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Zusammenfassung 

Mechanisch herausragende, biologische Hochleistungsmaterialien wie Holz, Perlmutt oder 

Spinnenseide können bedeutend dazu beitragen, die globalen Herausforderungen unserer Zeit zu 

meistern. Dabei ist ihre jeweils direkte Verwendung als Werkstoff nachrangig. Viel wichtiger ist, dass 

wir durch sie einen Einblick gewinnen können, nach welchen Konzepten die Natur derartige 

Materialien aufbaut. Basierend auf einem limitierten Repertoire an (natürlichen) chemischen 

Bausteinen werden diese Materialien in der Natur bei milden (natürlichen) Prozessbedingungen 

höchst effizient assembliert und strukturiert. Und trotz dieser (natürlichen) Einschränkungen bleiben 

sie bezüglich ihres Herstellungsprozesses und vor allem bezüglich ihres Eigenschaftsspektrums für 

den Menschen mit seinen weitreichenden Fabrikations-Möglichkeiten bis dato tatsächlich 

„unnachahmlich“. Verantwortlich für die außergewöhnlichen mechanischen Eigenschaften 

biologischer Hochleistungsmaterialien sind hauptsächlich zwei grundlegende Konzepte: deren 

hierarchische Strukturierung und ihr Aufbau als Kompositmaterialien (bzw. die Kombination dieser 

beiden Konzepte).  

Beinahe allgegenwärtig findet man beides auf der Basis (nano-)fibrillärer Grundbausteine 

verwirklicht. Voraussetzung für ein anwendungsrelevantes Verständnis biologischer 

Hochleistungsmaterialien ist zunächst ein umfassendes Verständnis dieser Grundbausteine. So ist 

die Entwicklung von Methoden zur umfassenden Charakterisierung von (Nano-)fasern, sowohl 

mechanisch als auch in Bezug auf deren Wechselwirkungen, das übergeordnete Ziel dieser Arbeit. 

Derartige Untersuchungen einzelner Fasern mit mikro- oder nanoskopischem Durchmesser stellen 

besondere Ansprüche an die Messmethode. Die Rasterkraftmikroskopie (atomic force microscopy, 

AFM) bildet eine attraktive Möglichkeit über die reine Visualisierung hinaus diesen Ansprüchen 

gerecht zu werden und die mechanischen Eigenschaften solcher Fasern sensitiv zu untersuchen oder 

sogar ihre Wechselwirkungen untereinander oder mit anderen Objekten direkt zu messen.  
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Die mechanischen Untersuchungen in dieser Arbeit wurden mittels AFM-basierter mikroskopischer 

Dreipunkt-Deformationsversuche durchgeführt. Hierbei werden die betreffenden Fasern zunächst 

auf einem Glassubstrat, das mit Mikrokanälen vorstrukturiert ist, abgelegt. Die über den Kanälen 

freistehenden Fasersegmente können mittels eines AFM Cantilevers senkrecht zur Faserachse 

kontrolliert deformiert werden. Aus den resultierenden Kraft-Deformationskurven lassen sich die 

mechanischen Eigenschaften der Fasern ableiten. Diese Methode erlaubt es, (Nano-)fasern entlang 

konsekutiver, kurzer Segmente reversibel und irreversibel (bis zum Bruch) bei kontrollierten 

Umgebungsbedingungen mechanisch zu charakterisieren.   

Elastische, vertikale Deformationen ausgeübt mit spitzenlosen AFM Cantilevern und hoher 

Kraftauflösung geben beispielsweise zuverlässige Werte für den E-Modul solcher Nanofasern. Dies 

wird dann besonders deutlich, wenn identisch hergestellte, elektrogesponnene Nanofasern aus 

Polyvinylalkohol sowohl mit dieser AFM-basierten Methode, als auch mit dem komplementären – da 

uniaxialen – Zug-Dehnungsversuch getestet werden (Kapitel III.2). Letzterer ist die 

Standardmethode für die mechanische Charakterisierung makroskopischer Fasern und die 

Dateninterpretation dementsprechend etabliert, steht aber in Bezug auf Nanofasern der AFM-

basierten Methode in Kraftauflösung und Probenanforderungen (Mindestlänge und –durchmesser 

der Fasern) nach. Die erstmalige Verifizierung der Konformität beider Methoden ist Grundlage für 

die Vergleichbarkeit von Faserstudien. Darüber hinaus gibt diese Studie Einblicke in die molekulare 

Struktur elektrogesponnener Nanofasern. Wie mit beiden mechanischen Testmethoden unabhängig 

zu beobachten ist, steigt der E-Modul mit sinkendem Faserdurchmesser signifikant an. Dies ist auf 

die hohen Scherraten beim Elektrospinning zurückzuführen, welche die Molekülketten an der 

Faseroberfläche verstrecken und entlang der Faserachse ausrichten. Dieser Effekt dominiert den E-

Modul umso stärker je größer das Oberfläche-zu-Volumen-Verhältnis, also je kleiner der 

Faserdurchmesser wird. 

Bei Nanofasern aus (rekombinanten) Spinnenseiden ist vor allem das Bruchverhalten, also die 

Bruchdehnung und die Zähigkeit, von Interesse. Diese Größen sind über eine Abwandlung der 

vorangegangenen Dreipunkt-Deformationsversuche zugänglich: die Verwendung eines Cantilevers 

mit Spitze ermöglicht nunmehr die laterale Deformation eines freistehenden Fasersegments welche 

instrumentell bedingt größere Faserdeformationen erlaubt. In der Studie in Kapitel III.3 wurde so 

das gesamte mechanische Spektrum rekombinanter, elekrogesponnener Spinnenseidenproteine 

untersucht wobei einzelne Einflussparameter isoliert beobachtet werden konnten: das 
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Elektrospinning bzw. die Fasernachbehandlung im Alkohol-Dampf erlauben es den Anteil von β-

Faltblattstrukturen in den Fasern einzustellen. Im Zusammenspiel mit dem Luftfeuchtigkeitsgehalt 

der Umgebung zeigt sich so, dass nur Fasern mit hohem Quervernetzungsgrad durch β-Faltblätter 

und hohem Wassergehalt die Zähigkeit natürlicher Spinnenseide erreichen.  

Um Wechselwirkungen von Fasern zu detektieren, kann die sogenannte „Colloidal Probe“ Methode, 

bei der kolloidale Partikel an spitzenlose AFM Cantilever geheftet werden, abgewandelt werden. Das 

Anbringen eines einzelnen Fasersegments an einen spitzenlosen Cantilever mittels 

Mikromanipulation ermöglicht ein anschließendes Annähern und Entfernen dieser Faser an eine 

zweite Faser und zeigt so deren Wechselwirkungen in ihrer Kraft-Abstandskorrelation. 1,3,5-

Cyclohexantrisamide (CTAs) eignen sich modellhaft für solche Versuche, da sie zum einen mit 

verschiedenen peripheren Gruppen (hier Alkyl bzw. perfluoriert) synthetisiert werden können und 

somit Kontrolle über die Oberflächenchemie bieten. Zum anderen bilden CTAs Supramoleküle aus 

und können aufgrund ihrer großen intermolekularen Kohäsion zu Fasern schmelz-elektrogesponnen. 

Diese Fasern sind mit glatten Oberflächen und Durchmessern um etwa 5 µm ideal für Faser-Faser-

Wechselwirkungsmessungen. Um Kapillarkräfte zu vermeiden, wurden solche Faser-Faser-

Experimente in wässrigen Salzlösungen kontrollierter Ionenstärke durchgeführt und konnten dann 

gemäß der DLVO-Theorie interpretiert werden (Kapitel III.4). Als Ergebnis erhält man bei 

symmetrischen Versuchen (beide Fasern bestehen aus dem gleichen Material) die effektive 

Oberflächenladungsdichte, welche wie bei flachen Filmen für das alkylierte System aufgrund 

asymmetrischer Adsorption von Hydroxidionen größer ist als bei dem perfluorierten System. Auf 

dieser Basis können Wechselwirkungen von Fasern untereinander sowie weiterführend von Fasern 

mit Umgebungspartikeln interpretiert werden. Diese Kenntnisse ermöglichen ein prinzipielles 

Verständnis etwa von Filtrationsprozessen. 

Zusammenfassend wurden in dieser Arbeit AFM-basierte, generische Herangehensweisen 

weiterentwickelt, welche es erlauben, (Nano-)Fasern umfangreich zu charakterisieren. Diese 

methodischen Grundlagen wurden beispielhaft auf Vertreter eines breiten Materialspektrums 

(Polymer, Protein, Surpramoleküle) angewendet und vertiefen dabei das Verständnis des 

Faserspinnprozesses beim Elektrospinnen, rekombinanter Spinnenseidenproteine bei 

unterschiedlichen Umwelteinflüssen sowie von niedermolekularen Supramolekülen. 





 

XV 
 

Summary 

Wood, nacre and spider silk are examples for mechanically exceptional biological high-performance 

materials. These materials are most valuable because they provide insights into nature’s principal 

concepts of material design and, therefore, might play a significant role in facing the global 

challenges of our time. It is amazing, how nature starts out from a very limited (the natural) 

repertoire of chemical compounds and assembles/structures these materials at benign (natural) 

conditions at highest efficiency to grow these outstanding materials. Despite the limitations involved 

in the natural process and modern industry overcoming all of those limitations separately, biological 

high-performance materials still cannot be recreated artificially. Intense research on structural 

biomaterials revealed two principal concepts, which are held liable for the exceptional mechanical 

properties: hierarchical structuring over several length scales and the use of composite materials 

(and the combination of both concepts, respectively). 

Both concepts can be found for many examples throughout nature and very often (nano-)fibers 

form the basic building unit on the lowest hierarchical level. Transferring these concepts to synthetic 

materials first requires full comprehension of the natural process, starting from the basic structural 

component, i.e. the (nano-)fiber. This thesis contributes to that understanding by further developing 

methods to fully characterize (nano-)fibers in terms of their mechanical behavior as well as with 

regard to their interactions.  

Investigations of individual fibers with micro- or nanoscopic diameters impose special requirements 

on the measurement technique. Atomic force microscopy (AFM) is an attractive platform to go 

beyond fiber imaging and sensitively deform such fibers mechanically or even directly measure their 

interactions among each other or with further objects. 

In this thesis, mechanical characterization of nanofibers is accomplished by AFM-based microscopic 

three-point deformation testing. This method involves depositing fiber specimen on a glass 
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substrate, which is pre-structured with microchannels. Fiber segments that are suspended over the 

microchannels (i.e. free-standing segments) are accessible for controlled deformations 

perpendicular to their long axis by an AFM cantilever. The resulting force-deformation curves allow 

to derive the mechanical properties of the fibers. This approach facilitates mechanical 

characterization of consecutive short segments along a single (nano-)fiber. It is receptive for testing 

reversibly or irreversibly (until rupture) and at controlled environmental conditions.   

The Young’s modulus of nanofibers, for instance, can be determined very precisely using a tipless 

AFM cantilever and applying small, elastic deformations. The standard method for mechanical 

testing of macroscopic fibers is the uniaxial tensile tester, which benefits from the simple setup and 

straightforward data evaluation. However, when testing nanofibers, tensile testing suffers from 

inherent specimen limitations and the coarse force resolution. To ensure comparability of 

mechanical fiber studies based on either of the two methods (tensile testing or AFM three-point 

deformation), identically prepared, electrospun polyvinyl alcohol nanofibers have been tested using 

both approaches (chapter III.2). The elucidated conformity and the mutual validation of methods is 

a crucial step for advanced nanofiber design. Furthermore, this study provides insights into the 

molecular structure of electrospun nanofibers. Both testing methods independently agree on 

significantly increasing Young’s moduli when fiber diameters decrease. This can be explained by the 

extraordinary shear rates during electrospinning, which stretch and align the polymer chains close to 

the fiber surface. This effect dominates the Young’s modulus more and more as the fiber diameter 

decreases because the surface-to-volume ratio increases accordingly.  

The special interest in spider dragline silk arises from its outstanding rupture properties, e.g. 

extensibility and toughness. Those parameters can be determined for nanofibers as well, when the 

aforementioned AFM-based three-point deformation testing is modified: using a cantilever with a 

sharp tip allows for lateral deformations of the free-standing fiber segment and hence, 

instrumentally, for larger deformations. In chapter III.3, this approach was employed to determine 

the complete mechanical spectrum of electrospun, recombinant spider silk protein nanofibers while 

explicitly investigating the influence of β-sheet content in the protein and environmental humidity. 

As the main result, it became evident that spider silk can only reach the natural thread’s toughness 

at high physical cross-linking (high β-sheet content) and high hydration. 

The “colloidal probe technique” utilizes colloidal particles attached to tipless AFM cantilevers to 

directly determine their interaction with other surfaces. This technique can be modified with regard 
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to fiber-fiber interactions when a fiber segment is immobilized at the cantilever and approached to 

or retracted from a second fiber in crossed-cylinder geometry. An exemplary system for such 

measurements are 1,3,5-cyclohexanetrisamides (CTAs), which are studied in chapter III.4. CTAs can 

be synthesized with different peripheral groups (alkyl and perfluorinated in this work), which largely 

allows to control the respective surface chemistry. Furthermore, these molecules exhibit strong 

cohesion forces making them capable of supramolecular self-assembly. The strong cohesion also 

facilitates CTAs to be melt-electrospun to smooth fibers of diameters around 5 µm. To avoid 

capillary forces, the AFM-based fiber-fiber interaction measurements have been conducted in 

aqueous salt solutions of controlled ionic strength and for symmetric systems, i.e. both fibers are 

made of the same material, respectively. Evaluation according to the DLVO theory yields an effective 

surface charge density, which is higher for the alkyl system compared to the perfluorinated one. This 

result is in accordance with studies on self-assembled monolayer films with similar terminating 

groups and can be attributed to the asymmetric adsorption of hydroxide ions from the aqueous 

solution. The surface properties of such fibers are the basis to understand fiber interactions and also 

the interactions of fibers with other particles, e.g. as relevant for filtration. 

In summary, this thesis demonstrates generic AFM-based approaches to comprehensively 

characterize (nano-)fibers. The methodical principles have been exemplarily shown with respect to a 

broad material spectrum (polymer, protein, supramolecule). The individual studies provide insights 

into the fiber formation process in electrospinng, the molecular picture of spider silk mechanics at 

different environmental conditions and low molecular weight supramolecules. 
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I.1 Motivation 

Only the hierarchical structuring of composite materials renders the outstanding properties 

of nature’s high-performance materials possible. This thesis contributes to the fundamental 

understanding of (nano-)fibers, a ubiquitous building block in such materials. 

 

Nature’s high-performance biomaterials have fascinated mankind for thousands of years – from 

ancient cavemen to modern material scientists. Cavemen showed their fascination mostly in a 

practical manner by the extensive use of e.g. wood and bone in their everyday life. Those two 

materials, for instance, combine high toughness and low weight making them appealing for all kinds 

of practical applications. Today’s material scientists in contrast are primarily trying to understand 

the principles rendering these properties possible – and always aim at eventually designing similar 

materials themselves.1 Especially structural biological materials as wood2, 3 and bone,3-6 but also 

nacre,4, 5, 7 teeth,8, 9 bamboo,4, 5, 10 or spider silk11-13 amaze not only because of their superior 

mechanical properties (e.g. bamboo’s strength or the silk’s outstandingly high toughness each at 

relatively low density). Those materials also amaze due to their formation process: they all emerge 

from a very limited set of chemical compounds (e.g. biopolymers, some minerals and ions) that are 

assembled at ambient temperatures and pressures3-5 and, of course, will finally undergo complete 

biodegradation. In the light of these critical limitations imposed on the formation process, the 

following questions arise: how can organisms grow biomaterials that compete with or even 

outperform modern synthetic materials despite their comparatively small construction kit to start 

with? How can trees, for instance, grow to such large and robust structures, how can spiders spin 

such strong yet extensible threads, both using nothing but sugars or amino acids and water at 

benign process conditions? And ultimately, how can we imitate such systems? 

The answer is “simple”: complex hierarchical structuring of composite materials.3, 4, 14  
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Hierarchical Structuring 

The concept and benefits of hierarchical structuring can be illustrated best when examining two very 

different yet related examples: the man-made Eiffel Tower and naturally grown bamboo culms 

(Figure 1).*  

In 1889, the Eiffel Tower surpassed the Washington Monument (an unstructured obelisk) as the 

tallest man-made structure in the world almost doubling this former height record.15 The Eiffel 

Tower’s height of 324 m was made possible by the approach of hierarchical engineering, i.e. the 

tower is precisely structured in ever smaller building components over almost 7 decimal powers 

(Figure 1, yellow parts). The tower’s four main pillars (that fuse at the top) each consist of a 

multitude of crossbars that in turn are made from individual struts. These struts are clenched by 

rivets, which finally were manufactured at sub-mm accuracy.16 This principle has made the Eiffel 

Tower mechanically and aesthetically extremely successful as evidenced by the record-setting height 

and the vast number of visitors every day. Additionally, this principle facilitated the construction of 

the tower within only approximately 26 months. Of course, the tower owes its final stability not only 

to its engineered structure but also to the use of robust puddle iron for all the building components. 

Iron is stiff and strong and therefore it was the material of choice in such a project. However, its 

robustness comes at the price of high density. This determines a total weight of  7 300 tons for the 

Eiffel Tower’s metal structure.15 Yet, this may seem heavy only at first glance. Due to the 

macroscopic structuring, the tower’s overall relative density is as small as approximately one per 

mille as compared to bulk iron.16 So, the radical new design has made the tower comparatively light-

weight, stable, and high. But still, there is plenty of room at the bottom17 to further exploit the 

principles of hierarchical structuring. 

The consequent continuation of the Eiffel Tower’s macroscopic design principles on the meso- and 

nanoscale can be found in many biological high-performance materials. Nature’s “architects” master 

the task of multiscale hierarchical structuring and hence fuel human interest in understanding such 

biomaterials. One example is bamboo (Figure 1, blue parts), which combines high strength with low 

density. On the macroscopic scale, a bamboo’s stem (or culm) can be divided into the denser nodes 

and the hollow internode section. The culm’s wall in the internode section is an axially oriented fiber 

                                                           
*
 Additionally, in chapter II.6, the hierarchical structure of spider silk threads will be discussed as a further 

example of the concept. 
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composite with a surrounding foam-like matrix.10 This composite gradually densifies with distance 

from the culm’s center. Therefore, the culm also becomes stiffer and stronger from inside to the 

outside. Finally, at the lowest level of hierarchy, the cells forming the composite themselves are a 

lamellar fiber composite of cellulose microfibrils embedded in lignin and hemicellulose, similar to 

wood.3, 10 With continuous structuring throughout almost 12 orders (!) of magnitude in length, 

bamboo is highly optimized for its environmental needs within its given natural limitations (i.e. 

growth at benign temperature and pressure, limitation of chemical compounds available).  

 

Figure 1| The Eiffel tower is a masterpiece of human engineering and hierarchically structured over almost 7 

orders of magnitude in length – from its total height down to the sub-mm scale.
*
 Many of nature’s materials, 

for instance bamboo, are further structured on the meso- and down to the nanoscale giving rise to their 

outstanding (mechanical) properties at simultaneous low weight.
†
 

                                                           
*
 Iron’s crystal structure is not considered as it is arguably not intentionally arranged by the manufacturer.   

†
 Individual images are taken from: (access date 23.08.2016 for all) 

http://www.budgettraveltalk.com/2015/03/19/budget-arashiyama-bamboo-forest/ 
http://bamboohabitat.com/bamboo-poles/ 
http://cheapvacationholiday.com/eiffel-tower/#prettyPhoto[gallery]/2/ 
http://www.thousandwonders.net/Eiffel+Tower 
http://b.saaraa.com/?p=73 
http://weheartit.com/entry/group/39989215 
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When comparing the structures of both, the Eiffel Tower and bamboo, one can find predominantly 

high-aspect ratio structural building components on several hierarchical levels. Similar to the 

tower’s pillars, crossbars, struts, and rivets, bamboo exhibits aligned macroscopic fibers that consist 

of ever smaller fibrils. These almost one-dimensional components are mostly oriented to face 

stresses along their axis. Furthermore, placing building components only where load-bearing is 

necessary allows for omitting large amounts of material, which in turn reduces the overall weight. 

This is one reason, why one-dimensional objects are found in many man-made structures and 

throughout nature’s materials. Notably, the Eiffel Tower’s iron struts are also designed for bending 

rigidity while bamboo’s fibers can be easily bent perpendicular to their long axis. Therefore, bamboo 

attains its flexibility and adjusts its resistance to bending by the density variation in the wall of the 

culm.  

Composite Materials 

Apart from hierarchical structuring, the second fundamental concept found in nature’s high-

performance materials is the combination of two (mechanically) dissimilar materials in a composite. 

Virtually every biomaterial is a composite of some kind.5 This is the case for bamboo within each 

hierarchical level (fiber reinforced matrices) and even more apparent for mineralized materials such 

as bone or nacre. In the latter, calcium carbonate platelets are glued together by a protein matrix in 

a brick and mortar structure.4, 5, 7 The specific deformation mechanisms that facilitate e.g. high 

toughness and fracture resistance are as diverse as the materials themselves. Yet, the basic 

components in those composites or the principle, respectively, are conserved throughout the 

materials: stiffer reinforcements are surrounded by a softer matrix at perfectly matched 

interphases. Together, the components in such systems synergize to yield a toughness far beyond 

the ones of the individual components.4  

This concept can also be found in human engineering already, however not in the Eiffel Tower. 

Instead, examples are fiber reinforced concrete and polymers18 or carbon nanotube composite 

materials.19 Still there is much to learn from nature, especially with respect to interfacial design and 

                                                                                                                                                                                    
http://www.uncommongoods.com/product/eiffel-tower-bolt-puzzle 
http://www.befestigungsfuchs.de/blog/die-wichtigsten-gewindearten-im-ueberblick/ 
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the buildup of gradient materials. Only composites with interfaces designed for sufficient interaction 

can yield synergistic mechanical effects.8, 20 

Focusing on nature’s prototype biomaterials, it is noticeable that basic building blocks almost always 

have at least one dimension in the nanoscale (e.g. nanofibers or nanoplatelets). There seem to be 

two dominating reasons for that: 

(1) Small objects maximize internal interfaces. The interface in a biological composite must be 

considered an integral part of the material just as the matrix or the reinforcement filler themselves. 

If matched poorly, interfaces will weaken the material as stresses concentrate and eventually cracks 

form right there. However, if matched well, these interfaces can serve to trap or deflect cracks 

(especially interfaces between components with different Young’s moduli), which yields enhanced 

material properties.8, 21-23 Consequently, a maximized internal interfacial area is desired and can be 

achieved by maximizing the aspect ratio of the filler component, i.e. by decreasing at least one 

dimension to the nanoscale. 

(2) Nanoscale objects have properties different from bulk. Single sheets of graphene24 or individual 

metal nanowires25 are examples that show certain mechanical properties (Young’s modulus, 

strength) substantially surpassing the respective properties of the bulk material. The vastly 

increased surface-to-volume ratio and the decreased probability for defects are held liable for these 

observations.20 This trend of beneficial mechanical properties of nanoscale morphologies holds for 

many examples (graphene and carbon nanotubes, nanowires, electrospun nanofibers and others). 

The consequence again is to incorporate preferably these nanoscale components as fillers in a 

composite, as demonstrated by nature.   

