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Kurzfassung

In der vorliegenden Dissertation wird die überdämpfte Dynamik einer Vielzahl

hydrodynamisch wechselwirkender kolloidaler Teilchen untersucht. Diese Teil-

chen werden entweder durch Kugel-Feder Modelle beschrieben oder üben selbst

Antriebskräfte aus, die ihnen eine selbstgesteuerte Bewegung ermöglicht und

werden passiv oder aktiv genannt.

Der erste Teil dieser Arbeit widmet sich dem Nachweis einer turbulenten

Strömung in gescherten Systemen elastischer Hanteln. Als passive Teilchen

führen diese nur Bewegungen aus, sofern sie von einer äußeren Strömung, z. B.

einer Scherströmung angetrieben werden. In Bewegung versetzt erzeugen die

suspendierten Kugeln eine langreichweitige Störung des Strömungsfeldes, das

hydrodynamische Interaktion genannt wird und so die Dynamik aller anderen

Kugeln beeinflusst. Im Falle einer Hantel, bestehend aus zwei Kugeln mit

einer Federkraft verbunden sind, führt dessen Bewegung im Zusammenspiel

aus Scherströmung, Federkräften und hydrodynamischer Wechselwirkung zu

einer Rotationsbewegung, die als Taumeln bezeichnet wird.

In einem Strömungskanal sind zusätzllich zu der Wechselwirkung zwischen

den Kugeln noch Wechselwirkungen mit den Kanalwänden zu berücksichtigen.

Eine systematische Untersuchung der Bewegung in Abhängigkeit der Kanal-

größe und der Elastizität der Hantel zeigt eine homoklinische Bifurkation, an

deren kritischen Punkt ein zweiter Bewegungszustand auftritt, der im Englis-

chen als vacillating breathing bezeichnet wird. Dieser Zustand zeichnet sich

durch eine schräge Orientierung der Hantel gegenüber der Richtung der Scher-

strömung aus, in der sich die hydrodynamische Wechselwirkung zwischen den

beiden Hantelkugeln, die Federkräfte, der Scherfluss und Wandwechselwirkun-

gen ausgleichen.

Ein dimensionsloser Parameter, die Weissenbergzahl, gibt vor, in welchem

Maße die Federkräfte in der Lage sind, äußere Störungen durch die Scherströ-
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mung auszugleichen. Rheologische Untersuchungen, die zeigen sowohl durch

die direkte Bestimmung der effektiven Viskosität, als auch durch die so genan-

nte Kramer-Kirkwood Formel, dass in bestimmten Konfigurationen einer wei-

chen Hantel negative Beiträge zur effectiven Viskosität liefert. Dieses scheinbar

ungewöhnliche Ergebnis lässt sich durch geometrische Überlegungen erklären.

Das Phänomen der Turbulenz ist aus dem Alltag wohlbekannt, das z. B.

in der Atmosphäre aufgrund von Trägheitseffekten hervorgerufen wird. Seit

den vierziger Jahren des letzten Jahrhunderts haben sich verschiedene Anal-

ysewerkzeuge für Strömungen entwickelt, die eine Beschreibung turbulenter

Strukturen mit Hilfe von stochastischen Methoden ermöglicht. Erstaunlicher

ist, dass sich ähnliche turbulente Strömungsmuster selbst im überdämpften

Fall gezeigt haben, wenn der Flüssigkeit weiche Teilchen hinzugefügt werden.

Im Falle vieler gelöster, wechselwirkender Teilchen zeigt sich auch im Rah-

men der hier vorgestellten Ergebnisse chaotisches Verhalten. Es stellt sich

heraus, dass sich die hydrodynamische Wechselwirkung zwischen den Teichen

die notwendige Störung der Scherströmung ist, um eine turbulente Strömung

zu erzeugen. Das Auftreten turbulenten Verhaltens wird hier systematisch in

Abhängigkeit der Teilchenzahl, aber auch der Deformierbarkeit der Hanteln

und deren Länge untersucht.

Der zweite Teil der Arbeit widmet sich der kollektiven Dynamik schwim-

mender Mikroorganismen, wie Bakterien oder Algen, die effektive Mechanis-

men ausgebildelt haben, um sich in einer überdämpften Umgebung fortzube-

wegen. Durch den Antrieb erzeugt ein sogenannter Mikroschwimmer langre-

ichweitige Strömungsfelder, mit denen er, ähnlich wie die Hanteln im ersten

Teil, andere Schwimmer in seiner Umgebung beeinflusst. In der Natur kom-

men solche Schwimmer als sogenannte Pusher und Puller vor, die sich durch

das einfaches Modell eines Kraftdipols beschreiben lassen. Die kollektive Dy-

namik von Pullern und Pushern unterscheiden sich grundlegend voneinander,

als dass Pusher dazu tendieren, Gruppen von mehreren Schwimmern zu bilden,

wohingegen Puller sich gegenseitig abstoßen.

Darüber hinaus haben biologische Schwimmer Sensoren zur Detektion von

äußeren Lichtquellen oder chemischer Gradienten entwickelt, um Nahrung

zu suchen, was entsprechend als Photo- bzw. Chemotaxis bezeichnet wird.

Schwimmer tendieren dazu, sich in Richtung hoher Nahrungskonzentrationen
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oder einer äußeren Lichtquelle zu bewegen, haben jedoch nur einen stochastis-

chen Zugriff auf die eingeschlagene Bewegungsrichtung. Über einen längeren

Zeitraum beobachtet entspricht ihre Bewegung einem biased Random-Walk und

die Bewegung der Mikroschwimmer lässt sich durch einen Diffusions-prozess

beschreiben. Die Verteilung der Positionen einer höheren Anzahl von Schwim-

mern, die nicht durch Wände begrenzt ist, läuft demnach auseinander, was

man als Dispersion bezeichnet.

Diese Arbeit behandelt entsprechend die Dispersion der Wahrscheinlichkeits-

verteilung von Schwimmern, wenn diese hydrodynamisch wechselwirken unter

der Bedingung, dass die eingeschlagenen Bewegungsrichtungen gleichverteilt

sind. Um den Effekt der hydrodynamischer Wechselwirkung zu analysieren,

wird der Diffusions-Koeffizient in Abhängigkeit des Volumenanteils bestimmt,

der innerhalb eines Referrenzvolumens von den Schwimmern eingenommen

wird, das an die Standardabweichung der Verteilung gekoppelt ist. Die Disper-

sion un-terscheidet sich grundlegend im Fall von Pushern und Pullern. So sorgt

beispielsweise die hydrodynamische Wechselwirkung immer für eine Erhöhung

des Diffusions-Koeffizienten der Schwimmerverteilung, jedoch bleibt dieser im

Fall von Pushern konstant, wohingegen er im Falle von Pullern abnimmt. Die

auftretenden Skalengesetze mit Exponenten proportional zu 1
3

tauchen auch

im Falle von ungleich verteilten Bewegungsrichtungen auf, wie sie im Rahmen

der Beschreibung von Photo- oder Chemotaxis vorkommen. Dies scheint ein

universelles Ergebnis für hydrodynamisch wechselwirkende Teilchen zu sein.
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Abstract

In this thesis, the overdamped dynamics of multiple hydrodynamically inter-

acting colloidal particles is investigated. These particles are described either

by bead-spring models or exert their own propulsion, which allows them a

self-controlled movement. The partices are called passive or active.

The first part of this work is devoted to the proof of a turbulent flow in

sheared systems of elastic dumbbells. Being passive particles, they only move

as long as they are driven by an external flow, e. g., a shear flow. In motion, the

suspended beads induce a long-range perturbation field, called hydrodynamic

interaction, influencing the dynamics of all other beads. In the case of a sus-

pended dumbbell, the particle performs a rotational movement called tumbling,

as a result of the interplay of the shear flow, spring force, and hydrodynamic

interaction.

In a flow channel, the interaction with the channel walls has to be considered

in addition to the particle-particle interaction. A systematic investigation of

the motion in dependence of the channel size and the dumbbell elasticity shows

a homoclinic bifurcation, where at the critical point a second state of motion,

called vacillation breathing, occurs. This condition is characterized by a skew

position of the dumbbell against the shear flow in which the hydrodynamic

interaction between the two dumbbell beads is balanced by the spring forces,

shear flow, and interactions with the wall.

A dimensionless parameter, the Weissenberg number, specifies the ability

of the spring forces to equilibrate external stresses generated by the shear

flow. Rheological investigations, determining the effective viscosity, as well as

the spring contribution via the so-called Kramer-Kirkwood formula reveal a

negative contribution to the effective viscosity for soft dumbbells. This result

seems unusual, but can be explained by geometrical considerations.

The phenomenon of turbulence is well-known from everyday life caused by
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inertial effects, e. g., in the atmosphere. Therefore, since the forties of the last

century various analysis tools for flows have been developed, which allow to

describe turbulent structures within a stochastic methodology. More astonish-

ing has been the observation that by adding elastic particles turbulence occurs

in the overdamped regime. Simulations of many suspended, interacting parti-

cles also have shown a chaotic behavior. It turns out that the hydrodynamic

interaction between the dumbbells are required to induce perturbations of the

shear flow and thus to generate a turbulent flow. Here, the occurrence of tur-

bulent characteristics is systematically examined as a function of the number

of particles, but also the deformability of the dumbbells, and their length.

The second part of the work is devoted to the collective dynamics of swim-

ming micro-organisms such as bacteria or algae, which have developed effective

mechanisms to move in the overdamped regime. The propulsion of these micro-

swimmers generates long-ranged flow fields influencing other swimmers in the

surrounding, similar as in the case of dumbbells in the first part. In nature

there exist two types of swimmers, namely pushers and pullers, which can be

described via a the simple model of a force dipole. The collective dynamics of

pullers and pushers are fundamentally different from each other, in so far as

pushers tend to form clusters of several swimmers, wheras pullers repel each

other.

In addition, biological swimmers have developed sensors for the detection of

external light sources or chemical gradients and utilized in the process of forage

referred to as photo- or chemotaxis. Swimmers tend to move in the direction of

high nutrient concentrations or an external light source. However, they have

only access to the direction of motion via a stocahstic reorientation. Over a

longer period of time, their movement corresponds to a biased random-walk

and the movement of the micro-swimmer can be described within a diffusion

process. Therefore, the distribution of the positions of a higher number of

swimmers, which is not bounded by walls denoted as dispersion.

This thesis takes a closer look at the dispersion of this probability distribu-

tion of swimmers when they interact hydrodynamically, under the condition of

a uniform distribution of the chosen directions of motion. The effect of hydro-

dynamic interaction is analysed in terms of the diffusion-coefficient depending

on the volume-fraction, with reference to a spherical volume of a radius equal
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to the standard deviation of the distribution. This reference volume accords to

the volume occupied by the swimmers. The dispersion differs fundamentally

in the case of pushers and pullers. The hydrodynamic interaction ensures an

increase of the diffusion coefficient in both cases, but this coefficient remains

constant in the case of pushers, whereas for pullers it decreases with decreas-

ing volume fraction. The scaling laws with their exponents being proportional

to 1
3

also appear in the case of unequally distributed directions of motion, as

considered for the description of photo- or chemotaxis. The scaling seems to

be a universal result for hydrodynamically interacting particles.
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1. Introduction

1.1. Dynamics in passive and active suspensions

The photography of Dexter Gordon, which was made by the photographer

Herman Leonard in the year 1948 (Cf. Figure 1.1), does not only illustrates

a famous musician, but is also a good example for the esthetics inherent to

turbulent flows, visualized by the small particles inside the cigarette smoke. It

is speculative how the celebrity of this picture was influenced by the illustrated

smoke. A fact is that the investigation of turbulent flows is a fascinating and

classical discipline going back to drawings of flowing water made by Leonardo

da Vinci in the early 16th century, which illustrate the main characteristics of

turbulent flows displaying astonishing details (Cf. Figure 1.2).

General features of turbulence

Turbulence with its vortex structures at different scales is a phenomenon oc-

curring in everyday life. It can occur by thermally driven fluctuations in a

room as on the stage, where the photo was taken in 1948. However, the wide

occurrence in different areas leads to a broad physical interest in this topic.

On large scales this includes meteorological phenomena and weather prediction

[108], where hurricanes represent atmospheric vortices, stable for a couple of

days, or even the clouds consisting of small droplets following the wind repre-

sent a visualization of turbulent structures [51]. But even on microscopic scales

turbulent flows occur in suspensions of bacteria [42, 92, 106, 142, 143, 144, 171]

or polymers caused by elastic instabilities [67, 68, 69, 112], which show some

differences compared to classical turbulence, e. g., the transfer of energy does

not play an essential role. In between these scales the flow around the wing of

an aircraft or rotor blades of a wind turbine [114] as well as many combustion

or mixing processes [50, 77] elevate the problem of turbulence to the area of
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1. Introduction

Figure 1.1.: Photography of Dexter Gordon from the year 1948 [1].

technical applications.

Despite the breadth of phenomena a full understanding, even a precise def-

inition of the term turbulence is still missing. The name turbulence is based

on the Latin verb turbare, meaning "to disturb" or "to entangle". Therefore,

in the common understanding every flow of a liquid or gas which is disturbed

from a laminar stream is called turbulent, if it fulfills some characteristics [14]

as enumerated below:

1. Each turbulent flow requires forces that bring the unperturbed system

out of equilibrium and keep it there. This may be thermal fluctuations

as in Figure 1.1, or gravitational forces of a water jet, as in the image of

da Vinci.

2. The applied energy is dissipated in a cascade via structures of various

length scales before it is converted into thermal energy beyond a critical

length. The most famous representative of such a cascade consists in the

Kolmogorov 5/3 law [97, 98], coupling the energy dissipation to inner

flow wave numbers. Tools to determine both the longest and the smallest

length scales are given by evaluating particular correlation functions of

2



1.1. Dynamics in passive and active suspensions

Figure 1.2.: Drawing of water made by Leonardo da Vinci in the early 16th

century [2].

the flow field [157]. And indeed in Figure 1.1 the vortices arising near

Dexter’s mouth remain small at first, but grow with increasing distance

from the smoke source, before they dissappear. The energy cascade does

not occur along orders of magnitude in polymeric or bacterial suspension,

rather the energy fed into the system is dissipated via flow structures

induced by the motion of the suspended particles at different velocities.

3. Turbulent flow structures are time-dependent perturbations of a laminar

flow. A dynamical description requires nonlinear instabilities in the set

of dynamical equations. A mixing process is inherent to hydrodynamic

instabilities [50, 52, 67, 68, 77, 86, 118, 139, 141, 162, 170].

4. The perturbations induce irregular, unpredictable dynamics of physical

observables. Therefore, it is convenient to proceed using a statistical

description. Within the statistical analysis of the velocity field,e. g., the

phenomenon of intermittency characteristic for turbulent flows is visible

[18, 55, 56, 139]. Turbulent flows at different monitoring parameters

appear similar along several legnth scales per se, what is called self-

similarity. In polymer or bacterial suspensions the significant parameter

is the concentration of suspended particles [149]. Self-similarity is not

given for all ranges of the considered parameter, what is referred to as a

break of the self-similarity or intermittence.

Turbulence consists of the interaction between stochastic flow perturbations

3



1. Introduction

and smoothing mechanisms driven by the viscosity. Parts of the theoretical

work focus on understanding the occurrence of turbulence with the increase of

perturbations [81, 102, 108, 118, 155]. The common view is that instabilities

stemming from the presence of the convective term u ·∇u of the Navier-Stokes

equation are promoted within an increase of the so called Reynolds number

(Cf. Chapter 4), measuring the strength of inertial against viscous effects. The

onset of fully developed turbulence can be classified via numerous bifurcation

points, where the flow changes the dynamical behavior [81, 102, 108, 118, 155].

Turbulence in pipe-flows and drag reduction

In experiments homogeneous, isotropic turbulence is often generated in wind

channels [17], where the characteristics without wall interactions can be an-

alyzed. However, the subject of wall interaction changing turbulent flows in

essential ways should not be omitted in the treatment of turbulent flows. So

the stability and characteristics of turbulent flows in shear-flows [105] and pipe-

flows [16, 46, 79, 139] have been investigated, where it has been shown that

additional back flows from walls in curved geometries amplify the instabilities

[83].

The interest of dealing with turbulent flows in pipes may be motivated,

for instance, medically or technologically, where every flow through a blood

vessel or a pipeline is a transport process whose efficiency is inhibited by each

occurrence of turbulences. The question for ways of stabilizing pipe flows by

reducing the drag with additives [70, 115] plays an important role in research,

which is reviewed in [167]. However, with the addition of deformable objects

like polymers or vesicles the dynamics inside the channel becomes increasingly

complex, so that an amplification of turbulent characteristics may occur [140]

in the sense that turbulent structures arise at comparatively small Reynolds

numbers.

With the addition of suspended particles a complex fluid arises, in which a

variety of phenomena like crystallization or shear thinning occur, as reviewed

in [26, 103]. The flow properties are characterized, among others, by the shear

viscosity. Already in suspensions of beads the viscosity increases linearly with

the concentration of suspended particles [47, 48]. Nonlinear effects like the
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1.1. Dynamics in passive and active suspensions

particle-particle interaction leads to a quadratic increase in the semi-dilute

regime [27, 35, 28]. Simulations of bead suspensions in confined channels have

shown that this law is universal, but the linear as well as quadratic pre-factor

depend on the wall interaction [37]. Strongly deformable particles such as

polymers or vesicles stimulate even a much bigger number of dynamic de-

grees of freedom, changing the macroscopic flow properties in essential ways

especially, when the particle relaxation is not able to equilibrate the outer

stresses as a result of an outer shear flow, measured in terms of the Weis-

senberg number [166] (Cf. Chapter 5). Within the description of shear thin-

ning phenomena it has been shown that elastic particles execute dynamics

called tumbling [25, 31, 62, 89, 111, 99, 132, 136, 146, 148, 159], where the

wall interaction leads to a second state called vacillating breathing. This state

occurs in dynamical simulations of a sheared elastic dumbbell, where the parti-

cle aligns along the streamlines with brief oscillations around this equilibrium

state [123]. An overview, especially on the dynamics of vesicles, is given in the

reviews [163, 174], where a phase diagram of the vesicle dynamics is presented.

Elastic turbulence in suspensions of deformable solutes

While tumbling or vacillating breathing are states of the single-particle dy-

namics, they represent the basis for even more complex dynamics in multi-

particle dynamics including particle-particle interactions. In suspensions at

low Reynolds numbers therefore the phenomenon of mixing [67] occurs and

is associated with elastic instabilities [68, 69, 112]. Initially it was assumed

that the onset of elastic turbulence requires curved streamlines in addition, but

[120] has shown that the elastic instability also occurs in plane shear flows, so

that back-flows in curved geometries can be identified as merely a turbulence

amplifier.

The theoretical modeling of macroscopic flows in suspensions of deformable

particles is often based on constitutive dynamical equations like the Navier-

Stokes equations [103] (Cf. Chapter 4). In the range of small Weissenberg

numbers with implied small particle deformations and in systems with a small

particle concentration and thus weak nonlinear hydrodynamic particle-particle

interaction these models are quite common. Especially the long-ranged hydro-

dynamic interaction yields intricate dynamics inside the suspension, where

5



1. Introduction

effects of walls may even increase the complexity. To identify the hierarchy

of stimulated degrees of freedom it is common to simulate polymers as bead-

spring chains [5, 28, 38, 54, 164, 168]. So the appropriate simulation method

enables the observation of individual dumbbells in the flow field created by all

other solute particles to estimate effects of hydrodynamic interaction. Com-

mon simulation methods are Brownian dynamics methods [88, 100, 129] based

on a numerical treatment of Langevin equations, where hydrodynamic interac-

tion is taken into account via the Oseen-, Rotne-Prager-tensor, or Stokeslets,

multi-particle collision dynamics [29, 99, 109], Lattice-Boltzmann methods [95],

and the Fluid-Particle-Dynamics methods [90, 123, 156], which is described in

Chapter 4. The advantage of the latter two simulation methods consists in

a description, which includes directly the hydrodynamic interaction. Defor-

mations of a dumbbell in a stochastic but smooth field were investigated in

[10, 30]. Whereas stochastic fields are related to mixing processes, the dumb-

bell characteristics like extension, asymmetry, and elasticity can be used in

separation processes [19, 20, 145].

Bacterial turbulence due to active swimmers

A second effect, which is coined turbulent due to its similarities, is called

bacterial turbulence [42, 92, 113, 171]. Here, the turbulent structures are

driven by propelling motions of the swimming bacteria, what implies the time-

dependency of instabilities, as a forward moving swimmer moves the generated

interactive flow field. The evoked collective patterns range across several swim-

mer diameters and resemble patterns as they can be found in convective flows

[13, 65, 66, 151]. Also bacterial turbulence can be inhibited by adding additives

[106].

The understanding of collective dynamics in bacterial suspensions starts at

biological effects inside the cell ranging from sensor systems for and concepts

of foraging to the function of the motor protein driving the propelling flexible

rods called flagella or cilia and ranges to observations of swimmer suspensions

with studies on the rheology of the suspension [53, 85, 71, 134, 138, 150, 152],

characterizations of the hydrodynamic flow field via tracer diffusion [86, 113,

162], or direct effects on the swimmers like clustering [34, 58, 142, 173]. In [133]

it has been shown that one swimmer is sufficient to mix its surrounding fluid

6



1.1. Dynamics in passive and active suspensions

due to the curved generated streamlines. Detailed overviews containing the

single-cell dynamics and collective effects are given in the reviews [49, 87, 104].

One might think that the research on collective dynamics in micro-swimmer

suspension is pure basic research, but the work increasingly advances to the

task of imitating biological swimmers to recreate and use them, e. g., in medical

technology as a reliable means of transport [32, 59].

In any case a bacterium poses a small object moving in a highly viscous

surounding, which damps inertial effects. Therefore, concepts for an effec-

tive propagation in a high Reynolds number regime based on the rebound

have to be replaced by mechanisms using viscous effects like asymmetries in

drag coefficients. Moreover, the occurence of turbulent flow patterns is a sur-

prise in collective cell dynamics. The basis for a hydrodynamic understanding

of swimming processes at low Reynolds numbers was laid by observation by

G. I. Taylor [158] completed by investigations of E. M. Purcell [131] who pre-

sented some concepts like the turning corkscrew and highlighted breaking the

time-reciprocal symmetry of the underlying Stokes equation technically. The

problem of this symmetry consists in no propulsion as long as the backward

motion equals the reciprocal forward motion in one stroke. The symmetry

ranges that far that it does not matter that forward and backward motion are

executed at different velocities. An object consisting of two sub-components

will not propagate autonomously in all cases.

The simplest swimming object moving on its own consists of three elements,

e. g., spheres whose respective distances change with a phase difference of

π [116]. The stroke pattern of the three spheres generates a characteristic

backflow around the swimmer with attractive and repulsive parts, leading to

configurational dependent hydrodynamic attraction or repulsion between two

swimmers [128]. This research is accompanied by a description of the collec-

tive dynamics of two interacting, sinusoidal striking dumbbells. If these objects

apply a phase difference in their beating pattern they show an effective orien-

tation dependent collective propagation althoug one single object would not

move to a certain extent [8, 7, 9].

In the biological world two kinds of swimmers occur denoted as pushers

and pullers. A pusher like the bacteria Escherichia coli, illustrated on the

right of Figure 1.3 or Bacillus subtilis consist of a spherical or rodlike body,

7



1. Introduction

Figure 1.3.: Left: Illustration of Chlamydomonas reinhardtii cells with the two

cilia [3]. Right: Illustration of a colony of Escherichia coli bacteria

with a couple of flagella anchored at the cell surface [4].

which is pushed through the surrounding liquid by a bundle of counterclockwise

rotating long thin rods called flagella [24]. The geometrical shape of the surface

is numerically calculated in [84], where this model is taken to investigate the

collective dynamics of two swimmers. The propagation and hydrodynamic

interaction of two spheres with a rotating helical rod have been analysed by

simulation considering sophisticated geometric reproduction of the complete

surface of the swimmer [84] containing important states on the configurational

dependencies of the hydrodynamic interaction.

A puller like the alga Chlamydomonas reinhardtii, illustrated on the feft of

Figure 1.3 pulls itself with two flagella fulfilling a motion, similar to a human

breaststroke. The executed forces during one stroke are analysed in [21]. Also

multicellular algae like Volvox executes strokes with flagella similar to the

puller type [43]. A third groundlaying swimmer type is the so called squirmer.

This swimmer consists of a body covered by rods called cilia. These execute

periodic motions synchronized in waves, propagating over the body and propell

the swimmer forward with prescribed tangential surface velocity [64]. Precised

numerical investigations of the collective dynamics in a two-body system are

presented in [64, 107]. Also squirmer suspensions have been treated, where

hydrodynamic attraction leads to spontaneous aggregation [6, 85, 86].

In questions including the hydrodynamic particle-particle interaction in sus-

8



1.1. Dynamics in passive and active suspensions

pensions of swimmers as well as wall effects it is common to average the pro-

pelling forces, forming a force-dipole. One force acts at a certain point in front

or behind the spherical swimmer body. The second force is the friction, acting

on the cell-body equilibrating the first force in opposite direction. Only the

directions of these two forces pointing towards or away from each other decide

on the described swimmer type. For pushers [45] as well as for pullers [44] the

modeled flow field depicts the experimentally determined flow field arround an

E. coli bacterium and a C. reinhardtii alga. This seemingly little difference in

sign decides whether a suspension of swimmers tends to build clusters spon-

taneously [34, 173] in confined systems or not. The cell body can be modified

by replacing the sphere by dumbbells [76] or even more complex shapes taking

into account possible deformations of the cell body [101].

Orientational stochasticity: Diffusion by tumbling

The self-propulsion together with the induced flow-fields are only one aspect in

the full dynamics of micro-swimmers. It has been shown that synchronization

and desynchronization processes within the flagella beating patterns lead to

re-orientations of E. coli dynamics [36] as well as C. reinhardtii cells [127]

inducing run-and-tumble dynamics of each individual swimmer. Two facts are

important in the following:

1. The change of the direction of motion claims only short times compared

to the runs.

2. The resulting direction of motion is not predistined, but a stochastic

quantity within a certain angle range.

Therefore, observed swimmer trajectories resemble random-walks [61] so that

the description of the dynamics requires stochastic (diffusive) tools [12, 22]. Re-

orientations are the result of inner-cellular decisions to be taken by the cell for

successful foraging. Biological micro-organisms exhibit sensor systems to track

gradients in chemical concentrations of nutrients, light intensity, or a magnetic

field. The executed movement patterns are therefore summed up to terms

chemotaxis [23, 147, 96], phototaxis [169], and magnetotaxis [39]. The decision

on taking a new direction actually runs in the same way. After a run the cell

detects the increase or decrease of, e. g., the intensity of light. An increase

9



1. Introduction

means a good region for the intake of food and the traveling direction remains

more or less. A decrease of intensity means traveling towards regions poor in

nutrients, which can be harmful for the cell. Then the direction of motion

may be strongly varied. Hence, the swimmer dynamics underlies a stochastic

process with biased directions. By turning on a light source, the orientation of

a micro-swimmer can be controlled. This can be used to stabilize the actually

unstable dynamics of Chlamydomonas suspensions in outer streams called self-

focusing [60, 110, 91] or set to outer forces [117].

1.2. Structure of this work

In this work the complex dynamics in suspensions of passive particles driven

by an outer shear flow and active, self-propelled particles are investigated.

Therefore, this work is organized in two parts, where both parts have in com-

mon a particle-based description of the underlying solutes, while they differ

in the chosen simulation methods. The first part treats turbulent structures

occurring due to particle-induced perturbations. These structures are investi-

gated by means of the Fluid-Particle-Dynamics method (FPD) [90, 123, 156],

where the complex hydrodynamic particle-particle interaction and wall-effects

are naturally taken into account.

Before getting into the subject on rotating dumbbells, an overview of local

bifurcations is given in Chapter 2. In Chapter 3 the Lorenz system is intro-

duced. This three-component nonlinear system was stated by E. N. Lorenz

in 1963 to model meteorological systems [108]. Within some steps it can be

derived from the Navier-Stokes equation and thus shows the way into chaotic,

turbulent dynamics increasing the perturbations in terms of one of the three

system parameters. This way via period doubling is traced. Due to its detailed

knowledge, the Lorenz system can be handled as a reference for the introduc-

tion of Lyapunov exponents, which characterize the stability along trajectories.

The algorithm yielding the whole spectrum of Lyapunov exponents is presented

and applied to the Lorenz system in this chapter.

In Chapter 4 the idea of the simulation method is explained. The structure

of the MAC-grid (Marker-And-Cell) is discussed as well as the consideration of

boundary conditions. Moreover, the method is improved within a comparison
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of the simulated dynamics of a rotating sphere, where the analytical expression

of the surrounding flow field is known. The effect of hydrodynamic particle-

particle interaction is analyzed for a collision between two beads.

The FENE-dumbbell (Finitely Extensible Nonlinear Elastic) is introduced as

two connected beads in Chapter 5. First the tumbling dynamics of this object

is discussed under the increasing impact of backflows from the walls, causing

a separation between the two dynamic states tumbling and vacillating breath-

ing. A study that takes into account the dumbbell extension compared to the

channel size and elastic effects is carried out with the aim to draw a bifurca-

tion diagram. Furthermore, the structure of backflows is presented containing

information about the stability along the dumbbell trajectory. Moreover, the

rheological behavior of the rotating dumbbell in dependency of the elasticity is

investigated by calculating the orientation-dependent shear viscosity and com-

paring it with the contribution of potential forces calculated by the commonly

applied Kramers-Kirkwood formula [26, 40].

