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Abstract. The purpose of this paper is to study different notions of Sobolev capacity commonly
used in the analysis of obstacle- and Signorini-type variational inequalities. We review basic facts
from nonlinear potential theory in an abstract setting that is tailored to the study of W1P- and
W1=1/P.p_capacities, and we prove equivalency results that relate several approaches found in the
literature to each other. Motivated by applications in contact mechanics, we especially focus on the
behavior of different Sobolev capacities on and near the boundary of the domain in question. As
a result, we obtain, for example, that the most common approaches to the sensitivity analysis of
Signorini-type problems are exactly the same.
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1. Introduction. In the theory of Sobolev spaces, it is not appropriate to study
the pointwise behavior of functions in the almost everywhere sense inherited from the
underlying measure space. This is already seen in the fact that Sobolev functions
admit well-defined traces on sets that are negligible in the measure theoretical sense
(cf. the classical trace theorem). To analyze the fine properties of Sobolev functions
properly, it is necessary to work with capacities (cf. [1, 2, 3, 5, 8, 11, 12, 16]). These
are outer measures that take the additional regularity of the involved functions into
account and allow for precise identification of the sets that are negligible in the context
of Sobolev spaces. Due to this increased accuracy, capacities play a crucial role in, e.g.,
the characterization of the exceptional sets in Egorov-type theorems and the study of
sets that are defined by pointwise constraints. Examining pointwise conditions up to
sets of capacity zero - so-called polar sets - leads to the notion of a property holding
“quasi everywhere” (q.e.), which is finer than the concept of “almost everywhere”
(a.e.) known from the theory of Lebesgue spaces.

Problems that need to be studied in a quasi everywhere sense arise, e.g., in the
optimal control and the sensitivity analysis of Signorini- and obstacle-type variational
inequalities. In both of these fields, it is often necessary to characterize the tangent-,
normal-, and critical cones to sets of the form

{v EWLI(Q) 0> in ﬁ} , (1.1)

where Q@ C R? is a bounded domain and v : © — R U {£o0} is a given function.
Such a characterization is only possible if the inequality v > ¢ in (1.1) is understood
in a quasi everywhere sense. As a consequence, the concept of capacity becomes
indispensable. We refer to [6, 15, 17, 18, 21, 22, 23] for details on this topic. A
particular difficulty in the setting above is inherent to Signorini-type problems, where
the inequality constraint v > 4 is nontrivial, i.e., ¥ # —oo, only on subsets of the
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domain boundary. For these problems, the W, *(Q)-capacity, that is most commonly
used in the analysis of partial differential equations (cf. [5, 11, 16]), is not applicable,
and one has to resort to alternative notions of capacity to obtain a meaningful quasi
everywhere sense for the study of (1.1).

Several different approaches can and have been taken to this end. In [17], Mignot
employed the theory of Dirichlet spaces (which is only applicable in the case p = 2)
and the capacity of the space W12(Q) to obtain a meaningful capacity on the power
set P(Q) of the closure Q (cf. [17, page 150, Exemple 2] and [15]). In [6], on the other
hand, Betz worked with the VVO1 P_capacity of an open set )’ satisfying Q C €' to
define a reasonable quasi everywhere sense on the closure of the domain €. Lastly,
it is also a natural choice to define a capacity based on the space W=1/P2(9Q) on
the boundary 99 - especially since, in the case of Signorini problems, the inequality
constraint v > v is commonly interpreted in the sense of traces (cf. [15, Example 6]
and also [6, 9, 13]).

The purpose of this paper is to prove that all of the above approaches are, in fact, the
same. To be more precise, in what follows, we show that the capacities associated with
the spaces WhP(Q), WLP(R?), WI=1/PP(9Q), and W, P(¥) (where, again, Q' is an
open set satisfying Q C ') are all equivalent on the power set P(9€2) of the boundary
01, provided € is a strong bounded Lipschitz domain. While some results on the
equivalence of different Sobolev capacities are known (see, e.g., [16, Theorem 2.38] for
a theorem on WO1 "P_capacities on different domains), to the best of our knowledge, the
relationship between the latter four capacities has not been studied so far. With the
following analysis we close this gap. We further hope that our results can alleviate
some of the confusion that arose in the field of contact mechanics due to the multitude
of different approaches to boundary capacities found in the literature. The outline of
this paper is as follows:

In Section 2, we recall basic facts from nonlinear potential theory that are needed for
our analysis. Here, we precisely define the concepts of “capacity” and “quasi every-
where” in a general function space setting and discuss the existence and uniqueness of
quasi continuous representatives in depth. We include a detailed review of the latter
topics for two reasons: On the one hand, to work with the spaces WP (Q), W1P(R%),
Wi=1/Pr(9€), and Wol’p(Q')7 we require an abstract setting that is slightly more gen-
eral than the ones usually found in the literature. Since we are also interested in the
case p # 2, the classical theory of Dirichlet spaces (cf. [7, 12, 15, 17]) is not suitable
for our needs, and since we do not exclusively work with zero boundary conditions,
we cannot simply resort to the common Wol’p—theory (cf. [, 11, 16]), either. As a
consequence, it is necessary to discuss the results and notions of nonlinear potential
theory needed in Sections 3 to 5 in greater detail. On the other hand, we include a
detailed review of the known theory to keep this paper self-contained. We hope that
in doing so, we can make the topic of (boundary) capacities more accessible to those
readers who are interested in, e.g., contact mechanics but unfamiliar with the field of
potential theory.

In Section 3, we demonstrate that the theory of Section 2 indeed enables us to study
the spaces W1P(Q), WhP(RY), W=1/Pr(9Q), and W, P(Q). We further use this
third section to clarify notation and to discuss preliminary results on the properties
of WP~ and VVO1 "P_capacities. The latter include, e.g., a detailed analysis of the
blow-up behavior that VVO1 "P_capacities exhibit in the vicinity of the boundary of the
underlying domain (cf. Lemma 3.4 and Theorem 3.6).
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In Section 4, we demonstrate that the capacities of the spaces W1P(Q), WhP(R?),
and W, P(€) are mutually equivalent on the power set P(©). The proof of this
equivalence is based on certain properties of extension operators and a localization
argument.

Section 5 is concerned with the capacity of boundary sets. Here, we show that the
capacities studied in Section 4 and the capacity of the trace space W1=1/PP(9Q) are
equivalent on the power set P(012).

Lastly, in Section 6, we combine and summarize our findings. Here, we not only
prove that the most common approaches to the sensitivity analysis of Signorini-type
problems coincide (cf. Theorem 6.1, Corollary 6.6), but also state some general results
on the fine properties of Sobolev functions (cf. Corollary 6.2, Corollary 6.3). The latter
may also be of independent interest.

2. Capacity Theory in an Abstract Setting. In the following, we review
basic results from capacity theory in an abstract setting that is tailored to the study
of the spaces W12 (), W2 (R?), W=1/22(5Q), and W, () considered in Sections
3 to 5. The main results of this chapter concern the existence, the uniqueness, and
the behavior of quasi continuous representatives, cf. Corollary 2.11, Lemma 2.12, and
Theorem 2.13. Note that there are numerous different ways to introduce capacities
(e.g., using kernel functions or distributions, cf. [1, 2]). The approach that we employ
in this paper utilizes the framework of topological spaces and is heavily inspired by
the analysis in [12]. We consider the following situation:

AsSUMPTION 2.1 (Standing Assumptions and Notation for the Abstract Setting).
a) (X,0(X)) is a topological space.
b) B(X) is the Borel o-algebra on (X, 0(X)).
¢) P(X) is the power set of X.
d) wis a measure on B(X) with u(A) > 0 for all A € O(X)\ {0}.
e) 1 <p< oo is arbitrary but fized.
f) LP(X, ) is the Lebesgue space of real-valued (u,p)-integrable functions.
g) V C LP(X,u) is a Banach space such that:
i) VNC(X) is | - ||v-dense in V,
it) max(0,v) € V and || max(0,v)||v < ||v||v for allv eV,
iii) there exists a constant C > 0 with ||v||L» < C|v||v for allv e V.
For details on the topological concepts in Assumption 2.1, we refer to [25]. Note that,
throughout this paper, the max-operator is always assumed to act pointwise u-almost

everywhere. Using V C LP(X, ), we define the capacity of the function space V as
follows:

DEFINITION 2.2 (Capacity). Given Assumption 2.1, the set function

Cap( : 5X7VHU’) : P(X) - [0700]
A= inf{||v||v : v > 1p-a.e. in a nbhd. of A} (2.1)

is called the capacity generated by the triple (X, V, u).

