) 

▸ species/totals with 
standard IC-ICP-MS 
(eluents purged with 
N2), sample handling in 
glovebox prior analyses 

▸ selected experiments 
with HPLC gradient 
pump in glovebox 
(coupled to ICP-MS) for 
oxygen exclusion 

▸ pH (HACH) 
 

Comparison speciation with XAS and IC-ICP-MS 
▸ analyses match at S:As 0.1 (SH--deficient) = arsenite 
▸ S:As > 0.1 → XAS predominance trithioAsIII (CNAs-S ≈3, RAs-S 2.21-2.24 Å), 

standard IC-ICP-MS DI/DI+TRI, loss 23-26% 
Oxidation of AsIII-S to AsV-S species (HPLC gradient pump in glovebox) 
▸ S:As 10: anoxic AsV-S < 1%, arsenite+peak-splitting, air-exposed: share of 

AsV-S ↑, half-life of arsenite 130”- 240”, loss 20% 
▸ confirmation by XAS → air-exposure edge shift (AsIII-S→AsV-S), bond-

distances↓ (RAs-S/As-O 2.16-2.17 / 1.70 Å, CNAs-S/As-O 2.9/1.8 → suggestion TRI) 
▸ AsIII -S anoxic stability ≤ 24h, then decay into TRI/mix (XAS), arsenite (IC) 
▸ AsIII -S appear as arsenite and AsV-S in standard IC (outside glovebox!) → no 

co-elution of AsIII-S and AsV-S 
Dilution 10 mM→0.5mM (S:As 10) 
▸ 50% DI/TRI, loss 26% → 64% arsenite, 15% loss 
▸ stability of AsIII -S dependent on SH-:OH- 
▸ analyses with IC (even anoxic) - requires dilution + NaOH-eluent → SH-:OH-↓  
▸ suggestions: thioAsIII conversion to arsenite at OH--excess due to OH-↔SH- 

exchange  
▸ no formation of AsIII-S at OH--excess (diluted As:S 10-mixes) → arsenite 
▸ AsIII-S = necessary intermediates for AsV-S formation 
CONCLUSION:  
▸  AsIII-S = formed in anoxic As:S mixes (SH--excess), oxic conversion to AsV-S 
▸ AsIII-S = necessary intermediates for AsV-S formation in AsIII-S-II solutions 
▸ AsIII-S properties: labile, rapid conversion under oxic/anoxic conditions, OH-

-excess, only detectable by XAS (actually)  
▸ IC-analyses: AsIII-S appear as arsenite (anoxic), AsV-S (oxic) 
▸ natural waters: AsV-S “true” species, due to rapid trithioAsIII conversion on air  
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Objective Experimental setup/Sampling Analyses Results 

Study 3: Oxidative Transformation of Trithioarsenate Along Geothermal Drainages – Abiotic versus Microbially Mediated Processes 

▸ evaluation of 
transformation 
processes of AsV-S 
species upon 
exposure to oxygen in 
natural sulfidic 
systems and in 
laboratory based 
experiments 

 

sampling along drainage channels 
▸ on-site parameters, flow-time 
▸ samples for As-S species analyses 

(filtered + cryo-preservation) 
▸ microbial samples - retention on 

filters (0.22 µm, ca. 1-15 L natural 
water) + lysis buffer → cryo-
preservation 

laboratory investigations 
▸ oxidation (air-purging for 5”-36 h, 

addition of 2×10-13 – 4×10-2 M 
H2O2)  

▸ temperature effect (20, 50, 80 °C) 
▸ reference solutions: MONO/TRI 

 

▸ species: standard IC-
ICP-MS (anion-
exchange AG16/AS16 
IonPac®, eluent-
gradient 20-100 mM 
NaOH, ICP-MS as 
AsO+ and SO+ (reaction 
with 10% O2, 90% He), 
instruments outside the 
glovebox, sample 
handling prior to 
analysis in glovebox) 

▸ totals: ICP-MS 
▸ microbiology: 

incubation, DNA 
purification and 
concentration, PCR 
amplification + DGGE 
 

abiotic oxidation/temperature experiments 
▸ MONO stable towards air-purging/heating at 80 °C, oxidation with H2O2 

conversion to arsenate 
▸ TRI → air-purging,  H2O2  < 2×10-6 M sequence: TRI+arsenite+thiosulfate 

(equilibrium),  
▸ TRI →  H2O2 > 2×10-6 M sequence (= successive ligand exchange):  

TRI → DI → MONO+arsenate → arsenate; sulfur: thiosulfate → sulfate 
▸ 80 °C: TETRA → TRI + arsenite 
natural waters (12-33 µM As, 90-130 µM S-II, 60-89% AsV-S 
▸ transformation sequences:  

(1) Ojo Caliente: TRI→ arsenite (abiotic/microbial by unknown species) → 
arsenate (possibly by Thermocrinis spp.)  
= cf. abiotic air oxidation, but exclusively arsenite formation and later 
transformation to arsenate 
= transformation rate ×500 cf. abiotic oxidation 
(2) Gibbon Geyser Basin: successive ligand exchange TETRA/TRI to finally 
arsenate (+ arsenite increase) 
= cf. abiotic oxididation with strong oxidant, possibly parallel mechanisms 
observed stepwise in (1) 

CONCLUSION:  
▸ naturally two conversion sequences (microbial mediated) 
▸  40-500 times faster as abiotic oxidation (catalyzes possibly by Thermocrinis 

spp.) 
▸ direct conversion to arsenate only with strong oxidant, naturally by arsenite 

oxidation  
▸  transformation processes naturally not inhibition by sulfide (28-91 µM)   
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Objective Experimental setup/Sampling Analyses Results 

Study 4: Thioarsenate formation, release and re-sorption during oxidative dissolution of arsenic-iron-sulfide minerals 
▸  AsV-S speciation in 

mineral solutions 
(As2S3, FeAsS) 
depending on pH and 
time 

▸ influence of leaching 
solution composition 
on leaching behavior 
of FeAsS (ionic 
strength) 

▸ effect of reactive 
sulfide species on 
AsV-S formation and 
dissolution intensity 
of FeAsS 

▸ sorption of MONO on 
α-Goethite 
 

open system As2S3 and FeAsS 
leaching 
▸ ≈ 290 mg As/L, pH 2, 6, 12 (0.04 M 

NaHCO3, 0.1 M NaOH), open 
flasks (50 rpm) → sampling 
species/totals 6-144 h 

FeAsS leaching with restricted O2 
(separate batches, overhead shaker 20 
rpm) 
▸ ≈ 290 mg As/L, FeAsS 

(Freiberg/Hartmannsdorf)  
▸ pH-dependence: pH 2, 5, 7, 9, 12, 

13 (0.04 M air-purged NaHCO3/ 
0.1 M NaOH) → leaching time 10”-
6 weeks 

▸ effects of ionic strength: 48 h, 
0.004, 0.04, 0.4, 0.8 M, 
NaOH/NaHCO3 

▸ influence of sulfur-anions (pH 7/12, 
48 h): oxic 3/30 µM thiosulfate, 
anoxic 30/300 µM polysulfide, 
17/167 µM sulfide (Na2S.9H2O)) 

sorption of MONO, arsenite, arsenate 
on α-Goethite 
▸ suspensions 33 g/L, 5 mM NaCl 
▸ batch, anoxic handling 
▸ sorption isotherms: 48 h,  0.07-5.3 

mM 
kinetics: 0.053 mM As, 0.03-336 h 
 

▸ species standard IC-
ICP-MS → dilutions pH 
2,9-13 (1.7-10)  

▸ totals ICP-MS → 
dilutions (10-250) 

▸ sampling mineral 
leaching: filtration (0.2 
µm), pH-measurement, 
immediate analyzes 
(only (poly)sulfide 
samples handled under 
N2)  

▸ sampling sorption: 
centrifugation, filtration 
+ pH, handling under N2 
 

FeAsS vs. As2S3 
▸ FeAsS min. dissolution at neutral pH, As2S3 min. pH 2 and linear increase 
▸ speciation: AsV-S formation at pH 12 (FeAsS, As2S3), pH 7 (As2S3) 
▸ AsV-S species: MONO (FeAsS), TRI, DI (As2S3) → misidentifications by HG 
▸ dissolution mechanisms: FeAsS physisorption of OH- = direct AsV-S release, 

As2S3 – formation/release of AsIII-S →  rapid oxidation to AsV-S  
detailed FeAsS-studies 
▸ As-speciation of different FeAsS-types equals (TAs different) 
▸ dissolution min. pH 6 (Fe-As-oxide coatings), increase to pH 2 and pH 12/13 

(max. dissolution), S:As ≈2 (pH2) → < 0.5 (pH 5-9) → ≈1 (pH12-13) 
▸ MONO-formation pH 2-9 < 3%, pH 12/13 13-25% (t=35 d) 
▸ As-speciation: pH 2 arsenate + arsenite, pH 6-7 arsenite, pH > 9 AsV species 

(highly alkaline AsV-S)  
▸ S-speciation: pH 2-7 sulfate, pH > 9 thiosulfate (+ sulfate, S-associated with 

AsV-S)  
▸ ionic strength: leaching efficacy NaHCO3↑ to ≈ NaOH-levels → no effect on 

AsV-S formation (NaHCO3 (4%), pH 13(40%))  supports OH--physisorption 
release 

▸ anoxic conditions dissolution at pH7/12 decreased (factor 2/7)  
▸ no effect of thiosulfate, (poly)sulfide increased anoxic dissolution at pH 7, no 

AsV-S ↑ (suppression at pH 12, competition SH-↔OH-, slight AsV-S increase) 
sorption on α-Goethite:  
▸ efficacy and kinetics arsenite > arsenate > MONO 
CONCLUSION:  
▸ AsV-S substantial species formed during (Fe)AsS-dissolution 
▸ different leaching mechanisms (physisorption vs. recombination/AsIII-S 

release) 
▸ ionic strength, (poly)sulfide affect leaching efficacy, but less speciation 
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Objective Experimental setup/Sampling Analyses Results 

Study 5: Thioarsenate stabilization in iron-rich waters 
▸ evaluation of 

preservation 
techniques for natural 
iron-containing 
waters 

▸ laboratory evaluation 
of thioarsenate 
preservation 
techniques in 
presence and absence 
of iron: addressing 
influence of gas-
headspace, redox-
conditions, effect of 
FeII, effect of EDTA, 
and preservation by 
flash-freezing+EDTA 

natural waters 
▸ mineral spring water (Frantiskovy 

Lazne, Cisarsky Spring, Czech 
Republic) 

▸ in-situ: T, pH, conductivity, S, Fe-
species 

▸ preservation: cryo-preservation, 
0.1% HCl, 0.65% HNO3, 0.33 mM 
Na-EDTA+flash-freezing 

laboratory experiments 
influence of headspace, redox- and 
matrix  
▸ AsV-S/AsIII/AsV-reference solutions 

(approx. 13 µM As)  
▸ MONO in 1% EtOH, 0.1 M NaOH 
▸ preparation: PE-vials with small (17 

cm³)/large headspace (47 cm³), 
oxic/anoxic 

▸ cryo-preservation/analyses after 0, 
1,7, 21 (45) days  

effect of Fe(II), EDTA on AsV-S and + 
preservation of Fe(II)- AsV-S-solutions  
▸ reference solutions of MONO, DI, 

TRI+FeII (1.8 mM, FeSO4·7H2O)/  
MONO, DI, TRI+0.01 M EDTA, 
and +FeII+EDTA(pH 7) 

▸ cryo-preservation/analyses 0, 11d 
 
 

▸ species with standard 
IC-ICP-MS (sample 
handling under N2, 
instrument outside the 
glovebox 

▸ totals (TAs) with ICP-
MS  

natural waters 
▸ up to 17% AsV-S in Fe-rich waters (1.3-66 mg/L), stabilization techniques – 

high variability, TAs by 0.65% HNO3 → no optimal species preservation 
technique yet 

laboratory stability tests 
▸ cryo-preservation stability: arsenite, arsenate (45 d), DI and TETRA (21 d) → 

headspace/redox-independent, variability < 3%, MONO/TRI anoxic, small 
headspace (21 d, <3%), oxic 10-20% 

▸ matrix influence: MONO in EtOH, NaOH  headspace, redox-independent 
(21 d, < 1%) 

effect of FeII 
▸ TAs↓ (Fe-As-complexes?, sorption on Fe-colloids?), AsV-S conversion to 

arsenite, lowest affected MONO (3%, but TAs↓), no further variation by flash-
freezing 

preservation of FeII-AsV-S solutions by EDTA+cryo-preservation 
▸ AsV-S - EDTA cryo-stability (pH 7) guaranteed 
▸ cryo-preservation TAs in FeII-EDTA-AsV-S systems possible (0, 11 d) 
▸ cryo-preservation of FeII-DI and FeII-MONO solutions (0, 11 d) 
▸ effect on lower SH--substituted AsV-S impurities and TRI  reduction to 

arsenite (former excluded to occur) 
CONCLUSION:  
▸ As recovery of natural Fe-rich samples HCL > EDTA+cryo-preservation ≫ 

cryo-preservation → TAs in 0.65% HNO3, no species-preservative method yet 
▸ pure AsV-S solution stabilization best by cryo-preservation anoxic, small gas 

headspace, organic solvents/high matrices increase stability 
▸ EDTA+flash-freezing preserves TAs in FeII-AsV-S solutions and conservation 

of MONO and DI possible 
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4 Results and Discussion 
 

4.1 Structural characterization and differentiation of thioarsenates and thioarsenites 
(study 1, study 2) 

The EXAFS-coordination of thioarsenates showed typical properties with As-O bond length of 

1.70±0.01 Å and As-S bond lengths of 2.16±0.02 Å matching pathways of previously reported XRD 

data of thioarsenates 25, 27, 31-33, 133 and XAS structures of other AsV-compounds such as scorodite 

(FeAsO4•2H2O; 1.68 Å 131) and As2O5 (1.71 Å) (cf. Table 2). With their shorter bond lengths the 

structure of thioarsenates and AsV-compounds differ distinctly from that of thioarsenites and AsIII-

compounds with the respective bond lengths of RAsIII-O of 1.80 Å (arsenite 134), RAsIII-O 1.77-1.82 Å 

and RAsIII-S 2.21-2.25 Å (thioarsenites 40-42, 135, 136), and 2.28 Å (orpiment 42). The modeled 

coordination numbers for AsV-O/AsV-S pathways (Table 2) are in line with theoretical expectations.  

The similarity of XAS spectra of aqueous thioarsenate complexes (measured either at room 

temperature or flash-frozen at 15 K) and solid salts reveal their molecular stability (provided pH 

conditions are appropriate, see below) towards dissolution, flash-freezing, and beam-induced 

reduction 137 and thus justify the use of cryo-preservation for thioarsenates in solution 16 and the use 

of the solutions for liquid-based analytical methods (e.g. liquid chromatography). 

Based on the XANES edge energies the distinction of the individual thioarsenates was possible. 

Their edge positions fall in between those of arsenate (AsV
2O5, 11872.3 eV) and arsenite (AsIIINaO2, 

11868.2 eV) and decrease successively by ≈1 eV with increasing SH--substitution due to the 

increasing covalent character of As-S vs. As-O 41 (mono- 11871.3 eV > di- 11870.3 eV  > tri- and 

tetrathioarsenate 11869.3 - 11869.8 eV, Figure 1). Misidentifications with arsenite or arsenate are 

unlikely for the pure substances, since the two end members of the thioarsenate family are 

sufficiently far apart (≥ 1.0 eV) from both arsenic compounds, as well as distinctly different from 

thioarsenites, for which edge positions between arsenite and orpiment (AsIII
2S3) were reported 40, 41. 

However, arsenic XANES studies in sulfidic environments may be problematic, because 

tetrathioarsenate has an edge position much closer to that of arsenite than to that of arsenate and thus 

thioarsenates may have been mistakenly identified as arsenite. Another disadvantage of using only 

the XANES edge position for identification of As species in sulfidic environments is that mixtures 

of thioarsenites and thioarsenates might yield an “average” edge position close to or below that of 

arsenite, and would consequently be misidentified.  

In this case, principal component analysis could be used to separate the spectral components 138-145 

and to determine their quantitative composition by iterative transformation factor analysis (ITFA) 145, 

146 and least square fitting 141, 143, 145, 147. Nevertheless, fundamental requirements are the sufficient 

variance in the spectral data of the contributions and the availability of XAS spectra of the individual 

components.   
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Table 3: A rsenic K -edge, XAS -derived a bsorption ed ge energies a nd f itted f irst-shell c oordination 
numbers f or t hioarsenate a nd t hioarsenite ref erences, the t etrathioarsenate titration s eries, a rsenite-
sulfide mixes, and arsenic references 

    As-O As-S  

 pH Edge Res CN R σ² CN R σ² ΔE 

References 

Arsenite/arsenate           

NaAsO2  11868.5 11.4 3.4 1.79 0.0047    10.2 

As2O5  11872.3 14.2 4.6 1.69     7.8 

Thioarsenates           
monothioarsenate 
(HxAsSO3

3-x) 11.7 11871.0 18.6 3.0 1.68 0.0015 0.9 2.12 0.0009 10.1 

dithioarsenate 
(HxAsS2O2

3-x)  11870.3 10.3 2.2 1.69 0.0023 1.8 2.15 0.0015 11.1 

trithioarsenate 
(HxAsS3O3-x)  11869.4 13.2 1.5 1.69 0.0013 2.5 2.16 0.0012 11.9 

tetrathioarsenate 
(HxAsS4

3-x) 12.3 11869.3 9.1    4.0 2.17 0.0014 9.6 

Thioarsenites           
trithioarsenite 
(Feff-model)       3.0 2.25 0.0030 13.9 

orpiment  11866.8     3.5 2.28 0.0050  

realgar  11866.3         
Tetrathioarsenate titration  

HxAsS4
3-x 12.3 11869.3 9.1    4.0 2.17 0.0014 9.6 

pH 9.5 9.5 11869.3 7.7    4.4 2.17 0.0019 12.0 
pH 6.3 6.3 11867.3 6.4    4.1 2.20 0.0088 23.9 
pH 5.8 5.8 11867.5 7.9    3.2 2.24 0.0054 19.3 
pH 2.8+ (≙ 
trithioarsenite, 
HxAsS3

3-x) 
2.8 11867.0 8.6    3.8 2.28 0.0035 13.9 

Mixes with variation of S-II:AsIII ratios at an As concentration of 10 mM – ratio series 
0.1 11.2 11868.5 13.9 3.1 1.78 0.0034    6.4 

1 12.0 11867.5 8.9 2.8 1.77 0.0095 0.9 2.23 0.0028 8.0 

2 12.1 11867.5 2.6 1.0 1.73 0.0009 2.4 2.23 0.0041 9.6 

4 12.3 11867.5 5.3    3.2 2.24 0.0022 9.8 

10 12.3 11867.0     2.8 2.23 0.0035 10.4 
10 (2nd 
determination) 12.5 11866.9 8.5 0.7 1.70 0.0001* 3.3 2.22 0.0037 10.8 

Mixes (ratio S-II:AsIII 10) time depending under various redox conditions 
10 (pH 14)  13.2 11866.9 5.9 0.9 1.70 0.0001* 3.0 2.21 0.0038 11.0 
10 (anoxic, 3 
days)  11869.4 10.7 1.2 1.69 0.0015 2.9 2.17 0.0026 9.1 

10 (oxic, 1 h)  11869.4 16.1 1.7 1.70 0.0019 2.3 2.16 0.0001* 11.7 

10 (oxic, 1 day)  11869.9 9.6 1.6 1.69 0.0017 2.6 2.16 0.0014 11.7 
 

a CN: coordination number, error ±25% b R: radial distance, error ±0.01 Åc σ2: Debye−Waller factor, error 
±0.0005 Å2, *constrained from 0.001-0.05 As-As shell: CN 0.8, R 3.59, σ 2 0.0057, +As-As shell: CN 0.8, R 
3.59, σ 2 0.0057 
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As suggested in earlier studies, tetrathioarsenate is instable towards pH changes 34, 48 and converts 

possibly into a mixture of arsenic species which requires the evaluation of the XAS spectra by ITFA. 

