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dynamics and linear-quadratic cost functions including state and control constraints. We give

necessary and sufficient conditions in terms of spectral criteria and matrix inequalities. As important

tools we use the concepts of strict dissipativity and a new property called strict pre-dissipativity of

a system at an equilibrium point and link these properties to the turnpike behaviour of the optimal

control problem. Moreover, we give further conditions to ensure that the turnpike behavior is of

exponential type, i.e., the optimal trajectories are exponentially close to a steady-state of the system

for all but finitely many time instants whose number is bounded independently of the optimization

horizon.
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1 Introduction

The turnpike property describes the fact that trajectories of optimally controlled systems
“most of the time” stay close to an equilibrium point. It has been described already in the
early days of optimal control by von Neumann [17] and in the book by Dorfman, Samuelson
and Solow [7]. In this book also the name “turnpike property” has been introduced, because
of the similarity of the optimal trajectories with driving a car from a point A to a point
B using a turnpike or highway. Such a tour consists of three phases: driving to the
highway (i.e., approaching the equilibrium), driving on the highway (i.e., staying near the
equilibrium) and leaving the highway (i.e., moving away from the equilibrium). Turnpike
phenomena have attracted the attention of researchers because of the structural insights
they allow on the structure of the optimal solutions, particularly in mathematical economy,
see, e.g., [12], but also as a method for synthesizing long term optimal trajectories [1, 13, 16]
and in recent years for analyzing model predictive control schemes [9], [11, Chapter 8]. In
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this paper we investigate this property for optimal control problems with linear dynamics
and a cost function consisting of quadratic, linear and constant terms. Here the cost is
convex but not necessarily strictly convex, i.e., the quadratic term in the cost is positive
semidefinite but not necessarily positive definite. In this context, [13] (in continuous time)
and [6] (in discrete time) formulate sufficient conditions for the turnpike property to hold,
even in an exponential form. The former reference presents an observability condition ([13,
Theorem 1.1]) while the latter uses a condition on the spectrum of the matrix A defining the
dynamics ([6, Proposition 4.5]). The main results in this paper unify these two conditions,
cf. Remark 8.5, below. We note that we present these results for discrete time systems in
this paper, but we expect that the derivation of their continuous time analogues is an easy
exercise.

It is known since the pioneering work of Willems [18, 19, 20] that there is a strong relation
between the long time behavior of optimally controlled systems and dissipativity and strict
dissipativity properties introduced in Willems’ papers. For the turnpike property discussed
above, this relation was worked out in detail in [10] for nonlinear discrete time problems,
although partial results in this direction are already much older, see, e.g., [4, Theorem 4.2].
In this paper, we will on the one hand use strict dissipativity as a sufficient condition for
the turnpike property. On the other hand, we will derive new characterizations for strict
dissipativity and for the newly introduced property of strict pre-dissipativity in terms of the
system matrices for the linear quadratic problems under consideration, which go beyond
the nonlinear results from [10]. These will then also lead to new necessary conditions for
the turnpike properties under consideration.

One of the key novelties which distinguishes the results in the present paper from earlier
ones on linear quadratic optimal control problems is the consideration of state and input
constraints. There are (at least) three conceptually different situations how the turnpike
property interacts with state constraints: In the first case the turnpike phenomenon occurs
both with and without constraints, provided the turnpike equilibrium lies inside the set
of admissible states and controls. The second situation is that the turnpike phenomenon
only occurs if state constraints are present, but the location of the turnpike equilibrium
is independent of the particular form of the constraints. Finally, in the third situation
the position of the turnpike equilibrium depends on the constraint sets. In this paper we
investigate the first and the second situation, while the third will be addressed in future
research.

The remainder of the paper is organized as follows. In Section 2 we describe the optimal
control problem we study and define the turnpike properties and the dissipativity properties
considered in this paper. Section 3 summarizes (and slightly extend) known results which
show that strict (pre)-dissipativity implies turnpike properties. Section 4 introduces a
matrix inequality charecterization of strict (pre)-dissipativity. Sections 5 and 6 reformulates
this inequality in terms of the system matrices. Section 7 presents results showing that
turnpike properties imply strict (pre)-dissipativity. Finally, the main results and some
examples are collected in Section 8. A technical auxiliary result is stated and proved in
the Appendix.
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2 Setting and preliminaries

We consider discrete-time linear quadratic optimal control problems

minimize
u∈UN (x0)

JN (x0, u) (2.1)

where

JN (x0, u) :=
N−1∑
k=0

x(k)TQx(k) + u(k)TRu(k) + sTx(k) + vTu(k) + c ,

x(k + 1) = Ax(k) +Bu(k) , x(0) = x0 , (2.2)

N ∈ N, x(k) ∈ Rn, u(k) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, Q ∈ Rn×n and R ∈ Rm×m, with Q
and R symmetric, Q ≥ 0 and R > 0, and s ∈ Rn, v ∈ Rm, c ∈ R, x0 ∈ Rn.

In what follows, we consider the optimal control problem (2.1) under input constraints
U ⊂ Rm and state constraints X ⊆ Rn, with both X and U being closed sets. To this end,
for each x0 ∈ X we define the space of admissible controls

UN (x0) := {u ∈ UN |xu(k, x0) ∈ X for all k = 0, . . . , N}.

Here and in the following we denote by xu(·, x0) the solution of (2.2) with control u and
initial value x0.

We abbreviate the dynamics f(x, u) := Ax+Bu and the stage cost as

`(x, u) := xTQx+ uTRu+ sTx+ vTu+ c .

We define the optimal value function

VN (x0) := inf
u∈UN (x0)

JN (x0, u)

and we call a control sequence u?(·) and corresponding trajectory x?(·, x) optimal, if
JN (x, u?) = VN (x) holds. Moreover, we say that (xe, ue) ∈ X × U is an equilibrium
for the dynamics f if it satisfies f(xe, ue) = xe.

Definition 2.1: (i) We say that the optimal control problem (2.1)-(2.2) has the turnpike
property at an equilibrium (xe, ue) ∈ X × U on a set Xtp ⊂ X, if for each compact set
K ⊂ Xtp and for each ε > 0 there exists a constant CK,ε > 0 such that for all x ∈ K and
all N ∈ N the optimal trajectories x?(k, x) of (2.1) with initial value x satisfy

#
{
k ∈ {0, . . . , N}

∣∣ ‖x?(k, x)− xe‖ > ε
}
≤ CK,ε .