In Chapter 6 the concentration of suspended particles is systematically in-

creased by enhancing the number of dumbbells to concentrations around 12

per cent. Thereby, the impact of synchronization and desynchronization will

be pointed out in the power spectrum until a chaotic spectrum occurs, where

a broad band of frequencies is stimulated and the dumbbell dynamics occurs

in an unpredictable manner. The stability analysis is provided by means of

the Lyapunov spectrum and the hydrodynamically induced diffusion of tracer

particles indicating the turbulent mixing process. These investigations are

provided for bead and dumbbell suspensions to point out the influence of the

particle deformability and extension. The chapter is closed with the study of

rheological behaviors in dependence of the same parameter and a short view

on the statistical behavior of the flow field within the increase of concentration

is presented.

The second part of this work addresses the dispersion of a distribution of

micro-swimmers called cloud via particle based simulations. The dispersion is

influenced by two effects

1. The hydrodynamic interaction between the swimmers with its attractive

and repulsive parts.

11
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2. The stochasticity of the reorientations a swimmer undergoes within forag.

In which way these two effects are modeled is described in Chapter 7.

Finally, in Chapter 8 the dispersion of a cloud is analysed by means of a

diffusion process. In this chapter the reference case of free dispersion, i. e.,

only reorientations of the swimmers are considered without hydrodynamic in-

teraction. Furthermore, the influence of pushers and pullers on the dispersion

is investigated. The chapter closes with the description of the dispersion of

interacting particles, which execute a biased random-walk.
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2. Local Bifurcations

Dynamical systems are determined by the trajectories of an observable (x, ẋ) in

the phase-space. The system behavior is determined primarily by the so-called

control parameter µ. If a system is described by a set of nonlinear equations

of motion

ẋ = f(x, µ) (2.1)

it usually happens that variations in the control parameter lead to completely

new dynamical patterns. Transformations of the dynamic behavior as a func-

tion of the control parameter are called bifurcation and the parameter value

µc at which the transition takes place is called critical point. The task of the

bifurcation analysis is to determine these values µc and to construct the phase

space for µ > µc.

For systems that depend on one control parameter µ there are four types of

a local bifurcation. It is spoken of such kind of a bifurcation if the behavior of

the system beyond the critical point arises entirely from an analysis of phase

trajectories in the immediate surrounding of the fixed points or orbits. In

addition to local bifurcations, there are global bifurcations that result from

qualitative changes at the critical point µc, which can not be determined from

the local information around steady states.

In this chapter the pitchfork- and the Hopf-bifurcation are presented with

their characteristics after a short classification of occuring attractors. While

for systems depending on one parameter µ a systematization of transitions

between several attractor types at a certain crtical point µc is possible, this

task may be complicated for higher dimensional systems depending on a couple

of parameter, such as in the present work. An overview of all bifurcations can

be found in [14].
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2. Local Bifurcations

2.1. Classification of attractors

Each dynamic system is based on a system of partial differential equations

in the form represented in Eq. (2.1). In the simplest case, the mapping rule

f(x, µ) is linear and the dynamical system is solvable. In the nonlinear case,

the unique solvability of Eq. (2.1) is often only possible for a couple of special

cases. Nevertheless, there is a considerable physical interest to estimate the

dynamical behavior of a system especially in the nonlinear case. To determine

the long-term dynamics, there are recipes that are briefly introduced at this

point.

The first physical interest consists in the determination of the equilibrium

states xs, which are the stationary solutions ẋs = 0 in which the evolution of

the system does not change. For a characterisation of the stationary state the

surrounding environment of the equilibrium state is crucial, where one differ-

entiates between asymptotically stable or unstable equilibria, if all trajectories

in the immediate surounding are attracted or repelled from the steady state

xs.

The assymptotic behavior of a trajectory in the surrounding of a stationary

solution is characterized by the eigenvalues λi of the mapping rule f (x, µ)xs
.

The asymptotic behavior is reproduced here for two-dimensional systems ẋ =

Lx with the two eigenvalues λ1 and λ2. With the eigenbasis {y1,y2} the

system can be transformed to

˙̃x = (x̃1, x̃2) = L̃x̃, (2.2)

with the diagonalized matrix L̃. The solution of Eq. (2.2) for λ1 6= λ2 yields

finally:

x̃2 = Cx̃
λ2/λ1

1 . (2.3)

Considering the case of non-degenerate eigenvalues λ1 6= λ2 is quite suficient.

Four dynamical states can occur, which are illustrated in Figure 2.1:

a) signλ1 = signλ2:

If the two eigenvalues have the same sign, the solution Eq. (2.3) describes

parabolic curves of order λ2/λ1, which all have one common tangent at

the origin. This situation is called node. A stable node is given if the

two eigenvalues λi are negative, otherwise the node is unstable.
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2.1. Classification of attractors

b) signλ1 6= sign λ2:

If the signs differ, the dynamics is unstable in one direction. The trajec-

tories then describe hyperboles and the stationary solution xS is called

saddle node.

The cases a) and b) assume purely real eigenvalues. The two values may be

conjugated complex λ1,2 = α± iω with the real and imaginary parts α and ω.

This is, when oscillatory solutions in the form of

x̃1,2 = C1,2 exp{(α± iω)t} (2.4)

occur. Again two different situations are known:

c) α 6= 0:

In this case Eq. (2.4) can be transposed to polar coordinates with a radius

r = r0 exp{αt} and phase φ = ωt+φ0. The trajectories form spirals that

rotate into the stable equilibrium state xs called stable focus if α < 0

is negative. Otherwise the focus is unstable and the trajectories diverge

from xs.

d) α = 0:

The case of a vanishing real part α = 0 is a special case, where Eq. (2.4)

describes elliptic trajectories, whose center point is xs.

At least the first three examples illustrate situations where changes in the

long-term behavior of a system do not occur. Thus, the above list enumerates

possible motions that result in a fixed point. In linear systems, all long-term

solutions are considered by this list. The special feature of nonlinear systems,

however, is that the long-term dynamics does not contract to a fixed point,

but remains time-dependent. In that case, there is by definition no stationary

solution ẋs = 0, so that the stability analysis of a time-dependent long-term so-

lution requires an extension of the term asymptotic stability to time-dependent

trajectories.

It is purely intuitive to say that a reference trajectory passing through the

point xr(t0) is stable, if all trajectories starting in the vicinity of x(t) ≈ xr(t0)

stay close to xr(t) for all following times t > t0. Asymptotical stability is given,

if x(t) converges to xr(t) [14]:

lim
t→∞
|x(t)− xr(t)| = 0. (2.5)
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d)

xS

x2

x1

a)

xS

x2

x1

x̃1

x̃2

y1

y2

b)

xS

x2

x1

x̃1

x̃2

y1

y2

c)

xS

x2

x1

Figure 2.1.: The four different steady states. In a) all trajectories converge to a

stable node with λ1/λ2 = 2. b) illustrates a saddle node with stable

dynamics in y1-direction, but unstable dynamics in y2 direction.

In c) all trajectories converge in spirals towards the stable focus

xs, where d) presents the concentrical dynamics around the center

xs.

18



2.1. Classification of attractors

This condition provides a hard criterion for the stability analysis, which is in

general only applicable for small perturbations of the equilibrium state. Much

more common is the use of an attenuated stability definition called Lyapunov

stability, which assumes that neighboring trajectories remain adjacent for all

times t > t0. Expressed mathematically this means that for an arbitrary

deviation ε > 0 there exists a δ(ε) > 0 so that the initial condition |x(t0) −
xr(t0)| < δ(ε) yields

|x(t)− xr(t)| < ε (2.6)

for all t > t0 [14]. This definition may seem unwieldy, but, it allows to make

statements about the stability behavior under significantly more pronounced

disturbances resulting in an analysis tool that is based on the exponential

growth of ε with time t:

ε ∝ exp{σt}, (2.7)

where σ denotes the so-called Lyapunov exponent. The sign of σ decides about

the stability of x(t), where

σ ≤ 0 means x is stable

σ < 0 means x is asymtotic stable

σ > 0 means x is unstable.

The method for determining the Lyapunov exponent is presented in Sec-

tion 3.3. A strong tool for the visualisation of the behavior of time-dependent

flows is the Poincaré map. This map depicts the n-dimensional phase-trajector-

ies x(t) on the intersections with a transversal n− 1-dimensional hypersurface

using the idea of a periodic trajectory crossing the hypersurface after one cir-

culation [126], as illustrated in Figure 2.2 for a trajectory obtained numerically

from the Lorenz system [108]. In the illustrated example, a three-dimensional

periodic trajectory breaks through the surface at four intersections P1 to P4

(Cf. Figure 2.2a). The occurrence of only a few points shows that the tra-

jectory is not subjected to large perturbations and is thus stable. A different

picture emerges for an unstable trajectory in Figure 2.2b), where the perturbed

trajectory penetrates the surface in wide bands. Although the Poincaré map

is no suitable quantitive tool, but nevertheless, this method represents a re-

duction of dimension without losing any essential information on the stability,

which is quite important for illustrative purposes.From Figure 2.2b) one can
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a)

x2

x1

P1 P2
P3 P4

b)

x2

x1

x1

x2

Figure 2.2.: Illustration of a Poincaré map of the trajectory of the Lorentz at-

tractor with σ = 10, b = 0.5 and r = 28. The red area corresponds

to z = r− 1. Under these special parameters a stable dynamics is

indicated by four cluster points P1 to P4 in a). Unstable dynamics

as in b) for b = 8/3 lead to broad bands of intersections.

make two important observations on the stability:

1. Although the illustrated trajectory depicts an unstable state, the range

of penetration points is limited. Therefore, the term instability should

not be confused with the divergence of trajectories to infinity.

2. The unstable trajectories are periodic trajectories.

The trajectory illustrated in Figure 2.2 indicates a periodic stable state aris-

ing in the long-term behavior, which does not vary its characteristics. This

stable limit cicle is a further type of attractor, which the dynamic of the system

can adopt. In contrast to the previously described fixed points, the occurence

of limit cycles requires a nonlinear equation of motion ẋ = f (x), where at

least one pair of complex conjugate eigenvalues λ1,2 drives the dynamics into

oscillations. Then, also the corresponding eigenvectors y1 = y∗
2 of the subspace

are also complex conjugate. If the oscillation is determined by such a pair, it is

called a one-dimensional orbit or T 1-orbit. Every further pair of complex con-

jugate eigenvalues increases the dimension of the orbit by one. The dimension

n of an orbit allows the categorization of attractors in T n-orbits, as illustrated

in Figure 2.1. Thus, a T 2 orbit with two linearly independent frequencies ω1

and ω2 forms a torus.
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T 0

x2

x1

T 1

x2

x1

T 2

x2

x1

Figure 2.3.: Classification of stationary solutions based on the involved period

T . A T 0-orbit represents a fixed point, whereby T 1 and T 2 denote

an orbit and a torus, respectively. Depending on the number n of

fundamental frequencies this categorization can be continued to

T n.

The stability analysis of the presented attractors arises from purely local

properties around the reference trajectories xr or stationary solution given by

ẋs = 0. There may occur situations in which this local understanding, e. g.,

around the saddle node xs1, which repells the trajectory in a certain direction

in Figure 2.4 is not sufficient for a global understanding of the dynamics. In

Figure 2.4 a half-turn around a rotation axis through the point xs0 drives

the trajectory back into the saddle node. This kind of dynamics is called

structurally unstable because the direction of small perturbations can decide

about the long-term behavior of the dynamics. The illustrated orbit is called

homoclinic orbit. A further type of attractor that does not fit into the category

of T n-orbits is the so-called strange attractor as a quasi-stationary state for

chaotic dynamics. The equations of motion yielding this attractor were derived

as a model for the weather prediction in [108]. This attractor will be introduced

in more detail as the reference system for turbulent characteristics in Chapter 3.

Knowing the different types of attractors one might ask, if a transition from

one attractor to another is possible? The answer is yes. To describe these

transitions, a parameter µ is introduced ocurring in the dynamical equation

via ẋ = f(x, µ). This parameter µ is called system parameter and the system

may esentially change the dynamical behavior in dependence of µ via bifurca-

tions. In the following, the two important bifurcation types for this work are
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x1

x2

xs0 xs1

Figure 2.4.: Homoclinic orbit starting and ending in the saddle node xs1. The

dynamics can not be understood only from local considerations in

the immediate surounding of xs1.

introduced

2.2. The pitchfork-bifurcation

One of the four fundamental bifurcation patterns is the pitchfork-bifuraction.

For its illustration a system is assumed that follows the one-dimensional dy-

namical equation

ẋ = f(x, µ) = µx− x3. (2.8)

The stationary solutions x0 of Eq. (2.8) are given by

0 = µxs − x3
s, (2.9)

where besides the trivial solution xs,0 = 0 regardless of µ, the pair of solutions

xs,1,2 = ±
√
µ (2.10)

is obtained for µ > 0.

All three solutions are illustrated in the bifurcation diagram Figure 2.5. The

solution xs,0 is a solution for all parameters µ, whereas the two solutions xs,1,2

branch off for positve µ > 0.

The question now is how the system behaves if the solutions xs are per-

turbed within a small displacement ε? To analyze the motions in the phase
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2.2. The pitchfork-bifurcation

space, equation Eq. (2.8) is extended to a two dimensional de-coupled sys-

tem of equations ẋ = f (x, µ), which does not affect the characteristics of the

bifurcation:

ẋ = µx− x3

ẏ = −y (2.11)

From f(xs, µ) = 0 the stationary solutions yield

xs,0 = (0, 0) and xs,1,2 = (±√µ, 0) (2.12)

with the coresponding Jacobian matrix

∂f

∂x

∣
∣
∣
∣
xs

=

[

−3x2 + µ 0

0 −1

]

xs

. (2.13)

The eigenvalues of this matrix are given by λ1 = −3xs + µ and λ2. For the

stationary solutions xs,0 = (0, 0) both eigenvalues are negative and one stable

fixed point can be found. Within the change of sign to positive parameters µ

the eigenvalue λ1 becomes positive, whereby the solution xs,0 = (0, 0) loses its

stability in x-direction. The eigenvalues for the solutions xs,1,2 are λ1 = −2µ
and λ2 = −1, which due to µ > 0 remain negative. Thus, at the critical point

µc = 0 two stable branches split up from a once stable solution similar to a

pitchfork. Hence this name was given.

The equation Eq. (2.8) is an illustrative example for a pitchfork bifurcation.

Investigating an unknown system, identifying the bifurcation with the aim of

deriving Eq. (2.8) from the system properties can be difficult if not impos-

sible. Nevertheless, this equation and Figure 2.5 illustrate the properties a

bifurcation point at the origin (x, µ) = (0, 0) have to show, namely:

1. The two graphs x = 0 and x2 = µ intersect in the origin.

2. The fixed point x = 0 exists for all µ, where the curve x2 = µ stays on

one side of µ = 0.

3. The solution x = 0 changes its stability within the passage of µ = 0,

where x2 = µ keeps its stability.

These three conditions are fullfilled within the equation

ẋ = µx+ ax3 +O(x5) (2.14)
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−2 0 2 4

x
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Figure 2.5.: Stationary solutions of the pitchfork bifurcation. The arrows in-

dicate the growth direction of perturbations.

with the real coefficient a determining the stability of the branching fixed

points. In Figure 2.5 the stable solution branches into two stable and one

unstable solution for a positive value a = 1. The opposite case is given for

a < 0.

2.3. The Hopf-bifurcation

The pitchfork-bifurcation exists if the eigenvalues λ1 and λ2 of the Jacobian

matrix (Cf. Eq. (2.13)) remain real. Therefore, a pitchfork-bifurcation is not

able to describe the transition from a stable fixed point to an oscillatory dy-

namics on a stable orbit, as this requires complex eigenvalues. This kind of

transition occurs frequently in nature, but only occurs in the case of complex

conjugate eigenvalues. The transition is illustrated by the dynamical system,

which was stated in [80]

ẋ = −y + x(µ − r2)

ẏ = x+ y(µ− r2) (2.15)

with r2 = x2 + y2. For all values of µ the only stationary solution is given by

x0 = y0 = 0. The Jacobian matrix

∂f

∂x

∣
∣
∣
∣
0

=

[

µ −1
1 µ

]

(2.16)
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µ

x

y

Figure 2.6.: Normal form of a Hopf bifurcation with converging phase trajecto-

ries to the orbit. The blue marks indicate the initial positions. At

µ = µc the dynamics towards a stable fixpoint transiates towards

a stable orbit.

yields the eigenvalues λ1,2 = µ ± i. For µ < 0, the real part Re(λ1,2) < 0 is

negative und the stationary state is denoted as stable focus. At the critical

point µ = 0, the real part changes the sign Re(λ1,2) > 0 and the point attractor

xs = (0, 0) becomes unstable.

Which state the trajectories approach for t → ∞, when they leave the

unstable focus is not cleared so far. To answer this question the dynamical

system Eq. (2.15) is transformed using polar coordinates

x = r cosφ, y = sinφ (2.17)

and after some steps one findes the decoupled equation

ṙ = −r3 + µr

φ̇ = 1. (2.18)

Note that the structure of the equation for r is equivalent to Eq. (2.8). The

stationary solutions are rs,0 = 0 and rs,1 =
√
µ (radii are defined positively).
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Thus, the solution rs,1 leads to closed orbits, whose amplitude grows with
√
µ.

The stability of the orbit can also be estimated directly from the temporal

derivative of r (Cf. Eq. (2.18)):

ṙ > 0, if r <
√
µ inside the orbit

ṙ < 0, if r >
√
µ outside the orbit (2.19)

driving the dynamics towards the stable orbit for µ > 0. The phase space with

the stable fixed point for µ < 0 from where the stable orbit arises is ilustrated

in Figure 2.6, where for the chosen values of µ the trajactories converge in

spirals to the stable configurations, as shown.

Also equation Eq. (2.15) is only illustrative. The normal case is that varia-

tions of the amplitude r and the phase φ depend on µ

ṙ = a1(µ)r + a3(µ)r
3 +O(r5)

φ̇ = b1(µ) = ω(µ) + br2 +O(r4). (2.20)

Again the real prefactors a1, a3, and b decide on the stability of the branching

fix point and orbit. In general a Hopf-bifurcation can be defined as a transition

between a focus and an orbit, where the amplitude of the appearing orbit grows

continuously with µ.
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First investigations on the onset of turbulent flows have been done in the

fourties of the last century [81, 102], where the postulate was put forward that

a laminar flow u(x) splits into a chaotic behavior via an infinite sequence of

instabilities under the influence of time-dependent perturbations ũ(t). The

strength of these perturbations is related to the Reynolds number Re, defined

as the ratio of viscous to inertial effects. This number represents the key system

parameter in the description of inertial turbulence. The underlying question

is, when a perturbed flow may be called turbulent and which tools are required

to describe their behavior in a satisfying manner.

By the transition from a T n- to a T n+1-orbit, one additional degree of free-

dom is excited at each bifurcation point one additional degree of freedom is

excited, i. e., in the description of turbulent, chaotic dynamics an enormous

number of dynamical degrees of freedom should be considered. Ultimately,

the introduction of a three-dimensional nonlinear system in the sixties [108]

has refuted this requirement by showing the existence of irregular dynamics

in a low dimensional system in certain ranges of system parameters. In works

from the seventies [118, 155] the Feigenbaum route to chaos has been estab-

lished as one of the commonly accepted ways to chaos following a cascade of

Hopf-bifurcations inducing period doubling. In this scenario, the assumption

is made that the first transitions from a fixed point along a T 1-orbit to a

torus (T 2-orbit) with two intrinsic frequencies via two bifurcations are generic

transitions, i. e., the new state is stable under small perturbations, and at

each bifurcation point a new mode is excited. The modes are assumed to be

weakly coupled and it has been shown that the dynamics on a T 3-orbit may

disintegrate to the strange attractor via unstable modes.

Besides the influence of emerging modes, their stability has been mentioned

as being an important ingredient on the way to turbulent dynamics. In this
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section, the Lorenz-system [108] with the meaning of its system parameters

on the Feigenbaum route to chaos on the one hand and the loss of stability

on the other is introduced to make the readeer familiar to important analysis

tools characterizing irregular dynamics, which are employed in the course of

this work.

3.1. Dynamical equiations and system parameters

The Lorenz system is defined by the three nonlinear equations of motion for

the three dimensionless modes x,y, and z, combined to the state x = (x, y, z):

ẋ = −σx+ σy, (3.1a)

ẏ = rx− y − xz, (3.1b)

ż = −bz + xz. (3.1c)

Since the Lorenz system has been derived as a model for Rayleigh-Bénard

convection and weather prediction it is one of the prime examples for a dis-

sipative system. Eq. (3.1) are used to describe convective flow patterns and

thus the quantity x originally represented flow velocities, where the other two

variables stand for temperature differences between upstreaming and down-

streaming flows (y) and in vertical direction (z). The pursued trajectories x(t)

strongly depend on the choice of the system parameters σ,r, and b. σ is the

so-called Prandtl number, measures the amplitude of flow cells, and is set to

σ = 10. The nonlinearities enter via the relative Rayleigh number r related

to the strength of perturbations and the quantity b related to the geometry

of the flow [108]. The famous strange attractor (Cf. Figure 3.1 describing

unpredictable dynamics, is obtained with the choice b = 8
3

and r = 28.

3.2. Stability of the Lorenz system

The stability of the Lorenz system is mainly influenced by the relative Rayleigh

number r. Therefore, a short discussion of the stability behavior of the Lorenz

system Eq. (3.1) within an increase of r trajectories is introduced here.

For r < 1, the only stationary state of Eq. (3.1) is given by x0 = (0, 0, 0),
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3.2. Stability of the Lorenz system
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Figure 3.1.: Trajectory on the strange attractor for σ = 10, r = 28 and b = 8
3
.

where a stability analysis yields one stable node, from where two stable nodes

x1,2 = (±
√

b(r − 1),±
√

b(r − 1), r − 1) (3.2)

branch off at the first critical point rc = 1 via a pitchfork bifurcation. The

trivial solution forms a saddle node, which becomes unstable in the (1, 1, 0)

direction and trajectories starting with a little perturbation (±δ,±δ, r − 1) in

the stability range of x1 or x2 move towards the coresponding fixed point. The

characteristic polynomial

P (λ) = λ3 + (σ + b+ 1)λ2 + b(σ + r)λ+ 2σb(r − 1) = 0 (3.3)

shows that all eigenvalues corresponding to x1 and x2 are negative for 1 < r <

r1 ≈ 1.346, where for r > r1 two complex conjugate eigenvalues (Cf. Figure 3.2

occur, and the nodes at x1,2 transform to stable foci.

Whether a trajectory converges to x1 or x2 depends on the initial conditions.

Perturbations in the positive hemisphere remain in the stability range of x1

and vice versa, while negative perturbations move in spirals towards x2. For

comparatively small vaues of r > r1, the spirals curl very fast towards the

corresponding fixed point. Looking carefully at the projections to the x, y-

plane for r = 5 and r = 10, as illustrated in Figure 3.3, one can identify that

the ability of trapping a trajectory diminishes when r is increased. Roughly
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Figure 3.2.: The characteristic polynomial P (λ) for increasing values of r illus-

trates the emerging pair of conjugate-complex eigenvalues when

r > r1 ≈ 1.346.

speaking, this corresponds to the increasing destablising effects around x0.

In the extreme case, when r = r2 = 13.926 a trajectory that starts at the

origin rotates around one of the two points x1 or x2 before returning to the

origin. This is an example for a homoclinic orbit and the coresponding global

bifurcation. Within passing r2 an unstable limit cycle occurs and suddenly a

trajectory, starting in the negative hemisphere, is repelled from x2 until the

stability range of x1 attracts the trajectory. Note that the stability of x1,2

is not affected within this bifurcation (Cf. Figure 3.3: curves for r = 15 and

r = 20). This happens for much larger values of r. The real part of the

conjugate-complex eigenvalues λ1,2 vanishes for r = rc ≈ 24.74 for σ = 10 and

b = 8
3

and become positive when r is enhanced further. The two stable foci x1,2

change to saddle foci with one stable direction and two unstable directions.

The Lorenz attractor, as illustrated in Figure 3.1, appears via a subcritical

Hopf-bifurcation.

This attractor is one example for a chaotic, unpredictable dynamics, de-

scribed by a low dimensional set of equations of motion. The irregularity

arises as follows:

The trajectory starting in the surounding of the origin starts with spirals

around one of the two points x1,2. While the trajectory is repelled from the

respective fixed point, e. g., x1 it approaches simultaneously towards the sta-
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Figure 3.3.: Bifurcation diagram for the Lorenz system Eq. (3.1) with the pro-

jection of the trajectories starting at (±δ,±δ, 0) around the origin

to the x, y-plane for selected values of r.

bility range of the second fixed point x2. At an unpredictable time, the tra-

jectory leaves the influence x1 and changes to loops around x2 initialzing the

same behavior again. The result is an indeed oscillatory, but unpredictable

dynamics around the two fixed points with both, stabilizing and destabilizing

contributions.

3.3. The Lyapunov spectrum

In the last section, the way to a chaotic dynamical behavior within two bi-

furcations, where stable fixed points change their local stability characteristics

along a trajectory. An experiment often reveals a set of trajectories and the

question arises whether their stability behavior can be reconstructed without

an exact knowledge of the dynamic equations.

The answer is yes and there are lots of works concentrating on the question

of determining the stability of time series considering directional differences

in the stability [63, 141, 170, 172]. All concepts have in common that they

31



3. The Lorenz system

determine a spectrum of values, which is called Lyapunov spectrum. By means

of this spectrum one can obtain important information about the stability of

a system and in connection to the ability of mixing. Since this property is

associated with the signs of the occuring values, the attractor type can be

identified. Based on [14] a method for the determination of the spectrum is

presented in the following.

The concept of Lyapunov exponents works with a reference trajectory xr(t),

where the exponent σ measures the sensitivity of the trajectory with respect

to small perturbations ε(0) of the initial conditions.

It may be assumed that the reference trajectory fulfills the dynamical equa-

tions, e. g., Eq. (3.1) or Eq. (4.1), where the information on the executed

dynamics is contained in the tensor F , so that

ẋr = F(xr). (3.4)

This formulation is in principle valid for any dynamical system.

To analyze the stability of xr, a second, neighboring trajectory x̃(t) =

xr(t) + ε(t) is defined, which corresponds to a small perturbation ε(t0). An

expansion for small ε yields

ẋ = ẋr + ε̇ = F(xr) +∇F|xr
ε+O(ε2) (3.5)

By taking into account only the linear terms one can show that a matrix

L(t, t0) exists [15], which contains the information how the perturbation ε at

t0

ε(t) = L(t, t0)ε(t0). (3.6)

The matrix L may be either linear or nonlinear. Especially in nonlinear

systems, it is rare that the eigenvalues λi of this matrix can be determined.

However, the stability criterion can be related to exponential growth-rates in

all dimensions. Then, the Lyapunov exponent σxr
is defined with respect to the

reference trajectory as exponential convergence or divergence of neighboring

trajectories [14]

ε(t) = ε0 exp{σxr
t}. (3.7)

For t→∞, the Lyapunov exponent is given by

σxr
= lim sup

t→∞

1

t
ln
|ε(t)|
|ε(0)| . (3.8)
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3.3. The Lyapunov spectrum

While in one dimension this definition is satisfactory, it has to be refined in

higher dimensional systems. The main problem is that the directional informa-

tion on the evolution of the disturbance gets lost with time. The second point

concerns the occuring "lim sup", which still may be subject to oscillations even

in the long-term behavior.

Additionally, the Lyapunov exponent depends on the choice of the refer-

ence xr itself, but in a stable as well as unstable regime the convergence or

divergence of trajectories does not depend on the chosen ergodic reference tra-

jectory, i. e., after a sufficiently long time, the reference trajectory has sampled

enough points in the phase space for a robust statement on the system stabil-

ity. Especially in unstable systems a trajectory xr covers the entire range of

the allowed phase-space volume {x(µ), ẋ(µ)}, regardless of the initial condi-

tions, where µ denotes the system parameter. Such a loss of initial conditions

is an essential part of an effective mixing process where a small initial volume

of a reference substance is smeared out on the entire volume of a considered

system. In summary, the Lyapunov exponent is of significance throughout the

entire system, so that the initial dependence of the reference trajectory xr is

negligible and hence the index is omitted from hereon.

Flux of an n-dimensional perturbation and Gram-Schmidt method

To obtain information about the Lyapunov spectrum, the initial perturbation

ε(0) of an n-dimensional trajectory is described by an orthonormal basis {ei},
spanning the unity volume V n. Initially, the arbitrarry perturbation ε(0) may

be given by

ε(0) = c1e1 + ...+ cnen (3.9)

with real pre-factors ci. Note that each individual component ciei itself rep-

resents a perturbation x̃ = xr + ciei of the reference trajectory xr, which

propagates independently from the reference trajectory following ˙̃x = F(x̃).
Thus the perturbation ε(t) grows in each direction ei with increasing time t

with the corresponding growth-rate σi

ε(t) = c1e
σ1te1 + c2e

σ2te2 + ... + cne
σnten. (3.10)

Assuming that e1 with c1 6= 1 denotes the direction with the highest Lyapunov

exponent σ1, reflecting the largest perturbation, Eq. (3.10) converges to the
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component e1 for t→∞

ε(t) = c1e
σ1t






e1 +

c2
c1
e(σ2−σ1)te2

︸ ︷︷ ︸

→0

+... +
cn
c1
e(σn−σ1)te2

︸ ︷︷ ︸

→0







. (3.11)

Even when if the pre-factor c1 = 0 initially vanishes, numerical uncertainties

lead to an increase of this component in particular.