By a “neighborhood of A” we of course mean a set G € O(X) satisfying A C G. For
the sake of brevity, we suppress the dependency on the triple (X,V, u) in the rest of

3



this section and simply write cap(-) instead of cap( - ; X, V, u). Some remarks are in
order regarding Definition 2.2:

REMARK 2.3. In the theory of Sobolev and Dirichlet spaces, it is common to raise the
term ||v||lv in the infimum on the right-hand side of (2.1) to a suitable power. If, e.g.,
V is a Dirichlet space (and thus Hilbert), one typically defines the capacity to be equal
to inf{||v||?; : v > 1p-a.e. in a nbhd. of A} (cf. [12, Section 3.1]). Given the setting
of Assumption 2.1, however, where no further information about the space V' and its
norm || - ||v s available, such an approach is unnatural. Replacing the term ||v|yv in
(2.1) with, e.g., ||v]|}, would even cause the resulting capacity to be non-subadditive
in general (cf. the proof of Lemma 2.5d) below). We emphasize that the equivalency
estimates obtained in Sections 8 to 5 using Definition 2.2 can easily be transformed
to conform to the definitions of Sobolev capacity employed in [5, 8, 11, 16] etc.

Since max(0,v) € V and || max(0,v)||v < |[v||v for all v € V, we instantly obtain an
alternative representation of the capacity.

COROLLARY 2.4. The capacity cap(-) can equivalently be computed by
cap(4) = inf{|jv]|v : v > Op-a.e. in X, v > 1pu-a.e. in a nbhd. of A} VAC X.

By adapting the proofs in [16, Section 2] and [5, Section 5.8.2], we obtain the following:
LEMMA 2.5 (Elementary Properties of the Capacity).

a) If cap(A) =0 for A € B(X), then u(A) =0 as well.

b) If Ay C Ay C X, then cap(Ay) < cap(4s).

c) If A;, i =1,...,n, is a finite collection of subsets of X, then

13 cap(4y) < eap (U AZ-> |
i=1

i=1

d) If A;, i € N, is a countable collection of subsets of X, then
cap (U Ai> < anp(Ai). (2.2)
i=1 i=1

Proof. Due to Assumption 2.1g), there exists a C' > 0 such that

1
0< =pu(A)Yr < ol inf{||v||Le : v > 1 p-a.e. in a nbhd. of A}

Ql=

< inf{||v|]|y : v > 1 p-a.e. in a nbhd. of A} = cap(A) VA € B(X),

immediately yielding part a). The monotonicity property in b) holds since the set of
functions over which the infimum in the definition of cap(As) is taken is a subset of
the set in the definition of cap(A4;). To obtain c), it sufficies to add up the inequalities
cap(A;) < cap(Uj—, 4;), i = 1, ...,n. It remains to prove d). To this end, let A; C X,
i € N, be a countable collection of sets. We may assume w.l.o.g. that the series on
the right-hand side of (2.2) is finite, otherwise the inequality holds trivially. Consider
now an arbitrary but fixed € > 0. Then we obtain from the alternative representation
of cap(+) in Corollary 2.4 that for every ¢ € N we can find a v; € V with v; > 1 p-a.e.
in a neighborhood of A;, v; > 0 p-a.e. in X, and

9
cap(di) < luillv < cap(Ai) + o
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Since V is Banach, we can define v := Y > v; € V and obtain

oo e} oo
v > 1 p-a.e. in a nbhd. of U A;, cap (U Ai> <|vllv <e—+ anp(Ai).

i=1 i=1 i=1
Letting £ — 0 in the above yields (2.2). This completes the proof. d

Due to its construction, cf. Definition 2.2, the capacity cap(-) has just the right “de-
tection sensitivity” that is needed to properly identify those sets in P(X) that are
negligible in the study of the function space V. Analogously to the classical almost
everywhere sense, we define:

DEFINITION 2.6 ([12, Chapter 3]). If A is a subset of X, then a statement depending
on x € A is said to hold quasi everywhere (g.e.) in A if there exists a set N C X of
zero capacity (a so-called polar set) such that the statement is true for allz € A\ N.

REMARK 2.7. Definition 2.2 implies that for every set N C X with cap(N) = 0 we
can find an N’ € B(X) such that N C N’ and cap(N') = 0. As a consequence, we may
always assume w.l.0.g. that the exceptional set in Definition 2.6 is Borel measurable.

Note that the notion of q.e. is always at least as strict as the almost everywhere sense
of the measure space (X,B(X),u) (cf. Lemma 2.5a) and Remark 2.7). The more
regular the functions in the space V are, the more restrictive the notion of quasi
everywhere becomes. In the following, the (semi-)continuity of functions up to sets of
capacity zero will be of particular importance for our analysis (cf. [12, 16]):

DEFINITION 2.8. A function v: X — R U {£oo} is called quasi (lower/upper semi-)
continuous if there exists a sequence of sets (Gy) C O(X) such that for all k € N

1
Gr4+1 C Gy, cap(Gk) < 5

v: X\ G = RU{zxoo} is (lower/upper semi-)continuous.

The terms “(lower/upper semi-) continuous” are understood in the topological sense,
see [25, Section 7TK] for details on this topic. Further, we assume subsets of topological
spaces to be endowed with the subset topology throughout this paper.

DEFINITION 2.9. A sequence of functions v,: X — R is said to converge quasi
uniformly in X to a function v: X — R if there exist sets (Gi) C O(X) with

n=00 \ ze X\Gx

1
Gir+1 C G, cap(Gg) < o and  lim ( sup |op(z) — v(m)|> =0 VkeN.

As an immediate consequence of Definition 2.2 and the properties of V', we obtain:

LEmMMA 2.10. Let v, € VN C(X) be a || - |[v-Cauchy sequence. Then there exists
a subsequence (vy, ) such that the continuous representatives of (vy,) converge quasi
uniformly in X to a quasi continuous and Borel measurable function u: X — R.

Note that the continuous representative of an element of V' N C(X) is indeed unique,
cf. Assumption 2.1d). Lemma 2.10 is obtained completely analogously to the classical
Egorov theorem (cf. [4, Lemma 2.19] and also [16, Theorem 4.3]). We recall the proof
for the convenience of the reader:



Proof. Since v, € VNC(X) is Cauchy in V, there exists a subsequence (still denoted
by vy,) such that

o
Z2”||vn — Upt1lv < oo.

n=1
The above implies that for every k € N there exists an Ny with

oo

;N 2" vy, — Vpy1 v < %
We assume w.l.o.g. that Ny < Ny for all £ and define

E, ={ze€ X |v,(z) —vp1(z)| > 27"}
Due to the continuity of |v, — vy11], Ep is in O(X) and

cap(En) < (12" v — vnta|llv
< 2" (|| max(0, vy, — vpt1)[[v + || min(0, v, — vay1)llv)

< 2n+1||vn - vn+1||V-

Setting

Gk = [j En S O(X),

n:Nk
we obtain (cf. Lemma 2.5d))
(o) o0 1
cap(Gy) < Z cap(E,) <2 Z 2™ |y, — pya|lv < z
’I’L:]\])c ’I’L:]\/v)c
and for all N, < mq < mgy
mo ma
SUP U, (&) — U,y (2)] < Z sup  |un(x) — vy (x)] < Z g—n T2,
z€X\Gy n=m, z€X\Gy n=m

Accordingly, v,|x\q, € C(X \ G}) is uniformly Cauchy, and we may deduce from the
uniform limit theorem (see [24, Theorem 4.2.10]) that v,, — wy, uniformly in X\ Gy, for
some u € C(X \ Gi). Note that for k; > ko we have N, > Ni, and, consequently,
Gk, € Gg,. Therefore,

g, () = ug, () Vo € X\ Gy,

for all k1 > ko and by putting

~ if v € X f
No— ﬂ G u(z) = ug(x) 1 x € X \ Gy, for some k 7 2.3)
1 0 ifreN

we get a well-defined function u : X — R. This u is obviously quasi continuous and
v, — u quasi uniformly in X, according to its construction. Moreover, u is Borel
measurable as one can easily check using the representation in (2.3). ]
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Using Lemma 2.10, it is straightforward to prove:

COROLLARY 2.11. Ifv, € VNC(X) is a sequence with v, — v in V, then there exists
a subsequence (vy,) and a Borel measurable, quasi continuous function v : X — R
such that the continuous representatives of vy, converge to ¥ quasi uniformly in X
and such that v =170 p-a.e. in X.