(ii) We say that the optimal control problem (2.1)-(2.2) has the near equilibrium turnpike
property at an equilibrium (xe, ue) ∈ X × U, if for each R > 0, ε > 0 and δ > 0 there
exists a constant CR,ε,δ > 0 such that for all x ∈ X with ‖x− xe‖ ≤ R, all N ∈ N, and all
trajectories xu(k, x) satisfying JN (x, u) ≤ N`(xe, ue) + δ for some u ∈ U, the inequality

#
{
k ∈ {0, . . . , N}

∣∣ ‖xu(k, x)− xe‖ > ε
}
≤ CR,ε,δ .

holds.
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Here #A denotes the number of elements of the set A. In words, these properties state
that the optimal/near equilibrium trajectories stay in an ε-neighbourhood of xe for all but
finitely many “exceptional” time instants whose number is bounded independently of the
optimization horizon N .

Remark 2.2: (i) If the equilibrium (xe, ue) lies in the interior of X × U, then Defini-
tion 2.1(i) implies that (A,B) is stabilizable, because otherwise there would be initial
conditions x̄0 arbitrarily close to 0 with ‖xu(k, x̄0)‖ ≥ εx > 0 for all k ∈ N and εx > 0
independent of the control sequence u. This would imply the existence of x0 := x̄0 +xe ∈ X
(sufficiently close to xe) such that ‖xu(k, x0)−xe‖ = ‖xu−ue(k, x̄0)‖ ≥ εx > 0 for all control
sequences u ∈ U and all k ∈ N, which contradicts the turnpike property.

(ii) In contrast to (i), Definition 2.1(ii) does not imply stabilizability, because there may
not be nontrivial trajectories other than x(k) ≡ xe, u(k) ≡ ue satisfying the assumed
inequality for JN . A simple example for such a system is x(k+ 1) = x(k) with `(x, u) = x2

and xe = ue = 0.

(iii) If (A,B) is stabilizable, then Definition 2.1(ii) implies Definition 2.1(i) provided (xe, ue)
lies in the interior of X×U. This is because stabilizability implies the existence of a stabi-
lizing feedback law F such that the control u(k) = F (x(k)−xe) +ue yields xu(k, x0)→ xe

exponentially fast and xu(k, x0) ∈ X, u(k) ∈ U for all k ∈ N if x0 lies in a sufficiently small
neighbourhood N of xe. This implies the existence of C > 0 with VN (x) ≤ N`(xe, ue) +C
for all x ∈ N . Hence, choosing Xtp = N , all optimal trajectories starting in Xtp satisfy the
conditions of Definition 2.1(ii) and thus the turnpike property holds.

(iv) If X × U is convex with nonvoid interior, then we can find a larger set Xtp as in (iii).
More precisely, let R denote the set of initial conditions which can be controlled into the
set N from (iii). Then a modification of the proof of [3, Proposition 12] shows that for
each compact subset K ⊂ intR there is CK > 0 with VN (x) ≤ N`(xe, ue) + CK for all
x ∈ K and N ∈ N. Hence, using the same argument as in (iii), the set Xtp can be chosen
as intR.

(v) The statement from (iii) remains true in case (xe, ue) ∈ ∂(X × U) if for each x ∈ X
sufficiently close to xe there exists an admissible control ux with xux(k, x) → xe and
ux(k) → ue, both exponentially fast. However, in contrast to (iii), for xe or ue not lying
in the interior of the respective constraint set, the existence of such a ux cannot in general
be concluded from stabilizability of (A,B).

In simple words, part (iii) of the remark shows that the near equilibrium turnpike property
plus stabilizability implies the turnpike property.

So far we have not specified how fast the number CK,ε in the turnpike property grows if
ε→ 0, or, equivalently, how fast ε > 0 shrinks when we allow CK,ε to grow (always for fixed
compact set K ⊂ Xtp). A variant of the turnpike which takes this aspect onto account is
the following exponential form of the turnpike property.

Definition 2.3: We say that the turnpike property from Definition 2.1(i) is exponential,
if there is θ ∈ (0, 1) such that for each compact set K ⊂ Xtp there is a constant mK > 0
such that Cε,K can be chosen as

Cε,K ≤ mK + logθ ε .
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We note that an equivalent inequality is ε ≤ MKθ
Cε,K with MK = θmK . This shows that

ε shrinks exponentially fast when the number of exceptional points Cε,K grows. With this
formulation it is easily checked that Definition 2.3 is equivalent to [6, Definition 2.2(ii)]
when setting ε = σP (N) and Cε,R = N − P .

Our goal in this paper is to find easily checkable conditions on the data of the optimal
control problem (2.1)-(2.2) (i.e., on A, B, Q, R, s, v and c) under which we can guarantee
that turnpike properties hold. The next definitions provide the key concepts we use for
this goal. For the definitions we recall that

K := {α : R+
0 → R+

0 : α continuous, strictly increasing with α(0) = 0} .

Definition 2.4: (i) We call the LQ problem strictly pre-dissipative at an equilibrium
(xe, ue) on sets X ⊆ Rn, U ⊆ Rm if there exist a storage function λ : X → R which is
bounded on bounded subsets of X, a function α ∈ K and an equilibrium (xe, ue) ∈ Rn×Rm
which satisfy the inequality

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)

for all x ∈ X and all u ∈ U with f(x, u) ∈ X.

(ii) The system is called strictly dissipative at an equilibrium (xe, ue) on sets X ⊆ Rn,
U ⊆ Rm if it is strictly pre-dissipative in the sense of (i) and λ is bounded from below on
X.

We note that strict pre-dissipativity on a set X implies that the problem is strictly dissi-
pative on each bounded subset X̃ of X. Moreover, it is straightforward to see that strict
pre-dissipativity holds if and only if the following modified cost function

˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) (2.3)

satisfies
˜̀(x, u) ≥ α(‖x− xe‖) (2.4)

for all x ∈ X and u ∈ U .

3 Strict (pre-)dissipativity implies turnpike

In this section we present (and slightly extend) known results which show that strict
dissipativity implies turnpike properties. We start with the near equilibrium turnpike
property.

Theorem 3.1: Consider the LQ-problem (2.1), (2.2) with state and control constraint
sets X ⊆ Rn and U ⊆ Rm. Assume that

(i) the problem is strictly dissipative at an equilibrium (xe, ue) or

(ii) the problem is strictly pre-dissipative at an equilibrium (xe, ue) and X is bounded.

Then the near equilibrium turnpike property holds at (xe, ue).
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Proof. (i) follows from [8, Theorem 5.3] and (ii) follows from (i) since strict pre-dissipativity
with bounded X implies strict dissipativity.

The following Corollary extends this to the optimal turnpike property, where we need the
additional assumptions that (A,B) is stabilizable and (xe, ue) lies in the interior of X×U.