Principal component analysis (PCA) revealed the occurrence of two species in the solutions of the 

titration series, relatively purely represented as end members at pH 12.3/9.5 and pH 2.8. By 

resolving the EXAFS spectra, the species at pH 12.3 and 9.5 is unambiguously identified as 

tetrathioarsenate (Table 3). The species at pH 2.8 showed a significantly longer bond distance, a 

lower coordination number (RAs-S 2.28 Å, CNAs-S 3.8± 25%) and an edge position lower than that of 

arsenite, assigned in the following as monomeric trithioarsenite. Due to the absence of As-O or 

As-As shells formation of arsenite and/or polymeric AsIII-S species 39, 41, 42, 148 could be excluded.  

However, in the transition region (at pH 6.3 and pH 5.8), the PCA indicated the presence of a 

mixture between the two end members and thus gave the first evidence for co-occurrence of 

thioarsenates and thioarsenites as so far only postulated 39. The positions of the XANES absorption 

edges for the pH between 2.8 and 6.3 are already in the range characteristic for AsIII-S species 

(Figure 1), as is the As-S bond length (2.20-2.28 Å). Hence without paying attention to these 

indicators and without the help of the PCA, the “average” absorption edge position (or As-S bond 

length) for the mixture would easily be misinterpreted as complete conversion to (unspecified) 

thioarsenites. 
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Overall, it can be assumed that tetrathioarsenate converts to trithioarsenite under anoxic, acidic 

conditions, formally expressed as:  , in which arsenic is reduced and 

one of the four sulfur atoms is oxidized possibly by polysulfides, which are known donors and 

acceptors of elemental sulfur, but so far analytical not proven. 

Hydrochemical modeling results based on thermodynamic constants derived partially from ab 

initio calculations 39 provide support for the observed transformation of tetrathioarsenate to 

trithioarsenite in the pH range between 7 (tetrathioarsenate) and 5, with conversation to 

trithioarsenite at pH 6. 

Summarizing, thioarsenates can be distinguished from thioarsenites by their XANES edge 

positions, which also enables differentiation of individual thioarsenates as well, and their EXAFS 

coordination. Co-occurrence of thioarsenates and thioarsenites was analytically proven by evaluation 

of XAS spectra with ITFA-based methods combined by EXAFS evaluation of the respective end 

members of the series. Thioarsenites are intermediates during thioarsenate transformation, but both 

species can co-occur under certain conditions.   

4.2 Thioarsenite formation in anoxic systems and their transformation to thioarsenates 
by oxygen traces (study 1, study 2) 

4.2.1  Thioarsenite formation traced by XAS and standard IC-ICP-MS 

Already the tetrathioarsenate titration showed differences between XAS results (indicating 

formation of thioarsenites) and IC-ICP-MS results (indicating formation of trithioarsenate and/or 

arsenite) 48. The reason for this discrepancy was suggested to be due to lower As concentrations 

(10-2 M As in XAS study vs. 3.5 • 10-4 M in the previous study 48), an OH- surplus during 

chromatographic separation with a high alkaline eluent (exchange of thioarsenite SH- for OH-) as 

well as oxidation during the IC analyses.  

More extensive investigations comparing XAS and standard IC-ICP-MS analysis were performed 

with equimolar solutions of sulfide and arsenite in ratios of S:As 0.1 to 1, 2, 4, and 10. The analyses 

matched only for sulfide-deficient conditions and showed arsenite as predominant species (Figure 

2). For solutions with excess sulfide, XAS displays the formation of trithioarsenite successively with 

increasing SH-, contrary to IC-ICP-MS which proves the formation of dithioarsenate (Figure 2). 

With one exception (S:As 1), the species sum up to 100±5%, which is the typical error of this kind 

of analysis, suggesting the truth of the references (arsenite and thioarsenite) as real components of 

the mixtures and that no further components are present in amounts greater 5% (the limit within 

which speciation can be resolved by ITFA). The larger deviation of the sample with the ration 

S:As 1 may indicate the presence of an unidentified species (< 10%), but their elucidation fails due 

to the lack of a respective reference.  
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Figure 2: Comparison of a) the arsenic-sulfur species distribution derived from EXAFS spectra by ITT 
and b) determined by IC-ICP-MS analysis 
For the ITT calculation of species concentrations, only the references (trithioarsenite and arsenite) were fixed 
to 100%. For the calculation of the mix concentrations the normalization to a species sum of 100% was not 
defined, which thus gives indications for the resolution potential of the species and possible unidentified 
species by the ITT calculation within the methodical limit of 5%.  

XAS speciation determinations by ITFA were supported by structural evaluation of the end-

member species arsenite and trithioarsenite, relatively pure in the mixes with S:As 0.1 (RAs-O 1.78 Å, 

CNAs-O 3.1, CNAs-S 0) and S:As 4, 10 (RAs-S 2.22-2.23 Å, CNAs-S 2.8-3.3, CNAs-O 0), respectively, and 

their justification with the respective references 40-42, 44, 122, 149. There was no indication for 

thioarsenates neither as mixed components in ITFA-examinations nor by relation with thioarsenate 

reference structures 122 (see study 1, Table 3). However, observations from one previous study 41 on 

arsenite-sulfide mixes where significantly shorter bond lengths (2.14-2.18 Å) were interpreted as 
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deprotonated AsIII-S bondings, appear, based on our current results doubtful. Comparing these bond 

lengths with our results for thioarsenites and thioarsenates, the measured compounds were most 

likely thioarsenates (formed by oxidation in the arsenite-sulfide mixes), not thioarsenites. 

The XANES edge of the model solutions shifted from a position analog arsenite for S:As 0.1 

(11868.5 eV) successively towards that of previously determined trithioarsenite  (11867.0 eV) for 

S:As 10 (Figure 1), supporting the mentioned occurrence of AsIII-S species and indicate a mixed 

composition for the solutions with a S:As ratio of 1 and 2 as verified by ITFA (Figure 2). With 

increasing sulfur presence EXAFS fitting showed the consistent decrease in the As-O coordination 

and increasing importance of AsIII-S bonds (2.22-2.23 Å, Table 3, Figure 1). Appearance of As-O 

and As-S coordination in the mixes S:As 1 and 2 could be an indication for monothioarsenite 

(CNAs-O  2.8/ CNAs-S of 0.9) and dithioarsenite (CNAs-O 1.0/CNAs-S  2.4), respectively, despite even 

lower bond distances compared to typical AsIII-O bonds. However, for both species no reference 

spectra exist and it is uncertain if they could be discriminated as separate spectra in mixtures.  

Overall the XAS findings for arsenite-sulfide mixes with arsenite predominance at low S:As ratios 

and formation of monomeric thioarsenite with increasing sulfur content are assumed to depict the 

“true” speciation in the mixes and generally agree with those of prior studies 40, 41. By using cryo-

techniques redox-transformations could in contrast to one previous study 41 be effectively prevented 

(the arsenic oxidation state is undeniably +3), which previously required an elaborately designed 

nitrogen-purged flow-cell for XAS 40.  

In contrast to other studies comparing XAS and IC-ICP-MS and proposing co-elution of 

thioarsenites and thioarsenates 40, As-S speciation analyses here were performed on identical 

solutions. Comparably a predominance of arsenite at S:As ratios of 0.1 was found for both methods, 

but in contrast to the trithioarsenite predominance in XAS, the formation of dithioarsenate as 

predominant species besides monothioarsenate at S:As ratios of 1 and trithioarsenate at S:As ratios 

of 10 was found by ion chromatography (Figure 2). Thus co-elution can definitely be excluded and 

support prior studies 17, 39. However, during chromatographic analyses some unusual findings have 

been made. First, a discrepancy between the sum of the arsenic species and the initial arsenite 

concentration (“loss”) was found and increases with increasing sulfide concentrations from 6% 

(S:As of 0.1) to 26% (S:As of 10), either due to an unidentified species or formation of 

polymeric/colloidal species. Furthermore, a peak splitting for arsenite was observed, not only as a 

simple matrix effect due to the high concentrations used, but depending on total arsenite and sulfide 

concentrations, as well as on the S:As and the SH-:OH- ratios. Since the identity of the peaks is not 

clarified yet, both peaks were interpreted as arsenite. 

The continuous decrease of arsenite in all solutions up to a S:As ratio of 4 and its re-appearance in 

the solution with the highest sulfide excess (S:As 10) does not seem to be an analytical artifact, since 

re-analyzes and ITT calculations show a similar pattern (Figure 2). For formation of trithioarsenite 

ratios exceeding the S:As stoichiometry of 3 are required, beyond that further reactions are supposed 
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to occur either preventing complete reaction of arsenite with sulfide, or forming new arsenite. As 

potential mechanism formation of tetrathioarsenate is discussed, by complexation of trithioarsenite 

with elemental sulfur donated from long-chain polysulfides in sulfide rich systems 150, 151. Due to the 

pH-dependency of tetrathioarsenate a partial conversion to trithioarsenate and arsenite can be 

expected for IC analyses 48. However, ITT calculations and EXAFS spectra did not reveal any 

indications for the presence of tri- or tetrathioarsenate. 

Overall, the XAS-determined “true” fraction of trithioarsenite seems to correspond to the sum of 

thioarsenates and the “lost” arsenic (with exception of S:As 1) in the IC-ICP-MS analyses. 

Assuming trithioarsenite was the original species in solution, oxidation to thioarsenates and a lack of 

retention capacity on or incomplete elution from the column seem to be handicaps when analyzing 

samples by IC-ICP-MS. 

4.2.2  Thioarsenites as necessary intermediates for thioarsenate formation: A function of 
redox- and OH--instability  

The controversial observations of the determination of AsIII-S species by XAS vs. AsV-S species 

by IC-ICP-MS emphasized the extreme liability of thioarsenites towards changing ambient 

conditions. By analyzing the respective solutions with an HPLC pump inside the glovebox and thus 

eliminating any oxidation potential, arsenite was determined as predominant species, while the share 

of thioarsenates was less than 1% (Figure 3). The disappearance of thioarsenates proves that even 

though it was considered unlikely 35 traces of oxygen can quantitatively oxidize initially formed 

thioarsenites during standard ion chromatography even when using oxygen-free eluents. Exposing 

the sample vials to ambient air before analyzing under N2, the arsenite concentration decreased 

exponentially by a first-order rate (k = 0.32 h-1 open vials, 0.17 h-1 IC-caped vials), while di-, tri- and 

monothioarsenate concentrations increased. Even kept inside the oxygen-free glovebox, thioarsenites 

were only stable up to 24 hours then converting in a similar way by oxidation as shown. The rapid 

transformation of thioarsenites to thioarsenates under oxic and anoxic conditions was also confirmed 

by XAS analysis, showing a XANES edge shift towards AsV-S species (≈ 2.5 eV, Figure 1) 

accompanied by decreasing bond distances typical for thioarsenates (Table 3). Based on the 

coordination (CNAs-S 2.8-2.9, CNAs-O 1.7-1.8) formation of trithioarsenate can be suggested or a 

mixture of several thioarsenate species.   

As previously mentioned differences between XAS and IC beside oxygen exposure are sample 

dilution and the highly alkaline eluent, causing a decrease of the SH-:OH- ratio in the samples for 

chromatography. Due to OH- excess thioarsenites are assumed to become instable and  transform to 

arsenite by competitive OH- versus SH- exchange and dissociation 39.  

In experiments with diluted samples (S:As 10) with arsenic concentrations of 10 mM (SH-:OH- 5) 

to 100 µM (SH-:OH- 0.2) at a stable (alkaline) pH, arsenite increased from 16 to 80%, while di- and 

trithioarsenate - predominant at high concentrations - decreased to less than 1% of total arsenic 
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accompanied by a decrease in the loss from 26 to 18%, respectively. Due to the analytical artifact 

that thioarsenites rapidly transform to thioarsenates upon air exposure, but not arsenite, speciation 

results obtained by IC-ICP-MS allow conclusions regarding thioarsenite stability. Thus, the lower 

the total arsenic and sulfide concentrations are (at the same pH) the less arsenite reacts with sulfide 

(competitive dissociation) to form thioarsenites, appearing as decreasing shares of thioarsenates in 

the IC chromatograms. Following it can be concluded that a) thioarsenites cannot form or are at least 

not stable in the presence of excess of OH-, b) thioarsenates cannot form as the necessary 

intermediates (thioarsenites) are missing, and c) arsenite remains the only species detectable in 

solution.  
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Figure 3: Chromatogram of 10 mM arsenite (AsIII) and 100 mM sulfide (S-II) solution prepared inside 
the gl ovebox an d an alyzed w ith an  I C ou tside t he gl ovebox u sing nitrogen-purged e luents yielding 
thioarsenates b y ox idation (green l ine) i n co mparison to a n i dentical s ample p repared a nd a nalyzed 
inside the glovebox where thioarsenites are transformed to arsenite (red line). Comparison to a 10 mM 
pure arsenite solution shows a retention time shift for arsenite (blue line). 

Variation of the pH-value also changes the SH-:OH- ratio (S:As 10) and showed comparative 

results with mainly thioarsenate formation between pH 6 and 11 (as a product of thioarsenite 

intermediates oxidation). At alkaline conditions and acidic conditions thioarsenite formation is 

prevented by competitive dissociation and thioarsenite transformation prior precipitation as As-S 

phase (study 1), respectively. Thus only arsenite (or a loss in total arsenic) is observed during 

IC-ICP-MS. Within 1 week under anoxic conditions speciation in the samples changed towards 

increasing (tri)thioarsenate formation. Especially for pH 11 (SH-:OH- 0.8) the time-depending 

thioarsenate formation was shown, which was initially hampered due the slow reaction of arsenite 

and sulfide through electrostatic repulsion at alkaline pH but forced with time due to deprotonation 

reactions.  
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Summarizing, it could be stated, that in anoxic arsenite solutions with excess sulfide thioarsenites 

(trithioarsenite) are formed as the predominant species (Table 4) as also observed for conversion of 

tetrathioarsenate at acidic conditions (study 1). The trivalent As-S species are fairly unstable even 

under anaerobic conditions and extremely sensitive towards oxidation. Contact with ambient air e.g. 

through open or even cap-sealed IC vials, during injection into the sixport valve or contact with non-

purged eluents leads to quantitative transformation to thioarsenates within minutes. This artifact can 

be exploited to make thioarsenites detectable by ion chromatography. However, contrary to 

thioarsenates 48, 122 thioarsenites are sensitive towards the ratio SH-:OH-, usually caused by sample 

dilution, pH-buffering, and elution with highly alkaline eluents. Thus formation of thioarsenites is 

hampered under alkaline conditions and consequently no thioarsenates formed through oxidation. 

Under acidic conditions thioarsenite transformation and As-S precipitation opposes to thioarsenite 

presence, determined by IC as a loss and arsenite. 

 

Table 4: Original arsenic species formed under anaerobic conditions from arsenite-sulfide solutions and 
the analysis of artifacts (marked in red) due to the influence of excess OH- or oxygen under anaerobic or 
aerobic conditions dependent on the SH-:OH- ratio 

SH-:OH- 
ratio 

Species formed 
under anoxic 

conditions 

Species analyzed by 
chromatography under 

anoxic conditions 

Species analyzed by chromatography 
under oxic conditions 

SH- > OH- thioarsenites 

arsenite (artifact: 
transformation of thioarsenites 
to arsenite due to excess of 
OH- by elution at pH 13) 

thioarsenates (artifact: oxidation of 
thioarsenites before alkaline 
transformation to arsenite; thioarsenates 
are stable at excess OH-) 

SH- = OH- 
initially arsenite, 
after some days 
thioarsenites 

arsenite (initially true 
speciation, later artifact) 

initially arsenite (true speciation) then 
thioarsenates (artifact) 

SH- < OH- 

arsenite 
(thioarsenites are 
instable due to 
excess of OH-) 

arsenite 

arsenite (true speciation, even though 
there is oxygen, there is no formation of 
thioarsenates without initial formation of 
thioarsenites) 

 
 

The reasons for not being able to detect thioarsenites by IC-ICP-MS even under anoxic conditions 

are thus yielded their instability or prevented formation by the highly alkaline eluent and/or sample 

dilution. Overall, since oxidation of thioarsenites is extremely fast, thioarsenates determined in 

natural spring and geothermal waters 16 by standard IC-ICP-MS represent most likely the true 

natural composition. Contrary for anoxic systems there is an urgent need to develop methods 

capable for detecting thioarsenites. 
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4.3 Natural occurrence and transformation patterns of trithioarsenate (study 3) 

Thioarsenates have previously been shown to be important species in the geothermal waters of 

Yellowstone National Park 16. If assuming that arsenite and sulfide are released from host rocks in 

the inner of the hot springs based on the current findings (study 2) 121  possibly thioarsenites are 

formed as initial species under exclusively anoxic conditions. By rising of these waters and due to 

the great turbulence where contact with oxygen is unavoidable thioarsenites oxidize quickly to 

thioarsenates. Consequently thioarsenites are only ephemeral intermediates restricted to the anoxic 

regimes in the source. Thioarsenates determined in these geothermal waters (as not the anoxic 

innermost parts were sampled) are thus assumed to be the true natural species - a product of in-situ 

thioarsenite-oxidation rather than induced by IC-ICP-MS analyses. However, study 3 focuses on 

alkaline hot springs, as there trithioarsenate, the analytically most challenging species 48, is 

predominant among the thioarsenates 16.  

