
DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative
Process Models

Michaela Baumann

Institute for Computer Science
University of Bayreuth, Germany

michaela.baumann@uni-bayreuth.de

Abstract. The field of process model similarity matching is well exam-
ined for imperative process models like BPMN models, Petri nets, or
EPCs. For the recently upcoming declarative process models, generally
providing more flexibility than imperative models, however, there is a
lack of comparison methods. Along with their advantage of providing
more flexibility, declarative process models have a disadvantage in com-
prehending the models, especially the models’ behavior. To overcome this
problem, a comparison of imperative and declarative models is reason-
able to check whether the declarative model represents a desired behavior
which is easier to express and validate in an imperative notation. The
work at hand provides a method based on flow dependencies, abstracting
from the modeling type, for comparing two process models. It uses not
only information about control-flow, but also data-based dependencies
between process activities.

Keywords: Process Model Comparison, Process Model Similarity, Be-
havioral Similarity, Behavioral Profile, Flow Dependency

1 Introduction and Discussion of Related Work

Deriving similarity between process models has many use cases mentioned in
literature, cf. [1], [7], [12]. On the one hand, it is often referred to in the con-
text of repository management. When a repository grows, the identification of
duplicate models [11] and model variants [22], or the reuse of model parts [20]
becomes a challenging issue. On the other hand, also the comparison of models
with reference models [19] for verifying compliance is one application field of
measuring similarity of process models. The method is thereby usually split into
two steps: first, a mapping is established between the two models that shall be
compared. Second, a similarity value is computed based on the mapping. This
procedure is iterated, to find the best mapping that provides the highest simi-
larity value. The similarity value can include several aspects, referred to as the
five perspectives [14] of a process model: task description, control-flow, data-
flow, human/non-human resources and operational issues. For process models
represented as graphs, also graph-based comparison techniques can be applied.



DR
AF
T
Ju
ne

5,
20
17

2 Michaela Baumann

In earlier work, the main focus lies on label similarity (semantic and syntactic
similarity), contextual similarity, structural similarity like graph-edit distance,
and behavioral, i.e., control-flow similarity [5], [8], [9]. In more recent work, also
other process perspectives are taken into account: (non-)human resources [6] and
data, more precisely data-flow [2]. In [3], a method for combining all perspective
similarities is given.

What all of these approaches have in common is that they are designed
for imperative process models, i.e., models used for designing routine processes.
Some methods are explicitly suitable for Petri nets or Event Process Chains,
like [1], [8], for dependency graphs [2], or for abstracted, graph-like process mod-
els, e.g., [3], [15]. For declarative process models, i.e., models for designing agile
processes, however, research concerning similarity matching is not highly de-
veloped. Similarity matching for declarative models is suggested in [24] via a
transformation of declarative models to a finite state automaton representation
and applying known matching techniques on the automaton. This approach is
restricted to models representable as finite state automata. Other approaches
are suggested in [4] like using simulation of execution traces and conformity
checking, applying execution patterns, or directly comparing the constraints of
a declarative process model on the logical level. Arbitrary comparison of both
imperative and declarative models is, to the best of the author’s knowledge, not
yet investigated although this is a promising field of research. Declarative mod-
els provide a good level of flexibility [18] but also impose a difficulty to fully
understand the models [26]. In order to better understand a declarative process
model, a comparison with an imperative model designated to represent (parts
of) the declarative model can be carried out. The work at hand presents one
method for comparing two models with respect to their behavior. The approach
is able to give hints that one model is a subsumption of the other model but
also points out the differences. It makes use of the dependencies between every
two model elements, which we call flow dependencies [13]. This approach is sim-
ilar to the behavioral profile techniques proposed, for example, in [2], [16], [25],
adapting and enlarging them for the application with declarative process models
and incorporating not only basic control-flow information but also data-flow.

The structure of the paper is as follows: In the remainder of this section,
imperative and declarative process models are defined. Section 2 describes how
we can extract flow dependencies from both imperative and declarative process
models. With help of a hierarchy of the dependencies, Section 3 illustrates how
two process models can be compared. This allows for the proposition whether
the models are in a subsumption relation, contradictory, or not comparable. If
there are inconsistencies, they can be located. Section 4 concludes the paper.

