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Abstract— In this paper, we consider a recently introduced
notion of discounted strict dissipativity which is of interest,
e.g., in the context of discounted optimal control and economic
model predictive control. We consider the question whether
(standard) strict dissipativity implies discounted strict dissipa-
tivity for discounting factors close enough to one. While in
general, this need not be the case, we show that it is indeed
true under certain regularity conditions.

I. INTRODUCTION

Economic model predictive control (MPC) is an MPC

approach where the primary control objective is not the

stabilization of some (given) setpoint, but the optimization

of some general performance criterion. This leads to the fact

that the repeatedly solved optimal control problem uses a

stage cost function which is not necessarily positive definite

with respect to a given setpoint [1]. In recent years, economic

MPC has received significant attention, and various different

economic MPC schemes have been proposed and analyzed

in the literature, see, e.g., the survey articles [2, 3].

In the study of economic MPC schemes, a certain dissipa-

tivity property has turned out to play a crucial role [4]. The

concept of dissipativity has been introduced by Willems [5]

and has since then found many different applications in

systems and control theory. In the context of economic MPC,

a certain dissipativity condition was used as an (almost)

equivalent characterization of steady-state optimality [1, 6],

in order to classify turnpike properties of the underlying

optimal control problem [7–9], and in order to establish

closed-loop convergence and performance guarantees [1, 7,

10, 11].

In recent works [12, 13], some of the above results were

extended to a setting where a discounted stage cost is used.

Such discounted optimal control problems are, e.g., widely

used in economics, where discounting is used in order to

account for the fact that economic utility in the far future

is typically weighed less than that of the near future, see,

e.g., [14]. Recent applications of this setting include models

for climate change economics such as the DICE model

(Dynamic Integrated model of Climate and the Economy,

[15]), which has also been analyzed using economic MPC

approaches, see [16]. In order to establish similar results as

in the undiscounted case, a suitable notion of discounted
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strict dissipativity was introduced in [12], and it was shown

that again statements about steady-state optimality and the

behavior of optimal solutions to discounted optimal control

problems can be made using a specific discounted (strict)

dissipativity condition.

Motivated by the above, in this paper we study the

relation between standard (undiscounted) strict dissipativity

and discounted strict dissipativity. Formally, the discounted

strict dissipativity condition from [12] becomes the well

known undiscounted condition with the discount rate is set

to β = 1. This naturally leads to the so far unanswered

question, whether strict dissipativity implies discounted strict

dissipativity for discount factors close enough to one, which

we investigate in this paper. If the answer was positive, this

would imply that steady-state optimality, turnpike properties

and closed-loop performance and convergence statements in

economic MPC are robust with respect to “mild enough”

discounting. While in general, this need not be the case, we

show that it is indeed true under certain regularity conditions

known from nonlinear programming.

The remainder of the paper is structured as follows.

Section II gives preliminaries on notation and the considered

problem setup; furthermore, we briefly review the role of

dissipativity in economic MPC. Section III presents the main

results showing under what conditions strict dissipativity

implies discounted strict dissipativity for discount factors

close enough to one. This is first done for the specific supply

rate which is of interest in (discounted) optimal control and

economic MPC in Section III-A. After that, Section III-B

shows that the results can be extended to general supply

rates and can hence also be of interest in a different context.

In Section IV, we illustrate the obtained results with a simple

example, before we conclude the paper in Section V.

II. PRELIMINARIES AND SETUP

A. Notation and system class

For a continuously differentiable function F (x), F :
R

n → R
m, denote by ∇xF (x̄) ∈ R

m×n the Jacobian matrix

of F , evaluated at the point x̄. For a twice continuously

differentiable function F (x), F : R
n → R, denote by

∇2
xF (x̄) ∈ R

n×n the Hessian matrix of F , evaluated at the

point x̄. For a vector a = [a1 . . . an]
T ∈ R

n, denote by

diag(a) ∈ R
n×n a diagonal matrix with diagonal entries ai.