Proof. From Lemma 2.10 it follows that there exists a subsequence (v, ) such that the
continuous representatives of v, converge quasi uniformly in X to a quasi continuous,
Borel measurable function ¢ : X — R. In particular, this implies that v,, — o
pointwise g.e. in X. Moreover, we know that q.e. implies p-a.e. (cf. Lemma 2.5a) and
Remark 2.7), and from Assumption 2.1g) we readily obtain (after possibly passing
over to another subsequence) that v,, — v p-a.e. in X. Consequently, v = ¥ u-a.e.,
proving the claim. 0

Since VNC(X) is dense in V' (see Assumption 2.1g)), Corollary 2.11 especially implies
that every v € V possesses a quasi continuous representative 0 : X — R, cf. Lusin’s
theorem in the classical theory. In order to prove that this representative is unique
up to sets of capacity zero, we need:
LEMMA 2.12. Let u: X — R U {£oo} be a quasi upper semi-continuous function
satisfying u > 0 p-a.e. in X. Then u >0 g.e. in X as well.
Proof. We proceed analogously to [8, Lemma 6.49]: Let (Gy) € O(X) be a sequence
of sets such that
1
Grs1 € Gy, cap(Gy) < 7
u: X \ G — RU{£oo} is upper semi-continuous.

Then {z € X \ G : u(z) < 0} € O(X \ Gi) for every k € N and the definition of the
subset topology yields that {z € X \ Gy : u(z) < 0} UGk € O(X). Now let v € V be
an arbitrary function satisfying v > 1 p-a.e. in a neighborhood of G.

We know that p({x € X : u(z) < 0} = 0, v therefore also satisfies v > 1 p-a.e. in
{r € X\ Gy :u(x) <0} UGy € O(X), and we may deduce from Definition 2.2:

cap({z € X : u(z) < 0}) <cap({z € X \ Gk : u(z) < 0} UGg) < cap(Gy) <

el

Letting kK — oo in the above yields the claim. ]

We point out that Lemma 2.12 is also a useful tool in the study of sets that are
defined by pointwise constraints. Details on this topic can be found in Section 6. By
combining the results obtained so far, we arrive at:

THEOREM 2.13. FEvery v € V admits a quasi continuous representative v : X — R
and this quasi continuous representative is unique up to sets of capacity zero.

Proof. The existence of a quasi continuous representative follows immediately from
Corollary 2.11 and the density of V N C(X) in V. It remains to prove uniqueness.
To this end, let 91,72 : X — R be two quasi continuous representatives of v. Then
U1 — U9 is quasi continuous with 7 — 03 = 0 p-a.e. in X, and we may employ Lemma
2.12 to deduce that ¥3 — 2 = 0 holds q.e. in X. This proves the claim. ]
Since quasi continuous representatives are unique up to sets of capacity zero, it makes
sense to talk about the quasi everywhere behavior of a function v € V:

DEFINITION 2.14. A function v € V is said to satisfy a pointwise condition quasi

everywhere in X if the respective condition is satisfied quasi everywhere by all quasi
continuous representatives of v.



The quasi everywhere sense defined above provides the most natural setting for the
study of pointwise (in)equalities involving elements of the space V. Contrary to the
pu-a.e.-sense, it takes the regularity of the underlying function space into account and
thus allows, e.g., for an adequate study of the contact sets of solutions to Signorini-
and obstacle-type variational inequalities in Sobolev spaces (cf. [15, 17, 21, 22]). It
should be noted that the concept of capacity and the notion of quasi everywhere also
give rise to the so-called fine topology and the theory of Choquet integration. For
details on the latter topics, we refer to [1, 2, 16].

3. Capacity Theory and Sobolev Spaces. Having recalled the results from
capacity theory needed for our analysis, we now turn our attention to the main topic
of this paper - the comparison of the different notions of Sobolev capacity found
throughout the literature. Henceforth, we consider the following setting:

AssuMPTION 3.1 (Standing Assumptions and Notation for the Sobolev Setting).
a)d>2and1<p<d.!
b) Q CR? is a bounded (strong) Lipschitz domain (see [11, Definition 4.4]).
c) D C 00 is relatively open and nonempty.
d) Q' CR? is an open set satisfying Q@ C .
e) L% is the d-dimensional Lebesgue measure.
f) H L s the (d — 1)-dimensional Hausdorff measure (scaled as in [11]).
g) WHP(Q) and || - |wr.» are defined as in [5, Definition 5.1.3].
h) Wy (Q) is the closure of C2°(Q) in W'P(Q).
i) WEP() is the closure of {v € C°(Q) : supp(v) N D = @} in WHP(K).
3) WoP(Q) and W5P(Q) are both endowed with the norm || - |-
k) tr: WHP(Q) — W=1/PP(99Q) is the usual trace operator.
1) Wi=1/PP(9Q) is endowed with the norm

||UHW1—1/w(aQ) = weti:}fl(v) [wllw.p (-

Note that Assumption 3.1a) excludes the cases where W1P(Q) embedds into the
function space C(Q). If W1P(Q) < C(Q), then the only set of W1P-capacity zero
is the empty set and the study of Sobolev capacities becomes somewhat academic.
The capacities that we will be concerned with in the remainder of this paper are the
following:

capq(+) :i= cap( . ;Q,Wl’p(Q),Ed) , capap(-) = cap( - Q, Wé’p(Q),Ed) ,
Ca'de(') ‘= cap ( . ;Rda Wl’p(Rd)v‘Cd) 3 CapQ’,O(') ‘= cap ( : ;Wa Wolyp(ﬂ/)a ‘Cd) >

capoq(+) := cap ( - ; 09, Wlfl/p’p(aﬁ),?—[d%) . (3.1)

Regarding the triples (X, V, u) appearing in (3.1), some remarks are in order:

IThe majority of the results proved in the following sections also holds for p = 1. We exclude
this case here to avoid discussing the problems and peculiarities that arise in the context of Hardy’s
inequality and the inverse trace theorem when W1:l-spaces are considered, cf. [10] and [20].
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REMARK 3.2.

a) We always use the Euclidean topology on R and the associated subset topologies
on 09, Q, and . Recall that for a strong, bounded Lipschitz domain €2, the
subset topology on 02 and the topology induced by the atlas of 02 are exactly
the same.

b) Due to the area formula (see, e.g., [11, Theorem 3.8]), the (d — 1)-dimensional
Hausdorff measure coincides with the surface measure S on B(0Q) for any strong
bounded Lipschitz domain €1, i.e.,

d—1 d—1 _
HI-1(4) = /AH /Adsfs(A) VA € B(OQ).

In particular, this implies that H™ (more precisely, the restriction of H™! to
the o-algebra B(0R)) is indeed a measure on B(OQ).

¢) The map WHP(Q') 3 v — max(0,v) € WHP(Q) is well-defined and continuous
for every open set Q' C R and every 1 < p < oo (cf. [5, Section 5.8.1]), and

V(max(0,v)) = lgys0y Vo and || max(0,v)|lwrr < [|Jv]wie

for allv € WYP(QY). Further, the density of C(Q)NWP(Q) in WP(Q) and the
fact that the trace operator tr : WhP(Q) — WI=Y/PP(9Q) admits a continuous
linear right inverse n : W'=1/PP(9Q) — WLP(Q) (cf. [14, Theorem 1.5.1.3.])
yields max(0,v) € W'=V/P2(9Q) for all v € W=V/P2(9Q) and

0 “1/pp = inf ,
H max( 7’0)||W1 1/p,p wEleP(Q):l};/lrw:max(O,v) ||w||W1 P

< i < Y.
- wGWl,Pl(Isllf;:trw:'u H maX(O’ w)HWLp - ||U||W1 e

d) Recall that the norm || - |lyw1-1/0.0(90) in Assumption 3.11) is equivalent to

= ([ pprarrs [ IOt sy i-1)) s

for v e WI=YPP(9Q) (cf. [14, Section 1.3.3]).