To prevent the loss of information about one component, the time-line is de-

parted in a sequence tk, where tk and tk+1 are separated by a small time interval

∆t. Within ∆t the system and thus the perturbation basis {e1(tk), ..., en(tk)}
evolves to a new basis {a1(tk+1), ...,an(tk+1)}, where this basis is no longer nor-

malized or orthogonal. This basis {ai} has to be converted in a new orthonor-

mal basis {ei} at every time step tk. For this purpose, the Gram-Schmidt

method is used, as illustrated in the sketch in Figure 3.4. The first vector e′
1 is

given by e′
1 = a1. The normalized vector is obtained by e1 =

a1

|a1|
. The second

vector e2 is obtained by e′
2 = a2 − a2 · e1 e1 and e2 =

e′
2

|e′
w
|
. For each following

component i this leads to the recursion

e′
i = ai −

i−1∑

j=1

ai · ej ej with ei =
e′
i

|e′
i|
. (3.12)

Determination of the Lyapunov spectrum

While using the Gram-Schmidt method the growth of the unit vector e1 is

directly measured by determining the length of the vector a1j = |a1(tj)|. It

can be shown that the ε(tk) can be calculated by the product of a1j at all

times-steps j ≦ k [15]

|ε(tk)| =
k∏

j=1

a1,j. (3.13)

For the first Lyapunov exponent this means

σ1 = lim
k→∞

1

k∆t
ln

k∑

j=1

a1j . (3.14)

34



3.3. The Lyapunov spectrum
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Figure 3.4.: Left: Reference trajectory xr with a cubic perturbation corre-

sponding to an orthonormal basis {ei(t)}. After a certain ∆t the

{ei(t)} has dispersed to the new basis {ai(t + ∆t)}, where the

Gram-Schmidt method is used to recalculate a perturbation with

the orthonormal basis {ei(t + ∆t)}. Right: The method yields

a piecewise choice of perturbed trajectories, which propagate in

a similar direction like the reference trajectory. By summing the

lengths a1,k determined after time intervals k∆t the Lyapunov ex-

ponent is calculated.

35



3. The Lorenz system

The recursive formula, which can be extracted from Eq. (3.14) is used to obtain

the convergent sequence σ1,k to approximate σ1,k+1:

σ1,k+1 =
k

k + 1
σ1,k +

1

k + 1
ln a1,k+1. (3.15)

This definition is true not only for a1, but for each of the three vectors a1,a2

and a3, where the Lyapunov exponent converges to the same (highest) value

σ1. To determine the total spectrum of n exponents, the Lyapunov exponent

of order p is defined, where p < n. Instead of taking the length a1,k the p-

dimensional volume V p
k of the parallelepiped is introduced, which is spanned

by the vectors a1, ...,ap at t = tk (Cf. Figure 3.4). Then, if a1,k+1 in Eq. (3.15)

is replaced by V p
k+1, the spectrum of exponents of order p is given as

σp
k+1 =

k

k + 1
σp
k +

1

k + 1
lnV p

j+1, (3.16)

where σ1 = σ1 is the Lyapunov exponent of first order and for p = 2 and p = 3

the volume V p is given by

V 2 = |a1 × a2| and V 3 = | det(A)|. (3.17)

A denotes the matrix consisting of the vectors ai. By replacing the basis {ai}
after the time interval ∆t, the trajectories coresponding to the perturbation

are piecewise replaced by trajectories, which propagate in similar directions as

the reference trajectory (Cf. Figure 3.4). By summing the volume V p
k according

to Eq. (3.16), sequences for σp
k are gradually generated, which all converge to

the Lyapunov exponent σk for k →∞.

The aim now is to determine all Lyapunov exponents of first order σ1,2,3.

Looking at the order of 2 the Lyapunov exponent

σ2 = σ(e1) + σ(e2) = σ1 + σ2 (3.18)

is observed, where in principle the second order Lyapunov exponent could be

one of the values σ1+σ2, σ1+σ3, or σ2+σ3. In analogy to the first order value,

the sequence tends to the highest growth rate. Determining the Lyapunov

exponent of second order enables to calculate the second first order exponent

by solving σ2 = σ1 + σ2. For any exponent of higher order n the recursive

rule fto determine the total spectrum yields σn = σn−1 + σn, resulting in the
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3.3. The Lyapunov spectrum

recursive mapping rule

σ1 = σ1

σ2 = σ1 + σ2 ⇒ σ2 = σ2 − σ1,

σn = σ1 + ...+ σn−1 + σn ⇒ σn = σn − σn−1, (3.19)

so that the total spectrum of Lyapunov exponents follows automatically, if one

calculates the Lyapunov exponents to n-th order.

Meaning of the Lyapunov spectrum

Note that the determination of Lyapunov exponents depends on a chosen tra-

jectory and not directly on the equations of motion. One goal of using such a

spectrum is to identify dynamical changes from one attractor to another within

the variation of a system parameter µ, as illustrated in Figure 3.4, when the

parameter r in the Lorenz system Eq. (3.1) is increased. In the illustrated

parameter range from r = 5 to r = 30, the spectrum only changes its qualita-

tive behavior, quantified within the signs of σ1, σ2, and σ3 at the critical point

rc = 24.74 from (−,−,−) to (−, 0,+), shown by the small inlay of Figure 3.5,

which besides the negative sign of the highest value, illustrates that the arising

unstable limit cycles at r2 ≈ 13.96 do not change the stability of the system.

This is no accidential trend, but coupled to the arising new dynamical regime

at a critical point.

The stability of the system is classified within the highest Lyapunov ex-

ponent σ. If this value is negative and the corresponding spectrum reads

(−,−,−), neighboring trajectories converge referred to an asymptotic stable

system converging to a fixed point. It can be shown that at each bifurcation

point at least one exponent becomes 0, e. g., the transition to a stable limit

cycle via a Hopf-bifurcation is connected to a variation of the spectrum from

(−,−,−) to (0,−,−), where the next Hopf-bifurcation to a torus would lead

to (0, 0,−) [170], as illustrated in Figure 3.6. The resulting unstable limit cycle

for r2 < r < rc only induces the change of influence of the still stable fixed

points x1,2, but does not change their stability. Hence, the spectrum does not

change the quantitative behavior at r2.

In case of a positive highest value, the system is unstable. In general, it is

sufficient that one exponent of the spectrum is positive, to change the stability
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Figure 3.5.: The Lyapunov spectrum σ1, σ2, and σ3 in dependence of the system

parameter r. The critical point rc ≈ 24.74, where the dynamics

changes to a chaotic behavior, as characterized by the change of

the spectrum from (−,−,−) to (−, 0,+), where the negative sign

of the highest value can be seen in the inlay.

of the system from stable to unstable. If all the exponents of the spectrum are

positive, two neighboring trajectories will diverge in all directions. Although

this is also an unstable dynamics, however, this is not a property of temporally

unpredictable trajectories on a strange attractor. These are characterized by

stable and unstable parts expressed in a spectrum of the form (+, 0,−) as it

arises for rc > 24.74 passing from the two stable foci with (−,−,−) via a

subcritical Hopf-bifurcation.

The previous considerations on the stability of the Lorenz system have only

(+, 0,−)(−,−,−)

x2

x1

(0,−,−)

x2

x1

(0, 0,−)

x2

x1 x2

x1

Figure 3.6.: Classification of limit cycles with the Lyapunov spectrum.
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served as a reference system to improve the determination method of the Lya-

punov spectrum applied here to sheared dumbbell suspensions in Chapter 6

to prove the ability of mixing by rotating dumbbells. In order to assess the

specific Lyapunov spectrum determined later, the following statement is made

here: If the sum of Lyapunov exponents vanishes, i. e.,
∑

i

σi = 0 (3.20)

the underlying system is called conservative. In this special case, a considered

process runs symmetrically in an inversed direction. A look at Figure 3.5

reveals that the sum
∑

σi < 0 for the Lorenz system is negative indicating a

dissipative system. For flows in the overdamped case, for which a time reversal

symmetry is valid, this sum can disappear.

3.4. The Feigenbaum route to chaos

A second way to display a chaotic characteristics is the so-called Feigenbaum

route to chaos. Based on the Lorenz system this way can be pursued within a

variation of the system parameter b in Eq. (3.1), if the other two parameters

σ = 10 and r = 30 are fixed [11]. This parameter represents the geometric

characteristics of flow cells.

The parameter b is varied between b = 0.3 and b = 8
3
. The low parameter

regime is characterized by a periodic movement, in symmetrical loops around

the first x1 and second fixed point x2. Thus, in Figure 3.10a) the projection

of the trajectory to the R, z plane with R =
√

x2 + y2 shows a periodic limit

cycle, so that it can be Fourier transformed

χ(ω) =

∫ T

0

x(t) exp(±iωt). (3.21)

It is sufficient to transform only the x component without a loss of information

and to determine the power-spectrum P (ω) from χ(ω)

P (ω) = lim
T→∞

1

T
|χ(ω)|2 (3.22)

to extract the involved modes ω.

In contrast to Eq. (3.21), the general case does not consist in the Fourier

transform of a continuous function x(t). Rather, x(t) is given by a discrete
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sequence xn of N = 2α data points tracked at the time steps tn and departed

by the constant time interval ∆t. In its discrete form, Eq. (3.21) is given by

χ(ωk) = χk =

N−1∑

n=0

xn exp(iωktn) =

N−1∑

n=0

xn exp(2πikn/N) (3.23)

with entries at the discrete frequencies ωk

ωk = 2π
k

N∆t
(3.24)

running from k = −N
2
, ..., N

2
. There are lots of implemented algorithms calcu-

lating the discrete Fourier transform, e. g., the fast Fourier transform (FFT)

described in [130]. It is common to all that they yield a symmetric spectrum

χk around k = 0. The discrete power spectrum for k = 0, ..., N
2

results from

averaging the two sides

P (ω0) =
1

N2
|χ0|2,

P (ωk) =
1

N2
(|χk|2 + |χN−k|2),

P (ωN/2) =
1

N2
|χN/2|2 (3.25)

for the zero and positive frequencies ωk. Actually one might think that the

power spectrum results after the simple application of a FFT and some re-

arrangements. This is only partially true, since the finiteness of the data

set causes the spectrum to be smeared out to several adjacent frequencies,

as shown in Figure 3.7. In this figure, the sine function f(n) = sin(n)

is illustrated which analytical Fourier spectrum contains two sharp peaks

δ
(
± 2 pi

N Deltat

)
at the frequencies ω = ±2π/N∆t. It can be seen that a maxi-

mum appears at both frequencies, but the spectrum has also contributions at

very large and small frequencies, which can distort the power spectrum.

This phenomenon is called leakage and can not be avoided. However, it is

possible to filter the leaked frequencies, especially the extreme small and large

ones by applying a window function wn, to the data xn so that instead of xn

the filtered data x̃n = wnxn is Fourier transformed to obtain the windowed

power spectrum P̃ (ωk). Due to its linearity, the Fourier transform of xnwn is

obtained from the product of the individual Fourier transforms χk and Wk

χ̃k = Wk χk. (3.26)
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Figure 3.7.: A sine function is numerically Fourier transformed. The resulting

δ-peaks leak at small and large frequencies.

There is a variety of windows, where a few are listed in [130]. For this work

the Hamming-window, as illustrated in Figure 3.8, is used. The corresponding

function wn is given by

wn = a0 − a1 cos

(
2πn

N − 1

)

(3.27)

with the pre-factors a0 = 0.54 and a1 = 0.46.

The Fourier transform Wk of the window function Wn is shown on the right

side of Figure 3.8. Here, the influence of the windowing on the original Fourier

transform is clarified, where frequencies with large distances from the main

maximum are attenuated.

To calculate the windowed power spectrum P̃ (ωk), a data set of the length

Ng is subdivided into K sub-segments of length N = 2M , which are Fourier

transformed and finally averaged. It has been shown that an overlapping

generation of segments provides the most effective attenuation of secondary

frequencies [130]. The first segment ranges from n = 0 to n = 2M − 1. The

second half of the first segment simultaneously forms the first half of the second

segment ranging from n = M to n = 3M − 1 and so on. In the following, only

the filtered power spectrum is calculated, so that an identification with ˜ is

omitted in the further parts of the work.

The power spectrum obtained for an orbit of the Lorenz system, as illus-

trated in Figure 3.10a), reveals peaks at a ground mode ω0 and its harmonics
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Figure 3.8.: Left: The window function wn. Right: The Fourier transform Wn

of the window function.

ωn = nω0 due to the nonlinearities in Eq. (3.1). The dependence on one fre-

quency holds until b1 ≈ 0.44, where two additional intersections of R appear

in the Poincaré section through the reference plane z = r− 1 (Cf. Figure 3.9).

This point is a classical Hopf-bifurcation at which a new frequency ω emerges

in the power-spectrum Figure 3.10b) and thus in the dynamical behavior. In

the last section, it was mentioned that the transition from a T 1-orbit with

one intrinsic frequency ω0 to a T 2-orbit with two frequencies ω1 and ω2 should

cause a trajectory moving on a torus. This does not happen, rather, a syn-

chronization mechanism between the weakly coupled modes x, y, and z ensures

that the dynamics transiates to a loop with periodicity 2. In a cascade of such

bifurcations, new frequencies enter the dynamics gradually, where the peri-

odicity of the limit cycle doubles at each bifurcation point. Limit cycles of

periodicity 4 arise after b2 ≈ 0.554 (Cf. Figure 3.10d) and even the periodic-

ity 8 cycles arising at b3 ≈ 0.572 are resolvable. The density of bifurcation

points with respect to the parameter b increases and the next critical point at

bc ≈ 0.576 is coupled to the excitation of a continuous band of frequencies ω.

The dynamics changes on the strange attractor and becomes chaotic, as shown

in Figure 3.10d) for b = 2.666. Although the stimulated band is continuous,

the power-spectrum is not uniformly distributed preferring the low frequence

range. This property reaffirms the dissipative characteristics of the Lorenz

system.

Not the entire range between b = 0.576 and b = 2.666 is marked by a chaotic
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Figure 3.9.: Poincaré section of the Lorenz system in dependence of b. The

three black lines indicate the parameters of the measured trajec-

tories and power-spectrum illustrated in Figure 3.10

dynamics, e. g., at b ≈ 0.684 the dynamics stabilizes again and the periodicity

2 orbits re-emerge and within the next cascade of bifurcations a new chaotic

regime emerges at b ≈ 0.76. The phenomenon of the continuous replacement

of a chaotic dynamics by a regular dynamics is called intermittency, meaning

that the self-similar occurence of a system in certain parameter ranges can be

broken in other ranges.
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Figure 3.10.: Trajectories of the Lorenz system projected to the R, z plane,

where R =
√

x2 + y2 for a) b = 0.3, b) b = 0.5, c) b = 0.57, and

d) b = 2.666.
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4. Fluid Particle Dynamics

To get a feeling for the properties of dynamical systems, Chapter 2 and Chap-

ter 3 provided an insight into the theory of bifurcations introducing the Lorenz

system as a reference system for turbulence. The aim of this chapter is to in-

troduce the simulation technique Fluid Particle Dynamics [90, 123, 156].

For the numerical description of elastic multi-particle systems this simula-

tion method is the tool of choice despite the comperatively time consuming

effort. The idea of the method consists in a direct solution of the Navier-

Stokes equation on a special grid called MAC-grid (Marker-and-Cell) [125]

so that the hydrodynamic interaction between suspended particles is directly

included. The boundary-condition on a moving particle, especially, if several

particles are considered, poses a further problem, which is circumvented by

assuming the extended particles being part of the solvent liquid with the only

difference that they are considered as highly viscous areas in the liquid. A two-

component liquid actually is replaced by a quasi-Newtonian fluid. The concept

of the method enables an easy consideration of boundary conditions and thus

it was used for the investigation of the rheology in bead suspensions [37]. In

addition, the method has been used to describe the coil-globule transition in

connection with polymers [93].

In Chapter 5 the method first is applied to the dynamics of a confined dumb-

bell to investigate the transition between vacillating breathing, a configuration,

where the dumbbell rests in a position parallel to the streamlines, and tum-

bling, where the elastic dumbbell rotates. Further, the contribution of elastic

spring forces on the dumbbell rheology is investigated before this method is

used in Chapter 6 to prove turbulent characteristics in overdamped dumbbell

suspensions.
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4. Fluid Particle Dynamics

4.1. Numerical method

The Fluid Particle Dynamics [123, 156] approach (FPD) is used to describe the

dynamics of suspended colloidal particles in the low Reynolds number regime

confined in a box of size Lx × Ly × Lz. Ly = Lz = 60δ are fixed and only

the channel width Lx is varied with Lx ∈ [18δ; 66δ]. Inside this box, a grid

with an equidistant mesh-size of δ = 1 is applied in all three dimensions. The

suspension inside this box consists of a Newtonian liquid described by the

incompressible Navier-Stokes equation

ρ0 [∂tu(x, t) + u(x, t) · ∇u(x, t)] = ∇ · σ(x, t) + f(x, t) (4.1)

0 = ∇ · u(x, t) (4.2)

with the local flow-field u(x, t), and direct internal and external force-field

f(x, t) per volume element, e. g., executed by direct couplings between two

suspended particles. ρ0 denotes the fluid density, which is assumed to be

constant and of the same value for the liquid solvent and suspended particles.

The stress tensor σ is given by

σ(x, t) = −p(x, t)I + η(x)[∇u+∇uT ] (4.3)

with p(x, t) and η(x) representing the local pressure-field and viscosity-profile

respectively.

The main idea of the FPD method is to circumvent the problem of con-

structing moving boundaries between the liquid and colloidal particles. This

is executed by domains of an effective radius a = 3δ placed at position xi.

Within an inner radius of α = 2δ the viscosity η1 is enhanced by a factor of

100η0 to mimic a solid particle around the bead position xi, where a particle

interface of size 2β = δ is assumed. In this transition region the viscosity

decays from η1 to η0 yielding the viscosity-profile η(x) of m suspended beads

Figure 4.1:

η(x) = η0 +
η1 − η0

2

m∑

i

tanh

{
α− |xi − x|

β

}

. (4.4)

This viscosity-profile enters the stress tensor given in Eq. (4.3), where the

resulting equations of motion Eq. (4.1) and Eq. (4.2) are solved numerically

using the projection method on a three dimensional MAC-grid [125].
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4.1. Numerical method

η0

η1

2β α xi

Figure 4.1.: Viscosity-profile around the center xi of one bead.

Note that the full Navier-Stokes equation Eq. (4.1) is solved instead of the

Stokes equation, which neglects all inertial effects. Therefore, although the

described dynamics remains in the small Reynolds number regime, the FPD

method is able to handle flows at small, but finite Reynolds numbers Re < 1.

For the present work the particle Reynolds number is given by the character-

istic radius a = 3δ and the constant gradient γ̇

γ̇ =
2U0

Lx
. (4.5)

of a shear-flow, which is induced by moving the upper wall at x = Lx with the

constant velocity U0 and the lower plate at x = 0 with −U0 in the opposite

direction. The velocity U0 is chosen such that γ̇ = 2 ·0.5/60 ≈ 0.01724 remains

small. The particle Reynolds number

Re =
2ρ0
η0

aγ̇δ ≈ 0.1, (4.6)

so that inertial effects can be safely discarded.

To solve the incompressible Navier-Stokes equation numerically the projec-

tion method as proposed in [125] is used. Eq. (4.1) with the incompressibility

condition Eq. (4.2) is rewritten in a finite-difference scheme on the so called

MAC-grid in three dimensions. Actually, this grid consists of two grids, where

the viscosity ηi,j,k and stress tensor σi,j,k are defined at the center of the cell

(i, j, k), where the fluid velocity u = (u, v, w) is defined at the boundaries of
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4. Fluid Particle Dynamics

(i, j, k)

(i+ 1
2
, j, k)(i− 1

2
, j, k)

(i, j + 1
2
, k)

(i, j + 1
2
, k)

Figure 4.2.: Illustration of the MAC-mesh: Pressure p and viscosity η are de-

fined at the mesh center (red), where the velocity components

(u, v, w) are defined at the edge (green).

the cell in x-direction at i ± 1
2
, y-direction at j ± 1

2
and z-direction at k ± 1

2

(Cf. Figure 4.2). This definition has some practical advantages, e. g., the stress

tensor σi,j,k at the cell (i, j, k) is characterized by the spatial derivatives

∂xui,j,k =
ui+1/2,j,k − ui−1/2,j,k

δ
(4.7)

with an equivalent expression in the y- and z-directions, which are defined at

the cell center.

The grid width δ is chosen to be much smaller than the bead radius a. In

order to obtain a reasonable resolution of a suspended particle on the grid,

one particle consists of around one hundred inner grid points. Thus a = 3δ

represents a lower limit for the choice of the bead radius a. In the y- and

z-direction Ny = Nz = 61 grid points are implemented, where according to

the variations of the box width Lx a number of Nz ∈ [19; 67] leads to an entire

number of grid points N = NxNyNz between N = 60, 000 and N = 300, 000.

The box size is limited by the moving solid walls, where no-slip boundary

conditions are applied with velocities w(0, Lx) = ±U0êz in the x-direction and

w(0, Ly) = γ̇(x − Lx

2
) êz in the y-direction. Furthermore, periodic boundaries

are applied in the z-direction.

The integration of Eq. (4.1) and Eq. (4.2) via the projection method can be

split into three steps. The starting point consists of a forward discretization
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4.1. Numerical method

of Eq. (4.1) in time:

un+1 − un

δt
+ (u · ∇un) =

1

ρ0
[−∇pn+1 +∇ǫn + fn] (4.8)

with ǫ = η(x)[∇u + (∇u)T ]. Superscripts indicate the time-step, i. e., un =

u(tn). The pressure p can be considered as Lagrange multiplier ensuring the

incompressibility of the fluid. That is why at the initial step only an inter-

mediate ’wrong’ velocity u∗ is calculated, where the pressure p is neglected in

Eq. (4.8):

u∗ − un

δt
=

1

ρ0
[∇σn + fn]− (u · ∇un)

⇒ u∗ = un +
δt

ρ0
[∇σn + fn − ρ0(u · ∇un)]. (4.9)

The velocity u∗ violates the incompressibility condition Eq. (4.2). Neverthe-

less, within this step the outer shear-flow is imposed. To obtain the ’real’

velocity-field un+1 the equation

un+1 − u∗

δt
+

1

ρ0
∇pn+1 = 0 (4.10)

has to be solved, where Eq. (4.9) and Eq. (4.10) result in Eq. (4.8). Taking the

divergence of this equation under the condition that un+1 fulfills the incom-

pressibility condition one finds the Poisson equation, coupling the flow- and

pressure-field:

∇2pn+1 =
ρ0
δt
∇u∗. (4.11)

The calculation of the solution of Eq. (4.11) is the time consuming limitation

of the simulation method. Without taking any numerical libraries Eq. (4.11)

can be solved with relaxation methods. Then the equation

∂p

∂q
= ∇2p− ρ0

δt
∇u∗ (4.12)

whith the time q representing an artificial variable with no physical meaning is

solved iteratively until the residual on the left of Eq. (4.12) is smaller than the

error ε. Within this second step the periodic boundary conditions in z-direction

are realized, where an applied pressure-gradient generates a Poiseuille flow.

After the calculation of the pressure-field p one uses Eq. (4.10) to determine

un+1. This is the last step of the method.

un+1 = u∗ − δt

ρ0
∇pn+1. (4.13)
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4. Fluid Particle Dynamics

After the determination of the flow field u within the entire domain, the

velocity ui(t) of the i-th bead is calculated by averaging the flow inside the

bead volume Vi =
4
3
πa3 located at xi, where the viscosity η(x) is enhanced.

Further, at the considered grid point (i, j, k) a pre-factor wi,j,k

wi,j,k =
ηi,j,k − η0
η1 − η0

(4.14)

is introduced to smear out the velocity u(x):

ui(t) =

∑

V w(x)un+1(x, t)
∑

V w(x)
. (4.15)

The position xi(t) of each bead is then updated by integrating this velocity

via an Euler-step to the new position

xi(t+ δt) = xi(t) + δtui, (4.16)

where ui(t) is the effective velocity of the i-th bead with all forces included

due to potentials or hydrodynamic interaction (HI). Note that the averaging

causes a decoupling of the particle position xi from the grid.

4.2. Rotation of one bead and generation of vortices

The shearing of one extended bead no matter at which position leads to a bead

rotation due to the torque, generated by the different flow velocities at the top

respectively bottom of the bead. Of interest is the structure of that flow field,

which is formed around the sphere, which is illustrated in Figure 4.3 on the

left. This flow field represents the irregular perturbation of a regular motion,

each turbulent flow pattern is based on. Already in predictable, regular states

perturbations, caused by the extension a of the suspended beads, influence the

dynamics, so that an analysis of perturbing flow structures is helpful for the

understanding of complex multi-particle dynamics.

In the simplest case of a flow perturbation one bead causes a feedback on

the driving shear flow resulting in a fast decaying vortex around the suspended

sphere. This vortex contributes to the hydrodynamic particle-particle inter-

action in multi-particle suspensions. However, before the dynamics of several

beads is discussed, the question is, how the perturbed rotational component
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4.2. Rotation of one bead and generation of vortices

U0

−U0

Lxxi
r

z

x 10−2

10−1

100

10−1 100 101

u
x
/u

s
u
r
f

r/a

r−3

r1

Figure 4.3.: Left: Sketch of a rotating bead in the centerline of a linear shear

flow with shear rate γ̇ = 2U0/Lx. The surrounding flow field

is illustrated by the small vectors, where the direction of the x-

component is plotted color-coded. The black arrow indicates the

direction in which r is varied to obtain the tangential flow. Right:

Tangential flow-component ux with respect to the velocity on the

bead surface usurf = −1
2
γ̇a illustrated for a = 2 (red), a = 3 (blue)

and a = 4 (green).
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4. Fluid Particle Dynamics

of the flow profile can be extracted from the total flow field u(x, t) containing

all flow effects.

As the left of Figure 4.3 shows, the bead induced perturbations of a laminar

flow occur symmetric around the centerline of the channel at x = Lx/2. In

addition, this figure shows that the perturbations of the laminar flow along the

centerline are given by the perpendicular ux component of the flow field. This

enables an illustration of flow contributions due to the so-called hydrodynamic

interaction. On the right of Figure 4.3 the numerically determined flow ux in

dependece of the distance r = |x− xi| is illustrated for different radii a.

Due to the shear the bead starts to rotate with the angular velocity θ̇ = −γ̇,

so that the velocity increases linearly inside the bead (r < a) until at the bead

surface the velocity

usurf = −
1

2
γ̇a (4.17)

is reached. A very strong decay with r−3 can be observed for r > a, deviations

from this law for large ratios r/a can be explained in terms of wall-induced

back flows. The vortex flow u⊥ is given by

u⊥ =







−1
2
γ̇r êy × r

r
for r ≤ a

−1
2
γ̇a ·

(
a
r

)3
êy × r

r
for r > a.

(4.18)

The negative sign of u⊥ indicates the sense of bead and vortex rotation, which

changes if the system is sheared in the opposite direction. The perturbations

scale with the shear-rate γ̇ and the radius a, so that the shear-rate next to

the driving is connected with the degree of irregularity in the system at the

same time. Beyond a distance λ ≈ 5a around the bead there is no contribution

to the total flow due to the vortex. Hence, the length λ may be considered

as a correlation length for the flow inside a vortex and will play a role as

characteristic length scale especially in the turbulent regime, as we will show

later.

4.3. Collision of two beads

The numerically determined flow in Eq. (4.18) represents the reproduction of

the analytic solution of a rotlet [33], which is used to calculate hydrodynamic

impacts at a certain position x as a result of torques acting at xi. Considering
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4.3. Collision of two beads
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Figure 4.4.: Sketch of two colliding beads in a linear shear flow.

the dynamics of two suspended rotating beads a rotlet causes a small asymme-

try, prefering a clockwise rotation, in the otherwise time-reversible dynamics

in low Reynolds number regimes. The temporal reversibility implies a config-

urational symmetry of any bead motion due to hydrodynamic flows. To check

the good agreement of the simulated processes, a collision of two spheres is

simulated with the FPD method. The two colliding beads are initially located

at

x1,2(t = 0) = Lx/2± ε0 z1,2 = Lz/2± r12(t) (4.19)

with a small deflection from the centerline, ensuring the approach of both

beads with the relative velocity v = u2 − u1 = γ̇ez (Cf. Figure 4.4).

The distance r(t) between both spheres is plotted in dependence of the

enclosed angle θ(t) between the z-axis and the connection vector between the

two beads (Cf. Figure 4.4). This angle is defined as

θ(t) = tan−1

(
x2(t)− x1(t)

z2(t)− z1(t)

)

(4.20)

and replaces the time t as parameter. Note that this angle evolves in negative

direction due to the negative sense of rotation.

The time reciprocal symmetry also implies a symmetry of the dynamics

around θ = −π
2
, which is re-found in the numerical data illustrated in Fig-

ure 4.5. The two particles approach each other following the streamlines in

z-direction without a considerable variation of θ(t) until for small distances r,

but still bigger than the contact distance r = 2a, the hydrodynamic interac-

tion kicks in pushing each bead towards the outer channel regions, increasing
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Figure 4.5.: The distance r > 2a between the two beads during the collision

process. The collision starts at a configuration when θ ≈ 0 passes

through the range of allowed angles in negative direction and ends

with θ ≈ −π.

velocity difference v until they reach the configuration θ = −π
2
, where they

touch moving in a comparatively fast half-turn around each other before they

diverge in the reciprocal hydrodynamically induced way. To characterize the

velocity of the rotation the angular velocity θ̇ can be defined:

θ̇(t) =
r × v

r2
· êy. (4.21)

Due to the clockwise rotation, even the angular velocity has a negative sign.

54



5. Dynamics of a suspended FENE-dumbbell

Chapter 4 described the simulation technique called Fluid-Particle-Dynamics,

which is used to simulate the dynamics of suspended beads. In this chapter

the dynamics of a dumbbell is considered, which is generated by the direct

coupling of the two beads via a potential force. This deformable particle forms

the basis for the particle-induced turbulence described in the next chapter.

Even the single-particle case reveals astonishing results on the stability and

rheology of the dumbbell dynamics in dependence of its elasticity and expan-

sion relative to the bead radius, but also to the channel width. Therefore,

this part of the work is strictly limited to the case of one dumbbell, before the

multi-particle case is systematically described in Chapter 6.