We consider nonlinear discrete-time systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (1)

for a function f : Rn ×R
m → R

n. System (1) is subject to

state and input constraints (x, u) ∈ Y for some compact



set Y ⊆ R
n × R

m, and we define X := {x ∈ R
n :

∃u ∈ R
m s.t. (x, u) ∈ Y} and U := {u ∈ R

m : ∃x ∈
R

n s.t. (x, u) ∈ Y}. For a given control sequence u =
(u(0), . . . , u(K)) ∈ U

K+1 (or u = (u(0), . . . ) ∈ U
∞) and

initial condition x0, the corresponding solution of system (1)

is denoted by xu(k, x0) or just by x(k) if there is no

ambiguity about x0 and u. For a given x0 ∈ X, the set

of all feasible control sequences of length N is denoted

by U
N (x0), where a feasible control sequence is such that

(x(k), u(k)) ∈ Y for all k = 0, . . . , N − 1 and x(N) ∈ X.

Similarly, the set of all feasible control sequences of infinite

length is denoted by U
∞(x0). In the following, we assume

for simplicity that U∞(x0) 6= ∅ for all x0 ∈ X, i.e., the set

X is controlled invariant. We expect that for the following

results, this assumption can be relaxed by restricting initial

values to the viability kernel X∞ := {x0 ∈ X : U∞ 6= ∅};

however, the technical details of this extension are beyond

the scope of this paper. Finally, a point (xe, ue) ∈ Y is called

an equilibrium of system (1) if xe = f(xe, ue).

B. Dissipativity and economic MPC

We now briefly review the concepts of dissipativity and

discounted dissipativity and discuss their role in economic

MPC. The concept of dissipativity dates back to Willems [5]

(see also [17] for a discrete time version) and is as follows.

Definition 1: Given an equilibrium (xe, ue), the sys-

tem (1) is strictly dissipative with respect to the supply rate

s : Y → R if there exists a storage function λ : Rn → R

bounded from below and a function α ∈ K∞ such that the

following inequality is satisfied for all (x, u) ∈ Y:

λ(f(x, u))− λ(x) ≤ s(x, u)− α(|(x − xe, u− ue)|). (2)

Remark 2: If (2) is satisfied with α ≡ 0, then system (1)

is called dissipative. Furthermore, we remark that the stan-

dard definition of strict dissipativity uses α(|x−xe|) instead

of α(|(x − xe, u − ue)|) in (2). The results in Section III

require this slightly stronger definition, which in the context

of economic MPC has recently also been used, e.g., in [6,

18, 19]. �

In recent years, a certain (strict) dissipativity property has

turned out to play a crucial role in the context of economic

MPC, both for classifying optimal operating behaviors as

well as for closed-loop performance and convergence state-

ments. In economic MPC, at each time t ∈ N0 with measured

system state x := x(t), the following finite-horizon optimal

control problem is solved:

min
u∈UN (x)

ĴN (x, u) with ĴN (x, u) =
N−1
∑

k=0

ℓ(xu(k, x), u(k)),

(3)

where ℓ : Rn × R
m → R is some general (not necessarily

positive definite) stage cost function. Then, given an optimal

solution u0 ∈ U
N (x) to problem (3), the input u0(0) is

applied to the system, before this procedure is repeated at

the next time step t+ 1.

Now given the system dynamics f , the stage cost func-

tion ℓ and the constraint set Y, it was shown that dissipativity

with respect to the supply rate s(x, u) = ℓ(x, u)− ℓ(xe, ue)
is both sufficient [1] and (under a suitable controllability

condition) necessary [6] for optimal steady-state operation

at xe, which means that no state and input sequence pair

leads to an average performance better than the steady-state

cost ℓ(xe, ue), i.e., lim infN→∞(1/N)JN(x0, u) ≥ ℓ(xe, ue)
for all x0 ∈ X and all u ∈ U

∞(x0). Furthermore, strict dis-

sipativity with respect to the supply rate s(x, u) = ℓ(x, u)−
ℓ(xe, ue) and bounded storage function together with suitable

controllability conditions is sufficient [7] and necessary [8]

for the so-called turnpike property of (near) optimal solutions

of problem (3). This property means that (near) optimal

solutions of problem (3) most of the time stay in a neigh-

borhood of the equilibrium xe, which can be employed to

conclude (near) optimal performance and convergence to the

steady-state xe for the closed-loop system resulting from

the above economic MPC scheme [11]. Similar closed-loop

convergence and performance results based on the above

strict dissipativity property are also available for economic

MPC schemes with additional terminal constraints [1, 20].

