
RESEARCH ARTICLE

Effects of Drought, Pest Pressure and Light
Availability on Seedling Establishment and
Growth: Their Role for Distribution of Tree
Species across a Tropical Rainfall Gradient
Julian Gaviria1*, Bettina M. J. Engelbrecht1,2

1 Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER),
University of Bayreuth, Bayreuth, Germany, 2 Smithsonian Tropical Research Institute, Balboa, Ancón,
Panama

* julian.gaviria@uni-bayreuth.de

Abstract
Tree species distributions associated with rainfall are among the most prominent patterns in

tropical forests. Understanding the mechanisms shaping these patterns is important to proj-

ect impacts of global climate change on tree distributions and diversity in the tropics. Beside

direct effects of water availability, additional factors co-varying with rainfall have been

hypothesized to play an important role, including pest pressure and light availability. While

low water availability is expected to exclude drought-intolerant wet forest species from drier

forests (physiological tolerance hypothesis), high pest pressure or low light availability are

hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and

light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling

transition, the potentially most critical stage for species discrimination, we conducted a

reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a

dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment

success after one year did not reflect species distribution patterns. However, in the wet for-

est, wet origin species had a home advantage over dry forest species through higher growth

rates. At the same time, drought limited survival of wet origin species in the dry forest, sup-

porting the physiological tolerance hypothesis. Together these processes sort species over

longer time frames, and exclude species outside their respective home range. Although we

found pronounced effects of pests and some effects of light availability on the seedlings,

they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-

seedling transition. Our results underline that changes in water availability due to climate

change will have direct consequences on tree regeneration and distributions along tropical

rainfall gradients, while indirect effects of light and pests are less important.
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Introduction
Tropical forests are among the most diverse communities worldwide. Changes of rainfall and
soil moisture with global climate change will potentially have dire consequences for tropical
forests; however, the uncertainty of projections remains high [1]. One of the most prominent
patterns in tropical forests is an increase of tree species richness with rainfall and a decrease
with dry season intensity (e.g. [2]). At the same time, tree distribution and forest composition
are strongly related to rainfall, and species turn-over is high across tropical rainfall gradients
[3–6]. Understanding the mechanisms underlying tree distribution patterns, community com-
position and diversity across rainfall gradients is necessary to improve projections of the effects
of global change on tropical forests and to optimize management, conservation and restoration
strategies.

Several factors have been hypothesized to shape tree distribution patterns across rainfall
gradients, including direct effects of water availability. According to the physiological tolerance
hypothesis [7], drought-intolerant species are excluded from dry forests, thus leading to differ-
ences in species composition and species numbers among dry and wet forests. The direct role
of drought tolerance, i.e. the ability to withstand periods of low water availability, in limiting
wet forest species from occurring in forests with a pronounced dry season is supported by
experimental studies [8–10]. However, at the same time many dry forest species do not occur
in wet sites [8, 11, 12]. The physiological tolerance hypothesis thus fails to explain a large part
of variation of tree distribution [8] and the high species turnover observed across tropical rain-
fall gradients [3]. Other environmental factors that co-vary with rainfall have been hypothe-
sized to indirectly influence tree species distributions. These include increases of insect
herbivore and pathogen pressure (summarized as pest pressure) and decreases of light avail-
ability with rainfall [2, 10, 13–18].

Herbivores and pathogens have long been hypothesized to influence species distributions
and diversity along tropical rainfall gradients [16, 17]. According to the pest pressure gradient
hypothesis [13], species originating from dry forests with low herbivore pressure are less
defended and therefore excluded from wet forests with high herbivore pressure. Despite its
potential importance for explaining community compositions in tropical forest, empirical sup-
port for this hypothesis remains scarce. Evidence for changes of pest pressure with rainfall or
moisture remains contradictory, and no differences of herbivore nor pathogen damage
between species origins have been found in reciprocal transplant experiments at the seedlings
stage, indicating that defenses did not differ between species of dry, seasonal and wet, aseasonal
forests [13, 14, 19]. Thus, the relevance of the pest pressure hypothesis for explaining species
distributions remains to be shown.

Light availability has been hypothesized to influence species distributions along rainfall gra-
dients, by excluding light-demanding dry origin species from wet forests with low understory
light levels [15, 18]. Higher light requirements of dry forest species have been hypothesized as a
consequence of a trade-off between shade and drought tolerance [18, 20], based mainly on a
trade-off between biomass allocation to roots, which would confer drought tolerance, and allo-
cation to leaves, which confers shade tolerance. However, there is no conclusive support for a
trade-off between drought and shade tolerance in tropical forest plants [8, 21–23], as traits con-
ferring drought or shade tolerance are complex, not necessarily related and can be uncoupled.
Higher light requirements of dry forest species have also been hypothesized due to their evolu-
tion in higher light environments in dry forests [15, 20]. Although lower light conditions in
wetter forests have long been assumed [20, 24], few studies have directly compared light avail-
ability along rainfall gradients [15, 25]. The results do not support that there is a general pat-
tern [25]. Instead, nutrients and species composition additionally strongly influence forest
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structure and understory light availability [26]. Thus, the role of light in shaping species distri-
butions across rainfall gradients also remains unclear.

Apart from environmental factors, intrinsic trade-offs between stress tolerance and growth
rate [20, 27], may also lead to exclusion of drought-tolerant dry origin species from wet forests.
Adaptations to stressful, resource-limited environments have been hypothesized to be coupled
with intrinsically low growth rates, based on biomass investment into either roots, which con-
fer higher drought (stress) tolerance or into leaves, which allows for higher growth rates. Other
traits that confer drought tolerance, like high wood density, small vessel diameter or high non-
structural carbohydrate concentrations, are also associated with low growth rates [28, 29].
Thus, drought-tolerant dry origin species should have intrinsically lower growth rates, which
put them at a disadvantage when water is not limiting as in wet forests. Under such conditions,
they may thus be outcompeted by drought-intolerant, fast-growing wet origin species. How-
ever, at the level of whole-plant performance, evidence for a drought tolerance-growth trade-
off and its role for species distributions across rainfall gradients remains scarce and contradic-
tory (e.g. [30–32]).