In order to abstract from a specific imperative process modeling language,
we regard imperative process models as business process graphs like, e.g., in [9].

Definition 1 (Imperative Process Model). A (graphical) imperative process
model G is a tuple (N,E, τ, λ) where

– N is a set of nodes, E ⊆ N2 is a set of edges, τ : N → T is a function
mapping nodes to types, λ : N → L is a function mapping nodes to labels.



DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative Process Models 3

– (N,E) is a connected graph.
– We define five different types of nodes: T = {start event, end event, activity,

AND-gateway, XOR-gateway}.
• There is exactly one start event and one end event.
• Function λ is a three-dimensional mapping that maps each node to a task

description (λ1), a set of data identifiers for incoming data (λ2), and a
set of data identifiers for outgoing data (λ3).

• Splits and merges are only possible with gateways.
• The model has to be sound [21].

Data objects are represented by their data identifiers stored in set D. Def-
inition 1 allows for process models with loops, modeled with XOR-gateways.
Fig. 1 shows an imperative process model in BPMN with a data object flowing
from E to F. More precisely, the data connection according to Definition 1 is
λ2(F ) = {δ} and λ3(E) = {δ} with δ being the data identifier in D. Declara-
tive process models are of the form defined in Definition 2. This definition is in
accordance with [17].

A

B

C

D

E F

G

H

Fig. 1. Example of an imperative process model (BPMN model).

Definition 2 (Declarative Process Model). A declarative process model D
consists of two basic elements: activities A and rules R. Both sets are finite. Each
activity has at least two possible events: start and complete. Furthermore, there
is a set of data, resp. data identifiers. The rules are of the form Body ⇒ Head.
Both Body and Head represent logical expressions over process events (start
and completion of activities, writing of data, etc.) and process variables and can
include a temporal ordering. Each rule either connects two activities (control-
flow rules, Rc ⊆ R), an activity and a data identifier or two data identifiers
(data rules, Rd ⊆ R).

Note that the expression Body ⇒ Head can also be written as ¬(Body ∧
¬Head) or ¬Body ∨ Head and that {Body ⇒ Head} = {¬Head ⇒ ¬Body}.
With this it is possible to formulate all rules with a positive Body. The restriction
that each rule is able to connect only two objects is important to get reasonable
comparison results between an imperative and a declarative model. A list of all
possible rules enabled through Definition 2 is provided in Table 1 regarding two
events: start and complete; and an exemplary declarative process model is given



DR
AF
T
Ju
ne

5,
20
17

4 Michaela Baumann

in Table 2. Variables t and s are points of time and δ denotes a specific data
object. Rules 1, 2, 3, and 7 are each connecting two activites whereas 4, 5, 6,
and 8 are connecting an activity with a data identifier. Rules 1 and 4 contain
temporal ordering information. For the other rules, t and s are indepedent, i.e.,
they hold for s ≤ t and for s > t.

control-flow rules data rules

s/c of A at t ⇒ (not) s/c of B at s(≶ t) s/c of A at t ⇒ (not) write of δ at s(≶ t)
write of δ at t ⇒ (not) s/c of B at s(≶ t)
write of δ at t ⇒ (not) write of ε at s(≶ t)

Table 1. List of all 24 possible rules in a declarative process model with A and B
denoting activities and δ and ε data identifiers; s/c stands for either start or complete;
t and s are time variables.

No. Rule Explanation

1 start of B at t ⇒
complete of A at s < t

“A has to be completed before B can start”

2 complete of B at t ⇒
not complete of C at s

“B can only be finished when C is not com-
pleted yet and C may not be completed once
B is completed”

3 complete of C at t ⇒
not complete of B at s

(see rule 2)

4 start of F at t ⇒ write of δ at s < t “F can only be started when data δ is al-
ready available, i.e., F consumes δ”

5 complete of E at t ⇒ write of δ at s “The completion of E requires that data δ is
written, i.e., E causes the production of δ”

6 start of G at t ⇒ write of δ at s (see rule 5 with start instead of completion)

7 complete of H at t ⇒
complete of G at s

“Whenever H is proceeded, G needs to be
proceeded, too”

8 write of δ at t ⇒
not complete of D at s

“As soon as δ is produced, D may not be
completed”

Table 2. Example of a declarative process model with rule explanations.