For a more detailed discussion on the role of dissipativity in

economic MPC, we also refer to [4].

As motivated in the Introduction, in many applications

from economics optimal control problems with discounted

stage cost are of interest, i.e., problems of the form

min
u∈UN (x)

JN (x, u) with JN (x, u) =

N−1
∑

k=0

βkℓ(xu(k, x), u(k)),

(4)

with discount factor 0 < β < 1. In order to establish similar

relations between (strict) dissipativity, optimal steady-state

operation and closed-loop performance and convergence as

in the undiscounted case, a recent paper [12] proposed a

notion of discounted dissipativity, which is as follows.

Definition 3: Given an equilibrium (xe, ue) and a dis-

count factor 0 < β < 1, the system (1) is discounted strictly

dissipative with respect to the supply rate s : Y → R if

there exists a storage function λ : Rn → R bounded from

below with λ(xe) = 0 and a function α ∈ K∞ such that the

following inequality is satisfied for all (x, u) ∈ Y:

βλ(f(x, u))− λ(x) ≤ s(x, u)− α(|(x − xe, u− ue)|).
(5)

Note that the requirement λ(xe) = 0 is crucial for the

following statements and cannot be trivially satisfied as

in the undiscounted case.1 As shown in [12], discounted

strict dissipativity with respect to the supply rate s(x, u) =
ℓ(x, u)− ℓ(xe, ue) implies that (xe, ue) is an optimal equi-

librium in the sense that

V∞(xe) := min
u∈U∞(xe)

J∞(xe, u) = ℓ(xe, ue)/(1− β), (6)

1In the undiscounted case, λ+ c for all c ∈ R is a storage function if λ
is one, which is not the case anymore in the discounted setting.



which means that for the initial condition x0 = xe, the

constant input ue is optimal. Furthermore, this strict dissipa-

tivity condition can again be employed to conclude a certain

turnpike property of optimal solutions to problem (4), which

in turn can again be used to establish closed-loop perfor-

mance and convergence guarantees for discounted economic

MPC [13].

In summary, in both the standard (undiscounted) as well

as the discounted case, a certain dissipativity condition has

turned out to play a crucial role in the study of optimal con-

trol and economic MPC problems. Here, the undiscounted

and the discounted strict dissipativity notions are compatible

in the sense that for β = 1 the discounted condition becomes

the undiscounted one. In the following, we consider the

question whether strict dissipativity implies discounted strict

dissipativity for discount factors β sufficiently close to one.

Considering the above, a positive answer would imply that

steady-state optimality, turnpike properties and closed-loop

performance and convergence statements in economic MPC

are preserved for a “mild” enough discounting. This would

be in analogy to the stabilizing case (with positive definite

cost function ℓ), where asymptotic stability of the optimally

controlled system is preserved for discount factors β close

enough to one (compare [21]). While the answer to the above

question is negative in the most general case (compare the

example in Section IV), under certain regularity conditions

it is indeed true, as shown in the following section.

III. DISSIPATIVITY AND DISCOUNTED DISSIPATIVITY

In this section, we show under what conditions strict

dissipativity implies discounted strict dissipativity for dis-

count factors β sufficiently close to one. To this end, we

briefly recall some results from nonlinear programming.

Namely, consider an optimization problem of the form

minh0(y)=0,g0(y)≤0 f
0(y), where y ∈ R

ny and the functions

f0 : Rny → R, h0 : Rny → R
nh and g0 : Rny → R

ng are

twice continuously differentiable. Denote the set of active

inequality constraints at a feasible point y by A(y) :=
{1 ≤ j ≤ ng : g0j (y) = 0}. A feasible point y is regular

if ∇yh
0
i (y), 1 ≤ i ≤ nh, and ∇yg

0
j (y), j ∈ A(y), are

linearly independent. If a point y∗ is regular and a local

minimizer of the above optimization problem, there exist

(unique) Lagrange multiplier vectors ν ∈ R
nh and µ ∈ R

ng

≥0

such that ∇yf
0(y∗)+νT∇yh

0(y∗)+µT∇yg
0(y∗) = 0 with

µj = 0 for all j /∈ A(y∗), see, e.g., [22, Proposition 3.3.1].