Plants responses to drought, pest pressure and light availability differ among life stages.
Early life stages, especially seedling emergence, are considered vulnerable to abiotic and biotic
stressors [19, 33, 34], and may thus be critical in shaping species distributions. Plant defenses
often increase with ontogeny [35], and the same absolute amount of leaf damage should have
larger impact on small seedlings compared to bigger, older plants, thus rendering initial life
stages especially vulnerable to pests. Experimental studies on factors shaping tree distributions
across rainfall gradients have so far mainly focused on established seedlings ([8, 9, 13–15, 36],
but see [19]). In our study we therefore specifically focused on the role of seed-to-seedling tran-
sition and first-year establishment for distribution patterns.

The aim of this study was to test how the combined effects of drought, pests and light avail-
ability affect early seedling performance of tree species with contrasting origins (dry vs. wet),
and how these differences in seedling performance influence species distribution patterns. We
hypothesized that species have a performance advantage within their respective home (native)
range compared to foreign (alien) species, resulting in exclusion of the foreign species. We
expected that drought limits performance of wet forest species in drier sites (physiological tol-
erance hypothesis), and that pests and/or light availability limits the performance of dry forest
species in wetter sites (pest pressure and light availability hypothesis, respectively). To test
these hypotheses, we conducted a reciprocal transplant experiment along a rainfall gradient in
Panama, with species with contrasting origins. Pests were excluded for half of the seeds, and
light and soil moisture conditions were monitored during one year, including a dry and a wet
season. Specific expectations for plant performance in the experiment are depicted in Fig 1.

Materials and Methods

Study sites
The study was conducted at the Isthmus of Panama, which exhibits a pronounced rainfall gra-
dient from 1600 mm/year at the Pacific Coast to over 3000 mm/year at the Atlantic coast across
a distance of only 65 km [4, 8]. The length of the dry season, which typically starts in January
and ends in May, correlates negatively with annual rainfall [8]. Mean annual temperature is
25°C with little variation across the gradient or throughout the year.

The experiment was conducted in two forests about 50 km apart: a drier semi- deciduous
forest located in the national park Camino de Cruces (9° 2'N, 79°35'W, 2000 mm annual rain-
fall; modeled based on BIOCLIM data, [37]), and a wetter evergreen lowland forest in the
national park San Lorenzo (9°16'N, 79°58'W, 3200 mm annual rainfall). Both sites are located
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in the Tropical Moist Forest Life Zone [38, 39]. However, rainfall and moisture regime, as well
as species composition vary greatly. Dry season length is approximately 150 and 120 days, and
rainfall in the driest quarter of the year 530 mm and 800 mm [8, 38], respectively. Soil water
potentials in the upper soil layer of the dry site reach values well below -2 MPa in the dry

Fig 1. Schematic representation of the specific hypotheses for the effects of drought, light and pests on seedling performance. For overall
probability of establishment success (A) and growth (B), we hypothesized that species perform better in their respective home range outcompeting foreign
species, with drought limiting wet origin species in the dry site, and pest damage limiting dry origin species in the wet site. Consequently, we expected that
the pest exclosure enhances performance only for (poorly defended) dry origin species in the wet site (with high pest pressure) (i.e. three-way interaction
between treatment (exclosure/control), origin (dry/wet) and site (dry/wet)). For germination (C) and survival in the wet season (D), when water availability and
pest pressure are assumed to be high, we expected that wet origin species have higher survival than dry origin species in the wet site, under control
conditions (site x origin interaction). We expected that (poorly defended) dry origin species are limited by pest pressure in the wet site, indicated by higher
performance when pest pressure is alleviated through pest exclosure (three-way site x origin x treatment interaction). In contrast, (well defended) wet origin
species exhibit no differences in germination/survival between sites, independent of the pest exclosure. We expected dry season survival (E) of (drought
sensitive) wet origin species to be lower than survival of dry origin species in dry sites (significant site x origin interaction). Because pest pressure is assumed
to be lower in the dry season, we expected no increase in survival with pesticide treatment for any combination of site and origin (no three-way interaction).
With increasing light availability (F) we expected a stronger increase in all performance parameters for dry origin species (light x origin interaction), reflecting
their higher light requirements.

doi:10.1371/journal.pone.0143955.g001
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season, but remain high throughout the year in the wet site (Engelbrecht, unpublished data).
Both forest sites were mature secondary forest located on sedimentary bedrock. Only about
10% of the species in the areas overlap [3, 38]. In the following we refer to these sites as “dry”
and “wet”, respectively. Permits for working in the national parks were granted by the “Autori-
dad Nacional del Ambiente (ANAM).

Experimental design
At each forest site, 60 paired plots (90 cm x 90 cm) were established, with each pair including a
pesticide treatment (fungal pathogen and insect herbivore exclosure, see below) and a control
plot (2 sites x 2 treatments x 30 plots). Seeds of 15 species with “wet origin” and 11 species with
“dry origin” (S1 Table, for definitions see below) were sown into each plot, with one seed of
each species in each plot. Germination, seedling survival in the dry and the wet season, and
growth were followed over one year.