2 Flow Dependencies in Process Models

We determine flow dependencies in process models only locally to not get into a
potentially irresolvable problem when regarding all possible executions. There-
fore, we call them (local) dependencies. Note that a dependency is not the same
as an edge from Definition 1. Flow dependencies (or only “dependencies”) can
be extracted from process behavior/control-flow, but also from other process
perspectives (see also [25] for an example). In the work at hand, we exemplarily
show this for the data perspective.

Definition 3 (Dependency Type). We distiguish between two different types
of dependencies within a process model: control flow related dependencies (c) and
data-related dependencies (d). Every dependency can either be a mandatory or



DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative Process Models 5

an optional ordering dependency, a mutual-exclusion dependency (always sym-
metric), or a symmetric or non-symmetric existence dependency. For each pair
of activities, both an existence dependency and an ordering dependency can be
stated. We define the symbols for the dependencies as shown in Table 3.

control-flow data

mandatory ordering c� d�
optional ordering c→ d→

symmetric existence c== d==

non-symmetric existence c=> d=>

exclusive existence c>< d><
Table 3. Possible dependency types within a process model.

Additionally to the dependencies defined above, if it is not possible to state
an ordering for two activities which is, e.g., the case for the exclusive existence,
we write the symbol − (no ordering, absence of any order). The order of two
activities A and B is always stated in both directions: (A,B) and (B,A). For
each direction, we have a pre- and a postconditional ordering. A mandatory
postconditional ordering �(A,B) means that after A, B has to be executed. A
mandatory preconditional ordering �(A,B) means that before B, A has to be
executed. It is not possible to have both �(A,B) and �(B,A) as this would
be an infinite cycle. An optional postconditional ordering →(A,B) means that
it is possible to do B after A but there are also ways to finish the process
without doing B after A. An optional preconditional ordering ←(A,B) means
that it is possible but not necessary to do A before B. Ordering arrows for
one tuple of activities are combined, e.g., �→(A,B). It is not possible to have
ordering arrows with an arrowhead on only one side, e.g., to have only →(A,B)
but not ←(A,B). Thus, for each activity tuple we have five different kinds of
ordering dependencies: ↔(A,B), ←�(A,B), �→(A,B), ��(A,B), and −(A,B).
Non-symmetric existence =>(A,B) means that if A is done in a process instance
then B needs to be done as well. The symmetric-existence dependency ==(A,B)
means that if A is done in a process instance, B needs to be done as well,
and the other way round (if =>(A,B) and =>(B,A), we have ==(A,B)). A
mandatory ordering always implies an existence dependency (�(A,B) implies
=>(A,B), for example) but not the other way round. The exclusive existence
dependency ><(A,B) means that as soon as A is executed, B can no longer
be executed and the other way round. The distinction between ordering and
existence dependencies can also be found in [10].

In the following, we show how to derive flow dependencies in imperative
process models. To assign the correct dependencies to every pair of activities,
we analyze the structure of the process model as done in [21]. There, a process
model is decomposed into process fragments. The fragments are determined with
the concept of domination. One node n1 dominates another node n2 when all
paths from start event to n2 include n1. A node n3 postdominates another node
n4 when all paths from n4 to end event include n3.



DR
AF
T
Ju
ne

5,
20
17

6 Michaela Baumann

Definition 4 (Process Fragment). A process fragment of process model G
is a subprocess of G defined through a split and a merge gateway gs and gm
of the same type where gs dominates gm, gm postdominates gs, and every loop
either contains both gs and gm or none of the two. Node n belongs to process
fragment defined by (gs, gm) when gs dominates n and gm postdominates n.
Process fragments can be nested, e.g., f1 is a child of f2. Fragments can be
AND- or XOR-fragments, depending on the gateway types defining them.