Furthermore, in the following we will make use of the second

order sufficiency conditions [22, Proposition 3.3.2], i.e. (i)

wT∇2
y(f

0(y∗)+ νTh0(y∗)+µTg0(y∗))w > 0 for all w 6= 0
such that ∇yh

0(y∗)w = 0 and ∇yg
0
j (y

∗)w = 0 for all

j ∈ A(y∗), and2 (ii) µj > 0 for all j ∈ A(y∗).

A. Optimal control related supply rates

In the following, we assume that the state and input

constraint set Y is given in terms of inequality constraints,

2Condition (ii) is typically called strict complementarity condition.

i.e., Y = {(x, u) ∈ R
n × R

m : g(x, u) ≤ 0} for some

g : Rn×R
m → R

p. Now consider the optimization problem

min
x=f(x,u),g(x,u)≤0

ℓ(x, u). (7)

Clearly, if system (1) is (strictly) dissipative with respect

to the supply rate s(x, u) = ℓ(x, u) − ℓ(xe, ue) for some

equilibrium (xe, ue), then this equilibrium is a minimizer of

problem (7). Now consider the function

ℓ̃(x, u) := ℓ(x, u)− ℓ(xe, ue) + λ(x) − λ(f(x, u)). (8)

If the system is strictly dissipative with respect to the supply

rate s(x, u) = ℓ(x, u) − ℓ(xe, ue), from (2) it follows that

ℓ̃(x, u) ≥ α(|(x−xe, u−ue)|) for all (x, u) ∈ Y. This means

that

0 = ℓ̃(xe, ue) = min
g(x,u)≤0

ℓ̃(x, u), (9)

i.e., (xe, ue) is the unique minimizer of ℓ̃ on the set Y. We

now impose the following assumption.

Assumption 4: (i) The functions f , ℓ, and g, are twice

continuously differentiable.

(ii) The point (xe, ue) is a regular point of problem (7) and

satisfies the second order sufficiency conditions.

(iii) The system is strictly dissipative with respect to the

supply rate s(x, u) = ℓ(x, u)− ℓ(xe, ue). Furthermore,

the storage function λ is twice continuously differen-

tiable and (xe, ue) satisfies the second order sufficiency

conditions for problem (9).

We are now in a position to prove the following result.

Theorem 5: Let Assumption 4 be satisfied. Then there

exists β̂ such that for all β̂ ≤ β ≤ 1, there exists an equi-

librium (xe(β), ue(β)) such that the system is discounted

strictly dissipative with respect to the supply rate s(x, u) =
ℓ(x, u)− ℓ(xe(β), ue(β)), i.e., there exist a storage function

λ̂(x, β) with λ̂(xe(β), β) = 0 and σ ∈ KL such that the

function

ℓ̂(x, u, β) :=ℓ(x, u)− ℓ(xe(β), ue(β))

+ λ̂(x, β) − βλ̂(f(x, u), β), (10)

satisfies ℓ̂(x, u, β) ≥ σ(|(x − xe(β), u − ue(β))|) for all

(x, u) ∈ Y.

Proof: Let h(x, u, β) := x − βf(x, u) and consider the

set of equations

∇(x,u)ℓ(x, u) + νT∇(x,u)h(x, u, β) + µT∇(x,u)g(x, u) = 0,

x− f(x, u) = 0,

gi(x, u) + z2i = 0, i = 1, . . . , p

2µizi = 0, i = 1, . . . , p (11)

where ν ∈ R
n, µ ∈ R

p, and z ∈ R
p. For each fixed β, (11)

is a set of 2n+m+2p equations for 2n+m+2p unknowns

x, u, ν, µ, z. Since (xe, ue) is regular and a minimizer of

problem (7), for β = 1 it follows that x = xe, u = ue,

and zi =
√

−gi(xe, ue) =: zei together with some (unique)

ν = νe and µ = µe ≥ 0 are a solution to (11), since for



these values the set of equations (11) corresponds to the

Karush-Kuhn-Tucker (KKT) conditions of problem (7) (see,

e.g., [22, Proposition 3.1.1]). The corresponding Jacobian J
of (11) with respect to (x, u, ν, µ, z) is given by