Seedling plots
The plots were set-up in the forest understory avoiding any gaps, with pairs separated at least 70
m from each other, spanning an overall area of about 300 ha in San Lorenzo (wet site) and 150
ha in Cruces (dry site). The control and exclosure plots were separated by at least 2 m. Where
relevant, the control plots were set-up uphill from the exclosure plots to prevent runoff from the
treatment to the control (three times in San Lorenzo and two times in Cruces). To allow access
of insect herbivores but prevent seed or seedling removal by rodents or other mammals, which
were not the focus of this study, all plots were caged with 2.5 x 2.5 cm wire mesh.

Study species and plant material
Study species were selected to include common species with strong association to the dry or
the wet side of the isthmus. We focused on shade-tolerant species, since they represent about
80% of the species in these forests [40, 41]. Species with small seeds (< 0.5 cm length) were
excluded to facilitate their manipulation and localization in the field. Potential study species
were selected based on their occurrence in 50 1 ha plots spanning the rainfall gradient [42]
and/or their abundance in a wet and a dry forest plot (Sherman, 6 ha and Cocoli, 4 ha, respec-
tively, see [42]). Species with predominantly wet Caribbean side occurrence, that did not occur
on the dry Pacific side of the Isthmus, or that had at least double the abundance in the wet than
the dry side plots were classified as “wet origin species”, whereas species occurring predomi-
nantly on the dry Pacific side, that did not occur on the wet Caribbean side of the Isthmus, or
that had at least double the abundance in the dry than the wet side plots were classified as “dry
origin species” (S1 Table).

Seeds were collected in mature secondary forests across the Isthmus within their respective
natural home range in the national parks San Lorenzo, Soberania, Chagres and Camino de
Cruces during the dry season and beginning of the wet season 2012 (March to mid-May). Ripe
seeds were collected from a minimum of three mother trees per species by directly harvesting
from the tree, or from freshly fallen fruits. Damaged seeds were removed after visual inspection
for damage by predators or pathogens. Final selection of the study species was based on the
availability of enough undamaged seeds, resulting in 15 “wet” and 11 “dry” origin species.

Pest exclosure treatment
To exclude fungal pathogens and insect herbivores (summarized as pests) a combination of a
fungicide and an insecticide (summarized as pesticides) was applied monthly to the treatment
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plots. Actara (active ingredient: Thiamethoxam), a systemic broad-spectrum insecticide, and
Diligent (active ingredients: Methalaxyl and Chlorothalonil), a systemic broad-spectrum fungi-
cide with protectant properties effective against true fungi as well as oomycetes were used.
According to the specification of the manufacturer, Actara was used in a solution of 0.5 g/l
water, and Diligent in a solution of 5 g/l. Each exclosure plot was sprayed with a mixture of 40
ml of the insecticide and 40 ml of the fungicide solution. The control plots were sprayed with
the same amount of rainwater, to ensure that results were not biased by additional water avail-
ability in the treatment. Studies using similar pesticide treatments have discarded negative
influences on non-target organisms, including the plants themselves [43, 44]. Seeds in the
exclosure plots were additionally pre-treated with the broad-spectrum insecticide Brigadier
(active ingredient: Bifenthrin), and the fungicide Diligent (see above) to avoid seed predation.
The insecticide was used undiluted with 50 ml/kg seeds. The seeds were briefly soaked in both
solutions. Seeds of the control plots were soaked in rainwater.

Seed sowing
120 seeds per species (2 sites x 2 treatments x 30 plots, with one seed per species per plot, total-
ing 3600 seeds) were sown at the end of the dry season/beginning of the wet season (starting in
March 2012). To ensure high germination rates in the typically recalcitrant seeds and to mimic
natural seeding periods, seeds were sown as soon as possible after collection (maximum two
days later), and distributed evenly between exclosure and control plot and wet and dry site (i.e.
not all seeds of one species were planted at the same time). Seeds were planted on the mineral
soil under the leaf litter, in a 15 x 15 cm grid, with species assigned randomly to the positions.
Leaf litter was disturbed as little as possible to ensure natural microhabitat conditions in the
plots. To prevent washing away and to facilitate relocation, seeds were fixed to the ground with
wooden toothpicks and positions marked.

Seed germination, survival and growth
Seed germination and seedling survival were monitored between March 2012 and April 2013,
i.e. during the transition between initial dry and wet season, a wet season and a second dry sea-
son. Rainfall during the study period did not differ substantially from the long-term average,
except for almost the double amount of rainfall in November and December 2012 [45]. During
the first 3.5 months, the time of highest germination, censuses were conducted biweekly to
ensure that all germinating seeds were recorded; radicle emergence was counted as germina-
tion. Thereafter, censuses were conducted at monthly intervals for seedling survival, based on
aboveground living biomass, and for occasional further germination. Overall growth was
assessed at the last census based on seedling height, measured from the ground to the highest
meristem.

From the census data we quantified six performance parameters: (1) overall establishment
success (proportion of remaining seedlings at the end of the experiment relative to the original
number of seeds sown; covers the period fromMarch 2012 to April 2013); (2) overall growth
(height of the seedlings at the end of the experiment in April 2013); (3) germination (propor-
tion of seeds that germinated until the end of the experiment, relative to the original number of
seeds sown); (4) survival during the wet season (proportion of seedlings that survived until
December 2012, relative to the number of germinated seeds); and (5) survival during the dry
season (proportion of seedlings that survived until April 2013, relative to the number of seed-
lings present at the start of the dry season).
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Soil moisture and light
We recorded gravimetric soil moisture at each census, and averaged over the dry and wet sea-
sons, respectively. For light availability, canopy openness was assessed once during the dry and
wet season, respectively (Fig 2).

For soil moisture, three random soil cores 15 cm deep were taken within 1 m from each plot
pair; fresh and dry weight (after drying to constant weight at 105°C) were determined and per-
cent gravimetric water content was calculated based on dry weight. We assessed canopy open-
ness (percent open sky) from hemispherical photographs taken 1 m over each plot during the
dry (April 2012) and during the wet season (October 2012), using a Nikon Coolpix P5000 cam-
era with a Fisheye Converter FC-E8. Photographs were analyzed with the program Gap Light
Analyzer v2.