5.1. Direct coupling of two beads and definition of the

Weissenberg number

In Eq. (4.1) a term f(x) occurs representing the force-density of outer forces

such as gravity, electric fields, or the coupling potential forces between the

suspended beads. Such forces f k = f(r)er couple two beads at an equilibrium

length r0 acting respectively at their center coordinates x1 and x2 along the

connection vector er =
r(t)
r(t)

with

R(t) = x1(t)− x2(t). (5.1)

The pre-factor f(r) may, e. g., be determined by the harmonic pre-factor

f(R) = k0(R(t)−R0), but for weak spring constants k0 this force has the dis-

advantage that the coupled beads may be apart on a distance. Due to the pe-

riodic boundary conditions assumed in the simulation method, self-interaction

between the beads may occur. To prevent this situation the range of distance
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5. Dynamics of a suspended FENE-dumbbell

between the two beads is restricted to Rmax = 2R0 by using a FENE-potential

(Finitely Extensible Nonlinear Elastic), yielding the pre-factor [54]

f k(R) = k0
(R(t)− R0)

1 + (R(t)−R0)2

(R(t)−Rmax)2

R

R
. (5.2)

Note that these forces face the stress forces fσ coming from the linear shear

flow resulting from the stress tensor via

fσ = ∇ · σ, (5.3)

which are directly coupled to translational motions of a sphere with the velocity

ui via the Stokes friction:

fσ = 6πη0aui. (5.4)

The dumbbell does not react instantaneously to the outer shear flow. To

characterize its reaction on outer stresses, a relaxation time τ is defined, which

is related to the time a stretched or compressed dumbbell needs to relax to its

equilibrium length. This time τ depends on k0 as well as on the Stokes friction

ζ . Outer stress occurs only through friction forces and thus scales with the

shear-gradient γ̇, so that the dimensionless product of τ and γ̇ determines a

system parameter for the dumbbell elasticity, called Weissenberg number W :

τ =
6πη0a

k
W = γ̇τ. (5.5)

The Weissenberg number relates the inner reaction of the dumbbell expressed

in terms of k0, a, and η0 to outer stimuli due to the shear flow with rate γ̇. W

can be seen as an outer system parameter, when a dumbbell with a certain,

but constant set of inner parameters is exposed to shear flows with different

γ̇. This variation of W is certainly viable in an easy experimental way. In this

work W is varied in dependence of k0 for constant γ̇, so that the variation of

W becomes characteristic for the material.

5.2. A tumbling dumbbell in shear flow

A sheared dumbbell is stretched or compressed depending on its position with

respect to the shearlines. The relative deformation in dependence of the angle

θ, enclosed by the z-direction and the conection vector eR, is defined as

∆(θ) =
R(θ)− R0

R0

. (5.6)
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5.2. A tumbling dumbbell in shear flow

These deformations and thus the dumbbell dynamics is determined by three

effects which are listed here together with the corresponding parameter:

• The stretching and compressing is driven by friction forces due to the

shear flow acting against coupling forces. The shape of deformation is

determined by the time a dumbbell needs to equilibrate the stresses in

terms of the Weissenberg number.

• The trajectories of two colliding beads in Chapter 4 have shown that

the particle-particle interaction increases for short distances R between

both beads. Especially, when the dumbbell is equilibrated parallel to the

streamlines at θ = −απ with α ∈ Z the dumbbell rotation is sustained

by this interaction. The dimensionless dumbbell length R̂

R̂ =
R0

a
(5.7)

is defined as corresponding system parameter.

• The last effect acting on the dumbbell is the backflow, induced by the

wall-particle interaction. Important contributions on the motion of the

bead arise especially in small channels, measured in terms of

L̂ =
Lx

R0

. (5.8)

Because the wall-induced backflow from the walls may be seen as a re-

flection of the flow arriving at the wall, also the wall-interaction should

follow the r−3 dependence of the vortex flow in Eq. (4.18).

The initial condition for the equilibrated dumbbell is considered in the sym-

metric arrangement around the centerline given in Eq. (4.19) (Cf. Figure 5.1),

where a small destinction ǫ, corresponding to a slightly negative angle θ < 0,

accelarates the onset of the dumbbell rotation called tumbling. The velocity

of the dumbbell is defined as the angular velocity θ̇ given in Eq. (4.21) and

compared with the shear rate γ̇.

Initially, the dynamics of the dumbbell is investigated in a box of size L̂ = 6,

what is sufficiently large so that wall effects are negligible. The dumbbell can

perform a continuous rotation with angular velocity θ̇ and deformation ∆,

depending on the configuration, as illustrated in Figure 5.2a) and Figure 5.2b)

for several Weissenberg numbers W .
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Figure 5.1.: One dumbbell is modeled by to beads at positions r1 and r2 defin-

ing areas of enhanced viscosity. The gray values indicate the spa-

tial change ∇η(x). Along the connection vector R, a FENE-force

couples the two beads. The applied shear flow with shear rate

γ̇ = 2U0/Lx is color-coded blue and red. One can identify the

rotational parts with ω0 of the flow-field around the spheres.

For values W ≪ 1 (red curve), the deformations remain small, but also

the dumbbell equilibrates rather quickly since the relaxation time τ is small.

During the first quarter turn the dumbbell is compressed until θ = −π
2
. In

this configuration it is equilibrated for a short time, but is then tressed during

the second quarter turn. This pattern appears quite symmetric with

∆(θ) = ∆0 sin (2θ) , (5.9)

where the angular velocity can be approximated by

θ̇ = −γ
2
(1 + cos (2θ)) . (5.10)

For increasing Weissenberg numbers in the range of W ≈ 1 (blue curve) and

beyond (green curve) the relative extension ∆ increases, accompanied with

an increase of the relaxation time τ . The response of the coupling forces to

the driving friction forces is delayed, leading to a symmetry breaking in the

rotation. The dumbbell is strongly compressed during the first quarter-turn,

where at θ = −π
2

the maximum angular velocity θ̇ ≈ −γ̇ is adopted. The

inner forces do not suffice for an immediate compensation of the stress forces,

so that the dumbbell passes this configuration compressed. The equilibration
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Figure 5.2.: a) Plot of the angular velocity θ̇ within one half-turn for Weis-

senberg numbers W = 0.2 (red), W = 1 (blue), and W = 2

(green). b) illustrates the relative deformations ∆ for the same

springs. Both graphs illustrate the configurational dependence to-

wards the streamlines measured in terms of the angle θ.

happens at a certain point θ0 < −π
2
. Furthermore, the increasingly compressed

configuration of soft dumbbells with W ≫ 1 is responsible for the reduction

of the angular velocity θ̇ at θ = −π
2
.

Besides the decay of the rotational frequency with increasing Weissenberg

number W , Figure 5.3 illustrates the direct influence of the hydrodynamic

bead-bead interaction on the tumbling orbit for dumbbells of relative length

R̂ = 3.33 (red) to R̂ = 4.33. A longer dumbbell length R0 means a reduction

of the flow contribution from the two vortices around the beads, driving them

away from the equilibrium state at θ = απ. For dumbbells longer than R0 =

4.33a the bead-bead interaction does not show considerable contributions, so

that the rotation comes to a halt in a parallel alignment with respect to the

streamlines. In this configuration, the velocity difference v in Eq. (4.21) only

consists of the two vortices around the beads, so that u1 and u2 are given by

u1,2 = ∓
1

2
γ̇

a4

(R0 − a)3
êx (5.11)

for small R̂ with Eq. (4.18), so that the offset θ̇0 yields

θ̇0 = ωR = −γ̇ a4

(R0 − a)4
, (5.12)
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Figure 5.3.: Numerical study on the dumbbell rotational frequency ν showing

a decrease for increasing W as well as increasing dumbbell-length

R̂.

taking into account that the vortex is generated at the bead surface and thus

the relevant distance is R = R0 − a.

5.3. Bifurcation from tumbling to vacilating breathing

The tumbling dynamics has been investigated in a box with L̂ = 6, where the

dumbbell is able to rotate without being affected by wall effects. By reducing

the channel width L̂ from L̂ = 6 to L̂ = 2 Figure 5.4a) shows the slowdown

of the tumbling until at a critical point Lc(R̂) the tumbling stops, and the

dumbbell enters into a state called vacillating breathing [123]. The plot of L̂c

against the Weissenberg number W in Figure 5.5 shows a slight increase of

the critical ratio for large W . In addition, the critical point depends on the

dumbbell length R̂, where for the shown data sets L̂c(R̂ = 3) ≈ 3.55, L̂c(R̂ =

3) ≈ 3.8, and L̂c(R̂ = 3.67) ≈ 3.91 were determined. These values are a hint

that this transition via a bifurcation may be attributed to the hydrodynamic

wall-interaction inhibiting the effects of bead-bead-interaction, both of which

equilibrate at the critical point, where below L̂c the repulsion from the wall-

interaction generates effects that can only be compensated by the coupling

FENE-forces with ∆ > 0 lifting the dumbbell in a slight skew orientation

depending on L̂ at θ > 0 (Cf. Figure 5.4b)).
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Figure 5.4.: a) The frequency ν of rotations and b) the angle θ as function

of the channel-width L̂ for dummbells with W = 0.2 correspond-

ing to the dumbbell length R̂ = 3 (red), R̂ = 3.33 (red), and

R̂ = 3.67 (green). Below a critical ratio L̂c the rotation of the

dumbbell stops. The dumbbell reaches an elongated, but stable

configuration with θ̂ > 0 and ν = 0.

The only difference between tumbling and vacillating breathing seems to be

that either the angular velocity reaches zero or the forces do not balance at any

point, and therefore the angular velocity remains always negative (or positive:

depending on the shear direction). This difference allows the definition of a

frequency ω in the stationary states ωS as follows:

ωS =







|θ̇0| if θ̇ 6= 0

0 if θ̇ = 0.
(5.13)

Then, especially in those cases where ωS 6= 0, ωS can be split up into those

parts originating from the bead-bead-interaction ωS(R̂) and those ωS(L̂) due

to the wall-interaction. From Eq. (5.12) follows ωS(R̂) = ωR and thus the

normalized equilibrium states ω̂S = ωS/ωR yield

ω̂S = 1 + ω̂(L̂). (5.14)

ω̂S may adopt values between 0 and ±1 and from Figure 5.5 one can see the

coincidence of curves for different dumbbell sizes R̂. In the investigated range

of the channel widths L̂ it seems as if the numerically determined frequences

ω branch off the anciently stable ω = 0 for L̂ < L̂c increasing with
√

L̂c. The
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point. Below the critical value L̂c the angular velocity remains
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5.3. Bifurcation from tumbling to vacilating breathing

order parameter ω thus fullfills the equation Eq. (2.8) of a pitchfork-bifurcation

with

ω̇ = ω − µω3, (5.15)

with the stable solutions ωS,1 = 0 for L̂ < L̂c and ωS,2 = −√µ for L̂ < L̂c,

where the system parameter µ

µ = ε(L̂− L̂c) (5.16)

is directly coupled to the channel width L̂. The prefactor ε ≈ 0.06 is numeri-

cally determined from the illustrated data in Figure 5.5.

Complementary view

The transition from a steady solution to an oscillatory dynamics on a limit cir-

cle within the increase of the channel width L̂ with contunious branching of the

frequencies, as illustrated in Figure 5.5 and Eq. (5.15), leads to the suspicion

that a Hopf-bifurcation Eq. (2.20) at the critical point Lc(Wc) is responsible for

the transition between different attractors. However, the described transition

shows some unusual properties that differ from a Hopf bifurcation. E. g., it is

striking that the frequency ωs transiates continuously and not the amplitude

measured in terms of the deformation ∆. ∆ depends only on the Weissenberg

number W . Therefore, the transition to the limit cycle appears within a jump

of the amplitude. Note that Figure 5.5 does not depict the phase space. The

following considerations are made to complete the picture of the bifurcation.

The wall-interaction repels or attracts the beads in perpendicular direction

to the walls. Therefore, it is assumed that the main effects appear in the x-

component of the total flow containing the information about flows towards

the walls or away from them as a result of flow reflections. The only flow

parts showing characteristics in this direction are the bead induced backflows

around x1 and x2. By superposing the bead-bead interaction and the wall-

interaction, the remaining component is the pure wall-induced flow uWI(x).

At the position x inside the channel this flow is obtained by subtracting the

flows u⊥(x,xi) around the spheres (cf. Eq. (4.18)) from the total flow u(x):

uWI(x) = ux(x)−
2∑

i

u⊥(x,xi). (5.17)
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Figure 5.6.: Flow at the walls for various channel widths L̂. The flow reflctions

at the walls induce two vortices with opposite rotational sense.

The approach of the inner vortex to the walls, prevents the dumb-

bell rotation for small L̂ .
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5.3. Bifurcation from tumbling to vacilating breathing

This flow is visualized in Figure 5.6 on the left for the three cases of L̂≪ L̂c,

L̂≫ L̂c and L̂≫ L̂c. The incompressibility condition together with the no-slip

boundaries require
∫ Lz

0

ux(z) dz = 0, (5.18)

at the two walls at x = 0 and x = Lx, where the contributions at any position

along the z-direction do not vanish as the blue lines in Figure 5.6 illustrate,

showing the backflows at the wall x = 0. Especially around the bead positions

x1 and x2 backflows arise at the walls as a result of the bead rotation. These

flows are not reflected directly, rather flows that are pressed towards the walls

in large channels (L̂ = 6) around the first bead position x1 are reflected towards

the inner channel at position x2, so that a large vortex rotating in the same

sense as the suspended dumbbell is formed, surrounding the whole dumbbell.

On the other hand a counter-rotating vortex around the dumbbell center is

formed fullfilling the incompressibility condition in inner regions of the channel.

The deviding line between the two wall induced vortices is marked by black

circles in Figure 5.6.

It is the impact of these two vortices on the two beads that inhibits the

dumbbell rotation. The relative size of the inner vortex inside the channel

grows when L̂ is reduced and leads to an increase of swirled flows. The x-

components at the centerline for dumbbell constellations parallel to the cen-

terlines are illustrated in red in Figure 5.6 on the right. Two maxima can be

identified with a small difference in the maximal values ∆ũx, which maintain

the rotational dynamics. This difference corresponds to ωS(L̂). At the critical

point, where the dumbbell rotation stops, the inner vortex reaches the wall

indicated by the increase of zero crossings of the blue curve from one (L̂ > L̂c)

to three (L̂ > L̂c). The outer vortex formerly covering the entire channel

outside the dumbbell is broken by the inner vortex. Now two vortices are gen-

erated respectively around the beads bringing the dumbbell rotation to a halt.

The difference ∆ũx changes the sign, so that the dumbbell is driven into the

opposite tumbling direction until the coupling forces set the equilibrium state.

What do these considerations contribute to the understanding of the transi-

tion at the critical point L̂c? A lot, if one takes into account that the periodicity

of the dynamics depend on the stability of the surounding of the parallel con-

stelation at θ = απ. In Figure 5.8 the stationary position x̂s = R̂ sin(θ̄) as a
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Figure 5.7.: Stability of the stationary state θ̇ = 0. For L̂ < L̂c the stationary

solution adapts independently of the direction of perturbations.

For L̂ > L̂c the fixed point loses its stability, but only in one

direction. A perturbed trajectory in the upper regions is closed

within a half-turn approaching the fixed-point from bellow.
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5.3. Bifurcation from tumbling to vacilating breathing

x1

x2

xs0 xs1

Figure 5.8.: Replot of the homoclinic orbit in Figure 2.4.

time average of all positions in the steady state is illustrated. For L̂ < L̂c all

perturbations are reset to the stable fixed point at xs > 0 within the inter-

play of hydrodynamic interaction and coupling forces. For increasing values

L̂ the stable fixed point approaches towards xs = 0 and with the reaching of

this configuration something strange happens: The stable stationary solution

keeps its stability for all perturbations in negative direction, where perturba-

tions in positive x-directions grow. The dumbbell starts a half-turn, which is

generated by the interplay of coupling forces and shear flow. It is important

to mention that the rotation not only results from the local information about

the stability around xs. Thus, the identified bifurcation is a global bifurcation

from a stable fixed point to a homoclinic orbit.

The present results are obtained for a dumbbell at constant Weissenberg

number W , where the channel width L̂ is varied. This enables a controlled

change of the wall effects without a simultaneous change of the dumbbell de-

formation. There remains the question, what happens if the channel width is

kept constant and the Weissenberg number is varied, whereby this situation

is more easily accessible experimentally. The plot of the critical point L̂c(W )

as function of the Weissenberg number illustrates that the same transition be-

tween tumbling and vacillating breathing is re-found within a exchange of the

parameters W and L̂, where the quantitative relationships like the continu-

ous frequency variation at the critical point Wc stays. In this situation, the

initially strong coupling forces are decreased to the critical value Wc, where

the semi-stability of the position xS changes to a global stability, where the

coupling forces do not suffice any more to equilibrate the wall-effects.
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5. Dynamics of a suspended FENE-dumbbell

5.4. Rheology of a suspended dumbbell

In a stationary shear flow u = γ̇(x − Lx/2)êz, the local effective viscosity

ηeff(x, t) is defined via the xz-component of the stress-tensor σ(x, t) from

Eq. (4.3) [40]:

ηeff(x, t) =
σxz

γ̇
. (5.19)

By averaging the contributions to the stress tensor at the upper and lower

wall, the effective viscosity ηeff(t) of the suspension at a given time t is given

by:

ηeff(t) =
1

2γ̇
(〈σxz〉x=Lx

+ 〈σxz〉x=0). (5.20)

The viscosity of a suspension of beads will deviate from the viscosity of

the solvent liquid η0 due to the force contributions exerted by the rotating

flows around the suspended beads. According to the bead motion the effective

viscosity is time-dependent and thus depends on the orientation θ, as can be

seen in Figure 5.9 and Figure 5.11, where the relative change of the viscosity

induced by the suspended beads ∆η̂(t) defined as

∆η̂(t) =
ηeff(t)− η0

η0
(5.21)

is illustrated.

Einstein has derived the linear dependence of the viscosity ηeff on the volume

fraction Φ in the dilute regime [47, 48], which has been extended to a quadratic

dependence on Φ2 by Batchelor and Green [27] as well as Felderhoff and Ci-

chocki [35] for the semi-dilute regime taking into account the non-negligible

bead-bead interaction

ηeff = η0
[
1 + w1Φ + w2Φ

2 +O(Φ3)
]
. (5.22)

The pre-factors have been determined to w1 = 2.5 [47, 48] and w2 = 5.0 [35]

or w2 = 5.2 [27], but it has been shown that in strongly confined suspensions

of onconnected beads these pre-factors change [37]. Also the effect of different

object shapes on the viscosity has been analysed [75].

The total viscosity can be split in contributions ηeff

0 , which act through the

solvent and the contribution χ containing the elastic non-hydrodynamic forces

acting between the suspended particles. The latter contribution is calculated
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Figure 5.9.: The effective viscosity change ∆η̂ and the distribution of coupling

forces χxz to the viscosity during one half-turn for dumbbells with

W = 0.2 at L̂ = 4 (blue) and L̂ = 6 (red). Solid lines represent

the dynamics of beads coupled to a dumbbell and the dashed line

refer to uncoupled beads.

by the so called Kramers-Kirkwood formula [26, 40], where the component-by-

component product rifj of the forces f p(t) = (fmx, fmy, fmz) and the dumbbell

length r(t) = (rmx, rmy, rmz) are summed up over the suspended particles

indexed by m:

χij = −
1

V

∑

m

fmirmj (5.23)

with the bead volume V = 4
3
πa3. Technically speaking, this formula is de-

rived under the assumption of point-like particles at the two endpoints of

the dumbbell, i. e., the bead radii should be much smaller than the dumb-

bell length a ≪ r0. In the present case, the viscosity contribution of dumb-

bells is obtained by taking the xz-component of this tensor. For comparison

∆η̂W and the Kramers-Kirkwood χ contribution are calculated numerically in

the configurations θ within one half-turn for different Weissenberg numbers

W = 0.2 and W = 1.5. To compare the pure particle contribution obtained

with the Kramers-Kirkwood formula χxz with direct measured viscosity con-

tributions ∆η̂W , effects of the particle extension have to be taken into account.

Therefore, the collision described in Section 4.3 is simulated to determine the

viscosity change ∆η̂∞(θ) of two uncoupled particles. Despite a pre-factor the
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Figure 5.10.: Sketch of the tumbling motion at high Weissenberg number with

directions of r and f p illustrate the connection to χxz.

Kramers-Kirkwood contribution χxz behave similarly to the difference between

∆η̂W −∆η̂∞ [40]:

χxz ∝ ∆η̂W −∆η̂∞. (5.24)

The dumbbell length rmj(t) as well as the coupling force f p
mi(t) depend on

the configuration θ. This can be shown by numerical simulations, where the

dumbbell contributions to ∆η̂ and χ in different confinements L̂ are illustrated

for a small Weissenberg number W = 0.2 (Figure 5.9) and for W = 1.5 (Fig-

ure 5.11).

Both at high as well as low Weissenberg number χxz is independent of the

channel size L̂, as long as the dynamics occurs within the tumbling regime,

but nevertheless a dependence of χ on W is obtained. The component χxz(t)

from Eq. (5.23) can be rewritten in the following form [40]:

χxz(r, θ) = −f p(r)
r

2
sin(2θ) (5.25)

and depends on the deformation r(t)− r0 via f(r) and also on the orientation

θ(t).

For small values of W the two functions sin(−2θ) and r(t) − r0 pass zero

near the perpendicular dumbbell orientation, i. e., for θ ≈ −π/2. Therefore

χxz(θ ≈ −π/2) vanishes as illustrated on the right in Figure 5.9, where for

large W , as pointed out in Section 5.2, the deformation r(t) − r0 passes zero

at θ < −π/2 (cf. Figure 5.2) and χxz(θ) becomes negative (Cf. Figure 5.10)

in the range between f(r) = 0 and θ = −π
2
. On a first sight this range of a

negative χxz-value contradicts all expectations to a quantity that represents a

viscosity.
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Figure 5.11.: The effective viscosity change ∆η̂ and the distribution of coupling

forces χxz to the viscosity during one half-turn for dumbbells with

W = 0.2 at L̂ = 4 (blue) and L̂ = 6 (red). As in Figure 5.9, solid

lines represent the dynamics of beads coupled to a dumbbell,

where the dashed line indicates ∆η̂ obtained for uncoupled beads.

Indeed, the effective viscosity change, which contains all effects of hydro-

dynamic as well as elastic nature, remains positive in all configurations as

shown in Figure 5.11. As one would expect, due to the increasing wall effects,

the effective viscosity grows in small channels, but the main point is that the

illustrated measured data indicates the limitation of the Kramers-Kirkwood

formula as a tool for the computation of the shear viscosity of dumbbell sus-

pensions for not too high Weissenberg numbers W under strong confinement,

when L̂ is small.

At θ ≈ 0 and θ ≈ −1 the dumbbell axis is nearly parallel to the streamlines.

In this range the dumbbell contribution to ∆η̂ is similar to the contribution of

two unconnected beads. The dashed and solid lines on the left in Figure 5.9

and Figure 5.11 have the same initial and end point. The solid lines represent

the dumbbell viscosity for L̂ = 4 (red) and L̂ = 6 (blue). Thus, in these

configurations the contribution to ∆η̂ is only caused by flows, i. e., the ones

around rotating beads. The increase of the offset in ∆η̂ with decreasing L̂

is related to the stronger impact of flows at the walls, if we chose a small

confinement.
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5. Dynamics of a suspended FENE-dumbbell

The dashed lines correspond to the viscosity change ∆η̂(θ) of uncoupled

beads, where only "real" hydrodynamic interaction affects ∆η̂. "Real" indi-

cates the fact that also in the case of a dumbbell ∆η̂ represents a method of

measurement, which is only related to the flow field u, but not to the forces f p.

The curves show two maxima, one in the first quarter-turn separated by an

intermediate minimum at θ = −π
2

from the second in the second quarter-turn.

During the first quarter-turn the beads push each other towards the walls,

one at the top and the second at the bottom. Not only the spheres, but

also the surrounding fluid is pressed towards the corresponding wall. As a

result, at the other wall an eddy is formed, which has the same impact on

the effective viscosity. In addition to the vortices, which impact on ∆η̂ also

increases as the dumbbell beads approach the walls, the bead motion itself

increases the vorticity until the beads reach the perpendicular orientation θ =

−π
2

within the closest distance to the walls. Again only the bead induced flow

field contributes to ∆η̂, where the appearing minimum is above the offset in

the parallel constellation because of the smaller distance of beads to the walls

so that the hydrodynamic interaction with the walls is stronger.

The curve of ∆η̂ for hard dumbbells W = 0.2 (cf. Figure 5.9) and weak

dumbbells W = 1.5 (cf. Figure 5.9) qualitatively show the same characteristics.

Where for vanishing coupling forces the pushing or pulling of the suspended

particles towards or away from the walls leads to an increase of the viscosity, the

effects also drive the viscosity change in the coupled state. The main difference

is that the torque in r×f p perpendicular to the dumbbell axis accelerates the

beads in the direction perpendicular to the shear flow, increasing the viscosity

once again. For hard dumbbells the two maxima show a factor of roughly two

for the shown data. Certainly, the maxima depend on the ratio R̂ between

the dumbbell length and bead radius a showing an increase, if the dynamics

of a shorter dumbbell is investigated with its enhanced bead-bead interaction.

In contrast, the maximum decreases for increasing Weissenberg number W .

Note that the uncoupled case represents W →∞ and thus is the limit case of

increasing the Weissenberg number.

Revisiting the comparison of χ with ∆η̂, where it was pointed out that

χ becomes negative for high Weissenberg numbers and χ in contrast to ∆η̂

does not depend on the confinement, this result still seems astonishing, as the
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material parameter viscosity is supposed to be positive. But is the negative

sign alone a good criteria for the quality of the Kramers-Kirkwood formula?

On its own it does not suffice to answer this question, but combined with the

determined viscosity change for coupled and uncoupled beads the following

statement can be made:

As long as ∆η̂W (θ) represents the total viscosity and ∆η̂∞(θ) stands for the

orientation dependent viscosity caused by the pure hydrodynamic bead-bead

interaction, the contribution of elastic objects should be recovered at least

qualitatively by subtracting ∆W − ∆∞ according to Eq. (5.25). Looking at

Figure 5.11 for weak spring forces one can identify that the negative range of

χ corresponds approximatlely to that range, where the viscosity ∆η̂∞ repre-

sented by the dashed lines is enhanced with respect to the solid line of ∆η̂W in

a large channel with L̂ = 6. In this range the elastic contribution measured via

the right hand side of Eq. (5.25) becomes negative at least in large channels.

Even in a channel of width L̂ = 4 the negative range vanishes, revealing a con-

tradiction in Eq. (5.25) for large W and small L̂. This quantitative difference

in dependence of the confinement does not occur at small Weissenberg num-

bers (Cf. Figure 5.9) so that the Kramers-Kirkwood formula loses its validity

only for high W and low L̂.

5.5. Conclusions

The dynamics of a suspended dumbbell in linear shear flows was investigated by

simulations with the Fluid-Particle-Dynamics method. The numerical results

show a bifurcation of a steady-state, characterized by a orientation of the

dumbbell along the streamlines with a little skew. This state loses its global

stability via a global bifurcation to a homoclinic orbit, which arises, when a

dumbbell starts its dynamics perturbed in the sense of rotation. Then an

instability mediated through the bead rotation with its generated vortices in

the surrounding drives the dumbbell out of the steady solution. The homoclinic

orbit is closed by the interaction of the shear flow and the coupling forces

in the ensuing dumbbell half-turn called tumbling, where the followed bead

trajectories mainly depend on the dumbbell deformability and its ability to

compensate outer stresses. The dumbbell moves back to the idle position
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which now has a stabilizing effect. At the end of a half-turn the same, initially

unstable fixed point shows a stabilizing action, so that the beads periodically

approach and move away from the equilibrium position. The transition can

not be understood within the context of stability in the surounding of the fixed

points so that this bifurcation falls in the class of global bifurcations. The limit

cycle seems to appear from nowhere and its shape depends only slightly on

the channel size. However, it is surprising that the stability, which is directly

coupled to the hydrodynamic interaction, provides a continuous branching,

similar to a Pitchfork-bifurcation of the dumbbell rotational frequencies.

The simulations have shown that the shape of the limit cycle is not influenced

by the channel width L̂ in the tumbling regime, but certainly depends on the

Weissenberg number W . Hence, the dumbbell deformations are increased while

slowing down the rotational motion with increasing Weissenberg number. The

decelerated dumbbells have a reduced effect on the walls and by comparing

the maxima of ∆η̂eff illustrated in the Figure 5.9 and Figure 5.11 a reduction

of the effective viscosity with increasing Weissenberg number can be identified

similarly as in the phenomenon of shear thinning.

The contribution of the coupling forces to the effective viscosity in simu-

lations is commonly determined by the Kramers-Kirkwood formula. Within

the simulations it has been shown that independent of the channel width L̂

this contribution becomes negative, what can be explained based on geomet-

ric arguments. Nevertheless, this result seems astonishing since the Kramers-

Kirkwood formula addresses a quantity representing friction. Hence, the direct

comparison to the determined effective viscosity of the dumbbell apparently

seems contradicting a negative dumbbell contribution. Therefore, one has to

be careful, since the effective viscosity and the Kramers-Kirkwood formula still

do not measure the same quantity because the effective viscosity takes effects of

the extended beads of radius a into account. These contributions can easily be

determined via simulations of two colliding uncoupled beads (Cf. Section 4.3).