Corollary 3.2: Consider the LQ-problem (2.1), (2.2) with state and control constraint
sets X ⊆ Rn and U ⊆ Rm. Assume that (A,B) is stabilizable and

(i) the problem is strictly dissipative at an equilibrium (xe, ue) ∈ int (X× U) or

(ii) the problem is strictly pre-dissipative at an equilibrium (xe, ue) ∈ int (X× U) and X
is bounded.

Then the turnpike property holds at (xe, ue).

Proof. It follows immediately from Theorem 3.1 and Remark 2.2(iii).

We finally show that strict (pre-)dissipativity also implies the exponential turnpike prop-
erty, under an additional convexity assumption on X× U.

Theorem 3.3: Consider the LQ-problem (2.1), (2.2) with state and control constraint
sets X ⊆ Rn and U ⊆ Rm. Assume that (A,B) is stabilizable, that X × U is convex and
that

(i) the problem is strictly dissipative at an equilibrium (xe, ue) ∈ int (X× U) or

(ii) the problem is strictly pre-dissipative at an equilibrium (xe, ue) ∈ int (X× U) and X
is bounded,

in either case with a storage function λ(x) = xTPx+ qTx for some P ∈ Rn×n and q ∈ Rn.
Then the exponential turnpike property holds at (xe, ue).

Proof. It is sufficient to prove (i) because then (ii) follows immediately. We choose Xtp as
in Remark 2.2(iv) and use [6, Theorem 5.6] with X0 = K ⊂ Xtp. This theorem yields the
exponential turnpike property under three conditions (i), (ii) and (iii-a). Condition (i) of
this theorem follows from (2.4) and the fact that for the assumed form of λ the modified
cost ˜̀ is again linear-quadratic. In case X is compact, Condition (ii) follows from [6,
Proposition 6.4], where the proof of [6, Proposition 6.1] restricted to a ball around (xe, ue)
contained in X×U can be used in order to establish condition (b) of [6, Proposition 6.4]. In
case X is compact, condition (iii-a) of [6, Theorem 5.6] holds and the exponential turnpike
property follows.

In case X is unbounded, an inspection of the proofs of [6, Proposition 6.4] and [6, Theo-
rem 5.6] shows that the respective assertions remain true if compactness of X is replaced by
the following property: for each compact set X0 ⊂ Xtp there exists a compact set X1 ⊂ X
such that all optimal trajectories x?x,N with arbitrarily initial value x ∈ X0 and horizon
N ∈ N satisfy x?x,N (N) ∈ X1. In order to prove this property we use that Remark 2.2(iv)
with K = X0 implies the inequality

VN (x) ≤ N`(xe, ue) + CK (3.1)
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for all x ∈ X0. Let u?x,N be the optimal control corresponding to the optimal trajetory

x?x,N . Then from (2.4) and the definition of ˜̀ in (2.3) we obtain

VN (x) =

N−1∑
k=0

`(x?x,N , u
?
x,N ) =

N−1∑
k=0

˜̀(x?x,N , u
?
x,N )− λ(x) + λ(x?x,N ) +N`(xe, ue)

≥ α(‖x?x,N (N − 1)− xe‖) + u?x,N (N − 1)TRu?x,N (N − 1) + C1 + C2 +N`(xe, ue),

where C1 = infx∈X0 −λ(x) and C2 = infx∈X λ(x). This implies that

α(‖x?x,N (N − 1)− xe‖) + u?x,N (N − 1)TRu?x,N (N − 1) ≤ CK − C1 − C2,

i.e., particularly the norms of x?x,N (N − 1) and (because of R > 0) u?x,N (N − 1) are
bounded with a bound independent of x and N . This implies that also the norm of
x?x,N (N) = Ax?x,N (N −1) +Bu?x,N (N −1) is bounded independent of x and N . Let R1 > 0
be such a bound. Then, for X1 = BR1(0)∩X the relation x?x,N (N) ∈ X1 holds for all x ∈ X0

and N ∈ N and the assertion follows.

We note that for some of the results in this section converse statements were obtained
in [10], even for general nonlinear-nonquadratic optimal control problems. We will come
back to this topic in Section 7, where we will present stronger results than those in [10] for
the present linear-quadratic setting.

4 A matrix condition for strict (pre)-dissipativity

In this section we give necessary and sufficient conditions for strict (pre-)dissipativity in
terms of matrix inequalities.

Lemma 4.1: Given P ∈ Rn×n, there exists q ∈ Rn such that LQ problem is strictly pre-
dissipative with storage function λ(x) = xTPx+ qTx if and only if the matrix inequality

Q+ P −ATPA > 0 (4.1)

is satisfied. Particularly, if the problem is strictly pre-dissipative for certain s, v and c,
then the problem is strictly pre-dissipative for all c, s and v. Moreover, if P is positive
definite then the problem is strictly dissipative.

Proof. We recall that strict pre-dissipativity holds if and only if the inequality (2.4), i.e.,
˜̀(x, u) ≥ α(‖x − xe‖) holds for all x ∈ X and u ∈ U and the modified cost function ˜̀

from (2.3).

Now assume that the system is strictly pre-dissipative with λ from the assumption. Then
a straightforward computation yields that ˜̀ is of the form

˜̀(x, u) = xT (Q+ P −ATPA)x+R(x, u), (4.2)

where R(x, u) collects remainder terms which are linear or constant in x. Now inequal-
ity (2.4) together with ˜̀(xe, ue) = 0 implies that x 7→ ˜̀(x, ue) has a strict local minimum
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in x = xe. For a function of the form (4.2) this is only possible if the quadratic part is
strictly convex, i.e, if Q+ P −ATPA is positive definite.

Conversely, assume Q+ P −ATPA > 0. For a given γ ∈ (0, 1], set Pγ := γP and

Qγ := Q+ Pγ −ATPγA ,

which is positive definite since Qγ = (1 − γ)Q + γ(Q + P − ATPA) > 0. Consider the
modified stage cost

`γ(x, u) := `(x, u) + xTPγx− f(x, u)TPγf(x, u) .

We claim that `γ is strictly convex in (x, u), for a suitable value of γ. Indeed,

`γ(x, u) = xTQγx+ uT (R−BTPγB)u− xTATPγBu− uTBTPγAx+R(x, u) ,

where R(x, u) contains lower order terms in (x, u). Setting Rγ := R − BTPγB and C :=
−ATPB −BTPA, convexity of `γ is equivalent to positive definiteness of the matrix

H :=

(
2Qγ γC
γC 2Rγ

)
.