J =









A bT cT 0
b 0 0 0
c 0 0 2diag(ze)
0 0 2diag(ze) 2diag(µe)









, (12)

where A := ∇2
(x,u)ℓ(x

e, ue)+
∑n

i=1 ν
e
i∇

2
(x,u)hi(x

e, ue, 1)+
∑p

i=1 µ
e
i∇

2
(x,u)gi(x

e, ue, 1), b = ∇(x,u)h(x
e, ue, 1), and c =

∇(x,u)g(x
e, ue). Since by property (ii) of Assumption 4,

the second order sufficiency conditions for problem (7) are

satisfied, it follows that J is nonsingular (compare [22,

Section 3.3.3]). Hence we can use the implicit function

theorem to conclude that for β sufficiently close to one, there

exists a solution xe(β), ue(β), z(β), ν(β), µ(β) to (11) such

that the functions xe(·), ue(·), z(·), ν(·), µ(·) are continu-

ously differentiable and xe(1) = xe, ue(1) = ue, z(1) = ze,

ν(1) = νe, and µ(1) = µe. Furthermore, from continuity of

µ(·) and z(·), the fourth equation of (11), and the fact that

µe
i > 0 for all i ∈ A(xe, ue) by Assumption 4 (iii), it follows

that for β sufficiently close to one, µ(β) > 0 if µe > 0,

µ(β) = 0 if µe = 0, and A(xe(β), ue(β)) = A(xe, ue).

Next, since by Assumption 4 (ii) and (iii), (xe, ue) is

a regular point of problem (7) (and hence also of prob-

lem (9)) and (xe, ue) is a strict minimizer of ℓ̃ on the set

Y, it follows that the KKT conditions ∇(x,u)ℓ̃(x
e, ue) +

µ̃T g(xe, ue) = 0 are satisfied for some µ̃ ∈ R
p
≥0 [22, Propo-

sition 3.1.1]. But then, since ∇(x,u)(λ(x
e)−λ(f(xe, ue))) =

∇xλ(x
e)∇(x,u)h(x

e, ue, 1), from (11) with β = 1 and

uniqueness of the Lagrange multiplier vectors νe and µe it

follows that ∇xλ(x
e) = (νe)T and µ̃ = µe.

Now define

λ̂(x, β) :=λ(x) − λ(xe(β))

+ (ν(β)T −∇xλ(x
e(β)))(x − xe(β)). (13)

First, note that λ̂(xe(β), β) = 0. We now want to show that

for β sufficiently close to one, (xe(β), ue(β)) is a (local)

minimizer of ℓ̂ as defined in (10), i.e., for the optimization

problem

min
g(x,u)≤0

ℓ̂(x, u, β). (14)

To this end, we show that the KKT conditions and the second

order sufficiency conditions for this problem are satisfied.

Since ∇xλ̂(x
e(β), β) = ν(β)T , we obtain

∇(x,u)ℓ̂(x
e(β), ue(β), β)

= ∇(x,u)ℓ(x
e(β), ue(β))

+∇(x,u)

(

λ̂(xe(β), β) − βλ̂(f(xe(β), ue(β)), β)
)

= ∇(x,u)ℓ(x
e(β), ue(β))

+∇xλ̂(x
e(β), β)∇(x,u)h(x

e(β), ue(β), β)

= ∇(x,u)ℓ(x
e(β), ue(β)) + ν(β)T∇(x,u)h(x

e(β), ue(β), β).

Combining this with the above established fact that x =
xe(β), u = ue(β), ν = ν(β), µ = µ(β) satisfy the

first equation of (11) results in ∇(x,u)ℓ̂(x
e(β), ue(β), β) +

µ(β)T∇(x,u)g(x
e(β), ue(β)) = 0. Together with the fact

that µ(β) ≥ 0 and µi(β) = 0 for all i /∈ A(xe(β), ue(β)),
this means that the KKT conditions for problem (14) are

satisfied at (xe(β), ue(β)). Next, since xe(·), ue(·), and

ν(·) are continuous and ∇xλ(x
e) = (νe)T as discussed

above, it follows that ∇2
(x,u)ℓ̂(x

e(·), ue(·), ·) is continu-

ous with ∇2
(x,u)ℓ̂(x

e(1), ue(1), 1) = ∇2
(x,u)ℓ̃(x

e, ue). But

then, since the second order sufficiency conditions for

problem (9) are satisfied by Assumption 4 (iii), i.e., (i)