I.2 Objective of the Thesis 

One key objective in material science in general is to achieve a fundamental understanding of 

nature’s principle to use hierarchical structures and composite materials. Eventually, human 

engineers are by far less limited than organisms, e.g. bamboo plants, in terms of material choice or 

processing parameters. So, if we fully comprehend nature’s design principles and the physical 
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phenomena involved in nature’s nano- and mesoscale structuring, we might be able to rationalize 

visionary new materials that might aid to face the global challenges of our time. To achieve a 

thorough understanding of any hierarchical or composite material, first, an understanding of the 

principal building component is indispensable. Ubiquitous building components in many natural 

materials are nanofibers, which are found for instance as the cellulose fibers in wood or bamboo, as 

the mineralized collagen fibrils in bone, or the silk filaments in the spider’s dragline thread. The 

focus of this work is to contribute to that fundamental understanding of hierarchically structured 

materials by elucidating deformations and interactions of (nano-)fibers based on direct force 

measurements using the atomic force microscope (AFM).  

This thesis emphasizes the methodical development of the AFM as a tool to comprehensively 

characterize fibrillar systems (the “fertile ground” in Figure 2). Based on this ground, the thesis 

contributes to an advanced understanding of the most important cornerstones when dealing with 

fibrillar systems: fiber structure and formation, fiber mechanics, and fiber surface properties. 

Exemplary for those points, the electrospinning process, structural transitions in single spider silk 

nanofilaments and surface phenomena of supramolecular 1,3,5-cyclohexanetrisamide microfibers 

(the “flowers” in Figure 2) are investigated in further detail.  

Methodical Development. The AFM is still predominantly used as an imaging tool for surface 

topographies at nanoscopic resolution. Yet, it has also evolved employing its force sensing 

capabilities to directly probe a multitude of interaction forces in a wide variety of systems. With 

respect to fibrillar systems, one essential aspect is the mechanical behavior of individual (nano-

)fibers, which can conveniently and reproducibly be studied by sophisticated AFM approaches. One 

goal of this thesis is to demonstrate AFM-based three-point deformation tests as a reliable method 

to mechanically characterize single fibers. Free-standing fiber segments can be loaded vertically or 

laterally to precisely determine elastic and/or rupture properties. The three-point procedure is 

benchmarked here against single fiber tensile testing and the conformity of both methods is 

verified.  

Beyond fiber mechanics, especially fiber surface properties dominate the interactions of fibers 

among each other as well as of fibers with their respective surrounding – key properties in e.g. 

composite materials but also in filtration applications. Accessing these properties is almost 

exclusively possible by an advancement of the well-known colloidal probe technique in AFM. In this 



I. Introduction 
 

29 
 

thesis, fiber segments have been immobilized on tipless AFM cantilevers and their interactions with 

other fibers have been measured directly.  

 

Figure 2| Pictorial overview over the objectives of this thesis. Advanced AFM-based techniques fertilize the 

ground for a fundamental understanding of fibrillar systems. This understanding distinctly flourishes for fiber 

formation by electrospinning, for recombinant spider silk and inferences for the natural blueprint, and for the 

self-assembling 1,3,5-cyclohexanetrisamides with different peripheral groups.   

 

Electrospinning. Electrospinning is capable of shaping a multitude of materials (here: polyvinyl 

alcohol) to micro- and nanofibers. Thereby, it strongly influences the molecular conformation of the 

respective material as it tends to stretch and align e.g. polymer chains on the fiber surface. This 

effect is directly reflected in the fiber stiffness as studied here by AFM single fiber three-point 

testing. Furthermore, the huge velocity of the spinning process influences crystallization within the 
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fibers as demonstrated using spider silk as an example. Again, this is studied here mechanically on 

the single fiber level.  

Spider Silk. The single silk protein fiber measurements presented in this thesis allow for the first 

time to investigate the mesoscale properties of dragline silk threads. The strongly pronounced 

influence of crystal content and hydration from environmental humidity has a marked influence on 

the nanofilaments’ extensibility and therefore also on their toughness. 

1,3,5-cyclohexanetrisamides (CTAs). The strong supramolecular cohesion of this molecular class 

facilitates to shape them into smooth, homogeneous fibers via melt-electrospinning. AFM-based 

direct fiber-fiber interaction measurements elucidate the distinct behavior of alkyl-terminated and 

perfluorinated CTA fibers in aqueous solutions. This way, asymmetric adsorption of hydroxide ions 

to the fibers surface can be identified as predominant process of surface charging.  

In summary, this work demonstrates the methodical development of sophisticated AFM approaches 

that enable a comprehensive view on fibrillar systems. All of the approaches presented here are 

generic and applicable to almost any fiber material. This versatility is illustrated by the medley of 

elastic deformations of electrospun classical polymer fibers, rupture properties of bioinspired 

protein fibers, or fiber interactions of fibers from small organic molecules. 
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II.1 Overview 

As indicated in the previous chapter, this thesis aims at a deeper understanding of (nano-)fibers, as 

they are omnipresent structural building components in natural high-performance materials. To face 

this task on a single fiber level, the development of AFM-based approaches specialized to 

investigate such fibrillar systems represents the methodical basis (Figure 3). The bedrock is the AFM 

(introduced in chapter II.2), which enables direct measurements of single fiber deformations 

(chapter II.3) and their (colloidal) interactions (chapter II.4).  

 

Figure 3| Schematic outline of part II. Status of the Field. The methodical basis is centered around the atomic 

force microscope (AFM) (chapter II.2), which facilitates the direct measurement of fiber mechanics (chapter 

II.3) and colloidal interactions (chapter II.4). The specific fibrillar systems investigated on that basis are 

electrospun PVA (chapter II.5), natural and recombinant spider silk (chapter II.6) and 1,3,5-

cyclohexanetrisamides (chapter II.7). 
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Once this basis is developed, it directly facilitates the “growth” of knowledge about almost every 

fibrillar system. In the present case, these systems were all prepared by electrospinning (chapter 

II.5) and cover classical polymers, biomimetic spider silk proteins and melt-electrospun 1,3,5-

cyclohexanetriamides. An introduction to natural and recombinant spider silk is given in chapter II.6, 

supramolecular principles are illustrated using the examples of 1,3,5-benzene- and 

cyclohexanetrisamides in chapter II.7. 

II.2 The Atomic Force Microscope (AFM) 

– A Tool for Nanoscopic Force 

Measurements
*
 

Like no other technique, the AFM has evolved beyond “passive” imaging to active 

manipulation and surface probing on a local, a nanoscopic scale. The basis for these 

capabilities are precise piezo-actuated movements combined with an unmatched force 

sensing capability of the AFM cantilever.  

 

One way to overcome the diffraction limit of light and resolve surface structures as small as 

individual atoms1, 2 is realized in the setup of an atomic force microscope (AFM) (Figure 4 a).3 The 

pivotal element of an AFM is a microscopic cantilever whose vertical deflections (in z-direction, 

normal to the sample plane) can be monitored with utmost precision. Key to that precision is the 

optical lever technique where a laser beam is focused on the cantilever’s back and reflected onto a 

quartered photodiode (as illustrated in Figure 4 a).4 Every deflection of the cantilever will now be 

immediately transferred to the photodiode as an amplified positional shift of the laser’s reflection. 

This mechanism facilitates even minute cantilever deflections (< 1 nm) to be traced if the optical 

path of the laser is sufficiently long. The cantilever deflections can be detected as the light intensity 

difference between upper and lower half of the photodiode (analogous for torsions and the ratio 

                                                           
*
 This chapter is partly adapted from “AFM-Based Mechanical Characterization of Single Nanofibres”, B.R. 

Neugirg, S.R. Koebley, H.C. Schniepp, A. Fery, Nanoscale, 2016, 8 (16), 8414-8426 by permission of The Royal 
Society of Chemistry 
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left to right half on the photodiode). The photodiode then directly converts the differences in light 

intensity to a voltage output signal. Combining such a detection system with an accurate 𝑥, 𝑦, 𝑧-

piezoelectric-positioner controlling the relative spatial arrangement of cantilever with respect to the 

surface is the principle of most AFMs. The 𝑧-piezo-element adjusts the vertical distance between 

cantilever and surface and might use the deflection voltage to feedback.   

 

Figure 4| Principal components comprising an AFM setup (a) and signal conversion from raw data voltage on 

the quartered photodiode via cantilever deflection to acting forces (b).  

 

The easiest way to generate a topographical image of a surface with such a setup is to scan a 

sufficiently soft cantilever in consecutive adjacent lines across that surface at immediate contact. 

The cantilever deflections during each of those scan lines will directly follow the surface topography 

and translate it to relative light intensities on the photodiode segments. From the resulting voltage 

output and the corresponding motions of the 𝑥, 𝑦, 𝑧-piezo-positioner, the topography itself can be 

reconstructed. To maximize in-plane (= 𝑥, 𝑦) resolution, each scan line should be as thin as possible. 

Therefore, typical imaging cantilevers are equipped with a sharp tip of typical apex radii around 

10 nm. Advancing over the last decades, further (dynamic) modes of imaging have been developed 
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to either reduce cantilever-surface interactions,5, 6 or to extract a variety of additional surface 

properties during scanning.7, 8 

Cantilever Calibration 

The AFM principle also bears the potential to directly quantify the interactions a cantilever 

experiences with a surface on its nanoscopic, local scale. To achieve quantification, a calibration of 

the system is mandatory and eventually links the obtained output voltage (Figure 4 b1) of the 

photodiode with the actual forces acting on the cantilever upon 𝑧-piezo displacement (Figure 4 b3). 

Usually the calibration is subdivided into two steps: 1) determination of the inverse optical lever 

sensitivity (𝐼𝑛𝑣𝑂𝐿𝑆) [m/V],9 which relates the photo voltage signal to the cantilever deflection 

distance (Figure 4 b2), and 2) calibrating the cantilever’s spring constant 𝑘 [N/m],10-12 which allows 

conversion of cantilever deflection into force 𝐹. These two steps and selected ways to obtain the 

two proportionality constants - 𝐼𝑛𝑣𝑂𝐿𝑆 and 𝑘 - are summarized in Table 1 and an in-depth 

discussion can be found in ref.13 

In general, 𝐼𝑛𝑣𝑂𝐿𝑆 and 𝑘 depend on the direction of the acting force, i.e. when the cantilever is 

deflected vertically (in 𝑧-direction), the vertical 𝐼𝑛𝑣𝑂𝐿𝑆 and 𝑘𝑧 have to be determined and 

contrarily, when the cantilever is bent in 𝑥-direction, the respective torsional or lateral quantities 

are required. In both cases, the 𝐼𝑛𝑣𝑂𝐿𝑆 can be derived from a regime, where the cantilever is in 

direct contact with an approximately infinitely hard substrate (Table 1). There, the known piezo-

displacement is directly proportional to the monitored photodiode output, hence, the 𝐼𝑛𝑣𝑂𝐿𝑆 is 

found as the proportionality constant.  
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Table 1| Selection of vertical and lateral calibration methods for rectangular AFM cantilevers.  

 

 

With respect to cantilever spring constants, a plethora of approaches has been suggested.13 A 

selection of fast, convenient and widely accepted ones (which were also used in this thesis) are 

summarized in Table 1. In principle, the spring constants can be calculated based on beam 

mechanics,13 derived via the equipartition theorem in thermal equilibrium (“thermal noise 

method”),11 or deduced from the cantilevers vibrations in a surrounding medium (“Sader 

method”).12, 14 Notably, the cantilever spring constant in an AFM-based nanomechanical experiment 

must closely match the effective sample spring constant in order to achieve the appropriate force 

sensitivity; otherwise, deflection may either exceed the range of the photodiode (if the cantilever is 

too soft) or be so weak as to be indistinguishable from systemic noise (if the cantilever is too stiff).15, 

16  

With long range forces acting, or when the cantilever is in contact with a deformable substrate, 

the 𝑧-piezo displacement is not equal to the distance travelled by the cantilever tip. Rather, it is 

convoluted with the contribution of the cantilever deflection itself. Therefore, it is necessary to 

subtract the cantilever’s deflection from the raw 𝑧-piezo displacement data4 to obtain the distance 

𝑑, i.e. the probe tip’s true distance from the surface or, if the tip and sample are in contact, the 

deformation of the sample.  
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The Force-Distance Curve 

In this work, predominantly quasi-static force measurements have been employed. Such 

measurements always result in an 𝐹 − 𝑑 plot, the so-called force-distance curve.17  

A force-distance curve is the graphical representation of one approach-retraction cycle of the 

cantilever with respect to the surface or the sample, respectively (Figure 5). Once the cantilever is 

calibrated, one obtains the precise separation of cantilever and sample or deformation of the 

sample, i.e. the respective 𝑑 and the accordingly acting forces, 𝐹.17 

 

Figure 5| Schematic representation of the force-distance characteristics during an approach-retraction cycle 

of a cantilever to a surface. Steps 1-4 represent the approach, steps 5-8 the retraction part.   

 

A typical force-distance curve can be subdivided in an approach and a retraction part (Figure 5):  

Approach: Far away from any surface, the cantilever is unperturbed and in its equilibrium position, 

which is defined as zero force (= the baseline) (step 1 in Figure 5). Upon approach, long-range forces 

may start acting on the cantilever causing a deflection towards (attractive, negative forces, step 2) 

or away (repulsive, positive forces) from the sample. At close distance, the (attractive) forces might 

surpass the cantilever’s spring constant and cause a sudden snap into contact (end of step 2). 
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Pushing the cantilever further downwards, will make it pass through its equilibrium position (= zero 

force after step 3) and eventually deflect it upwards (step 4). Thereby, the cantilever applies a pre-

defined load and possibly deforms the sample, which may result in a (non-)linear regime of constant 

compliance.  

Retraction: The pre-defined force set-point is the lower positional turning point of the cantilever and 

the maximum force in a force-distance curve. Given that all deformations are elastic, the retraction 

motion reverses all deformations and returns the cantilever to its initial position far away from the 

surface (steps 5 through 8). Yet, most often approach and retraction curve will not coincide, 

especially in the non-equilibrium region where the cantilever snaps off contact (end of step 7). 

There, adhesive surface forces will hold on to the cantilever beyond the previous point of snap into 

contact thus causing this hysteresis. The force minimum is called adhesion peak.  

It is important to keep in mind that the force-distance curve is a convolution of the Hookean force of 

the cantilever and the true cantilever-surface interaction.18 Therefore, for instance, the positions of 

the instabilities jump-to- and jump-off-contact largely depend on the chosen cantilever spring 

constant.   

The principle of a force-distance curve can be employed to study long-range (see chapter IV.3) or 

adhesion forces as well as mechanical deformations of different kinds of specimen (for nanofiber 

deformations see chapters II.3, IV.1, and IV.2).  
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II.3 Mechanical Testing of (Nano-)Fibers
*
 

Nanoscale fiber testing imposes several requirements on the testing method that cannot be 

met by conventional techniques. AFM-based three-point deformation tests represent a 

facile and actively used approach.  

 

Quasi one-dimensional objects of nanoscale diameter (i.e. fibers, wires, tubes, whiskers, etc., 

collectively termed “fibers” henceforth) form the fundamental building blocks of numerous 

mechanically superior natural and synthetic materials (see chapter I).19, 20 The nanoscale diameters 

are believed to both decrease the probability of flaws or defects and increase the fiber’s surface 

area-to-volume ratio, hence causing physical properties distinct from bulk.21-25 Characterizing and 

understanding the fibers’ mechanical properties are important with respect to implementation in 

any possible application. However, most conventional testing techniques fail when fiber diameters 

and lengths undercut approximately one micron and several mm, respectively. The force sensing 

capabilities and spatial resolution of the atomic force microscope (AFM) allow one to overcome 

these challenges, and several AFM-based mechanical nanofiber testing approaches have emerged. 

The most common of these approaches are: (AFM-based) tensile testing, three-point deformation 

testing, and quasi-static nanoindentation (Figure 6) where only the former two probe the fiber 

along its longitudinal axis and are reviewed in the following.  

                                                           
*
 This chapter is adapted from “AFM-Based Mechanical Characterization of Single Nanofibres”, B.R. Neugirg, 

S.R. Koebley, H.C. Schniepp, A. Fery, Nanoscale, 2016, 8 (16), 8414-8426 by permission of The Royal Society of 
Chemistry 
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Figure 6| Schematic overview of the major conventional and AFM-based techniques for measuring the 

mechanical properties of nanofibers. Each technique is characterized by its force sensitivity, restrictions on the 

sample length, sample preparation requirements, and mechanical properties probed. Reproduced from “AFM-

Based Mechanical Characterization of Single Nanofibres”, B.R. Neugirg, S.R. Koebley, H.C. Schniepp, A. Fery, 

Nanoscale, 2016, 8 (16), 8414-8426 by permission of The Royal Society of Chemistry. 

(AFM-based) Tensile Testing 

The standard technique for acquiring a fiber’s mechanical properties is tensile testing, which 

involves extending the fiber ends in opposite directions at a controlled rate while monitoring the 

force using a capacitor load cell. This method is well-established, accurate, and involves a simple 

attachment of the fiber ends via clamping. However, conventional tensile testing is not applicable in 

many nanoscale systems. The tensile tester most specialized for the characterization of nanofibers 

has a claimed force sensitivity of 50 nN and extension resolution of 35 nm.26, 27 For a rough estimate 

of the thinnest, weakest fiber that can be tested with the claimed 50 nN sensitivity, we assume that 
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at least 100 discrete force delineations in the resulting stress–strain curve are desired. With this 

requirement, tested fibers must approximately satisfy 5 µN < 𝐴𝜎u = 𝜋(𝐷 2⁄ )2𝜎u, where 𝜎u is the 

fiber’s ultimate strength, A is the cross-sectional area, and D is the cylindrical fiber diameter. The 

mechanical properties of a fiber can therefore be probed with a tensile tester if 𝐷 > √
20 µN

𝜋𝜎u
. 

Another, potentially more serious challenge to nanoscale tensile testing is sample preparation, 

which demands that the fiber be suspended between the two arms of the tensile tester. The fiber 

must therefore be at least ≈1 mm in length (5 mm is typical) and freestanding—conditions that are 

often attainable by microscale fibers such as spider silks,28-30 but only rarely met by nanoscale fibers, 

e.g. in some studies of electrospun polymers.31-35 

AFM-based tensile testing is a similar approach to conventional tensile testing that is in principle not 

limited by fiber length or force sensitivity, yet employs the same deformation geometry of uniaxial 

stretching along the fiber axis. In this method, which is a form of force spectroscopy, a nanofibrillar 

sample—e.g. carbon nanotube,36 WS2 nanotube,37 gold nanowire,38, 39 polymer fiber,40-42 or collagen 

fibril40, 43-47—is grown or attached to both the AFM probe tip and the substrate, and the force on the 

tip is determined as the probe is retracted. Similarly, material can be attached to an AFM tip, 

manipulated into a fibrillar, dogbone-shaped structure using a focused ion beam (FIB), and force 

spectroscopy can be conducted to yield the material’s stress–strain response.48  

Nanoscale tensile testing conducted both with the AFM and with specialized 

microelectromechanical systems (MEMS)49-55 has produced reliable results for nanofibers. However, 

attachment of the fiber in these arrangements is tedious and may be prohibitive in many cases: the 

fiber must be grown between tip and sample38, 39 or attached via elaborate micromanipulation41-43, 

45-47 that often requires the use of a combination SEM–AFM system.36, 37, 40, 44, 48 If imaging and 

treatment in an SEM is involved, the sample  usually becomes dehydrated, and in some cases 

metallic coatings are applied to the sample to provide electrical conductivity, which may further 

alter its mechanical properties.  Similarly, ion bombardment in a FIB must be executed with 

particular caution, as it has been shown to mechanically strengthen the sample.56, 57 In light of these 

preparation complexities, alternative techniques with fewer sample manipulation and attachment 

demands are often desirable. 
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AFM-based Three-Point Deformation Testing 

In most AFM-based three-point deformation tests, sample preparation is as simple as depositing 

fibers onto a hard substrate that is prestructured with grooves. Fibers will statistically span these 

grooves, leaving segments suspended. The suspended portions of the fibers can then be probed by 

an AFM cantilever tip to perform a three-point deformation test. This approach achieves nanoscale 

force and spatial resolution, allowing for specimens with nanometer-sized diameters and lengths 

below 1 µm, e.g. individual single-walled carbon nanotubes.58 In most cases, the three-point 

deformation test primarily aims to determine the axial Young’s modulus of fibers, the modulus also 

probed by tensile testing. By adjusting the suspended length and deformation range, one can 

further determine the bending and shear moduli,59 yield point,60 viscoelasticity,61 toughness and 

strength,62 and even rupture properties such as a fiber’s extensibility.63 Beyond probing mechanical 

parameters under standard conditions, the AFM’s general tolerance for different ambient conditions 

enables a widespread range of samples and facilitates testing of the fibers’ performance in different 

media64, 65 or at different temperatures,66 as well as their in-situ responsiveness to pH changes.67 

Furthermore, the testing setup can be combined with conductivity measurements to directly 

monitor the strain dependence of current flow across the fiber.58, 68, 69 

Vertical and Lateral Deformation Experiments 

Experimentally, three-point deformation tests can be distinguished by their loading direction 

relative to the substrate and deformation range: the test involves either vertical loading and a 

relatively small deformation (Figure 7a) or lateral loading and a large deformation (Figure 7b). In the 

former approach, the cantilever moves vertically (in the 𝑧-direction), pressing the suspended fiber 

segment downwards while being deflected upwards. For vertical cantilever deflections, calibration is 

more straightforward; however, the limited displacement of the 𝑧-piezo (typically ≈10 µm) confines 

the range of fiber deformation. Hence, vertical three-point bending is sometimes limited to small 

deflections of relaxed fibers in the linear elastic regime, and is thus ideally suited to determining the 

fiber’s axial Young’s modulus or its bending and shear moduli.59, 64, 70 
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Figure 7| Schematics of vertical (a) and lateral (b) three-point deformation testing. In both approaches a 

(usually clamped) fiber segment is subjected to a load 𝑭. Denominations of the physical values are given in (c). 

Exemplary force vs. deformation (normalized to the fiber radius) dependencies according to the models of 

Euler–Bernoulli (pure bending), Heidelberg et al.
71

 (bending and stretching) and Calahorra et al.
72

 (bending and 

stretching of a pre-strained fiber) are given in (d). Adapted from “AFM-Based Mechanical Characterization of 

Single Nanofibres”, B.R. Neugirg, S.R. Koebley, H.C. Schniepp, A. Fery, Nanoscale, 2016, 8 (16), 8414-8426 by 

permission of The Royal Society of Chemistry. 

 

In the second approach, lateral loading, the cantilever tip travels in the 𝑥, 𝑦-plane and intersects the 

suspended fiber segment perpendicularly at its midpoint (Figure 7b). The fiber experiences both 

bending and stretching, imposing torsion on the cantilever at a certain lever arm 𝐻 (Figure 7b), 

which is defined as the distance from the cantilever long axis to the tip’s contact point with the 

fiber. This torsion renders the data conversion to forces more intricate, as the lateral optical lever 

sensitivity and the lateral spring constant need to be known precisely. To date, no experimental 

method to obtain these two parameters has emerged as general standard, yet, various approaches 

exist: the lateral spring constant for instance can be derived using the torsional Sader method14 or 
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by calculation from cantilever dimensions. The reader is referred to chapter II.2 and a recent 

comprehensive review on this topic by Munz.13 Nevertheless, exploiting the generally larger 𝑥, 𝑦-

piezo reach by lateral loading facilitates larger fiber deformations, enabling a complete mechanical 

characterization—from the elastic regime to rupture. 