Since Rγ is positive definite for γ sufficiently small, H is positive definite if and only if the
Schur complement of Rγ in H, that is, Sγ := 2Qγ − γ2C(2Rγ)−1C, is positive definite.
Since R0 = R is positive definite, the convergence R−1

γ → R−1 as γ ↘ 0 follows, thus the
norm of (2Rγ)−1 stays uniformly bounded for decreasing values of γ. Moreover, the Schur
complement

Sγ = Qγ + (1− γ)Q+ γ
(
Q+ P −ATPA− γC(2Rγ)−1C

)
is positive definite for sufficiently small γ, since it is the sum of positive definite and positive
semidefinite terms. We thus conclude that, for a sufficiently small γ̄ ∈ (0, 1], the modified
stage cost `γ̄ is strictly convex in (x, u). Then the optimal equilibrium problem

min
x∈X,u∈U

`γ̄(x, u) , s.t. x−Ax−Bu = 0 ,

admits a unique global solution (xe, ue). Applying [6, Proposition 4.3], we deduce the
existence of a vector q ∈ Rn such that the LQ-problem with stage cost `γ̄ is strictly

pre-dissipative at (xe, ue) with storage function λ̂(x) = qTx. This implies that the LQ-
problem with the original stage cost ` is strictly pre-dissipative with storage function λ(x) =
xTPγ̄ x+ λ̂(x) = xTPγ̄ x+ qTx, which proves the claim.

The assertion on c, s and v follows immediately because the matrix condition is independent
of c, s and v and also of xe and ue, which implicitly depend on c, s and v. Finally, positive
definiteness of P implies that the storage function λ(x) = xTPx + qTx is bounded from
below on the whole Rn, hence the problem is dissipative.

Remark 4.2: The continuous time counterpart of the strict (pre-)dissipativity condition
is

λ(x(t)) ≤ λ(x(0)) +

∫ t

0
`(x(t), u(t))− `(xe, ue)− α(‖x(t)− xe‖)dt,
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or, in differential form (provided λ is C1)

Dλ(x)f(x, u) ≤ `(x, u)− `(xe, ue)− α(‖x− xe‖).

For λ of the form λ(x) = xTPx+ qTx and f(x, u) = Ax+Bu this inequality becomes

xTATPx+ xTPAx+R1(x, u) < xTQx+R2(x, u),

where R1 and R2 collect terms which are linear or constant in x. Similar to the arguments
in the proof of Lemma 4.1 one then sees that strict pre-dissipativity is equivalent to the
matrix inequality

Q−ATP − PA > 0

which thus replaces (4.1) in the continuous time setting. We conjecture that all subsequent
results can be straightforwardly adapted to this equation.

5 Observable and non-observable systems

In this section we reformulate the matrix inequality (4.1) in terms of observability of (A,C)
in combination with eigenvalue conditions on A.

Definition 5.1: Consider a matrix pair (A,C) with A ∈ Rn×n, C ∈ Rl×n. (i) We call
x0 ∈ Rn \ {0} unobservable, if the solutions of x(k + 1) = Ax(k) with x(0) = x0 satisfy
Cx(k) = 0 for all k ∈ N0. Otherwise we call x0 observable.

(ii) We say that the matrix pair (A,C) is observable, if every x0 ∈ Rn \ {0} is observable.

(iii) Let x0 = w + iv ∈ Cn \ {0} be an eigenvector of A corresponding to the eigenvalue µ.
We say that x0 is an unobservable eigenvector if either w or v is unobservable with respect
of (A,C). In this case, we call µ an unobservable eigenvalue.

One can show (for details see, e.g., [15, Chapter 6]) that x0 is not observable if and only if
it lies in the kernel of the observability matrix O(A,C) := (CT , (CA)T , . . . , (CAn−1)T )T .
This implies that (A,C) is observable if and only if the observability matrix has full rank.
Another condition equivalent to observability is the Hautus-Criterion, which demands that
the matrix (

A− µI
C

)
has full rank for all eigenvalues µ of A.

Remark 5.2: If x0 = w + iv ∈ Cn \ {0} is an eigenvector of A corresponding to the
complex eigenvalue µ = a+ ib with b 6= 0, then both w and v belong to Rn \{0}. Moreover,
since C is real, if x0 ∈ Cn \{0} is an unobservable eigenvector of A with eigenvalue µ, then
its complex conjugate x̄0 = w − iv is also an unobservable eigenvector of A corresponding
to the eigenvalue µ̄. Finally, from relations (A.3) in the Appendix we deduce that w is
observable if and only if v is observable. Therefore, if µ is an unobservable eigenvalue then
both w and v are unobservable.

Remark 5.3: Let x0 be an unobservable real eigenvector or of the form x0 = w for an
unobservable complex eigenvector w+iv. For any γ ∈ R and u ∈ U, the solution xu(k, γx0)
is of the form

xu(k, γx0) = γAkx0 + xu(k, 0) , ∀k ∈ N0 . (5.1)
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Since CAkx0 = 0 for all k ∈ N0 this implies

`(xu(k, γx0), u)

= xu(k, γx0)TQxu(k, γx0) + u(k)TRu(k) + sTxu(k, γx0) + vTu(k) + c

= xu(k, 0)TQxu(k, 0) + u(k)TRu(k) + sTγAkx0 + sTxu(k, 0) + vTu(k) + c

=
[
xu(k, 0)TQxu(k, 0) + u(k)TRu(k) + sTxu(k, 0) + vTu(k)︸ ︷︷ ︸

=:`1(k,u(0),...,u(k))

]
+
[
sTγAkx0 + c︸ ︷︷ ︸

=:`2(k,γx0)

]
. (5.2)

From the last expression one sees that the stage cost decomposes into a first part `1 which
is independent of x0 and γ and a second part `2 which is independent of u. Hence, the
same holds for the optimization objective which can thus be written as

JN (γx0, u) =
N−1∑
k=0

`(xu(k, γx0), u(k)) =

N−1∑
k=0

`1(k, u(0), . . . , u(k)) +

N−1∑
k=0

`2(k, γx0).

This implies that the optimal control u∗ is independent of γ — unless maintaining the
state constraints requires a change in the control action when γ changes.

The following relations between observability and spectral properties of A, respectively,
and the solvability of (4.1) follow from an adaptation of an argument that can be found in
the literature.

Lemma 5.4: Consider the LQ-problem (2.1), (2.2) with Q = CTC and (A,C) detectable.
Then there exists a symmetric and positive definite matrix P such that (4.1) holds.

Proof. We follow the ideas of [5, Lemma 1.7.3]. By duality, the detectability of (A,C) is
equivalent to the stabilizability of the pair (AT , CT ). Thus, there exists a matrix F ∈ Rn×n
such that AT + CTF is asymptotically stable, i.e, there exists a symmetric and positive
definite matrix X such that

(AT + CTF )X(AT + CTF )T −X < 0 .