The monitored, alkaline (pH 7.7 to 9.6) geothermal features from Gibbon and Lower Geyser Basin 

with source temperatures of more than 90 °C contained total arsenic in concentrations from 11.5 to 

33.3 µM and sulfide at the source in a range of 90.6 to 128 µM. Thioarsenates were the predominant 

arsenic species in the sources (60 to 89%) except for Ojo Caliente with only 43-44% thioarsenates 

beside arsenite. However, trithioarsenate was the dominant As-S species within the thioarsenates.  

In the drainage channels the species undergo conversion by abiotic and biotic processes, e.g. 

mediated by temperature (temperature drop to 25-64 °C) and increasing redox-potential/oxygen 

saturation, which can reach up to 64-100%. For trithioarsenate conversion two seemingly different 

transformation patterns were observed at the sampled drainage channels:  

The first transformation pattern resembles the laboratory findings of trithioarsenate purging with 

air. In these experiments trithioarsenate conversion to arsenite followed a first-order rate with 

k ≈ 0.004 min-1 with conversion of sulfide to thiosulfate and finally reaching a steady state between 

trithioarsenate, arsenite, and thiosulfate after 3 hours. A further oxidation of thiosulfate to sulfate or 

arsenite to arsenate was not observed. 

In contrast to the laboratory experiments, naturally trithioarsenate is completely converted to 

arsenite in the drainage channel and the rate constant 1.9 min-1 is about 500 times higher than in the 

laboratory (k = 0.004 min-1). This could indicate microbial catalysis, as it is comparable to rate 

1. Conversion of trithioarsenate to arsenite without substantial changes in the concentrations of 
arsenate and mono- or dithioarsenate and a further oxidation of arsenite to arsenate, only as 
thioarsenate concentrations dropped below 10% of total arsenic (Ojo Caliente, Flat Cone, 
unnamed geyser LG09). 

2. Conversion of tetra- and trithioarsenate via mono- and dithioarsenate to arsenate and arsenite 
(unnamed geysers LG03 and LG04, Mound Spring, hot spring in Gibbon Geyser Basin). 
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constants reported for microbially mediated arsenite oxidation (1.2 min-1 53, 4-5 min-1 49). But also 

temperature can mediate trithioarsenate conversion (still 84 °C at 22 m), as observed in the 

laboratory experiments where trithioarsenate converted by 50% to arsenite within 2 hours at 80 °C, 

without formation of lower SH-substituted thioarsenates. However, no steady state is reached in the 

natural system, but a conversion of arsenite to arsenate as trithioarsenate reached < 10%. 

In the second transformation pattern, successive ligand exchange is the predominant 

transformation mechanism with finally simultaneous increases for arsenate and arsenite. Under 

laboratory conditions this pattern was abiotically only reproducible by using a strong oxidant 

(H2O2 > 2 x 10-6 M), while lower H2O2-concentrations yielded conversions respective to air purging. 

Abiotically trithioarsenate dissociated to di- and subsequently to monothioarsenate and arsenate, 

while the reduced sulfur from thioarsenate dissociation oxidized to thiosulfate and further to sulfate.  

However, to explain the arsenite oxidation following thioarsenate disappearance (pattern 1) and 

the characteristic contemporaneous increase of arsenate and arsenite (pattern 2) as well as the rapid 

transformation rate microbial catalyzed processes have to be considered. Following phylogenetic 

analyses Thermocrinis spp. (≥ 97% sequence identity Thermocrinis ruber) were identified as major 

species in the investigated springs with an upper temperature limit of approx. 84 °C. The 

predominance of Thermocrinis spp. in the channels Ojo Caliente and unnamed geyser (LG03) 

coincides with the onset of significant arsenate production and seems to be a key factor in 

understanding the two different trithioarsenate transformation patterns in the springs. 

At Ojo Caliente (pattern 1) hot spring the relatively low temperature gradient preserves 

temperatures > 84 °C for the first 25 m downstream of the source, and the dominant mechanism is 

transformation of trithioarsenate to arsenite. Thermocrinis spp. filaments become visible approx. 

22 m from the source, where di- and trithioarsenate concentrations have already decreased to 2 µM 

or 14% of total arsenic and arsenite is predominant arsenic species. We thus observe two separate, 

consecutive reactions: First, trithioarsenate transformation to arsenite - abiotic or potentially 

triggered by an unknown microorganism - and second, arsenite oxidation to arsenate, which 

coincides with the occurrence of Thermocrinis spp.. 

The pattern observed at the geyser (LG03, pattern 2) is more complex. Its outflow cools quickly 

after discharge from the source with a temperature drop < 84 °C after 5 m from the source. 

Thermocrinis-like organisms are again observed coincident with the significant arsenate production, 

observed at approx. 7 m from the source. Di-, tri-, and tetrathioarsenates constitute the predominant 

arsenic species (55% of total arsenic, 13.8 µM) at this point. Thus, the two reactions (trithioarsenate 

transformation to arsenite and arsenite oxidation to arsenate) that occur consecutively at Ojo 

Caliente, happen contemporaneously at the geyser LG03. The fact that arsenite concentrations 

continue to increase downstream confirm that direct transformation of thioarsenates to arsenate is a 

minor reaction, if at all. Most of the thioarsenates are still transformed to arsenite prior to further 

oxidation to arsenate. The role of mono- and dithioarsenate is unclear at the moment. 
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In contrast to previous observations at an acidic hot spring 152 microbial arsenite oxidation was not 

inhibited by high sulfide concentrations (28-91 µM). Support was given to our observations by a 

prior lab study where sulfide and potentially also thioarsenate-bound sulfur triggered the growth of 

sulfur-oxidizers which catalyzed the transformation of arsenite and thioarsenates to arsenate in 

alkaline waters 36 and might also be considered for these geothermal waters.  

 

In summary, trithioarsenate conversion to arsenite under mildly reducing conditions in geothermal 

drainages can be compared to abiotic reactions as observed in the laboratory. However, in the natural 

environment the reaction proceeds until all trithioarsenate is converted and rate constants are about 

500 times higher than under abiotic conditions, either due to higher temperatures or microbial 

catalysis. A direct conversion of thioarsenates to arsenate, abiotically catalyzed by strong oxidants, 

was not found under natural condition. On the contrary arsenate seemed to form exclusively from 

arsenite oxidized by microorganisms. Since prior studies focused on arsenite and arsenate 

transformation extensive investigations are necessary to evaluate type and metabolism of 

microorganisms potentially transforming thioarsenates to arsenite (or arsenate). However, it could be 

shown that thioarsenates and their microbially mediated transformation to arsenite or arsenate must 

be considered when investigating arsenic redox processes in sulfidic environments. 

4.4 Thioarsenate formation during oxidative dissolution of arsenopyrite and orpiment 
(study 4) 

The previous study (study 3) confirmed the importance of thioarsenates in certain natural systems 

as previously reported 15-17, 36, but their formation and release into natural systems is not entirely 

understood. Based on the latest results (study 2) it could be shown, that thioarsenites are necessary 

intermediates for formation of thioarsenates from arsenide-sulfide solutions in the presence of 

oxygen 121. Under natural conditions an important mobilization mechanism for arsenic is mineral 

dissolution, which comprise to a large extent arsenic-sulfides 6. Since only little information exists 

on the role and conditions of thioarsenate formation upon As-S mineral leaching, batch experiments 

with the most abundant As-S minerals, orpiment and arsenopyrite, were performed under varying 

conditions with regard to pH and kinetics, focusing on matrix solution, redox-potential and the effect 

of reactive sulfur for leaching in Fe-As-S systems.  

In line with prior knowledge arsenopyrite showed a higher leaching at acidic and alkaline pH 

compared to the low leaching at near neutral conditions (Figure 4). In contrast orpiment dissolution 

increased with increasing pH, yielding the 10-100 fold arsenic release at pH > 7 compared to 

arsenopyrite 13, 63. No thioarsenate formation was observed for leaching of both sulfides at acidic 

conditions, in accordance with the known instability of As-S species at low pH 48, 121, 122. However, at 

highly alkaline conditions thioarsenates contributed up to 43% to total arsenic speciation (Figure 4). 
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Especially the occurrence of dissolved thioarsenates in arsenic-sulfur-iron systems is not trivial as 

strong competition exists between the formation of aqueous As-S species or arsenic-iron complexes 

and the formation of iron-sulfides or ironhydroxides which could precipitate and sorb arsenic 87, 153-

155. However, speciation analyses showed that orpiment dissolved into approximately equal shares of 

mono-, di-, and trithioarsenate, while only monothioarsenate was formed upon arsenopyrite leaching 

(Figure 4). For orpiment already at neutral conditions thioarsenates were formed (50%) with a 

predominance of the higher SH--substituted trithioarsenate (31%). 
 

0

20

40

60

80

100

 

As
-S

 sp
ec

iat
io

n 
(%
ΣA

s)

 Arsenite     Arsenate    Monothioarsenate    Dithioarsenate    
 Trithioarsenate

1

10

100

1000

 TAs                Reaction time: 144 h

 T
As

 (µ
M

)
As2S3      FeAsS        As2S3      FeAsS        As2S3      FeAsS

pH 2                              pH 7                           pH 12

 

Figure 4: S peciation a nd t otal a rsenic co ncentrations f or 1 44 h-open s ystem l eaching of  ar senopyrite 
(FeAsSHA) and orpiment (As2S3)  

While at acidic conditions precipitation of arsenic-sulfides, instability of thioarsenic complexes, 

and/or release of oxidized sulfur and arsenic prevent thioarsenate formation, different leaching 

mechanisms cause the observed speciation differences between arsenopyrite and orpiment at neutral 

and alkaline conditions. Thioarsenate formation by orpiment leaching occurs via recombination of 

sulfide and arsenite to and/or direct release of thioarsenites 39, 42, 56, 58, 64, transforming to thioarsenates 

under oxic conditions (study 3, 121). The As-S speciation pattern is quite comparable with that of 

sulfide-arsenite mixes in study 2 (Appendix B), were thioarsenate distribution was shown to be 

highly dependent on the S:As and SH-:OH- ratio with greatest (tri)thioarsenate formation under SH- 

excess and neutral pH and the conversion to arsenite, arsenate, and lower SH-substituted 

thioarsenates by increasing pH (lowering SH-:OH-). This supports to the initial release/formation of 

thioarsenites from orpiment and their rapid oxidation within leaching process. In case of 

arsenopyrite physisorption of OH- is suggested as formation mechanism for thioarsenates. Formation 
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via thioarsenite oxidation is excluded, by the fact that OH--excess compared to sulfur at pH 13 (OH- 

100 mM vs. 2.4 mM total sulfur) would result in transformation of thioarsenites or even prevent 

their formation as discussed in study 3 121. Physisorption 83 comprises sorption and transposition of 

OH- to either iron or arsenic sites accompanied by electron transfer, followed by the detachment of 

As-OH-S complexes and FeOOH from the surface. The As-OH-S complexes further form 

thioarsenates, arsenate by thioarsenate decomposition, and oxidized sulfur species. At neutral 

conditions possibly iron-arsenic oxide complexation is kinetically favored 67, which become unstable 

with increasing pH 156, 157, where the physisorption mechanism prevails and forms thioarsenates, 

thiosulfate, and ironhydroxide. Iron(hydr)oxides,  appearing as orange precipitates at pH 12-13 in 

the current work as reported previously 11, 83, 87, 155, provide potential sorption sites for arsenic and 

were supposed to minimize dissolution in the long-term view 67. The specific sorption behavior of 

monothioarsenate the major species under conditions when iron(hydr)oxides as possible re-sorption 

sites are formed, will be discussed briefly in the next chapter compared to the arsenite and arsenate.  

Conducting detailed investigations of arsenopyrite dissolution it could be confirmed that the 

leaching is strongly decreased at anoxic conditions dissolution 67, 68, 94, especially at anoxic highly 

alkaline conditions (decrease by a factor of 2 (pH 7) and 7 (pH 12); Figure 5). The substantial 

decrease corresponds to previous observations that oxygen is the main oxidation agent at high pH, 

while it is ferric iron at low pH 70. The share of thioarsenates increased under anoxic conditions at 

pH 12, possibly due to the instability of thioarsenate under oxic conditions 16 or an indication for 

additional formation by arsenite-sulfide recombination in solution due to greater release of reduced 

sulfur species 121. However, by addition of (poly)sulfides leaching could be increased at least for 

neutral conditions by approximately a factor of 4 at the highest applied concentrations of 167(300) 

µM (poly)sulfide, with formation of minor shares of monothioarsenates. Sulfide addition did not 

show an obvious effect for leaching at pH 12, only a slightly greater share of thioarsenates but less 

total dissolution. Also the addition of thiosulfate, a industrial lixiviate for gold leaching, did not 

change speciation or total arsenic release for neutral and alkaline oxic leaching.  

The evaluation of a possible acceleration of thioarsenate formation by increasing the ionic strength 

of the leaching solution did only show a positive effect on total arsenic release, which increased by a 

factor of ≈ 200 as NaHCO3 concentration was increased from 4 to 800 mM (pH 8-9), rather than for 

speciation changes. Thereby the total arsenic release at > 400 mM NaHCO3 was comparable to 

NaOH addition of 40-800 mM at pH 12-13, which showed substantial thioarsenate formation 

increasing from 13 to 40% with finally excusive AsV species (arsenate + thioarsenate) presence. 

Thus thioarsenate formation is more the result of pH or OH--presence than the product of ionic 

strength variation. However, the increased dissolution for the carbonate solution can likely be due to 

arsenic-carbonate or iron-carbonate complexation 76-79, 81, 158.  
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Figure 5: Arsenic speciation in arsenopyrite leachates (FeAsSHA) depending on redox-state and solution 
composition 

 

Summarizing, it could be shown that thioarsenates, even the higher sulfur-substituted 

trithioarsenate, are potential species released through dissolution of arsenopyrite and orpiment at 

(highly) alkaline and neutral pH for orpiment, conditions existent in calcite-treated tailings or 

industrial highly alkaline leaching. Regarding the toxicity of the released species, at acidic and 

alkaline conditions AsV species predominate the arsenopyrite leachates with a lower toxicity 

(arsenite > arsenate > thioarsenate 59), while for pH 7 and acidic conditions for As2S3 the more toxic 

arsenite prevails in the leachates. Since the formation of ironhydroxides is especially incisive at 

basic to high alkaline conditions in Fe-As-S systems, the exposition of FeAsS to acidic conditions, 

e.g. acid mine drainage or acid-based ore recovery, provides the greater risk for environmental 

health, while at higher pH’s sorption on ironhydroxides and formation of surface coatings will slow 

down arsenic release in long term view. However, while for arsenopyrite calcite-treating of tailings 

and neutralization can reduce arsenic release, for orpiment this would act counterproductively as the 

release of arsenic at pH > 7 is increased by several magnitudes and arsenic mobility only restricted 

at acidic conditions. 

4.5 Immobilization of thioarsenates by sorption on ironhydroxides (study 4) 

Ironhydroxides were observed to form during high alkaline arsenopyrite leaching, but are especially 

naturally important as trace metal immobilization sites 159. Generally, it was reported that arsenate 

sorbs preferentially at pH 5-6 (sorption maxima at pH 4) on goethite and arsenite at higher pH with 
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sorption maxima between pH 8-9 96, 97. Thioarsenate sorption was not investigated so far and thus 

preliminary results are presented in this PhD thesis.  

The batch experiments with goethite showed that sorption efficacy (Figure 6) and kinetics are lower 

for monothioarsenate than for arsenate and arsenite.  The initial arsenite sorption reached 

equilibrium conditions already after 1 hour as observed previously 97, 160. Arsenate and 

monothioarsenate on the other hand showed slower kinetics with equilibration after 1 and 3 days, 

respectively. Maximal sorption capacities were determined with 11, 23, and 26 µmol As/g goethite 

for monothioarsenate (pH 12), arsenate (pH 9), and arsenite (pH 10) respectively.  

 

The reason for the lower sorption efficacy and kinetics of monothioarsenate compared to arsenate 

might be due to the larger size of SH--group compared to OH- which hamper the formation of 

surface complexes. For the higher sulfur-substituted thioarsenates (di-, tri- and tetrathioarsenate) 

thus an even lower efficacy would be assumed.  

 

Overall, monothioarsenate sorption was only half of that of arsenite and arsenate and thus for the 

thioarsenates a higher mobility and lower retention by ironhydroxides can be proposed. However, to 

what extent sorption characteristics are comparable with arsenate, what influence the SH--groups 

have on sorption, and if desorption follows the same trend, has to be clarified under consideration of 

structural studies and investigating the complete series of thioarsenates.  

Regarding arsenic-sulfur-iron systems the release of thioarsenates additionally provides to the 

present knowledge a higher environmental risk compared to arsenite and arsenate not through 

toxicity, which is lower, but due to a higher mobility and lower sorption efficacy. 
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Figure 6: Sorption isotherms of arsenate, arsenite, and monothioarsenate on α-Goethite  
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4.6 Importance of thioarsenates in iron-rich natural waters and possible sample 
preservation strategies (study 5) 

 

Although it was disputed for a long time that thioarsenates can occur in iron-rich systems 38 since 

interaction of sulfide and iron was thought to yield Fe-S complexes or precipitates, it could be 

shown that thioarsenates can occur in iron-rich systems (1.3 to 66 mg/L) with up to 17% mono- and 

dithioarsenate determined in mineral springs (pH 5.5 to 6.1) of Czech Republic as a first field study 

site (Table 5). Samples preservation with HNO3 emerged as the best way for receiving total arsenic 

concentrations unaffected by precipitation of either iron(hydr)oxides or arsenic-sulfides, while the 

relative arsenic recovery decreased between the other tested approaches in the general order 

HCl > EDTA+flash-freezing ≫ flash-freezing. Although this is in sharp contrast to the excellent 

results obtained previously in hot springs in Yellowstone National Park 16, it has to be noted that 

those waters did not contain significant iron concentrations (median 0.06 mg/L). Thioarsenates were 

detected in samples preserved by EDTA combined with cryo-preservation (= flash-freezing in dry 

ice and storage at -18 °C) or HCl, but the results showed such a high variability that the “true” 

speciation cannot be determined. Thus arsenic stabilization methods have to be improved for 

systems containing both iron and sulfide, which was investigated with synthetic thioarsenate 

solutions.  