Gravimetric soil moisture and canopy openness varied significantly across sites and between
seasons: gravimetric moisture was lower in the dry than in the wet forest and lower in the dry
than in the wet season (Fig 2a). Conversely, canopy openness was higher in the dry than in the
wet forest, and higher in the dry than in the wet season (Fig 2b).

Statistical analyses
Our main aim was to assess the effect of site (as a categorization of moisture, see below), species
origin, pest exclosure and light on probabilities of germination and survival, as well as on
growth.

We initially tested for correlations between the explanatory variables (S2 Table). Soil mois-
ture correlated strongly between seasons as well as with the factor site (r� 0.8, see S2 Table).
Therefore, soil moisture and site could not be maintained together in the same model. Models
treating soil moisture as continuous variable and models with the factor site (wet/dry, see
below) yielded qualitatively the same results. We present results of the models with the factor
site, because we were interested in responses to the large-scale rainfall gradient rather than
small-scale responses within sites, and because using the factor site better reflected the experi-
mental setup with a separate “dry” and “wet” site.

The performance parameters we analyzed were: (1) establishment success, (2) growth, (3)
germination, (4) survival during the wet season and (5) survival during the dry season (Table 1).
To account for heteroscedasticity and non-normality of the residuals, growth data was log-
transformed using the natural logarithm.

We initially assessed species effects on performance by fitting a separate model for each per-
formance parameter (Generalized linear mixed effects with binomial distribution (GLMM), or
linear mixed effects (LMM) for growth, see S1 Fig). Species was used as fixed effect factor in
each model. Random intercepts were plot-pairs and plots, with plot nested in plot-pairs.

To assess the effects of site, origin, treatment and light availability on performance, one
model per performance parameter was fitted (GLMM or LMM, respectively). For every model,
fixed effect factors were site (dry/wet), origin of the species (dry/wet), treatment (pest exclo-
sure/control) and the average light availability (canopy openness in %) for the period analyzed
(dry season, wet season, annual mean of dry and wet season, respectively). We also included
the triple interaction term site x origin x treatment (which includes the pairwise interactions
site x origin, site x treatment and origin x treatment), and the interaction term origin x light
availability (Table 1). Random intercepts were species, plot-pair and plot. We nested species in
plots and plots in plot-pairs. Single term deletion of non-significant terms was used for model
selection. We removed sequentially first all interaction terms and then all explanatory variables
that led to a model with a lower Akaike Information Criteria (AIC).
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To test our specific expectations (Fig 1), we conducted eight planned comparisons using
least squares means [46] with Tukey correction as post-hoc tests (Table 2). To assess if seed
germination and seedling survival varied across sites or with species origin under the natural
condition of the habitat, we assessed under control conditions the effect of origin of the species
within the dry and the wet site, respectively, and the effect of site on wet origin and dry origin
species, respectively (i.e. four contrasts, Table 2a and 2b). To assess to what extent germination
and survival were affected by pests, we assessed the pest exclosure effect in each site (wet/dry)
and in species with different origin (wet/dry, i.e. four contrasts, Table 2c and 2d). Tukey post-
hoc comparisons, means and standard errors in tables and figures are from the least squares
table [46].

Fig 2. Gravimetric soil moisture (A) and canopy openness (B) in the dry and wet site across seasons.
Colors indicate the end of the dry season 2012 (red), wet season 2012 (blue) and dry season 2013 (dark red).
Included are results of an ANOVA for effects of site, season and site x season interactions. Different letters
represent significant differences at the 0.05 level in a Tukey post-hoc test. Presented are means (thick
horizontal lines), 95% CI (thin lines), and raw data (points).

doi:10.1371/journal.pone.0143955.g002
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All statistical tests were done using R 3.0.2 [47] with the packages lme4 1.0.5 [48], lsmeans
2.00–5 [46] and LMERConvenienceFunctions 2.5 [49].

Results
Species differed significantly in overall establishment success, as well as in germination, dry
and wet season survival, and growth (all p< 0.001, S1 Fig). Pest exclosure (i.e. pesticide treat-
ment) had an overall significant positive effect on all performance parameters except growth
(Table 1), underlining the importance of herbivores and pathogens in limiting seed germina-
tion and seedling survival in tropical forests. Light availability (i.e. canopy openness) only had
a positive effect on wet season survival (Table 1). Several performance parameters were affected
by site and origin or by interactions between site, origin, treatment and light, but these effects
differed among performance parameters (Table 1).

Table 1. Effects of site, species origin, pest exclosure and light on performance parameters of tropical tree seedlings.

Establishment success Growth Germination Survival wet season Survival dry season

single term effects

site ns <0.001 (-) <0.1 (+) ns ns

origin ns <0.05 (+) ns ns <0.05 (-)

treatment <0.001 (+) ns <0.001 (+) <0.05 (+) <0.001 (+)

canopy openness ns ns ns <0.05 (+) ns

interactions

site x origin ns <0.01 ns ns <0.05

site x treatment <0.01 ns <0.01 ns ns

origin x treatment ns ns ns ns ns

origin x canopy openness <0.1 ns ns ns ns

site x origin x treatment <0.01 ns <0.1 <0.1 ns

Summary of the results of the Generalized Linear Mixed Effects Models (GLMM) and Linear Mixed Effects Model (LMM, for growth) for the six

performance parameters. Significant relations are in bold. Detailed results are given in S3 Table.