The comparison between the Kramers-Kirkwood formula and the directly de-

termined effective shear viscosities reveals that the Kramers-Kirkwood formula

represents quite reasonable the elastic contributions even of a dumbbell with

extended beads to the shear viscosity with the limitation that the tumbling

may not be inhibited by wall effects.
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6. Turbulence in dumbbell suspension

Turbulence at high Reynolds numbers is the best-investigated prime example

of turbulent flows on the basis of numerous examples from everyday life. Never-

theless, the phenomenon is hardly understood so far [161, 57], the Kolmogorov

law [98] is the only analytical result in this field.. It is agreed that vortex

structures are described by the nonlinear term u∇ · u in the Navier-Stokes

equation Eq. (4.1). In the course of investigations of turbulent flows, powerful

analysis tools, such as the power-spectrum, Lyapunov spectrum and statistical

tools such as structure functions and correlation functions have been applied.

Partially these tools were presented in Chapter 3. In this chapter these tools

are applied to simulations on the overdamped multi-particle dynamics of sus-

pended bead-spring dumbbells.

In overdamped flows at low Reynolds numbers the nonlinear term hardly

plays a role, so that laminar flows occur due to the smoothing effect of the

viscosity. In the last decade, experiments have shown that turbulent flows can

be generated in this regime by the addition of deformable polymers [67, 69,

120]. The transition to the turbulent regime occurs via subcritical bifurcations

like the Hof-bifurcation as a function of the Weissenberg number W , similar

to the Lorenz system, which changes its dynamical behavior as a function of

the relative Rayleigh number r.

From the point of view of the theory, research is limited to the simulation of

single dumbbells in stochastic fields [10]. To the best of my knowledge one does

not find any publications on the dynamics of multi-particle systems containing

the elasticity of suspended particles and their hydrodynamic interaction. The

present part of this work aims to close this gap.

In case of one suspended dumbbell, the dynamics is driven by the hydrody-

namic interaction between the dumbbell beads and the coupling forces. Each

dumbbell undergoes a periodic motion called tumbling with a reference fre-
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6. Turbulence in dumbbell suspension

quency ν0 described in Section 5.2. By adding more dumbbells in the channel,

and thus increasing the volume fraction Φ, the dynamics in the suspension

becomes necessarily more complex since each dumbbell provides new degrees

of freedom, which all interact via the bead-bead interaction.

This chapter will examine in which parameter ranges a dumbbell suspen-

sion can be assumed as a turbulent system according to the behavior of the

power-spectrum. This is followed by statements on the loss of stability within

an increase of the volume fraction Φ. For this, the method by which the Lya-

punov exponents are determined in Section 3.3 is applied to trajectories of

tracers resulting from simulations of the suspension dynamics with the FPD

method (Cf. Chapter 4). The loss of stability is coupled to a mixing process,

induced by the dumbbell rotations, transporting the surrounding liquid. Since

the nonlinearities of Eq. (4.1) give rise to unpredictable time-dependencies

the trajectories can be analysed in terms of diffusion processes, describing the

penetration of an initially small reference volume into the surrounding chan-

nel. This approach, together with a direct determination of the probability

distribution of the flow field, allows the description of turbulent behavior not

only in dependence of the volume fraction Φ, but also as a function of various

dumbbell-parameters such as the length R̂ and elasticity measured in terms of

the Weissenberg number W . To complete this chapter, investigations of the

rheological properties of dumbbell suspensions are presented.

6.1. Onset of turbulent dynamics

Turbulent flows emerge whenever perturbations of a laminar flow profile in-

crease. So far, it has been shown in Chapter 5 that these perturbations are

directly linked to the suspended beads within the rapidly decaying vortices

(Cf. Eq. (4.18)). The strength of turbulent flows will therefore mainly depend

on the number of suspended particles. This number appears in the volume frac-

tion Φ, which sets the volume of all beads in relation to the channel volume.

In addition, the spring forces defined in Eq. (5.2) affect the bead dynamics

and impact the shape of the turbulent flow structures. Here, the question is

addressed how the turbulent flow patterns depend on the dumbbell length R̂

and its elasticity, as characterized by the Weissenberg number W .
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6.1. Onset of turbulent dynamics

z

x

Figure 6.1.: Gradual increase of the number of suspended dumbbells along the

centerline.

First, the influence of the volume fraction Φ on the turbulent behavior is

examined with the restriction that the dynamics of the suspended dumbbells

is considered within the shear plane. For the initial conditions of dumbbells

with Weissenberg number W = 0.1 and length R̂ = 3.33, the centerline of the

channel length Lz is departed in equidistant parts so that the slightly slanting

dumbbells are equally distributed on the centerline (Cf. Figure 6.1). How do

the bead-induced perturbations affect the dumbbell dynamics?

To answer this question, the Poincaré section of the connection vectors

ri = xi,1 − xi,2 through the plane x = Lx/2 is considered, as illustrated

by the red lines in the Figure 6.1. This plane is cut twice around the section

points rz = ±r0. For a better visibility of the key changes in the dumbbell

dynamics only the intersections around rz = r0 are illustrated in Figure 6.2.

The volume fraction Φ, where Φ ≈ 0.001 corresponds to two beads of one sus-

pended dumbbell, is increased in a discrete manner by adding two beads into

the channel at each step. Therefore, the volume fraction Φ is no continuously

varied parameter.

Figure 6.2 reveals an impressive result. Where the rotation of one dumbbell

has one intersection point at rz = r0, when the dumbbell is equilibrated along

the z-direction, this behavior is repeated by each dumbbell in the case of two

suspended dumbbells with Φ ≈ 0.002. The astonishing thing is that already

three dumbbells show a continuous band of intersection points indicating a

direct onset of a chaotic dumbbell dynamics. An increase of the number of

particles leads to an extension of this band of intersection points, where in

Figure 6.2 the numerically obtained data is shown to a number of 9 dumbbells

corresponding to Φ ≈ 0.01.
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Figure 6.2.: Poincarè map of dumbbell trajectories ri = xi,1 − xi,2 with the

plane x = Lx/2.
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Figure 6.3.: Left: chaotic trajectories of two dumbbells out of a suspension of

60 particles. Right: The time dependence of the angle θ for the

two dumbbells.

There seems to be no parameter range of Φ where the dynamics changes

to a chaotic behavior along some Hopf bifurcations. Rather, there is only the

chance to differ between a regular stable or an irregular unstable dynamical

state. Why this happens can be argued as follows:

One main result in Chapter 5 was that the continuous dumbbell rotation

depends on the stability around the configuration θ = 0, where the dumbbell

is equilibrated. In the phase space (rx, rz) this point is represented within the

configuration (0, r0). If the perturbing hydrodynamic interaction with other

suspended dumbbells act on a reference dumbbell out of the suspended dumb-

bells, the dumbbell may pass the point rx = 0 either compressed with rz < r0

or stretched with rz > r0 (Cf. Figure 6.2). Both have the consequence that the

decisive point for the continuity of dumbbell rotations is circumvented. The

dynamics can be considered as structurally unstable. Considering a full three-

dimensional dynamics in the channel, enhances the possible configurations

avoiding this point even more. This leads automatically to a chaotic dumbbell

motion, which is illustrated in Figure 6.3, where the phase space (rx, rz) and

the angle θ(t) in dependence of time is illustrated for two dumbbells chosen

from a suspension of 60 particles.

First, the trajectories in the phase space show that the dumbbell half-turns

are retained. Furthermore, the two exemplary trajectories show that the dumb-
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Figure 6.4.: The flip-rate 〈n〉 per time and particle against the volume fraction

Φ.

bells in configurations parallel to the streamlines with rx = 0 underly strong

fluctuations induced by the hydrodynamic interaction with the other dumb-

bells. If the phase space portrait is converted into a plot of the angle θ between

the connection vector r and the êz-axis versus time, the behavior illustrated

on the right of Figure 6.3 appears. It turns out that the dumbbells are ori-

ented fairly parallel most of the time, but within a short period of time the

dumbbells execute the well-known half-turns denoted as flips.

The average number 〈n〉 of flips per particle and time is defined as flip-rate.

When plotted against the volume-fraction Φ, this quantity illustrates the dif-

ference between the dilute and semi-dilute regime, which are departed by a

volume-fraction Φ∗ = 0.05 (Cf. Figure 6.4). Especially in the dilute regime the

number of directly neighboring dumbbells increases continuously so that the

dumbbell-dumbbell interaction enhances the flip-rate. However, the space in

the immediate vicinity of one dumbbell can not be occupied by other dumbbells

without limit due to excluded volume interaction. Since the hydrodynamic in-

teraction between dumbbells is mainly contained in the interaction of nearest

neighbors, the flip-rate reaches a maximum plateau, irrespective of the Weis-

senberg number W and dumbbell length R̂ in the semi-dilute regime beyond

Φ∗ = 0.05.
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6.2. Power spectrum

One of the common assumptions on the transition to chaos is discussed by two

works of Ruelle and Takens [155] and Newhouse et al. [118], where the first

two transitions from a fix-point along an orbit (T 1-torus) to a T 2-torus with

two intrinsic frequencies via two Hopf-bifurcations are described as a generic

transition, i. e., the new state is stable under small perturbations. During each

bifurcation a new mode is stimulated, where the coupling is assumed to be

weak. In these works, it is shown that the third bifurcation to a T 3-torus may

have unstable modes, enabling the transition of the dynamics to the strange

attractor as described in Chapter 3, and thus enabling chaotic dynamics with

a broad spectrum of frequencies.

In the last section and also in Chapter 5, there are indications that the on-

set of a turbulent behavior is not linked to local bifurcation, but depends on

a structural instability. In this section the behavior is treated more quanti-

taively by calculating the power spectrum P (ν) from the x-component of the

normalized dumbbell connection vector er. Due to the tumbling, this results

in a periodic function rx,i(t) from which the single particle power spectra Pi(ν)

for the i-th dumbbell

Pi(ν) =
1

T
|χi(ν)|2, (6.1)

can be determined from the windowed Fourier transform

χi(ν) =
1

N

N∑

j=0

rx,i(t) exp{i2πνtj}. (6.2)

The multi particle power spectrum is assumed to be the superposition of all

single particle spectra

P (ν) =
∑

i

Pi(ν). (6.3)

The windowing described in Chapter 3 requires the splitting of a total sequence

of Ng = 214 = 16, 384 data points in K sub-segments including N data points,

which are Fourier transformed. It has turned out that the most accurate

maximum resolution is obtained by dividing the full data set into K = 3

segments of length N = 213 = 8192.

In the case of one suspended dumbbell, the dynamics is driven by the hy-

drodynamic interaction and the coupling forces between the two beads. The
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6. Turbulence in dumbbell suspension

dumbbell undergoes a tumbling motion with a reference frequency ν0. The

power spectrum of the dynamics, illustrated at the top of Figure 6.5, shows

ν0, where in addition the corresponding odd harmonics iν0 (i = 1, 3, 5...) due

to the nonlinear dependence of the orientation-vector r on time t.

Within an increase of the number of suspended dumbbells, in addition to

the inner dumbbell interaction, each bead moves in the flow field induced by

those beads, which are part of other particles. This yields the dynamics of

respectively two strictly coupled objects, which are only coupled weakly to all

other suspended beads via the hydrodynamic interaction. The dynamics of

two dumbbells should include a second frequency ν1 representing these weak

interaction effects. However, there is no period-doubling and thus no second

frequency. However, a look at the power spectrum illustrated in the middle

of Figure 6.5 reveals that the frequency ν0 and thus also the harmonic fre-

quencies are shifted to the higher frequency range. This is the expression of a

synchronization process where both dumbbells rotate with slightly increased

frequency ν̃0 with a small phase difference φ0.

The destabilizing effects of the hydrodynamic interaction already occurs

in the three dumbbell system, for which the orientation vector rx and the

frequency spectrum is illustrated in the lower part of Figure 6.5. The illustrated

trajectories rx(t) of all three dumbbells show that the particles perform half-

turns either synchronized in-phase or anti-phase. However, the synchronization

between two dumbbells is broken by the hydrodynamic interaction with the

third dumbbell. This results in an unpredictable dumbbell dynamics with very

few particles, induced by flows around the suspended beads. This is reflected in

the power spectrum, in which the harmonic peaks are replaced by a continuous

band of frequencies.

The observation made within the Poincaré section in the last section that an

unstable dynamics already occurs for 3 dumbbells is confirmed by the determi-

nation of the power spectra. In the following, the power spectra of systems with

high dumbbell numbers are discussed, where in Figure 6.6 those for m = 5,

m = 10, and m = 100 are illustrated. This figure shows that the high fre-

quency range occurs regardless of the number of suspended dumbbells since it

reflects the comparatively fast bead rotation. The rotation of a dumbbells in

the sheared channel is dissipative, which means that the fast rotations excite
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Figure 6.5.: Trajectories rx(t) and resulting power spectrum P (ν) of 1, 2 and

3 dumbbells.
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Figure 6.6.: Power spectrum P (ν) for m = 5, m = 10, and m = 100 suspended

dumbbells. The black line indicates the scaling with P (ν ∝ t3.5.
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slower modes of dumbbell rotations. As Figure 6.6 shows, the intensity of the

slow frequencies increases as the number of dumbbells increases. The intensity

P (ν) depends on an universal scale law as a function of the frequencies ν. By

fitting the shown data sets with the function

P (ν) = aνb (6.4)

the exponent b = −3.5 is obtained. This very small value for b expresses very

fast damping of movements in a highly viscous system. From this, a cascade

can be identified in which the motion of the bead is first stimulated by the shear

flow, and then flows into the motion of the dumbbells before it is smoothed by

viscous effects converting it, e. g., into heat.

6.3. Statistical description

Executing the experiment of shearing a suspension of a higher number of dumb-

bells, e. g., N = 60, which initially are equally distributed in the channel mul-

tiple times denoted by M , one will find M different realisations of this experi-

ment, corresponding to the same particle parameters Φ, W and R̂. Therefore,

it is unsatisfactory to extract statements about the entire system by consult-

ing the individual particle trajectories. Even more, this applies, when in a

box of N = 61 × 61 × 61 = 226981 grid points x per recorded time-step ti

(i ∈ [0 : 1001]) each data point, e. g., of the flow field u(x) has to be taken

into account. For an understanding of the dynamics and structures in the

flow it is therefore convenient to switch to a statistical description based on

the distribution P(x) of a considered quantity x. The distribution P(xi) is

obtained by the average

P(xi) = 〈δ(X − x(ti)〉 = 〈δ(X − xi)〉. (6.5)

The quantity x may represent the angle θ one dumbbell encloses with the z-

direction or the flow field u. Numerically, the distribution is determined by

counting those states xi with xi ∈ [X ;X + δX [.

The stationary state, in which turbulent flows are fully developed, is charac-

terized by temporally constant probability distributions P(x) of all considered

quantities (angles θ, velocities u, effective viscosity ηeff, ...). For reasons of ac-
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Figure 6.7.: Sketch of a dumbbell in shear flow for the definition of the angles

θy and θz . The shear flow is indicated by the blue vectors.

curacy, the distribution P(x) is averaged over all snapshots ti in the stationary

state.

An obvious question is, which distribution functions P(θ) and P(θ̇) underly

the dumbbell dynamics. For this, the angles θz enclosed by the connection

vector r and the shear-direction êz and θy between r and the y-axis êy per-

pendicular to the shear-plane are considered (Cf. Figure 6.7). In addition to

the angles θy and θz, the dynamics is defined by the angular velocities θ̇z and

θ̇y, which result from the connection vector r and bead velocity v via

θ̇z =
1

r2
(rxvy − ryvx) and θ̇y =

1

r2
(rzvx − rxvz). (6.6)

The determined distributions for θy,z and θ̇y,z are illustrated in Figure 6.8.

In the z-direction the fingerprint of the previously described tumbling motion

can be identified. Most of the time the dumbbells remain parallel to the

streamlines with θz ≈ 0,−π, so that P(θz) displays two maxima for these

configurations. In turn, the minimum at θz = −π
2

is related to the rather quick

dumbbell flips. Looking carefully at the distribution maxima for suspensions

with W = 10 (dashed line) in Figure 6.8 a difference in the maximum values

can be identified. This asymmetry with respect to θz = −π
2

is related to the

asymmetry in ∆(θ) shown in Figure 5.2 for high Weissenberg numbers W . The

explanation is as follows:

During the first quarter of a turn the dumbbell is compressed, increasing the

bead-bead interaction inside one dumbbell, whereas in the second quarter of a
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Figure 6.8.: Stationary distribution of the orientation angle θ and the angular

velocity θ̇ in y- and z-directions as obtained for a suspension of

50 dumbbells at Weissenberg number W = 0.1 (solid lines) and

W = 10 (dashed lines).

turn the interaction is reduced as the dumbbell gets stretched. Hence, the first

quarter turn with angle between θz = 0 and θz = −π
2

happens faster and hence

less likely than the part between θz = −π
2

and θz = −π. While this effect

remains small for hard springs with W = 0.1 with only small deformations

(solid line in Figure 6.8), for W = 10 the impact is quite pronounced.

Also, the distribution of the angular velocities θ̇z of the dumbbells is asym-

metric in shape. The accumulation of negative rotational velocities is associ-

ated with the shear flow. In the present case of an upper plate moving with

positive velocity in the z-direction and the lower plate in the exact opposite

direction, a bead and dumbbell rotation is generated in clockwise direction, as

indicated by negative angular velocities. Nevertheless, the dumbbells move,

although rarely, in a positive direction of rotation. This is also a fingerprint

of the hydrodynamic bead-bead ineraction and causes the fluctuations in the

time dependence of the angles visible in Figure 6.3

In the y-direction no driving force exists, so that the dynamics in this direc-

tion is a signature of bead-bead interaction. The corresponding distributions

are symmetric around θy = θ̇y = 0, where the angles θy are equally distributed.
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6. Turbulence in dumbbell suspension

This uniform distribution indicates that the dumbbell flips, which always oc-

cur in the direction of the shear flow in the z-plane, have equal contributions

in the x- and y-direction mediated by the spring forces.

6.4. Turbulent flow structures

Up to this point turbulent flow patterns have always been mentioned, which

bear the responsibility for the previously described unpredictable dynamics.

On the other hand, it has been the stochasticity of the flow field that has

been used as an explanation aid. What is true now? Is the underlying field a

structured or noisy one?

If one likes, both statements are right and the phenomenon of turbulence,

no matter what the generating mechanisms are, is a problem of dynamic pat-

tern formation. To make the structures visible, the local vorticity ω(x) is

introduced, which is determined from the local flow field u(x) by taking the

curl

ω(x, t) = ∇× u(x, t). (6.7)

In four snapshots of the channel cross-section corresponding to the fully devel-

oped turbulent state, this quantity is illustrated in Figure 6.9. The vorticity

is interpreted as twice the local angular velocity θ̇. Therefore, it indicates

extended regions of clockwise (red) and counterclockwise (blue) rotating flow

profiles. It stands out that the size of the vortex structures does not vary with

propagating time. This is due to the fact that rotational flow patterns caused

by the beads can not move far from them before they are damped. Therfore,

especially the blue structures are directly linked to the dumbbell dynamics,

which is why the position of the vortices in the channel changes very pro-

nounced, namely unpredictable as the last section has shown. This leads to

two questions:

1. How does the probability distribution P(u) of the flow field change when

the volume fraction Φ is increased and at which point can one speak of

fully developed turbulence?

2. Is it possible to determine the size of the flow structures, even if the

dynamics is subject to a certain stochasticity?
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Figure 6.9.: Four snapshots of the vorticity in the channel cross-section in the

steady state. Blue areas correspond to negative vorticities, where

red areas indicate rotation in the positive sense.
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The first question is answered by Figure 6.10. In this Figure the proba-

bility distributions P(u) of the flow u are shown, representing the x- and

y-components, perpendicular to the driving shear flow. The upper parts a)

and b) belong to numerically determined data for uncoupled beads. In the

lower parts c) and d) the distributions of dumbbells with Weissenberg number

W = 0.1 and length R̂ = 3.33 are illustrated, once for small volume fraction

Φ ≈ 0.002 corresponding to m = 4 suspended beads in blue. In addition, data

from the semi-dilute regime with m = 60 (red lines), m = 120 (green lines) and

m = 180 (magenta lines) suspended particles, for which the turbulent regime

is expected to be fully developed, are illustrated in Figure 6.10. In order to

emphasize the influence of comparatively high velocity values at the tails of

the distribution, the velocity ui is normalized by the corresponding standard

deviation σui given by

σ2
ui =

∫

u2
iP(ui) dui. (6.8)

Looking at the dynamics of m = 4 suspended beads, whether they are

connected by springs or not, one finds that the dynamics are characterized by

frequent phases of slow motion, which are occasionally interrupted by half-

turns like the flips or particle collisions, as described in Chapter 4. Even if the

dynamics in the dilute regime can be described by a probability distribution,

the behavior of the individual suspended particles in the velocity distribution

can be identified since the distribution is accumulated around ui = 0 and the

high velocity at the tails are comparatively rare expressed in the distortions of

the distribution at the tails. As the number of particles increases, the incidence

of high flow velocities increases as well. The odd probability distribution at

low volume fractions Φ changes to a Gaussian distribution, which is plotted

in dashed lines as reference to the illustrated distributions in Figure 6.10.

It should be mentioned that the tails of the distribution remain enhanced

compared to the real Gaussian curve even in the fully developed turbulent

state.

To answer the second question about the turbulent length scales, the auto-

correlation function Cii(r) of the flow field, which is illustrated for a suspension

of m = 90 dumbbells in Figure 6.11, is introduced

Cii = 〈ui(x)ui(x+ r)〉. (6.9)

The brackets 〈...〉 have the meaning of a spatial average over the positions x,
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Figure 6.10.: a) and b) Probability distribution P(ux,y) for unconnected beads

in dependence of the number m = 4 (blue), m = 60 (red), m =

120 (green), and m = 180 (magenta) of suspended particles. c)

and d) The same distributions for m = 2 (blue), m = 30 (red),

m = 60 (green), m = 90 (magenta) suspended dumbbells. To

compare the shapes the normalized distributiion u/σu with the

standard deviation σu is illustrated. The dashed line indicates a

Gaussian distribution.
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Figure 6.11.: Illustration of the correlation function Cxx(r) for a suspension of

m = 90 dumbbells.

for which the autocorrelation function comparing two grid points separated

by the distance r exists within the channel. The autocorrelation function is

determined from snapshots of the flow field at equidistant time intervals ∆t.

Furthermore, Cii is averaged over these number of time steps in the equilibrium

state. For simplicity, the distance r is only varied in the direction i whose

velocity component is evaluated in the function Cii(ri). For the definition of

the characteristic turbulent length-scales Cxx(rx) and Cyy(ry) are determined

from numerical data on the flow field.

The largest flow patterns inside the box cover a length Λ. On larger length-

scales the turbulent flows should become statistically independent. This state-

ment can be coupled to the correlation-function Cii(r). Assuming an expo-

nential decay in r, one obtains Cii(r) = e−r/ΛCii(0) and thus, the integral

length-scale can be defined:

Λi =

∫ Li

0

Cii(r)

Cii(0)
dr. (6.10)

Λi then denotes the length at which Cii(Λi) has decayed to 1/e, as Figure 6.11

illustrates, where Cxx for a dumbbell suspension of m = 60 dumbbells at

W = 10 and R̂ = 3.33 is plotted exemplarily.

This graph also shows that the exponential decay is not valid for small values

of the distance r. In this range, the curvature of Cii(r) has a different sign,

which can be attributed to the viscosity η0 and in particular η1 smoothing the
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neighboring velocity-contributions. The changing curvature defines a second

length-scale λi, called Taylor length [157] corresponding to the smallest flow

structures. The length λi is obtained by a Taylor-expansion to second order

Cii(r) = Cii(0) +
∂

∂r
Cii(r)

∣
∣
∣
∣
r=0

r +
1

2

∂2

∂r2
Cii(r)

∣
∣
∣
∣
r=0

r2 +O(r3). (6.11)

The slope of the autocorrelation function vanishes in the origin, smoothed

down to zero by the viscosity. Thus, only the second order term remains

Cii(r)

Cii(0)
= 1− 1

2

r2

λ2
i

. (6.12)

To show that the numerically determined correlation function can be fitted

by this function, it is plotted together with Cii(r). A comparison between

Eq. (6.11) and Eq. (6.12) yields

λi =

[

− ∂2

∂r2
Cii(r)

∣
∣
∣
∣
r=0

]− 1

2

. (6.13)

The second derivative ∂2

∂r2
Cii(r) can be expressed via the mean 〈ui(x)〉x of the

local flow and the mean spatial derivatives ∂xui(x)〉x [157], so that one has

direct access to the Taylor-length from numerical data:

λi =

√

〈ui(x)〉x
〈∂xui(x)〉x

. (6.14)

The two lengths λi and Λi play an essential role in the description of inertial

turbulence at high Re. In these ranges, λi and Λi, which measure the smallest

and biggest vortex structures, are seperated by decades. In addition, the

transfer of energy is coupled to a cascade of structures of lengths between λi

and Λi [97, 98]. This big difference between λi and Λi does not occur in the case

of overdamped dumbbell-driven turbulence. Here, both quantities are coupled

to predominating viscous effects. In order to anticipate this, a constant ratio of

Λi/λi = 2 results independently from the parameters Φ, which prescribes the

number of vortices and in the semi-dilute regime may induce overlaps between

the vortices increasing their size.

On average, the determined lengths increase in the dilute regime, as illus-

trated in Figure 6.12. This is related to the increasing number of vortices and
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Figure 6.12.: The integral length Λx (top) and Taylor-length λx (bottom) plot-

ted against the volume fraction Φ for two values of the dumbbell

length R̂ (left) and channel width L̂ (right).

94



6.4. Turbulent flow structures

Figure 6.13.: Not true-to-scale mapping of the vortices around a dumbbell of

length R̂ = 4.33 (blue) and R̂ = 3.33 (red).

their mediated contributions u(x) within overlaps, over which is averaged in

Cii. In addition, Figure 6.12 illustrates that the two lengths λi and Λi, set into

relation to the bead radius a, change very well in dependence of Φ, R̂, and L̂.

Not surprisingly, a reduction of the channel width L̂ leads to a reduction of the

vortex size, as illustrated on the right hand side. However, the shrinkage of

vortices within the extension of dumbbells in terms of R̂ is surprising. Should

not the vortex structures become larger?

The answer is no and can be seen in Figure 6.13. In this Figure the bound-

arries of vortices around a dumbbell of length R̂ = 3.33 are sketched in red

and in blue those structures are illustrated surrounding a dumbbell of length

R̂ = 4.33. Even if the image is not true to scale, it can be seen that a short

dumbbell creates a compact swirling in the surrounding with a relatively large

vortex size Λi. By reducing the overlap by icreasing the distance R̂ between

the dumbbell beads, the compactness of the surrounding structures reduces

and the vortex alters to two independent vorticies with reduced size Λi.

Even if the lengths λi and Λi diverge only by a factor 2, the occurence

of structures limited by Λi also results in a similarity to the turbulence at

high Reynolds numbers called intermittency. In Figure 6.10 it was shown

that the velocity field u(x) follows a Gaussian distribution as if neighboring

velocity entries at u(x) and r) with small r were not correlated. Given a finite

correlation length Λi, is there always a Gaussian probability distribution for

the flow field u(x)?

To take into account the spatial correlation of flow contributions the flow

field u(x, t) is replaced by the velocity increment U(x, r, t), which is defined

as

U(r) = u(x, t)− u(x+ r, t). (6.15)

By determinining the probability distribution P(Unorm(r)) of the normalized
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Figure 6.14.: Distribution of velocity increments in x- and y-direction for

several distances r. The dashed lines indicate a Gaussian

distribution.

increment components Unorm = Ui/σi for several distances r, statements about

the self-similarity in the dumbbell suspensions are possible. A system is called

self similar, if the rescaled field Ũ

Ũ (r) = λαU(λβr, λγt) (6.16)

has the same statistical properties for all λ > 0 and suitable constants α, β,

and γ, i. e., the distribution P(Unorm) does not change within a variation of

r.

For the flow field in the channel, this means that the increment distribution

is determined for several values of the distance r in the range r < Λi. The

resulting distributions are shown in Figure 6.14. For r = Λi the two computed

values u(x) and u(x+ r) are uncorrelated and the corresponding distribution

yields a Gaussian. With a reduction of r, increasingly correlated, i.e., similar,

values are compared in Eq. (6.15) thus yielding increasing deviations from

the Gaussian distribution. The hat-shaped signatures for very small distances

r ≪ Λi is called intermittent distribution since it indicates the break of self

similarity. What does this break mean?

Consider a particle that follows the streamlines with the velocity u(x, t)

and can detect the velocity field in the neighborhood at a distance r. Due

to the detected fluctuations the particle views the flow field as "turbulent".
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If this particle reduces the range of view to very short but finite distances

r < Λi, the fluctuating parts are blurred and the surrounding field is perceived

as "ordered". This difference, which does not depend so much on the system

parameters, but rather on the scale at which the system is observed, represents

a fraction of the self-similarity in the system and is called intermittency. Al-

though this phenomenon is far less pronounced in dumbbell-driven turbulence

than in inertial turbulence, this commonality still exists.

6.5. Loss of stability

In Section 6.1 the dumbbell dynamics was directly investigated to illustrate

period doubling effects leading to chaotic dynamics in the suspension. This

section focuses on the dynamics of tracer particles, following the stream-

lines within the total box. A rotating dumbbell with the angular momentum

L = r × v can be considered as a shovel, which transports solvent liquid

perpendicular to the streamlines from central to peripheral areas inside the

channel. The associated questions are whether the dumbbells trigger a mixing

process by the entrainment of the surrounding fluid, and how this process is

affected by the parameters Φ, W , and R̂.