Using the observations in Remark 3.2 and other standard results from the theory of
Sobolev spaces, it is easy to check that the triples (X, V,u) in (3.1) all satisfy the
conditions in Assumption 2.1. Accordingly, the theory of Section 2 is applicable, and
we may indeed talk about polar sets and quasi continuous representatives with respect
to capg, capqr,0, Capgrd, capaq, and capop. We point out that all of the latter five
capacities can be encountered in the literature (most commonly raised to the power p,
cf. Remark 2.3). The first one, capq, appears, e.g., in [17]. The second one, capg o,
can be found in [6]. The third and the fifth one, capgra and capq p, are commonly
used in the study of partial differential equations (cf. [5, 11, 16]). Lastly, the capacity
of the trace space W=/PP(9Q), capan, has been considered in [15, Example 6]. We
begin our study of the relationship between the capacities in (3.1) with the following
elementary result:

PROPOSITION 3.3.

capa(Q) < 0o, capoo(2) < oo, capgra(Q) < oo, and capan(9Q) < oo
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Proof. Let ¢ € C°(R?) be a bump function satisfying ¢ = 1 in a neighborhood of Q
and supp ¢ C . Then Definition 2.2 implies

capo(Q) < llelallwir@) = L1(Q)?,
cappq(0Q) < [l¢laallwi-1/vp00),
capra(Q) < [lellwipgay, and  capar o(Q) < [[elallwir)- (3.3)

This proves the claim. ]

Because of Proposition 3.3 and Lemma 2.5, we know that the capacities capq, capg o,
cappa, and capgq define finite outer measures on the closure € and the boundary 9€,
respectively. Note that this is certainly untrue for capg p, since capo p(A4) = oo for
every A € P(Q) with AN D # ) (cf. Definition 2.2). The quantity capg p(A) may
even be infinite when the set A does not intersect D, as the following lemma shows:

LEMMA 3.4. If D is a (d—1)-set in the sense of [10, Definition 4.1], then there exists
a constant C > 0 such that

1 1/p B
</A Wdﬁ”‘) < Ccapap(A) VA e P(Q). (3.4)

Proof. Let v € W5P(€) be an arbitrary but fixed function satisfying v > 1 £L%-a.e. in
a (relative) neighborhood of A. Then Hardy’s inequality [10, Theorem 3.2] implies

L a @) )
/A st (w, Dy F @) = /Q Tst(e, D L@ < Clelynay: (3.5)

Taking the infimum over all v in (3.5) yields (3.4) as claimed. d

Lemma 3.4 and [10, Theorem 3.4] immediately yield that capo p(f2) = co whenever
D is a (d — 1)-set. Moreover, using Fatou’s lemma, we may deduce from (3.4) that
capo,p(Ax) — 00 as k — oo for every compact exhaustion (Ag)ren of Q and every
1 < p < d. This implies that capg p cannot be equivalent to any of the other capacities
in (3.1), i.e., there cannot exist constants Cq,Cs > 0 with, e.g.,

C1 capq(A) < capa p(A) < Cacapa(A) VA € P(Q) (or P(Q)). (3.6)

Instead, the following type of equivalency estimate can be obtained:

PROPOSITION 3.5. For all A € P(§2)

di/»
A) < A<(14+ —F—— A .
capo(A) < capop(A4) < ( + Tist (A7D)) capa(A), (3.7)
where
ist (A, D) := inf — .
dist (A, D) mg%{lyeD|x Yl

Proof. The first inequality in (3.7) is trivial since W, () is a subset of W?(Q) and
since the capacities capq and capop are both defined w.r.t. the subset topology of
the closure €2 (cf. Definition 2.2 and (3.1)). It remains to prove the second estimate.

To this end, let A € P(Q) be arbitrary but fixed. Note that (3.7) is trivially true
10



if dist (A, D) = 0, so we may assume w.l.o.g. that dist (4, D) > 0. For small € > 0
consider

5. :Q —[0,1], 5-(z) := min (max (0, 1+ 25)(% — g> ,1) ,

and let v € WP(Q) be an arbitrary function satisfying v > 1 £%a.e. in a (relative)
neighborhood of A. Then &, is globally Lipschitz and §. = 0 in a neighborhood of D
as well as 6, = 1 in a neighborhood of A. The latter implies that vd, is an element of
WSP(Q) and that vd. > 1 L%a.e. in a neighborhood of A. Further,

1+ 2¢
|06e||wir < (1 +d1/p||V5€HLoo) lv]lwre < (1 +d1/pdist(AD)) |v]lwrr. (3.8)

If we take the infimum over all v in (3.8), then we obtain

1+ 2¢

< Vp s
capo,p(4) < (1 +d dist (A4, D)

) capa(A) Ve > 0.

Passing to the limit € — 0 in the above yields the claim. ]

Note that from (3.3), Lemma 3.4, and Proposition 3.5 it follows that, if D is a (d—1)-
set, then there exist constants C7,Cy > 0 with

dr/p

o (/A Wd£d>l/p < capap(4) < Cy (1 + dist(A,D)> VA € P(Q).
(3.9)

This shows that the qualitative behavior of the W})’p (Q)-capacity is directly related
to that of the distance function A 3 = — dist(x, D) € [0,00). We point out that the
second estimate in (3.9) is not optimal since there exist sets A C Q with dist (A, D) = 0
and capq,p(A) < co. Studying the geometry of sets with the latter two properties is
a very interesting field in itself. We will not go into details regarding this topic here
but only prove the following exemplary result that gives an idea of what a set A has
to look like to obtain such a situation.

THEOREM 3.6. Let Q := (0,1) x (0,1) and D := (0,1) x {0}. Then for the sets
Ay ={(z,y) €Q: 2% <y}, a>0,

the following holds:
a) A, is open and dist(A,, D) =0 for all a > 0.
b) Forl<p<2:

‘H

<oo ifa<

=00 ifa> -

3
|

CapQ’D(Aa) = cap (Aa;av Wé’p(Q)v ‘CQ) { (310)

3
I

c) Forp=2:

capg, p(Aa) = cap (AQ;Q, W})’2(Q),E2) = oo for all a > 0.

11



Proof. Part a) is easy to see. To obtain b), we proceed in several steps: Firstly, we
note that D = [0,1] x {0} obviously is a 1-set and that, according to Lemma 3.4, for
all 1 < p < 2 there exists a constant C' > 0 with

1 1 pyt/e 1 1
Cca A, Pz/ %dﬁzz/ / —dazd :/ —ptl/agqy. (3.11
Po,p(Aa) . TS D) ) pdrdy= oy y. (3.11)

This implies capg p(Aq) = oo for all @ > 1/(p — 1) and proves the second case in
(3.10). It remains to show that capg p(Aa) < oo for0 < a <1/(p—1)and 1 <p < 2.
To this end, for the time being, assume that p — 1 < a < 1/(p — 1) and define

v i Q = R, Ve (2, y) := min (Li) .
:L:Oé

Then v, is in L°°(Q) N W,;2>°(Q) and in the distributional sense

loc

y 1 _ )
(Vva)(z,y) = <_a:ca+1’ xoe) Lae in {(wy) €Q:y <z}

(0,0) L2-ae. in {(z,y) €Q:y > 2%}

From the above, we obtain by straightforward calculation
/ 10,04 |P + |0yva[PAL? = / ——2o7P 4 2207P) g < oo,
Q o P+ 1

i.e., v, € WHP(Q). Further, our construction yields v, > 1 £?-a.e. in A, and trv, =0
H!-a.e. on D, where the latter follows from the continuity of v, on @ \ {0}, the
properties of the trace operator, and a localization argument. Since A, is open, we
directly obtain

v € {v € WHP(Q) : v >1 L2%-a.e. in a nbhd. of A,} # 0.