Pure Bending Regime 

Regardless of loading direction, both testing techniques deform the fiber perpendicular to its long 

axis, causing similar strains in a radially symmetric specimen. Deformations of less than one fiber 

radius predominantly cause bending: at the bending points (the edges of the grooves and the tip–

fiber contact), the convex side experiences tensile strain, while the concave side experiences 

compressive strain. Additionally, these strains increase radially from the neutral plane to the fiber 

surface, resulting in an inhomogeneous stress distribution with local stress peaks. These bending 

deformations can be well described by the classical Euler–Bernoulli beam model, which takes into 

account the fiber’s boundary conditions, i.e. whether it is simply supported by or firmly attached to 

the substrate.73  

An advantage of the vertical loading approach is the relative ease of using Force–Volume plots65, 70, 

74-76 or advanced force imaging techniques,77, 78 which allow one to map the fiber response as a 

function of position and thereby directly determine the present boundary conditions. If 𝐹 is the 

force applied at the position 𝑥 along the fiber axis, causing a deformation 𝑑, the ratio of 𝐹(𝑥)/𝑑 can 

be interpreted as the fiber’s stiffness at the respective position (Figure 7c). A measured stiffness 

profile along the suspended segment can then be compared to models for different boundary 

conditions. For a simply supported beam, the model suggests: 

𝐹(𝑥)

𝑑
=

3𝐿0𝐸𝐼

(𝐿0 − 𝑥)2𝑥2
 Equation 1 

In the case of a double-clamped beam one finds: 

𝐹(𝑥)

𝑑
=

3𝐿0
3𝐸𝐼

(𝐿0 − 𝑥)3𝑥3
 Equation 2 

In both cases, 𝐿0 is the initial length of the suspended segment and 0 ≤ 𝑥 ≤ 𝐿0, 𝐸 is the axial 

Young’s modulus, and 𝐼 is the area moment of inertia, where 𝐼 = 𝜋𝑅4 4⁄  for cylindrical fibers with 

radius 𝑅 (Figure 7c). 
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Kluge et al. compared the rigidities and Young’s moduli derived from such stiffness profiles of three 

different 1,3,5-benzenetrisamides that each self-assemble into supramolecular nanofibers.70 They 

focused on results where the boundary conditions were unambiguously found to be double-

clamped and measured Young’s moduli in the lower GPa range. In contrast, Ling et al. found self-

supporting particle bridges cohered by a supramolecular glue to follow the model of a simply 

supported beam.79 This shows that clamping of the fiber to the supports is not absolutely necessary 

as long as clamping conditions are determined in each situation, especially since data interpretation 

in the framework of the wrong boundary conditions would lead to a Young’s modulus off by a factor 

of 4 (as approximated using 𝑥 = 𝐿0/2 and comparing Equation 1 and Equation 2). In other studies, 

both boundary conditions and, occasionally, a mixed case (one side clamped, one simply supported) 

were observed within one respective fiber–substrate system.76, 77, 80 For instance, Chen et al. probed 

the stiffness profiles of silver nanowires with diameters between 66 and 141 nm using digital pulsed 

force mode.77 They pointed out the importance of the boundary conditions, as thinner nanowires 

resembled a double clamped beam whereas thicker ones were simply supported. Both cases yielded 

moduli close to the bulk value of silver.  

In the majority of three-point bending studies, however, fibers are assumed to be double clamped 

due to sufficient fiber–substrate adhesion81, 82 or double clamped conditions are enforced by 

additional experimental measures.60, 83 Probing with a force 𝐹c at the segment midpoint (𝑥 = 𝐿0/2) 

reduces Equation 2 to: 

𝐹(𝐿0 2⁄ ) = 𝐹c =
192𝐸𝐼

𝐿0
3 ⋅ 𝑑 Equation 3 

(gray line, Figure 7d). Due to the shape of the stiffness profile (Equation 2), the force response is 

relatively insensitive to small positioning deviations from the midpoint, increasing the robustness of 

the method.84, 85 In the case of sufficient fiber–substrate adhesion, the midpoint probing approach 

allows for relatively low expenditure of experimental time, hence facilitating larger sample numbers. 

For example, Stachewicz et al. provided a thorough experimental basis demonstrating a modulus 

increase with decreasing diameter for electrospun polyvinyl-alcohol fibers.82 They attributed this 

trend to the fibers’ core–shell structure caused by the high shear in electrospinning.  

The Superposition of Bending and Stretching 

Lateral three-point deformation tests mostly deform fibers beyond the bending regime 

(deformation 𝑑 exceeding the fiber radius 𝑅), and often aim to break or rupture the fiber. As the 
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fiber is increasingly stretched, tensile stresses in the straight specimen portions are superimposed 

with tensile and compressive stresses at the bending points (as mentioned above). For large yet 

elastic deformations, Heidelberg et al. introduced a factor 𝑓(𝛼) > 1 to account for this resulting 

rigidity enhancement in double clamped beams (blue line, Figure 7d).71 

𝐹c =
192𝐸𝐼

𝐿0
3 ⋅ 𝑓(𝛼) ⋅ 𝑑 Equation 4 

Where 

𝑓(𝛼) =
𝛼

48−
192⋅tanh (√𝛼 4)⁄

√𝛼

, Equation 5 

𝛼 =
6𝜀(140 + 𝜀)

350 + 3𝜀
 Equation 6 

and  

𝜀 = 𝑑2(𝐴 𝐼⁄ ) Equation 7 

Here, 𝐴 is the fiber’s cross-sectional area. This model succeeds in describing the full elastic response 

of a fiber, e.g. high modulus inorganic nanowires,68, 71, 86-89 therefore allowing the transition from 

elastic to plastic deformation to be determined. Wen et al. applied this model to demonstrate that 

the Young’s modulus of ZnO nanowires resembles the bulk value and can be regarded essentially 

diameter-independent in the range from 18 to 304 nm.88 Recently, McCarthy et al. used Equation 4 - 

Equation 7 to calculate the Young’s modulus of nickel and silver nanowires and to verify the 

elasticity of the applied deformations, a prerequisite for their determination of the Poisson’s ratio of 

these wires from strain-dependent four-point resistance measurements.68 Furthermore, since this 

model extends to higher deformations than classical bending (Equation 3), it is more sensitive to 

experimental inconsistencies. For instance, pre-strained fibers can be identified since their 

deformation data would not fit the model, and modulus overestimation can hence be prevented 

(see Figure 7 d).  

The Role of Pre-Tension 

Despite its applicability over the full elastic regime, the Heidelberg model was not employed for soft 

matter fibers at all, probably because of significant residual tension in these systems. With 

decreasing material modulus, pre-tension inherent in a fiber (from the preparation or clamping 

procedure) increasingly dominates its force response. This is manifested in a steeper slope of the 
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initial linear bending regime (where 𝑑 < 𝑅) in force–deformation curves (yellow line, Figure 7 d). 

Pre-tension was first investigated in spider mite silk, in which tension was naturally introduced as 

the mites drew silk from their spinning glands and deposited it onto the test substrate.84 Hudson et 

al. implemented the effect of pre-tension in a numerical model by expanding the factor 𝑓(𝛼) in 

Equation 4.84 Calahorra et al., who also recently observed such residual stresses in hard silicon 

nanowires, approximated the full solution for the expanded 𝑓(𝛼) by an analytical expression72, 90 for 

the ease of application:  

𝑓approx(𝛼approx) = 1 + 2.412 ⋅ 10−2𝛼approx − 1.407 ⋅ 10−6𝛼approx
2  Equation 8 

Where 𝛼approx includes the initial pre-tension force T0: 

𝛼approx =
𝐿0
2𝑇0

𝐸𝐼
+

6𝜀(140 + 𝜀)

350 + 3𝜀
 Equation 9 

The Heidelberg model, now expanded for pre-tension, enables a comprehensive data interpretation 

of elastic deformations in double clamped three-point deformation tests. Beyond the limit of one 

fiber radius of deformation, the tensile contribution increasingly dominates the fiber’s force 

response. In that regime, the linear dependence of force on deformation passes into a cubic 

dependence, rendering the bending contributions gradually negligible. In the work of Schniepp et 

al., thin ribbons of nanometer thickness were deformed several µm to derive the Young’s modulus 

based on a purely tensile model, as the bending component is negligible for thin ribbons.91 

Presuming only stretching of the fiber, one can easily convert the measured force and deformation 

to (axial) stress and strain.62, 92 This approach yields lower estimates for fiber failure properties, such 

as maximum strength, extensibility and toughness.58, 61, 62, 91, 92 Biopolymer fibers were mechanically 

characterized using this same approach, revealing the extraordinary extensibility of fibrin63, 93 and  

viscoelastic properties of collagen fibers.94  

Conclusion 

The advancing miniaturization of devices and progressing concentration of different functionalities 

within a material increasingly demand more sophisticated nanofibrillar building units. The 

characterization of these building units and the detailed examination of highly evolved natural 

systems that might serve as models for biomimicry both require high–resolution, reliable testing 

techniques to assess their respective mechanical spectra. The AFM provides a highly sensitive and 

thus highly attractive platform for this task. As reviewed here, the intense research conducted in the 
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field of nanofiber mechanical testing in the past decades and the strong trend to implement 

mechanical mapping techniques in AFM instrumentations illustrate two key points. First, due to its 

simple sample preparation requirements and universal applicability, AFM-based mechanical fiber 

characterization is the method of choice for a vast majority of systems. Second, as indicated by the 

diversity of data interpretation efforts, AFM-based three-point deformation testing and indentation 

of nanoscale fibers are still not standardized to the degree of conventional macroscale mechanical 

testing. However, with further efforts to disentangle the many challenges that are present at the 

nanoscale, the AFM’s capabilities of nanoscale manipulation and in-situ force-monitoring make it a 

uniquely powerful tool in the discovery of single fiber mechanics. 

II.4 Interactions in the Colloidal Domain 

– The DLVO-Theory 

Objects with colloidal dimensions (including micro- and nanofibers) mostly interact based on 

electromagnetic interactions. Especially the dominance of electrostatic and van der Waals 

interactions is accurately modeled by the DLVO-theory.   

 

On a universal length scale, that ranges from subatomic particles to the expanse of the universe, 

distinct fundamental forces prevail in different size regimes. At the lower end of this universal scale, 

the strong and the weak force govern the interactions between elementary particles. At the upper 

end, gravity determines the interactions of galaxies and eventually the expansion of the universe 

itself. On a molecular and also on a colloidal scale (nm - µm), neither of those forces predominate, 

which leaves room for the supremacy of electromagnetic interactions. The electromagnetic forces 

encompass Coulomb forces between permanent charges, polarization forces between (induced) 

dipoles, and quantum mechanical forces (chemical bonds, repulsions).95 The diminished impact of 

the other fundamental forces on that size scale opens up manifold opportunities to influence each 

of these three electromagnetic subdivisions, a possibility that provides the basis for chemistry and 

controls colloidal interactions.   
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Colloidal interactions and foremost colloidal stability are crucial for a plethora of industrial 

processes96 and biological phenomena such as microbial adhesion.97 Therefore, it is important to 

measure, understand, and control these interactions.  

From an experimental point of view, measuring such small scale surface forces has been made 

possible by the surface force apparatus98, 99 and the colloidal probe technique,100 which is based on 

atomic force microscopy (AFM) (the AFM is discussed in chapter II.2).101 Especially the latter is 

attractive due to its versatility. Virtually every colloidal particle can be attached to a tipless AFM 

cantilever and maneuvered at precise distance control to approach another surface within an 

immersion medium of choice (Figure 8 a). Simultaneously, the acting forces can be monitored from 

the cantilever deflection and their distance dependence can be recorded in a force-distance curve 

𝐹(𝑑) (see chapter II.2).  

In such a measurement, the respective forces strongly depend on the particle shape.95 Especially 

short-ranged forces are vastly convoluted with surface topography. Thus, to transfer force results 

𝐹(𝑑) to the universal property of interaction energy 𝑊(𝑑), a geometrical normalization is 

necessary. If the interaction range is small compared to the particles’ radii of curvature, the 

Derjaguin approximation provides such a geometrical normalization with respect to certain shape 

configurations.99 Most commonly, forces between a sphere and a plane, two spheres or two crossed 

cylinders are transferred using the Derjaguin approximation:   

𝑊(𝑑) =
𝐹(𝑑)

2𝜋𝑅𝑒𝑓𝑓
 Equation 10 

Here, 𝑅𝑒𝑓𝑓 is the effective radius, which is equal to the sphere radius 𝑅 in the case of the sphere-

plane interaction and correspondingly 
𝑅1𝑅2

𝑅1+𝑅2
 for two spheres of radii 𝑅1 and 𝑅2, and 

√𝑅1𝑅2

sin𝜃
 for two 

cylinders of radii 𝑅1 and 𝑅2 oriented at an angle 𝜃.95, 99 
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Figure 8| Measurement, interaction energies, and schematic situation between two colloidal particles in a 

liquid electrolyte solution. (a) A colloidal particle attached to an AFM cantilever can be used to directly 

measure interaction forces with another particle or surface. (b) Using the Derjaguin approximation, the acting 

forces can be normalized with respect to the interaction geometry to potential energies. The sum of repulsive 

and attractive interactions yields the total interaction energy, which governs colloidal stability. (c) Interaction 

forces between two charged surfaces in a liquid are dominated by the electrostatic repulsion and van der 

Waals attraction. The former can be influenced by the kind of medium between the surfaces as well as the 

dissolved electrolyte concentration and the respective ionic valences.  

 

To understand these interactions, theoretical considerations need to be established that succeed in 

modelling the interaction-distance 𝑊(𝑑) behavior and also allow for reliable predictions. Derjaguin, 

Landau, Verwey, and Overbeek derived such a theory, which is named after them “DLVO-theory”. It 

describes the interactions of e.g. two planes in-between the two extreme situations of both not 

interacting at all at “infinite” separation (𝑑 = ∞) and the barrier of quantum mechanical repulsion 

upon intimate contact (𝑑 = 0). Thereby, the DLVO-theory limits itself to the most significant 

contributions to describe the essential physics of colloidal stability.102 These contributions are the 

polarization-based (and usually attractive) van der Waals interaction 𝑊𝑣𝑑𝑊 (gray line in Figure 8 b) 

and the Coulomb-based (and usually repulsive) interaction due to the electric double layer 𝑊𝐷𝐿 
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(blue line in Figure 8 b).99 𝑊𝑣𝑑𝑊 for two interacting planar surfaces can be derived from the pair-

wise addition of the dipole contributions from all the individual partaking atoms in the two 

interacting bodies to be: 

𝑊𝑣𝑑𝑊(𝑑) = −
𝐻

12𝜋𝑑2
 Equation 11 

where 𝐻 is the Hamaker constant.95 

In contrast, for 𝑊𝐷𝐿 the situation is more complex and demands for certain assumptions. The 

starting point in considerations of the electric double layer is the Poisson-Boltzmann equation. This 

is the combination of the Poisson equation, which describes the charge density at each point at any 

distance 𝑑 from a surface that bears a potential 𝜓, and the Boltzmann equation. The latter balances 

the charge density found at any position within reach of the surface potential 𝜓 with the thermal 

energy 𝑘𝐵𝑇. The combination gives the Poisson-Boltzmann equation that can only be solved 

numerically unless certain assumptions are employed. In the exemplary case of Equation 12, an 

approximate weak overlap and large surface separations are assumed.95 

𝑊𝐷𝐿(𝑑) = 64𝑘𝐵𝑇𝑐0𝜅
−1 ∙ tanh2 (

𝑧𝑒𝜓0

4𝑘𝐵𝑇
) ∙ exp(−𝜅𝑑) Equation 12 

In Equation 12, 𝜅−1 is a measure for the thickness of the electric double layer, the so-called Debye 

length, which is defined as: 

𝜅 = (
2𝑒2𝑐0

𝜀𝜀0𝑘𝐵𝑇
)

1
2⁄

 Equation 13 

The above Equations 11 - 13 describe the distance dependence of the respective interaction 

energies between the two planar surfaces. The physical quantities included are the salt 

concentration 𝑐0 far away from the surface (in bulk), the ion valence 𝑧, the elementary charge 𝑒, the 

potential directly at the surface 𝜓0, and the absolute 𝜀 and the vacuum permittivity 𝜀0. The 

additivity of those two interactions (𝑊𝑣𝑑𝑊 and 𝑊𝐷𝐿) allows to model and predict e.g. colloidal 

stability against aggregation for a wide range of systems and yields the DLVO description of 

interaction energies (red line in Figure 8 c). The transfer of these theoretical interactions to the 

respective forces can be done using the Derjaguin approximation as mentioned above and of course 

vice versa.  
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Prediction of interactions directly relates to the identification of influencing parameters and hence 

ideally in their control. Van der Waals interactions only depend on the atomic number density and 

the Hamaker constant, which in turn only depend on the types of materials for the interacting 

colloids and the immersion medium. Therefore, 𝑊𝑣𝑑𝑊 is fixed for a given system. 

In contrast, 𝑊𝐷𝐿 depends on a multitude of parameters. The repulsive forces between two similarly 

charged surfaces arise from the osmotically driven disjoining pressure due to the increased ion 

concentration as the double layers overlap (Figure 8 c). This situation can be influenced by variations 

in the surface charge density or potential (e.g. dissociation of surface groups by adjustment of pH), 

the valence and concentration of the employed salt, the temperature and thermal energy in the 

system, and the dielectric properties of the surrounding medium. Overall, tuning of 𝑊𝐷𝐿 allows for 

stabilization or controlled coagulation of a colloidal system. 

Altogether, when dealing with structural components of micro- or nanoscopic (colloidal) size, 

knowledge about their surface properties is indispensable as these surface forces govern the 

interactions of the structures with their surroundings. The DLVO-theory has emerged as an 

extremely successful tool to quantitatively describe these interactions and can be employed to 

investigate surface charge densities or surface potentials as well as related phenomena.  
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II.5 Electrospinning – Shaping Materials 

into (Nano-)Fibers 

Exploitation of beneficial nanofiber properties foremost requires a versatile technique to 

shape materials in that morphology. Yet, the versatility of electrospinning does not stop at 

materials’ choice: like no other, this spinning process opens perspectives to modify the 

material by the spinning itself. 

 

The versatility of electrospinning arises from its fundamentally different approach towards structure 

formation. In contrast to conventional techniques, which mostly rely on mechanical forces to draw 

fibers, electrospinning utilizes strong electrical fields.103-106 The principal setup is illustrated 

schematically in Figure 9. A syringe contains a reservoir of the liquid feedstock, which is usually a 

polymer solution but can also be an emulsion, a suspension or a melt,104 even of small molecules.107 

The fiber forming process itself takes place between a high voltage electrode connected to the 

cannula of the syringe and a grounded collector. When the liquid is pumped through the cannula, it 

forms a pendant droplet at the cannula’s tip. The applied high voltage charges the droplet and 

causes its distortion in the electrical field to the so-called Taylor cone.108 This distortion is the result 

of balancing repulsive electrostatic forces of the charges on the droplet’s periphery and the surface 

tension, which tries to minimize the droplet-air interface. If the charging surpasses a threshold 

value, a thin jet is ejected to stabilize the situation transporting charges to the ground electrode. On 

the initial straight part of the jet, repulsive forces still dominate and lead to further straining the jet. 

This straining stabilizes the jet’s trajectory but decays with distance from the cone. Eventually, 

foremost the bending instability will take effect and cause the jet to whip in loops with growing 

amplitudes and at ever smaller, self-similar scales until the jet hits the collector.109, 110 During the 

travel from Taylor cone to collector, solid fibers with nanoscale diameters are formed as the solvent 

can evaporate rapidly and the fibers’ straining and stretching is accompanied by a significant 

decrease in diameter. 
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Figure 9| Schematic electrospinning setup with optical image of a Taylor cone during fiber spinning (adapted 

with permission from reference 
104

) and an SEM micrograph of a collected polyamide fiber mat (courtesy of 

Matthias Burgard). A selection of spinning parameters that influence the fiber diameter are given on the top 

left. 

 

In this elementary form, the electrospinning process is a low-tech hence low-cost but exceptionally 

versatile way to shape a wide variety of materials into continuous nanofibers. The process is 

susceptible to a multitude of parameters that allow for control of fiber shape and diameter (in the 

range of several nm to a few µm). Those parameters can be roughly grouped to solution parameters 

(solution concentration, surface tension, conductivity and viscosity), process parameters (applied 

voltage at cannula – collector distance and feeding rate), and environmental parameters (mostly 

temperature and humidity).105 The upper part of Figure 9 gives a selection of the main parameters 

influencing the fiber diameter. Beyond solid and smooth fibers, tuning the aforementioned 

parameters, modifying the nozzle geometry, blending materials or post-treating fiber mats 

facilitates the production of a wide variety of other related yet more complex morphologies. Hybrid, 

side-by-side and core-shell fibers, hollow tubes or highly porous structures are just a few 

examples.104, 111-113 Obviously, the attractiveness of such morphologies comes from the 

compartmentalization that facilitates additional functionality or the vastly increased surface areas.  
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Apart from the diverse functionality of complex morphologies, plain solid nanofibers and their 

respective assemblies in nonwovens are highly attractive for many applications. First, there are 

biomedical applications that aim to use nonwovens or nanofiber scaffolds for tissue engineering, 

wound covering or drug delivery. These applications benefit from electrospun fiber mats closely 

mimicking the extracellular matrix with suitable mat porosity and surface area, mechanical 

properties, biodegradability and degradation time, and the ease of further biofunctionalization.114, 

115 Secondly, metallic, ceramic or composite nanofibers can be used due to their confined quasi-one-

dimensional structure in technical applications exploiting their specific photonic, magnetic and 

electronic properties.103 Third, nanofibers and fiber mats thereof are employed in filtration,116 as 

catalyst carriers111 and as reinforcements117 due to their exceptional mechanical properties and their 

high surface-to-volume ratios.104 The generally observed improvement of the mechanical properties 

with decreasing fiber diameters can be attributed to the molecular alignment during spinning as 

well as the reduced concentration of defects.117, 118  

Despite the dissimilarity of those three groups of applications, in all of them a thorough 

understanding of single fiber mechanics as well as the surface properties of the fibers are crucial. 

The concerted fiber mechanics and their interactions amongst each other (or with an embedding 

matrix) determines the success or failure of a material or device in virtually every field of 

application. A detailed discussion of individual fiber mechanical testing is given in chapter II.3, an 

overview over colloidal interaction forces dominating that size domain can be found in chapter II.4.  

 

 

 

 



II. Status of the Field 
 

59 
 

II.6 Natural and Recombinant Spider Silk 

The lessons spider silk teaches are as manifold as its astonishing properties. To understand a 

hierarchical material adapted for various environmental conditions, probing the material on 

the different hierarchal levels while varying these environmental conditions is pivotal. 