The mixing process inside the whole channel would intuitively be investi-

gated within the consideration of a small reference volume ∆V , penetrating

into neighboring liquid layers with increasing time. As long as the conditions

in the channel can be assumed isotropic, i. e., the dumbbells are uniformly

distributed in the whole channel, the initial position of the volume ∆V does

not matter. In addition, the entire channel is covered with liquid, emanat-

ing from ∆V after a sufficiently long observation time tmax. This loss of the

importance of initial conditions is one of the main characteristics of efficient

mixing. Continuing this idea, one recognizes that the expansion of ∆V to the

surounding space is closely linked to the Lyapunov stability (Cf. Chapter 2).

To obtain a reference trajectory y0(t) and neighboring trajectories yp(t) a

second particle type is defined. In contrast to the beads, these particles are

assumed to be point-like without performing any interaction with the surround-

ing fluid. They only follow the streamlines in a trajectory y(t) =
∫
u(y, t′) dt′,
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Figure 6.15.: Lyapunov-spectrum for independent beads as function of the
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6.5. Loss of stability

coupled to the flow field u(x, t) via the discrete delta-function [122]

∆(y0,p − x) =
1

64δ3

∏

d=x,y,z

(

1 + cos
π(y0,pd − xd)

2δ

)

, (6.17)

where all that grid points are taken into account with |y0,p − x| < 2δ. For all

other points ∆(y − x) = 0.

The Lyapunov spectrum σ1, σ2, and σ3 is determined using the technique

from Section 3.3. In Figure 6.15 the Lyapunov spectrum of suspensions, con-

sisting of uncoupled, randomly distributed beads, is shown versus the volume

fraction Φ. Although the illustrated points seem to underly strong noise, there

the spectrum shows tendencies indicated by the smoothened lines.

• The numerically determined spectrum falls into the category (+, 0,−)
indicating unstable dynamics.

• The highest as well as the absolute value of the lowest Lyapunov expo-

nent grows in the dilute regime below Φ∗ ≈ 0.05, indicating the growth

of unstable bead-bead interactions in the system. Beyond Φ∗ the insta-

bilities do not change up to fluctuations.

• The sum of the three Lyapunov exponents yields
∑

σi = 0. This indi-

cates the time-reversal symmetry of the Navier-Stokes equations in the

low Reynolds number regime.

Turbulent flows, which appear even at very low volume fractions Φ, are a

surprising result. Figure 6.16 shows that the positive Lyapunov exponent can

be actually attributed to the flows around the beads and not to numerical

uncertainties. This figure illustrates the progress of the reference trajectory

perpendicular to the streamlines in the x, y-plane (left) and in parallel direc-

tion in the x, z-plane for volume fractions corresponding to N = 4, N = 8,

N = 12, and N = 16. Although the covered area stays limited and is con-

siderably smaller than the channel cross-section, an unpredictable trajectory

occurs. The coupling to back flows around the bead can be clearly identified

on the right hand side. Here, the tracer particle is distracted in x-direction,

when it follows the back flows around a neighboring bead. Already in the case

of four suspended beads, the motion of the tracer particle exhibits an irregular

dynamics as a consequence of the superposition the bead-induced flow pat-

terns. The superposition yields the positive Lyapunov exponent. Increasing
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6. Turbulence in dumbbell suspension

the volume fraction Φ by adding further particles, the instabilities increase, as

reflected in the growing Lyapunov exponent, but also lead to an increase of the

volume covered by the tracer trajectory. However, the destabilizing effects of

the hydrodynamic interaction are limited since the perturbing flows are mainly

induced by next neighbors. Hence, beyond the volume fraction Φ∗ ≈ 0.05 in

the semi-dilute regime the addition of beads does not increase the bead-bead

interaction.

The stability analysis of sheared bead suspensions shows that already ex-

tended beads of radius a are sufficient to induce turbulent flow structures.

Until here no effects of elastic bead-spring chains have been taken into account

in this section. Since a coupling force in addition to the driving shear flow

accelerates bead motions perpendicular to the streamlines, one would expect

an effect of the dumbbell parameters W and R̂ on the mixing characteristics of

a suspension. These effects do not appear in the Lyapunov spectrum or they

get lost in the fluctuations.

6.6. Diffusion of tracer particles

Mixing denotes a dynamical process in which two distinct areas of a fluid

penetrate each other. In the four snapshots of the distribution of tracers

P(yx(t), yy(t)) in the channel cross-section Figure 6.17, the penetration of

tracer particles, initially uniformly distributed in the channel center, can be

followed. This penetration can not only be seen by the changing distribution

P(y(t)), but also on the left side of Figure 6.17, where two tracer trajectories

with similar initial conditions are illustrated. Two regions can be identified.

The first, where a particle moves quasi-ballistic in one direction is called jet.

From time to time these jets are superseded by curved paths, representing the

second region. A closer look shows that the radii of these loops may have

different sizes.

Under normal conditions, as determined by the unperturbed laminar shear-

flow in z-direction, "mixing" takes place in the direction of streamlines due

to the shear gradient γ̇ due to different velocities in neighboring layers. This

process does not represent the real meaning of mixing, where the irreversibil-

ity of the process leads to inseparability of the two components of the fluid.
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Figure 6.16.: Projections of the reference trajectory in the x, y-plane (left) and

x, z-plane (right) for small values of Φ, illustrating the onset of

chaotic dynamics due to hydrodynamic interaction.
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in shear flow for a Weissenberg number W = 0.1 and R̂ = 4.33.

Both trajectories show the behavior of mixtures, where similar
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Both curves show zones of jets, where the motion does not change

the direction, detached by regions, where this direction is ran-

domly changed in loops. Right: Snapshots of the tracer concen-

tration P(x, y) at different times t. Initially, only one tenth of

the channel is covered by particles, which diffuse to surrounding

areas.
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6.6. Diffusion of tracer particles

Therefore, the following investigations are restricted to the x- and y-direction.

Although the Lyapunov exponents have shown the inherent property of mix-

ing in suspensions, but do not depend on the dumbbell-length R̂ as well as

elasticity in terms of W , the question of the influence of these two parameters

remains unanswered.

The definition of P = 2500 tracer particles inside the channel center, cov-

ering one percent of the channel volume, means a resolution of roughly one

particle per grid point, so that a good approximation of the dynamics within

the entire channel is guaranteed. We do not save all 2500 trajectories and thus

7500 data-points per tracked time-step. Instead of saving the trajectories of

all particles, the distribution of tracers P(yx(t), yy(t)) at time t is determined

as a histogram with a bin-width equal to the grid size δ. The distribution

is continuously tracked after the elapsed time interval ∆t. In this manner,

the distribution P(yx(t+∆t, yy(t+∆t)|yx(t), yy(t)) represents the conditional

probability distribution, determined under the condition that the considered

particle is located at (yx(t), yy(t)) at the time t. Then the drift D
(1)
x,y and dif-

fusion coefficients D
(2)
x,y can be determined as transport coefficients from this

distribution.

The distribution in x-direction is obtained by tracing P(yx, yy) over the y-

direction. Analogous, the distribution in y-direction is determined. The n-th

momentum of yi yields

〈yni 〉 =
∫

yni P(yi) dyi, (6.18)

where the diffusion coefficients are related to the growth of the mean-squared

displacement σ̂2
i = 〈y2i 〉 − 〈yi〉2. Due to the symmetry of the dynamics in x-

and y-direction the drift D
(1)
i vanishes in both directions.

At the top of Figure 6.19, the time evolution of the mean-squared displace-

ment σ̂2
i in x- and y-direction is shown on the basis of numerical data. σ̂2

i

grows linearly in time, so that a normal diffusive behavior according to

σ̂i = 2D
(2)
i t (6.19)

can be assumed, where the diffusion constant is given by

Di = lim
t→∞

1

2t
σ̂i. (6.20)
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Figure 6.18.: Replot of Figure 6.8 to illustrate the context between diffusion

constant D
(2)
i and dumbbell rotations.

As reference diffusion coefficient Dref = v2t is defined via the intrinsic velocity

v = γ̇a and time scale t = 1
γ̇

Dref =
γ̇

a2
. (6.21)

The linear growth of σ̂i is only valid in a range, where the motion of tracer

particles in the bulk flow is not influenced by wall effects preventing the tracer

particles to penetrate the walls. Therefore, the mixing velocity in terms of the

diffusion constant D
(2)
i is measured only within the range of a linear growing

mean-squared displacement.

It seems surprising that the numerically determined diffusion constants in

the two directions do not differ from each other, since the driving forces act

only in the x, z-plane and force the dumbbells to flips along the x-direction.

That is correct, if the dumbbell is perfectly aligned along the x-axis. When the

angle θy is enclosed by the dumbbell axis and the x-direction in the x, y-plane,

the coupling force f p ∝ (cos(θy), sin(θy, 0) forces the dumbbell to flip along this

direction (cos(θy), sin(θy), 0). Figure 6.18 illustrates the uniform distribution

of θy. Since the transport of liquid is coulped to the dumbbell rotations, the

inhomogenity in x- and y-direction vanishes, although it appears for uncoupled

beads, where the diffusion constant in x-direction is always larger than the one

along the y-direction.

The rescaled numerically determined diffusion constants for dumbbells and
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6.6. Diffusion of tracer particles

for uncoupled beads within a variation of the volume fraction Φ are shown

in parts a) (for the x-direction) and b) (for the y-direction) of Figure 6.19.

Besides the vanishing inhomogenity the illustrated data points indicate the

growth of the diffusion constants with increasing volume fraction, even if the

volume fraction Φ > Φ∗ indicates a semi dilute regime. Once two beads are

connected to a dumbbell, the diffusion constant increases again, where the

data illustrated for Weissenberg numbers W = 0.1 (blue), W = 1 (red), and

W = 10 (magenta) reveal a dependence due to elastic effects.

Even though the Lyapunov exponents (Cf. Section 6.5) and the diffusion

coefficients actually measure the same, they have different properties. Thus,

statements about the mixing velocity in dependence of Φ, R̂, and W can only

be made if the diffusion coefficients are considered. What are the conceptual

differences?

Actually, the only difference is that the Lyapunov spectrum addresses the

stability in the vicinity of a reference trajectory only qualitatively. By re-

selecting new neighboring trajectories after an interval ∆t, the quantitative

analysis of perturbed trajectories inside the entire channel is interupted, al-

though the reference trajectory itself may cover the total channel. In order to

detect only the possibility of mixing, this method is adequate. In contrast, the

determination of diffusion coefficients addresses to the dynamics of a plural-

ity of such reference trajectories, thus containing information on the mixing

velocity. This is the reason, why the Lyapunov spectrum does not change

beyond Φ∗, where the mixing velocity in terms of D(2)
i continues to rise. The

same applies to the analysis of the diffusion coefficients D
(2)
i as a function of

the dumbbell length R̂, as illustrated in Figure 6.19c). A torque acts on each

dumbbell yielding the angular momentum L = r × v, i. e., the longer the

dumbbell the faster the two beads move during the executed half-turns. Then

the tracers near the beads move correspondingly faster, increasing the diffusion

constants D
(2)
i with increasing R̂.

That a more detailed investigation of the mixing properties in dependence

of the Weissenberg number W is justified can be seen in Figure 6.19a) and

Figure 6.19b), where the highest diffusion constants D(2)
i are reached for small

Weissenberg numbers and thus hard spheres. The data plotted in Figure 6.19d)

show the diffusion coefficient D
(2)
i for a suspension of N = 60 dumbbells in
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Figure 6.19.: Top: Mean-squared displacement of the tracer distribution in

x- and y-direction for a suspension of N = 90 dumbbells with

W = 0.1 and R̂ = 3.33. The mean-squared displacement grows

linearly in time. Bottom: Numerically determined diffusion con-

stants in a) x- and b) y-direction for R̂ = 3.33 in dependence of

the volume-fraction Φ. The different colors refer to Weissenberg

numbers W = 0.1 (blue), W = 1 (red), and W = 10 (magenta).

Uncoupled beads are represented by the black data points. c)

Diffusion constant in dependence of R̂ and d) illustrates the de-

pendence of D(2)
i on the Weissenberg number.
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the range of W = 0.1 to W = 100. The observation of the decrease in the

diffusion coefficient described above is confirmed. Note that the limiting case

of uncoupled beads is given by W = ∞ and the diffusion constant converges

towards the corresponding value of D(2).

Observing large mixing abilities at low Weissenberg number W is a contra-

dictory result to all expectations and experimental observations [67, 69]. One

would expect that the mixing rate increases due to the increasing dumbbell

deformations, exactly in the opposite direction, before it tends to the limit of

uncoupled beads for very large Weissenberg numbers W . With this expectation

one tends to forget that the dynamics is overdamped, i. e., the bead-induced

flow structures are damped quasi-instantaneously with 1/r3, when they are

apart by the distance r from the bead. Therefore, the decreasing diffusion co-

efficient with increasing Weissenberg number confirms the statement that the

perturbution are strictly coupled to the dumbbell dynamics since the rotational

frequency ν decreases for soft springs.

6.7. Rheology in dumbbell suspensions

Unlike the previous sections, which discussed the destabilizing effects of the

dumbbells on the flow field, in this section the rheology of the dumbbell sus-

pension in dependence of the parameters Φ, W , and R̂ is investigated. For this

purpose, the beads are uniformly distributed in the entire channel, where in

the case of dumbbell suspensions in addition the orientations are uniformly dis-

tributed. The considered quantity is the time-averaged change of the viscosity

∆η̄ (Cf. Eq. (5.21))

∆η̄ = 〈∆η(t)〉t =
〈
ηeff − η0

η0

〉

t

, (6.22)

resulting from numerical simulations with the Fluid-Particle-Dynamics me-

thod.

Einstein has derived the linear dependence of the viscosity ηeff on the volume-

fraction Φ in the diluted regime [47, 48], which has been extended to a qua-

dratic dependence on Φ2 by Bachelor and Green [27] as well as Felderhoff and

Cichocki [35] for the semi-diluted regime, taking into account the non-negligible
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6. Turbulence in dumbbell suspension

bead-bead interaction

ηeff = η0
[
1 + w1Φ + w2Φ

2 +O
(
Φ3

)]
. (6.23)

The pre-factors have been determined to w1 = 2.5 [47, 48] and w2 = 5.0 [35]

or w2 = 5.2 [27], but it has been shown that in strong confined suspensions of

unconnected spheres these pre-factors change [37]. Also the effect of different

object shapes on the viscosity was analyzed [75].

According to Eq. (6.23) a linear relation between ∆η̄ and the volume-fraction

Φ is expected for a dilute suspension of uncoupled spheres. This is validated

by varying the number of suspended particles between m = 4 and m = 180,

which correspond to volume-fractions from Φ = 0.00230 ± 0.00002 to Φ =

0.09826 ± 0.00165. The relative viscosity change is presented in Figure 6.20

(red). It can be seen that the linear relation ∆η̄ ∝ Φ holds up to about

Φ∗ = 0.05. Beyond Φ∗ the effects of hydrodynamic interaction between the

beads become stronger, represented within the quadratic term in Φ entering

Eq. (6.23). The data-points for suspensions of uncoupled beads are reproduced

very well by Eq. (6.23).

In Section 5.4 it was shown that the contribution of a single dumbbell to

the viscosity change ∆η̄ deviates significantly from the contribution of un-

coupled beads only during the passage of configurations perpendicular to the

streamlines with θ ≈ −π
2
.

Because these configurations are very rare particularly in the dilute regime,

a difference between the effective viscosity ∆η̄ can hardly be discerned in Fig-

ure 6.20, where ∆η̄ is illustrated in dependence of the volume fraction Φ for

uncoupled beads (red), dumbbells of length R̂ = 3.33 (blue), and R̂ = 6.66

(green).

The increase of the effective viscosity ∆η̄, whether as a function of the

volume fraction Φ or the Dumbbell length R̂, is explicable, if the length l is

introduced as

l = a

(
4π

3Φ

) 1

3

, (6.24)

which represents the mean distance of uncoupled beads. For distances l <

l∗ = l(Φ∗) ≈ 5.1a the hydrodynamic interaction between suspended beads

becomes significant so that the first linear increase of ∆η̄ ∝ Φ changes to
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Figure 6.20.: The averaged viscosity ∆η̄ as a function of the volume fraction Φ.

The red data points represent suspensions of uncoupled beads,

where in blue and green suspensions of dumbbells with Weis-

senberg number W = 0.1 are shown. These two series differ

in the ratio of dumbbell length to radius R̂ = 3.33 (blue) and

R̂ = 4.33 (green). The solid line marks the analytical result of

Einstein, Bachelor and Green given by Eq. (6.23).
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a quadratic dependence of ∆η̄ ∝ Φ2 with the known prefactors from [27,

47, 48](Cf. Figure 6.20. In addition, this figure illustrates the increase of

the effective viscosity ∆η̄ for dumbbells in the semi-dilute regime Φ > Φ∗ in

dependence of their length R̂.

On the one hand, this is attributed to the increase of suspended dumbbells,

which adopt configurations around θ ≈ −π
2
. On the other hand, the direct

coupling forces between the two dumbbell forming beads extend the super-

posed flow structures around the beads. Since the two respective beads are

directly connected within the distance R̂, the average distance l, as given in

Eq. (6.24), between two beads that influence each other only via the hydrody-

namic interaction decreases when R̂ becomes large.

Taken together, this means that an increase of the number of suspended

particles in terms of Φ, combined with the extension of dumbbells in terms

of R̂ leads to an increased overlap of flow structures around the dumbbells,

which in turn increases the effective viscosity ∆η̄ since these structures push

reinforced liquid towards the walls, where the effective viscosity is determined.

Therefore, the illustrated curves for dumbbellls of length R̂ = 3.33 (blue) and

R̂ = 6.66 (green) lay clearly above the red reference curve of uncoupled beads.

The increase of the contribution to ∆η̄ as a function of the relative dumbbell-

length R̂ is shown in Figure 6.21 in more detail. The illustrated data is obtained

for a fixed volume-fraction Φ ≈ 0.06. In this example, the contribution is

enhanced by about 20 percent as compared to the bead contribution.

In the same manner one can ask how the elasticity of dumbbells in terms

of the Weissenberg number W contributes ∆η̄. Therefore, on the right side

of Figure 6.21, ∆η̄ is illustrated for Weissenberg numbers W in the range of

Wmin = 0.1 and Wmax = 100 for a volume fraction of Φ = 0.06. It is noticeable

that the spring elasticity generates two plateaus of ∆η̄, one for hard springs

and one for soft ones, connected by a transition region around W ≈ 1 with a

decrease of ∆η̄ by about 10%. According to Section 5.4 with Figure 5.9 and

Figure 5.11,the difference is attributed to the slowdown of dumbbell rotations

within an enhancement of the Weissenberg number W . The two plateaus occur

due to the following effects:

For small Weissenberg numbers W the dumbbell deformations remain small

and relax instantaneously. This ensures that for W ≪ 1 the liquid transport
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Figure 6.21.: The relative viscosity change ∆η̄ as a function of the dumbbell

length R̂ for fixed W = 0.1 (left) and as function of W for fixed

R̂ = 4 (left).

of the dumbbells is executed within a hardly changing effect on the effective

viscosity ∆η̄. The lack of compensation arises at W ≈ 1. The two dumbbell

beads can more and more be considered as uncoupled objects with increasing

Weissenberg number W . The effective viscosity decreases. However, the sec-

ond plateau obtained by very soft dumbbells W ≫ 1 provides values of ∆η̄,

which stay enhanced in comparison to the value of uncoupled beads. That is

associated to the FENE-springs (Cf. Eq. (5.2)), which restricts the two beads

to a maximum distance independent of the Weissenberg number W . If the

bead distance reaches the range of this maximum distance, a torque is gener-

ated, which keeps the dumbbell motion across the streamlines alive. Again, a

pattern of motion occurs, barely changing within variations of the Weissenberg

number W .

6.8. Conclusions and Outlook

In this chapter, the dynamics of a sheared suspension of elastic dumbbells

was systematically analyzed using the Fluid-Particle-Dynamics method. In

particular, the occurrence of turbulent structures at low Reynolds numbers
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was investigated in dependence of the number of suspended particles in terms

of the volume fraction Φ, depending on their length R̂ and their elasticity

expressed by the Weissenberg number W .

It has been found that the time-dependent perturbations, which are neces-

sary for the occurence of turbulence, are given by vortices in the direct vicinity

of the beads. Due to the high viscosity in the system, these structures can not

detach from the dumbells expressed in the correlation length Λi ≈ 4a, which

remains on the order of the bead radius a. Nevertheless the flow structures

induce an irregular dumbbell dynamics and the system can be considered as

turbulent.

There are some similarities between the turbulence presented within this

work and inertial turbulence at high Reynolds numbers or elastic turbulence,

as it is described in [120, 68, 69]. Here, the effective mixing process should be

mentioned, expressed in a positive Lyapunov exponent, but also the decay of

the power spectrum P (ν) following the scaling law

P (ν) ∝ νb, (6.25)

where b = −3.5 indicates the dissipation of energy from fast rotating structures

along dumbbell rotations with small frequences. This type of energy conversion

occurs in every turbulent system. If one compares this determined exponent

with the one occuring within the range of b = −3.3 to b = −3.8 for elastic

turbulence [69, 120], a coincidence of these two types of turbulence is found.

Nevertheless, there are serious differences to both types of turbulence men-

tioned above. As well as inertial turbulence, the transition to elastic tur-

bulence takes place via subcritical bifurcations. However, the onset of the

quantity-dependent turbulence described here occurs suddenly, as mediated

by the structural instability of the parallel configuration of a dumbell to the

shear lines for θ = 0.

It is astonishing that very small numbers of suspended particles are already

sufficient for an unpredictable dynamics. The question is whether the irreg-

ularity in the dilute regime is really turbulent, since only a small part of the

channel volume in the center is mixed, which takes place also very slowly while

the rest of the channel is not affected by the perturbing flow structures. The

dilute regime is in any case that regime in which an increase of the irregu-
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lar behavior can be observed before the turbulence has fully developed in the

semi-dilute regime.

An original question of this work was whether the elastic instability can be

reproduced within a simple dumbbell model. The answer to this is clearly

no and can be seen either in Figure 6.19, where the mixing of the fluid in

dependence of the dumbbell elasticity is analysed within the determination of

the diffusion constant D(2), or in Figure 6.21, where the effective viscosity is

plotted against the Weissenberg number.

It is not uncommon that the diffusion constant, which is directly coupled

to the fluctuations in the velocity field ũ, and the effective viscosity increases

simultaneously. It is intuitively clear that a system that underlies higher fluc-

tuations produces a higher resistance expressed in a higher effective viscosity.

Mathematically, this is expressed by the so-called Reynolds stress tensor σRe

σRe = 〈ũũ〉. (6.26)

The equivalence of the two variables is not the main point, which consists in

the fact that there does not appear a critical Weissenberg number Wc, which

seperates an ordered from a turbulent regime as long as the considered sus-

pended particle is a dumbbell. In this kind of suspensions the behavior seems

to be reversed to the onset of elastic instabilities described in [69, 120], which

indicate the turbulent regime for high Weissenberg numbers W . Therefore,

a simple dumbbell is unsuitable to satisfactorily describe elastic instabilities

due to the mentioned structural instability. Nevertheless, the simulations have

shown that the connection of beads to build elastic particles constitutes a

significant difference between the dynamics of coupled and uncoupled beads,

where at least the extension of the dumbbells results in an increase in the

effective viscosity and the mixing in terms of the diffusion constant D(2). Ul-

timately, the question remains open whether a minimization of the structural

instability allows access to a closer examination of possible elastic instabilities.

Certainly, the dynamics of bead-spring chains is structurally stabilized with-

in the extension to 3, 4, ... beads per chain, since the destabilizing effect on a

bead in the chain interior is canceled by the interaction with two adjacent

spheres. Besides the minimization of structural instabilities, the extension to

a chain enables the consideration of additional degrees of freedom, which are

related to deflections of the now flexible chain.
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6. Turbulence in dumbbell suspension

Unfortunately, an extension of the chain involves fundamental considerations

about the expansion of the simulation range. In this chapter, the simulations

took place on a 61× 61× 61 grid with mesh size δ = 1. The radius of a bead

is a = 3δ and the usual dumbbell diameter is r0 = 10δ. An extension around

each additional bead extends the suspended object by r0 = 10δ. The limits of

the channel are reached very quickly. One could think about the reduction of

the bead radius a, which should not be done for two reasons:

1. A certain radius is required for a accurate resolution of a bead on the

grid.

2. Even if the instability is called elastic, the real perturbation is caused

by the structures around the beads. In addition, these are reproduced

inaccurately when the balloon solution is reduced.

Thus, only an increase of the simulation box will help. For this task one should

ask whether there are possibilities to speed up the time-consuming simulation

method, since the average time a simulation on the 61× 61 × 61 box already

cost 1.5 weeks.

The last question aimed at minimizing the structural instability of a dumb-

bell. However, the turbulence described in this work can also be seen as a

reference system for shear induced turbulence at low Reynolds numbers. The

perturbations of the laminar flow field consist in vortex structures, which re-

sult from bead rotations with constant rotation velocities due to the constant

shear rate. Not every flow profile generates constant rotational movements

within the entire channel range. Thus, the range of excited frequencies by the

external flow is broadened as soon as the shear flow is replaced by a pipe flow.

Even though conceptually little will change, since the instability of the

dumbbell is maintained, the behavior of the system can quantitatively change

expressed,e. g., in the determined power spectrum, mixing properties and the

effective viscosity. These changes can also lead to a different behavior de-

pending on the Weissenberg number W and certainly the dumbbell length

R̂ because a functional dependency of the shear rate γ̇(x) on the position x

introduces another non-linearity into the system. There are no limits to the

introduction of geometrical nonlinearities. For example, with a certain amount

of programming effort, the question can be raised about the influence of curved
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streamlines on the dynamical behavior inside the channel.
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Part II.

Expansion of a cloud of swimmers
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7. Forage: A self-diffusve process

Microswimmers like the alga Chlamydomonas reinhardtii or the bacterium Es-

cherichia coli, which are illustrated in Figure 7.1, are biological examples of

swimmers moving at micrometer-scales. In contrast to a human swimmer or

fish, using the thrust for an effective locomotion, all inertial effects are damped

quasi instantaneously. According to [131], an E. coli bacterium comes to the

scale of 10−10m as soon as it stops the propulsion. This leads to some con-

ceptional differences in the dynamics the swimmers perform implying fluid

motions.

As a living object, a biological microswimmer is dependent on an effective

foraging. The alga C. reinhardtii produces food by means of photosynthesisis.

Each cell has an eyespot that enables the cell to detect light from outer light

sources. Such a source represents a preferred direction of movement and the

propulsion along this direction is called phototaxis [154]. The bacterium E.

coli is able to detect chemical gradients via a sensoric system enabling the cell

to provide chemotaxis [22, 23].

In fact, every living swimmer follows an outer gradient for foraging, where

also magnetotaxis is observed. The search for food follows the same principles

independent on the specific swimmer type. The cell provides propulsion within

an intrinsic duration τ , where it covers a distance l0 = v0τ called persistence

length with v0 being the mean velocity of the swimmer. After this "run" the

swimmer uses the eyespot or sensors to measure its orientation towards the

light source or chemical gradient. Subsequently, a descision is made whether

the swimmer changes the direction completely within a reorientation process,

when disadvategeous areas are reached, or it maintains more or less its direction

of motion with only small deviations around the preferred direction of the

detected gradient.

The propulsion together with the reorientation lead to a random walk of each
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7. Forage: A self-diffusve process

Figure 7.1.: Replot of Figure 1.3 illustrating Chlamydomonas reinhardtii (left)

[3] and Escherichia cioli (right) [4].

swimmer, where in contrast to thermal diffusion the forage-induced random

walk does not obey a fluctuation-dissipation theorem determining the strength

of noise due to its dependence of inner-celular decisions, which take a small

amount of time. In the model reorientations are assumed to happen instanta-

neously. Instead, the fluctuations depend on specific parameters, which may

vary from swimmer to swimmer. These are the velocity v0 and reorientation

time τ , but also angles θ enclosed by the orientation er of a swimmer and a

preferred axis êz and φ enclosed by the old er and new er direction of motion

influence the diffusive dynamics of the swimmer.

In this chapter the propulsive dynamics of the swimmer is described before

the diffusive contribution to the displacement of isolated, non-hydrodynamical-

ly interacting swimmers is discussed.

7.1. Equations of motion in the low Reynolds number

regime

The dynamics of an incompressible fluid is described by the Navier-Stokes

equation along with the incompressibility condition

ρ (∂tu(x, t) + u(x, t) · ∇u(x, t)) , = −∇p(x, t) + η∇2u(x, t) + F (7.1)

∇ · u(x, t) = 0, (7.2)
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where u(x, t) denotes the local flow field, p(x, t) is the pressure and F refers

to the outer forces. ρ and η represent the constant fluid density and dynamic

viscosity. The introduction of appropriate characteristic length scale L and

velocity U as well as time T = L/U yields the rescaled dimensionless Navier-

Stokes equation

Re (∂t′u
′ + u′ · ∇′u′) = −∇′p′ +∇′2u′ + F ′ (7.3)

with the Reynolds number Re = ρ
η
UL. The occuring effects in the dynamics of

a fluid can be attributed either to inertial effects due to the nonlinear advective

term u · ∇u or friction in terms of ∇2u . The Reynolds number measures the

importance of inertial contributions against friction.

A CR-cell consists of a nearly spherical cell body of radius a ≈ 1µm. Us-

ing the values U ≈ 120µm for the swimming velocity, ρ = 1000kg/m3 for the

density, and η = 10−3kg/m s for the viscosity of water at 20◦C, one can de-

termine a value of the Reynolds number of ReCR ≈ 10−4 ≪ 1. In this case,

the partial derivative ∂t and the advective term u · ∇u on the left hand side

of Eq. (7.1) can be neglected and Eq. (7.1) can be replaced by the linear and

time-independent Stokes equation

0 = −∇p+ η∇2u+ F . (7.4)

Since Eq. (7.4) is time-independent, it is also symmetric under time-reversal.