In particular, for nonzero x ∈ Ker(C), this implies that xTATXAx − xTXx < 0. Then
Y := ATXA − X satisfies Y < 0 on Ker(C). Let α > 0 and U = [U1 U2] ∈ Rn×n be a
unitary matrix such that the columns of U1 span Ker(C), and the relations UT1 Y U1 < 0,
UT2 C

TCU2 > 0 hold. Then

UT (αY − CTC)U =

(
αUT1 Y U1 αUT1 Y U2

αUT2 Y U1 αUT2 Y U2 − UT2 CTCU2

)
.

Since αUT1 Y U1 < 0, the matrix UT (αY − CTC)U is negative definite if its Schur comple-
ment

−UT2 CTCU2 + α
(
UT2 Y U2 − UT2 Y U1(UT1 Y U1)−1UT1 Y U2

)
is negative definite, which is true for α sufficiently small. For this appropriate choice of α we
then conclude that P := αX is a symmetric and positive definite solution to (4.1).

As a complementary result to Lemma 5.4, the following result extends [14, Theorem 23.7]
to the case of Q ≥ 0. We denote by σ(A) the spectrum of the matrix A, and by C=1 the
unit circle in the complex plane.
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Lemma 5.5: Consider the LQ-problem (2.1), (2.2). Assume that A does not have eigen-
values µ with |µ| = 1. Then there exists a symmetric matrix P solution to (4.1), which is
positive definite if |µ| < 1 holds for all eigenvalues µ of A.

Proof. Thanks to Lemma A.1 in [6], the condition σ(A)∩C=1 = ∅ implies the existence of
a symmetric matrix P satisfying P −ATPA > 0. Since Q ≥ 0, the inequality (4.1) admits
P as solution. Moreover, from the proof of Lemma A.1 in [6] we deduce that P is positive
definite if all eigenvalues of A have norm (strictly) less than one.

6 Eigenvalue conditions for strict (pre-)dissipativity

The following result combines Lemma 5.4 and 5.5 to provide if-and-only-if conditions for
strict (pre-)dissipativity.

Theorem 6.1: Consider the LQ-problem (2.1), (2.2) with Q = CTC. Then the following
holds:

(i) The problem is strictly dissipative if and only if A does not have unobservable eigenvalues
µ with |µ| ≥ 1.

(ii) The problem is strictly pre-dissipative if and only if A does not have unobservable
eigenvalues µ with |µ| = 1.

In both cases, the storage function can be chosen of the form λ(x) = xTPx + qTx, for
suitable P ∈ Rn×n and q ∈ Rn.

Proof. Since all properties under consideration are invariant under coordinate changes, by
Eq. (6.8) in [15] we may assume that A and C are of the form

A =

(
A1 0
A3 A2

)
, C = (C1 0) ,

with A1 ∈ Rr×r, A2 ∈ R(n−r)×(n−r), A3 ∈ R(n−r)×r, C1 ∈ Rl×r, r ∈ {0, . . . , n} being the
rank of the observability matrix O(A,C), and (A1, C1) being observable. Then Q = CTC
is of the form

Q =

(
Q1 0
0 0

)
with Q1 = CT1 C1 ∈ Rr×r. We may thus apply Lemma 5.4 in order to obtain a symmetric
and positive definite matrix P1 ∈ Rr×r such that Q1 + P1 −AT1 P1A1 > 0.

(a) Now assume that one of the eigenvalue conditions in (i) or (ii) holds. Since all unob-
servable eigenvectors of A must be eigenvectors of A2, we obtain that A2 does not have
eigenvalues µ with |µ| = 1. Hence, we may apply Lemma 5.5 to A = A2 and Q = 0 in
order to obtain a symmetric matrix P2 ∈ R(n−r)×(n−r) with P2 −AT2 P2A2 > 0. Here, P2 is
positive definite in case the eigenvalue condition from (i) holds.

For α > 0, define Pα := diag(P1, αP2) ∈ Rn×n. A straightforward computation yields

Q+ Pα −ATPαA =

(
Q1 + P1 −AT1 P1A1 − αAT3 P2A3 −αAT3 P2A2

−αAT2 P2A3 αP2 − αAT2 P2A2

)
.
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Since Q1 +P1−AT1 P1A1 > 0, the matrix Dα = Q1 +P1−AT1 P1A1−αAT3 P2A3 is invertible
for all α > 0 sufficiently small. Hence we can conclude that Q + Pα − ATPαA is positive
definite if its Schur complement

αP2 − αAT2 P2A2 − α2AT2 P2A3D
−1
α AT3 P2A2

is so. Since D0 is invertible, we deduce that D−1
α → D−1

0 as α ↘ 0. Moreover, since
P2−AT2 P2A2 is positive definite, the Schur complement is positive definite whenever α > 0
is sufficiently small. Fixing such a sufficiently small α > 0 and setting P = Pα we can
apply Lemma 4.1 in order to conclude strict dissipativity if P > 0, i.e., in case (i), and
strict pre-dissipativity in case (ii).

(b) Conversely, assume that the system is strictly dissipative at an equilibrium (xe, ue)
and that the eigenvalue condition in (i) does not hold. Thus, let φ ∈ Cn \ {0} be an
unobservable eigenvector with eigenvalue µ satisfying |µ| ≥ 1. Let w denote the real part
of φ, and set x0 = xe + γw for some γ ∈ R that will be specified below. Consider the
solution xu(k, x0) corresponding to some control u ∈ U. Thanks to the linearity of the
dynamics and relation (5.1), x(k) is decomposed as

xu(k, x0) = xu(k, xe) + x0(k, γw) = xu(k, xe) + γAkw .

In particular, for u = ue, we have that

x(k) := xue(k, x0) = xe + γAkw .

In case of µ real, we have that ‖x(k)−xe‖ = |γ| |µ|k‖φ‖; in case of µ complex, we can appeal
to the estimate from below in (A.2) that yields the existence of a constant m > 0 such that
‖x(k) − xe‖ = |γ| ‖Akw‖ ≥ |γ| |µ|km. Thus in both cases we can choose |γ| sufficiently
large to ensure that there exists δ > 0 such that α(‖x(k)− xe‖) ≥ δ for all k ∈ N0. On the
other hand, the definition of unobservable eigenvectors implies the condition QAkw = 0
for all k ∈ N0. Thus, we deduce that

`(x(k), ue) = x(k)TQx(k) + (ue)TRue + sTx(k) + vTue + c

= (xe)TQxe + (ue)TRue + sTxe + sTγAkw + vTue + c

= `(xe, ue) + γsTAkw . (6.1)

We now choose the sign of γ such that γsTw ≤ 0. Then in the real case a straightforward
computation and in the complex case the application of Lemma A(ii) yields that there
exist arbitrarily large k ∈ N with

k−1∑
j=0

γsTAjw ≤ 0 .