Accordingly, capg p(Aa) < 0o and the second case in (3.10) is proven for all 1 < p < 2
and (p—1) < a < 1/(p—1). For the remaining «, (3.10) follows from the monotonicity
of capg p (cf. Lemma 2.5b)) and the fact that A,, C A,, for all 0 < a; < ap. This
completes the proof of b).

It remains to show that capg p(Aa) = oo for all @ > 0 in the case p = 2. Note that
the latter is already proven for a@ > 1 (see (3.11)), so we may restrict our analysis
to the case a € (0,1), which we prove by contradiction. Assuming the existence of
an o € (0,1) with capg p(Aa) < 00, we can find at least one function v € wW5A(Q)
satisfying v > 1 £2-a.e. in a neighborhood of A,. Define P := {(z,y) € Q : y < 2%}
and let w := min(1,v)|p. Then P is a Lipschitz domain, and it follows from Re-
mark 3.2¢) and our construction that w € Wh2(P) with trw = 0 on (0,1) x {0}
and trw = 1 on {(z,z%) : z € (0,1)}. A function that is locally a step function,
however, cannot be an element of H'/?(9P) (as one can easily calculate using the
Sobolev—-Slobodeckij norm (3.2)). This contradiction allows us to deduce that the set
{v e Wé’Q(Q) :v > 1 L2%-a.e. in a nbhd. of A,} is empty for all a > 0, which yields
¢) and completes the proof of the theorem. ]

12



Fig. 3.1. a =2 Fig. 3.2. a=1 FIG. 3.3. a=1/2

REMARK 3.7. Theorem 3.6 not only demonstrates that there exist situations with
dist (A,D) = 0 and capo,p(A) < oo, but also shows that the capacities capop are
typically nonequivalent (in the sense of (3.6)) for different values of p.

The singular behavior exhibited by the set function capg p on and near the Dirichlet
boundary part D is the main reason why Wllj’p (Q)-capacities (and, consequently, the
I/VO1 P (Q)-capacity as a special case) are unfit for applications that require an adequate
study of the boundary 0€). Note that in contrast to capq p, the capacities capg,
capg 0, Capgrd, and cappgq are all able to meaningfully measure subsets of 9€2, and, as
we have mentioned in the introduction, all of these capacities have been used at one
point or another in the literature as a substitute for capg,o. In what follows, we will
show that the latter four capacities are, in fact, equivalent on P(92) and give rise to
the same quasi everywhere sense on the boundary 0€2. We begin our investigation by
studying the capacities capq, capg 0, and capga on the closure Q.

4. Equivalence of capg, capg o, and capga on Q. The first step in our
study of the capacities capq, capqr,o, and capga is the following result:
LEMMA 4.1.

capa(A) < capra(A) < capgro(A) VA € P(Q). (4.1)

Proof. Using restriction, extension by zero, and the definitions of the subset topologies
on € and (2, we obtain that for all A C Q:

capn(A)

= inf{[|v||w1r(q) : v € WP(Q),3G € OR?) s.t. AC G and v > 1 L%a.e. in GNQ}
< inf{||v]a|lwrr) : v € WHP(R?),3G € O(R?) s.t. AC G and v > 1L%ace. in G}
< inf{[Jv]|w1pgay v € WP(RY),3G € O(R?) s.t. AC G and v > 1 L%a.e. in G}

= capga(4)

< inf{[Jv|lwrey v € Wol’p(Q’), 3G € ORY) s.t. AC G and v > 1L%ae. in G}

= inf{|[v]wrroy 1 v € Wy P (), 3G € OR?) s.t. AC G and v > 1 L%ae. in GNQ'}
= capq/ 0(A4).

This yields the claim. 0
To prove that the capacities capq, capgra, and capgs o are equivalent on Q, it remains
to show that there exists a constant C' > 0 with

capgy 0(A) < Ccapq(A) VA € P(Q). (4.2)

Unfortunately, the derivation of (4.2) is not as straightforward as that of (4.1): The
proof of Lemma 4.1 is comparatively simple because the restriction v|q of a function
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v satisfying v > 1 a.e. on an R% or (¥-open set always satisfies v|q > 1 a.e. on an
Q-open set (cf. the definition of the subset topology). To prove (4.2), we have to
recover the condition “v > 1 a.e. in an W—neighborhood” from the condition “v > 1
a.e. in an -neighborhood”, i.e., we have to handle the transition from the subset
topology of Q to the topology of the ambient space €', which is nontrivial.

In what follows, we will first prove (4.2) in a prototypical situation and afterwards
use localization and rectification arguments to obtain the equivalency estimate in the
general case.

LEMMA 4.2. Let B(s) denote the open ball in R4~! with radius s centered at the
origin and let

U(s,t) :== B(s) x (=t,t), V(s,t):=B(s) x (0,t), W(s,t):= B(s) x[0,¢).
Then for all r,e > 0 there exists a constant C' = C(r,e) with
capy (sr,3¢),0(4) < C capy (3,30 (4) VA € P(W(r,e)).
Proof. Let r,e > 0 and A C W(r,e) be arbitrary but fixed. Assume that a function
v € WHP(V(3r,3¢)) and an open set G € O(R?) are given such that
ACG and v>1L%ae in GNV(3r,3e). (4.3)

From this v we construct au € Wy (U(3r, 3¢)) with u > 1 in a U (3r, 3¢ )-neighborhood
of A and |ullwie@srse) < Cr,e)l[v|lwievsrae)- To this end, let ¢ € C2°(R?) be
an arbitrary but fixed bump function satisfying

Y=11inU(r,e), ¢ €[0,1]in U(2r,2¢) \ U(r,e), and 1 =0 in R\ U(2r,2¢).
Then v satisfies
Yv € WHP(V(3r,3¢)), v =0 L%a.e. in V(3r,3¢) \ V(2r,2¢),
Ypv=v>1L%ae in GNV(re), ACGNW(re).
We define
() = {(wv)(x) if z € V(3r,3¢)

(Vo) (x1, ooy a1, —xq)  if (X1, xq-1, —24) € V (31, 3¢)

u € WHP(U(3r,3¢)), u=0 L%a.e. in U(3r,3¢)\ U(2r,2e),
[ullwie@rze)) < 200vllwievsrze))
and u > 1 L%a.e. in
H:= (Gﬁ W (r, s)) U {x eRY: (21, .., xq_1, —xq) € GNW(r, 5)} CU(re).
Note that from our construction it follows that A is a subset of H. Further, H is

open. To see the latter, one can argue as follows:

Suppose that there exists an x € H such that there is no é-ball around z that is
contained in H. Then we can find a sequence (x,) C U(r,e) \ H with x,, — «, and
one of the following has to be the case:

14



1. There exists a subsequence of z,, (unrelabeled) contained in W (r, ). In this
case, z € GNW(r,e) and

Tn € W(r,e)\ H=W(r,e)\ (GNW(r,e)) CU(r,e)\ (GNU(re)).

But z € GNU(r,e) and the set GNU(r,¢) is open. This is a contradiction.

2. There exists a subsequence of x,, (unrelabeled) with z,, € B(r) x (—¢,0]. In
this case, the sequence that is obtained by reflecting x,, along the hyperplane
R~ x {0} has the properties in 1., and we again get a contradiction.

AR
G

Fic. 4.1. Construction of the neighborhood H in the proof of Lemma 4.2.
We now arrive at the following situation

u e WyP(U(3r, 3¢)),
lullwre@wsrze)y < 2[0vllwiev (3rse)),
u>1L%ae in HA HCU(3r 3) open, ACH. (4.4)
Using the above and taking the infimum over all v € WP(V (3r, 3¢)) satisfying (4.3)
for some open set GG, we obtain
CapU(3r,3a),O(A)

= inf{||ulwrr : u€ WeP(U(3r,3¢)),u > 1L%a.e. in a U(3r, 3¢)-nbhd. of A}

< inf{2)|v||wre : v € WHP(V(3r,3¢)),v > 1 L%a.e. in a V (3, 3¢)-nbhd. of A}

< C() capy (s,,3) (A)
with a constant C = C(v) = C(r,e). d

To reduce the general case to the special situation studied in Lemma 4.2, we need the
following result on the Lipschitz stability of W'»- and WO1 "P_capacities:

LEMMA 4.3. Let Q1,Qy C RY be bounded strong Lipschitz domains, and let 0y,
be open sets satisfying Q; C QL i =1,2. Assume that ® : Q) — Qf is a bi-Lipschitz
mapping with ®(Qy) = Qa. Then there exist constants c¢,C > 0 depending only on ®
such that

vod e W), [[voBlwin < Clllwiran (45)
for every v € WHP(Qy) and
ccale(qfl(A)) < capg, (A4) < C’capgl(@_l(A)), (4.6)

ccapg, o7 (A)) < capg, o(4) < Ccapg, o(27(4))

15



for all A C Q.