For swimming at low Reynolds numbers that directly implies that if a swimmer

departs its propelling stroke into a forward and backward motion, which only

differ in their direction of execution, it would reach the initial position after a

full stroke. In other words, a scallop that can swim at high Reynolds numbers

by opening and closing the two shells, using the inertial rebound, only generates

an oscillatory but no directed motion at low Re. This fact is known as the

scallop theorem [131]. Additional degrees of freedom are required to break

the time-reversal symmetry. Purcell has presented three linked elements that

are able to propagate [131]. There are a variety of concepts that lead to an

effective propulsion, which may be based on three spheres [116] or the variation

of sphere sizes [135]. Further concepts of swimming in the low Re regime are

presented in [104]. Brenner:1981 The linearized Stokes equation Eq. (7.4) can

be solved analytically for an unbounded system [75]:

v(x) =

∫

H(x− x′) · F (x′) d3x′. (7.5)
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with H(r) denoted as the Oseen tensor [119]

Hij =
1

8πηr

(

δij +
rirj
r2

)

for i 6= j (7.6)

and the diagonal elements

Hij =
1

6πηa
. (7.7)

This tensor mediates the hydrodynamic interaction (HI) between the points x′,

where the force F acts on the fluid and the point x, where this force generates

a velocity perturbation v(x). Eq. (7.6) shows a slow decay with 1/r so that

the HI is long-ranged.

7.2. Forces generated by a flagellum

The main strategy microswimmers use to break the time-reversal symmetry

of Eq. (7.4) relies on the anisotropic friction coefficents ζ‖ and ζ⊥ of a long

rod, pulled through the surrounding liquid with a force F = F ê parallel (‖)
or perpendicular (⊥) to the rod-axis.

This rod may be partitioned in a chain of touching spheres with radius a

[40]. For the i-th sphere the equation of motion can be written as

ẋ =
F i

ζ
+
∑

i 6=j

H(xi − xj) · F j . (7.8)

In the continuum limit, where s ∈ [−L/2;L/2] denotes the contour line along

the rod, this equation can be rewritten [72]

ẋ(s) =
1

3πη
f(s) +

∫

H(x(s)− x(s′) · f(s′) ds′, (7.9)

where f(s) = F
L
ê is the force-density along the rod axis. Mechanisms in

which individual spheres crystalize to rods are called shish kebab models in the

polymer science [74, 153].

Now the friction coefficients for the motion of the rod parallel and perpen-

dicular to its axis are defined as

F = ζ‖v‖ + ζ⊥v⊥. (7.10)
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v‖
v⊥

Fx

Figure 7.2.: A helical shaped fagellum generates a force parallel to the direction

of motion with help of anisotropic friction coefficient parallel and

perpendicular to the rod axis.Perpendicular conributions average

out

To calculate the two coefficents ζ‖ and ζ⊥ from Eq. (7.9) the special case

of a rod situated along the x-axis is considered. The averaged rod velocity

vrod = 1
L

∫
ẋ ds is then given by

vrod = F

(
ê

3πηL
+

ê+ (êx · ê)êx

4πηL2

∫ L

2a

L− s

s
ds

)

. (7.11)

To prevent self-interaction the integral is cut off below s < 2a, corresponding

to the diameter of the rod.

The scalar product equals êx ·x̂ = 1 for a parallel drag force and êx ·x̂ = 0 in

perpendicular direction, so that the pre-factors differ by a factor of two, i. e.,

ζ⊥ =
4πηL

ln(L/2a)
, ζ⊥ = 2ζ‖. (7.12)

On the right hand side of Figure 7.1 a EC-bacterium is shown. This type

of swimmer rotates its flagella counterclockwise. Thereby all flagella form a

helix and synchronize to a bundle leading to the propulsion. The motorprotein

forces the flagellum to rotate around the helix axis so that each flagellum can

be described by a propagating wave with

x = [x,A sin(kx− ωt), A cos(kx− ωt)] (7.13)
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with amplitude A, frequency ω, and wave number k. A segment of the rod at

position x then moves with the velocity v(x)

v = ∂tx = Aω [(0,− cos(kx− ωt), sin(kx− ωt)] . (7.14)

The local tangent vector t is given by

t = [(1, Ak cos(kx− ωt),−Ak sin(kx− ωt))] (7.15)

where the velocity can be split in v‖ = (v·t)
t
t̂, and v⊥ = v − v‖, with the

parallel component given by

v‖ = −
A2ωk

1 + A2k2
t̂ (7.16)

with the unit tangent t̂ = t

t
. According to Eq. (7.10) the force Fx generated

along the direction of swimming is obtained by averaging Eq. (7.16) along the

helix axis

Fx =
ζ‖ − ζ⊥

L

∫
A2ωk

1 + A2k2
dx. (7.17)

The perpendicular force contributions vanish, so that Fx is the net force of

propulsion executed by a flageullum (Cf. Figure 7.2. For small amplitudes A,

the integral yields

Fx =
1

2
(ζ‖ − ζ⊥)A

2ωk. (7.18)

The result of Eq. (7.18) presented here differs from the reality, since non-

linear shapes of the flagellum especially at small distances x to the cell body

are neglected, where the flagellum is anchored. Nevertheless, it shows the

importance of ζ⊥ 6= ζ‖ for an effective propulsion at low Reynolds numbers.

In addition, Eq. (7.18) shows some intuitive results on swimming, where the

generated force is enhanced linearly with increasing frequency ω of flagella ro-

tations and wave number k of helical whorls of the flagellum and quadratic

with increasing amplitude of the propagating wave [104, 49]. Also the alga

Chlamydomonas reinhardtii uses the difference between ζ‖ and ζ⊥ for pur-

poses of propulsion even if their stroke resembles that of the human breast

stroke. The generation of forces during this movement pattern is described in

[21].
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7.3. Force-dipoles and velocity of isolated swimmers

Most swimmers in the low Reynolds number regime move autonomously, i. e.,

they generate the acting forces, e. g., by the beat of a flagellum with a prop-

agating helical wave. Thereby the averaged force F (x+ p) = −F0ê acts at a

distance p = p0ê from the cell nucleus, pulling or pushing in the direction of

motion. This force is balanced by the drag force F (x) = F0e acting on the

cell nucleus at x.

Ultimately, the driving motor forces and friction generate a force-dipole F0p

with a net-force of zero on the cell-body [87, 104]. In the biological word two

types of dipolar swimmers can be observed, where experimental confirmations

on the generated flow-field were provided for E. coli and C. reinhardtii by

Dresher et. al [45, 44]. The far-ranging flow field is illustrated in Figure 7.3

and looks similar for both types of a force dipole. The main difference is the

flow direction, where for a puller in the direction of motion ê an attractive

flow occurs, whereas, in the perpendicular direction the flow is pushed away

leading to repulsion. For pushers the situation is reversed.

Mathematically one obtains the dipolar flow field from the Oseen tensor

Eq. (7.6). With a dipole of strength D = F0p located arround x0 ± 1
2
p one

obtains the fluid velocity v(x) at the position x

v(x) =
D

8πηr2
(
−1 + 3(êr · ê)2

)
êr (7.19)

after an expansion to order p/r with r = |x − r0| and êr = r/r. In contrast

to a monopolar flow field, which decays as 1/r, the dipolar field decays faster

with 1/r2 from the center of the dipole.

On the one hand, the force-dipole yields the propagation, on the other hand

the long-range behavior of the generated flow field superposes with the self-

generated velocity. This hydrodynamic interaction leads to collective effects in

the dynamics of several micro-swimmers, where the different directions of the

flow around pushers and pullers yield some characteristic differences, which

are discused in Chapter 8
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pullers pushers

F0p

F0p

Figure 7.3.: left: Flow field generated by a puller. The force dipole attracts

fluid from the front and back. This water flows away perpendicular

to the orientation (Blue arrows). Right: pushers attract fluid from

besides the swimmer, which is pushed away in the direction of

orientation.

Propagation with force dipoles

As observable we choose a characteristic point x of the swimmer, such as the

center of the spherical cell-body. If this is pulled or pushed with a constant

force F0ê through the surrounding liquid, it moves with the constant velocity

ux = F0/(6πηa)I · ê, where a denotes the radius. But the motor force −F0ê

generated within a distance p = pê with p > a from the cell enters into the

equation of motion via the Oseen tensor Eq. (7.6). The swimmer, no matter

if a pusher or puller then moves with the constant velocity

ẋ = v0 =
(2− 3a

p
)F0

12πηa
ê. (7.20)

For p = 2a we obtain

v0 =
F0

24πηa
ê. (7.21)

The propulsion in the force-dipole model with vanishing net force is thus real-

ized by the different mobility matrices coupling the two forces to the cell-body.
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Far field and hydrodynamic interaction between two swimmers

Considering the dynamics of several swimmers one swimmer i moves in the

flow field generated by all other ones j 6= i. The equation of motion for the

i-th swimmer then reads

xi = v0,i + ṽi, (7.22)

where ṽi contains the perturbed hydrodynamic interaction, given by all other

swimmers [165]

ṽ =
∑

j 6=i

Ht(xi − xj) · F j −
∑

j 6=i

Ht(xi − xj − pj) · F j, (7.23)

with the force F j generated by the j-th swimmer and I denoting the identity

matrix. In the mobility matrix Ht(̺) the Oseen tensor Eq. (7.6) is replaced

by the Rotne-Prager tensor given by

Ht =







1
8πη̺

((

1 + 2a2

3̺2

)

I +
(

1− 2a
̺2

)
̺̺

̺2

)

, for ̺ > 2a

1
6πηa

((
1− 9̺

32a

)
I + 3̺

32a
̺̺

̺2

)

for ̺ < 2a.
(7.24)

This tensor bypasses the singularities for ̺→ 0 occuring in the Oseen-tensor

by treating the cases ̺ > 2a and ̺ < 2a seperately. In the limit ̺ → 0 this

tensor reaches the matrix with the Stokes-friction coefficient in the diagonal

entries.

When an isolated swimmer moves with constant velocity in a specified di-

rection of motion ê, the forces F generated by other swimmers at a distance

r generate a torque T acting on the considered swimmer

T = ̺× F . (7.25)

These torques induce a swimmer rotation at an angular velocity ω = θ̇ê and

the oientation of a swimmer alters according to

˙̂e = ω × ê. (7.26)

There is a Rotne-Prager tensor, which connects the torque T to the angular

velocity ω via ω = Hr · T . This Rotne-Prager tensor for rotations can be

written as [165]

Hr =







− 1
16πη̺3

(

I − 3̺r

̺2

)

, for ̺ > 2a

1
8πηa3

((

1− 27̺
32a

+ 5̺3

64a3

)

I + 9̺
32a
− 3̺3

64a3
̺̺

̺2

)

for ̺ < 2a.
(7.27)
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In Figure 7.3 the two different types of propelling force-dipoles of a pusher

and puller are shown. The blue vectors indicate the direction and strength

of the flow field in the surrounding fluid. The two force-dipoles only differ in

the position of the propelling force in the front or in the back. This small

difference leads to a quite different dynamical behavior within a suspension of

interacting swimmers. The flow field around pushers cause a particle-particle

attraction perpendicular to the swimming direction and they repell each other

in the direction of motion. This attractive effect ensures a stable collective

movement of swimmers moving in parallel directions leading to clustering.

This strong impact of the hydrodynamic interaction is not found in the case

of pullers, where the situation is reversed. The repulsive flows perpendicular

to the direction of motion favour an isolated single particle dynamics of quasi-

non-interacting swimmers.

7.4. Modeling the diffusive swimmer dynamics

A biological swimmer needs energy for the propulsive motion and to keep alive.

For example, the alga Chlamydomonas is able to perform photosynthesis [169].

For finding optimal light-flooded places, an eyspot enables the cell to detect

intensity gradients of the irradiating light. Cells like E. coli or B. subtilis

perform chemotaxis in a similar way with the help of detectors for chemical

gradients inside the cell membrane [23]. It is also known that there are bacteria,

which detect magnetic fields for foraging [39]. The phenomenology of the

resulting motions of phototaxis, chemotaxis, and magnetotaxis etc. is the

same:

The cell moves in one direction ei within a run. After the run it detects the

increase or decrease of, e. g., the nutrient concentration. If the concentration

decreases, the swimmer decides to initiate a sequence of flagella motions to

change its orientation in arbitrary direction. This process is called tumbling.

For E. coli the different states of motion during the tumbling stte have been

investigated by Darnton et al. [36]. Elsewise the swimmer holds its direction

of motion.

The phenomenon of chemotaxis can be described by a set of partial differ-

ential equations for the cell density and concentration of chemicals [96]. In
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7.4. Modeling the diffusive swimmer dynamics

this model the generation and destruction rates of nutrients, as well as the

diffusivity and mortality rate of the cells can be considered. What this model

does not consider, is the hydrodynamic interaction between the cells. In or-

der to describe the impact of hydrodynamic particle-particle interaction on

chemo- or phototactic cells, in this section the diffusive dynamics of swimmers

is analysed by replacing the swimmer density by a particle-based description

of the dynamics. Chemo- or phototactic effects are taken into account by lim-

iting the reorientation range of each swimmer within specified distributions.

First, the dynamics is analysed without taking into account the hydrodynamic

particle-particle interaction.

The dynamics of N = 500 swimming objects with spherical cell-body with

radius a at the positions xi(t) are described by Eq. (7.22), where hydrodynamic

interaction ṽ is not taken into account for the first. Then the dynamics of each

swimmer reduce to the motion of a sphere with radius a = 1 with constant

velocity v0 = 10 towards the orientation vector êi if not stated otherwise

ẋi = v0êi. (7.28)

The isolated swimmers perform a movement without any variation of ori-

entation within one run of duration τ . It has been found experimentally that

this time is exponential distributed

P(τ) = 1

τ̄
exp

{

−τ
τ̄

}

(7.29)

with the averaged run time τ̄ . This averaged time represents one system

parameter and may vary between τ̄0 = 5dt and τ̄ = 10, 000 dt in the presented

simulations with the time step of integration dt = 10−3. A C. reinhardtii cell

with a = 0.5µm moves with v0 ≈ 120µm

s
, i. e., one swimmer propagates its

diameter within τ0 = a/v0 ≈ 0.1 s. This time τ0 can be defined as a second

characteristic time, where a swimmer can be influenced by deterministic effects

such as the hydrodynamic interaction. As dimensionless parameter the ratio

between τ0 and τ̄ measuring deterministic against diffusive effects

Rτ =
τ0
τ̄

(7.30)

is defined. Note that shortening the runtime τ̄ results in an increase of Rτ .

The shorter the time τ̄ , the more often reorientations take place. This means
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7. Forage: A self-diffusve process

x

y
z

l0 = v0τ̄

Figure 7.4.: Illustration of a random-walk with persistence length l0 performed

by a swimmer of velocity v0. The random swimmer reorients after

an average the time τ̄ .

that the higher this ratio Rτ , the more diffusive is the character of the de-

scribed dynamics. C. reinhardtii cells reorient on average every second, so

that Rτ (CR) ≈ 10, i. e., a swimmer covers the persistence length l0 = 20 a

within one run (cf. Figure 7.4).

After each run a tumble is executed within a comparatively short time. In

this work it is assumed that these reorientations occur instantaneously. For an

equal distribution of new orientations ei(t
′) with t′ > t the mean orientation

〈ei〉 and correlation 〈ei(t) · ej(t
′)〉 can be assumed as

〈êi〉 = 0 (7.31)

and

〈ei(t) · ej(t
′)〉 = δij exp

{

−|t− t′|
τ̄

}

. (7.32)

By these reorientations a random-walk is generated, yielding a self-driven

diffusive dynamics of the swimmers. Self-driven means that the reorienta-

tion is not driven by thermal fluctuations, driving the diffusion in terms of

a fluctuation-dissipation theorem, where fluctuationing forces f(t) entering a
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7.4. Modeling the diffusive swimmer dynamics

θi φi

êz

êi

ê′
i

Figure 7.5.: The two angles θi and φi determining the new direction of motion.

Langevin equation

mẍ(t) + 6πηaẋ(t) + f(t) (7.33)

measured in terms of the temperature T are coupled to the fluctuating force

f(t) via the dissipation-fluctuation-theorem

〈f(t)f(t′)〉 = 2kT

η
δ(t− t′) (7.34)

with the Boltzmann constant k and viscosity η. Such a theorem does not exist

for the present swimmer dynamics. The diffusivity depends rather on intrinsic

quantities like the velocity v0, the running time τ0 and the distribution of

adopted angles within the reorientation.

The reorientation changes the old orientation of the i-th swimmer êi = êi(t)

to a new direction of motion ê′
i = êi(t

′) with t′ > t. As illustrated in Figure 7.5

two angles θi and φi are defined. θi denotes the angle between the orientation of

a swimmer êi and a prefered direction of motion êz, in which the concentration

of nutrients increases or in which a light source is positioned. φi denotes the

angle between the old (ê′
i) and new (êi) direction of motion.

The reorientations happen quickly and in the simulations they are assumed

to take place instantaneously. it is possible that within the short time of the

biological process a swimmer can not reach every angle on the unit sphere.

The furthest possible angle between the new and old direction êi and ê′
i of

motion is given by φ0 = π. Then the swimmer would continue propelling in

opposite direction. The parameter α ∈ [0; 1] is defined as φmax = απ, where
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Figure 7.6.: The autocorrelation-function 〈êi · ê′
i〉 for several values of α.
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7.4. Modeling the diffusive swimmer dynamics

φmax denotes the maximum angle that can be covered within one reorientation.

The angle φi is assumed to be equally distributed between φi = 0 and φi = απ

in the simulations. α = 1 means that the swimmer might reorient on the whole

unit sphere, whereas α = 0 means in fact no reorientation and thus diffusion.

Up to this point the modeling has been described that enters directly the

simulation of the dynamics of a number of N = 500 micro-swimmers. Since

two simulations can differ from each other due to the stochasticity of the

reorientations, it is useful to provide a statistical description of the directions

êi. It is possible to make analytical statements on the statistical moments of

ei similar to the analytical solving of a Langevin equation [137].

Each swimmer moves towards its initial direction of motion, where this direc-

tion is arbitrary. Figure 7.6 shows that the parameter α enters the exponential

correlation-function

〈
êi · ê′

j

〉
= δij exp

{

−α|t− t′|
τ0

}

(7.35)

and prolongs the time where the orientations êi and ê′
i are correlated. Note

that the correlation Eq. (7.35) is a result of the selected angular distributions

with phii in[0; alpha pi]. It is not explicitly specified in the simulations.

Biological swimmers may orient themselves towards external light sources or

alternatively chemical sources, in which case a preferential direction of motion

can be identified. Without restriction, the z-axis is defined as this direction.

The angle θi denotes the angle between the new orientation ê′
i and êz. This

angle is Gauss distributed with a standard deviation σ = βπ. For small values

of β → 0, directions of motion with small deviations around êz occur. The

angle θi is limited to the intervall θi ∈ [0; π]. For an increasing standard

deviations with β > 0.5 the Gauss distribution thus merges more and more into

an equal distribution, which is reached for β > 1. The observed distribution

of z-components of the orientation vector for different values of β is shown in

Figure 7.7.

By varying the distribution around the z-direction the mean value of orien-

tations changes. While for β > 1 a uniform distribution leads to an average

angle 〈θ〉 = π
2

and thus 〈êz〉 = cos(π
2
) = 0, this angle θ is linearly reduced

for β → 0. The mean direction of swimmers can be well described by the fit
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Figure 7.7.: Left: Distribution of the z-components of the directions of motion

ê1, ..., êN for β = 1
8

(red), β = 1
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(green), β = 1
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(blue), and β = 1

(magenta).Right: Mean value of direction of motion in z-direction

versus β. The data points fit using f(β) = 1− cos
(

π(1−β)
2

)

in the

range of β ∈ [0; 1].

function:

〈êi〉 = 1− cos

(
π(1− β)

2

)

êz. (7.36)

When β < 1, as shown in Figure 7.7 on the right, the swimmers show a

preferred direction of motion. To prevent the drift of swimmers towards a

preferrential direction, the two parameters may be chosen as α = 1 and β = 1

as reference for reorientations on the entire unit sphere.
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8. Dispersion of a boundless cloud of swimmers

After the introduction of force dipoles within Chapter 7 to describe the hydro-

dynamic interaction between micro-swimmers, as well as after the description

of simulation principles for the reorientation of these swimmers, both effects

are linked within this chapter to describe the dispersion of a initially Gauss

distributed cloud of swimmers to which both effects have an influence. The

description of biased random walks for chemo- or phototactic micro-swimmers

leads to a Fokker-Planck equation for the distribution of the swimmers [73].

That the probability distribution under non-linear effects, such as the hydro-

dynamic interaction, can change its shape is also known [121].

This work deviates from the description of a cloud as a probability distri-

bution for the position r and concentration in terms of the volume fraction Φ.

Rather, particle-based simulations of the dispersion of such a cloud are pre-

sented in this chapter. The aim of these simulations is to explain the dispersion

of the cloud by the effects of the individual particle dynamics which is subject

to hydrodynamic interaction, and to identify differences between pullers and

pushers.

In addition to parameters, such as the volume fraction Φ, position r, stan-

dard deviation σ and center µ which are related to the distribution of swim-

mers, also quantities like the distance ̺ and the distance between the near-

est neighbors λ coupled to the hydrodynamic interaction (cf. Eq. (7.24) and

Eq. (7.27) play an essential role (cf. Figure 8.1). Before the complete dynamic

system is considered, first the dispersion without hydrodynamic interaction

is investigated, to provide a reference for the dispersion with hydrodynamic

interaction.
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8. Dispersion of a boundless cloud of swimmers

λ
̺

×µ
r

Figure 8.1.: Sketch of a cloud of swimmers with the defined distances ̺ between

two swimmers, λ the distance between next neighbors, and r the

distance between a swimmer and the center point µ.

8.1. Definition of the volume fraction

The initial distribution P(x) of the positions x of the N = 500 swimmers is

assumed to be a Gaussian curve, where the initial orientations are determined

corresponding to the distributions presented in Section 7.4. The Box-Müller

method is used to determine the initial position x(t0)i of the i-th swimmer with

a Gauss distributed distance ri to the center of mass coordinate µ defined as

µα =
1

N

N∑

i

xαi (8.1)

with α = x, y, z. The course of the individual trajectories can differ from sim-

ulation to simulation, so it is justified to perform a statistical treatment of the

dynamics of N swimmers. In addition to the center of mass µα (cf. Eq. (8.1)),

the standard deviation σα is defined as

σ2
α =

1

N

N∑

i

(xαi − µα)
2 (8.2)

In Section 7.3 it was shown that the hydrodynamic interaction in terms of

the Rotne-Prager tensor H depends on the distance ̺ij between the interacting

swimmers i and j. First of all, the volume fraction Φ is introduced, which links

the distance ̺ij between the swimmers to the distribution.

Without restriction, the statement is correct that the averaged distance ¯̺

increases as soon as the standard deviation σ increases. By means of σ, the
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8.1. Definition of the volume fraction

spherical reference volume VS = 4
3
πσ3 covered by swimmers can be introduced.

Each swimmer itself covers a volume of Vs =
4
3
πa3 so that the volume fraction

can be defined as

Φ =
NVs

VS
=

Na3

σ3
(8.3)

In simulations, the initial volume fraction Φ0 can be set. The following results

have been obtained with Φ0 = 0.1 so that the initial standard deviation σ,

which determines the initial distribution is given by

σ =
3

√

Na3

Φ
. (8.4)

The positions xi(t) are determined via an iterated integration of Eq. (7.28)

using Euler steps taking into account the specifications of the reorientation

process, so that the distribution of positions P(x, t) can be obtained time-

resolved in three dimensions. Therefore, the variance σ2
α (cf. Eq. (8.2)) and

the volume fraction Φ(t) (Cf. Eq. (8.3)) are time-dependent quantities.

Especially in those cases with β → 0 the dispersion of the cloud happens in

an inhomogeneous fashion. Thus, the time-dependent volume fraction Φ(t) is

defined as the ratio between the volume of the N swimmers and the volume

VS = 4
3
πσxσyσz. The volume fraction Φ(t) yields:

Φ(t) =
Na3

∏

α σα(t)
,with α = x, y, z. (8.5)

Figure 8.2 shows the temporal behavior of the volume fraction Φ for a set

of N = 500 swimmers with v0 = 10, but different mean durations τ̄ of one

run. After an initial regime without noticable change of Φ the cloud starts to

disperse and the volume fraction decreases following a scaling behavior

Φ(t) ∝ tγ , (8.6)

with γ = −3
2

in the long time limit.

For long τ̄ one observes an intermediate regime with γ = −3. The exponents

are obtained under the following considerations on the lengths σα. For τ̄ →
∞ the swimmers do not reorient, so that each swimmer moves according to

Eq. (7.28). The position xi at time t is then simply obtained via

xi(t) = xi(0) +

∫

dt v0êi = v0tei (8.7)
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8. Dispersion of a boundless cloud of swimmers

and the variance σ2
α around the center coordinate µα is given by:

σ2
α = 〈(xα − µα)

2〉 = 〈x2
α〉 − 〈xα〉2. (8.8)

Here and in the following the brackets 〈x〉 = 1
N

∑N
i xi have the meaning of

averaging over all swimmers. The mean value µα and σα at time t can now

be expressed with help of the propagation of each swimmer, as for the mean

orientation and correlation-function Eq. (7.35) and Eq. (7.36). One can write:

µα = 〈xα(t)〉 = 〈xα(0)〉+ 〈
∫

dtv0êα〉. (8.9)

At this point the inhomogenety, which is controlled by the parameter β < 1,

enters the growth process of the cloud within a propagation of the center point

in a linear manner, and the mean value along the z-axis is given by

µz(t) = 〈xz(0)〉+ v0t

(

1− cos

(
π(1− β)

2

)

êz

)

, (8.10)

where along the x and y-direction µα = 〈xα(0)〉 no propagation occurs.

The dispersion is described by the growth of σ2
α and thus the meansquared

displacement 〈x2
α〉, which reads

〈x2
α〉 =

〈∫

dt dt′xαi(t)xαi(t
′)

〉

=

〈

x2
αi(0) +

v20
3

∫

dt dt′ êi(t) · êi(t′)
〉

. (8.11)

The last expression corresponds to the correlation-function given by Eq. (7.35).

For short |t−t′| ≪ τ0/α the exponential function yields exp{−α|t−t′|/τ̄ |} = 1.

The integration of Eq. (8.11) then yields a short-time regime with 〈x2
α〉 ∝ t2.

The volume fraction decreases with t−3, where the occurence of this regime

depends on the initial extension 〈x2(0)〉 of the cloud and τ̄ (cf. Figure 8.2.

The integration of the exponential function for large |t − t′| ≫ τ̄ /α gives

τ̄ /α and thus the total varriance reads

σ2
α =

〈

x2
αi(0) +

v20
3

∫

dt dt′ N exp

{

−α |t− t′|
τ0

}〉

=

〈

x2
αi(0) +N

v20 τ̄

3α
t

〉

.

(8.12)

Thus, the volume fraction scales as Φ ∝ t−
3

2 in the diffusive regime. The decay

of Φ in dependence of the time t, as illustrated in Figure 8.2 can be split in

three parts:

First an initial regime without a noticalble change of Φ, which may be

followed by a decay with γ = −3 for long τ̄ and t≪ τ̄ /α. This regime can be
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Figure 8.2.: Volume fraction Φ for a cloud of N = 500 swimmers with v0 = 10

and different durations τ̄ of a run. For long times τ̄ , the scaling law

of dispersion changes from t−3 to t−
3

2 as a result of the transition

from the ballistic to the diffusive regime.
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8. Dispersion of a boundless cloud of swimmers

attributed to a ballistic regime, in which the swimmers have not reoriented,

but have propagated an appreciable distance. For long times t ≫ τ̄ /α, the

swimmers reach the diffusive regime containing swimmer reorientations. Then,

the decay of Φ transiates from Φ−3 to γ ∝ −3
2
.

These scaling laws are universial,i. e., independent of the velocity v0 and the

mean reorientation time τ̄ . However, the rate of dispersion depends very well

on these parameters. It is essential that a swimmer, reorienting quickly swims

small distances within the short time τ̄ , contributes less to the dispersion than

a swimmer having a long intrinsic reorientation time τ̄ . On the other hand

a fast swimmer with a high velocity v0 only needs a short time τ0 = a/v0 to

cover the swimmer radius a. On the first view it seems astonishing that this

time τ0 enters quadratically entering the velocity v0 (Cf. Figure 8.2). By means

of Eq. (8.12) a characteristic time T scale for the dispersion process can be

determined, which depends only on the velocity v0, radius a, and reorientation

τ̄ given as

T = αv20/a
2/τ̄ = ατ 20 /τ̄ . (8.13)

This time corresponds to the time one swimmer needs to cover its body length

in the presence of reorientations under the consideration of reorientations. In

the following sections this time T is used to rescale temporal dependencies of

the dispersion process.

8.2. Moments of the distribution

Instead of following the growth of the total distribution P(x, t) of swimmers

with proceeding time, the swimmer dynamics can be investigated by following

the trajectories xi(t) starting at the initial positions xi(0). The previously

described random-walk (cf. Section 7.4) of the swimmers cause a diffusive dy-

namics dependent on v0, and τ̄ , but also on α and β. In numerical simulations

and direct experimental observations of a cloud of biological swimmers, the

progress of a distribution P(x(t)) of swimmer positions is analysed. An initial

Gaussian distribution P(x(0)) decays following a Fokker-Planck equation [137]

∂tP(x(t)) = ∇ ·
(
D(1)P +∇D(2)

)
P(x(t)), (8.14)

with the drift- and diffusion-term D(1) and D(2), where the first term represents

a propulsion of the mean value of the cloud and the second one describes the
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8.2. Moments of the distribution

diffusive dispersion. The description of the cloud dynamics via Eq. (8.14) and

Eq. (3.4) including the reorientation mechanism is equivalent. The cofficients

D(1) and D(2) can be interpreted as Kramers-Moyal coefficients, defined as

[137]

D(n)(x, t) =
1

n!t
〈(x(t)− x(0))n〉 (8.15)

where 〈(x(t)− x(0))n〉 denotes the n-th conditional moment

〈(x(t)− x(0))n〉 =
∫

dx (x(t)− x(0))nP(x(t)). (8.16)

The conditional moments are obtained from numerical simulations of Eq. (3.4).