(+) / (-): positive or negative effect of pest exclosure, wet site, wet origin or high light on performance parameters. These are only given for single-term

results, not for the interactions.

doi:10.1371/journal.pone.0143955.t001

Table 2. Planned comparisons of (A) effects of origins and sites under natural (control) conditions, and (B) effects of pest exclosure on perfor-
mance parameters.

A. Effects of site and species origin under natural
conditions

B. Effects of pest exclosure within sites and origins

a. Effect of origin
within sites

b. Effect of site within
origin

c. Exclosure effect within
dry site

d. Exclosure effect within
wet site

Performance parameter Dry site Wet site Dry origin Wet origin Dry origin Wet origin Dry origin Wet origin

Establishment success ns ns ns ns <0.001 <0.001 ns <0.001

Growth 0.02 <0.001 <0.001 ns ns ns ns ns

Germination ns ns 0.06 ns <0.001 ns ns ns

Survival wet season ns ns ns 0.05 0.02 0.001 ns <0.001

Survival dry season 0.02 ns ns 0.04 0.09 0.03 ns <0.001

(a) Effects of species origin within the dry and the wet site, and (b) effects of site on species with dry and wet origin under control conditions. Effects of

exclosure (c) within the dry site on dry origin and wet origin species, and (d) within the wet site, on dry and wet origin species. Post-hoc analyses are

based on least squares means contrasts [46] with Tukey correction. Significant contrasts are in bold.

doi:10.1371/journal.pone.0143955.t002
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Below we first present the results for overall seedling establishment and growth during the
study (Fig 3). The establishment success after one year is the cumulative result of germination
and survival patterns, which are presented separately (Fig 4), and integrates processes in the
wet and the dry season over the course of the experiment (see also Fig 1). To test our main
hypotheses, we first focus on species performance under natural pest pressure (i.e. controls) to
compare the performance of home vs. foreign species (i.e. origins) within sites and across sites
(planned comparisons in Table 2a and 2b). Then we focus on the effects of pest exclusion
within sites and across origins (planned comparisons in Table 2c and 2d). Finally, we depict
the effects of light. Full results of the three-way interactions, as well as of pairwise interactions
and individual factors are summarized in Table 1, and details are given in S3 Table.

Seedling establishment
At the end of the experiment after one year, 22.2% of the seedlings out of all seeds that were
sown survived (799 out of 3600). We expected species to have a disadvantage outside their
home range exhibiting lower overall establishment success, with dry origin species being limited
by pest pressure and/or low light availability in the wet site, and wet origin species being limited
by drought in the dry site. Contrary to our expectation, for control seedlings there were no sig-
nificant differences in the establishment success of the two origins within sites (Table 2a, Fig
3a), nor across sites (Table 2b, Fig 3a). Thus, under natural conditions, dry origin and wet origin
species did not differ in their probability to establish in both sites. Pest exclosure significantly
enhanced seedling establishment, and the strength of the effect depended on site and origin (sig-
nificant treatment x site x origin interaction, Table 1, Fig 3a): the pest exclosure enhanced estab-
lishment success of wet origin species on both sites (Table 2c and 2d), but of dry origin species
only in the dry site (Table 2c). Thus, contrary to our expectations, pest exclosure had no positive
effect on dry origin species in the wet site (Table 2d). Light had no overall significant effect on
the establishment success over the whole experimental period. There was a marginally signifi-
cant origin x light interaction; however, opposite to our expectations, wet origin species profited
more from higher light availability than dry origin species (Table 1, Fig 3b). None of the other
performance parameters exhibited a significant light x origin interaction (Table 1).

Growth
On average, after one year species had grown to a height of 14.1 cm (3.5–62.5 cm). We found a
significant site x origin interaction (Table 1): Dry origin species grew significantly less than wet
origin species in the wet site (Fig 3c). Even in the dry site dry origin species grew less than wet
origin species, although the difference was less pronounced than in the wet site (Table 2a, Fig
3c). Dry origin species grew less in the wet site than in their dry home range, while wet origin
species showed no difference in growth performance across sites (Table 2b, Fig 3c). Indepen-
dent of species origin, overall growth was lower in the wet site compared to the dry site
(Table 1). Dry origin species had an overall lower growth than wet origin species independent
of site (Table 1). Pest exclosure did not affect growth, neither alone nor in interaction with ori-
gin nor site, indicating that pests did not limit growth in our experiment (Table 1, Table 2c and
2d). Growth was also not affected by the variation of light availability encountered in this study
(Table 1, Fig 3d).

Germination
Out of the seeds sown in the experiment, 38% germinated (1384 of 3600). Germination ranged
from 0% to 94% among species (S1 Fig). Within sites, no differences were found between ori-
gins under natural conditions (Table 2a, Fig 4a). Contrary to our expectations, dry origin
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species showed a marginally significant trend (p = 0.06) to germinate better in the wet than in
the dry site under natural control conditions, while wet origin species did not show any differ-
ences between sites (Table 2b). As expected, pest exclosure benefited dry origin species more
than wet origin species, but opposite to our expectations, only in their home range (Table 2c
and 2d, Fig 4a). Wet origin species showed no higher germination rates when pests were
excluded, neither in the dry nor in the wet site (Table 2c and 2d). Light availability did not
affect germination, neither for dry nor for wet origin species (Table 1, Fig 4b).