Proof. The W' P-regularity of vo ® and the estimate |[vo ®|w1.eq,) < Cllvllwie(ay)
are standard results that can be found in, e.g., [26, Theorem 2.2.2]. The inequalities
(4.6) and (4.7) follow immediately from (4.5), the definitions of the involved WP-
capacities, and the fact that v — v o ® maps W, "* () into W, (). |

We are now in the position to prove (4.2):

PROPOSITION 4.4. There exists a constant C = C(Q, Q') > 0 such that
capgr,0(A) < Ccapa(A) VA € P(Q).
Proof. Recall that, according to the definition of a strong Lipschitz domain (see [11,
Definition 4.4]), for all ¢ € 99 there exist an orthogonal transformation R, € O(d),
an open ball B, C R4~! with midpoint x, € R, an open interval J, = (aq, b,), and
a Lipschitz map hy : By — J, such that
q € Ry(By xJy) and QN RG(By x Jy) =R;({(z,y) : x € By, hy(z) <y < by}).

Note that, by making the sets J, and B, smaller, in the above situation we can always
obtain that R, (B, x Jg) is a subset of ' and that

{(z,y) : |lv —24l| <4ry, ly —hg(z)] <4eq} € By x Jg

holds for some €4,y > 0. Fix a choice of Ry, By, Jy, hq, rq, and g, for every g € 02
and define for all 0 < s < 4r; and all 0 <t < 4eg:

Uy(s,t) == Re({(x,y) : llz — zq]l <'s, |y = hq(2)| < t}),
Va(s,t) = Ry({(2,9) ||z — zql < 5, hy(2) <y < hy() +}) = Uy(s,) N Q,
Wa(s,1) = Ro({(,y) : o — 24l < 5,hq(x) Sy < hg(w) +t}) = Uy(s,) N

Then {U,(ry,¢,) | ¢ € O} is an open cover of the compact set 99, and we may find
points ¢;, ¢ = 1, ..., n, such that

n
U qu ’ 5117

Now consider an arbitrary but fixed set A C  and define
n
A= ANUy(rg;8q,)s 1=1,..,n, = U (Tgss€q5)-

Then

Ay CW, (rg,eq) Yi=1,..,n, U (rq,€q:), and A= U A;,
i=1 i=0
and we may deduce from Lemma 2.5¢) and the (elementary) estimate
capq(4;) > capy, (37“1171’351171)(Ai) Vi=1,..,n
16



that

\%

capq(A)

1 n
—_ ] ;capQ(A )

1 n
> — <CaPQ(A0) + ) capy, (37’,11.,36(11.)(Ai)> - (4.8)

n+1 P

Note that since

dist(Ag, 0Q) > dist (

HC:

(T, €q:) 89) >0

Proposition 3.5 and the definitions of capn ¢ and capg ¢ imply that there exists a
constant Cy > 0 independent of A with

capar,0(Ao) < capo,o(Ag) < Cpcapo(Ao).

Accordingly, we just have to estimate the contributions of the sets 4;, i =1,...,n, in
(4.8) to obtain the claim. To this end, fix an 4, assume w.l.o.g. that R,, = Id, define
(as in Lemma 4.2)

U(s,t) :== B(s) x (—t,t), V(s,t):=B(s) x (0,t), W(s,t):= B(s) x [0,t),
and let
D, : Uldry,,4e,,) — Uy, (4ry,,42,,), (x,y) = (zg, + 2,y + hy, (g, + ).
Then @, is bi-Lipschitz with
<I>q_i1 : ﬁqi (4ry,,4eq,) = Uldry,,4eq,), (,y) = (—zq, + x,y — hg, ()
and
o (U(3rq;,34,)) = Uy, (314, 3¢4,),

P
CDII«L (V(Srqm 35%)) = ‘N/(h (37nq1' i 35%)7
Do, (W(rgreq,)) =W (rg,eq) 2 Ai

From the above and Lemma 4.3, we obtain that there exists a C = C(ry,,eq,, hq;)
with

CaADY (31, 3e,,) (Pg, (A1) < C caby, (3, e, ) (Ad),
¢apg,, (3rqi,35qi),o(Ai) <C CapU(grqi,35%),0(‘1’{;1(1‘11'))

On the other hand, we know that ®_'(A;) C W (r,,,&,,) and, accordingly, we may
deduce from Lemma 4.2 that there exists a constant C' = C(r,,,&,,) With

CapU(Srqi,35%),0<®(;-1(Ai)) <C Capv(zzrqi,35%)(‘1);1(140)-
Combining the above, we obtain that there exists a C; = C;(ry,, &4, , hq;) With

capq,o (AZ) < Capﬁqi (3rq;,3€4;),0 (Al) <G Capf/qi (8rq;,3eq;) (Al)v
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where the first inequality follows from U, (3r,,,3¢,,) € Q' and from the definitions of
the capacities. We have now proven the existence of positive constants ¢; = ¢;(£2, '),
¢ = 07 Ny G = ]./C,L, with

Co CapQ/70(Ao) < CapQ(Ao) and ¢; CapQ/,()(Ai) < Caqui(Srqusqi)(Ai)’ 1=1,...,n.

The above and the subadditivity of the capacity capq/ ¢ allow us to continue the
estimate in (4.8) as follows

1 n
capo(4) = nil (CaPQ(AO) + ; capy, (3rq,-,3eq,-)(Ai)>

1 n
. , A
i (;czcapn ol z))

min(co, ..., Cn)
n+1

Y

capar o(A).

This proves the claim. 0

Combining Lemma 4.1 and Proposition 4.4, we obtain that the capacities capq,
capg 0, and capga are indeed equivalent on :

THEOREM 4.5. There exists a constant C = C(Q, Q) with

capo(A) < capra(A) < caparo(A) < Ccapo(A) VA € P(Q). (4.9)

REMARK 4.6. The mere existence of a linear and continuous extension operator
E : WY2(Q) — Wy P(Q) is not sufficient for proving (4.9). In order to obtain the
reverse estimate in Proposition 4.4, one has to check that there exists such an operator
E with

v € WHP(Q) and v > 1L%a.e. in G € O(Q)
= Bv e WyP() satisfies Ev > 1L%a.e. in some G' € OV with G C G'.

Note that the extension by reflection employed in the proof of Proposition 4.4 meets
this requirement as we have seen in (4.4).

5. The Capacity capgg on P(9€2). In the following section, we show that,
in addition to being equivalent to each other on Q, the capacities capq, capga, and
capgy o are also equivalent to the capacity capsq of the trace space wi-1/pp (092) on
the boundary 9). We begin our analysis with the following observation:

LEMMA 5.1. For all A € P(09)),

capan(A4) < capq(A). (5.1)
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Proof. From Remark 3.2¢) and the definition of || - [[yy1-1/5.(90), We gather that for
all A C o
capq(A4)
= inf{||v|wrr(q) 1 v € WP(Q),3G € OR?) s.t. AC G and v > 1 L%a.e. in GNQ}
= inf{||v|wrr(q) 1 v € W"P(Q),3G € OR?) s.t. AC G and v = 1 L%a.e. in GNQ}
> inf{|| trv|lyri-1/mpa0) v € WHP(Q),3G € ORY) s.t. ACG

and v = 1L%a.e. in GNQ}
> inf{[|w|ly1- 1m0 @0t w € WTYPP(0Q),3G € ORY) st AC G

and w = 1H% l-ae. in G NN}
> capaq(4).
This proves the claim. 0

To obtain an estimate reverse to (5.1), we use an argumentation similar to the one in
Section 4. Recall that the following holds:

LeEMMA 5.2 ([19, Lemma 5.6]). Let B(s) denote the open ball in R¥~! with radius s
centered at the origin, and let p be a mollifying kernel on R4, i.e.,

0<peC®®), supp(p) C B(L), / pdLi—l — 1,
Rd-1

Let v € WI—1/pP(RI=1 x {0}) = WI=V/PP(RIY) be a function with v =0 LI -a.e.
in R\ B(r), r > 0, and let R > 0 be arbitrary but fived. Then there exists a
constant C' independent of v such that

1 /—l'/
wleoa)i= 7 [ o6 (P )AL, @) € R < (0.
d -1

satisfies

w e C®(R¥ x (0,R)), trw=wv on R x {0},
w=0L%a.e in{(z/,zq) € R x (0,R): ||2'|| > 7+ x4},

lwllwre®a-1x©0,r) < Clvllwi-i/.e@i-1x10})-

By use of the previous Lemma 5.2, we obtain:

LEMMA 5.3. Let B(s) denote the open ball in R4~! with radius s centered at the
origin and let

U(s,t) := B(s) x (=t,t), V(s,t):= B(s)x (0,t), R(s):= B(s)x {0}.
Then for all r,e > 0 there exists a constant C' independent of v such that

CapU(3r,3a),0(A) <C Capav(ST-,sa)(A) for all A C R(r). (5.2)
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Proof. Let r,e > 0 and A C R(r) be arbitrary but fixed, and suppose that a function
v e WI=H/PP(9V(3r,3¢)) and a set G € O(R?) are given such that

ACG and v>1H"ae in GNAV(3r,3e). (5.3)
Let ¢ € C°(R9) be an arbitrary but fixed bump function satisfying
Y=1inU(r,e), ¢ €]0,1]in U(2r,2¢)\ U(r,¢),
Y =0in R\ U(2r,2).
Then the function v, or rather its extension by zero onto R?~! x {0}, satisfies
Yo € WITYPP(RITL % {0}), v =0 H tae. in (R x {0}) \ R(2r),
Ypv=v>1H"lae in GNR(r), ACGNU(re),
and
[vllwi-1/pp@a-1xg0y) < Clvliwr-1/pp0v(3r3e)
with a positive constant C' = C(¢,¢,7). For (2/,14) € R x ((—3¢,3¢) \ {0}), we
define
w(z',zq) = w(xlilg_c‘ﬂ) /Rd_l(wv)(y’)p (y,x_dfl) actH(y"),

|33d

where p denotes a mollifying kernel on R4~! as in Lemma 5.2. The same lemma and
the properties of ¢ then imply that w € W, ?(U(3r, 3¢)) and

lwllwrr@(srse)) < Cllollwi-1/em@v(ar3e)

with a (different) constant C' = C(¢,e,7). We claim that w > 1 holds L£%-a.e. in a
neighborhood of A. To see this, for any 2z’ € B(r) we define

g(z):=sup{s > 0: (' + B(s)) x {0} SGNU(r,e)} € {—o0} U (0,0)
and
H(2') = {(a',za) : [l2" = 2'l| < g(2") — |zal}-
Then H(z') is open for all 2’ € B(r), and for all (¢, z4) € H(z") we have
r r
() o=
|xd| Tq
=y =2 <y =2+ [l2 = 2| < g(z")
= (y,0) e GNU(re).

<1

The above yields
' |z f— _
wletsaa) = 5 [ oo (V) aet ) 2
R [—1

|za |zl

for all (2/,24) € H(z')NU(r,e)\ (R¥! x {0}) and thus w > 1 L%a.e. in the open set

H:=U(r,e)N U H(Z).
z'€B(r)

Note that H contains A C GNU(r,e) N (R?¥! x {0}) according to its definition.
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Fic. 5.1. Construction of the set H(z'")

As a consequence, the function w satisfies

w € Wy P(U(3r,3¢)),
HwHleP(U(‘sr,Be)) < C(¢a5’T)HU||W1*1/P:T’(8V(37”,35))a
w>1L%a.e in H HCU(3r 3) open, AC H.

Taking the infimum over all v with (5.3) now proves the claim. |

To obtain a general result from the prototypical estimate (5.2), we need a stability
theorem similar to Lemma 4.3:

LEMMA 5.4. Let 1,9 C R? be bounded strong Lipschitz domains, and let €y, Y,
be open sets satisfying Q; C Qi = 1,2. Assume that ® : Q) — QY is a bi-Lipschitz
mapping with ®(Q1) = Q. Then there exist constants ¢, C > 0 depending only on ®
such that

vo® e WHPP(90) and v o ®|lwi-1mwear) < Clolwi-imepa, — (54)
for every v € W'=VPP(98y), and such that

¢ capyg, (P71 (A)) < capyg, (A) < C capyg, (P7(A))

for all A C 0Qs.

Proof. Due to the bi-Lipschitz regularity of ®, we know ®(0;) = 9€. Using the
identity tr(u o ®) = tr(u) o ® for all u € WP(Qs) N C(Q2), the density of C(Q2) in
W1LP(€y,), and the inverse trace theorem, we readily obtain v o ® € W'=1/PP(9€)
and

nf [wllwr )

o ®||yi- = i
[0 0 ®llwr-1/0.000,) wewlm(Qll):trw:vO‘t‘

= wewto Dy 10 © lwrr@n) < Cllvlwi-rvoron,) (5:5)

for all v € W'=1/PP(9€s). Note that the norm estimate (5.5) and the definition of
the W'~ 1/PP_capacity immediately imply (5.4). This proves the claim. d
We combine the previous findings to obtain the following main result of the section.

PROPOSITION 5.5. There exists a constant C = C(Q, Q') > 0 such that

capor0(A) < Ccapga(A) VA C Q.
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Proof. Let A C 0% be arbitrary but fixed, and assume that the quantities ¢;, Ry,, By,
etc. as well as Uy, (1q;,€q,)s Vg, (rq,,€q,) €tc. are chosen the same way as in the proof
of Proposition 4.4. We define

A :=AN U(H(TQNEQ'L)7 i=1,...,n.

Then A; C dQNU,, (r,,,¢,,) for all i and due to Lemma 2.5¢)
ca A) > ! A
poq(A) > Ezcapan( i)

Fix an i, assume w.l.o.g. that R,, = Id, and choose a cut-off function 1; € C°(R?)
satisfying
1/)72 =lin qu (TQHE%‘)? 7;/}1 € [07 1} in ﬁth‘ (27.!11‘725%‘) \ [j z‘(rqmgth)’
i =0 in RY\ U, (2r,,,2e4,)-

Using Lemma 4.3, Lemma 5.3, Lemma 5.4, ®_ 1 (A;) C B(rg,) x {0}, and the fact that
the W1—1/PP_spaces can equivalently be endowed with the norm (3.2), we obtain the
following estimates, where “ > 7 denotes greater or equal to up to a positive constant
that depends only on Q and ':

capan(Aq)

= nf{||v|ly1-1/pw(a0) : v > 1H "-a.e. in a nbhd. of A;}

Z inf{|[Yivllwi-1/pp@0) v > 1H% a.e. in a nbhd. of A;}

2 inf{|lvllwi-1/p.090) 1 v > 1H% -a.e. in a nbhd. of A;,

v=0H""ae in IN\U,,(2rq,,2¢4,)}
Z {011/ 07 (31, 32,0 0 = THT -ace. in a nbhd. of A,
v=0H"Tae. in AV(3r,,3,) \ Uy (2rg:, 264,)}

CaPaV (374, ,324;) (Az)
CaPyy ( (3rq;:3eq;) ((qul( ))
CaPY (31, ,3¢4;) 0(‘1’ Ll( i)
CaPF (3ry, 324, ). o(4i),

capﬂ/’O(Al-).