yT∇2
(x,u)(ℓ̃(x

e, ue) + (µe)T g(xe, ue))y > 0 for all y 6= 0

such that ∇(x,u)gi(x
e, ue)y = 0 for all i ∈ A(xe, ue)

and (ii) µe
i > 0 for all i ∈ A(xe, ue), by continuity

and the fact that A(xe(β), ue(β)) = A(xe, ue) it follows

that also the second order sufficiency conditions for prob-

lem (14) are satisfied, i.e., (i) yT∇2
(x,u)(ℓ̂(x

e(β), ue(β)) +

µ(β)T g(xe(β), ue(β)))y > 0 for all y 6= 0 such that

∇(x,u)gi(x
e(β), ue(β))y = 0 for all i ∈ A(xe(β), ue(β))

and (ii) µi(β) > 0 for all i ∈ A(xe(β), ue(β)). Hence for

β sufficiently close to one, (xe(β), ue(β)) is a strict local

minimizer of ℓ̂ (see, e.g. [22, Proposition 3.3.2]). But then,

since (xe, ue) was a global minimizer of ℓ̃ on the compact

set Y, by continuity β can be chosen close enough to one

such that also (xe(β), ue(β)) is a global minimizer of ℓ̂
on Y, i.e., there exists σ ∈ KL such that ℓ̂(x, u, β) ≥
σ(|(x − xe(β), u − ue(β))|) for all (x, u) ∈ Y. Together

with the fact that λ̂(xe(β), β) = 0 as established above, this

implies that the system is discounted strictly dissipative with

respect to the supply rate s(x, u) = ℓ(x, u)−ℓ(xe(β), ue(β)),
which concludes the proof of Theorem 5. �

Remark 6: In [6, Theorem 5], robustness of (undis-

counted) dissipativity with respect to parameter variations

in the constraint set Y was studied. Both the above proof of

Theorem 5 and the proof of [6, Theorem 5] use ideas from

the context of nonlinear programming. However, while in [6,

Theorem 5] one could directly apply sensitivity results, this

was not the case in the above proof, since for β 6= 1, the set

of equations (11) do not correspond to the KKT conditions

of some associated optimization problem, but only for β = 1.

B. Extension to general supply rates

We now briefly discuss how the preceding results can be

extended to general supply rates. Namely, given an equilib-

rium (xe, ue), suppose that system (1) is strictly dissipative

with respect to some supply rate s : Y → R. We can now

distinguish two cases. First, if the minimum value of the

problem

min
g(x,u)≤0

s(x, u) + λ(x) − λ(f(x, u)) (15)

is (strictly) positive and f , s, and λ are continuous, then also

ming(x,u)≤0 s(x, u) + λ(x) − βλ(f(x, u)) > 0 for β close

enough to one (due to compactness of Y). Hence system (1)

is also discounted strictly dissipative in this case. Second,

if the minimum value of the problem (15) is zero, by strict
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Fig. 1. Illustration of the steady-states (blue solid line), level sets of ℓ (black
ellipses), and the additional constraint gad (red dashed) of the example in
Section IV. The optimal steady-state (xe, ue) = (0, 0) for the undiscounted
case is marked with a circle.

dissipativity it follows that the minimizer of problem (15) is

the point (xe, ue), which is also the minimizer to the problem

min
x=f(x,u),g(x,u)≤0

s(x, u). (16)

In this case, discounted strict dissipativity can be shown

analogously to the proof of Theorem 5, using the following

modified assumption.

Assumption 7: (i) The functions f , s, g, and λ are

twice continuously differentiable.

(ii) The point (xe, ue) is a regular point and satisfies the

second order sufficiency conditions of problems (15)

and (16).

We then arrive at the following corollary.

Corollary 8: Suppose that system (1) is strictly dissipa-

tive with respect to the supply rate s and that either (i) the

minimum value of the problem (15) is positive and f , s,

and λ are continuous, or (ii) Assumption 7 holds. Then there

exists β̂ such that for all β̂ ≤ β ≤ 1, the system is discounted

strictly dissipative with respect to the supply rate s.