The trivial process fragment is (start event, end event), the only fragment
not defined by gateways. All nodes belonging to this fragment and to no other
fragment are on level 0. All other nodes have a level assignment depending on
the fragment hierarchy and the smallest fragment they belong to. The level
assignment for the activities of the example process of Fig. 1 is the following:
level 0: A, level 1: B, C, E, E, F, level 2: G, H. Two activities are optionally in
parallel if they belong to the same AND-fragment but to different branches of the
fragment. Two activities are mandatorily in parallel if they belong to the same
AND-fragment but to different branches of the fragment and if non of them
belongs to a branch between a XOR-split and the corresponding XOR-merge
within the AND-fragment. Within a non-loop XOR-fragment, there are at least
two exclusive paths from gs to gm and in an AND-fragment there are at least two
parallel paths from split to merge gateway. When determining the dependencies
for two activities, we separately assign existence and ordering dependencies.
For the existence dependencies, we need the fragment hierarchy. The ordering
dependencies consider pre- and postconditional ordering. Note that it is possible
to have, for example, ↔(A,B) but −(B,A).

Definition 5 (Control Flow based Ordering Dependencies in Impera-
tive Process Models). Let G = (N,E, τ, λ) be an imperative process model
and A and B two activities.
– We assign a mandatory postconditional ordering dependency to A and B,
�(A,B), iff B postdominates A.

– We assign a mandatory preconditional ordering dependency to A and B,
�(A,B), iff A dominates B.

– We assign an optional postconditional ordering dependency to A and B,
→(A,B), iff there is a chain of edges from A to B but B does not postdominate
A.

– We assign an optional preconditional ordering dependency to A and B,←(A,B),
iff there is a chain of edges from A to B but A does not dominate B.

– If A and B are in parallel (optionally and mandatorily), we assign ↔(A,B).
– If there is no mandatory or optional ordering possible for A and B, we assign
−(A,B).

Definition 6 (Control Flow based Existence Dependencies in Imper-
ative Process Models). Let G = (N,E, τ, λ) be an imperative process model
and A and B two activities.
– We assign a symmetric existence dependency to A and B, ==(A,B), iff A

dominates B and B postdomiates A, B dominates A and A postdominates
B, or A and B are mandatorily in parallel.



DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative Process Models 7

– We assign a non-symmetric existence dependency to A and B, =>(A,B), iff
B dominates A but not A postdominates B or B postdominates A but not A
dominates B.

– We assign an excluding dependency between A and B, ><(A,B), iff A and
B belong to the same XOR-fragment but to different branches and there is
neither a chain of edges from A to B nor from B to A.

The excluding dependency ><(A,B) is regarded global; when there is a loop
in the model, activities belonging to a child XOR-fragment of the loop XOR-
fragment are not exclusive. When there is no existence dependency given, we
assign ∼.

Definition 7 (Data-based Dependencies in Imperative Process Mod-
els). Let G = (N,E, τ, λ) be an imperative process model with already identified
control flow based dependencies, A and B two activities and δ a data identifier.
There is a data-based dependency between A and B iff

– we do not have ><(A,B) and
– we have either λ2(A) = δ = λ3(B) or λ3(A) = δ = λ2(B).

The already identified control flow based dependencies are then changed into
data-based ones by changing the symbols.

For the example BPMN process model of Fig. 1, the dependencies are shown
in a matrix in Table 4. The model of Fig. 1 contains information concerning
control-flow and data-flow. We regard data-based dependencies as more valu-
able than control flow based dependencies. Existence dependencies are always
mirrored at the diagonal. Comparing these dependencies with related work about
behavioral profiles for imperative process models, e.g., [16], [23], we see that we
can represent the behavioral profiles with our flow dependencies. But due to the
distinction between ordering and existence dependencies, we can specify more
different profiles with flow dependencies than with behavioral profiles. In [23],
the authors mention that the so-called co-occurrence relation can only be spec-
ified for activities in strict order relation and that it cannot be detected for
interleaving order relation. This is not the case for the non-symmetric existence
dependency presented in the work at hand.