For these k, induction over the strict dissipativity inequality together with identity (6.1)
and with the relation α(‖x(k)− xe‖) ≥ δ implies

λ(x(k)) ≤ λ(x0) +

k−1∑
j=0

γsTAjw − kδ ≤ λ(x0)− kδ .
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Since this holds for k ∈ N arbitrarily large, this implies that λ(x(k)) becomes unbounded for
k →∞ which contradicts the boundedness of λ from below in the dissipativity assumption.

(c) Finally, assume that the eigenvalue condition in (ii) does not hold and assume the
problem is strictly pre-dissipative. With the same construction as in point (b) we obtain

λ(x(k)) ≤ λ(x0)− kδ

for arbitrarily large k ∈ N. If x(k) = x0 holds for one of these k, this leads to the
contradiction λ(x0) ≤ λ(x0) − kδ. In case of x(k) 6= x0 for all these k, we obtain that
λ(x(k)) is unbounded from below for k → ∞. In order to contradicts the strict pre-
dissipativity assumption, we have to show that (x(k))k belongs to a bounded set. Indeed,
in case of µ real, since |µ| = 1 we obtain ‖γAkw‖ = |γ| ‖w‖ for all k ∈ N0, and thus x(k) is
contained in the closed ball centered at xe with radius |γ| ‖w‖. A similar argument holds in
the case of µ complex, since from Lemma A(i) there exists M > 0 such that ‖γAkw‖ ≤M
for every k ∈ N0, thus x(k) is contained in the closed ball centered at xe with radius M ,
and λ(x(k)) is unbounded from below in this bounded set.

7 Turnpike implies strict (pre-)dissipativity

Using the results developed so far, we can now state and prove converse results to those
from Section 3.

Theorem 7.1: Consider the LQ-problem (2.1), (2.2) with Q = CTC and state and control
constraint sets X ⊆ Rn and U ⊂ Rm. Let (xe, ue) ∈ X × U be an equilibrium. Then the
following holds:

(i) If X = Rn and the problem has the turnpike property at (xe, ue), then it is strictly
dissipative at (xe, ue).

(ii) If X × U contains a ball around (xe, ue) and the problem has the near equilibrium
turnpike property at (xe, ue), then it is strictly pre-dissipative at (xe, ue).

Proof. (i) We show the property by contraposition, i.e., we show that if strict dissipativity
does not hold and X = Rn, then the turnpike property cannot hold. To this end, assume
strict dissipativity does not hold. Then by Theorem 6.1 there exists an unobservable
eigenvalue µ with |µ| ≥ 1. Let w + iv be the corresponding eigenvector and set x0 = w
(v is possibly zero in case µ is real). Since for X = Rn all solutions are feasible, from the
discussion before the theorem we know that the optimal control u∗ for initial condition λx0

is independent of λ ∈ R. The explicit solution formula (5.1) implies that for λ1 6= λ2 and
all k ∈ N and u ∈ Uk the (in)equalities

‖xu(k, λ1x0)− xu(k, λ2x0)‖ = |λ1 − λ2| ‖Akx0‖ ≥ |λ1 − λ2|C

hold, where C = ‖w‖ if µ is real and C = m > 0 from Lemma A(i) otherwise. Since this in
particular holds for the optimal controls, the turnpike property can hold for at most one
of the two initial conditions. This contradicts Definition 2.1 which demands the property
for all initial conditions in a bounded set.
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(ii) Again, we show the implication by contraposition. Assume that strict pre-dissipativity
does not hold. Then by Theorem 6.1 there exists an unobservable eigenvalue µ with |µ| = 1.
Let w+ iv be the corresponding eigenvector and set x0 = xe + λw for λ ∈ R. Then for the
control u ≡ ue we obtain

xu(k, x0) = xu(k, xe) + x0(k, λw) = xe + λAkw. (7.1)

Since µ = 1 we obtain ‖Akw‖ = ‖w‖ if µ is real and otherwise

m ≤ ‖Akw‖ ≤M (7.2)

for all k ∈ N, with M ≥ m > 0 from Lemma A(i). Hence, since X × U contains a ball
around (xe, ue), for |λ| sufficiently small we have that xe + λAkw lies in X. Moreover,
from (7.1) the same calculation as that for (5.2) (with xe replacing xu(k, 0) in (5.1)) leads
to

`(xue(k, x0)) = `(xe, ue) + λsTAkw.

Thus, choosing |λ| sufficiently small and with appropriate sign such that λsTw ≤ 0, from
Lemma A(ii) we obtain that

JN (x, u) = N`(xe, ue) + λ
N−1∑
k=0

sTAkw ≤ N`(xe, ue)

for arbitrarily large N . However, because of (7.2) we obtain

‖xu(k, x0)− xe‖ = ‖λAkw‖ ≥ |λ|min {‖w‖,m} ∀k ∈ N0 .

This implies that the near optimal turnpike property does not hold.

8 The main equivalence results

In this section we combine the results of the previous sections in two theorems in order
to obtain the “big picture”, and we present one example for each situation. We start by
considering the case without state constraints.

Theorem 8.1: Consider the LQ-problem (2.1), (2.2) with (A,B) stabilizable, Q = CTC
and state and control constraint sets X = Rn and U ⊆ Rm. Then the following properties
are equivalent

(i) The problem is strictly dissipative at an equilibrium (xe, ue) ∈ int (X× U).

(ii) The problem has the turnpike property at an equilibrium (xe, ue) ∈ int (X× U).

(iii) The pair (A,C) is detectable, i.e., all unobservable eigenvalues µ of A satisfy |µ| < 1.

Moreover, if one of these properties holds, then the equilibria in (i) and (ii) coincide and if
U is convex then the exponential turnpike property holds.
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Proof. “(i) ⇒ (ii)” follows from Corollary 3.2(i), “(ii) ⇒ (i)” follows from Theorem 7.1(i),
and “(i) ⇔ (iii)” follows from Theorem 6.1(i). The fact that the equilibria coincide follows
from Corollary 3.2 and the exponential turnpike property follows from Theorem 3.3.

We illustrate the application of this theorem by an example.