 

An orb-weaving spider’s dragline silk is a biomaterial, which is exemplary for highest efficiency 

achieved by controlled hierarchical structuring. Highest efficiency in this case means on the one 

hand that the dragline thread can absorb more energy per weight than most other biological or 

man-made materials including Kevlar and steel.119, 120 On the other hand, silk is spun extremely 

efficiently at benign conditions from an aqueous solution within fractions of seconds.121, 122 Besides 

the mechanical strength and the astonishing spinning process, spider silk is also biocompatible, 

bacteriostatic and of course biodegradable, features that open up various medical applications.123 

And even beyond that, dragline silk amazes with self-reconstitution via supercontraction124 and a 

shape memory behavior.125  

Natural Silk 

The very basis of all material properties is the primary structure of the proteins that form spider silk, 

the so-called spidroins.126, 127 The dragline thread of the European garden spider (Araneus 

Diadematus) contains two large spidroins that resemble a primary structure as schematically shown 

in Figure 10 a.122 A central domain, which is composed of frequently repeated and alternating motifs 

of alanine-rich and glycine-rich units, is capped on both ends with a non-repetitive C- or N-terminus, 

respectively.119  

The spidroins are secreted and stored in the tail and the ampulla of a specialized spinning gland 

within the spider’s abdomen (Figure 10 b yellow region), in the case of dragline silk the gland is 

called the major ampullate gland. Particularly spidroin storage is a critical aspect, as the spinning 

solution has to be highly concentrated (up to 50 % w/v)121 for abundant availability when needed, 

yet, unspecific protein aggregation has to be strictly avoided.122 To face this issue, the non-repetitive 

termini, which were found to be highly conserved throughout different species, play a decisive role: 

upon interlocking of two distinct C-terminal domains, spidroins form amphiphilic dimers. These 
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dimers assemble in a liquid crystalline micellar-like structure, which remains stable even at the high 

concentrations that are typically found within the ampulla.120, 121  

 

Figure 10| The modular spidroin (a) is secreted and spun in the gland (b). The spidroin forms a hard/soft 

composite of secondary structures (c) that build up individual filaments, which are the main component 

comprising the dragline thread (d).  

 

Apart from assuring the long-term stability of the spinning solution, the termini also guide protein 

aggregation during fiber formation.127 This fiber formation takes place on demand in the spinning 

duct (Figure 10 b blue region of the gland). Approaching the spinneret and traveling along the duct, 

the consecutive limbs become increasingly acidic (roughly from pH 7 to 5), water and chaotropic 

salts are removed from the spinning solution and kosmotropic salts (potassium and phosphate) are 

added.120-122 Those conditions induce conformational switches in the C- and N-terminal domains and 

facilitate spidroin multimerization. As the spinning process is furthermore accompanied by 

increasing shear stress (especially in the third limb) from the narrowing taper and the spider pulling 

the thread, molecular alignment and partial crystallization is achieved. Especially the alanine-rich 

units of the repetitive central domain intertwine to form β-sheet crystallites. 

Overall, this process yields the strong (~ 1.1 GPa) yet extensible (~ 27 %) dragline thread from a 

viscous spinning solution. The main features of the solid spidroin structure in such a thread held 
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liable for its magnificent mechanical properties are illustrated in Figure 10 c. The terminal domains 

have guided the formation of a spidroin network, which is cross-linked by hard β-sheet crystallites. 

Those crystallites are embedded in a soft and rather amorphous matrix, which consists of the 

glycine-rich units of the central spidroin domain. While the β-sheets mediate the strength, the 

amorphous matrix contributes elasticity hence forming a tough composite.119 Overall, the dragline 

thread exhibits an unmet toughness, which arises from this remarkable balance of strength and 

extensibility. Even more pronounced than in other materials, water content dictates the mechanical 

properties of the thread rendering the material stiff in dry conditions and conversely rubber-like in a 

moist environment.128, 129   

The thread itself is built up not only from the spidroins but also from further components and in a 

hierarchical manner. First, the spidroins shape individual filaments of a few hundred nanometers in 

diameter,130 all of which are summarized as the thread’s core. The core is encased by a shell that 

mostly fulfills regulatory tasks but also counterbalances pre-stresses present in the structure to 

additionally improve the mechanical properties.131, 132  

Recombinant Silk 

Unfortunately, spiders cannot be farmed at large scales as is the case for silkworms (silk from 

Bombyx mori) mostly due to the their cannibalistic behavior. An alternative approach is the 

recombinant production,133, 134 i.e. the transfer of the genetic blueprint for silk into another host and 

consecutive spidroin expression.135 Besides other organisms, Escherichia Coli bacteria are especially 

promising as host as they are easy to ferment and the spidroin can be purified with reasonable 

effort.134 The difference in codon usage between eucariotic spiders and procariotic bacteria 

necessitates reverse protein transcription, which in turn offers the possibility to design customized 

spidroin sequences.133, 134 Thus, intentional structural mutations allow for application-specific 

protein design136 as well as for fundamental studies on simplified model systems137 (see also chapter 

IV.2). Recombinant routes furthermore bear the advantage of silk production ensuring reproducible 

properties, that – in contrast to reconstituted or forcibly silked silk - do not depend on e.g. spider 

individual, reeling speed, diet, and other factors. And, beyond the obvious fibrillar morphology, 

spidroins can also be shaped in other morphologies as films, particles, gels, or foams to exploit the 

full range of beneficial silk characteristics (e.g. the biocompatibility as mentioned above).138, 139 
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Spider silk is one of nature’s most remarkable high-performance materials and more than just its 

chemical compounds. It is the synergy of spidroins structured by the delicate spinning process into 

environmentally sensitive fibers. To fully comprehend and eventually mimick silk, we need to gather 

a thorough understanding on all levels of spider silk, the spidroins themselves, the spinning process, 

and the role of water in the structure. 

II.7 Supramolecular Chemistry of 1,3,5-

Benzene- and Cyclohexane-

tricarboxamides 

Supramolecular chemistry bears the potential to combine its inherent reversibility with 

hierarchical self-assembly. Prospective smart design on a molecular basis requires a 

thorough understanding of structure-property relations and is key to tap the full 

supramolecular potential.     

 

Supramolecular chemistry is chemistry beyond the covalent bond.140-142 That means structure 

formation takes place based on reversible, secondary interactions such as hydrogen bonding, metal 

coordination, van der Waals interactions, and others. If the interaction motifs (e.g. a donor-acceptor 

sequence of H-bonds) have evolved or are designed sufficiently specific, the way how molecules 

assemble is predetermined or can be programmed, respectively. This content of information in the 

molecular structure governs self-organization towards complex matter and is, therefore, ultimately 

the basis of life.142 Despite their complexity, biological supramolecular assemblies, for instance the 

microtubules in cells, can illustrate the advantages of the supramolecular approach such as 

formation on demand (i.e. in non-equilibrium conditions), mechanical robustness at simultaneous 

reversibility, and the capability of self-healing.143, 144 

A first step towards synthetic self-organization are supramolecular polymers.145 Here, the 

monomeric building blocks are equipped with complementary and directional secondary interaction 

moieties. Upon cooling or increase of concentration in a suitable solution medium, the monomers 
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will interconnect via their non-covalent interactions to form a polymer chain.146 A well-studied 

example is the class of 1,3,5-tricarboxamides, namely 1,3,5-benzene- and 1,3,5-

cyclohexanetrisamides (BTAs and CTAs) (Figure 11). These molecules commonly consist of a core 

(benzene or cyclohexane) that is linked via three amide entities (in 1, 3, and 5 position) to peripheral 

groups of almost arbitrary composition (as evidenced by the multitude of existing compounds147-149) 

(Figure 11 center). One important aspect with respect to practical applications of supramolecules is 

a reasonably simple synthesis of the monomers. Figure 11a shows the widely employed reaction of 

the carboxylic acid chloride with the amine carrying the peripheral group to yield the respective 

1,3,5-tricarboxamide. This synthesis of one or maximum two steps is sufficiently facile and has 

proven to be tolerant for a multitude of peripheral groups.149 

 

Figure 11| Synthesis and self-assembly of 1,3,5-tricarboxamides. (a) Widely used synthesis route of amide 

bond formation by the reaction of the carboxylic acid chloride and a respective amine. The 1,3,5-

tricarboxamides consist of a core (benzene or cyclohexane) enclosed by three amide entities that connect the 

core to peripheral groups. (b) Intermolecular interactions dominated by hydrogen bonding trigger stacking of 

the discotic BTA and CTA molecules upon cooling or concentration increase. The resulting columns aggregate 

further to form microscopic fibrillar assemblies.   
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BTAs and CTAs share the generic capability to form self-complementary building blocks, which 

facilitate stacking into rod-like assemblies. Of course, the nature of the residual group and the amide 

connectivity as well as the surrounding solvent have a large influence on the case-specific 

aggregation and may change the particular assembly pattern. However, a general and 

representative mechanism is shown in Figure 11b. Initially, in an isolated molecule, the amide 

entities and the core may assume a co-planar shape. When interacting with a second molecule, the 

amide entities can rotate out of the plane of the core to adapt the self-complementary 

configuration that allows 3-fold inter-molecular hydrogen bonding.150 The angle of rotation is mainly 

influenced by the core: in BTAs, conjugation with the benzene ring competes with the hydrogen 

bond formation to yield somewhat tilted amide groups (Figure 11b). In CTAs, contrarily, the rotation 

is not hindered and the amide groups can adopt an almost perpendicular configuration with the ring 

plane.150 In both cases, a net dipole moment emerges within a stack as all hydrogen bonds point 

towards the same direction, along the stack’s long axis.151-153 As the dipole-dipole interaction is long-

ranged, the next docking molecule will experience a higher attraction from a pre-existing stack as 

compared to another single molecule. Hence, the polymerization happens presumably in a 

cooperative manner.146 Furthermore, the macrodipole within one stack needs to be compensated by 

an antiparallel neighboring stack. This process leads to the formation of the observed liquid 

crystalline phases and eventually to rod-like nanofibers. These nanofibers have been found to form 

reversibly upon cooling or evaporation (concentration increase and temperature drop) of their 

solution.154 Despite the monomers are only linked by “weak” secondary interactions such as the 

dominant hydrogen bonding but also π-π-stacking, the cooperativity of those interactions renders 

the nanofibers surprisingly mechanical stable. In fact, these nanofibers have been found to exhibit a 

Young’s modulus comparable to that of classical covalent polymers.70, 74 Inclusion of these nanorods 

in suitable matrices is a promising path towards complex hierarchical composites/copolymers.155 

With that in mind, the two major reasons fueling the interest in the class of 1,3,5-tricarboxamides 

become obvious:  

(1) BTAs and CTAs combine a simple molecular structure and chemical versatility ideally suited to 

study the principles of supramolecular assemblies in depth. Systematic synthesis of a multitude of 

derivatives and the investigation of their respective phase behavior149 as well as theoretical 

considerations153 have shed light on stack formation and properties.  
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(2) BTAs and CTAs can be readily used for a wide variety of applications illustrating the unique 

features of supramolecular systems. One example is the fast and well-defined aggregation in 

nanoscopic crystallites that form upon cooling and aid polymer nucleation.148 Furthermore, the 

assembly process to nanofibers in a solution can be used to interweave a carrier nonwoven at 

unprecedented ease. Such microfiber/nanofiber composites show high potential in filtration 

applications.154, 156  

Additionally, BTAs and CTAs have recently been found to provide sufficient intramolecular cohesion 

to facilitate melt-electrospinning to beads or fibers with µm-diameters.156, 157 This complementary 

approach to fiber formation allows for bilateral studying of the supramolecular aggregate formation 

as well as the spinning process itself.75 

Overall, detailed understanding of self-assembly in general and the self-assembly of BTAs and CTAs 

as a model system in particular represents one important step towards realization of structural 

hierarchy in materials. Where tedious lithographic approaches fail when facing scale-up, self-

assembly and self-organization provide a promising pathway. Only when truly comprehending the 

structure-property relationships, tailored material design can become accomplishable.  
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III.1 Outline 

After the motivation for this work (part I) and the introduction of the fundamentals (part II), on 

which this thesis is built, part IV will give the experimental findings and their interpretation. That 

part is divided in three individual publications (chapters IV.1 through IV.3), that each contribute to 

the methodical advancement of AFM as a tool for fiber characterization as well as to a deeper 

understanding of the respectively considered fibrillar system.  

The present part III gives short summaries of these three publications and elucidates their role in the 

superordinate theme of this thesis. 

III.2 Tensile versus AFM Testing              

of Electrospun PVA               

Nanofibers: Bridging the                

Gap from Microscale to         

Nanoscale 

The major impact of this publication is the establishment of both, AFM-based three-point 

deformation tests and classical high-resolution tensile testing as mutually benchmarked 

approaches for the mechanical testing of individual (nano-)fibers.  

 

Mechanical testing of individual nanofibers is not trivial. Their small size critically limits their 

handling as well as the actual testing. Fibers of nanoscale diameter can hardly be detected by the 

naked eye, only from their slight shimmering when observed against a light source, i.e. from their 

diffraction of light. Additionally, these fibers are prone to rupture during handling. Fluctuations in 

the motions of the experimentalist can easily overcome the force and deformation limits, and thus 

rupture such fibers. Finally, there is only a very limited number of setups that can resolve the forces 

and deformations during nanofiber testing and such experiments are far from being standardized.  
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To still face the task of single fiber mechanical characterization, efforts using special high-resolution 

tensile testing machines as well as AFM-based three-point deformation experiments have been 

made throughout the literature. A priori, it is not clear whether both approaches will give similar 

results, that allow an immediate comparison of the absolute values of mechanical properties. The 

deformation geometry and the raw data evaluation strongly differ and in either of the two 

techniques, the exact deformations cannot be observed in-situ. Studies on poly(ε-caprolactone) 

fibers, for instance, report Young’s moduli values that differ up to a factor of 60 and it remains 

questionable whether this discrepancy is caused by the different testing methods themselves or by 

possible alterations in the respective fiber preparation routes.  

Chapter IV.1 addresses this issue of methodical conformity for the well-characterized system of 

electrospun polyvinyl alcohol (PVA) fibers. Identically prepared fibers were tested by high-resolution 

tensile testing as well as AFM-based three-point testing. Excluding potential variations in the fiber 

preparation process, both testing techniques can be thoroughly compared for nanofibers of 

different diameters and intricacies inherent in the respective method can be spotted. This 

comparison can be used to benchmark those two commonly applied methods mutually against each 

other.  

Figure 12 gives the diameter dependence of the Young’s moduli for PVA nanofibers as determined 

by AFM-based three-point deformation testing and tensile testing (adapted from chapter IV.1). In 

essence, this figure also answers the question of methodical conformity of both approaches with 

yes: as indicated by the gray line, the respective results coincide on a master curve. Still this 

comparison reveals that there seem to be influences rendering the AFM results systematically 

higher than the tensile testing results. This may be attributed mainly to the different lengths of the 

specimen for the respective methods as well as the diverging means by which the fiber cross-

sections are determined. The overall consistency, however, provides a thorough basis that ensures 

the comparability between the various studies and successfully vindicates the interchangeable 

application of both methods. 
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Figure 12| Summary of Young’s moduli values of PVA nanofibers as determined by AFM-based three-point 

deformation testing (blue) or high-resolution tensile testing (yellow). The Young’s moduli coincide on a master 

curve as illustrated by the gray line and increase with decreasing fiber diameter.  

 

A second aspect (beyond the methodical one which is discussed above) is highlighted in chapter IV.1 

and illustrates electrospinning as a fiber preparation technique that is strongly capable of 

influencing fiber properties. As demonstrated by nature (e.g. in spider silk), the fiber spinning 

procedure itself has to be considered an integral part of the final material, just as the chemical 

constituents of the material themselves. Through its harsh process that basically forces the fibers 

through the surface of the Taylor cone, electrospinning can extend and align the molecular polymer 

chains close to the fibers’ surface. This conformational orientation of surface chains stiffens the 

respective parts of the fibers. As the fiber diameter decreases, the surface becomes more and more 

dominant with respect to the overall fiber properties. Hence, the Young’s moduli increase with 

decreasing diameter. 
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III.3 Mechanical Testing of 

Engineered Spider Silk 

Filaments Provides 

Insights into Molecular 

Features on a Meso-

Scale 

This publication takes the crucial step from elastic deformations to a full mechanical 

characterization up to fiber rupture properties. Thereby, it facilitates for the first time an 

investigation of spider silk on the filamentous mesoscale.  

 

Vertical AFM-based three-point deformation tests (as employed in chapter IV.1) are limited in their 

deformation range by the 𝑧-piezo reach of the AFM (~ 10 µm). So, mostly small, elastic deformations 

can be carried out and used to determine the respective elastic properties as, for instance, the 

Young’s modulus. The elastic range is yet just a small portion of a fiber’s mechanical spectrum. For 

many applications, properties beyond that, e.g. the fiber’s extensibility, its ultimate tensile strength 

or its toughness may even be more important. To evaluate those, however, larger deformations are 

indispensable and one possible way to attain those is lateral three-point testing as employed in 

chapter IV.2.  

The course of a lateral three-point deformation test is illustrated in Figure 13 (adapted from chapter 

IV.2). A sharp tip cantilever travels perpendicular to the fiber axis and deforms the free-standing 

segment. Owing to the larger 𝑥- and 𝑦-piezo reach (~ 90 µm), the complete mechanical spectrum up 

to fiber rupture properties is accessible (points 1 – 5).  
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Figure 13| Lateral force-deformation curve (center) during single spider silk fiber testing at high relative 

humidity (~ 80 %). The labeled points are (1) the contact point, (2) the elastic and (3) the plastic regime, and 

(4) the maximum force followed by (5) the fiber rupture. 

 

Together with the AFM’s general tolerance for environmental conditions, this lateral approach is 

presented in chapter IV.2 to be suitable to mechanically characterize nanoscale electrospun protein 

fibers from the recombinant core sequence of dragline spider silk from Araneus diadematus (eADF4) 

at different relative humidity. In that way, the influence of hydration on the silk thread’s mesoscale 

filaments could be investigated directly. Furthermore, the protein’s β-sheet content could be 

adjusted from low (as-spun (AS) fibers) by a post-treatment (PT) procedure to high. Regulating a 

high humidity and a high β-sheet content, the single eADF4 fibers reach a toughness comparable to 

that of the natural dragline thread. However, the composition of the mechanical data differs as 

shown in Figure 14 and discussed in detail in chapter IV.2.  
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Figure 14| Mechanical data for natural dragline threads (tensile tested) and as-spun (AS) as well as post-

treated (PT) eADF4 fibers (AFM tested) at (a) low and (b) high relative humidity (RH).  

 

With respect to the general significance of hierarchal structuring in natural high-performance 

materials, accessing spider silk’s mesoscale bridges the gap between the present molecular and 

macroscopic knowledge.  

III.4 Long-Range Interaction              

Forces between 1,3,5-

Cyclohexanetrisamide                 

Fibers in Crossed-Cylinder  

Geometry 

Colloidal in size, the interaction forces between fibers are governed by their surface 

properties. These forces can be directly measured in crossed-cylinder geometry using the 

colloidal probe technique as exemplified in this publication using melt-electrospun 1,3,5-

cyclohexanetrisamides.   
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Having established single fiber mechanical testing, the next hierarchical step involves the 

interactions of fibers with their surroundings, i.e. amongst each other as well as with further 

particles, etc. A generic AFM-based approach to measure those forces is applied in chapter IV.3 

. In general, tipless AFM cantilevers can be equipped with colloidal particles and used to directly 

measure the forces acting during an approach-retraction cycle with another surface. This is the basis 

of the so-called colloidal probe technique. In the specific case here, fibers with micron-sized 

diameters have been attached to the cantilever as well as immobilized on a surface and their 

interaction forces have been measured in crossed-cylinder geometry (Figure 15).  

 

Figure 15| Micron-sized (~ 5 µm in diameter) melt-electrospun fibers from 1,3,5-cyclohexanetrisamides (CTAs) 

attached to tipless AFM cantilevers and during measurement in crossed-cylinder geometry. (a) SEM, (b) optical 

micrograph, and schematic setup. 

1,3,5-cyclohexanetriamides (CTAs) provide an ideal platform to establish such measurements 

because they can be melt-electrospun to give smooth and homogeneous fibers with suitable 

diameters for handling. Furthermore, they can be modified chemically to expose different surface 

groups, e.g. aliphatic or perfluorinated carbon chains and hence change their surface potential in 

aqueous media. 

The force-distance relations in aqueous solution of various ionic strength can be modeled according 

to the DLVO theory (see chapter II.4) and will yield a surface potential and consecutively the surface 

charge density (Figure 16). 
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Figure 16| (a) and (b) show representative approach force curves of fibers in crossed-cylinder geometry with 

the surface groups indicated in the respective insets. The salt concentrations of the aqueous solution, in which 

these curves were measured are also given. (c) and (d) give the distinct ranges of surface charge densities 

determined for the different CTAs.  

 

The charge densities of the respective CTA fibers reflect the trends as reported in the literature for 

aliphatic self-assembled monolayers or Teflon. Therefore, the origin of charge generation on the 

surface may be the accordingly asymmetric adsorption of hydroxide ions with a preference for the 

aliphatic surface.  
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III.5 Individual Contributions to Joint 

Publications 

All presented publications in this thesis are joint collaborations with fellow researchers. My part is 

mostly centered around the application of the AFM for the respective fiber characterization and the 

interpretation of these data. The individual contributions of the authors to each publication is 

specified below. 

 

Chapter IV.1 is published in the Journal of Polymer Science, Part B: Polymer Physics under the title 

“Tensile versus AFM Testing of Electrospun PVA Nanofibers: Bridging the Gap from Microscale to 

Nanoscale” by Benedikt R. Neugirg, Matthias Burgard, Andreas Greiner, and Andreas Fery.  

I carried out all AFM experiments including fiber imaging and mechanical testing, programmed the 

evaluation procedures, evaluated the data and wrote the majority of the manuscript. Matthias 

Burgard prepared the fibers and performed and evaluated the tensile testing experiments. Andreas 

Greiner and Andreas Fery supervised the project, were involved in scientific discussions and 

corrected the manuscript. 

 

Chapter IV.2 is published in ACS Applied Materials and Interfaces under the title “Mechanical 

Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a 

Mesoscale” by Gregor Lang, Benedikt R. Neugirg, Daniel Kluge, Andreas Fery, and Thomas Scheibel. 

I immobilized the fibers and performed parts of the SEM imaging. Furthermore, I carried out all AFM 

experiments including fiber imaging and mechanical testing, programmed the evaluation 

procedures, evaluated the data and wrote approximately 50 % of the manuscript. Gregor Lang 

prepared the spider silk protein, spun the fibers, and performed and analyzed the post-treatment. 

He also tensile tested the natural silk thread as well as fiber yarns, evaluated the data and wrote 

approximately 50 % of the manuscript. Daniel Kluge was involved in the scientific discussions. 

Andreas Fery and Thomas Scheibel supervised the project, were involved in scientific discussions 

and corrected the manuscript.  
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Chapter IV.3 is published in Polymer under the title “Long-Range Interaction Forces between 1,3,5-

Cyclohexanetrisamide Fibers in Crossed-Cylinder Geometry” by Benedikt R. Neugirg, Nicolas 

Helfricht, Steffen Czich, Hans-Werner Schmidt, Georg Papastavrou, and Andreas Fery.  

I carried out all AFM experiments, namely the imaging of the fiber surfaces, the attachment of fiber 

segments to AFM cantilevers and the interaction measurements. I evaluated the data and wrote the 

manuscript. Nicolas Helfricht evaluated parts of the data, helped writing the manuscript and took 

part in scientific discussions. Steffen Czich synthesized the fluorinated 1,3,5-cyclohexanetrisamides 

and prepared the fibers. Hans-Werner Schmidt, Georg Papastavrou, and Andreas Fery supervised 

the project, were involved in scientific discussions and corrected the manuscript. 



 

 

“Wenn wir alles täten, wozu wir 

imstande sind, würden wir uns 

wahrscheinlich in Erstaunen 

versetzen.” 