 

Table 5: Summary of chemical parameters for thioarsenate and iron containing mineral springs 
 

Springs Frantisek Novy Natalie Stepanka Solni 

temp [°C] 14.1 10.4 10.0 8.0 10.8 

conductivity [mS/cm] 12.03 2.96 2.19 2.39 4.15 

pH  5.92 5.84 5.61 5.55 6.05 

S-II [mg/L] 0.07 0.30 0.43 0.53 0.11 

Fe(tot) [mg/L] 1.32 4.8 13.8 20.8 7 

FeII/Fe(tot) 56 23 90 64 74 

 As species preservation* 

 A B C A B C A B C A B C A B C 

arsenite [%] 59 76 82 84 68 91 93 52 88 90 66 88 82 70 95 

arsenate [%] 35 20 13 14 23   31   24  16 24 1 

monothioarsenate [%] 2 2 5 2 1 9  2 12  3 12 2 1 4 

dithioarsenate [%] 3 3     8   7 15   10 7     4   
* Preservation strategies: A flash-freezing, B EDTA, C HCl 

 



38 

In contrast to arsenite and arsenate which can be effectively stabilized by filtering and acidification 

against redox-transformations 107, thioarsenates require flash-freezing, since these species are highly 

pH-sensitive and will precipitate as As2S3 16, 48, 122. Cryo-preservation, i.e. flash-freezing and cryo-

storage, has been shown to preserve thioarsenate speciation in iron-free solutions for 21 days, best 

by avoiding oxygen influence with an anoxic or even small gas headspace in the sample vials. Also 

for arsenite and arsenate this technique provided their stability for at least 45 days independent from 

the redox conditions. Freezing is thus an alternative to acidification (H3PO4, H2SO4) which can yield 

in metal precipitation or photo-oxidation (HNO3) 107. Interestingly, high ionic strengths (0.1 M 

NaOH) or organic solvents (1% EtOH) helped to preserve the thioarsenate speciation such that 

complete stability could be guaranteed independent from the redox-condition. Thereby the higher 

ionic strength and/or pH might reduce the activity of thioarsenate ions towards their transformation 

reactions and ethanol acts weakly reducing towards oxygen, thus preventing its interaction with and 

oxidation of sulfur-groups as previously observed for methylated arsenic species 161. However, at 

low ionic strengths or in the presence of excess redox-sensitive species (such as sulfide) a small 

headspace and anoxic conditions are required to minimize losses and species conversion during 

sample cryo-storage.  

In the presence of iron, thioarsenates transform quickly, typically into arsenite accompanied by a 

loss of arsenic between 30% and 75% (Figure 7). Although oxidation of iron and the precipitation of 

ironhydroxides upon thawing, with co-precipitation and sorption of arsenic was previously described 

to lead to losses of TAs 111, macroscopic precipitation was not observed during the experiments. As 

formation of colloids cannot be excluded, the observed decreases in the sum of arsenic could be 

explained either by colloidal co-adsorption or even iron-arsenic complexation in solution, which 

remained undetected during IC-ICP-MS analyses.  

Sample acidification to keep iron in solution and  complexation of iron by EDTA and 

acidification, to yield maximum sorption efficacy at low pH 116, is not an option for thioarsenate-

containing systems, as it leads to precipitation of amorphous arsenic-sulfide phases 16, 34, 37, 48, 122. As 

alternative complexation with neutralized EDTA (EDTA at pH 4.5 induced speciation changes by 

decreasing the pH), in combination with flash-freezing, minimizing the sample gas headspace, and 

excluding oxygen, has been proven to be the most effective preservation technique available for 

thioarsenate solutions containing iron, with initial recoveries of 94% of originally 93% mono-, 68% 

of originally 67% di- and 45% of originally 70% trithioarsenate, and variations in the sum of species 

of < 10% for mono- and dithioarsenate and approximately 20% for trithioarsenate for an 11-day 

cryo-storage. 
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Summarizing, the study shows the importance of suitable preservation of thioarsenates in iron-rich 

natural solutions. Both thioarsenates and iron complicate preservation strategies, by instability 

towards acidification and precipitation upon oxidation due to flash-freezing or neutral pH, 

respectively. Combination of EDTA-application and flash-freezing is a promising strategy for 

thioarsenate preservation in iron-rich waters, but requires further development.  
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Figure 7: Effect of iron on thioarsenate solutions and their preservation with neutralized EDTA 
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5 Conclusion and future perspectives 
 

The environmental relevance of As-S species, comprising the trivalent thioarsenites and the series 

of pentavalent thioarsenates (mono-, di-, tri., and tretrathioarsenate), has become apparent over the 

last couple of years 15-17, 38, 42, 59, 109, 122. Their geochemical nature and behavior under different 

environmental as well as under different sample storage conditions is still a subject of debate. The 

general aim of the present PhD thesis was to increase the knowledge about structure and analytical 

determination, natural occurrence, formation, transformation and stability of As-S species. 

Overall, thioarsenites and thioarsenates were both found to occur under certain conditions. 

Thioarsenites are extremely labile, instable in presence of oxygen and excess OH- versus SH-, 

degrade over time, only occur under anoxic conditions and are necessary intermediates for the 

formation of thioarsenates. Thioarsenates are more stable and the only species found under (natural) 

oxic conditions, either from spontaneous thioarsenite oxidation or by release from arsenopyrite by 

physisorption. Currently, the direct analytical determination of the unstable thioarsenites requires in-

situ XAS, able to distinguish them from arsenite, (thio)arsenate, and AsIII-S phases via oxidation 

state (XANES) and complex coordination (EXAFS). However, XAS lacks on the requirement of 

high concentrations (> 5 mM As), sufficiently precise species quantification, and availability of 

beam time. The greater stability of thioarsenates makes them detectable by IC-ICP-MS. Although 

they can be determined and distinguished from each other by XAS, under consideration of the 

mentioned deficiencies, IC-ICP-MS could be assured as routine technique by verification of the 

aqueous complexes from synthesized thioarsenates. IC-ICP-MS can be used for thioarsenate 

speciation analyses in the concentration range 0.5 µM to 0.1 mM, magnitudes lower compared to 

XAS, but also for a indirect thioarsenite determination by using a comparative measurement of their 

“thioarsenate”-artefacts under oxic and arsenite under anoxic conditions, eventually with adaption to 

moderate pH. However, also thioarsenate-stability is controlled by ambient temperature, pH-, and 

redox-conditions in abiotic systems and possibly also mediated by microorganisms in natural 

systems. Two major processes play a role: successive ligand exchange (in presence of an oxidant or 

under natural conditions) or direct partial or complete conversion to arsenite (in presence of a strong 

oxidant or air, or under natural conditions) High temperature, acidification, and FeII resulted in 

thioarsenate transformation to substantial amounts of arsenite and precipitates at acidic conditions. 

Despite the interaction of thioarsenates with iron in synthetic solutions, both species have been 

shown to co-occur as equilibrium was reached in the synthetic solutions and as proofed for natural 

spring waters (Czechs Republic) with 17% thioarsenates. However, sample preservation is 

indispensable to preserve the speciation against redox-transformation and adsorption on precipitated 

ironhydroxides, even as sorption efficacy has shown to be lower compared to arsenite and arsenate. 

Cryo-preservation can be recommended for thioarsenates and thioarsenites, although only under 

strong restriction to oxygen in case of the trivalent As-S species. In the presence of iron the 
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combination of neutralized EDTA with cryo-preservation can be recommended, even though this 

technique needs further improvement. The main results from the present PhD thesis are summarized 

in Table 2 and refer to the following key-points: 

(I) Thioarsenites vs. thioarsenates in XAS 
▸ differentiation of thioarsenates from one each other, arsenite, and arsenate, and from 

thioarsenites by XAS (XANES absorption edge position, EXAFS-coordination, by ITFA in 
mixes of thioarsenates and thioarsenites) 

▸ analytical proof of pH-depending thioarsenate and thioarsenite co-occurrence in anoxic 
tetrathioarsenate solutions (pH 5-7) 

▸ compilation of thioarsenate, arsenite, arsenate, and trithioarsenite spectra as basic reference 
dataset for evaluation of mixes and species verification 

(II) XAS vs. IC-ICP-MS 
▸ XAS for structural evaluation of thioarsenates/ thioarsenites as solids, solutions (flash-frozen), 

and mixes → restrictions/unsuitability as routine technique due to  availability of beam time, 
required high concentration (5 mM EXAFS, 0.5 mM XANES), and species quantification 

▸ suitability of IC-ICP-MS as routine analyses for aqueous thioarsenates → restrictions by species 
transformation due to sample dilution, alkaline eluent, oxidation (analyses outside the glovebox) 

▸ “thioarsenite artefact” = rapid oxidation to thioarsenates, while arsenite remains unmodified → 
indirect evidence for thioarsenites by comparative analyses under oxic and anoxic conditions  

(III) (Trans)formation of thioarsenites 
▸ in anoxic arsenite-sulfide mixes with SH--surplus, via acidification of thioarsenates (anoxic) 
▸ no formation under excess of OH- 
▸ necessary intermediates for thioarsenate formation 
▸ transformation: → to thioarsenates over time (anoxic, >24 h), in the presence of oxygen (traces), 

→ to arsenite by OH- surplus (high alkalinity, dilution), → to As-S precipitates (acidification) 

(IV) (Trans)formation and occurrence of thioarsenates 
▸ formation necessarily via oxidation of thioarsenites in arsenite-sulfide solutions (As < SH-) and 

upon oxic orpiment dissolution (pH 7 (50%), 12 (43%), tri- > di-, monothioarsente), or directly 
by physisorption of OH- upon alkaline arsenopyrite leaching (pH 12, 43% monothioarsenate) 

▸ natural occurrence: as predominant species in geothermal waters (trithioarsenate alkaline hot 
springs), and up to 17% in iron-rich thermal springs (mono- and dithioarsenate, Czech Republic)  

▸ oxidative transformation of higher substituted thioarsenates: → successive ligand exchange to 
finally arsenate (oxidants, naturally), → to arsenite by air purging, strong oxidants, heating, oxic 
acidification (with precipitation and ligand exchange)  

▸ anoxic systems: → transformation to arsenite in the presence of FeII (anoxic) , → to thioarsenites 
and precipitation via acidification  

▸ oxic transformation processes observed in nature →presumably microbial mediated due to 
higher transformation rates and final arsenite/arsenate formation 

(V) Mobility of thioarsenates 
▸ thioarsenates more mobile compared to arsenite and arsenate → sorption kinetics and efficacy 

on Goethite in the order arsenite > arsenate > monothioarsenate 
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(VI) Stabilization of thioarsenates and thioarsenites  
▸ anoxic cryo-preservation for labile thioarsenites 
▸ cryo-preservation with minimizing oxygen influence for thioarsenates 

(VII) Dissolution of (Fe)AsS minerals 
▸ orpiment linear dissolution increase, arsenite at acidic conditions, thioarsenate (trithioarsenate) 

formation at pH 7 and pH 12 
▸ arsenopyrite minimum dissolution at neutral pH, maximum at acidic/alkaline pH, speciation: 

arsenate and arsenite (pH 2), arsenite (pH 5-7) and arsenate + (mono)thioarsenate pH 9-13 
▸ arsenopyrite leaching restricted under anoxic conditions 
▸ increase of leaching efficacy by (poly)sulfides (neutral, anoxic), ionic strength (NaHCO3), pH 

(NaOH – limit reached at 400 mM, exclusively AsV-species) 
▸ evaluation for natural systems: orpiment leaching more critical since release of more mobile 

thioarsenates and higher amounts of total arsenic, alkalinisation of tailing material increases 
mobility of arsenic for both minerals, acidic conditions only relevant for FeAsS release of 
arsenate and arsenite, long-term view arsenate due to oxidation 

 

Although the work makes major contributions to understand the geochemistry of As-S species, 

both for characterization and also to understand their natural cycling more studies and information 

are necessary. From the present knowledge the following missing facts and recommendations for 

future investigations can be stated: 

A) Thioarsenite/thioarsenate geochemistry 
▸ for evaluation of mixes and verification of certain thioarsenite species →  references for 

thioarsenites, XAS characteristics and determination of their behavior in (standard) IC-ICP-MS 
▸ further need for thioarsenite references arises for the development of suitable routine techniques  

to analyze thioarsenites and in environmental relevant concentrations as well as for studies to 
determine their environmental behavior, i.e. mobility and mobilization, toxicity and stability 

▸ instability of thioarsenates to evaluate role of polysulfides within the transformation process 
(comparison of anoxic, (hyp)oxic conditions and structural evidence) 

▸ characterization of species released upon anoxic mineral leaching (orpiment, arsenopyrite, 
enargite → arsenic, sulfur, iron/copper species, redox-, pH-monitoring, cf. mineral dissolution)  

▸ role of trithioarsenate/dithioarsenate upon trithioarsenite oxidation and pH-dependent 
tetrathioarsenate dissolution with respect to reaction kinetics and oxygen concentration 

B) Thioarsenate/thioarsenite stability (in iron-containing systems) 
▸ stability tests of thioarsenates (concentration dependent, as mixes, as As:S solutions) in solutions 

with strong matrix (NaCl), organic solvents (EtOH, MeOH), injected in N2-filled septum vials 
and tests of cool storage vs. flash-freezing 

▸ laboratory studies of thioarsenates (pure/mixes) in the presence of iron (other trace metals, e.g. 
manganese, copper), with different species (FeII/FeIII) and concentrations under oxygen 
exclusion, monitoring of redox-conditions and speciation – tests for stabilization by addition of 
EDTA (concentration dependent), other iron-chelators (e.g. siderophores or HIDS 
(Hydroxyiminodisuccinic acid)) → promising methods for tests in the field 
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▸ laboratory experiments with iron for As:S mixes – use of comparative oxic/anoxic IC-ICP-MS 
to determine role of thioarsenites 

▸ investigations of the effect of reactive iron on species of As:S mixes and thioarsenates under 
oxic, hypoxic, and anoxic conditions  

▸ effect of UV-radiation - laboratory studies with UV chamber and check of possible 
transformation of thioarsenates to thioarsenite, test of natural waters containing thioarsenates (+ 
iron, time dependence), exposure to natural light at different altitude (Chile, Yellowstone, time 
dependence to verify stability during sample handling and packing) → check of toxicity for 
those UV-applied As-S waters (c.f. Daphnia spp. studies) 

C) Thioarsenate formation upon sulfidic dissolution of arsenite and thioarsenate retention 
▸ sorption and desorption studies with thioarsenates, As:S mixes under anoxic/oxic conditions 

with respect to pH, solid:solution ratio, time on synthetic goethite, fresh precipitated FeOOH, 
iron-sulfide minerals, and mica 

▸ structural characterization of thioarsenate-mineral surface complexes by XAS 
▸ desorption of arsenite on mineral phases (FeOOH, iron-sulfides) with sulfidic solutions – 

characterization of ambient conditions (pH, redox-potential) and thioarsenic and sulfur species  
▸ investigations to determine the role of microorganisms on desorption of (thio)arsenate and 

arsenate in sulfidic systems (iron-sulfides) or sulfate solutions (FeOOH)  
▸ sorption studies with natural soils and sediments, e.g. as column experiments 

D) Mineral dissolution and As-S complex formation 
▸ verification of thioarsenic species formation mechanism upon mineral dissolution (release of 

thioarsenites + oxidation for orpiment vs. thioarsenate release by physisorption for arsenopyrite), 
by structural (XAS) characterization with respect to pH, redox-conditions, and matrix solution 
(NaHCO3, possibility of carbonate complexes) 

▸ structural determinations of solutions from arsenopyrite leachates and thioarsenate-FeII solutions 
to proof the possibility of thioarsenate-iron complexation 

▸ investigation of mineral dissolution of other arsenic-sulfides regarding thioarsenate (oxic)/ 
thioarsenite (anoxic) formation, e.g. enargite (copper-thioarsenate complexes?) 

▸ formation of As-S complexes in arsenate and sulfate containing solutions (catalyzes by 
Desulfotoculum auripigmentum) or arsenic present in mineral phases  

▸ role of microorganisms on thioarsenate formation during mineral dissolution  
▸ monitoring of (poly)sulfide and trace-metal species (iron, copper), total concentrations, and 

redox-potential should be emphasized for  the experiments beside determination of As-S species  
 

 

Overall, the topic thioarsenic species and their behavior under natural and laboratory conditions, 

interactions with mineral phases equally to organisms and other elements, their redox-cycles and 

toxicity is a wide spread and greatly exciting topic with a broad need of scientific research. I’m 

proud, that I could contribute to this topic with some basic statements and characterizations of 

thioarsenates and thioarsenites and hope that some of the stated and recommended problems can be 

solved in future studies.  
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II Cumulative publications and manuscripts - Contributions 

Study 1: Discrimination of Thioarsenites and Thioarsenates by X-ray Absorption 
Spectroscopy (published in Analytical Chemistry) 

Elke Suess, Andreas C. Scheinost, Benjamin C. Bostick, Broder J. Merkel, Dirk Wallschlaeger, and 
Britta Planer-Friedrich 

 

E. Suess 40 % Concept and laboratory work: titration experiments, 
sample preparation and analyses - X-ray Absorption 
Spectroscopy (XAS) and IC-ICP-MS (As-S Speciation); 
Data analyses and spectra fitting/evaluation; Paper work: 
concept, manuscript editing 

A.C. Scheinost  15 % Laboratory and data evaluation XAS; Paper work: 

discussion (XAS) and proof-reading 

B.C. Bostick, B.J. Merkel 5 % Paper work: proof-reading 

D. Wallschlaeger 10 % Paper work: discussion (As-S speciation) and proof-

reading 

B. Planer-Friedrich  30 % Concept and laboratory work: IC-ICP-MS; Paper work: 

concept, discussion, and proof-reading 

 

Abstract: Soluble arsenic-sulfur compounds play important roles in the biogeochemistry of arsenic 
in sulfidic waters but conflicting analytical evidence identifies them as either thioarsenates (= AsV-S 
species) or thioarsenites (= AsIII-S species). Here, we present the first characterization of 
thioarsenates (mono-, di-, and tetrathioarsenate) by X-ray absorption spectroscopy and demonstrate 
that their spectra are distinctly different from those of AsIII-S species, as well as from arsenite and 
arsenate. The absorption near edge energy decreases in the order arsenate > thioarsenates > arsenite 
> AsIII-S species, and individual thioarsenates differ by 1 eV per sulfur atom. Fitted AsV-S and AsV-
O bond distances in thioarsenates (2.13-2.18 Å and 1.70 Å, respectively) are significantly shorter 
than the corresponding AsIII-S and AsIII-O bond distances in AsIII-S species (2.24-2.34 Å and 1.78 Å, 
respectively). Finally, we demonstrate that thioarsenates can be identified by principal component 
analysis in mixtures containing AsIII-S species. This capability is used to study the spontaneous 
reduction of tetrathioarsenate to AsIII-S species (possibly trithioarsenite) upon acidification from pH 
9.5 to 2.8. 
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Study 2: Arsenic Speciation in Sulfidic Waters: Reconciling Contradictory Spectroscopic 
and Chromatographic Evidence (published in Analytical Chemistry) 

Britta Planer-Friedrich, Elke Suess, Andreas C. Scheinost, Dirk Wallschlaeger   

 

B. Planer-Friedrich  55 % Concept and laboratory work: Mixes and IC-ICP-MS 

analyses; Data analyses (IC-ICP-MS); Paper work: 

concept and manuscript editing 

E. Suess 40 % Laboratory work: Mixes and XAS-analyses; Data analyses 

and evaluation (IC-ICP-MS / XAS); Paper work: 

manuscript editing  

A.C. Scheinost, D. 