Example 8.2: Consider a linearized continuously stirred tank reactor model with two
dimensional affine linear dynamics

x(k + 1) =

(
0.853 0
0.1065 0.9418

)
x(k) +

(
0.00457
−0.00457

)
u(k)

with X = X = R2, U = R and control constraints U = [−10, 10], and stage cost `(x, u) =
‖x‖2 +0.05u2. With the previous notations, we have that Q = C = I is the identity matrix
on R2, R = 0.05I, sT = vT = c = 0, and

A =

(
0.853 0
0.1065 0.9418

)
, B =

(
0.00457
−0.00457

)
.

Then (A,B) is stabilizable (but not controllable) and (A,C) is detectable (as a matter of
fact, observable), thus Theorem 8.1 implies that the system is strictly dissipative and has
the exponential turnpike property at the equilibrium (xe, ue) = (0, 0), since U is convex.
We mention that the strict dissipativity of the system also follows by [6, Proposition 4.3],
and the exponential turnpike behaviour of the system can be deduced by [6, Theorem 6.2].

The second theorem summarizes our results for compact state constraint set X.

Theorem 8.3: Consider the LQ-problem (2.1), (2.2) with Q = CTC and state and control
constraint sets X ⊂ Rn compact and U ⊆ Rm. Then the following properties are equivalent

(i) The problem is strictly pre-dissipative at an equilibrium (xe, ue) ∈ int (X× U).

(ii) The problem has the near equilibrium turnpike property at an equilibrium (xe, ue) ∈
int (X× U).

(iii) All unobservable eigenvalues µ of A satisfy |µ| 6= 1.

Moreover, if one of these properties holds, then the equilibria in (i) and (ii) coincide. If, in
addition, (A,B) is stabilizable then the turnpike property holds and if moreover X× U is
convex then the exponential turnpike property holds.

Proof. “(i)⇒ (ii)” follows from Theorem 3.1(ii), “(ii)⇒ (i)” follows from Theorem 7.1(ii),
and “(i) ⇔ (iii)” follows from Theorem 6.1(ii). The fact that the equilibria coincide
follows from Theorem 3.1(ii) and the exponential turnpike property follows from Theo-
rem 3.3(ii).

Again, we illustrate the theorem by an example.

Example 8.4: Consider the control system x(k+1) = 2x(k)+u(k) with X = U = R, stage
cost `(x, u) = u2, and constraints X = [−0.5, 0.5] and U = [−2, 2]. Since σ(A) ∩ C=1 = ∅,
condition (iii) of Theorem 8.3 is satisfied, and it implies that the problem is strictly pre-
dissipative and has the near equilibrium turnpike property at the equilibrium (xe, ue) =
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(0, 0). Moreover, since A = 2 and B = 1, and X × U is convex, the exponential turnpike
property holds. Let us observe that, since Q = 0 and thus C = 0 and since A has
an unstable eigenvalue µ = 2, condition (iii) from Theorem 8.1 cannot be satisfied by this
example, and hence in this case we shall rely on Theorem 8.3 which is tailored for problems
with compact state constraint set X. The strict dissipativity and the exponential turnpike
property of this problem can also be deduced by [6, Theorem 4.5] and [6, Theorem 6.5],
respectively.

Remark 8.5: Theorems 8.1 and 8.3 unify and relax [13, Theorem 1.1] and [6, Proposi-
tion 4.5] in the following sense: Theorem 1.1 in [13] demands observability of (A,C) which
implies that there are no unobservable eigenvalues, hence both Theorem 8.1(iii) and The-
orem 8.3(iii) is implied. Proposition 4.5 in [6] excludes the existence of eigenvalues µ of A
with |µ| = 1, hence Theorem 8.3(iii) is implied.

An important feature that distinguishes the results in this paper from the results in [6]
and [13] is that Theorems 8.1 and 8.3 provide conditions which are also necessary and not
merely sufficient. Hence, we can also detect the situations in which the turnpike property
does not hold. Two final examples, both variants of Example 8.4, illustrate this fact.

Example 8.6: Consider again Example 8.4 but now without state constraints, i.e., with
X = R. Now Theorem 8.3 is not applicable anymore, because X is no longer compact. On
the other hand, the general assumptions of Theorem 8.1 are now satisfied but, as already
observed in Example 8.4, condition (iii) of Theorem 8.1 is violated. Thus, we can conclude
that the optimally controlled system does not exhibit the turnpike property. This is indeed
the case, since for every initial condition it is obviously optimal to choose the optimal
control u ≡ 0 for which the trajectories diverge to ∞ or −∞.

Example 8.7: Consider again Example 8.4 but now with dynamics x(k+1) = x(k)+u(k),
i.e., with A = 1. Since Q = 0 and thus C = 0, the single eigenvalue µ = 1 is unobservable,
hence condition (iii) of Theorem 8.3 does not hold. Consequently, the near equilibrium
turnpike property does not hold. This can also be checked directly: assume there is an
equilibrium (xe, ue) ∈ X×U at which the near optimal turnpike property holds. Then from
the equilibrium property we obtain ue = 0 and thus `(xe, ue) = 0. Since for each initial
value x0 ∈ X the control u0 ≡ 0 yields JN (x0, u0) = 0, we obtain JN (x0, u0) ≤ `(xe, ue).
However, the corresponding trajectories are constant, i.e., xu0(k, x0) ≡ x0, and thus violate
the near optimal turnpike property at (xe, ue) whenever x0 6= xe. This contradicts the fact
that the near optimal turnpike property holds at the equilibrium (xe, ue).

A Appendix

This appendix provides a technical lemma which was needed in several proofs throughout
this paper.

Lemma A: Let A ∈ Rn×n and u = w+ iv, w, v ∈ Rn, be a complex eigenvector of A with
eigenvalue µ = a+ ib ∈ C satisfying b 6= 0 and |µ| ≥ 1.

(i) Let c0, d0 ∈ R such that c2
0 + d2

0 = 1. Then

Ak(c0w + d0v) = |µ|k(ckw + dkv) ∀k ∈ N0 , (A.1)
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with c2
k + d2

k = 1. Moreover, there are constants M ≥ m > 0 such that for every
k ∈ N0

|µ|km ≤ ‖Ak(c0w + d0v)‖ ≤ |µ|kM . (A.2)

(ii) Let x(k) := Akw and s ∈ Rn satisfying sTw ≤ 0. Then there exist arbitrarily large
k ∈ N for which the inequality

k∑
j=0

sTx(j) ≤ 0

holds.