Thomas A. Edison 
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IV.1 Tensile versus AFM Testing of 

Electrospun PVA Nanofibers: 

Bridging the Gap from Microscale to 

Nanoscale
*
 

Reproduced with permission from: 

“Tensile versus AFM Testing of Electrospun PVA Nanofibers: Bridging the Gap from Microscale to 

Nanoscale”, B.R. Neugirg, M. Burgard, A. Greiner, A. Fery, Journal of Polymer Science Part B: Polymer 

Physics, 2016, 54 (23), 2418-2424 

© 2016 Wiley Periodicals, Inc. 

 

Design and application of mechanically extraordinary electrospun nanofibers requires their full 

comprehension, based on conclusive testing methods. The non-trivial task of mechanical nanofiber 

probing is commonly faced by specialized tensile or AFM-based three-point testing. Despite the 

methods’ inherent dissimilarity, we herein resolve their conformity for the first time, with respect to 

the determination of Young’s moduli. 

 

                                                           
*
 Matthias Burgard and Benedikt R. Neugirg contributed equally to this work. 
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Abstract 

Design and application of mechanically extraordinary nanofibers requires their full comprehension, 

based on conclusive testing methods. Electrospun polymer nanofibers, for instance, show a 

progressive and pronounced increase in their Young’s moduli when diameters decrease below the 

µm-scale. Measurement of mechanical properties in this diameter range is challenging and in the 

vast majority of reports, two classes of methods are commonly used: highly sensitive tensile testing 

and atomic force microscopy three-point deformation testing. Despite the methods’ inherent 

dissimilarity, we resolve their conformity for the first time, with respect to the determination of 

Young’s moduli. Here, we benchmark them against each other for electrospun polyvinyl-alcohol 

nanofibers, a well-defined model system. Our results provide an experimental basis for a 

comprehensive understanding of nanofiber structures and its implications on their mechanical 

properties. 

Introduction 

Nanofibers are the commonly shared structural building component in both, nature’s evolved 

mechanical high-performance composites1, 2 and designed modern multifunctional materials.3-5 

Their attractiveness arises from their beneficial physical properties that differ significantly from the 

ones of the respective bulk material. High aspect ratios at diameters down to the nanoscale provide 

nanofibers with, for example, superior toughness6 or extraordinary electrical properties.7 Opening 

up the opportunity for the technical use of nanofibers, electrospinning has emerged as a popular 

and versatile technique which is capable of shaping a wide variety of materials into well-defined 

nanofibers even at industrially relevant scales.8, 9 One example which is especially attractive for 

applications are mechanically exceptional, stiff yet tough electrospun polymer nanofibers.6, 10 

While such nanofibers provide exciting perspectives for high-performance materials, the lack of 

quantitative information on fiber mechanics in the sub-micron regime is a major bottleneck for 

rational design of next-generation nanofibers. Intricate issues associated with mechanical testing of 

single nanofibers are their handling, sufficient force and extension resolution during testing, and the 

determination of the fiber’s cross-sectional area. As conventional techniques are stretched to their 

limits or simply fail when facing nanofibers, new approaches have emerged: particularly 
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instrumented highly sensitive tensile testing6, 11 (Figure 17 a) and three-point deformation tests10, 12-

14 that employ the atomic force microscope (AFM) (Figure 17 b).15, 16 Among other approaches these 

two are most commonly applied to determine the (axial) Young’s modulus E of nanofibers. In 

contrast, for example, widely used nanoindentation measurements aim at the radial fiber modulus 

which is distinct from the axial one in anisotropic (electrospun) fibers.  

Both methods – instrumented tensile and AFM-based three-point testing – were used individually 

and independently in different studies investigating the mechanical properties of similar single 

polymer nanofibers. While studies on poly(L-lactic acid) (PLLA) revealed comparable results for E 

irrespective of the testing method and preparation procedure,17-19 the results for nylon 6 show a 

pronounced distribution20-23 and in the case of poly(ε-caprolactone) measured E values differ up to a 

factor of almost 60.11, 24-28 This overall inconsistency of results may adequately be attributed to the 

non-uniformity of material (e.g. molecular weight) and spinning parameters (solvent type and 

concentration, voltage applied, flow rate, and many more) between the different studies. Yet, a 

thorough validation of the consistency of the testing methods themselves is still lacking and 

restraining fiber design. Here, for the first time, we bridge this gap between tensile and AFM-based 

three-point testing and elucidate their conformity studying equally electrospun single polyvinyl-

alcohol (PVA) nanofibers with both methods, accordingly.  

Besides the distinct fiber deformation modes, both testing methods predominantly differ in the 

respective length L of the specimen (Figure 17 a&b). Tensile testing requires an L of several mm 

which is the lower limit for feasible fiber handling. In contrast, AFM testing was reported for 

suspended segment lengths as short as several hundreds of nm29, 30 and up to several hundreds of 

µm.31 The probability of flaws and defects is proportional to L, hence relatively low on a µm-scale 

and accordingly higher for mm long fibers (albeit more dominant in brittle materials). Therefore, it is 

of central importance – especially when comparing the testing methods - to probe nanofibers that 

are homogeneous throughout these scales, that is, diameter variations should be restricted to a 

minimum and catastrophic flaws must be avoided. To obtain such homogenous fibers we employed 

electrospinning. Here, a droplet of a material’s (predominantly polymer’s) solution or melt is forced 

by high electrical fields to eject thin jets which undergo bending and stretching as they travel toward 

a counter electrode collector.8, 9 Electrospinning of PVA was shown to be well-suited to form 

homogeneous and uniform nanofibers with lengths on the meter-scale.32 
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Results and Discussion 

We prepared PVA nanofibers with diameters below 500 nm by electrospinning from an aqueous 

polymer solution at controlled and constant spinning parameters (i.e., temperature, humidity, 

voltage, flow rate, and distance of electrodes) throughout. As counter electrode collector, we used a 

metal frame which yielded continuous single fibers spanning the frame in free-standing, cm-long 

segments.33 Individual PVA nanofibers were isolated, transferred to a corresponding substrate and 

consecutively subjected to both methods of mechanical testing.  

We performed two independent sets of mechanical measurements, one using a tensile tester 

(Figure 17 left column) and one using AFM-based three-point testing (Figure 17 right column). 

During all testing, we kept the environmental conditions constant, that is, room temperature and 44 

% relative humidity (RH). Especially the RH is known to alter mechanical properties as it has a 

plasticizing effect on hydrophilic materials that causes pronounced softening.34 Therefore, thorough 

drying processes after fiber preparation (3 days at 40 °C and 7 mbar) and precise control of RH 

during the mechanical tests are essential to obtain comparable results. Using a polymer with 

humidity dependent mechanics, we show that the used mechanical testing methods are not only 

comparable for standardized low effort polymers such as polystyrene or poly(methyl methacrylate), 

but can rather be transferred even to demanding approaches.  

The first set of measurements utilizes a highly sensitive tensile tester with a force and extension 

resolution of 100 nN and 100 nm, respectively. To test an individual nanofiber, it is glued onto a 

cardboard frame which is then mounted in the tensile tester grips. On cutting the frame joints, the 

grips move apart in opposite directions applying a uniaxial force (Figure 17 a&c). The fiber is 

stretched until failure thus covering the complete stress-strain relation. To determine the fiber’s 

cross-sectional area A, we imaged each fiber beyond the clamping points on the cardboard frame by 

scanning electron microscopy (SEM) (Figure 17 e). The normalization of the measured forces to A 

and the deformation to the initial fiber length yields a stress-strain curve as shown in Figure 17 g. 

The Young’s modulus is defined as the initial (elastic) slope of the stress-strain curve and can be 

obtained from a linear fit. Overall, this method is fast and benefits from straightforward data 

conversion and evaluation and the comprehensive mechanical information. Yet, its drawbacks are a 

relatively coarse force and extension resolution and the delicate fiber handling.  
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Figure 17| Single fiber tensile (left column) and AFM-based three-point testing (right column). Schematics of 

tensile (a) and AFM testing (b) as well as optical images of the experimental configurations (c and d). (d) shows 

a bottom-view optical micrograph during fiber testing. The channel width is 20 µm. The fiber’s diameter D and 

cross-sectional area A can be determined ex-situ from SEM (e) and AFM (f) micrographs, respectively. The 

respective loading data for each method is given in (g) and (h) including a linear fit of the initial stress-strain 

slope (g) and a fit of the force-deformation data based on the model of Hudson et al.
14

 (h). Both fits yield the 

axial Young’s modulus of the fiber. 
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For the second set of measurements – AFM-based three-point testing – we deposited electrospun 

PVA fibers from the collector frame onto a glass substrate that is pre-structured with micro-channels 

of 20 µm width. The fibers span those channels leaving segments suspended and accessible to AFM-

based testing (Figure 17 b&d). To ensure well-defined boundary conditions, we immobilized the 

supported fiber segments by gluing them to the substrate (glue droplets on both sides of the 

channel in Figure 17 d). To achieve the precise application of such small volumes of glue, we 

equipped a micromanipulation setup with a separate tipless AFM cantilever as a micro-“spatula.” 

After transfer to the AFM setup, the free-standing fiber portion between these two anchoring points 

is subjected to vertical loading at its midpoint by a calibrated tipless AFM cantilever. The 

deformation range is limited by the reach of the piezo-actuators that move the cantilever. Hence, 

most studies focus on the deformation of the fiber vertical to the substrate, which naturally limits 

the experiments to small, elastic deformations. In a few cases, deformations of the fiber parallel to 

the substrate plane were investigated, which gives access to deformations until mechanical failure, 

similar to the tensile tests at the cost of lower force resolution.35, 36 

In the AFM-based approaches, force and deformation resolution are superior, yet data conversion 

and interpretation is generally more complex. First, the raw data needs to be converted and 

corrected for the cantilever deflection to obtain the fiber’s force-deformation (F-d) relation. A 

representative approach F-d curve is shown in Figure 17 h. Second, an appropriate model to 

determine E needs to be identified. At the forces applied here, deformations beyond one fiber 

radius R (R = 109 nm in the case shown in Figure 17 h) occur resulting in a non-linear F-d 

relationship. This indicates that bending and stretching contributions superimpose as described by 

Heidelberg et al. (Equation 14):13  

𝐹 =
192𝐸𝐼

𝐿3 ⋅ 𝑓(𝛼) ⋅ 𝑑  Equation 14 

where I is the area moment of inertia, L the length of the suspended fiber segment, and 𝑓(𝛼) can be 

derived from Equation 15. 

𝑓(𝛼) =
𝛼

48 −
192 ⋅ tanh (√𝛼 4)⁄

√𝛼

 Equation 15 
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We found an expansion of the Heidelberg model - as derived by Hudson et al.14 and Calahorra et 

al.37 - which additionally accounts for pre-tension in the fiber, to conclusively fit our data. Here, f(α) 

can be derived depending on the pre-tension T0 from Equation 16.14 

(1 −
𝐿2𝑇0

𝛼𝐸𝐼
)(

𝐸𝐴

𝑇0 + 𝐸𝐴
)

∙

[
 
 
 
 

𝛼 cosh2(√𝛼 4⁄ )

2 + cosh(√𝛼 2⁄ ) − 6
sinh(√𝛼 2⁄ )

√𝛼

∙ (1 − 4
tanh(√𝛼 4⁄ )

√𝛼
)

2

]
 
 
 
 

=
𝐴

𝐼
𝑑2 

 

Equation 16 

In contrast to the simple Euler-Bernoulli bending model, this model describes a larger deformation 

range (beyond one R) rendering the results unambiguous. Furthermore, it is worth noting that the 

length-to-diameter ratios of all tested fibers are well above 10 (> 67 in all cases), which is the limit 

for significant contribution of shearing. Hence, shearing contributions can be neglected in this study. 

AFM imaging allows for precise determination of the suspended fiber length L and the fiber cross-

sectional area A that are required as input parameters to derive E. A representative AFM image of 

the supported fiber segment to derive A is shown in Figure 17 f. 

Despite the different loading modes, both testing methods yield the same axial Young’s modulus E. 

While a tensile tester applies uniaxial forces in opposite directions (Figure 17 a) inducing 

homogenous stresses throughout the fiber, the force in three-point testing acts perpendicular to the 

fiber’s long axis (Figure 17 b). However, the latter analogously probes the axial E as the material is 

respectively stretched or compressed along the fiber direction at the bending points. Furthermore, 

at deformations larger than one fiber radius, the whole free-standing segment experiences 

additional tensile stresses.13 

Figure 18 summarizes the results of E derived from both techniques, respectively. The diameters of 

the tested fibers range from 100 to 470 nm with the tensile data (yellow) covering the regime of 

larger D (approximately 150 – 470 nm) whereas the AFM data (blue) focuses on fibers with smaller D 

(below 300 nm). Each set seen individually reproduces the trend from ref. 10 for PVA nanofibers: E 

significantly increases with decreasing D. In the limit of large diameters, the tensile testing results 

approach a Young’s modulus of roughly 1 GPa which corresponds to the modulus that was 

determined macroscopically for PVA at corresponding RH.38 Additionally, the values from tensile and 
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AFM-based testing coincide on one master curve as indicated by the gray line which is an 

exponential fit and serves as guide to the eye. This overall consistency of the magnitude and the 

trend of the Young’s moduli for PVA nanofibers determined independently by tensile and AFM-

based testing convincingly illustrates the conformity of both methods. Furthermore, our twofold 

mechanical study also mutually verifies the respective approaches that are based on complementary 

deformation modes.  

 

Figure 18| Young’s moduli determined via three-point bending (blue) and tensile testing (yellow) versus fiber 

diameters. The gray line is an exponential fit and serves as a guide to the eye. 

 

A dependence of E on the diameter as reported here, was also found for several polymer-based 

electrospun nanofibers6, 10 and can be attributed to a process cascade unique to electrospinning: the 

high electrical field forces the polymer jet to pass through the surface of the Taylor cone. This 

specific process involves enormous shear rates that orient the polymer chains on the jet’s surface 

preferentially along the fiber axis. Consecutive rapid loss of solvent and fast solidification largely 

conserve the jet’s molecular structure in the resulting solid nanofibers including aligned chains in 

proximity to the fiber surface.6, 10, 39 Usually, polymers exist in bulk as an entangled network of 

randomly coiled chains. These coils respond to tension as relatively soft entropic springs. The chains 
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at the surface of electrospun polymer fibers are pre-stretched and oriented in strain direction 

because of the aforementioned processes during electrospinning. On stretching of such a fiber, on 

average more extended polymer chains are probed which are significantly stiffer. Reducing the fiber 

diameter down to nanoscale dimensions dramatically increases the surface-to-volume ratio. This 

intensifies the surface contribution to the fiber’s overall mechanical response. Consequently, one 

expects that fiber properties (especially E) are changing, as the diameter decreases. Indeed several 

studies point toward dramatic changes in mechanical properties when fiber diameters approach the 

sub-micron regime6, 10 and the same trend is evidenced by our results.  

Analyzing the diameter range in which E values from both methods are available (150 – 270 nm), it 

becomes obvious that E derived from tensile testing tends to be lower than respective AFM data 

and also lower than expected from previous results.10 Furthermore, the results acquired by AFM are 

subjected to a larger scatter especially at very small fiber diameters. These two aspects require 

further discussion: 

The former aspect can be explained by inevitable diameter variations along mm-long fiber segments 

in tensile testing. We found, for instance, the diameter of a fiber to vary by approximately 5 % 

around the average value of 310 nm within a segment length of 7.7 µm as measured by SEM (data 

not shown). Therefore, deviations should be estimated on the order of 10 %, which includes actual 

diameter variations as well as variations due to intricacies in SEM imaging and diameter 

determination. The established mechanical evaluation procedure supposes a perfectly 

homogeneous fiber with a cross-sectional area A which can be derived from the fiber’s diameter at 

basically any position prior to stretching. We determined two diameter values for each fiber via 

SEM, namely at both ends protruding from the clamping points. Despite the overall homogeneity of 

electrospun fibers, small diameter variations remain experimentally inevitable. Hence, A might be 

smaller somewhere along the mm-long fiber segment. On stretching, the applied force is the same 

throughout the fiber but the stresses will peak at the position of rejuvenation. Consequently, when 

the true stresses are underestimated, the Young’s modulus based on the measured (broader) 

diameters will be underestimated, accordingly. As the cross-sectional area depends on the square of 

the diameter, small variations will cause significant effects. However, imaging the fiber at its 

clamping points is established40, 41 and convenient whereas further imaging of the fiber prior to 

testing would be very time-consuming and might require additional fiber treatment (e.g. sputtering 

of a metal layer) which in turn might alter the mechanical behavior.  
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In case of the AFM data, diameter variations play a minor role as the suspended segments were just 

20 µm in length and were monitored via optical microscopy. Furthermore, the argument for the 

underestimation of E in tensile testing (stated above) cannot be applied analogously with respect to 

an overestimation. The observed scatter might be explained by the sensitivity of AFM-based three-

point testing to experimental parameters which are progressively critical as fiber diameters 

decrease. Issues such as unobservable defects, convolution effects during the determination of the 

cross-sectional area, or fiber slack influence the data interpretation. Yet another factor that remains 

to be resolved is whether glue used to immobilize the supported fiber segments is absorbed to a 

certain extend.28, 42 If so, it might enhance the rigidity of the fiber, especially at the bending points 

close to the channel edges, and consecutively lead to an overestimation of E. Furthermore, the data 

interpretation in nanoscopic three-point tests itself is still not standardized (as in tensile testing). 

The three-point configuration provides an F-d relation that contains the convoluted contributions of 

bending, stretching, and possibly pre-tension. Despite existing models that account for this 

superposition13, 14, 37 and that were applied here, the evaluation is not fully established and remains 

a subject of current research. 

The aforementioned aspects, however, are inevitable when manipulating, deforming, and analyzing 

nanofibers and need to be kept in mind when interpreting the results. A precise assessment of 

errors is difficult due to the unpredictable manifestation of different effects within single fiber 

specimen (as diameter variations or defects). Therefore, we can only estimate an error of 10 % 

accounting for diameter variations in tensile tested fibers as well as an error of 20 % for the AFM 

results based on the uncertainties related to cantilever calibration. However, all incalculables are 

superimposed by the scatter of the data points of Figure 18. This scatter is reasonable due to inter-

fiber variations and typically seen in single fiber studies.6 Yet it  does not blur the conformity of 

tensile and AFM testing as evidenced by our results for PVA nanofibers. Both methods agree very 

well on the trends and the magnitude of E for electrospun PVA nanofibers. Our study represents a 

thorough basis vindicating the comparability of Young’s moduli derived for nanofibers by either 

tensile or AFM-based three-point testing. 
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Conclusion 

We demonstrated the conformity of tensile and AFM-based three-point testing for the 

determination of the Young’s moduli by means of electrospun PVA nanofibers. We have chosen PVA 

intentionally as it is a well-studied polymer for electrospinning and highly relevant for a variety of 

applications, for example in technical filtration. PVA can be readily shaped into equal and long, yet 

homogenous fibers by electrospinning. This homogeneity of specimen produced at constant 

spinning parameters is a crucial prerequisite for a comparative mechanical study. Despite different 

specimen lengths, deformation modes, and evaluation routines, we unambiguously proved the 

consistency of tensile and AFM-based testing: the Young’s moduli derived from both methods 

exhibit the same magnitude and dependence on the fiber diameter. The observed increase in E for 

decreasing fiber diameters can be attributed to polymer chain orientations on the fiber surface 

which enhance fiber stiffness.  

The experimental conformity of uniaxial and perpendicular loading as evidenced here is only valid 

for elastic deformations and elastic properties such as the Young’s modulus. At larger deformations, 

stress and strain distributions throughout the specimen remain homogeneous in tensile testing but 

exhibit pronounced local peaks at the bending points in three-point testing. These peaks render the 

exact determination of, for example, rupture properties such as stress and strain at break extremely 

difficult in a nanofiber three-point testing experiment. The comparability of both methods in that 

deformation regime is yet to be resolved. Our study acts as a first approach to conclusively unify 

mechanical testing of nanofibers to ensure consistent and reproducible results which facilitate the 

identification, verification, and design of advanced nanofiber-based materials. 

Experimental Section  

Materials and Solution Preparation: PVA powder was purchased from Sigma Aldrich (87-89% 

hydrolyzed, Mw = 146,000 – 186,000 g mol-1) and was dissolved in distilled water (distilled water, 

again purified with a Millipore-Qplus machine; Column: QPAK® 2; electrical conductivity: 18.2 MΩ 

cm) to produce a 6 wt% PVA solution. 

Electrospinning: Electrospinning was performed on a custom-built device. The voltage at the syringe 

was set to be +17 kV and -2 kV at the metal frame collector (inner dimensions: 17.5 cm x 3.0 cm; 
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frame thickness: 0.5 cm; frame depth: 0.1 cm). The distance between needle and collector was 30 

cm. The temperature during electrospinning was 21 °C at a RH of 16%. After electrospinning, the 

samples were dried in a vacuum oven at 40 °C and 7 mbar for 3 days. For the electrospinning 

process a short initial pump impulse was executed, so that the electrospinning process endured only 

a few seconds. With that, mostly separated single nanofibers were collected on the metal frame. 

Tensile Testing: For tensile testing, a single fiber was isolated on the metal frame collector by 

removing all neighboring fibers. This was possible as observing the collector frame against a light 

source uncovered the fiber positions due to light refraction and allowed for deliberate removal of 

individual fibers. The remaining fiber was consecutively transferred onto a cardboard frame, which 

was equipped with double-sided, conductive adhesive tapes to ensure fixation. This process 

furthermore prevented any fiber damage, as the transfer from collector to cardboard frame 

exclusively strained and ruptured the exterior fiber portions, while the fiber segment within the 

frame remained relaxed as it was fixed on both sides by the adhesive tape. After mounting the 

cardboard frame into the tensile tester (JSF10 Powereach; load cell: ULA-10GR Minebea Company, 

Japan, 0.01 – 98.07 mN measuring range, 100 nN load resolution; stepping motor: BSHB366 

Shenzhen Baishan Mechatronics, China, 0.1 μm step resolution) the linked side of the cardboard 

frame was cut to ensure free movability of the two clamping points, which were 5 mm apart. The 

tests were performed at 21-22 °C and 44% RH. The speed of the test was set to be 0.094 mm s-1 

(strain rate: 0.0188 s-1). For the analysis of the cross-section area of the fibers, the two regions of the 

conductive adhesive tape where a fiber was attached were cut out and analyzed with a Zeiss 1530 

SEM, equipped with a field-emission electron source. The samples were coated with 1.3 nm Pt with 

a 208HR high resolution sputter coater, equipped with a quartz crystal and a Cressington MTM-20 

thickness controller to precisely control the sputtered thickness. The acceleration voltage of the 

SEM was 1 kV. As tests were conducted without pre-loading and the initial region of baseline noise 

removed for convenient data representation. 