Wallschlaeger 

5 % Paper work: discussion and proof-reading 

 

 

Abstract: In recent years, analytical methods have been developed that have demonstrated that 
soluble As-S species constitute a major fraction of dissolved arsenic in sulfidic waters. However, an 
intense debate is going on about the exact chemical nature of these compounds, since X-ray 
absorption spectroscopy (XAS) data generated at higher (mM) concentrations suggest the presence 
of (oxy)thioarsenites in such waters, while ion chromatographic (IC) and mass spectroscopic data at 
lower (μM to nM) concentrations indicate the presence of (oxy)-thioarsenates. In this contribution, 
we connect and explain these two apparently different types of results. We show by XAS that 
thioarsenites are the primary reaction products of arsenite and sulfide in geochemical model 
experiments in the complete absence of oxygen. However, thioarsenites are extremely unstable 
toward oxidation, and convert rapidly into thioarsenates when exposed to atmospheric oxygen, e.g., 
while waiting for analysis on the chromatographic autosampler. This problem can only be eliminated 
when the entire chromatographic process is conducted inside a glovebox. We also show that 
thioarsenites are unstable toward sample dilution, which is commonly employed prior to 
chromatographic analysis when ultrasensitive detectors like ICP-MS are used. This instability has 
two main reasons: if pH changes during dilution, then equilibria between individual As-S species 
rearrange rapidly due to their different stability regions within the pH range, and if pH is kept 
constant during dilution, then this changes the ratio between OH- and SH- in solution, which in turn 
shifts the underlying speciation equilibria. This problem is avoided by analyzing samples undiluted. 
Our studies show that thioarsenites appear as thioarsenates in IC analyses if oxygen is not excluded 
completely and as arsenite if samples are diluted in alkaline anoxic medium. This also points out that 
thioarsenites are necessary intermediates in the formation of thioarsenates. 
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Study 3: Oxidative Transformation of Trithioarsenate Along Alkaline Geothermal 
Drainages – Abiotic versus Microbially Mediated Processes (published in 
Geomicrobiology Journal) 

Britta Planer-Friedrich, Jenny C. Fisher, James T. Hollibaugh, Elke Suess, Dirk Wallschlaeger 

 

B. Planer-Friedrich  55 % Field work and organization: field sampling and on-site 

parameters; Laboratory work: arsenic-sulfur speciation 

and total analysis; Data analysis; Paper work: concept, 

manuscript editing 

Jenny C. Fisher 15 % Laboratory work: microbiology; Paper work: 

microbiology parts and manuscript proof-reading 

E. Suess 15 % Field sampling and on-site parameters; Laboratory work: 

arsenic-sulfur speciation; Paper work: Manuscript proof-

reading  

James T. Hollibaugh, Dirk 

Wallschlaeger 

15 % Paper work: Discussion and manuscript proof-reading 

 

Abstract: Trithioarsenate is the predominant arsenic species at the source of alkaline, sulfidic 
geothermal springs in Yellowstone National Park. Kinetic studies along seven drainage channels 
showed that upon discharge the major initial reaction is rapid transformation to arsenite. When 
aerating a trithioarsenate solution in the laboratory, 10 to 20% of trithioarsenate dissociates 
abiotically before reaching a steady state with arsenite and thiosulfate. In the geothermal springs, 
trithioarsenate is completely converted to arsenite and rate constants of 0.2 to 1.9 min−1 are 40 to 500 
times higher than in the laboratory, indicating microbial catalysis. Abiotic transformation of 
trithioarsenate to arsenate requires the presence of a strong oxidizing agent in the laboratory and no 
evidence was found for direct transformation of thioarsenates to arsenate in the geothermal drainage 
channels. The simultaneous increase of arsenite and arsenate observed upon trithioarsenate 
dissociation in some hot springs confirms that the main reaction is thioarsenate transformation to 
arsenite before microbially catalyzed oxidation to arsenate. In contrast to previous investigations in 
acidic hot springs, microbially catalyzed arsenate production in near-neutral to alkaline hot springs is 
not inhibited by the presence of sulfide. Phylogenetic analysis showed that arsenate production 
coincides with the temperature-dependent occurrence of organisms closely related to Thermocrinis 
ruber, a sulfur-oxidizing bacterium. 
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Study 4: Thioarsenate formation, release and re-sorption during oxidative dissolution of 
arsenic-iron-sulfide minerals (in review, Geochimica et Cosmochimica Acta) 

Elke Suess and Britta Planer-Friedrich 

 

E. Suess 60 % Concept (oxidation As2S3, FeAsS, sorption) and 

laboratory work: batch and open system experiments, pH, 

total and speciation analyses; Data analysis; Paper work: 

concept and manuscript editing 

B. Planer-Friedrich  40 % Concept (oxidation FeAsS); Laboratory work: total and 

speciation analyses; Paper work: concept, discussion, and 

proof-reading 

 

Abstract: Natural weathering and industrial leaching release arsenic and sulfur from the naturally 
abundant minerals orpiment (As2S3) and arsenopyrite (FeAsS). However, at highly alkaline 
conditions, where both minerals show their highest solubility, also binary As-S-species form which 
have so far largely been neglected in speciation studies. These thioarsenates (AsO4-xSx

3-) account for 
more than 40% of total arsenic with mono-, di-, and trithioarsenate being formed upon orpiment 
dissolution and only monothioarsenate upon arsenopyrite dissolution. At neutral pH, orpiment 
leaching yields 50% thioarsenates, predominantly as trithioarsenate. For arsenopyrite, the net arsenic 
release is approximately two orders of magnitude lower and arsenite is the predominant species; 
thioarsenates are negligible. At acidic conditions, thioarsenates are unstable; arsenite and arsenate 
predominates orpiment and arsenopyrite leaching solutions, respectively. 

Different release mechanisms explain the variations in occurrence of thioarsenates upon dissolution 
of a pure arsenic-sulfide and an iron-arsenic-sulfide mineral. Oxidative orpiment dissolution initially 
yields thioarsenites (AsO3-xSx

3-), which are either directly released or formed by recombination of 
arsenite and sulfide and quickly oxidize to thioarsenates. During arsenopyrite dissolution under 
neutral conditions sulfur is released as sulfate which does not react with arsenite to yield 
thioarsenates. At alkaline conditions, physisorption of hydroxyl anions and transposition to As or Fe 
sites finally lead to formation of As-OH-S complexes and the release of monothioarsenate. The 
concentration of hydroxyl anions was found to be the main variable for thioarsenate release from 
arsenopyrite; neither total net arsenic release nor thio-anion concentrations affected aqueous 
monothioarsenate concentrations. Increasing ionic strength at near-neutral pH led to comparable 
total arsenic releases as at highly alkaline conditions, but the share of thioarsenates remained low. 
Addition of sulfides or polysulfides stabilized slightly more monothioarsenate in alkaline solutions, 
but did not significantly increase total arsenic release. Addition of thiosulfate, an industrial leaching 
lixiviate, neither influenced net release nor speciation. Re-sorption of monothioarsenate on 
secondary iron hydroxides formed during oxidative arsenopyrite dissolution was shown to be 
significantly lower than that of arsenite and arsenate, thus supporting long-term stability of elevated 
thioarsenate concentrations in solution.  

The present study shows that thioarsenate species are far more important than has hitherto been 
considered, especially for iron-sulfide environments, which in many places are associated with very 
substantial human health risks. 
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Study 5: Stabilization of thioarsenates in iron-rich waters (published in Chemosphere) 

Elke Suess, Dirk Wallschlaeger, and Britta Planer-Friedrich   

 

E. Suess 50% Concept; Laboratory work: stabilization experiments, IC-

ICP-MS analyses; Data analyses and evaluation; Paper 

work: Concept, manuscript editing  

D. Wallschaeger 10 % Paper work: proof-reading 

B. Planer-Friedrich  40% Concept; Laboratory work and field sampling: IC-ICP-MS 

and on-site parameters/sampling; Paper work: Discussion 

and proof-reading 

 

Abstract: In recent years, thioarsenates have been shown to be important arsenic species in sulfidic, 
low-iron waters. Here, we show for the first time that thioarsenates also occur in iron-rich ground 
waters, and that all methods previously used to preserve arsenic speciation (acidification, flash-
freezing, or EDTA addition) fail to preserve thioarsenates in such matrices. Laboratory studies were 
conducted to identify the best approach for stabilizing thioarsenates by combination and 
modification of the previously-applied methods. Since acidification was shown to induce 
conversions between thioarsenates and precipitation of arsenic-sulfide minerals, we first conducted a 
detailed study of thioarsenate preservation by flash-freezing. In pure water, thioarsenates were stable 
for 21 days when the samples were flash-frozen and cryo-stored with a minimal and anoxic 
headspace. Increasing headspace volume and oxygen presence in the headspace were detrimental to 
thioarsenate stability during cryo-storage. Addition of NaOH (0.1 M) or EtOH (1% V/V) 
counteracted these effects and stabilized thioarsenates during cryo-storage. Addition of Fe(II) to 
thioarsenate solutions caused immediate changes in arsenic speciation and a loss of total arsenic 
from solution during cryo-storage. Both effects were largely eliminated by addition of a neutral 
EDTA-solution, and thioarsenates were significantly stabilized during cryo-storage by this 
procedure. Neutralization of EDTA was required to prevent alteration of thioarsenate speciation 
through pH change. With the modified method (anoxic cryo-preservation by flash-freezing with 
minimal headspace after addition of neutralized EDTA-solution), the fractions of mono- and 
dithioarsenate, the two thioarsenates observed in the iron-rich ground waters, remained stable over a 
cryo-storage period of 11 days. Further modifications are needed for the higher SH-substituted 
thioarsenates (tri- and tetrathioarsenate), which were not encountered in the studied iron-rich ground 
waters. 
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Natural weathering and industrial leaching release arsenic and sulfur from the naturally abundant minerals orpiment 
(As2S3) and arsenopyrite (FeAsS). However, at highly alkaline conditions, where both minerals show their highest 
solubility, also binary As-S-species form which have so far largely been neglected in speciation studies. These 
thioarsenates (AsO4-xSx

3-) account for more than 40% of total arsenic with mono-, di-, and trithioarsenate being 
formed upon orpiment dissolution and only monothioarsenate upon arsenopyrite dissolution. At neutral pH, 
orpiment leaching yields 50% thioarsenates, predominantly as trithioarsenate. For arsenopyrite, the net arsenic 
release is approximately two orders of magnitude lower and arsenite is the predominant species; thioarsenates are 
negligible. At acidic conditions, thioarsenates are unstable; arsenite and arsenate predominates orpiment and 
arsenopyrite leaching solutions, respectively. 
Different release mechanisms explain the variations in occurrence of thioarsenates upon dissolution of a pure 
arsenic-sulfide and an iron-arsenic-sulfide mineral. Oxidative orpiment dissolution initially yields thioarsenites 
(AsO3-xSx

3-), which are either directly released or formed by recombination of arsenite and sulfide and quickly 
oxidize to thioarsenates. During arsenopyrite dissolution under neutral conditions sulfur is released as sulfate which 
does not react with arsenite to yield thioarsenates. At alkaline conditions, physisorption of hydroxyl anions and 
transposition to As or Fe sites finally lead to formation of As-OH-S complexes and the release of monothioarsenate. 
The concentration of hydroxyl anions was found to be the main variable for thioarsenate release from arsenopyrite; 
neither total net arsenic release nor thio-anion concentrations affected aqueous monothioarsenate concentrations. 
Increasing ionic strength at near-neutral pH led to comparable total arsenic releases as at highly alkaline conditions, 
but the share of thioarsenates remained low. Addition of sulfides or polysulfides stabilized slightly more 
monothioarsenate in alkaline solutions, but did not significantly increase total arsenic release. Addition of 
thiosulfate, an industrial leaching lixiviate, neither influenced net release nor speciation. Re-sorption of 
monothioarsenate on secondary iron hydroxides formed during oxidative arsenopyrite dissolution was shown to be 
significantly lower than that of arsenite and arsenate, thus supporting long-term stability of elevated thioarsenate 
concentrations in solution.  
The present study shows that thioarsenate species are far more important than has hitherto been considered, 
especially for iron-sulfide environments, which in many places are associated with very substantial human health 
risks. 
 
Keywords: As-S species, arsenic-sulfides, mineral leaching, FeAsS, As2S3 

 

1. Introduction 

Worldwide, arsenic is an element of concern due to its 

carcinogenicity and neurotoxicity 1-3. It is released into 

the environment through natural mobilization processes 

by weathering of arsenic containing minerals, especially 

arsenic sulfides, by desorption from mineral phases such 

as iron(hydr)oxides 4, 5 or industrial leaching of arsenic-

bearing sulfides at acidic or alkaline conditions 6-8 to 

extract elements of economic interest, such as Au, Ag, 

Pb, or Zn 5, 9, 10.  

Many studies have been performed to understand the 

leaching behavior of arsenic sulfides and two recent 

reviews give extensive information about the oxidation 

Appendix 11



 

2      under review, Geochim. Cosmochim. Acta 

 

and dissolution of two of the most important arsenic-

sulfides, orpiment, As2S3, 
11 and arsenopyrite, FeAsS, 9. 

While under abiotic, anoxic conditions sulfides are 

fairly stable 11-13, oxidation rates increase pH-dependent 
9, 11, 14-16, in the presence of redox-agents as Fe(III) at 

low pH and O2 at high pH 11, 14, 15, 17-20, and by 

microorganism 21-23. Mineral leaching can further be 

increased by formation of arsenic-carbonate 24-28 and/or 

iron-carbonate complexes 29, in the presence of sulfide 

by arsenide-sulfide exchange at the mineral surface 30, 

As-S complex formation 31, or in the presence of 

thiosulfate by formation of gold-thiosulfate complexes 8, 

32 or in the presence of orpiment by gold-sulfur or gold-

thioarsenate-complexation 33. Temperature increases can 

positively affect the leaching efficacy or cause 

precipitation by temperature decreases, observed for 

As2S3-precipitates in hot-springs 31, 33-36  or used for 

removal of arsenic from ore leaching solutions 37.  

The general dissolution behavior and the leaching 

products of amorphous As2S3 and orpiment are 

comparable and differ only in terms of pH-dependency, 

reaction kinetics, and efficacy with generally lower 

activation energies for the amorphous phase 16, 34, 38. 

Orpiment dissolution increases linear from acidic to 

alkaline conditions with activation energies decreasing 

from 60 kJ/mol at pH 2 to 28 kJ/mol at pH 14 11, 38, 39. 

Comparatively, arsenopyrite shows a minimum 

dissolution in the near-neutral pH-range 20, 40 and 

increases towards acidic and to a greater extent towards 

alkaline conditions 41. Activation energies increase from 

16-18 kJ/mol at pH 2 to 57 kJ/mol at pH 6-8 14, 15. Only 

under acidic conditions arsenopyrite dissolution 

efficacies exceed that of orpiment 11, 15, 38. Since 

activation energies are < 20 kJ/mol, mass transfer, O2-

diffusion controlled reactions have to be considered for 

arsenopyrite dissolution at low pH conditions 14, 33. With 

increasing pH chemical or electrochemical surface 

reactions prevail since activation energies are > 40 

kJ/mol for both orpiment and arsenopyrite 11, 33 and thus 

with increasing reactant an increase in the leaching 

efficacy can be achieved. 

To evaluate mobility and toxicity of arsenic released 

upon sulfide dissolution information not only about net 

total arsenic release but about the species formed at the 

surface and in solution is of central importance. While 

arsenite and arsenate are routinely determined as 

inorganic species, little attention has yet been paid to the 

relevance of arsenic-sulfur species. We have recently 

shown that thioarsenites are the primary reaction 

products of arsenite and sulfide in solution in the 

complete absence of oxygen. They transform 

quantitatively to thioarsenates if oxygen is not excluded 

completely and to arsenite at highly alkaline conditions 

due to competitive OH- versus SH- exchange 42. At 

acidic conditions both thioarsenates and thioarsenites 

transform to arsenite before precipitation as amorphous 

arsenic-sulfide minerals 42-44. What is known about the 

species-specific leaching of arsenic and sulfur for 

orpiment and arsenopyrite is summarized in the 

following paragraphs. 

Under anoxic conditions, X-ray photoelectron spectros-

copy (XPS) showed the occurrence of arsenite and 

disulfide surface species at freshly fractured orpiment 

surfaces 11, 45. The orpiment dissolution is base-

promoted, i.e. the release mechanism is a result of 

hydroxide adsorption at the mineral surface, and 

weakening of the bondings in the crystal lattice by 

bond-polarization favoring the release of arsenic and 

sulfur 12, 46. For the layered crystalline mineral phase (S-

As-S-As-S) hydroxide absorption depends on the 

interaction between sulfur and hydrogen atoms of the 

hydroxyl groups, while in case of the amorphous phase 

the hydroxide can directly (chemically) interact with 

arsenic. Thereby S-As-S and S-As-S-OH are assumed to 

detach from the surface 12. In sulfide-rich solution the 

formation of trivalent thioarsenic species was proposed 
34, 36 and predicted by thermodynamic model 

calculations 47, 48. In sulfide-deficient solutions arsenite 

is the major species (70-90%) as determined in 

laboratory studies coupled with model calculations 12, 34.  

Under oxic conditions, arsenite was determined as pre-

dominant species (50-70%) in carbonate-containing 

solutions with pH 7-9 by HGAAS. Interestingly, among 

the sulfur species an unknown, intermediate species, 

comprising presumably polythionates, accounted for 

80-90% of total sulfur 38. However, it has been shown 
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that depending on the HG conditions, thioarsenates 

either precipitate upon acidification prior to reduction or 

if pre-reduction is used only monothioarsenate is co-

determined with arsenate, while tetra-, tri-, and 

dithioarsenate react with the arsenite fraction 43 and thus 

arsenic-sulfur species might have been overlooked in 

previous studies conducted by HG-techniques. In highly 

alkaline electrochemical oxidation experiments direct 

formation of arsenite and sulfide after hydroxide 

adsorption was determined by cyclic voltametry 49. Free 

sulfide-ions were then supposed to further react with the 

mineral surface to form and release thioarsenites which 

are based on our current knowledge unstable under oxic 

conditions and would oxidize to thioarsenates 42. The 

only direct analytical evidence for thioarsenate 

occurrence upon orpiment dissolution comes from 

presumably anoxic sulfidic orpiment-leachates at 

neutral pH determined by IC-ICP-MS, although 

thioarsenates occurred as a minority beside arsenite 50. 

However, we know today that thioarsenates only form 

in the presence of oxygen, so either the experiments 

were not anoxic or thioarsenates formed as oxidized 

artifacts during analysis by IC-ICP-MS 42. Overall, no 

investigations regarding kinetics, pH-, and redox-

dependence of thioarsenites or thioarsenates during 

orpiment leaching exist.  