Like for imperative process models, we now show how to derive flow depen-
dencies in declarative process models. In conformance with the general approach
of declarative process modeling, the default ordering of two activities is an op-
tional ordering in both directions (↔) and the default existence is not specified
(∼). For the control-flow rules of Table 1, the dependencies are assigned as stated
in Definition 8.

Definition 8 (Control Flow based Dependencies in Declarative Pro-
cess Models). Let D = (A,R) be a declarative process model. For control-flow
rules, the following dependencies hold:

– s/c of A at t ⇒ s/c of B at s: =>(A,B) and ↔(A,B) and ↔(B,A)
– s/c of A at t ⇒ s/c of B at s < t: =>(A,B) and ↔(A,B) and �→(B,A)
– s/c of A at t ⇒ s/c of B at s > t: =>(A,B) and ←�(A,B) and ↔(B,A)



DR
AF
T
Ju
ne

5,
20
17

8 Michaela Baumann

– s/c of A at t ⇒ not s/c of B at s: ><(A,B) and −(A,B) and −(B,A)

– s/c of A at t ⇒ not s/c of B at s < t: ↔(A,B) and −(B,A)

– s/c of A at t ⇒ not s/c of B at s > t: −(A,B) and ↔(B,A)

A symmetric existence connection between two activities is introduced the fol-
lowing way: =>(A,B) ∧ =>(B,A) ⇒ ==(A,B). When two rules affect the same
activity tuple, � and − predominate the default →.

Due to transitivities, e.g., =>(A,B) and =>(B,C) lead to =>(A,C), it is
possible to derive dependencies not only directly from process rules given in
Definition 8 but to get more dependencies in iterative steps.

A B C D E F G H

A
c<= c<= c<= c<= c<= c<= c<=
c�→ c�→ c�→ c�→ c�→ c�→ c�→

B
c=> c><

∼ ∼ ∼ ∼ ∼
− c↔ c↔ c↔ c↔ c↔

C
c=> c><

∼ ∼ ∼ ∼ ∼
− c↔ c↔ c↔ c↔ c↔

D
c=> ∼ ∼ c>< c>< c>< c><− − −

E
c=> ∼ ∼ c><

d== c== c==

− − − d�� c�� c��

F
c=> ∼ ∼ c><

d== c== c==
− − − − c�� c��

G
c=> ∼ ∼ c><

c== c== c==
− − − − − c↔

H
c=> ∼ ∼ c><

c== c== c==
− − − − − c↔

Table 4. Existence and ordering dependencies according to Definitions 5, 6, and 7
describing the example model of Fig. 1.

Definition 9 (Data-based Dependencies in Declarative Process Mod-
els). Let D = (A,R) be a declarative process model and Rd ⊆ R all data
rules. The data rules are traced back to control-flow rules of the form presumed
in Definition 8 applying transitivity of the < operator for the time information
and natural deduction calculus. Then, the data-flow dependencies between two
activities can be derived in the same way as the control-flow dependencies.

As an illustration of Definition 9, regard rules 4 and 8 of the example model
of Table 2. Assume activity F is executed at time t (Ft). The natural deduction
calculus yields the following result: Ft together with rule 4 results in write of δ at
s < t (δs ∧ s < t) applying modus ponens. Elimination out of conjunction yields
δs. Together with rule 8 (write of δ at s ⇒ not complete of D at r, which implies
write of δs ⇒ not complete of Dr) and modus ponens, we get (Ft∧s < t)⇒ ¬Dr

which is the same as F ⇒ ¬D as D is independent of any execution time and t is
arbitrary. Thus, it holds s/c of F at t⇒ not s/c of D at s. The derived dependency
is therefore d>< (F,D). For the example of Table 2, the dependency matrix is
given in Table 5. A list of all possibilities for flow dependency transitivity is
given in Table 6. The absence of any existence dependency is denoted with ∼.



DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative Process Models 9

A B C D E F G H

A
c<= ∼ ∼ ∼ ∼ ∼ ∼
c�→ c↔ c↔ c↔ c↔ c↔ c↔

B
c=> c><

∼ ∼ ∼ ∼ ∼
c↔ c↔ c↔ c↔ c↔ c↔

C
∼ c><

∼ ∼ ∼ ∼ ∼
c↔ c↔ c↔ c↔ c↔ c↔

D
∼ ∼ ∼ d>< d>< d>< c><c↔ c↔ c↔

E
∼ ∼ ∼ d><

∼ ∼ ∼
c↔ c↔ c↔ c↔ c↔ c↔

F
∼ ∼ ∼ d><

∼ ∼ ∼
c↔ c↔ c↔ c↔ c↔ c↔

G
∼ ∼ ∼ d><

∼ ∼ c<=
c↔ c↔ c↔ c↔ c↔ c↔

H
∼ ∼ ∼ c><

∼ ∼ c=>
c↔ c↔ c↔ c↔ c↔ c↔

Table 5. Flow dependencies according to Definitions 8 and 9 in the example model of
Table 2.

dependency 1 dependency 2 derived dependency

=>(A,B) =>(B,C) =>(A,C)

and �→(B,A) and ↔(A,B) and �→(C,B) and ↔(B,C) and �→(C,A) and ↔(A,C)

and ←�(A,B) and ↔(B,A) and ←�(B,C) and ↔(C,B) and ←�(A,C) and ↔(A,C)

and any other combinations of ordering dependencies and ↔(A,C) and ↔(C,A)

=>(A,B) ><(B,C) ><(A,C)

and arbitrary ordering

=>(A,B)

and ←�(A,B) and ↔(B,A) ↔(B,C) and −(C,B) ↔(A,C) and −(C,A)

and ↔(A,B) and �→(B,A) ↔(C,B) and −(B,C) ↔(C,A) and −(A,C)

↔(A,B) and −(B,A) ↔(B,C) and −(C,B) ↔(A,C) and −(C,A)

Table 6. Transitive flow dependency derivation.

3 Comparison of Two Process Models

When comparing two models concerning their behavior we can now compare
the two dependency matrices. For this, we determine a hierarchy of the de-
pendencies. This allows us to state whether two models show contradictionary
behavior, similar behavior, or are related in a way that one model is overspec-
ified/underspecified compared to the other model. A 1-to-1 mapping between
equal, or at least similar enough activities is assumed to be given. We set the hi-
erarchy of the dependencies according to the degree of restrictions the dependen-
cies impose. With dep1 ≺ dep2 we denote that dep1 is more restrictive regarding
execution possibilities than dep2, i.e., the set of possible executions induced by
dep1 is a proper subset of those imposed by dep2. Thus, ≺ is transitive. With
dep1 # dep2 we denote that dep1 and dep2 impose contradictional behavior (the
intersection of both sets is empty). Two dependencies are not comparable (◦)



DR
AF
T
Ju
ne

5,
20
17

10 Michaela Baumann

when their intersection and their relative complements are not empty. We get the
following hierarchy for the existence dependencies: == ≺ => ≺ ∼. Comparing
=> and <= is not possible, i.e., we assign ◦ for marking the non-comparability.
Here, we can possibly derive a more meaningful statement when looking at the
comparison of the ordering dependencies. For the non-existence dependency we
get >< # ==. The dependencies >< and => resp. ∼ are not comparable
in the first place regarding execution possibilities. However, when considering
contradictions on basis of musts and prohibitions more severely than common-
alities in allowed (but not prescribed) possibilities, we can add => # ><. ><
and ∼ are not comparable since a non-specified existence dependency does not
demand for a certain execution prohibited by ><. For the ordering dependen-
cies, we have these hierarchies: − ≺ ↔, �� ≺ ←� ≺ ↔, �� ≺ �→ ≺ ↔.
Furthermore, it is − # ��, − # ←�, and − # �→ because the mandatory
ordering requires an execution order that is not possible for the not existing or-
dering dependency −. Ordering dependencies←� and�→ are not comparable.
This hierarchy allows us to set up a comparison matrix on basis of the depen-
dency matrices of Tables 4 and 5. The comparison matrix is shown in Table 7
where the imperative dependencies are mentioned before the declarative ones.
The equal sign = means that the dependencies are the same at the respective
positions in the dependency matrices. Existence and ordering dependencies are
compared separately, which is why we get two comparison signs in each cell.
When >< is compared to an existence and ordering relation combination, we
assign two # symbols. When >< is compared to ><, we assign two = symbols.
We see that the two example models are in a subsumption relation. The declar-
ative model is more general than the imperative model, i.e., it allows for more
execution possibilities than the imperative model. There are no contradictions
in the comparison of the two models. If there were any contradictions, we could
locate them precisely, i.e., the activities and the relations between them through
having a closer look at the dependency matrices.