AFM Three-Point Bending & Data Analysis: PVA fibers were transferred from the metal frame 

collector to prestructured glass substrates (GeSiM, Grosserkmannsdorf, Germany) by simple physical 

contact. We identified individual fibers that appeared homogeneous and spanned a substrate 

channel (2 µm deep and 20 µm wide) perpendicularly by optical microscopy and immobilized the 

adjacent supported segments by gluing (UHU plus endfest 300, UHU GmBH & Co, Baden-Baden, 

Germany) using a micromanipulator (MP-285, Sutter Instrument, Novato, California) equipped with 
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a separate tipless AFM cantilever as micro-“spatula”. Before gluing and prior to mechanical testing, 

the fiber’s cross section and the exact length of the free-standing segment, respectively, were 

determined by AFM imaging (MFP3D, Asylum Research, Santa Barbara, California). Consecutively, 

the same AFM setup was equipped with a calibrated43 tipless cantilever (NSC12/TL/AlBS, µmasch, 

Sofia, Bulgaria) which was positioned over the midst of the free-standing fiber segment with the 

assistance of an optical microscope (Olympus IX 71, Olympus, Tokyo, Japan). On each fiber segment 

we performed at least 15 deformation curves at 2 µm/s and a force setpoint of 50 – 100 nN. The 

ambient humidity during testing was adjusted by the ratio of a dry and a humid He-flow within the 

measurement cell. Each of the force-deformation curves was fit individually to the model of Hudson 

et al.14 and the average of a Gaussian distribution of the Young’s moduli is given as the respective 

value for each fiber. 
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Abstract 

Spider dragline silk shows the highest toughness in comparison to all other known natural or man-

made fibers. Despite a broad experimental foundation concerning the macroscopic silk thread 

properties as well as a thorough simulation-based molecular understanding, the impact of the 

mesoscale building blocks, namely nano-/submicrometer-sized filaments, on the mechanical 

properties of the threads remains the missing link. Here, we illustrate the function of these 

mesoscaled building blocks using electrospun fibers made of a recombinant spider silk protein and 

show the impact of β-sheet content and fiber hydration on their mechanical performance. 

Specifically elucidating the interplay between β-sheet-cross-linking (fiber strength) and structural 

water (fiber extensibility), the results bridge the gap between the molecular and the macroscopic 

view on the mechanics of spider silk. It is demonstrated that the extensibility of the here used single 

(MaSp2-like) protein system is in good accordance with the simulated extensibilities published by 

other groups. Furthermore, sufficient hydration of the fibers is shown to be a prerequisite to obtain 

a toughness in the range of that of natural dragline silk. Preliminary studies on electrospun fibers of 

the MaSp2-based recombinant spider silk proteins used in this work have indicated their basic 

applicability in the technical field of filter systems as well as in regenerative medicine. The presented 

work provides a fundamental understanding of the mechanical performance of such fibers under 

different wetting conditions, a prerequisite to further specify their potential for such applications.  

Introduction 

The highly defined hierarchical structure of spider dragline silk is synergized by protein composition 

and spinning process, yielding an unrivalled toughness of the natural dragline silk thread.1, 2 Despite 

a broad experimental foundation concerning the macroscopic thread properties3, 4 as well as a 

computational simulation-based molecular understanding,5, 6 the role of the main structural building 

units, the mesoscale nano-/submicrometer-sized filaments, and their impact on the mechanical 

properties of the threads are still unresolved. In natural dragline (DL) silk threads, a thin protective 

and regulatory shell (comprising lipids, glycoproteins, and minor ampullate spidroins) encases these 

major ampullate spidroin (MaSp) filaments (see Figure 19) without significantly contributing to the 

mechanical properties.7 The amino acid sequence of MaSp comprises a core domain with highly 

repetitive motifs flanked by short, nonrepetitive carboxy- (NRC) and amino-terminal (NRN) domains. 
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While the termini prevent undesired protein aggregation in the gland and trigger protein assembly 

in the duct,8, 9 the structure of the core domain defines the mechanical properties of the spider’s 

final silk thread.4 Typically, most MaSp core domains comprise characteristic polyalanine stretches 

which fold into distinct ordered β-sheet nanocrystallites (dimensions between 5 and 7 nm) and 

glycine-rich repeats composing an amorphous matrix embedding those nanocrystallites upon 

spinning.5 The thread’s structural hierarchy is illustrated on the left side of Figure 19. 

 

 

Figure 19| From hierarchical Araneus diadematus DL (dragline) silk to mechanically strong electrospun single 

fibers and fiber bundles made of recombinant eADF4(C16). NRN: nonrepetitive amino-terminal domain; NRC: 

nonrepetitive carboxy-terminal domain; LFM: lateral force microscopy. 
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To investigate the structure-property relationship of natural DL, previous studies correlated the 

macroscopic mechanical properties of natural DL silk threads to environmental conditions.10, 11 

Therein, individual contributions of proteins, filaments, or other components could not be 

determined. Alternatively, bottom-up molecular dynamic simulations were used to investigate the 

significance of β-sheet nanocrystals for the silk’s toughness but without a direct correlation to 

structural hierarchical orders.5, 6 Here, we bridge this gap performing (nano-)mechanical 

measurements based on lateral force microscopy (LFM) to identify the deformation behavior of 

electrospun mesoscale single-component MaSp fibers (150 – 450 nm in diameter) mimicking the 

filaments of natural silk (Figure 19, right side). Beyond single mesoscale fibers, this bottom-up 

approach also allows for the fabrication and tensile testing of macroscopic bundles made of these 

filaments.  

We used a previously established biotechnological procedure to recombinantly produce spider silk 

mimics based on the repetitive sequence of one Araneus diadematus MaSp2 protein. Unlike other 

orb weaving spiders, A. diadematus has at least two different MaSp2 proteins, namely fibroin 3 and 

4 (ADF3 and ADF4). In this work, an engineered A. diadematus fibroin 4 (eADF4(C16)), based on the 

consensus sequence of ADF4, was electrospun into filaments.12 The molecular weight of the protein 

is determined by the number of repeats of the specific consensus sequence, the so called C-module, 

consisting of polyalanine and a glycine-rich region. Here, eADF4(C16) with 16 C-repeats (MW = 48 

kDa) was used due to its excellent performance in an established electrospinning process and its 

high potential for application as filter materials and in regenerative medicine.13, 14 Furthermore, the 

absence of both flanking termini in eADF4(C16) enables for the first time an explicit mechanical 

investigation of the core domain quantifying the impact of the interplay between β-sheets and 

amorphous structures in combination with structural water within the fibers (without the influence 

of the termini). These fundamental insights can on the one hand be transferred to the natural 

system and on the other hand significantly contribute to understand the mechanics of recombinant 

spider silk fibrils on a single-protein level bridging the gap between atomistic simulations and 

macroscopic experiments. Moreover, these findings constitute an important prerequisite to specify 

the fields of application of recombinant spider silk fibers. 
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Results and Discussion 

eADF4(C16) (recombinantly produced in Escherichia coli as previously published)12 was dissolved in 

hexafluoroisopropanol (HFIP) and subsequently electrospun into submicrometer fibers (Figure 20 

a, b). The routes toward sample preparation for single fiber and fiber bundle testing differ in the 

counter electrode used during electrospinning. Two parallel conducting wires generate free-

standing fiber segments bridging those wires. The segments can be easily transferred to structured 

glass substrates to be used for single fiber testing (Figure 20 a). In contrast, aligned fiber mats are 

gained using a rotating cylinder as counter electrode, and the mats can be twisted into fiber bundles 

(Figure 20 b). The rotational velocity of the cylinder collector has a dominating impact on the fiber 

alignment.Figure 20 c, d correlates both parameters and best alignment for a surface speed of 33 

ms-1 is demonstrated, which has been used in the following for the fabrication of fiber bundles.  
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Figure 20| Two different custom-built electrospinning setups were applied using a potential difference of 30 

kV (-20 kV at the spinning head and +10 kV at the collector, distance: 20 cm), a feeding rate of 14 µL min-1 and 

an 18G needle. Electrospinning was performed at controlled relative humidity (50 % RH) and room 

temperature. a) To obtain aligned single fibers for LFM measurements, two conducting wires mounted in 

parallel (length: 2 cm, gap: 1 cm) were applied as a collector/counter electrode, and electrospinning was 

performed for a short period of time (approx. 4s). b) For the production of fiber bundles, a rotating drum was 

employed as a collector/counter electrode with a diameter of d = 14 cm at a maximum speed of 4500 rpm (≙ 

33 m s-1 surface speed). Fiber mats were removed subsequently and twisted into bundles with a twist angle of 

35 ± 4° (10 samples, analyzed by SEM). c) SEM images of eADF4(C16) fiber mats spun at different reeling 

speeds of the collecting cylinder (surface velocities): c1) 0 rpm (0 m s-1); c2) 1000 rpm (7.3 m s-1) and c3) 4500 

rpm (33.0 m s-1). d) Angular distribution of the fiber orientation of eADF4(C16) fibers electrospun at different 

reeling speeds as indicated. 
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HFIP as a solvent typically conserves α-helical conformations and dissolves crystalline structures, 

which has also been previously demonstrated in the specific case of eADF4(C16).15 This enables the 

production of silk fibers with an initially low β-sheet content. The fast evaporation of HFIP during 

electrospinning kinetically hinders conformational switches and traps the spidroins in this as-spun 

(AS) state with a low β-sheet content. To induce crystallization, a post-treatment (PT) procedure was 

conducted applying 2-propanol, ethanol or methanol vapor in a way similar to that previously 

published.13 While the AS fibers can be dissolved upon water immersion, the PT procedure renders 

eADF4(C16) water insoluble which can be attributed to the increase in β-sheet content. To monitor 

the evolution of secondary structures in eADF4(C16), time-resolved secondary structural analysis 

was carried out using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier-self-

deconvolution (FSD).16 An exemplary evolution for ethanol PT is shown in Figure 21 c, while the self-

deconvoluted spectra of a sample are given in Figure 21 a, b without treatment and after 240 min in 

ethanol vapor including all identified secondary structure contributions. 
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Figure 21| FSD FTIR spectra (grey) of the amide I band (black) of eADF4(C16) fiber mats. Curve fit and 

secondary structure classification of an a) untreated and b) ethanol-treated sample (60°C, 240 min). c) Time-

dependent alteration of the amide I band of eADF4(C16) fibers during ethanol vapor exposure at 60°C. 

 

At 60°C, the initial amount of β-sheet structures was 10.9 ± 1.5 % and remained low and constant in 

air (AS fibers), whereas it increased upon PT in alcohol vapor at this temperature to a maximum 

value of 35 ± 4 % (PT fibers) (Figure 22). The final composition of secondary structures was similar 

irrespective of the alcohol employed. However, the speed of structural conversion was found to 
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depend on the molecular size of the alcohol indicating a diffusive process. As we found 

morphological changes, i.e., coalescence of the fibers in 2-propanol vapor, and due to the toxicity of 

methanol, we decided to employ ethanol PT for all further experiments.    

 

 

Figure 22| Time-dependent protein secondary structure analysis of eADF4(C16) after post-treatment with 

alcohol vapor (2-propanol, ethanol and methanol) at 60 °C. As a control, a series of measurements was carried 

out in air at 60 °C. The secondary structure fractions were calculated by integration of the fitted curves (see 

Figure 3) and subdivided in a) β-sheets, b) α-helices, c) β-turns, and d) random coils. 

 

 AS and PT fibers were comprehensively mechanically analyzed on the single-fiber level and 

complementarily for fiber bundles (Figure 19). Direct probing of the material properties of single 

eADF4(C16) submicrometer-fibers imposes special requirements on the testing technique: a 

sufficient resolution in force and deformation at adjustable environmental conditions and the 
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capability to test consecutive, short segments within the same fiber to exclude fiber defects or 

statistical interfiber property variations. For measurements of electrospun single fibers, we 

employed three-point deformation testing based on LFM17 (Figure 19 center and Figure 23). For that 

purpose, electrospun eADF4(C16) fibers were transferred to a grooved glass substrate to obtain 

suspended segments which were successively clamped by gluing (see Figure 23 a). An atomic force 

microscope (AFM) cantilever was used to mechanically deform the respective free-standing fiber 

segment until it ruptured (micrograph sequence in Figure 23 a). The cantilever’s sharp tip was used 

to load the segment laterally at its middle which allows for deducing force-deformation curves from 

the cantilever torsion (Figure 23 b, c). The elastic deformation regime was fitted to determine the 

Young’s modulus based on established models.17, 18 The extensibility and strength were derived from 

characteristic points in the force curves (as indicated in Figure 23 c) and represent lower estimates 

as local stress peaks occur at the bending points. After adjustment of the RH, a consecutive segment 

spanning the adjacent groove of the same fiber can be probed in a similar manner. The single-fiber 

results were benchmarked against tensile-tested natural A. diadematus silk threads. Furthermore, 

electrospun fibers were twisted into bundles and subsequently tensile-tested (Figure 19 center).  

 



IV. Publications 
 

119 
 

 

Figure 23| LFM testing of a post-treated eADF4(C16) fiber at 80 % RH. a) Series of optical microscope images 

during LFM testing in correspondence to the numbered points in panel b illustrating the extraordinary 

extensibility of post-treated fibers at 80 % RH. b) Force-deformation curve of an eADF4(C16) single fiber upon 

LFM testing with specific regions as marked by numbers: contact point (1) and elastic regime (2) used to 

determine the Young’s modulus by a fitting procedure according to Hudson et al. (as detailed in panel c). A 

plastic regime (3) is followed by the maximum force (4) and the point of steepest decrease (5), which defines 

the strength and extensibility of the fiber. 

 

The mechanical behavior of both morphologies, individual fiber and fiber bundle, demonstrates the 

interplay between physical β-sheet cross-linking and water-induced segment mobility of the 

amorphous matrix. 

A. diadematus dragline silk showed a toughness (UT) of 156 MJ m-3 composed of a Young’s modulus 

(E = 6.5 GPa), a strength (σmax = 1.1 GPa), and an extensibility (εmax = 27%) in accordance with 

previously published results.19 Figure 24 a, b compiles the sets of these parameters for the natural 

silk thread (gray) in comparison to those of the LFM results of nontreated AS fibers with low (blue), 

as well as PT fibers with high β-sheet content (yellow) in dry (Figure 24 a: 10 % RH) and humid 

(Figure 24 b: 80 % RH) conditions (for the detailed set of mechanical properties, also at 30 % RH, see 
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Figure SI 1). Comparing the mechanical parameters of the dry and the humid systems (Figure 24 a, 

b), the plasticizing effect of water becomes evident: Water enhances the protein mobility/fiber 

extensibility at the expense of stiffness (lower E at increased RH). This observation can be 

rationalized considering water saturating hydrogen bonding sites and thus interrupting H-bonds.20, 21  

 

 

Figure 24| Mechanical properties of electrospun eADF4(C16) single fibers and fiber bundles compared to that 

of A. diadematus dragline silk: UT, denotes toughness, E, Young’s modulus, σmax, fiber strength and εmax, fiber 

extensibility, respectively. The specimen and the respective testing method are given in the left panel. 

Additional histograms for all mechanical properties and their standard deviations can be found in Figure SI 1. 

a) At 10 % RH, the natural silk thread outperformed the artificial eADF4(C16) fibers. b) The toughness of the PT 

eADF4(C16) fibers matched that of the natural dragline silk at 80 % RH. Whereas natural silk mostly 

maintained its strength, the high toughness of the recombinant fibers arose from their extraordinary 

extensibility at high humidity. A similar effect was seen for eADF4(C16) fiber bundles, although the overall 

mechanical properties were lower: c) At 10 % RH, the measured parameters of AS and PT eADF4(C16) fiber 

bundles did not differ significantly. d) At 80 % RH, the extensibility and strength distinctly increased for PT 
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fiber bundles resulting in a higher toughness. Please note the different axis-ranges in case of fiber bundles. 

AS = as spun; PT = post-treated. The error bars indicate the standard deviation. 

 

The natural threads differed significantly from the artificial filament-like system in the extent of their 

response to humidity changes. Their attenuated reaction to moisture points to the shell’s regulatory 

function, foremost keeping core spidroins hydrated and thus elastic in dry environment. The water-

induced softening was compensated by a slight increase of εmax, and σmax was almost completely 

preserved maintaining the vital toughness of natural silk. Recombinant electrospun fibers 

experienced a decrease in E and σmax, yet PT fibers overcompensated these effects with an 

enormous increase in εmax (by a factor of almost 70). This increase corresponded to a 9-fold higher 

extensibility compared to that of natural DL silk, yielding a similar toughness. Furthermore, wet PT 

fibers remained significantly stronger (higher σmax) than untreated AS ones. The mechanical 

properties of fiber bundles were much lower than those of single fibers (Figure 24 c, d). This 

mechanical inferiority was most likely due to morphological defects and the lack of strong fiber-fiber 

interactions. However, the relative tendencies upon comparing AS and PT fiber bundles 

unambiguously confirmed the nanomechanical results: AS and PT fiber bundles predominantly 

differed in σmax and εmax yielding a significantly increased UT in PT fiber bundles. 

The structural model in Figure 25 interrelates the secondary structure of eADF4(C16) proteins with 

the mechanical properties of fibers made thereof. The humidity-induced rubber transition could be 

explained similar to that of natural DL silk by the disruption of hydrogen bonds in the amorphous 

regions of the thread’s core proteins.20, 21 Furthermore, hydration mobilizes the amorphous glycine-

rich matrix thus attaining extensibility based on an enhanced sliding ability of single proteins against 

each other, due to the lack of terminal (dimeric) domains keeping them in place (Figure 25 b, d). In 

contrast, the lack of water causes a reduction in molecular mobility explaining the fibers’ brittleness 

as found at 10 % RH (Figure 25 a, c). The differences observed between AS and PT eADF4(C16) fibers 

were based on the distinct β-sheet content: the rapid solidification of eADF4(C16) during 

electrospinning partially preserved the initially predominant α-helical / random coiled structure and 

inhibited the transformation into β-sheet structures (AS fibers). Subsequently, moisture absorption 

led to an expansion of the amorphous regions within AS fibers, and in spite of enhancing the 

mobility of the protein chain, water molecules also prevented the formation of β-sheets as they 

occupied hydrogen binding sites (Figure 25 a, b). PT of electrospun eADF4(16) fibers, however, 
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induced a replacement of several weak (individual) hydrogen bonds as found in the amorphous 

regions with densely packed (synergetic) ones typical for β-sheets (Figure 25 c, d).22   

 

 

Figure 25| Relation of secondary structure and mechanical properties of single fibers shows the impact of β-

sheet content (AS and PT) and state of hydration (schematic illustration of two interacting eADF4(C16) 

proteins, one highlighted in red and one in blue). a, b) As spun (AS) single fibers display a low β-sheet content 

(11 ± 2 %). a) In the dry state, the structure is mainly stabilized by weak hydrogen bonds between the 

amorphous regions of protein chains. b) With increasing humidity, water (blue dots) is absorbed and 

intercalates with hydrogen bonding in the amorphous regions, resulting in increased mobility of the chains 

and thus a significantly higher extensibility εmax. Solvating of hydrogen bonds furthermore leads to decreasing 

tensile strength σmax and elastic modulus E. Though the mechanical properties completely change, the 

resulting toughness UT stays nearly the same upon hydration of AS filaments. c, d) Post-treatment of filaments 

results in a high β-sheet content (39 ± 1 %) enabling the formation of a much higher number of intermolecular 

β-sheets. c) In the dry state, this leads to a significant decrease of εmax and only slight changes of σmax and E, 

resulting in a reduction of UT compared to AS samples in panel a. d) Hydration of the post-treated fibers 
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displays similar trends as seen for untreated ones in panel b, but the fibers retain more intermolecular 

hydrogen bonds (through the β-sheet structures), enabling further elongation εmax. Strikingly, the combination 

of stable cross-linking via intermolecular β-sheets and the hydrated extensible amorphous regions results in a 

significantly higher toughness indicating that the secondary structure, its molecular interaction, as well as 

structural water is essential for the mechanical properties of spider silk fibers. 

 

On the basis of a denser physical cross-linking by β-sheets in PT fibers, failure at high RH can be 

rationalized as follows: AS fibers rupture when the external force overcomes the sum of interaction 

forces of hydrogen bonds in the amorphous regions connecting individual protein strands. As the 

individual interactions are comparatively weak, the fiber strength σmax is accordingly low. During 

fiber elongation, AS fibers will rupture as soon as the force required for stretching the amorphous 

regions surpasses the cohesion forces provided by the amorphous interactions, i.e., εmax is reached. 

In PT fibers, β-sheets distribute and transfer stress more homogeneously. As they firmly 

interconnect the protein strands, σmax can be traced back to breaking stronger β-sheet structures 

(synergetic hydrogen bonds) as compared to weak (individual) hydrogen bonds in the amorphous 

regions. Accordingly, the elongation at break εmax is increased elucidating the remarkable 

extensibility (Figure 25 d).  

A related β-sheet-rich proteinaceous system is amyloid fibrils which have also been investigated 

applying (geometrically limited vertical) single-fibril testing approaches based on AFM.23, 24 Structural 

analysis of recombinant spider silk proteins and amyloid-like fibrils has revealed predominant 

similarities apart from minor structural differences such as the presence of 31-helical structures 

and/or random coil conformations in spider silk.25 Though it has been shown that the Young’s 

modulus of amyloid fibrils is in the range of the here tested spider silk fibers26 a direct comparison 

remains difficult due to a lack of experimentally determined mechanical data such as the 

extensibility and sensitivity to humidity of amyloid fibrils.27 Furthermore, it is so far impossible to 

produce continuous, i.e., endless, amyloid fibers, which in contrast is one big advantage of silk.  

Comparing the results in this experimental work with simulation approaches, the model in Figure 25 

is in accordance with previously published atomistic simulations of the mechanical behavior of 

MaSp2 protein segments from a different species, Nephila clavipes.5 Keten et al. observed a 

sigmoidal constitutive shape of force-deformation curves, an initially high modulus followed by 

strain softening, and eventual strain hardening. This could be rationalized by the structural model 

presented here, since this shape coincides with our findings for single fibers, and the simulated 
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extensibilities (179 - 312 %) approximately fit the ones found in this experimental study 

(363 ± 49 %). Whereas the simulation assumes perfect alignment of protein chains in strain 

direction, the alignment of chains in electrospun fibers may deviate therefrom to a certain extent, 

giving rise to additional hidden length revealed upon stretching. The extensibility of natural spider 

silk dragline usually is in the range of 30 %.4, 9 This striking difference to artificial silk can be 

explained by the impact of the nonrepetitive terminal domains that are missing in both, the 

simulated short sequence segments and the recombinantly produced eADF4(C16) core domain used 

here. In the natural spinning process, the carboxy-terminal domains form disulfide-linked parallel 

dimers and the amino termini dimerize upon pH drop inducing the preassembly of a lyotropic liquid 

crystalline phase.19, 28 The terminal-domain-induced oligomerization reduces the average mesh size 

in the silk’s molecular network, predesignating the β-sheet formation and alignment. Upon strain, 

this configuration is less extensible but stronger, which explains the discrepancy in the strength-

extensibility combination as found in natural DL silk and eADF4(C16) fibers. Furthermore, it must be 

considered that natural dragline is composed of not only MaSp2 (the blueprint of eADF4(C16)) but 

also MaSp1 proteins; thus, the mechanical properties are also determined by its composite nature. 