Proof. For r = |µ|, σ = ln r, ϑ = arg(µ) ∈ [0, 2π) and z = σ + iϑ, i.e., µ = eσ(cosϑ +
i sinϑ) = ez, the identity Au = µu can be rewritten as Au = ezu which implies

Aku = ezku

for all k ∈ N0. Note that ϑ 6= 0 and ϑ 6= π because b 6= 0.

i) A straightforward computation gives that, for all k ∈ N0,

Akw = rk (cos(kϑ)w − sin(kϑ)v) , Akv = rk (sin(kϑ)w + cos(kϑ)v) , (A.3)

thus (A.1) holds for all k ∈ N0 with

ck = c0 cos(kϑ) + d0 sin(kϑ) , dk = d0 cos(kϑ)− c0 sin(kϑ) ,

thus c2
k + d2

k = c2
0 + d2

0 = 1. In order to prove (A.2), observe that from (A.1) we obtain

‖Ak(c0w + d0v)‖2 = |µ|2k‖ckw + dkv‖2.

It thus suffices to show the existence of M ≥ m > 0 with m2 ≤ ‖cw + dv‖2 ≤ M2 for all
c, d ∈ R with c2 + d2 = 1. For the squared Euclidean norm it holds that

‖cw + dv‖2 = c2‖w‖2 + d2‖v‖2 + 2c d〈w, v〉.

Since 2〈w, v〉 ≤ ‖w‖2 + ‖v‖2 and |c| ≤ 1 and |d| ≤ 1, we obtain the upper bound M =
2(‖w‖2 + ‖v‖2).

In order to find the lower bound m > 0, let c∗ ∈ R, d∗ ∈ R with c2
∗ + d2

∗ = 1 be such that

min
c2+d2=1

c2‖w‖2 + d2‖v‖2 + 2cd〈w, v〉 = c2
∗‖w‖2 + d2

∗‖v‖2 + 2c∗d∗〈w, v〉 =: m.

Clearly, this m is a lower bound and it thus remains to show m > 0. To this end, If
either c∗ = 0 or d∗ = 0 the assertion follows because m = ‖v‖ or m = ‖w‖, respectively.
Otherwise, we set w∗ = c∗w and v∗ = d∗v. Then, since w and v span a two dimensional
subspace (the sum of the eigenspaces corresponding to the complex conjugate eigenvalues µ
and µ̄), we know from the Cauchy-Schwarz inequality that |〈w∗, v∗〉| < ‖w∗‖ ‖v∗‖, because
equality can only hold if w∗ and v∗ and thus w and v are linearly dependent. This yields

m = ‖w∗‖2 + ‖v∗‖2 + 2〈w∗, v∗〉 > ‖w∗‖2 + ‖v∗‖2 − 2‖w∗‖ ‖v∗‖ = (‖w∗‖ − ‖v∗‖)2 ≥ 0
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and thus the claim m > 0.

ii) Since s and A are real, from u = w + iv we obtain

sTAjw = sT<(Aj(w + iv)) = <(ezjsTu) ,

which implies
k∑
j=0

sTx(j) = sT
k∑
j=0

Ajw = <

sT k∑
j=0

ezju

 .

Because of ∫ j+1

j
ezτdτ =

ez(j+1) − ezj

z
= ezj

ez − 1

z

we can write

sT
k∑
j=0

ezju = sT
z

ez − 1

∫ k+1

0
ezτdτ u =

ez(k+1) − 1

ez − 1
sTu .

Setting %k := ez(k+1)−1
ez−1 ∈ C, this yields

k∑
j=0

sTx(j) = < (%k) s
Tw −= (%k) s

T v . (A.4)

We thus have to show that the right-hand side of this expression is negative for arbitrarily
large k. To this end, observe that for each ε > 0 there exist arbitrarily large k ∈ N such
that the relation

kϑ mod 2π ∈ [2π − ε, 2π) ∪ [0, ε] (A.5)

holds: for ϑ/π being rational, i.e., equal to p/q for p ∈ Z, q ∈ N this is true whenever k
is an integer multiple of 2q, because in this case we have kϑ mod 2π = 0. In case ϑ/π is
irrational, the claim follows from the equidistribution theorem for the sequence ak mod 1
with irrational a, see, e.g., [2].

One computes the numerators of <(%k) and =(%k) as

[cos(ϑ) cos((k+ 1)ϑ) + sin(ϑ) sin((k+ 1)ϑ)]rk+2 − cos((k+ 1)ϑ)rk+1 − cos(ϑ)r+ 1 , (A.6)

and

[cos(ϑ) sin((k + 1)ϑ)− sin(ϑ) cos((k + 1)ϑ)]rk+2 − sin((k + 1)ϑ)rk+1 + sin(ϑ)r , (A.7)

respectively, while the denominator is always positive.

In case r > 1, for large k the term in rk+2 becomes dominant in the expressions of <(%k)
and =(%k), with coefficients

ak := cos(ϑ) cos((k + 1)ϑ) + sin(ϑ) sin((k + 1)ϑ) = cos(kϑ)

and
bk := cos(ϑ) sin((k + 1)ϑ)− sin(ϑ) cos((k + 1)ϑ) = sin(kϑ) ,
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respectively. For kϑ mod 2π = 0 we deduce that ak = 1 and bk = 0, rendering the right-
hand side of (A.4) negative thanks to sTw ≤ 0. By continuity, the whole expression in
the right-hand side of (A.4) is negative whenever kϑ mod 2π ∈ [2π − ε, 2π)∪ [0, ε], which
by (A.5) holds true for arbitrarily large k ∈ N.

In case r = 1, the numerators of <(%k) and =(%k) in (A.6) and (A.7) become

Num(<(%k)) = cos(kϑ)− cos((k + 1)ϑ)− cos(ϑ) + 1 (A.8)

and

Num(=(%k)) = sin(kϑ)− sin((k + 1)ϑ) + sin(ϑ) . (A.9)

Then, for kϑ mod 2π = 0, we find out that cos(kϑ) = 1, sin(kϑ) = 0, cos((k+1)ϑ) = cos(ϑ)
and sin((k+ 1)ϑ) = sin(ϑ), thus (A.8) and (A.9) give that Num(<(%k)) = 2− 2 cos(ϑ) > 0
since ϑ 6= 0, and Num(=(%k)) = 0. We thus conclude that the right-hand side of (A.4) is
negative and hence, by continuity, there is ε > 0 such that the sign is preserved whenever
kϑ mod 2π ∈ [2π − ε, 2π) ∪ [0, ε]. By (A.5) this is true for arbitrarily large k ∈ N, which
shows the claim.

Acknowledgement: We would like to thank Tobias Damm for his help with the proof of
Lemma 5.4 and Enrique Zuazua for fruitful discussions on the subject.

References

[1] B. D. O. Anderson and P. V. Kokotović, Optimal control problems over large
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[9] L. Grüne, Approximation properties of receding horizon optimal control, Jahresber.
DMV, 118 (2016), pp. 3–37.
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