A B C D E F G H

A
= ≺ ≺ ≺ ≺ ≺ ≺
= ≺ ≺ ≺ ≺ ≺ ≺

B
≺ = = = = = =
≺ = = = = = =

C
≺

=
= = = = =

≺ ≺ ≺ ≺ ≺ ≺

D
≺ = = = = = =
≺ ≺ ≺ = = = =

E
≺ = = = ≺ ≺ ≺
≺ ≺ ≺ = ≺ ≺ ≺

F
≺ = = = ≺ ≺ ≺
≺ ≺ ≺ = ≺ ≺ ≺

G
≺ = = = ≺ ≺ ≺
≺ ≺ ≺ = ≺ ≺ =

H
≺ = = = ≺ ≺ ≺
≺ ≺ ≺ = ≺ ≺ =

Table 7. Comparison of the two example process models.



DR
AF
T
Ju
ne

5,
20
17

Comparing Imperative and Declarative Process Models 11

4 Limitations and Future Work

It is an issue of future work to expand the definition of declarative process models
to allow, e.g., for constraints involving more than two activities and process rules
including agents and non-human resources. Also, the extraction of flow depen-
dencies from, e.g., DECLARE models or DCR Graphs is a future issue. Another
application that makes use of the presented approach is to derive a similarity
measure, i.e., a number between 0 and 1 to specify the degree of similarity of two
compared models, since for large models, it is easier to judge their similarity at
a first glance according to one approximating number than looking at a complex
table. The information whether a dependency is control flow based or data-based
is useful for determining similarity. The presented dependency approach should
be combined with other process perspectives like agents, data, non-human re-
sources, and activity descriptions [3]. Note that this data similarity does not use
the same information used for the data-based flow dependencies shown in this
paper. An assessment of the presented approach must be conducted as soon as
other methods for comparing imperative and declarative models are available.

References

1. van der Aalst, W., Alves de Medeiros, A., Weijters, A.: Process equivalence: Com-
paring two process models based on observed behavior. In: Business Process Man-
agement, LNCS, vol. 4102, pp. 129–144. Springer Berlin Heidelberg (2006)

2. Bae, J., Caverlee, J., Liu, L., Yan, H.: Process mining by measuring process block
similarity. In: Business Process Management Workshops: Proceedings. pp. 141–152.
Springer Berlin Heidelberg (2006)

3. Baumann, M.H., Baumann, M., Schönig, S., Jablonski, S.: Towards multi-
perspective process model similarity matching. In: Enterprise and Organizational
Modeling and Simulation, LNBIP, vol. 191, pp. 21–37. Springer Berlin Heidelberg
(2014)

4. Baumann, M., Baumann, M.H., Ackermann, L., Schönig, S., Jablonski, S.: Ansätze
zum Ähnlichkeitsabgleich von deklarativen Geschätsprozessmodellen. In: INFOR-
MATIK 2016. LNI, vol. 259, pp. 733–738 (2016)

5. Baumann, M., Baumann, M.H., Jablonski, S.: On behavioral process model simi-
larity matching: A centroid-based approach. In: ICCGI. vol. 5, pp. 125–131 (2015)