The diffusion around the center point of the cloud is given by

D(2) =
1

2t

(
〈(x(t)− x(0))2〉 − 〈x(t)− x(0)〉2

)
. (8.17)

Up to second order the expressions for 〈xn〉 are known from Eq. (8.9) and

Eq. (8.12) in dependence of v0, τ̄ , α and β. The terms due to drift D(1) and

diffusion D(2) are given by

D(1) = v0

(

1− cos

(
π(1− β

2

))

êz (8.18)

D(2) =
1

3

v20 τ̄

α
(8.19)

Figure 8.3 shows the evolution of the diffusive regime, characterized by D(2)

for long times t ≫ τ̄ /α. This stationary state arises after the transition from

the inital ballistic motion, where the mean squared displacement grows with

t2 while the first reorientations have not taken place. After these reorienta-

tions the correlation-function 〈ei · e′
i〉 decays below 1/e ≈ 0.4 at the time τ̄ /α

(Cf. Figure 7.6), where this corresponds exactly to the time after which the

diffusive regime occurs.

From Eq. (8.18) and Eq. (8.19) it can be seen that variations of the parame-

ter β have an effect on the propagation of the cloud in terms of a drift towards

a preferred direction, where the parameter α affects only the diffusivity. Fig-

ure 8.4 shows D(1) and D(2) as a result of a numerical study in dependence

of the parameter β is shown, determined for each direction x, y and z. It is

astonishing that the diffusive dynamics remains homogeneously along all three

directions with a common diffusion coefficient D(2) = 1
3

v2
0
τ0
α

above β = 0.5.

Below this value the preferrence of the z-direction is reflected in the break
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Figure 8.3.: The diffusion coefficient for v0 = 10, τ̄ = 1 and β = 1, but different

values of α. The diffusive regime appears for times tα/τ̄ > 10.
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Figure 8.4.: Numerical study on the drift-coefficent D(1) (left) and diffusion

coefficient D(2) (right) in dependence of the parameter β. The

homogeneous diffusion is broken below β < 0.5, where different

coefficients D(2) occur in x-,y-, and z-directions. For β = 0 no

diffusive broadening of the swimmer distribution occurs.

of homogenity. Also, below β < 0.5 the range of adopted orientations has

shrinked, so that the diffusion coefficent D(2) in all three directions decreases

until no reorientations take place for β = 0 and thus no diffusion occurs, with

D(2) = 0.

8.3. Dispersion with Hydrodynamic Interaction

The velocity of each individual swimmer is generated by propelling motions,

which generate a flow field around the swimmer. This field is described by

means of force-dipoles, as introduced in Eq. (7.20). Two different types of

swimmers, called pushers and pullers, exist in the biological world. In the

theoretical description the force dipoles only differ in the sign of the propelling

forces. Around the swimmers a flow field ṽ is generated, which decays as r−2

with distance r from swimmer j. A swimmer i at the distance r from swimmer

j is influenced by just this flow field, its motion is influenced by perturbations

from all other swimmers.

The fact that the different sign in the propelling forces leads to a totally

different interactive processe in the cloud of pushers and pullers is illustrated
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8. Dispersion of a boundless cloud of swimmers
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Figure 8.5.: Snapshots of a cloud of N = 500 swimmers with v0 = 10, τ̄ = 0.01,

α = 1 and β = 1 after different times t. The cloud on the left

consists of pullers, analogous the right figures illustrate slouds of

pushers. In the latter case the growth occurs much faster for long

times. In colors the position z-direction is indicated.

in Figure 8.5, This figure shows snapshots of N = 500 swimmers with the same

parameters at different times t. The only difference between the illustrations

on the left and right is the swimmer type, where the clouds on the left (right)

consist of pullers (pushers). One can see that the dispersion process for pushers

occurs much faster than for pullers.

The big difference between the dynamics of pullers and pushers can be seen

in Figure 8.6. Here the distribution of the distance λ between the swimmer i

and its next neighbor j is shown:

λ = min(̺ij), (8.20)
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Figure 8.6.: Left: Distribution of the distance λ between next neighbors for

pushers (red) and pullers (green) for τ0 = 0.01 and v0 = 10 at

different times. Where pushers tend to cluster with a constant

distribution preferring small distances, the distribution shifts to

high vallues with increasing time for pullers. On the right hand

side the temporal developement of the mean-vallue of λ indicates

the approach of pushers, where pullers tend to repell each other.

with ̺ij =
√

(xi(t)− xj(t))2 for fixed i and j ∈ [0, N ], but j 6= i . The left

hand side shows the distribution P(λ) of the distance between next neighbors

for pullers (red) and pushers (green). The main difference is that the mean

distance between pullers tends to grow, whereas the attraction of pushers per-

pendicular to their orientation leads to clustering, as indicated by a preference

of small distances between neighboring swimmers. This tendency of attraction

between pushers can also be seen on the right, where the mean value 〈λ〉 is plot-

ted. Due to the decay of hydrodynamic interaction with r−2 (Cf. Eq. (7.19))

the collective effects in a suspension of swimmers are mainly carried by the

pairwise interaction between next neighbors. Hence, it can happen that local

clusters occur that are stable for long time windows, where swimmers sup-

port each other with a collective velocity higher than v0. This will lead to an

increase of the mean velocity as sketched in Figure 8.5.

The dynamic simulations of N = 500 swimmers with v0 = 10 with reori-

entations after τ̄ include hydrodynamic interaction ṽ between each pair of
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8. Dispersion of a boundless cloud of swimmers

swimmers given by Eq. (7.23) with Eq. (7.24)

ṽ =
∑

j 6=i

Ht(xi − xj) · F j −
∑

j 6=i

Ht(xi − xj − pj) · F j. (8.21)

In addition each force generated by swimmer j induces a torque on the swim-

mer i, where the total torque ω̃ is given by:

ω̃ =
∑

j 6=i

Hr(xi − xj) · F j −
∑

j 6=i

Hr(xi − xj − pj) · F j. (8.22)

The full equations of motion are given by:

ẋi = v0ei + ṽ, (8.23)

, ėi = ω̃ × ei. (8.24)

In Eq. (7.27) and Eq. (7.24)Hr(̺) andHt(̺) are given and the force F j = F0ej

is coupled to the velocity v0 via Eq. (7.21):

F0 = ε24πηav0, (8.25)

with a parameter ε introduced to later enabling the decoupling between the

propulsive motion with v0 and the hydrodynamic interaction. For the mo-

ment this parameter is set to ε = 1. The analysis of the cloud growth under

hydrodynamic interaction is provided in the same way as in the case of free

dispersion without hydrodynamic interaction. The difference now is that the

full dynamical equations are not solvable analytically for a number of N = 500

swimmers. Therefore, Eq. (8.24) and Eq. (8.24) are solved numerically.

The investigations are started with a homogeneous distribution of swimmer

orientations with α = 1 and β = 1, so that no drift of the total cloud occurs.

The refference diffusion-constant is given by

D0 = v20 τ̄ /α, (8.26)

if a three-dimensional dynamics is considered.

The interest lies on the effect of hydrodynamic interactions on the diffusion

coefficient of the cloud. As an initial guess, on dimensional grounds one may

expect the hydrodynamic interaction, which depends on the volume fraction

Φ, to enter like

D(2) = 〈v0êi + ṽ(Φ)〉2τ0/α. (8.27)
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8.3. Dispersion with Hydrodynamic Interaction

The main question at this point is, how the hydrodynamic interaction influ-

ences the diffusion coefficient D(2)?

As initial condition a volume fraction of Φ ≈ 0.1 prescribed as well as a

constant intrinsic velocity v0 = 10. In Figure 8.7 the diffusion coefficient

D(2) against the time t is illustrated for pullers (left) and pushers (right). In

both cases the red line shows the data for an average running time τ̄ = 1

with the ballistic regime for small times t. There is no difference between

these two curves and also the differences to the diffusive dynamics without

hydrodynamic interaction vanish for such large τ̄ . The effect of hydrodynamic

interaction with the differences between pullers and pusher become visible if τ̄

is reduced (cf. the curves for τ̄ = 0.05 and τ̄ = 0.1) .

The vanishing effects for long run times τ̄ can be explained as follows: The

hydrodynamic interaction shows attractive as well as repulsive parts for both

swimmers. It is known that especially those parts of the hydrodynamic in-

teraction perpendicular to the swimmer orientation predominate the collective

dynamics (Cf. [49, 104] implying that pullers are repelled from each other by

the hydrodynamic interaction decreasing with with ̺−2. In long runs with

τ0/τ̄ = 10 the interactive effects get lost at the early stages of the ballistic

regime. Further, pushers with τ0/τ̄ = 10 do not show visible differences to the

free dispersing case, although an attractive interaction leads to long-lasting

cooperative effects between the swimmers. Also this swimmer type underlies

a repulsive interaction along the direction of motion. Considering two pushers

i and j interacting with each other,simultaneously to the attraction of the two

swimmers are more and more repelled by the repulsive parts of the hydro-

dynmic interaction. Both swimmer types have in common that for long times

the repulsion predominates dispersing the swimmers and decreasing their hy-

drodynamic interaction. Compared to τ̄ this happens that fast in the case of

τ0/τ̄ = 10,so that no difference to the free dispersion occurs.

In both cases the effects of hydrodynamic interaction appear when the re-

orientation rate 1/τ̄ is increased drastically. The other graphes shown in Fig-

ure 8.7 belong to running times τ0/τ̄ = 1 (blue), τ0/τ̄ = 0.5, and τ0/τ̄ = 0.1.

By reducing the run times the removal of swimmers from each other is inter-

rupted with each reorientation, so that the effect of hydrodynamic interaction

persists for longer times. For pullers, which repell each other anyways one
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Figure 8.7.: Relative diffusion coefficient ∆D in swimmer suspensions with an

initial volume fraction Φ = 0.1 and intrinsic velocity v0 = 10, but

different run times τ0. Left:suspension of pullers. Right: suspen-

sion of pushers.

would expect an increase of the diffusion coefficient of interacting swimmers

decreasing to the reference diffusion constant of non-interacting swimmers.

Figure 8.7 shows this behavior of the diffusion coefficient D(2). For pushers

the diffusion coefficient D(2) enhances similar to the case of pullers. The main

difference is that with increasing ratio τ0/τ̄ the diffusion coefficient D(2) tends

to grow to high values.

To identify the hydrodynamic interaction in the diffusion coefficient ∆D is

defined as the relative increase of the coefficient D(2) compared to D0

∆D =
D(2) −D0

D0

. (8.28)

With the plot of the relative diffusion coefficients ∆D in Figure 8.7 it is shown

that, no matter which swimmer type is considered, hydrodynamic interaction

increases the diffusion coefficient D(2) is enhanced (∆D > 0) for small τ̄ , so that

the individual swimmer is faster in the collective as an isolated one. Figure 8.7

however does not allow to relate the hydrodynamic interaction is not able to

couple the hydrodynamic interaction to the growth of the cloud directly.

Figure 8.8 shows the decrease of the time dependent volume fraction of

clouds consisting of pullers (green) and pushers (blue) starting with an initial

volume fraction Φ = 0.1. The comparison with the red curve corresponding
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8.3. Dispersion with Hydrodynamic Interaction

to the case of free dispersion shows that only pushers disperse with increased

velocity, whereas hydrodynamic interactions of pullers have no influence al-

though the diffusion coefficient D(2) is initially increased for the illustrated

data of suspensions of swimmers with velocity v0 = 10 and reorientations after

τ̄ = 0.01 on average.

The growth of the cloud of swimmers in general is a self-interactive process,

i. e., the distribution and the type of suspended particles have an impact on

the growth of the swimmer distribution. With the diffusion coefficient D(2) or

even better the deviation ∆D from the case of free dispersion a quantity is

known that measures directly the impact of hydrodynamic interaction on the

growth of the cloud. However, the volume fraction Φ measures the averaged

distance between the interacting particles and thus represents a measurement

of the strength of hydrodynamic interaction between the swimmers.

Growth of clouds of pushers

The illustrated graphs of ∆D in Figure 8.9 against the volume fraction Φ

shows that for quickly reorienting pushers the enhancement ∆D does not de-

pend on Φ for a long range of Φ leading to very diluted regimes. The illustrated

data shows that the averaged distances between the swimmers increase very

fast, as indicated by the enhanced diffusion coefficient ∆D > 0. One would

assume that ∆D would decrease with increasing distance between the swim-

mers acorrding to the decreasing hydrodynamic interaction in dependence of

the decreasing volume fraction Φ, but the hydrodynamic interaction remains

constant except for fluctuations arround an average strength ṽ ≈ v0.

The cloud dispersionwith constant collective velocity can be explained as

follows: The cloud of N = 500 swimmers can be departed in subdivisions of 3

or 4 swimmers with small particle-particle distance. These clusters reach far

distances from each other within the stable collective dynamics indicated in

the fast decrease of the volume fraction Φ.

The reference diffusion coefficient is a function of v0, α, and τ̄ and thus

one would expect the same dependencies that the relative coefficient ∆D =

(D(2) −D0)/D0, but the expected dependence on reorientations in terms of τ̄

does not occur. This can be seen in Figure 8.9, where all curves of ∆D coincide
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Figure 8.8.: The temporal development of the volume fraction Φ of swimmer

suspensions with v0 = 10 and τ̄ = 0.01. For this set of parame-

ters the hydrodynamic interaction has an impact on the diffusion

coefficients D(2). The red curve represents data of non-interacting

swimmers, where the green curve represents pullers and the blue

graph illustrate data obtained ,for pushers.

150



8.3. Dispersion with Hydrodynamic Interaction

10−1

100

101

10−3 10−2 10−1

∆
D
τ 0
/τ̄

Φ

τ0/τ̄ = 50
τ0/τ̄ = 500
τ0/τ̄ = 1000
τ0/τ̄ = 2000

Figure 8.9.: The increase ofthe relative diffusion coefficients ∆D against the

volume fraction Φ for several vallues of v0 and τ̄ . The collapse

of the curves after the multiplication by τ0/τ̄ indicates that the

velocity of the individual swimmers, and thus the cloud dispersion,

is not directly related to the diffusion process.
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8. Dispersion of a boundless cloud of swimmers

when ∆D is rescaled with av0 = D0τ0/τ̄ instead of D0 = αv20 τ̄ , so that the

effect of reorientations vanishes effectively in ∆D wich can be interpreted as

an enhanced collective velocity of swimmers affecting the dispersion. The fact

that ∆D is effectively independent of τ̄ is a result of clustering and thus an

effect of hydrodynamic interactions. In Figure 8.6 it was shown that despite the

reorientations pushers tend towards a constant probability distribution of the

nearest neighbors although the dispersion advances reducing volume fraction

Φ. If the distance λ between adjacent swimmers remains constant, there are

also no variations in the hydrodynamic interaction ṽ that occurs in ∆D.

The distance λ = 2 a is a minimum distance for interacting swimmers. With

Eq. (7.19) the averaged flow-contribution in a distance 2a around one swimmer

lies arround ṽ ≈ 0.8v0. The enhancement of the diffusion coefficient ∆D lies

betwenn ∆D = 2.0av0 and ∆D = 2.5av0. Together with Figure 8.6 one can

assume that subgroups of two or three swimmers build clusters initially, which

stay stable and lead to a fast dispersion of the cloud.

Growth of clouds of pullers

While a suspension of pushers show an increased dispersion in terms of ∆D

(cf. Figure 8.9), a suspension of pullers with the same parameters shows no

noticable differences in the temporal dependence of Φ (Cf. Figure 8.8). By

plotting ∆D directly against the volume fraction Φ the task now is to identify

the influence of hydrodynamic interaction between pullers within the cloud

dispersion. The graphs of ∆D against Φ for several values of the intrinsic

parameters τ̄ and v0 are illustrated in Figure 8.10.

While clusters in suspensions of pushers change the distribution P(x), lead-

ing to a constant interactive impact on the dynamics, the hydrodynamic in-

teraction between pullers decreases with decreasing volume fraction Φ and

increasing particle-particle distance λ. In the dilute regime the hydrodynamic

interaction increases the veocity of each particle on average, as reflected in

the enhanced diffusion coefficient. This repulsion between swimmers does not

change the distribution of swimmer positions itself. For this reason, ∆D is a

function of the volume fraction Φ, assuming

∆D = AΦB. (8.29)
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Figure 8.10.: The diffusion coefficient ∆D plotted against the volume fraction

Φ for several suspensions of pullers with different v0 and τ0. ∆D

decays proportional to Φ
2

3 .

A and B denote parameters, which can be determined by fits to the data shown

in Figure 8.10, where all graphs decay with an averaged exponent B = 2
3

for

decreasing volume fraction Φ.

The relative diffusion coefficient ∆D for puller suspensions depends on the

growing mean particle-particle distance λ, so that the interactive impact de-

pends on v0 and τ̄ via D0 = αv20 τ̄ . With this rescaling the collaps of all

data-series to the generalized curve from Figure 8.10 occurs. The effects of

swimmer interaction are about 20% for a volume fraction of Φ = 0.1, which

decay further to 1% for Φ = 0.001 in a dilute suspension. The presented

investigations have been made for swimmers, which reorient in an arbitrary

direction with α = 1 and β = 1.
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Figure 8.11.: The relative diffusion coefficient ∆D in dependence of Φ for sev-

eral amplifing values of ǫ > 1. The scaling law Φ
2

3 can be at-

tributed to the hydrodynamic interaction between pulers.

Although B = 2
3

already results from fits of the obviously very noisy curves

in Figure 8.10, this result is not particularly convincing after a pure look at

Figure 8.10. In order to attribute this result to hydrodynamic interactions,

the parameter ǫ in Eq. (8.25) is increased which determines the amplification

of hydrodynamic interaction compared to the self-propulsion of the swimmers.

Figure 8.11 illustrates ∆D in dependence of the volume fraction Φ. Only

beyond an amplification ǫ = 20 an appreciable increase of ∆D is observed,

which grows quadratically with ǫ since the resultant interactive velocity ṽ de-

pends linearly on ǫ. The increase of hydrodynamic interaction, which enters

via summation of all contributions into the single particle dynamics, has the

effect that with increasing ǫ the diffusive character of the dynamics loses more
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8.3. Dispersion with Hydrodynamic Interaction

and more its dependence in the dense regime around Φ = 0.1. As illustrated in

Figure 8.11 wone can identify a critical volume fractions Φc(ǫ), where hydro-

dynamic interaction only play a subordinate role in the collective dynamics for

Φ < Φc. Above this volume fraction ∆D ∝ Φ
2

3 is obtained no matter which

value for the amplification is set.

It seems as if B = 2
3

is a universal law for the dispersion of puller suspen-

sions, which can be attributed to the hydrodynamic interaction between the

swimmers. However, in order to detect the effect of the hydrodynamic inter-

action, without the loss in the ballistic regime quickly re-orientaing swimmers

are required.

Phototaxis and hydrodynamic interaction

A valid question is, whether parameter variations have a significant impact

on the cloud dispersion. Especially for β → 0, the reorientation vanishes and

the initially spherical cloud of interacting pullers, as illustrated in Figure 8.12,

disperses inhomogeneously due to the attractive and repulsive components

of the hydrodynamic interaction in different directions. In this section the

influence of the parameters α and β on the dispersion are clarified.

In a first step, the parameter α is varied between α = 1 (corresponding to

reorientations on the full unity sphere) and α = 0.5, indicating that the old

(ei) and new (e′

i) direction of motion cover a maximum angle of φ = π
2

within

one reorientation. In Figure 8.13 it can be seen that a reduction of the maximal

covered angle results in a reduction of hydrodynamic interaction, where below

α = 0.6 no interactive effects can be identified for the chosen parameters

corresponding to a time-ratio τ0/τ̄ = 0.02. This decrease of the hydrodynamic

interaction is not surprising, if one recalls that the hydrodynamic interaction

for a given volume fraction Φ remains identical, where the reference coefficient

D0 = v20 τ̄ /α increases with decreasing α. interaction

Interesting phenomena occur if the parameter converges to β → 0. β is

related to the covered angle between z-direction and direction of motion and

β = 0 means that reorientations only take place if the swimmer was previously

diverted from the hydrodynamic interaction with others. But first, between

β = 1 and β = 0.5 the reduction of β induces an increasing drift term D(1)
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Figure 8.12.: Snapshots of N = 500 pullers aligned towards the z-direction at

every reorientation at different time steps.
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Figure 8.13.: Impact of hydrodynmic interaction ∆D on the diffusion coeffi-

cient against volume fraction Φ for α = 1, α = 0.8, and α = 0.6.
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without having an influence on the diffusion term D(2) because for β ∈ [0.5; 1],

the distribution of the directions of motion ei is hardly different from a uniform

distribution.

Only below β = 0.5 all swimmers orient themselves measurably towards

the z-direction. Especially these configurations emphasizes the attractive and

repulsive character of the interaction, where the pure diffusive dynamics more

and more retreats (Cf. Figure 8.4). The growing inhomogenity with decreasing

β is shown in Figure 8.14. In this figure the aspect ratio of cloud radii A defined

as

A = σx/σz (8.30)

is plotted against time for β = 0.5, β = 0.25, β = 0.125, and β = 0. In

all four cases the dynamics starts with a spherical distribution with A = 1.

Whie β = 0.5 does not show a variation of A except for fluctuations, all other

values of β induce a relative decrease of σz against σx due to the increasing

attraction along the z-direction accoompanied by the increasing repulsion in

perpendicular directions.

The cloud dispersion for β = 0, as illustrated in Figure 8.12, represent a

special case since it is only caused by hydrodynamic interaction with vanish-

ing diffusive contributions (cf. Figure 8.4), where D(2) = 0 means that no

dispersion occurs. The interaction-driven dynamics can nevertheless be char-

acterized in terms of the diffusion coefficient D(2)
z , i. e., the preferred direction

of motion and D
(2)
r in the perpendicular r-direction with r =

√

x2 + y2. These

diffusion coefficients are illustrated on the right part of Figure 8.14, where the

red curve represents the diffusive motion in z-direction according to the attrac-

tive hydrodynamic interaction. On the other hand the green curve represents

a direct measurement of the repulsive parts in r-direction.

In the initial stages of high volume fractions Φ the cloud is a spherical en-

tity, which tightens in z-direction with a constant hydrodynamically mediated

diffusion coefficient D(2). Within the cloud contraction the swimmers arrange

in configurations, which can be characterized by the extreme case of two swim-

mers orienting towards the z-direction, but with a body-to-body connection

line perpendicular to the z-orientation, where only the repulsive contributions

act. A perfect configuration of swimmers in one plane is not achieved, but in

Figure 8.14 it can be seen on the one hand that the attractive effect of the
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Figure 8.14.: Left: Aspect ration A = σx/σz for reorientations with β = 0.5

(magenta). The aspect ratio reduces with decreasing β illus-

trating the growing dynamical inhomogenity. Right: The "hy-

drodynamic" diffusion coefficient D(2)/D0Rτ in z-direction and

r-direction for β = 0.

hydrodynamic interaction diminishes when a minimum of the aspect ratio A is

obtained. On the other hand the diffusion coefficient in z-direction decreases

for low volume fractions Φ, when the compressing dynamics has come to an

end. From Figure 8.14 one can also see that the repulsive contribution in terms

of D(2)
r increases within this first compressing phase of the dynamics, before

also these contributions decrease due to increasing distances ̺ between the

swimmers at small volume fractions Φ. Figure 8.14 shows that the decrease as

well as the increase of D(2) in dependence of Φ can be decribed via a scaling

law with exponents B being multiples of 1
3
. The repulsive parts grow with

D(2)
r ∝ Φ− 1

3 (8.31)

in this initial regime at high volume fractions Φ, whereas the attractive con-

tributions decay with

D(2)
z ∝ Φ

2

3 . (8.32)

Note that Dr(2) > D
(2)
z . This is a relict of the dominant repulsive hydro-

dynamic interaction between pullers. Both diffusion coefficients D
(2)
z ,D(2)

r as

well as ∆D for a suspension of homogeneously reorienting swimmers decay or
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increase with scaling exponents proportional to 1
3
. These scaling laws can be

viewed as characteristics of the hydrodynamic interaction.

8.4. Conclusion and Outlook

In this chapter the dispersion of a distribution called cloud consisting of swim-

mers is investigated by means of particle-based simulations. As described in

Chapter 7, such a swimmer reorients from time to time and is able to interact

hydrodynamically with other swimmers within the cloud. The hydrodynamic

interaction can be described by force dipoles, where dependent on the direction

of the two forces F0 the two cases of a puller and pusher occur. The distribution

of the swimmer orientation during the reorientation process called tumble are

defined by two parameters α, related to the angular velocity within the tum-

bling motion, and β, describing the distribution around a preferred direction

of motion, as selected by the swimmers in the context of chemo- or phototaxis.

The dispersion of the cloud is analyzed systematically in dependence of α and

β, as well as the velocity v0 and mean time of a run τ̄ .

The reference case of a stochastic motion without hydrodynamic interaction

can be described as self-propelled diffusion. This is characterized by an ini-

tial ballistic regime for short periods t with an increases of the mean-squared

displacement 〈x2〉 ∝ t2, which changes into a diffusive regime with a diffusion

constant D(2) = v0τ̄ /α. In particular, the ability of chosing a completely new

orientation on the unit sphere associated with α affects the diffusion constant,

which increases the less a swimmer is able to deviate from the old direction in

the course of its reorientation. If the parameter β → 0 is changed, e. g., the

orientation of swimmers towards the z-direction is preferred. In the course of

phototaxis, swimmers move towards a light source placed along this direction,

leading to a drift term D(1) 6= 0.

Considering the same diffusion process for hydrodynamically interacting

micro-swimmers, the question is how the diffusion coefficient change in the

case of pushers or pullers? The hydrodynamic interaction between two swim-

mers depends not only on their relative orientation. The averaged strength of

the interaction depends on the distance ̺ with 1/̺2, which can be related to

the standard deviation σ of the cloud. Therefore, the dependence of D(2) on

159



8. Dispersion of a boundless cloud of swimmers

Φ is analyzed in Chapter 8. It turns out that the hydrodynamic interaction

increases the diffusion coefficients in both cases. However, the coefficient is

always larger for pushers even though the swimmers remove faster from the

center. In the case of pullers, D(2) decays ∝ Φ
2

3 towards low volume-fractions

Φ→ 0. An enhancement of the hydrodynamic interaction has shown that this

scaling law can be attributed to the hydrodynamic interaction.

But why is the diffusion coefficient D(2) constantly increased in the case of

pushers? This can not be understood by just consulting the distribution of the

swimmer distance to the center point, but by considering the distribution of

the distances λ between the next neighboring swimmers. For pushers, this dis-

tribution converges towards a constant distribution preferring small distances

λ. Therefore, although a dispersion of the total cloud takes place, the swim-

mers form subgroups, in which they move with an increased collective velocity,

as a result of the hydrodynamic interaction.

If the distribution of possible angles for reorientations is limited by decreas-

ing α, one can conclude that the effect of the hydrodynamic interaction on

the dispersion decreases. This happens due to the fact that with decreasing

α, the swimmers have less and less the possibility to change their direction

of motion through tumbling, leading to a faster divergence of the distribution

accompanied by a fast decrease of the hydrodynamic interaction.

The effects of the hydrodynamic interaction may also get lost, if the mean

time τ̄ of runs is large compared to τ0 = a/v0. Then, the swimmers of the

cloud reach such large distances, so that the hydrodynamic interaction does

not play a role within the diffusive regime.

Inhomogeneities in the dispersion occur when β = 0. Then, the dynamics

is only influenced by the hydrodynamic interaction, which effects are reflected

in the diffusion coefficients D
(2)
r and D

(2)
z . Also in this case, the coeffizients

D
(2)
α depend on the volume-fraction Φ, where the attractive and repulsive ef-

fects grow or decay with ΦB, where the exponent B is a multiple of 1
3
, which

seems to be a characteristic scaling law for the dispersion in the presence of

hydrodynamic interaction.

One question that may arise is whether the dispersion of swimmers can

be controlled, e. g., by external flows. Experiments and simulations have

160



8.4. Conclusion and Outlook

revealed the effect of self-focusing of a continuous jet of swimmers in a pipe-

flow [91, 110]. First simulations within this work have shown that a finitely

extended cloud of phototactic pullers can also be stabilized by the application

of an external pipe-flow. Since the swimmers reorient towards the z-direction

after some time, they break off the rotational movements, as mediated by the

external flow. On the average, the swimmers are thus subject to the repulsive

effect, as mediated by the hydrodynamic interaction. The swimmers push each

other into outer regions of the flow channel, where they are turned towards the

channel center by the flow vorticity. This results in a circulating movement

similar to a convection flow, whereby the cloud of swimmers remains compact

for low flow velocitiy. If the latter is increased, a critical point exists at which

the cloud is split into smaller subgroups. However, further simulations are

required to further characterize this transition.
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sionen rund um das Thema gelöster Teilchen in Flüssigkeiten.

Jochen Bammert und insbesondere Georg Freund seien hier voller Dank-

barkeit für ihre Einarbeitung in numerische Methoden erwähnt, die mir das

Arbeiten an meiner Dissertation sehr erleichtert hat. Georg ist leider viel zu

früh von uns gegangen.
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Falko Ziebert möchte ich danken, für viele schön verlebte Stunden und

biophysikalischen Diskussionen während DPG-Frühjahrstagungen und in Car-
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flistung nicht fehlen. Ich möchte Ihnen ganz herzlich dafür danken, dass sie
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