VOV RV VOV

Therefore, there exist constants ¢; = ¢;(Q2, ) > 0 with capaa(A;) > ¢; capar 0(4s),
and, analogously to the proof of Proposition 4.4,

min(cy, ..., ¢p)

1
capaq(A) > - Z capoq (A capas 0(4)

n

proves the claim. 0

Note that, since the capacities capq, capgs o, and capga are equivalent on Q, Lemma
5.1 and Proposition 5.5 yield that the set functions capq, capgs o, caprae, and capgo
are equivalent on the boundary 9€2. This will be stated as a theorem below.
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6. Summary, Conclusions, and Consequences. The results that we have
proved in Sections 3 to 5 can be summarized as follows:

THEOREM 6.1 (Equivalence of the Various Notions of Sobolev Capacity). Let As-
sumption 3.1 be satisfied, and let capq, capq,p, capgrd, caparo, and capaq be defined
as in (3.1). Then there exists a constant C = C(Q,Q) such that

capg < capga < caporo < Ccapg on P(Q)

and
capan < capo < capge < capor,o < Ccapga on P(0N).
Moreover,
dv/r _
capq(4) < capop(4) < (1 + dlst(AD)> capa(4) VA e P(Q), (6.1)
where
dist (A, D) := inf — ).
ist (A4, D)= _inf_ |r—yl
Proof. See Proposition 3.5, Theorem 4.5, Lemma 5.1, and Proposition 5.5. ]

As a direct consequence of Theorem 6.1, we obtain the following generalization of [21,
Lemma A.2] and [16, Corollary 2.39]:

COROLLARY 6.2 (Equivalence of the Various Notions of Quasi Everywhere). Let
Assumption 3.1 be satisfied, and let capq, capo,p, capgra, capar o, and capaq be defined
as in (3.1). Then the following is true for the associated notions of quasi everywhere:

a) If a property holds quasi everywhere in Q w.r.t. one of the capacities capg,
capga/,0, and capgra, then it holds quasi everywhere in Q w.r.t. all of the ca-
pacities capq, capg/,o, and capgd.

b) If a property holds quasi everywhere on 92 w.r.t. one of the capacities capgq,
capgr,0, Capgd, and capaq, then it holds quasi everywhere on 0Q w.r.t. all of
the capacities capq, capgs o, Caprd, and capsq.

c¢) If a property holds quasi everywhere on Q\ D w.r.t. one of the capacities
capq, capg o, capga, and capo.p, then it holds quasi everywhere on Q\ D
w.r.t. all of the capacities capq, capgs o, capgd, and capop.

Proof. Parts a) and b) are trivial consequences of Theorem 6.1. To obtain ¢), it
sufficies to check that every set A C Q\ D with capq(A) = 0 satisfies capq p(4) = 0.
The remaining implications in ¢) follow from part a) of the corollary and (6.1). So
let us consider an arbitrary but fixed set A C Q\ D with capg(A4) = 0. Since D is a
closed set, any element of the complement € \ D has positive distance to D, and we
may write

. 1
A= U {xeA:dist(x,D) > n}
n=1

Proposition 3.5 and the monotonicity of capg imply that

n
23

capo,n <{x € A :dist(z,D) > 1}) < (1 + dl/pn) capq(A4) =0



for all n. The above and the subadditivity of capn p (see Lemma 2.5d)) yield

n

capq,p(A4) < Z capq,p ({x € A :dist(z, D) > 1}) =0.
n=1

This proves the claim. ]

Note that the set £\ D in Corollary 6.2¢) cannot be replaced with ©\ D: If A is a
capgo-polar set which intersects D, then necessarily capo p(A) = oo, and A is clearly
not polar w.r.t. the capacity capg p. For Sobolev functions, we may further conclude:

COROLLARY 6.3. Let Assumption 3.1 be satisfied, let tr : WIP(Q) — W1=1/P2(9Q)
be the trace operator, and let E : W'P(Q) — W'P(R?) be a continuous extension
operator with E(W1P(Q) NC(Q)) C C(RY). Then

v=FEv=trv ge on 0N forallve W' (Q).

Here, with “q.e. on 02”7 we mean the following: For every capq-quasi continuous
representative v:Q—>Rofve W“’(Q), every capaq-quasi continuous representative
(trv) : 0Q — R of the trace trv € W=1/PP(9Q), and every capra-quasi continuous

representative (Ev) : R — R of Ev € WLP(R?), there exists a set N C 0Q such that
capo(N) = capa/,0(N) = capga(N) = capoa(N) = 0
and

o(z) = (tro)(z) = (BEv)(z) Vo € OQ\N.

Proof. Let v, € WHP(Q) N C(Q) be a sequence with v, — v in W1P(Q). Then we
know that
C(00) NWI=YPP(9Q) 5 trv, — trv € WTV/PP(9Q),
CRYH NWHP(RY) 5 Ev, — Ev e WHP(RY).
Corollary 2.11 implies the existence of a subsequence, which we still denote by v,
such that
vn(z) = 0(z) Vo e Q\ Ny,
(tro,)(z) = (tro)(z) Vo € 9Q\Na,
(Bv,)(z) = (Bv)(z) Vo e R\ N,

where 7, (EZ)7 and (Evv) are quasi continuous representatives of v, trv, and Ewv,
respectively, and where N; C Q, Ny C 99, and N3 C R? satisfy

capq(N1) = capga(Na) = capra(N3) = 0.

Defining N = (N7 U No U N3) N 99, the claim now follows from v,, = trv,, = Ev, on
0N for all n, the uniqueness of quasi continuous representatives up to polar sets (cf.
Theorem 2.13), and the equivalencies in Theorem 6.1. a

REMARK 6.4. Corollary 6.3 yields that the restriction of a capg-quasi continuous
representative to the boundary 0S) is always a capaq-quasi continuous representative
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of the trace. This result seems to not have been proven so far in the literature but
accords very well with the intuition, cf. [26, Rem. 4.4.5, Ex. 4.2] for an approach to
the trace operator by extensions of Sobolev functions that are unique w.r.t. HO™ 1.
REMARK 6.5. We emphasize once more that the results in Theorem 6.1, Corollary
6.2, and Corollary 6.3 are easily transformed to conform to the definitions of Sobolev
capacity employed in [5, 8, 11, 16] etc. To do so, one simply has to raise the left- and
the right-hand sides of the capacity estimates to the power p.

We conclude our analysis with an application of Corollary 6.3 that is relevant for the
study of Signorini-type variational inequalities:

COROLLARY 6.6. Consider the situation in Assumption 3.1, let 1 : 9 — R U {£o0}
be a given function, and let

@) {w(x) if v € 00

—oo0  ifxef
then
{v e WwhP(Q) :v > zz capgq -g.e. on ﬁ}
= {v e W'P(Q) : v >4 capag-g.c. on ﬁ}
= {’U e WP (Q):v> zZ Cappd -¢.€. 0N ﬁ}
={veW"P(Q):trv>1 capoq-g.e. on 9Q}. (6.2)
If, additionally, v is capaq-quasi lower semi-continuous on 02, then we also have

{v e WhP(Q) i trv > ¢ capaq -¢.e. on 89}
={veW"P(Q):trv >y H '-a.e. on 00} . (6.3)

Proof. The identities in (6.2) are trivial consequences of Corollary 6.2 and Corollary
6.3. The equality in (6.3) follows from Lemma 2.5a) and Lemma 2.12. |

The above result shows that the approaches to the differential sensitivity analysis of
Signorini-type problems employed in [17, Exemple 2, page 150], [15, Example 6], and
[6, Section 3.2] are exactly the same. The notions of capacity used by the authors
of the latter papers are equivalent and so are the results that they arrive at. Note
that from Corollary 6.6, we further obtain that in case of a capgn-quasi lower semi-
continuous obstacle 1), we may replace the inequality trv > 1 H% l-a.e. on 99 in
(6.3) by either of the inequalities in (6.2) without changing the described subset of
W1P(Q). This shows that, under very weak assumptions on the obstacle 1) and the
domain Q, the H% !-description of the admissible set of a Signorini-type problem,
which is often used in numerics, see [9, 13], is identical to the capacity description,
which is natural in the sensitivity analysis. We point out that it is not possible to
obtain, e.g., the identity

{v eWhP(Q) v > ¥ capq-q.e. on ﬁ}
={ve WLP(Q) : tro >4 HP l-ae. on o0}, 1 capaq -q.l.s.c., (6.4)

directly from the analysis in Section 2 (and in particular not from Lemma 2.12). Since
the function v typically has no lower semi-continuity properties whatsoever, to obtain
(6.4), one necessarily has to take the detour via the boundary capacity capaq.
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