Strikingly, both combinations yield a similar toughness if a sufficient state of hydration and 

crystallization is provided. This emphasizes the need of including (structural) water as an important 

parameter in silk mechanics simulations.29  

Conclusion 

In summary, our mechanical analysis of recombinant eADF4(C16) fibers elucidates the basic 

structural mechanisms governing spider silk mechanics and uniquely quantifies the crucial role of 

(structural) water for the toughness of the spidroin filaments. Furthermore, the study bridges the 

gap between simulations of molecular mechanics5 and the macroscopically observed mechanical 

properties of spider silk threads. Combined with previous studies on electrospun eADF4(C16) fibers 

demonstrating their high biocompatibility and the ability to morphologically trigger cell adhesion 

and proliferation, the mechanical data obtained in this work can be applied to further evaluate their 

potential for specific technical or biomedical applications.14 The extraordinary extensibility of post-

treated hydrated fibers could be attractive in the field of nerve regeneration, where the material 

should be flexible to preserve the nerve connection.  
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Experimental Section  

Electrospinning: All proteins were produced and purified as published previously.12 eADF4(C16) (10 

% w/v) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Alfa Aesar, Karlsruhe, Germany) 

and electrospun using a custom-built setup at a potential difference of 30 kV, a feeding rate of 14 

µL min-1 and a 18G needle (Terumo, Tokyo, Japan). To obtain aligned single fibers for LFM 

measurements, two conducting wires mounted in parallel (length: 2 cm, gap: 1 cm) were applied as 

a collector/counter electrode, and electrospinning was performed for a short period of time (ca. 4s). 

For the production of fiber bundles, a rotating drum was employed as a collector/counter electrode 

with a diameter of d = 14 cm at a maximum speed of 4500 rpm (≙ 33 m s-1 surface speed). The 

degree of fiber alignment was determined upon analyzing SEM images with ImageJ 1.42q (National 

Institutes of Health, Bethesda, MD, USA) to measure the angles of 200 fibers per sample and 

subsequent Gaussian fitting applying Origin 8.1 (OriginLab, Northampton, MA, USA) (see Figure 2 d). 

Fiber mats were removed from the substrate and manually twisted into bundles with a twist angle 

of 35 ± 4° (analyzed by SEM). This twisting was done extremely carefully to largely prevent stress in 

the fibers/bundles prior to mechanical testing. Electrospinning was performed at controlled 

humidity (50 % RH) using a FR 400 humidifier (Mytrom, Heilbad Heiligenstadt, Germany) at room 

temperature. 

 

Forced Silking: DL silk of Araneus diadematus was forcibly silked from an adult individual (body 

weight: 400-440 mg) at 3 cm s-1 in air. The spider was taken out of its web and placed under an 

overturned glass beaker. After a few minutes of settling, the spider stopped moving, and the DL 

fiber could be pulled by tweezers through the beaker’s outlet and transferred to a rotating cylinder 

in a custom built glovebox under controlled humidity (30 % RH) at 25 °C. Forced silking (reeling 

speed: 3 cm s-1) was carried out until interrupted by the spider, which usually occurred after forced 

silking of 5-30 m. 

 

Post-Treatment and FTIR: Electrospun eADF4(C16) single fibers and fiber bundles were placed free-

hanging in a heated vessel (60 °C). First, alcohol (2-propanol, ethanol or methanol) was added to 

create an alcohol steam atmosphere for β-sheet induction. Incubation times were varied to 

comprehend the time dependency of the post-treatment procedure. In the next step, alcohol was 
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removed and water was added to enable moisture absorption, thus softening of the samples for 

subsequent handling.  

FTIR spectra were recorded using a Hyperion microscope (Bruker, Ettlingen, Germany) in contact-

free transmission mode at 800 – 4000 cm-1. Each spectrum is the result of averaging 60 individual 

spectra. To determine individual secondary structure elements, the amide I band (1600 – 1700 cm-1) 

was analysed using the Opus 6.5 software from Bruker Optics Corp. (Billerica, MA, USA) applying 

FSD. As shown in earlier studies,30 the procedure was performed according to a previously 

established protocol for secondary structure analysis of fibrous proteins.16 It includes a narrowing of 

the spectra using a high pass filter and a curve fitting of the deconvoluted curves resulting in 

Gaussian Peaks that represent individual secondary structure elements. The relative peak areas 

were calculated and assigned to the corresponding structural fractions as described in the 

reference.16 

 

Mechanical testing: LFM. Electrospun fibers were transferred onto grooved glass substrates 

(channel depth = 2 µm and width = 20 µm)31 and immobilized using a 2-component epoxy glue (UHU 

plus endfest 300 by UHU GmbH & Co, Baden-Baden, Germany). A combined setup of an AFM 

(MFP3D by Asylum Research, Santa Barbara, California) and an inverted optical microscope 

(Olympus IX 71 by Olympus, Tokyo, Japan) was used for mechanical testing. Prior to and after 

mechanical testing, each fiber was imaged via AFM to determine the length of the suspended 

segment as well as the fiber cross section. Thoroughly calibrated cantilevers32 (NSC35, µmasch, 

Sofia, Bulgaria) were used to deform suspended segments at their middle with the tip apex 1 µm 

below the fiber’s top side. The cantilever was chosen to have a vertical spring constant of 8.61 N m-1 

and a lateral spring constant of 202 N m-1, accordingly. These values allowed for sufficient force 

resolution in the elastic regime as well as sufficient stability to rupture the fibers. The cantilever’s 

sharp tip loaded the segment laterally at its midst deducing force-deformation curves from the 

cantilever torsion. The elastic deformation regime was fitted to determine the Young’s modulus 

based on established models.18, 33 The mechanical rupture properties were derived from 

characteristic points in the force curves and represent lower estimates as local stress peaks occur at 

the bending points. All experiments were performed in a Humidity Sensing Cell (Asylum Research, 

Santa Barbara, California, USA) enabling monitoring and control of the ambient humidity. Using a 

lab-built flow setup, the humidity could be set by adjusting the relative flows of a humid and a dry 



IV. Publications 
 

127 
 

helium stream. Experiments were performed at 10, 30 and 80 ± 2 % RH. Thus, 43 individual 

segments of AS eADF4 fibers and 31 segments of ethanol post-treated fibers were measured. 

Tensile testing. For macroscopic mechanical testing, fiber bundles and forcibly silked natural DL silk 

threads were cut into 1 cm pieces and glued onto plastic sample holders (frame shaped) with a gap 

width of 2 mm. The sample holders were then clamped in the grips of a tensile tester (Electroforce 

3200, Bose, Bloomington, Minnesota, USA), the plastic frame connections between the grips were 

cut, and the specimens were deformed at 0.005 mm s-1 until failure while recording force and 

deformation (applied load cells: 0.49 and 2.45 N, Bose, Bloomington, Minnesota, USA). The number 

of measured samples was >20 for each analysis condition. Humidity was controlled using dry air and 

an ultrasonic humidifier (Mytrom, Heilbad Heiligenstadt, Germany). To account for the less dense 

structure of fiber bundles, an effective cross section using the weight per length of the bundle and 

the protein density (1.3 g cm-3) was calculated. Furthermore, the tapering of fibers undergoing high 

deformations was considered by calculation of true stress and true strain.34 
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Supporting Information 

 

Figure SI 1| Mechanical properties of Araneus diadematus dragline silk, eADF4 single fibers and fiber bundles. 
Exemplary stress-strain curves of a) as spun and b) post-treated eADF4 fiber bundles (measured by tensile 
testing). Force-deformation curves of eADF4 single fibers (measured by lateral AFM bending) in the c) as spun 
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(AS) and d) post-treated (PT) state. e) Increasing of RH softened all fibers reducing the Young’s moduli. 
Dragline silk overall retained its strength and extensibility throughout the humidity range (f, g) whereas PT 
eADF4 fiber bundles and single fibers show a significant increase in extensibility at 80 % RH. This behavior 
leads to a similar toughness of dragline silk and single PT eADF4 fibers at 80 % RH (h). The data at 30 % RH are 
in the same range as compared to the dry state which indicates a humidity driven glass transition as studied by 
Plaza et al.

21
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Abstract 

We report on direct force measurements between single melt-electrospun 1,3,5-

cyclohexanetrisamide (CTA) fibers in crossed-cylinder geometry. The two CTA compounds selected 

for this study differ in their peripheral substituents: aliphatic (-C10H21) and fluorinated chains (-

CH2C6F13), respectively. Melt-electrospinning of the CTAs results in smooth and circular fibers with 

diameters of about 5 µm. Individual segments of these fibers were attached to tipless atomic force 

microscope (AFM) cantilevers and used to measure long-range interaction forces versus a second 

fiber from the same compound in crossed-cylinder geometry. This geometry is well-known from the 

surface force apparatus and allows for the normalization of forces according to the Derjaguin 

approximation. From symmetrical measurements, i.e. measurements between fibers from the same 

type of CTA, we quantify the diffuse layer properties in aqueous electrolyte solutions within the 

framework of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Apparent diffuse layer 

potentials resulting from the fits to the full solutions of the Poisson-Boltzmann equation show that 

the fiber surfaces bear a negative surface charge. Most likely, the origin of charging is the adsorption 

of hydroxyl ions as residual charges from the electrospining process would be compensated upon 

the immersion in the electrolyte solutions. Such ion adsorption processes are well-known for other 

hydrophobic surfaces such as aliphatic and fluorinated self-assembled monolayers (SAMs) 

(terminating with -CH3 and -CF3 groups). The apparent diffuse layer potentials for CTA fibers are 

comparable to the values reported for these SAMs . 

Introduction 

The invention of the atomic force microscope (AFM) fundamentally changed the way how colloidal 

and soft matter systems can be studied in-situ.1 In addition to the possibility of imaging a surface, 

one can also probe the interaction of an AFM tip with the sample by direct force measurements.2 To 

overcome the problem of ill-defined contact, the colloidal probe (CP) technique was invented.3 

Typically, the CP-technique utilizes a spherical, µm-sized colloidal particle that replaces the sharp tip 

at the end of an AFM cantilever. The particle’s dimensions can be determined with reasonable 

accuracy by optical or scanning electron microscopy (SEM). A CP allows for a well-defined 

interaction geometry, which on the one hand enables the determination of mechanical properties. 

In contact mechanics, one relates the force exerted by the CP on the sample and the resulting 
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deformation in the contact area. Thus, material properties such as Young’s modulus and the work of 

adhesion per unit area can be obtained.2, 4-6 On the other hand, a well-defined interaction geometry 

is the prerquisite to investigate long-range forces in colloidal suspensions in a quantitative manner.7, 

8 The Derjaguin approximation relates experimentally determined forces to free interaction energies 

per unit area.9 Prior to the advent of CP, the only possibility to accomplish such direct force 

measurements was the surface force apparatus (SFA) which is based on the measurements of 

interaction forces between two smooth macroscopic mica surfaces of cylindrical shape in crossed-

cylinder geometry.10, 11 This particular interaction geometry was first adapted to the AFM in 1998 by 

Meagher et al. and permitted to determine the interaction forces between α-alumina fibers in 

electrolyte solutions.12, 13 

Utilizing fiber fragments as CPs represents an important experimental approach as fibrillar 

(cylindrical) systems are ubiquitous in nature. For instance in case of hair, the contact interactions, 

i.e. adhesive and frictional properties, dominate the haptics and are thus of great interest in the 

formulation of hair care products. To study these interactions, researchers attached hair fragments 

to tipless AFM cantilevers. Force versus distance (𝐹 − 𝐷) curves and lateral friction loops acquired in 

sliding contact with a second hair enabled the direct investigation of adhesion and friction on the 

level of single hairs for the first time.14-16 Adhesion and friction also play an important role in many 

non-woven fabrics made from polymer fibers. A crucial factor for the stability and integrity in many 

networks is the junction strength of two fibers touching each other. Polyester17 and pulp18 

microfibers as well as Nylon19 nanofibers were studied in terms of their adhesive and frictional 

behavior.  

Self-assembly processes provide the possibility to form micro- and nanofibers by a bottom-up 

approach via secondary interactions. Among the multitude of suitable supramolecular motifs, a well-

known example are 1,3,5-benzenetrisamides (BTAs), which are capable of forming nanofibers. 

Typically, the formation of supramolecular nanofibers by these small molecules is driven by three 

uniaxially directed hydrogen bonds. AFM investigations on individual supramolecular objects 

unraveled a pronounced mechanical stability of these BTA-based micro- and nanofibers.20, 21 

Recently, we have reported on the in-situ formation of supramolecular nanofibers in a polymer 

nonwoven scaffold resulting in a remarkably stable microfiber-nanofiber composite. These 

composites, which exhibit a dense nanofiber network, are highly suitable to remove particulate 

matter from air and are thus promising to be used in air filtration applications.22 However, a 
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fundamental understanding of the interaction forces between individual fibers in these composites 

is missing. 

 

Besides fiber formation via self-assembly processes, BTAs can also be melt-electrospun into 

supramolecular micro- and nanofibers.23 Electrospinning is a technique commonly used for fiber 

fabrication from viscous polymer solutions.24 Under the influence of a strong electrical field, a thin 

jet is ejected from the so-called Taylor cone (see Figure 26).25 Electrospinning of BTAs to 

homogenous26 and mechanically stable27 fibers with circular cross-section and smooth surfaces 

depends on various parameters such as molecular structure, temperature and viscosity of the melt, 

and the applied electric field. In this context, electrospinning of supramolecular fibers and avoiding 

the formation of solid spheres during the electrospinning process (i.e. electrospraying) is facilitated 

by using 1,3,5-cyclohexanetrisamides (CTAs) compared to BTAs.26, 28  

Here, we investigate the interaction forces between individual melt-electrospun supramolecular 

fibers. We selected two distinct CTAs that differ significantly in the terminating functional groups at 

their periphery (Figure 26). In the alkyl CTA (Figure 26 left side), each amide group is linked to a 

decyl chain. In the fluorinated CTA (Figure 26 right side) the amide substituent consists of a 

methylene group followed by a perfluorinated C6 chain. Due to the length of these pending chains, 

the outmost layer of the compounds can be considered as aliphatic or perfluorinated, respectively. 

By attaching CTA fiber fragments to AFM cantilevers and immobilizing a second fiber of the same 

compound on the substrate, we adapted the classical crossed-cylinder geometry from the SFA. 

Direct F-D measurements in these symmetric systems immersed in aqueous electrolyte solution of 

various concentrations allow for unambiguous identification of the fiber surface’s interaction forces, 

including apparent diffuse layer potentials.29 

Results and Discussion 

Melt-Electrospun Cyclohexanetrisamide Fibers 

Both CTAs have been obtained by the reaction of the cyclohexane-1,3,5-tricarboxylic acid chloride 

with the corresponding amines in THF in the presence of pyridine. Details of the synthesis for the 

alkyl CTA (Figure 26 left side) have been reported previously.30, 31 The ones for the fluorinated CTA 

(Figure 26 right side) are given in the experimental section. 
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For melt-electrospinning, we utilized the same custom-made setup as described in detail by Singer 

et al.28 Electrospinning of  CTAs results in a jet that is sufficiently stable to obtain continuous fibers 

and thereby illustrates their strong inter-molecular cohesion.26 Important for the successful melt-

electrospinning to fibers is the knowledge of the thermal stability and the phase behavior of the 

CTAs (see Figure SI 2). Typically, electrospinning of BTAs from the isotropic phase results in the 

formation of solid droplets (electrospraying), whereas highly ordered mesophases are too viscous to 

perform electrospinning. However, CTAs feature columnar nematic phases readily allowing for fiber 

formation by melt-electrospinning. Both CTAs could be spun employing identical electrospinning 

parameters. The CTAs were placed into a glass syringe and equilibrated in the heating unit at 300 °C 

for 3 min. After this step a voltage of U = -30 kV was applied to spin fibers which were collected on 

top of an aluminum foil. Under these conditions, we obtained homogeneous and smooth fibers with 

a diameter in the range of 5 µm, which are well-suited for fiber manipulation and direct force 

measurements (Figure 26 bottom).  

Melt-electrospun fiber segments can be immobilized on solid substrates by means of a UV-curable 

glue. Figure 27 compares tapping-mode AFM images in air of fibers from both compounds. Despite a 

pronounced convolution effect of the cylindrical fiber and the sharp AFM tip, there are no 

indications for the fiber cross-section to deviate from a circular shape. These observations are in 

perfect agreement with the SEM images (Figure 26 bottom).  

The surfaces of both fiber types are smooth and defect-free. However, on the nm-level a 

pronounced ultrastructure can be observed: the topography of the alkyl CTA consists of elongated 

features with an overall root mean square (RMS) roughness of 4.1 ± 1.6 nm and an average peak-to-

peak distance of 34.9 ± 11.7 nm (Figure 27 a). The drop-like ultrastructure in the case of the 

fluorinated CTA, leads to a significantly larger roughness (RMS: 16.4 ± 2.4 nm and peak-to-peak 

distance: 112 ± 29 nm) (Figure 27 b). These values for the roughnesses were derived from the 

residuals after a 3rd-order plane fit to remove the surface curvature from the 2x2 µm images. The 

roughnesses determined for the fibers here are slightly larger than the one reported for Al-fibers in 

the study of Meagher et al.12, 13 Nevertheless, the overall circular cross-section and relative 

smoothness of melt-electrospun CTA fibers still allows for the determination of apparent diffuse 

layer potentials. The latter is the potential, as determined from fits to the full Poisson-Boltzmann 

equation at large separation distances, without any corrections for the surface roughness.  
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Figure 26| Schematic fabrication of 1,3,5-cyclohexanetrisamide (CTA) fibers by melt-electrospinning. The 

chemical structures of both CTAs consist of a cyclohexane core surrounded by three amide groups and 

peripheral aliphatic -C10H21 (left side) and fluorinated -CH2C6F13 (right side) substituents, respectively. For both 

compounds, electrospinning from a melt at T = 300 °C at a voltage of -30 kV yields in continuous and 

homogeneous fibers with diameters in the range of 5 µm as verified by SEM. 
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Figure 27| AFM tapping-mode images acquired in air depicting a fiber segment of the alkyl CTA (a) and the 

fluorinated CTA (b). The magnified sections show the morphology of the fiber surfaces. The RMS roughness of 

the topography is 4.1 ± 1.6 nm for the alkyl CTA and 16.4 ± 2.4 nm for the fluorinated CTA, respectively. 

 

Direct Interaction Force Measurements in Crossed-Cylinder Geometry 

We probed the long-range interaction forces between a symmetrical pair of CTA fibers by direct 

force measurements in crossed-cylinder geometry. This geometry follows the one used in the 

surface force apparatus (SFA).10, 11 The bottom fiber is immobilized in the same manner as in the 

previous paragraph. For the probe, we prepared fiber segments attached to tipless AFM cantilevers 

by means of a micromanipulator. Here again, it is essential that the glue does not contaminate the 

future contact area of the fibers. Hence, a very thin film of the glue, which can be observed under an 

optical microscope was deposited on the cantilever. As indicated by the iridescence color due to 

interference effects, the film thickness can be assumed to be below 1 µm (Figure 28 a and b). During 

the preparation process, special diligence is necessary to avoid any rotation of the fiber segment 

about its long axis as this would inevitably contaminate the fiber surface. We verified additionally 

for a separate set of cantilevers by SEM that only the part of the fiber in contact with the cantilever 
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is wetted by glue (as highlighted by the yellow color in Figure 28 c and d). We found also by SEM no 

indication for any glue residues on the lower surface of the fiber fragments for which we report the 

interaction forces. This set of cantilevers were not used for any interaction measurements due to 

the metal coating necessary for SEM imaging. 

 

 

Figure 28| Fragments of the alkyl (a and c) and the fluorinated CTA (b and d) fibers attached to tipless AFM 

cantilevers. a and b show optical bottom view micrographs acquired during the micromanipulation process. 

The area of the cantilever covered in glue can be recognized by its darker shade and the iridescence color. c 

and d show SEM images for a different set of cantilevers prepared by an identical procedure. SEM confirms 

that no glue residues are present on the lower surface of the fiber fragments (c and d). The glue is highlighted 

by the yellow color. 

 

We determined the interaction forces only for symmetric combinations of two aliphatic or two 

fluorinated CTA fibers, respectively. The measurements were carried out in aqueous electrolyte 

solutions of pH 5.5 and varying ionic strength (nominal NaCl concentrations 0.1, 0.5, 1 and 5 mM). 

The crossed-cylinder geometry applied for these measurements is schematically illustrated in Figure 
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29 a. In our setup, the AFM is combined with an inverted optical microscope, which we used to align 

the fibers perpendicular to each other (Figure 29 b). Furthermore, we determined the fiber radii 

optically and found them to be in the range of 4 – 8 µm. Diameters of about 5 µm are best suited for 

CP preparation and force measurements. The crossed-cylinder geometry has the advantage that it is 

self-adjusting, therefore, possible tilts of the cantilever would not influence the interaction 

geometry of two fibers. Due to the high lateral spring constant of the cantilever, torsional motion 

can be neglected in the examined force regime. 

 

Our aim is to relate the forces measured between two fibers at perpendicular contact to their 

diffuse layer properties. In this quantitative analysis, a well-defined interaction geometry is 

essential: the Derjaguin approximation allows to relate the measured interaction forces F at a 

separation distance D with the free interaction energy 𝑊(𝐷) at the same separation.9 Analytical 

expressions for the normalization of several interaction geometries exist, e.g. sphere/plane, 

sphere/sphere and two crossed cylinders.11 Equation 17 gives the corresponding approximation for 

two crossed cylinders of radii 𝑅1 and 𝑅2 and the effective radius 𝑅𝑒𝑓𝑓. 

𝐹𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝐷) = 2𝜋 ∙ √𝑅1𝑅2 ∙ 𝑊(𝐷) = 2𝜋 ∙ 𝑅𝑒𝑓𝑓 ∙ 𝑊(𝐷) Equation 17 

Figure 28 c and d show representative force versus distance profiles acquired during approach in 

crossed-cylinder geometry. The interaction forces have been normalized to the effective radius for 

the crossed-cylinder geometry (according to Equation 17) and are represented in semi-logarithmic 

graphs. The retract part of the curves is omitted as we want to focus on long-range electrostatic 

interactions in the following. 
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Figure 29| Schematic representation of the crossed-cylinder measurement configuration (a) and optical 

micrograph during the experiment (b). Representative approach F-D curves normalized to the crossed-cylinder 

geometry for the alkyl (c) and the fluorinated CTA (d) show a decrease of electrostatic interaction with 

increasing nominal electrolyte (NaCl) concentration. 

 

In an AFM experiment, conversion of the photo-diode signal to forces requires the inverse optical 

lever sensitivity (𝐼𝑛𝑣𝑂𝐿𝑆) and the effective cantilever spring constant 𝑘𝑒𝑓𝑓. In the case of the fiber-

CP, the determination of these two parameters is non-trivial. To account for possible thermal drifts 

during a measurement session, we determined the 𝐼𝑛𝑣𝑂𝐿𝑆 for each fiber-fiber approach curve 

individually from the constant compliance regime. The exclusion of any mechanical deformations in 

the applied force regime has been verified by reference measurements with a hard spherical silica 

colloidal probe (see Figure SI 4 for details). The cantilever spring constant 𝑘 was calibrated by the 

thermal noise method.32 It has to be corrected due to off-end loading as the fiber is attached a 
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certain distance 𝛥𝐿 away from the cantilever’s free end at 𝐿 (see scheme in Figure SI 5). The 

effective spring constant 𝑘𝑒𝑓𝑓 accounting for the apparent cantilever stiffening due to the shift in 

the contact point is given by:33 

𝑘𝑒𝑓𝑓 = 𝑘 ∙ (
𝐿

𝐿 − ∆𝐿
)
3

 Equation 18 

All measurements were performed in electrolyte solutions with a total ionic strength (0.1, 0.5, 1 and 

5 mM) adjusted by addition of NaCl. The Debye length κ-1 for an ionic strength of c0 is given by 

Equation 19.11  

𝜅 = √
2 ∙ 𝑒2 ∙ 𝑐0

𝜀𝜀0 ∙ 𝑘𝐵𝑇
 Equation 19 

where 𝜀𝜀0 is the total permittivity of the medium, 𝑘𝐵𝑇 the thermal energy and 𝑒 the elementary 

charge. At large separation distances the interaction force decays exponentially with 𝜅−1 as decay 

constant. In the semi-logarithmic representation of Figure 29 c and d such a decay results in a linear 

dependency.  