Although arsenopyrite was subject to numerous studies, 

only few focus on arsenic speciation. Dissolution rates 

and kinetics are largely governed by the surface 

structure of the arsenopyrite and the formation of 

surface coatings. At acidic conditions, a metal-deficient 

sulfur-enriched layer forms which consists of 

polysulfides and sulfate 14, 51-54. Arsenic and iron are 

preferentially released compared to sulfur (As/S > 1) 14. 

At near-neutral conditions, arsenic and iron oxide 

surface coatings form leading to Fe/As and Fe/S ratios < 

1, and As/S < 1 14. At alkaline conditions, no sulfur 

oxidation products were determined at the surface and 

more arsenic than iron was released 51. Arsenic oxides 

showed a high solubility at alkaline conditions 55, 56 but 

iron hydroxides form rapidly at pH > 6 14, 57. The 

formation of surface coatings, ironhydroxides, and (re-

)sorption of arsenic 58, 59 may reduce the release of iron 

and arsenic over time to finally yield a passivation of 

the surface at neutral to basic conditions 14.  

Additionally to the determinations of surface complexes 

also arsenic and sulfur speciation in solution was 

investigated 15, 19, 20, 33, 60, 61. Arsenite was found to 

predominate over a broad pH-range from 2-12 in 

leaching studies of several hours up to one day 15, 20, 60, 

61, with a considerable amount of arsenate at pH 7 

(40%) as determined by Walker et al. 19. Although 

abiotic arsenite oxidation is slow, arsenate will 

predominate on the long-term as found under natural 

leaching  conditions of an alkaline mineral processing 

plant (Macreas) 40. Thio-arsenite formation was 

proposed in one study at highly alkaline conditions 7. 

Thioarsenate formation (monothioarsenate) has so far 

only be described in a PhD-thesis by Zhang 33 proposing 

hydroxide physisorption as release mechanism. 

Released sulfur forms sulfate, elemental sulfur, and 

S(x)-species 61 under acidic conditions and 

predominates as sulfate at neutral conditions 14. 

Thiosulfate is unstable at acidic conditions and 

decomposes to elemental sulfur, sulfite, and/or 

polythionates in the presence of As(III) 62. At highly 

alkaline conditions thiosulfate is the predominant sulfur 

species 33. Upon leaching iron is proposed to be initially 

released as Fe(II), then predominate in solutions with 

pH < 4, but will be oxidized to Fe(III) rapidly with 

increasing pH (pH > 5-6) 14, 15. Due to the formation of 

iron-arsenic oxide surface coatings and ironhydroxides 

the amount of iron in solution is depleted, especially at 

alkaline pH 14, 19, 33. 

Overall, thioarsenite and thioarsenate formation has 

been suggested in several previous reports, however, 

systematic analytical evidence is rare. In the present 

study we compare thioarsenate time- and pH-dependent 

formation through orpiment and arsenopyrite leaching 

under fully oxidizing conditions. Arsenopyrite leaching 

mechanisms are investigated in more detail with 

restricted oxygen headspace and under anoxic 

conditions, as function of total net arsenic release, 

arsenic-sulfur speciation and ionic strength and in the 

presence of different reduced sulfur species.  
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Table 1: Overview over experimental set-up of batch and open system mineral leaching experiments 

Mineral 
powder 

Leaching 
solution 

Redox-conditions pH/amendments Reaction time Comments 

Open system leaching experiments with arsenopyrite (FeAsSHA) and orpiment (As2S3) 

FeAsSHA, 
As2S3 

NaHCO3 (0.0 4 
M) 

oxic conditions simu-
lated for open systems 

2, 6 6, 24, 48, 72, 144 pH adjustment with 
50% NaOH/HNO3 

NaOH (0.1 M) 12 
190 mg FeAsS / 140 mg As2S3 in 300 mL leaching solution, horizontal shaker 50 rpm  
 

Batch leaching experiments with arsenopyrite from Harmannsdorf (HA, FeAsSHA) and Freiberg (FG, FeAsSFG) 

pH depending leaching kinetics 

HA, HA 
and FG* 

NaHCO3 (0.0 4 
M) 

oxic conditions with 
air-purged leaching 
solutions 

2*, 5, 7*, 9, 12* 10”, 1 h, 2 h, 6 h,12 
h, 24 h, 3 d,  5 d, 7 
d, 3 and 6 weeks 

pH adjustment with 
50% NaOH/HNO3 

NaOH (0.1 M) 13* 

Leaching efficiency under (an)oxic conditions in presence of sulfur species 

HA NaHCO3 (0.04 M) oxic conditions with 
air-purged leaching 
solutions 

7, 12, thiosulfate 48 h pH adjustment with 
50% NaOH/HNO3 

anoxic conditions 
with N2-purged 
leaching solutions 

7, 12, sulfide, poly-
sulfide 

Leaching efficiency in subject to the strength of leaching solution 

HA NaHCO3 (0.004,  
0.04, 0.4, 0.8 M) 

oxic conditions with 
air-purged leaching 
solutions 

pH 8.8, 8.6, 8.3, 8.1 48 h no pH adjustment 

NaOH (0.004, 
0.04, 0.4, 0.8 M) 

pH 11, 12, 13, 13 

25 mg FeAsS in 40 mL leaching solution, over-head shaker 20 rpm 
 

 

2. Materials and Methods 

Laboratory experiments were conducted to examine the 

long-term leaching behavior of a commercial orpiment 

and arsenopyrite under fully oxidizing conditions as 

well as for two different types of arsenopyrite under a 

range of conditions representative for natural 

environments, industrial sulfide leaching or post-mining 

situations. With a focus on arsenic-sulfur speciation 

time-dependent dissolution was studied in relation to 

changes in pH, ionic strength, anoxic/oxic conditions, 

and the effect of different sulfur species (Table 1). Re-

sorption of arsenic on iron(hydr)oxides was also 

investigated. 

2.1. Orpiment and Arsenopyrite minerals    

Orpiment was obtained from Alfa Aesar, Germany 

(As2S3) as fine powder and used without further 

preparation. Arsenopyrite minerals from two sites in 

Saxony, Germany (Hartmannsdorf FeAsSHA, Freiberg 

FeAsSFG) were provided by the Mineral Collection of 

the Technical University of Freiberg. For the 

preparation of the arsenopyrite powder the mineral 

blocks were crushed with a jaw crusher to a size of 2 

mm and fine-grind in a disc mill with a CaC2 head. The 

fraction with a grain size < 45 µm was separated by 

sieving. With a micro classifier (Alpine Multi-Plex 

Labor-ZZ-Sichter A 100MZR) the particles < 15 µm 

were separated using centrifugal and gravitation force. 

The particle size of the arsenopyrite powder (on average 

5.7 µm (85% ൑ 15 µm) for FeAsSHA and 3.0 µm (99% 

൑ 15 µm) for FeAsSFG) was determined with a 

lasergranulometer (HELOS VECTRA, Sympactec) 

using a RODOS dry powder disperser (HELOS H0735, 

RODOS R3). 
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2.2. Dissolution experiments 

2.2.1. Open system dissolution experiments on orpiment 

and arsenopyrite 

To determine dissolution under fully oxidizing 

conditions, open vessel experiments were conducted. 

Arsenopyrite (FeAsSHA, 0.19 g) and commercially 

available orpiment (As2S3, Alfa Aesar, Germany, 0.14 

g) were suspended in 300 mL leaching solution (0.1 M 

NaOH for pH 12, 0.04 M NaHCO3 for pH 2 and 6, 

adjusted with NaOH and HNO3; Table 1) in open 1000 

mL Erlenmeyer flasks. The flasks were constantly 

shaken at room temperature (20°C) on a horizontal 

shaker (50 rpm). After 6, 24, 48, and 144 h 

approximately 5 mL aliquot were sampled for total 

arsenic analyses and pH-measurement. Arsenic-sulfur 

speciation was checked for the 6 and 144 h samples. 

 

2.2.2. Arsenopyrite dissolution experiments with re-

stricted oxygen headspace 

For the batch experiments 25 mg arsenopyrite powder 

(FeAsSHA, Freiberg FeAsSFG, < 15 µm) were dispersed 

in 40 mL leaching solution using 50 mL PE-vials 

(Sarstedt). If not stated otherwise, ultrapure water 

(Ultrapure Ionex Cartridge, Millipore) was used for 

solution preparation and dilutions. Depending on the 

respective experiment, the composition of the leaching 

solution and the leaching time were varied (Table 1). To 

guarantee proper mixing of the leaching samples, 

samples were rotated at 20 rpm on an over-head shaker 

(GFL 3040) according to their respective reaction time. 

For the pH-dependent kinetic experiments dissolution 

was performed in 0.04 M air-purged NaHCO3 (sodium 

hydrogen carbonate, Caledon Laboratories LTD, ON, 

Canada) with initial nominal pH-values of pH 2, 5, 7, 9, 

12 and 13. For each reaction time (10 min to 6 weeks) 

separate replicates were prepared. The pH-adjustment 

was performed by addition of HNO3 (conc.) or 50% 

NaOH (sodium hydroxide solution, Fisher Scientific). 

Further experiments were carried out to test the effect of 

the ionic strength (0.004, 0.04, 0.4, and 0.8 M, NaOH or 

NaHCO3) on the leaching efficacy (FeAsSHA) and 

arsenic-sulfur species formation with a reaction time of 

48 hours. Additionally, the influence of thiosulfate 

addition on arsenopyrite leaching (FeAsSHA) was 

investigated at pH 7 and pH 12. A 100 mg S/L stock 

solution (sodium thiosulfate pentahydrate, 

Na2S2O3•5H2O, 99+%, Alfa Aesar, Lancaster) was 

added to obtain final concentrations of 3 and 30 µM in 

the suspensions. Reaction time for all sulfur species 

experiments was 48 h. 

 

2.2.3. Arsenopyrite dissolution experiments in presence 

of reactive sulfide species under anoxic conditions 

Experiments to test the influence of sulfide and polysul-

fides on arsenopyrite leaching (FeAsSHA) at pH 7 and 

pH 12 had to be conducted in a glovebox (COY, 5% H2, 

95% N2) due to the redox-sensitivity of these samples. 

A polysulfide stock solution (3.5 mgS/L, 

potassium(poly)sulfide, K2S, Riedel de Haen, > 42%) 

was diluted to final concentrations of 30 and 300 µM 

sulfur. A sulfide stock solution (4000 mgS/L, 

Na2S
.9H2O, Sigma-Aldrich, trace metal grade) was 

diluted to final concentrations of 17 and 167 µM sulfur. 

As dissolution under reductive conditions differs from 

that of oxidative conditions comparative experiments 

were conducted in the glovebox without addition of any 

sulfur species. 

 

2.2.4. Sampling 

After the respective reaction times, samples were 

filtered immediately (outside or for (poly)sulfide 

experiments inside the glovebox) using syringe filters 

with changeable filter paper (0.2 µm cellulose acetate, 

Sartorius, Germany). Approximately 1.5 mL of the 

filtrate was stored in the refrigerator (Pyrogene 1.5 mL 

microtubes, Ultident Scientific, Canada) for total arsenic 

analyses (ICP-MS). These samples had to be diluted 

with ultrapure water (dilution factor 10 for pH 5 and 7; 

20 for pH 9; 100 for pH 2; and 250 for pH 12 and 13). 

Arsenic-sulfur speciation was analyzed immediately. 

Dilutions were required for the samples at pH 2, 9, 12, 

and 13. The dilution factors were 1.7 for FeAsSFG and 

10 for the FeAsSHA. The pH-values were determined in 

the suspensions after sampling (I.Q. 140 pH meter, 

USA, calibrated with buffers at pH 4, 7, and 10). 
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2.3. Sorption experiments 

Sorption isotherms were determined in washed (Table 

EA 1) and pre-hydrated (24 hours, 5 mM NaCl, p.a. 

Merck) α-Goethite  (Table EA 2) suspensions (33 g/L) 

with arsenic concentrations of 0.065 , 0.13 , 0.27 , 0.53 , 

1.3 , 2.67, and 5.33 mM for arsenate (AsHNa2O4
.7H2O, 

Fluka, p.a., ≥99%), arsenite (NaAsO2, Fluka, p.a., 

≥99%), and monothioarsenate (synthesized sodium-

monothioarsenate, ≥96%, 44) for 48 hours. Thereby the 

preparation of the solutions (including pre-hydration) 

was performed under anoxic conditions in the glovebox. 

Additionally, kinetic experiments were performed with 

sorption solutions in the medium concentration range 

(0.53 mM arsenic) and reaction times of 0.03, 0.5, 1, 5, 

8, 14, 24, 72, 168, and 336 h, for arsenate, arsenite, and 

monothioarsenate. 

After preparation of the suspensions, the PE-vials (30 

mL, Sarstedt) were sealed and stored in N2-filled 

containers for shaking outside the glovebox (20 rpm). 

Sampling was done after the respective reaction times, 

including centrifugation (6000 rpm, Centrifuge Hettich 

Universal) and separation of solids from the aqueous 

phase by filtration (0.2 µm, Membrex 25 CA, Membra 

Pure) in the glovebox. In the filtrates solution pH was 

determined. Samples for total arsenic analyses were 

stored in the refrigerator until analyses by ICP-MS. 

Speciation was checked by IC-ICP-MS in cryo-

preserved samples 63.   

2.4. (IC-)ICP-MS analyses 

The simultaneous speciation of arsenic and sulfur was 

measured with ion chromatography (AEC; DIONEX, IC 

GP50), coupled to an ICP-MS (inductively coupled 

plasma-mass spectrometry) from PerkinElmer (Elan 

DRC II). Species were separated using an anion column 

(IonPac®, AG16/AS 16, 4 mm, Dionex) with a highly 

alkaline eluent with gradient flow (0.02-0.1 M NaOH, 

1.2 mL/min) as described elsewhere 64. The dynamic 

reaction cell technology with oxygen as reaction gas 

(10% O2, 90% He) was used to remove interferences of 
75As+ and 32S+ with 40Ar35Cl+ and 16O2

+ and detect 

arsenic and sulfur as 75As16O+ (m/z 91) and 32S16O+ (m/z 

48). The surplus of Na+ was removed by H+ exchange 

through an anionic self-regenerating suppressor (ASRS, 

13 psi). Arsenic and sulfur of the thioarsenates were 

quantified using the calibration curves for sulfate and 

arsenate. They were determined from a mixed-standard 

calibration with arsenite (NaAsO2, Fluka, purum p.a.), 

arsenate (AsHNa2O4
.7H2O, Fluka, puriss. p.a.), and 

sulfate ((NH4)2SO4, Fluka Sigma-Aldrich) in a range of 

0.1-5 mgS/L and 0.01-1 mg As/L. Sulfide was calibrated 

separately due its reactivity with arsenite (0.1-1 mgS/L 

Na2S
.9H2O, Sigma-Aldrich, trace metal grade). 

Total arsenic and sulfur concentrations determined by 

ICP-MS as described above were corrected with iridium 

and rhodium for the instrument-based internal drift and 

a calibration check every 12 samples for external drift. 

For quality control, TM-DWS (Environment Canada, 

National Water Research Institute) was used as an 

external reference material.  

3. Results and Discussion 

3.1. Thioarsenate formation during oxidative 

dissolution of arsenopyrite and orpiment  

To compare arsenic speciation during oxidative leaching 

of arsenopyrite and orpiment, parallel open system 

experiments were performed. We found in accordance 

with previous studies that in contrast to arsenopyrite 

which shows a dissolution minimum at near neutral pH, 

the solubility of orpiment increases linear (Fig. 1) and 

exceeds that of arsenopyrite for pH > 7 about 10 to 

100fold. At acidic conditions, minimum orpiment 

leaching was observed with 40 to 50 µM total arsenic 

release for 6 and 144 h leaching, which was about 2-

times to one order of magnitude lower than that of 

arsenopyrite (80 to 470 µM). At neutral (pH 7) and 

alkaline conditions (pH 12) orpiment leaching increased 

significantly by factors of ~ 20 and ~80, respectively, 

relative to pH 2. Compared to arsenopyrite the 

dissolution of orpiment is 10 to 100 fold greater at 

neutral conditions. At highly alkaline conditions, 

orpiment leaching is very fast and maximum solubility 

is already reached after 6 hours. Arsenic concentrations 

did not further increase between 6 h and 144 h. 
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Although arsenopyrite leaching is also increased at 

alkaline conditions, even after 144 h the release does not 

even reach half of that of orpiment (1940 µM vs. 4460 

µM). This is in line with the predictions from model 

calculations as well as compared to published leaching 

rates for orpiment, As2S3 (am), and (arseno)pyrite 9, 11, 15, 

65. In these studies an increase in the dissolution rates 

for orpiment from 10-10.4 mol.m-².s-1 at pH 2 to 10-9.57 at 

pH 7.5 and 10-3.25 mol.m-².s-1  at pH 13 11, 38, 39, 46 was 

determined, which are higher at alkaline conditions 

compared to arsenopyrite with 10-8.1 to 10-8.6 mol.m-².s-1 

between pH 2 and 12 (Fig. EA 1, 15).  

Speciation analyses show that the amounts of 

thioarsenates formed under acidic conditions were 

negligible (<1%) for both minerals which is in 

accordance with our previous observations that both 

thioarsenates and thioarsenites transform to arsenite 

before precipitation as amorphous arsenic-sulfide 

minerals 42-44. At highly alkaline conditions, 

thioarsenates were formed during leaching of both 

minerals (Fig. 1). Pentavalent arsenic species are the 

predominant leaching products (> 70%) with 

thioarsenates accounting for approximately 55% and 

30% from orpiment and arsenopyrite dissolution, 

respectively, after 6 hours. With time, thioarsenate 

concentrations decreased to 43% for orpiment and 

increased to 43% for arsenopyrite after 144 hours 

(Table 2). In contrast to arsenopyrite where only 

monothioarsenate was detected, also di- and 

trithioarsenate formed upon dissolution of orpiment. 