Seedling survival during the wet season
In the wet season, 72% of the germinated seeds survived (994 of 1384). Although the interac-
tion site x origin x treatment was marginally significant (Table 1), trends did not conform to

Fig 3. Overall probability of establishment success (A and B) and growth (C and D) at the end of the
experiment after one year, as affected by moisture (dry vs. wet site), origin (dry vs. wet), pest
exposure (control vs. exclosure) and light availability (canopy openness). Panels A and B showmeans
and standard errors from the least squares means table [46]. For canopy openness (B and D), results of
exclosure and control seeds and seedlings were pooled, since we did not expect light availability to influence
the effect of the exclosure treatment. For overall analyses see Table 1, for planned contrasts (post-hoc-tests)
see Table 2.

doi:10.1371/journal.pone.0143955.g003
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Fig 4. Probability of seed germination (A and B), wet season seedling survival (C and D) and dry
season survival (E and F) for species with dry or wet origin as affected by moisture (dry vs. wet site),
herbivore exposure (control vs. exclosure) and light availability (canopy openness). Panels A, C and E
showmeans and standard errors from the least squares means table [46]. For canopy openness, results of
exclosure and control seeds and seedlings were pooled (see also Fig 3). For overall analyses see Table 1, for
planned contrasts (post-hoc-tests) see Table 2.

doi:10.1371/journal.pone.0143955.g004
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our expectations (Fig 4c). Wet origin species did not show higher survival rates than the dry
origin species in any of the sites (Table 2a, Fig 4c), although we had expected them to show
lower mortality during the wet season than dry origin species. Also opposite to our expecta-
tions, there was a trend for wet origin species to perform better in the dry site, while dry origin
species showed no difference between sites (Table 2b). Pest exclosure benefited wet origin spe-
cies both in the dry and the wet site, and dry origin species only in the dry site (Table 2c and
2d). Wet season survival of the seedlings increased with increasing light availability, but there
were no differences between the two origins (Table 1, Fig 4d).

Seedling survival during the dry season
The subsequent dry season was survived by 80% of the seedlings (799 of 994). There was a sig-
nificant site x origin interaction in the dry season, with seedling survival in both sites depen-
dent on their origin (Table 1, Fig 4e). Under natural control conditions in the dry site, wet
origin species had a significantly lower survival than dry origin species (Table 2a). Wet origin
species also had a lower survival in the dry than in the wet site (Table 2b). Survival in the exclo-
sure followed the same pattern (Fig 4e), indicating that drought rather than pests led to the
lower survival of wet origin species in the dry site. In contrast, dry origin species under control
conditions showed no differences in survival between sites (Table 2b). Pest exclosure increased
survival of wet origin species both in the dry and the wet site (Table 2c and 2d). For dry origin
species, the exclosure effect was only marginally significant in the dry site (Table 2c). During
the dry season, the triple interaction site x origin x treatment was not significant (Table 1).
Light availability had no significant effects in the dry season (Table 1, Fig 4f), although the dif-
ference in light availability between the sites was highest during the dry season (Fig 2b), proba-
bly due to leaf shedding.

Discussion
In contrast to our expectations, the overall establishment success (i.e. germination and one-
year survival) did not reflect the distribution patterns of the species (Fig 3a). Under natural
habitat conditions (i.e. exposed to pest pressure) seedlings had no home advantage in their
respective home site, nor did their establishment success vary across sites (Fig 3a and Table 2a
and 2b). Consistent with lower drought tolerance of wet origin species, dry season seedling sur-
vival in the dry site was significantly lower for wet than for dry origin species (Fig 4e, Table 2a).
Although this did not result in an overall home advantage of dry forest species within the time-
frame of our study (Fig 3), it may lead to the exclusion of wet forest species from dry forests in
more intense dry seasons and over longer time frames.

Neither the pest pressure hypothesis, nor the light availability hypothesis were supported to
be important in early life stages for excluding dry origin species from wet forests (Fig 3). How-
ever, growth patterns were consistent with a home advantage of wet origin species in the wet
site (Fig 3c): Wet origin species grew significantly faster than dry origin species (Table 2a), and
this effect was much more pronounced in the wet than in the dry site (significant site x origin
interaction, Table 1). This home advantage of wet forest species was already visible one year
after germination. It may accumulate over time, and lead to the eventual exclusion of dry origin
species from wet sites. Below we discuss our results and their implications for factors and life
stages shaping tree distributions across rainfall gradients in more detail.

Exclusion of wet forest species from dry sites
Our results indicate that our focal wet forest species were less drought-tolerant than the dry
forest species, and that drought limited their survival in the dry site during the dry season, as
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we had expected: Their dry season survival in the dry forest was much lower compared to dry
forest species (Fig 4e, Table 2a), and compared to the wet forest site (Fig 4e, Table 2b). We can
rule out that these effects were due to pest pressure, because seedlings in controls and exclo-
sures followed the same pattern (Table 2c and 2d, Fig 4e), or that they were due to light,
because light availability had no effect on seedling survival (Table 1, Fig 4f). Therefore, drought
was directly responsible for reducing survival in the dry site. These results confirm previous
studies in tropical forests worldwide which show that seedlings of wet forest species (or occur-
ring in wet sites) are less drought-tolerant, i.e. more susceptible to drought, than seedlings of
species occurring in dry forests exposed to a strong dry season [6, 8–10, 50].

Despite their lower drought tolerance, after one year wet forest species in the dry site did
not perform poorer than dry forest species neither in terms of overall establishment nor growth
(Fig 3a and 3c, Table 2a and 2b). Slightly, but non-significantly higher wet season survival in
wet compared to dry origin species in the dry site (Fig 4c, Table 2a), may have counterbalanced
their lower survival during the dry season, resulting in no overall difference in establishment
success during our study period (Table 2a).

The strength of the dry season (i.e. the duration and the water deficit reached) varies consid-
erably across years, and consequently, dry season seedling performance also varies [50]. Pro-
nounced seedling mortality, especially of drought sensitive species, occurs predominantly in
particularly dry years [50], while the dry season in our study period was well within the long-
term average [45]. Rather than contradicting the physiological tolerance hypothesis, our
results, together with the previous studies, thus underline the importance of strong and
repeated dry seasons, such as those occurring during El Niño Southern Oscillation (ENSO)
events, for exclusion of wet origin species from dry forests.