For a symmetric system of two identical materials, the total interaction energy 𝑊(𝐷) is given by two 

contributions: the diffuse layer overlap 𝑊𝐷𝐿 and the van-der-Waals  𝑊𝑣𝑑𝑊 force according to 

Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. However, this assumes ideal, smooth 

surfaces. At large separation distances 𝑊𝐷𝐿 dominates the interaction and the diffuse layer potential 

ψ0 can be obtained from fits to the Poisson-Boltzmann theory. The van-der-Waals forces are 

generally much shorter ranged. Thus, for rough surfaces, a general expression for the interaction 

energy as function of separation is extremely difficult to determine, in particular when the decay 

length of the interaction is of the same order as the surface roughness. Despite different studies,34-36 

no consistent theory has been established to date as standard approach in order to account for the 

effects of surface roughness in direct force measurements, especially regarding non-contact forces. 

The CTA fibers that we study here have a RMS surface roughness of several nm (cf. Figure 27), which 

is of the order of the Debye length. Due to the special interaction geometry of crossed cylinders, we 

do not apply any corrections for surface roughness. Instead, we state the apparent diffuse layer 

potential 𝜓0,𝑎𝑝𝑝 that results from the fits at large separation distances 𝐷 (with 𝐷 > 10 nm). An 

additional advantage is that thereby charge regulation can be neglected and, moreover, also the van 
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der Waals forces are reduced due to the surface roughness. We did not take these forces into 

account for data fitting. The interaction force profiles were fitted at large separation distances (𝐷 > 

10 nm) and the Hamaker constants of hydro- and fluorocarbons in water are relatively small. Hence, 

we found very similar surface potentials when theoretical Hamaker constants for both fibers have 

been considered (data not shown).   

The solid lines in Figure 29 c and d represent fits to full solutions of the Poisson-Boltzmann equation 

under the boundary condition of constant charge.29 The Debye length resulting from these fits is in 

good agreement with the one calculated based on the nominal ionic strength (cf. Equation 19 and 

Figure SI 3). However, deviations at low ionic strength are expected due to dissolution of CO2 as 

reported previously.37  

From symmetric 𝐹 − 𝐷 measurements, two positively or two negatively charged surfaces are 

indistinguishable as they would give the same repulsive 𝑊𝐷𝐿. Due to the symmetric combination of 

fibers investigated here, the sign of the apparent diffuse layer potential 𝜓0,𝑎𝑝𝑝 has to be verified in a 

separate set of measurements. Hence, we utilized the CP technique with a spherical silica particle 

that is well-known to be negatively charged in aqueous media.3, 38 A schematic representation of the 

measurement with the silica colloidal probe and a fiber segment is shown in Figure 30 a. A 

corresponding optical micrograph is given in Figure 30 b. In the fiber-fiber experiments described 

above, the interaction forces were normalized to the effective radius for two crossed cylinders, 

which is well known from the Derjaguin approximation. However, in the case of a sphere-cylinder 

geometry no analytical expression is available and interaction potentials would have to be 

calculated numerically.39-41 Therefore, the force profiles in Figure 30 c and d are only given as force 

versus separation and not normalized with respect to the interaction geometry. Figure 30 c and d 

show interaction force profiles at three consecutive spots (2 µm apart) for the silica colloidal probe 

measured against an alkyl-terminated and a fluorinated CTA fiber, respectively. We repeated these 

measurements in several regions along the bottom fibers. In every case, the resulting interaction 

forces are completely repulsive, which confirms that both fiber types are negatively charged. Several 

previous studies reported negative potentials for hydrophobic surfaces in aqueous solutions.42-44 We 

found the force profiles to be highly reproducible showing almost no deviations from spot to spot 

indicating an absence of charge heterogeneities on the scale of the resolution achievable by a µm-

sized probe (Figure 30 c and d). 
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Figure 30| Schematic representation of the sphere-cylinder measurement configuration (a) and optical 

micrograph during the experiment (b). Representative approach F-D curves for the alkyl (c) and the fluorinated 

CTA (d) show purely repulsive forces irrespective of the fiber type and position on the fiber. 

  

Figure 31 summarizes the results for 𝜓0,𝑎𝑝𝑝 as obtained from fits to the full Poisson-Boltzmann 

equation. In this graph 𝜓0,𝑎𝑝𝑝 is plotted against the ionic strength as determined from the same set 

of fits (derived from fitted κ-1 values). In order to account for the variations in the measurement, the 

following representation has been chosen: each lightly colored data point corresponds to the 

average from fitting of 30 𝐹 − 𝐷 curves of a fiber CP-probe at three spots on a bottom fiber. The 

average of one top-bottom fiber combination is shown as the intermediate color shade. The overall 

average of all fiber-fiber pairs for one ionic strength is presented in the darkest shade. Figure 31 a is 

based on measurements of 10 different alkyl fiber-fiber pairs (2 independent fiber probes versus 5 

independent bottom fibers) and Figure 31 b on the results of 8 different fluorinated fiber-fiber pairs 
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(2 independent fiber probes versus 4 independent bottom fibers) at 4 different electrolyte 

concentrations (0.1, 0.5, 1 and 5 mM), respectively.   

 

Figure 31| Fitted apparent diffuse layer potentials as a function of the fitted ionic strength for the alkyl (a) and 

the fluorinated CTA (b). The limits for the resulting surface charge density as calculated by the Grahame 

equation are indicated by the solid lines. 

 

We found apparent diffuse layer potentials of the alkyl CTA in the range of - 50 to - 120 mV and for 

fluorinated CTA between - 20 and - 50 mV. Hence, the charge of fibers with alkyl periphery exceeds 

the one of the fluorinated CTA over the whole investigated range of ionic strengths. The decline of 

the absolute potential with increasing ionic strength is in accordance with the Gouy-Chapman 

theory. The Grahame equation relates the previously determined diffuse layer potential 𝜓0,𝑎𝑝𝑝 and 

the surface charge density 𝜎𝑎𝑝𝑝 (Equation 20), where the index "𝑎𝑝𝑝" indicates again that the 

resulting charge density is not necessarily the true surface charge density of the rough surface.   

𝜎𝑎𝑝𝑝 = √8𝑐0𝜀𝜀0𝑅𝑇 sinh (
𝑧𝑒𝜓0,𝑎𝑝𝑝

2𝑘𝐵𝑇
)
 

 Equation 20 

where R denotes the universal gas constant and z is the charge number.  

The solid lines in Figure 31 indicate an approximate range for 𝜎𝑎𝑝𝑝 of the CTA fibers. We found 𝜎𝑎𝑝𝑝 

roughly between 4 and 14 mC/m2 for aliphatic and between 0.5 and 4 mC/m2 for fluorinated fibers. 
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It should be pointed out additionally that even at large ionic strength and thus small Debye-lengths 

smaller values for the fluorinated fibers have been found. Under these conditions surface roughness 

should influence 𝜓0,𝑎𝑝𝑝 and thus 𝜎𝑎𝑝𝑝 to a much smaller degree.  

Electrospun fibers loose their residual charges from the electrospinning process upon immersion in 

electrolyte solutions. Hence, these residual charges are not responsible for the observed surface 

charge. As both CTA fiber types are lacking ionizable groups on their surface, the proposed 

mechanism for charge generation on these hydrophobic surfaces is the asymmetric adsorption of 

water ions. Especially hydroxide ions have been shown to adsorb preferentially onto hydrophobic 

surfaces.45 Studies on undecanethiol self-assembled monolayers (SAMs) as well as Teflon AF thin 

films showed an isoelectric point at about pH 4.42 The pH range in our measurements is 5.5 – 5.8 and 

is thus compatible with a negative surface charge. For SAMs from undecanethiol zeta potentials 

between - 30 and - 50 mV have been reported.42 Also for alkyl SAMs negative diffuse layer potentials 

have been found in this pH-range, albeit lower than the apparent ones determined here for the alkyl 

CTA fibers.43, 46 The potentials for Teflon surfaces were generally lower and range from - 20 to - 30 

mV (at 1 mM and pH 5).42 In another study based on direct force measurements between a silica 

colloidal probe (RMS roughness: 10 – 15 nm) against Teflon AF, diffuse layer potentials have been 

reported: with ψ0 = - 50 to - 40 mV for 0.1 mM and around - 15 mV for 1 mM of aqueous KCl 

solutions at approximately the same pH. These agree reasonably well with the apparent diffuse 

layer potentials obtained here.44  

A model by Lützenkirchen et al. based on sum frequency vibrational spectroscopy and molecular 

dynamics simulations reasonably reproduces the results of reference 47  and states that the surface 

charge density at the location of the first water layer for Teflon is 1.4 mC/m2.48 This result is in very 

good agreement with the results for fibers from the fluorinated CTA reported here.  

Conclusion 

Direct force measurements between electrospun fibers from two different types of 1,3,5-

cyclohexanetrisamides (CTA) allowed to determine the diffuse layer properties of these fibers in 

electrolyte solutions. We selected two CTAs featuring either alkyl or fluorinated substituents on 

their periphery. Despite the absence of ionizable groups we found a negative surface charge, which 

originates most likely from the hydrophobic character of both CTAs, leading to the adsorption of 
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hydroxide ions in aqueous media. The direct force measurements reveal lower apparent surface 

charge densities for fibers from the fluorinated CTA (approx. 0.5 – 4 mC/m2) as compared to fibers 

from its aliphatic counterpart (approx. 4 – 14 mC/m2). A comparable difference has also been 

observed for fluorinated and alkyl SAMs in previous studies. 

This study demonstrates that the adsorption of ions is also highly relevant for the effective surface 

charge of fibers. While this effect has been known and studied for flat surfaces (e.g. Refs 42, 43, 46 ) it 

has to the best of our knowledge not been studied so far for fibers. By measuring interaction forces 

between fibers in the crossed-cylinder geometry and symmetrical fiber combinations many 

uncertainties of streaming potential measurements, especially for fibrous systems can be avoided. 

As many fibrous materials are exposed to electrolyte solutions we believe that determining surface 

charge properties by direct force measurements of single fibers should be especially useful in 

understanding adsorption phenomena. This issue might be for example of fundamental interest 

concerning the adsorption of water contaminants to microplastics on fibers. Direct force 

measurements between fibers might not only provide important insights in the underlying 

interaction forces for fiber systems, as it has been the case for colloidal interactions but provide also 

the basis for an optimization of fibers towards specific applications.  

Experimental Section  

Synthesis of 1,3,5-Cyclohexanetricarboxamides: NMR data were recorded on a Bruker Avance 300 

spectrometer at 300.1 MHz at room temperature. Mass spectrometry was conducted on a Finnigan 

MAT 8500 GC/MS. Thermogravimetric analysis was performed with a Mettler SDTA 851 TGA at 10 K 

min-1. Phase-transition temperatures were determined using a Perkin–Elmer Diamond DSC with a 

heating rate of 10 K min−1 under N2. XRD measurements were carried out in the range θ=0.5–15° 

from room temperature to 250°C on a Huber Guinier diffractometer 600 equipped with a Huber 

germanium monochromator 611 to get CuKα1 radiation (λ=154.05 pm).  

The synthesis and characterization of N,N’,N’’-tris(decyl)-cis,cis-1,3,5-cyclohexanetricarboxamide 

(alkyl CTA) is described in detail elsewhere.31 

N,N’,N’’-tris(tridecafluoroheptyl)-cis,cis-1,3,5-cyclohexanetricarboxamide was prepared in a two-

step synthesis. In a first step, cis,cis-1,3,5-cyclohexanetricarboxylic acid chloride were obtained by 
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adding 2.66 g of oxalyl chloride dropwise at 0 °C under nitrogen to a suspension consisting of 20 mL 

of anhydrous dichloromethane, 1 mL of dimethylformamide, and 0,73 g of cis,cis-1,3,5-

cyclohexanetricarboxylic acid. The reaction mixture was stirred for 12 h at room temperature and 1 

h at 50 °C. After cooling to room temperature the remaining oxalyl chloride and the solvents were 

evaporated. The obtained solid was used without further purification. In a second step, 3.9 g of 

tridecafluoroheptane-1-amine was added at 0 °C under inert gas to a mixture consisting of 40 mL of 

anhydrous tetrahydrofurane (THF), 0.9 mL of pyridine, and 0.91 g of cyclohexane-1,3,5-tricarboxylic 

acid chloride. The reaction mixture was allowed to warm to room temperature and was 

subsequently stirred for 24 h at 60 °C. After cooling to room temperature the solution was 

precipitated in ice water. The precipitate was filtered off, dried under vacuum and purified by 

recrystallization several times from an isopropanol/THF mixture and THF, respectively. 2.6 g (66%) of 

the fluorinated CTA was obtained as white solid. 

1H-NMR (CF3COOD/CDCl3 5:1): δ  = 1.72-1.84 (m, 3H), 2.23-2.27 (m, 3H), 2.63 (t, 3H), 4.04 (t, 6H) 

ppm. MS: 1209 (M+ 11); 1191 (45); 863 (55); 836 (100); 485 (38); 457 (70); 447 (19); 432 (34); 411 

(12); 377 (12); 110 (30); 81 (39) m/z (%). 

Melt-Electrospinning: For electrospinning, a custom-made setup was used as described previously 

in detail.23, 26 The corresponding CTAs were placed into a glass syringe and heated at 300 °C for 3 

min. After the annealing step, a voltage of U = -30 kV over the distance of 6 cm and a flow rate of 

500 µL/h was applied. The fibers were collected with an aluminum foil. SEM samples were carbon-

coated utilizing a MED 010 coating machine from Baltzer. SEM imaging of freshly electrospun CTA 

fibers was performed with a Zeiss LEO 1530 FESEM instrument (Zeiss, Jena, Germany) at 3 kV.  

Cantilever and Substrate Preparation: Using an AFM (MFP-3D, Asylum Research, Santa Barbara, 

California), uncoated and tipless cantilevers (CSC37, µmasch, Sofia, Bulgaria) were calibrated in air 

according to the thermal noise method.32 Cantilevers with spring constants ranging from 0.262 to 

0.317 N/m were treated with oxygen plasma and transferred to a micromanipulation setup (DC-3 

KS, Märzhäuser, Wetzlar, Germany). A µm-sized droplet of a UV-curable glue (Norland Optical 

Adhesives No. 63, Norland Products, Cranbury, New Jersey) was placed at the free end of each 

cantilever using an etched tungsten wire and under optical control (Axio Examiner.D1, Zeiss, Jena, 

Germany). Due to the glue’s limited spread (below 10 % of the cantilever length) and its significantly 

smaller Young’s modulus (< 2 GPa) compared to the silicon cantilever material (169 GPa), we 

assumed the shift in the cantilever spring constant negligible. Employing a different tungsten wire, 
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fragments of fractured melt-electrospun CTA fibers with diameters from 4.4 to 8 µm were 

positioned in the spreaded glue droplet. Thereby special care was taken to prevent any fiber 

rotation that could contaminate the fiber surface. The silica CP cantilever was prepared as reported 

previously.49 The flawlessness of the preparation procedure was verified by SEM imaging (Zeiss LEO 

1530 FESEM, Zeiss, Jena, Germany). Accordingly, we glued fibers of both CTAs to the surface of a 

glass disk that is forming the bottom of the fluid cell in the force measurements.  

AFM Imaging: The surface morphology of immobilized fiber segments was investigated by AFM 

imaging (Dimension Icon, Bruker, Billerica, Massachusetts) utilizing an OTESPA-R3 (Bruker, Billerica, 

Massachusetts). 

Force Measurements: For the measurements, we equipped the combined setup of the AFM (MFP-

3D, Asylum Research, Santa Barbara, California) and an inverted optical microscope (Axio Observer 

Z1, Zeiss, Jena, Germany) with a fiber probe cantilever and optically aligned the fiber probe (“top 

fiber”) and the fiber immobilized on the substrate (“bottom fiber”) in crossed-cylinder geometry 

perpendicular to each other. All measurements were performed in solutions (0.1, 0.5, 1 and 5 mM) 

of NaCl (Bernd Kraft GmbH, Duisburg, Germany) in Milli-Q water of pH 5.5 – 5.8. For every 

symmetric combination of top and bottom fibers we recorded 30 force-distance (F-D) curves at 6 

different spots along the long axis of the bottom fiber. In each F-D curve, the cantilever velocity was 

500 nm/s and the force setpoints were between 10 and 25 nN. In this force regime, torsional 

cantilever movements upon fiber-fiber contact can be excluded. We interpreted the constant 

compliance regime as the fibers in contact defining the point of zero separation. In total, we 

analyzed the combinations of 2 top and 5 bottom fibers for the aliphatic compound (>7000 F-D 

curves) and 2 top and 4 bottom fibers for the fluorinated compound (>5000 F-D curves).  

The data was evaluated using a custom-written program in FORTRAN and IGOR Pro (WaveMetrics, 

Inc., Lake Oswego, Oregon).29 Fitting each F-D curve to the DLVO-theory yielded the apparent 

surface potential and, additionally, the Debye length as internal reference.  
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Supporting Information 

 

CTA Phase Behavior 

 

Figure SI 2| Schematic illustration of the phase behavior of the alkyl CTA and the fluorinated CTA as 

determined by differential scanning calorimetry (1
st

 heating scan, 10 K/min, under N2). A combination of DSC, 

X-ray powder diffraction and polarization microscopy were employed to assign the type of phase. The 

temperature at which a 10 wt% weight loss of the compounds were detected by means of thermogravimetric 

analysis and at which electrospinning was performed is indicated (Cr: crystalline, Colrp: columnar rectangular 

plastic, Nc, columnar nematic, I: isotropic, M: unidentified mesophase, N: nematic).   
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Salt Concentration 

 

Figure SI 3| Fitted ionic strength as a function of the nominal ionic strength for the alkyl (a) and the 

fluorinated CTA (b). The gray line’s slope is 1.  

 

Figure SI 3 relates the nominal electrolyte concentrations to the ones derived from the Debye length 

as fitting parameter. The accordance is very good for both fiber types. The deviations at 0.1 mM 

ionic strength can be attributed to residual ions, e.g. from the dissolution of CO2.
37  
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Determination of the InvOLS 

 

Figure SI 4| Inverse optical lever sensitivity (InvOLS) as determined for a cantilever decorated with a silica 

colloidal probe (SiCP) from three different approaches: SiCP vs glass substrate (gray), SiCP vs fluorinated CTA 

fiber (yellow) and SiCP vs aliphatic CTA fiber (blue). All three approaches give identical results for the InvOLS 

within experimental errors in the applied force regime. 

 

We verified the absence of mechanical deformations in the applied force regime by the experiments 

depicted in Figure SI 4. Approaching a hard silica colloidal probe (SiCP) to the (“undeformable”) glass 

substrate yields the pure cantilever deformation upon piezo extension in the constant compliance 

regime. From such an experiment, the 𝐼𝑛𝑣𝑂𝐿𝑆 is typically derived. Repeating the same experiment 

on a fluorinated or aliphatic CTA fiber, respectively, yields identical values for the 𝐼𝑛𝑣𝑂𝐿𝑆 within 

experimental errors. This consensus confirms the lack of mechanical deformation of the fibers in the 

applied force regime, i.e. in that range, the fibers can be assumed infinitely hard. Therefore, one can 

use the constant compliance regime in a fiber-fiber experiment to unambiguously deduce the 

𝐼𝑛𝑣𝑂𝐿𝑆. 
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Effective Spring Constant keff 

 

Figure SI 5| Scheme of a cantilever with a fiber attached. The total length 𝑳 of the cantilever and the 

difference between the free end and the position where the fiber segment is situated 𝜟𝑳 illustrate Equation 

18 which is used to calculate the effective spring constant 𝒌𝒆𝒇𝒇. 
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Perspectives 

To outline future perspectives of comprehensive AFM-based fiber characterization, it is illustrative 

to stick to the picture from Figure 2 where advanced AFM techniques nurture the ground for 

flourishing knowledge about fiber systems. The principal opportunities in the field (and according to 

the picture) are on the one hand to transfer the demonstrated approaches to other fiber systems 

(i.e. to grow more flowers); and on the other hand, the advancement of the techniques themselves 

as an exciting methodical route to pursue (which further cultivates the ground).   

 

Figure 32| Illustration of perspective future advances in the field of AFM-based (nano-)fiber characterization. 

The generic nature of the methods presented in this thesis allows for characterizing almost every fiber system 

(route 1). The AFM is a versatile tool that experiences continued further developments hence facilitating 

exiting methodical advances (route 2) for improved and extended fiber characterization. 

 

Concerning the first route, arguably one of the biggest advantages of all approaches presented here 

is that they are truly generic. The diverse spectrum of materials investigated in this thesis (polymer, 

protein, small organic molecules/supramolecular structures) already demonstrates this high 

adaptability. Yet beyond those materials, the literature gives many examples where similar 

techniques have been applied to other fiber systems (see II.3 for mechanical testing and III.4 for 
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interaction measurements). As there is continued and increasing interest in the development of 

fiber-based materials exploiting their electronical, mechanical or biological properties, the 

characterization of their fundamental building components -  the individual (nano-)fibers - will stay a 

major focus in those fields of research and industry. The ongoing expansion of the material library 

and fiber spinning techniques will continuously demand for detailed characterizations of new 

fibrillar compounds. The AFM-based platform for probing the fibers’ deformations and interactions 

is hence an attractive cornerstone in rational material and morphology design.  

Beyond simple testing of (nano-)fibers from different materials, the AFM-based setup is highly 

variable and allows for further methodical development with respect to the specific questions at 

hand (route 2). Regarding interaction measurements, filtration or flow-through processes could be 

investigated on a fundamental level. Particle interactions with filters and particle specific filtration, 

reversible (stimuli-responsive) adhesion, or fiber cohesion (e.g. in a nonwoven) could be studied 

directly and on a single interaction-pair level. Considering the field of tissue engineering, the 

interactions of cells with different (fibrillar) substrates are of central importance and could be 

studied attaching either cell or fiber to a cantilever. Another step could involve fluid force 

microscopy,1 where measurements with cells are possible on the one hand but on the other hand 

also small, nanoscale fibers and particles could be attached to a cantilever reversibly. This would, for 

instance, facilitate direct interaction measurements of nanoscopic fibers.  

Furthermore, the AFM is a tool that is capable of combining mechanical or interaction 

measurements with the investigation of other observables or in dependence of environmental 

conditions. In the past, electrical measurements have been performed during mechanical 

deformations,2-4 or the influence of environmental conditions (temperature, surrounding medium) 

on collagen,5, 6 polymers7 or hair8  has been studied. In that regard, especially the spider silk system 

is not yet understood and questions for e.g. the origin of supercontraction remain to be answered 

conclusively. Advances in AFM as the development of fast and dynamic mechanical analysis (e.g. 

peak force QNM9) furthermore open up opportunities for future studies. For instance, the velocity 

of changes in the respective material in response to a stimulus could be considered.  

In conclusion, AFM-based (nano-)fiber characterization will continue to provide unique insights into 

the fundamental mechanical and interaction mechanisms of almost arbitrary fibrillary systems. The 

variability of the presented approaches renders them a valuable tool to unravel even complex, 

stimuli-triggered behavior.  
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