Thioarsenates have previously been suggested to form 

upon presumably anoxic orpiment dissolution, but only 

to a minor extent 50. The authors observed peaks for di-, 

tri-, and monothioarsenate, but lower than those for 

arsenate and the predominant arsenite. They proposed 

that the observed arsenite concentrations were already a 

result of thioarsenate conversion. We assume that higher 

thioarsenate rates in our experiments are due to an 

overall higher dissolution rate at fully oxidizing 

conditions. In contrast to arsenopyrite, thioarsenates are 

already important leaching products at neutral pH 

during orpiment dissolution. Thioarsenates accounted 

for up to 50% and besides 8% of monothioarsenate also 

11% of dithioarsenate and 31% of trithioarsenate were 

observed. Other studies determined arsenite as 

predominant leaching product in the pH-range of 6.8-

9.4 16, 38. However, they used HGAAS to determine their 

arsenic speciation and as shown before di- and 

trithioarsenate are reduced to arsenite upon pre-

reduction and acidification, thus are not determined 

correctly within the As(V) fraction but as As(III) 

fraction 43. Like at alkaline conditions, the only 

thioarsenate species observed at pH 7 from arsenopyrite 

leaching was monothioarsenate contributing a very low 

percentage to total arsenic (5%). Potential reasons will 

be discussed in the following sections.  
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Figure 1: Speciation and total arsenic concentrations for 144h-open system 
leaching of arsenopyrite (FeAsSHA) and orpiment (As2S3)  
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Table 2: Summary arsenopyrite (FeAsSHA) studies in relation to orpiment (As2S3) leaching 

 time ΣAs Arsenite Arsenate Mono- Di- Trithio-arsenate ΣThioarsenates 

 (h) (µM) (%ΣAs) (%ΣAs) 

acidic conditions (pH 2) 

As2S3 144 59 90 9 1   1 

FeAsS 144 394 9 91    0 

neutral conditions (pH 7) 

As2S3 144 819 36 13 8 11 31 50 

FeAsS 144 13 62 34 2 1 1 4 

alkaline conditions (pH 12) 

As2S3 
6 3111 26 20 21 22 12 55 

144 3468 17 40 16 16 11 43 

 
FeAsS 

6 342 29 44 28   28 

144 1525 13 44 43   43 

 

Overall, these initial studies proved that thioarsenate-

formation is lower in iron-rich arsenic-sulfur systems 

compared to arsenic-sulfur systems, especially at neutral 

pH, but not at all negligible. We thus focused with more 

detailed studies on the dissolution of two types of 

arsenopyrite. To better mimic natural conditions we 

conducted all further experiments in closed vials with a 

restricted oxic or anoxic headspace instead of the open 

system approaches chosen for initial comparison of 

maximum orpiment and arsenopyrite dissolution. 

3.2. Leaching behavior of the two types of 

arsenopyrite 

Comparing the two types of arsenopyrite used for the 

leaching experiments, we found that the arsenic and 

sulfur release from the Hartmannsdorf arsenopyrite 

(FeAsSHA) exceeds that from Freiberg arsenopyrite 

(FeAsSFG) for the investigated pH-values of 2, 7, 12, 

and 13 (Fig. 2, Table EA 3). The ratio of released 

arsenic (ΣAsHA/ΣAsFG 3.6±0.9 (pH 2), 2.5±1.3 (pH 7), 

3.3±1.5 (pH 12), 3.4±0.2 (pH 13)) and sulfur 

(ΣSHA/ΣSFG 3.1± <1.1  for pH 12 and 13 and ΣSHA/ΣSFG 

2.4±0.8 at pH 2) hereby lies consistently at about 2.4 to 

3.6. A lower ratio of ΣSHA/ΣSFG 1.3±0.5 at pH 7 shows 

that more sulfur is released from FeAsSFG under neutral 

conditions (see section 3.3, Table EA 3). The reason for 

the observed differences is not entirely clear. However, 

while FeAsSHA was a solid, macroscopically pure 

mineral, FeAsSFG contained numerous impurities of 

white mica which could not be separated during sample 

preparation and thus likely diluted total arsenopyrite 

concentrations in the prepared sample powder. More 

important for us, however, the arsenic-sulfur speciation 

(see section 3.3., Figures in Table EA 3) showed no 

substantial differences in the leachates of both types of 

arsenopyrites. We will, thus, in the following mainly 

focus on the purer arsenopyrite from Hartmannsdorf 

(FeAsSHA).  

3.3. The pH-dependent total arsenic and sulfur 

release over time 

In accordance with previous studies 15, 40, 41, we 

observed the highest arsenic release and fast leaching 

rates at highly alkaline conditions (Fig. 2, Fig. 3). At 

neutral conditions, arsenic concentrations were minimal 

and re-increased at acidic conditions (Fig. 2, Fig. 3). 

Dissolved arsenic concentrations generally increased 

substantially with time under alkaline and especially 

acidic conditions. From 10 minutes to 35 days, arsenic 

concentrations in solution increased from 80 to 580 µM 

at pH 2 and 200 to 2500 µM at pH 13 for FeAsSHA (30-

160 µM at pH 2 and 60-630 µM at pH 13 for FeAsSFG, 

Table EA 4). Leaching in the near neutral and weakly 

acidic milieu was approximately 10 to 100-times lower, 

reaching a minimum at pH 5.8. Arsenic concentrations 

were 4 µM after 10 minutes and increased very slowly 

during the first 3 weeks, with a finally greater increase 

between 21 and 35 days to a final concentration of 10 

µM for FeAsSHA at pH 5.8 (Table EA 4). 
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A) Leaching kinetics at pH 2 
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B) Leaching kinetics at pH 7 
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C) Leaching kinetics at pH 13 
 
 
 

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

 As  S  for Harmannsdorf arsenopyrite
 As  S  for Freiberg arsenopyrite 

A
s 

or
 

S
 (

µ
m

ol
/L

)

Leaching time (days)

 
 
Figure 2 C: Arsenic and sulfur leaching kinetics for
both arsenopyrites – Hartmannsdorf (FeAsSHA) and 
Freiberg (FeAsSFG) at pH 2, 7, and 13   

The sulfur release was compared to arsenic release 

generally lower under acidic conditions (ΣAs/ΣS 

between 1.2 and 2.5; Table EA 3 and Table EA 4). 

Faster oxidation and release of iron and arsenic 

compared to sulfur in acidic media was also observed in 

previous studies leaving an arsenic- and iron-depleted 

and sulfide-enriched arsenopyrite surface 51, 54, 66. Like 

arsenic, sulfur dissolution reached a minimum at near-

neutral pH (Fig. 3). However, the decrease was not as 

significant as for arsenic. Thus, between pH 5.8 and 9, 

dissolved sulfur concentrations exceeded those of 

arsenic (ΣAs/ΣS ratios between <0.1 and 0.7, Table EA 

4). Asta and co-workers 14 explained this same 

observation in their experiments by precipitation of 

secondary Fe- and As-O-containing mineral phases, e.g. 

iron(hydr)oxides, scorodite, pharmacosiderite, pitticite, 

and arsenic oxides. Under highly alkaline conditions 

(pH 13) a nearly stoichiometric release of arsenic and 

sulfur was observed over time with an average of 

1.2±0.3 for both arsenopyrites and only lower ratios of 

ΣAs/ΣS 0.3 for initial release in case of FeAsSFG (Table 

EA 3, Table EA 4). The stoichiometric release is in line 

with previous reports 51, 67. Yellow-orange precipitations 

were observed in our experiments which were 

previously characterized as ferric arsenite 51, 

ironhydroxides 7, 68, and AsS-phases 57. Co-precipitation 

and sorption of arsenic and arsenic-sulfur species on 

ironhydroxides may also be important as discussed later 

(see section 3.6.) 

 

3.4. The pH-dependent arsenite and arsenate 

speciation during oxidative arsenopyrite 

dissolution  

Not only total releases of arsenic and sulfur showed a 

great dependency on pH, but also the arsenic-sulfur 

speciation in the leachates (Fig. 4, Table EA 3). Overall, 

our results showed that in the long-term arsenite and 

arsenate co-exist at acidic conditions, arsenite 

predominates under neutral to weakly acidic conditions, 

and arsenate under alkaline conditions. Under the most 

acidic conditions applied (pH 2) only arsenate formed 

initially. The share of arsenite increased over time (16 

% after 2 days to 51 % after 35 days, Fig. 4). Even 
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though most previous studies showed arsenite 

predominance under such acidic conditions 15, 20, 61) and 

formation of  arsenic(III)-oxides at the mineral surfaces 
14, there are some that detected arsenate as in our results. 

Formation of both As(V)- and As(III)-oxides was 

shown during surface analyses of electrochemical 

oxidized arsenopyrite at pH 2 54 and in leachings of 3 M 

H2SO4 arsenate even predominated 67. According to 

Wedepohl 69 As(V)-oxides show a higher solubility than 

As(III) oxides, which might explain the initial arsenate 

predominance and the later increase in arsenite observed 

in our experiments. The predominance of arsenate was 

observed for both types of arsenopyrites.  

At pH 5.8 and pH 7 arsenite was the dominant species 

already after 10 minutes with 60% and 76%, 

respectively, and remained predominant up to 35 days 

when it accounted for more than 84 % and 95% of total 

arsenic, respectively (Fig. 4). This is in line with former 

observations of > 75% arsenite in leachates over a pH-

range of 1.8-12.8 15, 20 and ~ 60% arsenite determined 

for leaching at pH 6.3-6.7 19. Walker et al. 19 proposed 

that initially released arsenite would further oxidize to 

arsenate. However, abiotic arsenite oxidation is a slow 

process and even though it might be important for 

natural systems, we could not observe oxidation of 

arsenite during our experimental time with a maximum 

of 35 days. Sulfur speciation was dominated by sulfate 

in all experiments from pH 2 to 7 with occurrence of 

some thiosulfate (only higher shares of 30-50% for pH 5 

and 7 after 3-7 days, otherwise < 20%) and an 

unidentified sulfur species at pH 7 (retention time 290 s, 

max. 50%). The sulfate predominance was also reported 

in previous studies 14, 15, 19, 20.  

Under alkaline conditions, arsenate predominated. The 

share of arsenite decreased with increasing pH from 

50% to 41% and 33% for pH 9, 12 and 13, respectively. 

After 35 days, only 7 % arsenite was left at pH 9 and < 

2% at pH 12. No arsenite was found at pH 13 after 35 

days (Fig. 4, Table EA 3). Sulfur oxidation products of 

the dissolution at alkaline pH were sulfate, thiosulfate, 

and sulfur associated with thioarsenates (see section 

3.5). Compared to leachings at lower pH the share of 

sulfate on total sulfur declined, while thiosulfate 

increased. The share of sulfate on the total released 

sulfur followed the overall trend pH 2 (sulfate/ΣS 

0.9±0.1) > pH 5.8-7.5 (0.7±0.2) > pH 9 (decrease from 

0.9 to 0.3) > pH 12-13 (< 0.3).   
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Figure 3: Arsenic and sulfur concentrations for the time- and pH-dependent 
arsenopyrite leachings  plotted against solution pH (data of both arsenopyrites, all 
pH conditions, and all times) 
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3.5. The pH-dependent formation of 

thioarsenates during oxidative arsenopyrite 

dissolution  

A maximum of 25% thioarsenates was detected at pH 

13 after 35 days. In general, the share of thioarsenates 

increased significantly with pH and slightly over time. 

At acidic and neutral conditions (pH, 2, 7, and 9), some 

monothioarsenate formed after approximately 6-12 h, 

but its share was very minor with only 1-2% of total 

arsenic. At pH 5, with anyway the lowest leaching 

efficacy thioarsenate formation was negligible (< 0.3%). 

At highly alkaline conditions thioarsenates were 

formed. The share of arsenate and thioarsenate 

increased from equal portions of arsenate and arsenite at 

pH 9 (with 1% monothioarsenate) to 59% As(V)-

species including 14% monothioarsenate at pH 12, and 

67% at pH 13 with 15% mono- and 2% dithioarsenate. 

The share of thioarsenates remained stable over time at 

pH 12 (18±4% FeAsSHA and 12±2% FeAsSFG, Table 

EA 3, Figure 4), while at pH 13 the initial share of 10-

15% increased to 20-25% over the investigated time of 

35 days. Dithioarsenate formation was < 0.5% at pH 12. 

At pH 13 between 2-3% dithioarsenate were formed but 

decreased to <0.3 % within the last 14 days of the 

experiment.  

Thioarsenate formation upon arsenopyrite dissolution 

has so far only been described in a PhD study by Zhang 
33. In that study, predominately monothioarsenate was 

found besides arsenate and only small amounts of 

arsenite and dithioarsenate upon alkaline leaching. The 

dominant sulfur species was thiosulfate besides sulfite, 

sulfate, and polythionates. The occurrence of dissolved 

thioarsenates in arsenic-sulfur-iron systems is not trivial 

as strong competition exists between the formation of 

aqueous arsenic-sulfur species and formation of iron-

sulfides or iron hydroxides which could precipitate and 

sorb arsenic or formation of arsenic-iron complexes 51, 

68, 70, 71. We have just recently been able to show that 

thioarsenates can occur in iron rich waters with a 

maximum of 17% monothioarsenate in waters up to 66 

mg/L iron 63. 

. 

 
A) Arsenic speciation after 10” for the pH range 2-13 
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B) Arsenic speciation after 2 days for the pH range 2-13 
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C) Arsenic speciation after 35 days for the pH 
range 2-13 
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Figure 4: Arsenic speciation changes for the 
arsenopyrite leaches (Hartmannsdorf, FeAsSHA) for 
10” (A), 2 (B) and 35 days (C) in the pH-range 2 to 13 
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The fact that no thioarsenates were observed under 

acidic to neutral conditions even though 

monothioarsenate is stable over the entire pH range 43 is 

probably explained by the respective arsenic and sulfur 

species released upon arsenopyrite dissolution. Sulfate 

dominates the sulfur speciation and it is known not to 

react with the released arsenite. Reduced sulfur species, 

such as sulfide and polysulfides, which could react with 

arsenite to first form thioarsenites and quickly oxidize to 

thioarsenates, are obviously not released in sufficient 

quantities 

For the formation of thioarsenates under alkaline 

conditions, this mechanism of arsenite and 

sulfide/polysulfide release and oxidative recombination 

to thioarsenates could be important. Thioarsenites which 

were already previously proposed to form upon 

oxidative arsenopyrite dissolution 7 would then have to 

be key intermediate species because we were able to 

show that thioarsenates only form via thioarsenites 42. 

However, we were also able to show that thioarsenites 

are unstable when OH- concentrations exceed the SH- 

concentrations and that they transform to arsenite by 

competitive OH- versus SH- exchange and dissociation 

without formation of thioarsenates 42. In our present 

experiments, the maximum total sulfur release was 

between 0.7 mM (FeAsSFG) and 2.4 mM (FeAsSHA) at 

pH 13 (OH- 100 mM). Thus, even if all the released 

sulfur was in its reduced form, the OH-concentrations 

would still be 2 orders of magnitude higher and thus 

lead to competitive dissociation of thioarsenites. 

Thioarsenites are thus unlikely to form even as 

intermediate species upon arsenopyrite dissolution. 

Alternatively to thioarsenate formation by oxidative 

recombination of arsenite and sulfide, the following 

mechanism has been suggested for a direct release of 

monothioarsenate based on an electrochemical model, 

i.e. anodic and cathodic reactions on the mineral surface 
33. 

At the cathodic sites dissolved O2 is sorbed (1+2) with 

its subsequent reduction to H2O2 and hydroxide (3). 

 ܱଶ ሺ௔௤,   ௦௢௟௨௧௜௢௡ሻ ՜ ܱଶ ሺ௔௤,   ௦௨௥௙௔௖௘ሻ                (1) 

ܱଶ ሺ௔௤,   ௦௨௥௙௔௖௘ሻ ൅ ሺ௦ሻܵݏܣ݁ܨ  ՜ ሺ௦ሻܵݏܣ݁ܨ · ܱଶሺ௔ௗ௦ሻ       (2) 

ݏܣ݁ܨ ሺܵ௦ሻ · ܱଶሺ௔ௗ௦ሻ൅ ܪଶܱ ൅  2݁ି ՜ ሺ௦ሻܵݏܣ݁ܨ ൅ ଶܱଶܪ ൅

 (3)                   ିܪܱ

 

At the anodic site physisorption of hydroxide and 

electron transfer occurs (4+5), followed by hydroxide 

transposition to either iron or arsenic sites (6). 

 

ݏܣ݁ܨ ሺܵ௦ሻ ൅ ିܪܱ
ሺ௔௤ሻ  ՜ ܵݏܣ݁ܨ · ିܪܱ

ሺ௔ௗ௦ሻ               (4) 

ܵݏܣ݁ܨ · ିܪܱ
ሺ௔ௗ௦ሻ ՜ ݏܣሻܪሺܱ݁ܨ ሺܵ௔ௗ௦ሻ ൅ ݁ି               (5) 

ݏܣሻܪሺܱ݁ܨ ሺܵ௔ௗ௦ሻ ՞  ሻܵሺ௔ௗ௦ሻ               (6)ܪሺܱݏܣ݁ܨ

 

By further electron transfer As-OH-S complexes detach 

from the surface and FeOOH (7) forms. The As-OH-S 

complexes further form thioarsenates (8-12), arsenate 

by thioarsenate decomposition, and oxidized sulfur 

species (13-17). 

 

ሺ௔ௗ௦ሻܵݏܣሻܪሺܱ݁ܨൣ ՞ ሻܵሺ௔ௗ௦ሻ൧ܪሺܱݏܣ݁ܨ ൅ ିܪܱ  ՜

ሻଷܪሺܱ݁ܨ ൅ ሻଷܪሺܱݏܣ  ሺܵ௔ௗ௦ሻ ൅ 5݁ି                (7) 

 

Thioarsenate formation and decomposition: 

 

ሻଷܪሺܱݏܣ ሺܵ௔ௗ௦ሻ ՞  ଷܵ௔ௗ௦                (8)ܱݏܣଷܪ

ଷܱݏܣଷܪ ሺܵ௔ௗ௦ሻ ൅ ିܪ3ܱ ՜ ଷܵଷିܱݏܣ ൅  ଶܱ               (9)ܪ3

ଷܱݏܣଷܪ2 ሺܵ௔ௗ௦ሻ ൅ ିܪ8ܱ ՜ ଷܱݏܣ
ଷି ൅ ݏܣ ସܱ

ଷି ൅ ܵଶ
ଶି ൅

 ଶܱ                 (10)ܪ7

ଷܱݏܣ
ଷି ൅ ܵଶ

ଶି ՜ ଷܵଷିܱݏܣ ൅ ܵଶି              (11) 

ଷܱݏܣ
ଷି ൅ ܵଶ

ଶି ൅ ଶܱܪ ՜ ଶܵଶܱݏܣ
ଷି ൅  (12)             ିܪ2ܱ

 

Formation of oxidized sulfur species and arsenate: 

 

ܵଶି ൅ ିܪ6ܱ ՜ ܱܵଷ
ଶି ൅ ଶܱܪ3 ൅ 6݁ି             (13) 

2ܵଶି ൅ ିܪ6ܱ ՜ ܵଶܱଷ
ଶି ൅ ଶܱܪ3 ൅ 8݁ି             (14) 

ଶܵଶܱݏܣ
ଷି ൅ ିܪ10ܱ ՜    ܵଶܱଷ

ଶି ൅ ݏܣ ସܱ
ଷି ൅ ଶܱܪ5 ൅

8݁ି                 (15) 

ଷܱݏܣ
ଷି ൅ ିܪ2ܱ ՜ ݏܣ  ସܱ

ଷି ൅ ଶܱܪ ൅ 2݁ି             (16) 

ܱܵଷ
ଶି ൅ ିܪ2ܱ ՜ ܵ ସܱ

ଶି ൅ ଶܱܪ ൅ 2݁ି             (17) 

 

Summarizing, the dissolution of arsenopyrite in neutral 

(18) or alkaline media (19) can be written as: 

 

ܵݏܣ݁ܨ ൅ ଶܱܪ6 ՜ ሻଷܪሺܱ݁ܨ ൅ ଷܱܵݏܣଷܪ ൅ ାܪ6 ൅ 6݁ି

                 (18) 
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with reaction of oxygen and water:  

 

ܱଶ൅ 2ܪଶܱ ൅  2݁ି ՜ ଶܱଶܪ ൅  (19)              ିܪܱ

ܵݏܣ݁ܨ ൅ ିܪ6ܱ ՜ ሻଷܪሺܱ݁ܨ ൅ ଷܱܵݏܣଷܪ ൅ 6݁ି      (20) 

 

Thus, ironhydroxides and monothioarsenate are the 

initial leaching products of arsenopyrite dissolution, as a 

surface-controlled reaction. By subsequent 

decomposition of monothioarsenates into 

arsenate/arsenite and sulfide ions, oxidized sulfur 

species (sulfide ions  thiosulfate  sulfate) are 

formed as well as dithioarsenate which also decomposes 

directly into thiosulfate and arsenate. 