6. Baumann, M., Baumann, M.H., Schönig, S., Jablonski, S.: Resource-aware process
model similarity matching. In: Toumani, F., et al. (eds.) Service-Oriented Com-
puting - ICSOC 2014 Workshops, Lecture Notes in Computer Science, vol. 8954,
pp. 96–107. Springer International Publishing (2015)

7. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2), 148–67 (2012)

8. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Information Systems 36(2), 498
– 516 (2011)

9. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Business Process Management, LNCS,
vol. 5701, pp. 48–63. Springer Berlin Heidelberg (2009)



DR
AF
T
Ju
ne

5,
20
17

12 Michaela Baumann

10. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow:
Mediating between representation and action in workflow systems. In: Proceedings
of the 1996 ACM Conference on Computer Supported Cooperative Work. pp. 190–
198. CSCW ’96, ACM (1996)

11. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M., ter Hofstede,
A.H.M.: Approximate clone detection in repositories of business process models.
In: BPM 2012: Proceedings, pp. 302–318. Springer Berlin Heidelberg (2012)

12. Fellmann, M., Delfmann, P., Koschmider, A., Laue, R., Leopold, H., Schoknecht,
A.: Semantic technology in business process modeling and analysis. part 1: Match-
ing, modeling support, correctness and compliance. EMISA Forum 35(1) (2015)

13. Jablonski, S.: Do we really know how to support processes? considerations and
reconstruction. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel,
B. (eds.) Graph Transformations and Model-Driven Engineering, LNCS, vol. 5765,
pp. 393–410. Springer Berlin Heidelberg (2010)

14. Jablonski, S., Bussler, C.: Workflow management: modeling concepts, architecture
and implementation. International Thomson Computer Press (1996)

15. Klinkmüller, C., Leopold, H., Weber, I., Mendling, J., Ludwig, A.: Listen to me:
Improving process model matching through user feedback. In: Business Process
Management: Proceedings. pp. 84–100. Springer International Publishing (2014)

16. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
BPM 2011. Proceedings. pp. 166–181. Springer Berlin Heidelberg (2011)

17. Montali, M.: Specification and Verification of Declarative Open Interaction Models
– A Logic-based framework. Ph.D. thesis, Alma Mater Studiorum Universitá di
Bologna (2009)

18. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full support for loosely-
structured processes. In: Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International. pp. 287–287 (2007)

19. Pesic, M., van der Aalst, W.M.: Towards a reference model for work distribution
in workflow management systems. Business Process Reference Models pp. 30–44
(2005)

20. Pittke, F., Leopold, H., Mendling, J., Tamm, G.: Enabling reuse of process models
through the detection of similar process parts. In: Business Process Management
Workshops, LNBIP, vol. 132, pp. 586–597. Springer Berlin Heidelberg (2013)

21. Polyvyanyy, A., Smirnov, S., Weske, M.: On application of structural decomposi-
tion for process model abstraction. In: BPSC. pp. 110–122. Citeseer (2009)

22. Tealeb, A., Awad, A., Galal-Edeen, G.: Context-based variant generation of busi-
ness process models. In: Enterprise, Business-Process and Information Systems
Modeling: Proceedings, pp. 363–377. Springer Berlin Heidelberg (2014)

23. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of
causal behavioural profiles using structural decomposition. In: Applications and
Theory of Petri Nets: 31st International Conference, PETRI NETS 2010. pp. 63–
83. Springer Berlin Heidelberg (2010)

24. Wombacher, A.: Evaluation of technical measures for workflow similarity based on
a pilot study. In: On the Move to Meaningful Internet Systems 2006, LNCS, vol.
4275, pp. 255–272. Springer Berlin Heidelberg (2006)

25. Xing, J., Zhang, X., Song, W., Yang, Q., Ge, J., Wang, H.: Bpel similarity – a
metric based on activity constraint graphs. In: AP-BPM 2013. Selected Papers.
pp. 39–55. Springer International Publishing (2013)

26. Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models using test
driven modeling suite. In: IS Olympics: Information Systems in a Diverse World,
LNBIP, vol. 107, pp. 16–32. Springer Berlin Heidelberg (2012)