IV. EXAMPLE

We now illustrate the preceding results with a simple

example. Consider the system

x(k + 1) = u(k) (17)

with stage cost ℓ(x, u) = (x+ 1)2 + (u− 1)2 and state and

input constraints given by

g(x, u) =









−2− x
x− 2
−2− u
u− 2









.

The optimal equilibrium is (xe, ue) = (0, 0) with associated

stage cost ℓ(xe, ue) = 2. One can show that the system (17)

is strictly dissipative with respect to the supply rate s(x, u) =
ℓ(x, u) − ℓ(xe, ue) and storage function λ(x) = −2x. The

point (xe, ue) = (0, 0) is a regular point of problem (7)

and satisfies the second order sufficiency conditions for

problems (7) and (9) (note that both ℓ and ℓ̃ are quadratic

and none of the constraints specified by g are active at

(xe, ue) = (0, 0)). Hence Assumption 4 is satisfied and

we can apply Theorem 5 to conclude that there exists an

equilibrium (xe(β), ue(β)) such that the system (17) is also

discounted strictly dissipative with respect to the supply rate

s(x, u) = ℓ(x, u) − ℓ(xe(β), ue(β)) for discount factors β
close enough to one3. Indeed, as shown in the proof of

Theorem 5, the optimal equilibrium (xe(β), ue(β)) varies

continuously in β and is given by

(xe(β), ue(β)) =
(1− β

1 + β
,
1− β

1 + β

)

. (18)

The corresponding storage function λ̂ is given by

λ̂(x, β) = −
4

1 + β

(

x−
1− β

1 + β

)

, (19)

which is in accordance with (13).

Now consider the same example but with additional con-

straint gad(x, u) = x + u ≤ 0, i.e., the state and input

constraint set Y is determined by

g(x, u) =













−2− x
x− 2
−2− u
u− 2
x+ u













.

Since (xe, ue) = (0, 0) is still a feasible point (however, now

on the boundary of the set Y), clearly the system (17) is still

strictly dissipative with respect to the supply rate s(x, u) =
ℓ(x, u) − ℓ(xe, ue) and storage function λ(x) = −2x as

above. On the other hand, for any 0 < β < 1, the equilibrium

(xe(β), ue(β)) given by (18) is not feasible anymore. Indeed,

for any 0 < β < 1, the system is not discounted strictly

dissipative anymore. According to the results in Section II-

B, this can be proven by showing that none of the feasible

equilibria is optimal, i.e., for all feasible equilibria (xe, ue)
we have V∞(xe) < ℓ(xe, ue)/(1 + β). Namely, given

any feasible equilibrium −2 ≤ xe ≤ 0 with ue = xe,

consider the input and corresponding state sequences u′ =
(δ,−δ, δ, . . . ) and x′ = (xe, δ,−δ, δ, . . . ) for some δ > 0.

Straightforward (but cumbersome) computations show that

J∞(xe, u′) < ℓ(xe, ue)/(1 + β) if δ < 2(1− β)2/(1 + β)2.

Hence for each 0 < β < 1, there exists some δ > 0 such that

V∞(xe) ≤ J∞(xe, u′) < ℓ(xe, ue)/(1+ β). This means that

for each 0 < β < 1, the system is not discounted strictly

dissipative. The reason why Theorem 5 fails is that the

second order sufficiency conditions for problems (7) and (9)

are not satisfied (while the rest of Assumption 4 is true).

Namely, the strict complementarity condition is not satisfied,

since the constraint x+ u ≤ 0 is active at (xe, ue) = (0, 0),
but the corresponding Lagrange multiplier is zero.

3In fact, since the system is linear with strictly convex stage cost ℓ, it is
discounted strictly dissipative for all 0 < β < 1, compare [12, Theorem 6].



V. CONCLUSIONS

In conclusion, we have shown that under certain reg-

ularity conditions known from the context of nonlinear

programming, strict dissipativity implies discounted strict

dissipativity for discount factors close enough to one. This

was first shown for a supply rate which is of interest in the

context of (discounted) optimal control and economic MPC,

and was subsequently extended to general supply rates s.

The presented results allow to conclude that steady-state

optimality, turnpike properties and closed-loop performance

and convergence statements in economic MPC are preserved

under a mild enough discounting.
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