The fact that mainly monothioarsenate forms, is owed to 

the nearly stoichiometric release of arsenic and sulfur 

(ΣAs/ΣS 1.2±0.3, see section 3.2.). Dithioarsenate is 

only of minor importance upon arsenopyrite dissolution, 

either due to insufficient sulfur supply or due to its 

instability and transformation to monothioarsenate in 

the presence of iron as previously reported 63. 

3.6. Re-Sorption of thioarsenates to iron 

hydroxides formed at alkaline conditions 

At alkaline conditions, physisorption of hydroxyl 

anions, electron transfer and transposition of OH- to As 

or Fe sites finally lead to formation of ironhydroxides as 

described above. We observed these ironhydroxides as 

orange-yellow precipitates also macroscopically in our 

experiments. They provide excellent sites for re-

sorption of arsenic species and thus significantly 

influence the final aqueous arsenic speciation upon 

arsenopyrite dissolution. The sorption behavior of 

arsenate and arsenite was subject of numerous previous 

studies, which determined a higher sorption efficacy for 

arsenate on goethite and ironhydroxides compared to 

arsenite at pH 5-6 (sorption maxima at pH 4) and 

preferentially arsenite sorption at higher pH with 

sorption maxima between pH 8-9 58, 59. Although its 

known that the sorption efficacy is decreased at alkaline 

conditions, about 20% of arsenate and 30-60% of 

arsenite were sorbed on ironhydroxides, and 30-40% 

arsenate and 60-70% arsenite on goethite from solutions 

with 100 and 50 µM total arsenic, respectively 58. 

However, so far nothing was known about the sorption 

behavior of monothioarsenate on iron(hydr)oxides. Our 

batch experiments showed that sorption efficacy and 

kinetics are lower for monothioarsenate than for 

arsenate and arsenite (Fig. 5). Initial arsenite sorption 

was fast and reached equilibrium conditions already 

after 1 h as observed previously 59, 72.  
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Figure 5: Sorption of arsenate, arsenite, and 
monothioarsenate on α-Goethite - (A) kinetics (at 
solution pH of  9 for arsenite and arsenate, and pH 
10 for monothioarsenate) and (B) sorption isotherms 
For sorption isotherms solution pH increased with 
increasing concentrations following the same trend as 
the concentration curves (7-9 arsenate, 7-10 arsenite, 
and 8-12 monothioarsenate). 
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Arsenate and monothioarsenate showed slower kinetics 

with equilibration after 1 day and 3 days, respectively. 

For the sorption isotherms equilibration on the mineral 

surface was achieved for > 39 µM/g FeOOH initial 

arsenic. Maximal sorption capacities were determined 

with 11, 23, and 26 µmol As/g FeOOH for 

monothioarsenate, arsenate, and arsenite respectively. 

The solution pH increased in the same way as the 

sorption curves and yielded final values of 12, 9, and 10 

for monothioarsenate, arsenate, and arsenite, 

respectively. In line with previous studies arsenite 

showed a better sorption than arsenate at higher pH 58. 

Monothioarsenate sorption was only half of that of 

arsenite and arsenate. Considering both that only about 

30% of the monothioarsenate re-sorbed to iron-

hydroxides in our batch experiments and further that the 

amount of ironhydroxides in the batch experiments (33 

g/L) was orders of magnitudes higher than what could 

be expected to form during arsenopyrite leaching, re-

sorption of monothioarsenate upon arsenopyrite 

dissolution is likely to be only of minor importance. 

However, more detailed studies on monothioarsenate-

FeOOH surface species formation using XAS are 

currently underway. 

3.7. Influence of ionic strength on net total 

arsenic release and thioarsenate formation 

To determine whether thioarsenate formation really is 

mainly a function of pH as shown in section 3.4. or also 

depends on solution ionic strength and net total arsenic 

release, leaching experiments were conducted in 4 mM 

to 800 mM solutions of NaHCO3 and NaOH, yielding 

final pH of 8.1 to 8.8 and 11.3 to 13.4, respectively. Fig. 

6 shows the results for net total arsenic release and 

arsenic speciation. 
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Figure 6: Leaching of arsenopyrite (Hartmannsdorf, FeAsSHA) in different concentrated 
matrices of NaHCO3 and NaOH compared to leaching in 40 mM NaHCO3 at pH 2-12 for 
overall reaction times of 48 hours 
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Applying increasing concentrations of NaOH, total 

arsenic and sulfur release increased about 2-3 fold from 

4 to 40 mM NaOH (Fig. 6, Table EA 5). Higher 

concentrations of NaOH (400 and 800 mM) did not 

further affect dissolution significantly. As shown before 

(Fig. 4), the share of arsenite decreased with increasing 

NaOH concentrations, i.e. increasing pH, and was 

completely transformed in 400 and 800 mM NaOH 

leachates. Arsenate and thioarsenate increased 

accordingly. Thioarsenates finally accounted for 43% at 

pH 13.4 (40% mono-, 3% dithioarsenate). The sulfur 

speciation shifted from thiosulfate predominance in low 

ionic strength solutions (4-40 mM NaOH) to nearly 

equal shares of sulfate, thiosulfate, and sulfur associated 

with thioarsenates in higher concentrated solutions.  

Applying increasing concentrations of NaHCO3 for 

dissolution, arsenic and sulfur release increased 

significantly from 4 mM to 800 mM NaHCO3 by a 

factor of ~200 (Fig. 6, Table EA 5). At 400 mM 

NaHCO3 and a pH of 8.6 total arsenic release was 

comparable to that normally observed under acidic 

conditions and at 800 mM NaHCO3 and a pH of 8.8 the 

release was comparable to the maximum dissolution 

yields at highly alkaline conditions (pH 12 and 13, Fig. 

4). Formation of relatively weak mono- and bicarbonate 

As(III)-complexes was suggested to explain increased 

arsenic leaching (73. If these complexes formed they are 

probably only meta-stable, fully converted to arsenite 

and/or arsenate in our experiments and were thus not 

detectable with our IC-ICP-MS method. Thioarsenates 

increased slightly with increasing NaHCO3 

concentration. However, their share was only 4% even 

at the highest concentration of NaHCO3 applied. For 

sulfur, a shift from sulfate dominance to thiosulfate 

predominance in solutions with 800 mM NaHCO3 was 

observed, similar to what was observed under highly 

alkaline conditions (section 3.4.). 

Summarizing, though total net arsenic release could be 

increased by addition of high-ionic strength NaHCO3 to 

levels comparable to those at highly alkaline leaching 

conditions, the share of monothioarsenate was 

significantly lower at pH 8.8 (4%) than at pH 11 (13%) 

and 13 (40%). This refutes thioarsenate formation to 

depend on net total arsenic or sulfur release and lends 

further support to the proposed direct release 

mechanism by physisorption of hydroxyl anions, 

electron transfer and transposition of OH to As or Fe 

sites.  

3.8. The effect of thiosulfate, sulfide, and 

polysulfides on arsenopyrite dissolution and 

thioarsenate formation 

Thiosulfate is used a lixiviant in industrial leaching 

processes to increase total dissolution and was observed 

to become more important for sulfur speciation with 

increasingly alkaline conditions at which also 

thioarsenates occurred (see section 3.4. and 3.7.). To 

determine potential effects of thiosulfate on thioarsenate 

formation, experiments were conducted in the presence 

of two different thiosulfate concentrations (3 and 30 

µM). As Fig. 7 shows thiosulfate had no significant 

effects either on total arsenic and sulfur dissolution or 

on speciation changes at pH 7 or pH 12. A slight 

increase was observed for total arsenic release at highly 

alkaline conditions (1.1 times more compared to 

leaching without thiosulfate) and a slight decrease at 

neutral conditions (0.8 times less than without 

thiosulfate). The addition of different thiosulfate 

concentrations yielded no significant differences. The 

observed speciation was similar to experiments in the 

absence of thiosulfate with a predominance of arsenite 

at neutral conditions (Fig. 7) and 22% 

monothioarsenate, 35% arsenate and 42% arsenite at 

alkaline conditions (Fig. 7) after 2 days (compare also to 

Fig. 4B). Similar observations were made in Zhang’s 

studies adding 50 µM thiosulfate to 50 g/L arsenopyrite 

leaching in 1.25 M NaOH 33. The fact that thiosulfate 

did not increase the net leaching rate nor the formation 

of thioarsenates confirms that surface or solution 

complexation of thiosulfate with arsenite is not a 

significant pathway for thioarsenate formation upon 

oxidative arsenopyrite dissolution.  
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Figure 7: Arsenic speciation in arsenopyrite leachates (FeAsSHA) depending on redox-state and 
solution composition  

 

The effects of sulfide and polysulfides on net arsenic 

release and thioarsenate formation had to be tested 

under anoxic conditions to prevent premature oxidation 

to thiosulfate or sulfate. As it is known that reductive 

arsenopyrite dissolution is significantly lower than 

oxidative dissolution 14, 18, 40, comparative leaching 

experiments were first carried out with oxygen 

exclusion in the absence of additional sulfur species. 

Under neutral conditions, total arsenic concentrations in 

solution decreased by a factor of approximately 2 (Fig. 

7). There was no redox-controlled preference for arsenic 

or sulfur leaching after 2 days. As observed under oxic 

conditions, more sulfur than arsenic was released 

(ΣAs/ΣS ratio ~0.4). The arsenic speciation compared 

well to that under oxic conditions with approximately 

70% arsenate and 30% arsenite. The formation of 

thioarsenates was of minor importance at both, oxic and 

anoxic conditions (< 5%). The share of sulfide and the 

non-identified sulfur species increased from 0 and 12% 

(oxic) to 6 and 14% (anoxic), respectively. At alkaline 

conditions, the redox-effect was even stronger with a 

decrease by a factor of 7 under anoxic conditions (Fig. 

7). The substantial decrease corresponds to previous 

observations that oxygen is the main oxidation agent at 

high pH, while it is ferric iron at low pH 15. Compared 

to arsenic, more sulfur was released (ΣAs/ΣS decreased 

from 0.9 (oxic) to 0.4 (anoxic)). Especially the share of 

the non-identified sulfur species increased (from 4% to 

33%) under anoxic conditions. While arsenite remained 

stable around 30%, the share of monothioarsenate 

increased under anoxic conditions (20% to 40%) at the 

expense of arsenate (Fig. 7, Table EA 5). The higher 

share of thioarsenates under anoxic conditions could be 

the result of thioarsenate instability under oxic 

conditions 64 or an indication for additional formation in 

solution due to greater release of reduced sulfur species 
42. 

The presence of sulfide or polysulfides under anoxic 

conditions enhanced arsenopyrite dissolution at neutral 

conditions, but suppressed it at highly alkaline 
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conditions (Fig. 6, Table 3). Increasing sulfide or 

polysulfide concentrations aggravated the effects and in 

general, polysulfides had a slightly more pronounced 

effect than sulfide. At neutral conditions, total released 

arsenic increased by approximately 1.1 at low and 3.9 at 

high (poly)sulfide concentrations. These observations 

compare to previous studies in which sulfide was shown 

to enhance arsenopyrite dissolution under near neutral 

conditions 30, but only in the presence of at least 2% 

oxygen, not under anoxic conditions. Since the authors 

did not study arsenic speciation, they could only 

speculate that formation of thioarsenic species should 

drive the dissolution under both (hyp)oxic and anoxic 

conditions. From the results of the present study we can 

state, that thioarsenates are neither at oxic nor anoxic 

conditions predominant arsenic species under neutral 

conditions. The underlying mechanism for the observed 

increase in dissolution is thus not clear, yet. Potentially, 

reduced sulfur species decreased or impeded the 

formation of arsenic and iron-oxide surface species and 

thus increased arsenic dissolution. Speciation remained 

fairly stable with formation of some monothioarsenate 

(max. 6%) at the expense of arsenite which could be 

attributed either to solution reactions between arsenite 

and excess sulfide or polysulfides as reported before 42 

or to increased stabilization of released 

monothioarsenate by excess sulfide in the presence of 

iron. 

At alkaline conditions, dissolution was reduced by a 

factor of approximately 0.7; at higher polysulfide 

concentrations even by 0.4 (Fig. 7, Table EA 5). 

Addition of sulfide and polysulfides leads to a slight 

increase in thioarsenates from 43% (at pH 12 under 

anoxic conditions) to 46% and 57%, respectively. 

Addition of polysulfides induced the formation of 

dithioarsenate (5%) and trithioarsenate (2%) traces 

besides monothioarsenate (52%). Since the net total 

arsenic release decreased at high pH we can assume that 

neither sulfide nor polysulfide anions trigger the same 

effect of physisorption, electron transfer and 

transposition with release of thioarsenates as hydroxyl 

anions do. On the contrary, competition seems to 

decrease hydroxyl anion sorption. The increase in 

thioarsenate species at the expense of arsenite can in 

this case not be explained by solution reactions between 

arsenite and excess sulfide or polysulfides as 

thioarsenites, the necessary intermediate species for 

thioarsenate formation, cannot form at the highly 

alkaline conditions. Only a stabilizing effect of the 

reduced sulfur species in solution on the released 

thioarsenates seems to explain our observations.  

4. Conclusion 

In the present study, the formation of aqueous 

arsenic(V)-sulfur species, so called thioarsenates during 

dissolution of the sulfide minerals orpiment and 

arsenopyrite was investigated time-, pH-, and redox-

dependent. Special focus was laid on the behavior and 

thioarsenate formation mechanisms upon arsenopyrite 

leaching under restricted oxic and anoxic conditions and 

depending on the composition of the leaching solution 

in terms of ionic strength, pH, and the presence of 

aqueous thiosulfate and (poly)sulfide species.  

In line with prior knowledge, arsenopyrite showed the 

lowest leaching rate at near neutral pH, while orpiment 

dissolution increased base-promoted, yielding the 10-

100 fold arsenic release at pH > 7 compared to 

arsenopyrite. No thioarsenate formation was observed 

for leaching of both sulfide minerals at acidic conditions 

which can be explained by precipitation of arsenic-

sulfides, instability of thioarsenic complexes, or the 

release of oxidized sulfur and arsenic species which do 

not interact to form thioarsenates. At highly alkaline 

conditions thioarsenates accounted for up to 43% of the 

arsenic speciation. Thereby orpiment dissolution yielded 

approximately equal shares of mono-, di-, and 

trithioarsenate, while only monothioarsenate was 

formed upon arsenopyrite leaching. From orpiment, 

thioarsenates were formed already at neutral conditions 

(50%) with a predominance of the higher 

SH-substituted trithioarsenate (31%).    
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Figure 8: Summary of orpiment vs. arsenopyrite leaching  

 

Different leaching mechanisms cause the observed 

speciation differences between arsenopyrite and 

orpiment at neutral and alkaline conditions. 

Thioarsenate formation from orpiment leaching occurs 

via recombination of sulfide and arsenite to 

thioarsenites or direct release of thioarsenites, 

transforming to thioarsenates under oxic conditions. The 

speciation pattern matches the recently observed 

formation of thioarsenates in oxic arsenite-sulfide 

mixes, with the species distribution depending on the 

SH:As and OH:SH ratios. In case of arsenopyrite 

dissolution, physisorption of hydroxyl anions, electro 

transfer and transposition of hydroxyl to As or Fe sites 

finally leading to release of monothioarsenate is 

postulated At neutral conditions possibly iron-arsenic 

oxide complexation is kinetically favored, which 

become unstable with increasing pH, where 

physisorption prevails. The formation of ironhydroxides 

upon arsenopyrite dissolution under alkaline conditions 

provides possible sorption sites for the released arsenic 

species. However, batch experiments showed that 

sorption efficacy and kinetics follow the order arsenite > 

arsenate > mono-thioarsenate, revealing the highest 

mobility for monothioarsenate and a much less effective 

retention compared to arsenate and arsenite. 

Under completely anoxic conditions, arsenopyrite 

dissolution is significantly reduced. However, in the 

presence of (poly)sulfides, leaching could be increased 

at least for neutral conditions by approximately a factor 

of 4 at the highest applied concentrations of 167 and 

300 µM sulfide and polysulfide, respectively. The share 

of monothioarsenate increased slightly, probably due to 

a stabilizing effect of the reduced sulfur species in 

solution. However this slight increase cannot explain the 

general increase in total released arsenic as previously 

speculated. Thiosulfate, an industrial lixiviate for gold 

leaching, did not change speciation or total arsenic 

release for neutral and alkaline oxic leaching. Total 
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arsenic release was increased by increasing the ionic 

strength of the leaching solution from 4 to 800 mM 

NaHCO3 (pH 8-9). Thereby, total arsenic release was 

comparable to that upon NaOH addition (40-800 mM) 

at pH 12-13, potentially due to formation of arsenic-

carbonate or iron-carbonate complexes. However, while 

at high pH substantial thioarsenate formation was 

observed (maximum 40%), the share of thioarsenate 

remained low in the high-ionic-strength NaHCO3 

solutions which further supports the hypothesis of 

thioarsenate formation as a result of physisorption of 

hydroxyl anions. 

Overall the present study has shown that thioarsenates, 

even the higher sulfur-substituted trithioarsenate, are 

potential species released during dissolution of 

arsenopyrite and orpiment at (highly) alkaline 

conditions as well as at neutral conditions for orpiment. 

Apart from natural settings, such conditions also exist 

e.g. in calcite-treated tailings or industrial alkaline 

leaching facilities. As the released monothioarsenate 

shows lower potential for re-sorption onto secondary 

ironhydroxides compared to arsenate and arsenite its 

environmental mobility and toxicity must be taken into 

account for future assessment studies in sulfidic 

environments.  
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