Exclusion of dry forest species from wet sites
While the mechanisms underlying distribution limits of wet forest species to dry sites are quite
well understood, the mechanisms excluding dry origin species from wet forests are not yet
resolved. Contrary to our expectations, we found no indication of either high pest damage or
low shade tolerance limiting the performance of dry origin species in the wet site.

Pest pressure hypothesis. Consistent with our hypotheses, pest exclosure through insecti-
cide and fungicide treatment had a significant positive overall effect on establishment success,
germination and survival (Table 1), indicating that these processes were limited by pests.
Growth was not affected by pests in congruence with results from Eichhorn et al. [51], who
argued that levels of herbivory were exceedingly high in the few studies which found negative
effects of herbivore damage on growth.

However, contrary to our expectations, the performance of early life stages of dry origin spe-
cies in the wet site was not limited by herbivores or pathogens, as shown by the lack of a posi-
tive effect of alleviating potential damage through pest exclosure (Table 2d). Furthermore, we
did not find any indication of overall higher pest pressure in the wet site, which would have
manifested itself in a significant site x treatment interaction with a higher treatment effect in
the wet site (see Table 1). On the contrary, the effect of pest pressure was higher in the dry site
for establishment success and germination, (see Table 1 and below). Thus, our results did not
support the pest pressure hypothesis.

To our knowledge, so far only three studies have explicitly tested the pest pressure hypothe-
sis. All three used transplant experiments with species of contrasting origins across tropical
rainfall gradients [13, 14, 19]. Two studies in Panama [14, 19] found higher overall damage
and higher pathogen damage in a wet aseasonal than in a dry seasonal forest, consistent with
higher pest pressure but contrary to our results, while a study at the Malay-Thai peninsula
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found no evidence for higher pest pressure in an aseasonal compared to a seasonal forest [13].
None of these studies found significantly higher damage in dry than wet origin species indica-
tive of lower defenses in the dry forest species, as required for the pest pressure hypothesis.
Instead, the results of Spear et al. [19] suggest that the susceptibility of species, i.e. their likeli-
hood to die after pathogen or herbivore damage, varies, with wet origin species being less sus-
ceptible. They proposed that higher susceptibility rather than lower defenses may limit the
distribution of dry origin species in wet sites. However, if these processes are important for spe-
cies distribution, an overall performance outcome consistent with the pest pressure hypothesis
(i.e. stronger negative effects of pest on dry species performance) would still be expected,
regardless if it is driven by defenses or susceptibility. Our results do not support the importance
of differences in defenses nor susceptibility for germination or early seedling performance.

We expected higher pest limitation of dry forest species in wet forests, due to the combined
effects of higher pest pressure in wetter forests and lower defenses of dry origin species (Fig 1).
Instead, the positive effect of pest exclosure for dry origin species was consistently higher in the
dry site compared to the wet site for all performance parameters (Figs 3 and 4, Table 2c and
2d), and for wet origin species the effect of pest exclosure was equally high in both sites (Figs 3
and 4, Table 2c and 2d). These results might hint towards a higher degree of specialization of
the herbivore community in the wet than in the dry forest: If transplanting dry origin species to
the wet forest introduced them to a specialized herbivore community with which they did not
co-evolve, lower pest limitation compared to native wet forest species, as we observed, would
be expected (compare enemy release hypothesis). On the other hand, if the herbivore commu-
nity in the dry forest is more generalistic, wet origin species would be expected not to show
higher release from pest pressure outside their home range, again consistent with our observa-
tion. If specialization of pests indeed increases across rainfall gradients, it would put the pest
pressure gradient hypothesis into question, since dry forest species may escape their enemies
and have an advantage in wet forests. While overall, specialization of insect herbivores and fun-
gal pathogens is not as strong as originally thought [52, 53], we are not aware of any study com-
paring the degree of specialization of herbivore communities across rainfall gradients. Targeted
studies analyzing specialization across rainfall gradients will be needed to evaluate this
possibility.

In summary, our results do not support any of the patterns expected from the pest pressure
hypotheses for early life stages, and—taken together with previous studies—decisive support
for the pest pressure gradient hypothesis remains elusive.

Light availability hypothesis. Light responses in our experiment did not significantly dif-
fer between wet origin and dry origin species (no significant origin x light interaction, Table 1).
We found no indication that dry origin species were more light-demanding than wet origin
species, as expected from the light availability hypothesis. On the contrary, wet origin species
even showed a trend to higher light requirements, indicated by the marginally significant trend
to higher establishment success with increasing light than dry origin species (origin x light
interaction, Table 1, Fig 3b). Previous studies similarly did not find support for higher light
requirements in dry than wet forest species [8, 15, 21]. Additionally, although light availability
was significantly higher in the dry than in the wet site (Fig 2), differences were small (see also
[15]). Overall canopy openness showed only little variation with values between 1 and 7%.
These values are typical within the understory of tropical forests [15, 25]. The small variation
may contribute to the overall small effect of light on species performance observed in this
study. Our results, together with previous studies, suggest that light does not play a significant
role in shaping species distributions across tropical rainfall gradients.

Growth and the role of a drought-tolerance-growth trade-off. Wet forest species had a
home advantage in terms of growth: in the wet forest growth rates of wet origin species were
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higher than of dry origin species (Table 2a). Through this growth difference, wet origin species
may over time outperform and exclude dry origin species from wet forests. Previous studies in
the area have also found lower growth rates in dry compared to wet forest species in indepen-
dent species sets (only three species overlapping, [14, 36]). Similar patterns were also found in
studies in the Malay-Thai peninsula, where widespread, dry distribution species had lower
growth rates than aseasonal, wet distribution species [13, 54]. This suggests that lower seedling
growth rates in dry than wet forest species are a general and widespread pattern.

We have discarded above that the lower growth rates of dry forest species were due to pest
damage or light requirements. An alternative factor that may lead to this pattern is low nutrient
availability in wet forests, and indeed high nutrient requirement of dry forest species have been
suggested to exclude them from nutrient poor wet forests [2, 18, 36]. If dry origin species have
higher nutrient requirements and wetter forests have lower nutrients, this could explain the
reduced growth of dry origin species with increasing rainfall found in our study (Table 2b).
However, dry and wet origin species do not differ in nutrient requirements in Central Panama
[36], and relations between rainfall and nutrient availability are weak [4]. Differential nutrient
requirements can therefore be ruled out as a cause for overall lower growth rates of dry forest
species and for playing a major role in excluding dry origin species from wet forests, although
they do influence distribution across nutrient gradients [4].

Instead, lower growth rates in dry forest species are consistent with a stress tolerance-
growth trade-off, which has been hypothesized based on costs associated with adaptations to
low resource availability which should lead to inherently lower growth rates, even under opti-
mum conditions, in stress-tolerant species [20, 27]. There is ample evidence for a stress toler-
ance-growth trade-off based on shade (e.g. [55]). Also, several traits promoting tolerance to
drought are traded-off against growth rates [28, 29]. Nevertheless, although often implied,
direct empirical evidence for a whole-plant drought tolerance-growth trade-off remains sur-
prisingly scarce. Support for a trade-off between drought survival and maximum growth rates
or shoot growth rate across species was found e.g. by O’Brien et al. [29], Polley et al. [31] and
Wikberg et al. [32], in tropical tree seedlings, tropical and subtropical woody legumes, and in
willows, respectively. Consistently, in our study there was a marginally significant negative
relation between dry season survival on the dry site and maximum growth rates (assessed as
the upper 95 percentile of growth on the wet site, GLMER: p = 0.07, based on data for the 16
species with more than 3 survivors). However, the only rigorous experimental study that
explicitly tested for this trade-off, which was conducted in eight desert grasses, did not support
it [30].

Species with dry distribution have been experimentally shown to be more tolerant to
drought stress than species with wet distribution [8, 9, 54], and higher drought-tolerance in dry
origin species is consistent with the data from our study (see above). Inherently lower growth
rates of dry compared to wet origin species found in this (Table 2a) and other studies [14, 36,
54] thus provide additional indirect support for a stress tolerance-growth trade-off with respect
to drought. This trade-off may underlie the exclusion of dry forest species from wet sites and
be fundamental in shaping species distributions along rainfall gradients.

The role of early life stages for species distributions
In this study, we focused on the initial life stages of germination and early seedling establish-
ment, since these stages are considered the most vulnerable in the face of biotic and abiotic
stressors [33, 34] and may thus be critical in shaping species distribution patterns across tropi-
cal rainfall gradients. However, germination (i.e. radicle emergence) patterns did not reflect the
occurrence patterns of the species (Fig 4a, Table 2a and 2b), indicating that species partitioning
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along the rainfall gradient did not occur at this stage. We found support that differential dry
season survival (in dry sites) and differential growth (in wet sites) during early life stages con-
tribute to shaping tree distribution patterns across tropical rainfall gradients (see above). How-
ever, effects were weak and not sufficient to lead within the initial year to a clear home
advantage of the species on the dry or wet side, respectively. Across a topographic moisture
gradient, processes within one year after emergence were also insufficient to explain habitat
preferences of adult plants [33]. This strongly suggests that longer time spans reaching into
later life stages, and repeated and pronounced dry seasons are important for filtering tree distri-
bution patterns.

The importance of later life stages and longer time periods for shaping distribution patterns
is supported by local scale studies: If habitat associations of adults are shaped by failure to ger-
minate or to establish, older juveniles and adults should exhibit the same habitat associations.
However, most species have different associations at seedling and late life stages [56].

Conclusions
We found two processes that may lead to the differential distribution patterns of dry and wet
origin species after longer time periods and at later life stages. We showed that drought limits
the survival of wet origin species in dry forests, which supports the physiological tolerance
hypothesis. Dry origin species had lower growth rates than wet origin species, especially in the
wet forest site, consistent with a drought-tolerance- growth trade-off. Our results support that
repeated and intense dry season drought limits performance and consequent distribution of
wet origin species in dry forests, and suggest that dry origin species are outperformed in wet
forests due to inherently lower growth rates, based on a drought-tolerance- growth trade-off.

Although pest pressure had a strong overall influence on species establishment success, we
found no support for the hypothesis that high pest pressure excludes dry origin species from
wet forests (pest pressure gradient hypothesis). We also found no evidence for the hypothesis
that dry origin species have higher light requirements than wet origin species, and are thus
excluded from wetter forests with darker understory (light gradient hypothesis).

Our results underline that changes in water availability due to climate change will have
direct consequences on species regeneration and distributions along rainfall gradients, while
indirect effects of pest pressure and light availability play a subordinate role.
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S1 Dataset. Dataset contains raw data including plot designation, species names, individual
performance parameters (establishment success, growth, germination, dry season survival,
wet season survival), and environmental data in different seasons (canopy openness and
gravimetric soil moisture).
(XLS)

S1 Fig. Performance parameters of the 26 focal species analyzed. Probability of establish-
ment success (A), growth (B), probability of germination (C), probability of wet season survival
(D) and probability of dry season survival (E), sorted by species’ origin (dry: red, wet: blue) and
average establishment success. Data are averages and standard errors. Species effects on all per-
formance parameters were highly significant (GLMM for probability of establishment, germi-
nation, total survival, survival wet and dry season and LMM for growth: p< 0.001). For full
species names see S1 Table.
(PDF)
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